
978-1-7281-0397-6/19/$31.00 2019 IEEE

Variation-aware Binarized Memristive Networks
Corey Lammie1, Olga Krestinskaya2, Alex James3, and Mostafa Rahimi Azghadi1

1College of Science and Engineering, James Cook University, Queensland 4814, Australia
Email:{corey.lammie, mostafa.rahimiazghadi}@jcu.edu.au

2School of Engineering, Nazarbayev University, Kazakhstan, Email: okrestinskaya@nu.edu.kz
3AI division, Clootrack Pvt Ltd, Bangalore, India, Email: apj@ieee.org

Abstract—The quantization of weights to binary states in
Deep Neural Networks (DNNs) can replace resource-hungry
multiply accumulate operations with simple accumulations. Such
Binarized Neural Networks (BNNs) exhibit greatly reduced
resource and power requirements. In addition, memristors have
been shown as promising synaptic weight elements in DNNs.
In this paper, we propose and simulate novel Binarized Mem-
ristive Convolutional Neural Network (BMCNN) architectures
employing hybrid weight and parameter representations. We
train the proposed architectures offline and then map the trained
parameters to our binarized memristive devices for inference. To
take into account the variations in memristive devices, and to
study their effect on the performance, we introduce variations
in RON and ROFF. Moreover, we introduce means to mitigate
the adverse effect of memristive variations in our proposed
networks. Finally, we benchmark our BMCNNs and variation-
aware BMCNNs using the MNIST dataset.

I. INTRODUCTION

RESISTIVE Random Access Memory (ReRAM) is a class
of memristors, that when arranged in a crossbar config-

uration, can be used to implement multiply and accumulate
(MAC) or dot-product multiplications consuming low energy
and area on chip. ReRAM devices, in such configurations,
can be used to reduce the time complexity of 2D matrix-vector
multiplications, used extensively during forward and backward
propagation cycles in DNNs, from O(n2) to O(n), and in
extreme cases to O(1). However, current ReRAM crossbars
face concerns of aging, non-idealities and endurance [1], that
limit the accuracy of their conductive states, affecting the
reliability and robustness of memristive DNNs.

Memristive DNNs can either employ ReRAM crossbars
with multiple distinctive conductive states, to represent analog
weight representations, or with two distinctive conductive
states, to represent binary weight states. Given the aging and
state variability issues of ReRAM, binary weight represen-
tations, adopted in BNNs, are currently more practical for
hardware realization.

Binarized Neural Networks (BNNs) [2], which perform
binary MAC computations during forward and backward
propagations, have demonstrated comparable performance to
conventional DNNs, while significantly reducing resource and
power utilizations [3]. On account of endurance concerns,
ReRAM devices are ill-suited for implementing backward
propagations, required during the training routine of BNNs
where a large number of programming cycles are required.
However, they are well-suited [4] for implementing forward

propagations, required during inference, as only a limited
number of programming cycles and two conductive states are
required.

In this paper, we propose and simulate novel BMCNNs
and variation-aware BMCNNs using a customized simulation
framework for memristive crossbars, which integrates directly
with the PyTorch Machine Learning (ML) library. Our de-
veloped networks employ offline training routines adopting
hybrid fixed-point and floating-point representations, and bina-
rized memristive weights. Furthermore, to reduce the effect of
memristor variability on the performance of our architectures
after crossbar programming, we propose a tuning method. The
specific contributions of this work are as follows:
• We propose and simulate novel BMCNNs and variation-

aware BMCNNs, adopting hybrid fixed-point, floating-
point, and binarized parameter representations, simulat-
ing memristive devices, and benchmark them using the
MNIST dataset.

• We investigate the performance degradation observed
when the variance of RON and ROFF are increased within
memristive crossbars that compute matrix multiplication
operations for convolutional layers during inference.

• We propose a tuning method to reduce the effects of
memristor variability without reprogramming memristive
devices.

II. PRELIMINARIES

This section briefly reviews and presents the algorithms and
methods used in our developed architectures.

A. Binary Weight Regularization

Binary weight regularization [2], constrains network
weights to binary states of {+1, -1} during forward and
backward propagations. The binarization operation transforms
full-precision weights into binary values using the signum
function, described in Eq. (1).

wb = sign(w) =

{
−1 if w ≤ 0
+1 otherwise, (1)

where wb is the binarized weight and w is the full-precision
weight. During backward propagations, large weights are
clipped using tclip, described in Eq. (2), where c denotes the
objective function.

ar
X

iv
:1

91
0.

05
92

0v
1

 [
cs

.E
T

]
 1

4
O

ct
 2

01
9

Fig. 1. Depiction of (a) the reduction of a conventional convolutional layer to (b) an unrolled matrix multiplication, (c) an output example, (d) the correlation
between the algorithm and hardware, and corresponding hardware implementation of convolutional layers for (e) sequential and (f) parallel processing.

∂c

∂w
=

∂c

∂wb
1|w|≤tclip (2)

B. Convolutional Operation as a Matrix Multiplication

Convolutional operations in BMCNNs can be performed
using unrolling techniques, which reduce conventional con-
volution operations to matrix multiplications. Fig. 1 (a) and
(b) depict the computation of the convolution of two filters
(f = 2) using conventional and unrolling techniques. In Fig.
1 (b), both convolutional filters, F and H, are reshaped to form
Fm of size (C ×N). The input, D, is reshaped to form Dm

of size (M ×C). The convolution result, O, is determined by
reshaping the result of Fm × Dm, Om, from (M × N) to
(f × o1 × o2), where o1 = o2 = ([i2 − k2 + 2 × P]/S) + 1,
which in this instance is 2.

Fig. 1 (e) and (f) depict the mapping of the matrix multi-
plication operation to memristive crossbars using sequential
and parallel processing approaches. Elements of Dm are
represented using equivalent voltages, Vin. In the first column
of the crossbar, memristors are programmed to Gy1,y2,0 ∝
Fy1,y2 . In the second column of the crossbar, memristors are
programmed to Gy1,y2,1 ∝ Hy1,y2

(see Fig. 1 (d)). The total
output current from the crossbar, Iout, is lineary proportional
to the convolution result, i.e. O ∝ K · Iout, and can either be
read sequentially column-by-column, or in parallel, to reduce
the output current error due to leakage.

Convolutional layers can be processed sequentially, using
the same crossbar representative of Fm to process M input
rows of Dm one by one, or in parallel with M crossbars,
using the same memristive filter Fm duplicated M times (see
Fig. 1 (e)). Despite being much faster, this parallel approach
increases the on-chip area by a factor of M .

III. NETWORK ARCHITECTURE

The network architecture adopted by all of our memristive
BNNs, originally proposed in [2], is depicted in Fig. 2 (b), and
summarized in Table I. All convolutional layers are followed
by batch-normalization, max-pooling (k2 = k3 = S = 2), and
hardtanh activation operations. Binary weight representations
are used for all convolution layers. We implemented four
network architectures, each denoted by a name which includes
two parts. The first part denotes the number representation
method used for weights during the parameter-update stage,
and for the last fully connected layer, while the second part
denotes the binary weight representation. For instance, FR
BNN describes an architecture that uses (FR) Full-Resolution
32-bit floating point numbers, and (BNN) binarized weights.
The other architectures are as follows: 8-bit Fixed-point and
Binary (FP-8 BNN), and 8-bit Fixed-point and Memristive Bi-
nary (FP-8 MBNN, and TFP-8 MBNN). FP-8 MBNN is used
to denote BMCNNs with fixed crossbar current amplification
parameters, whereas TFP-8 MBNN is used to denote variation-
aware BMCNNs with tuned crossbar current amplification
parameters.

Our proposed hardware implementation consists of an of-
fline training module, which can be based on either a FPGA
or co-processor, a programming and crossbar control circuit,

TABLE I
MEMRISTIVE BNN ARCHITECTURE.

Layer Binarized Memristive

Convolutional Layer1. f = 16, k2=k3=2, P=2 3 3
Convolutional Layer1. f = 32, k2=k3=2, P=2 3 3
Fully Connected Layer1. N = 1568
1No biases are used.

Fig. 2. (a) The single-column memristor crossbar array architecture used in all of our FP-8 MBNN and TFP-8 MBNN networks. (b) Overall architecture of
our binarized CNNs.

and forward propagation circuits. These forward propagation
circuits utilize several ReRAM crossbars, depicted in Fig. 2
(a), in which each memristors state is confined to [RON, ROFF],
to represent [−1,+1], respectively [5]. The multiplication
of Dm × Fm = Om, where Dm contains full resolution
elements, and Fm contains binary elements ∈ [−1,+1] (see
Fig. 1(d)), can be performed as described in Eq. (3).

Om[j, k] = K

C−1∑
0

Vi,k(Gi,j −Gc) (3)

Each element in a single row of matrix Om is equivalent to
the scaled output current from a single crossbar column. Each
row of Om is computed by applying Vin to each crossbar row
in time. To represent both positive and negative binary weights,
we introduce a crossbar column with fixed resistors Gc =
[GON + GOFF]/2, whose current,−Ic, is duplicated to all the
crossbar columns with memristors using current mirrors [5].
The output current from each column is computed as Ioutj,k =∑C−1

0 Vi,k(Gi,j − Gc), where Vini,k is an input to row i at
time k and Ioutj,k is an output of the column j at time k, for
i = 1 to C, j = 1 to N and k = 1 to M .

If the utilized memristive devices are considered ideal, we
can pick a current amplification parameter K=4000, which
maps devices perfectly to their desired RON, ROFF states.
To develop a framework for realistic memristors, we perform
tuning for our proposed variation-aware BMCNNs to alleviate
performance degradation due to memristor variabilities. This
tuning process uses Bayesian optimization to determine and
set each crossbars adaptable current amplification parameter,
K, for each layer ∈ [3000:5000] with 15 Bayesian trials.

IV. IMPLEMENTATION RESULTS

In order to investigate the performance of our networks the
MNIST dataset was used. During backward propagations Eq.
(2) was used to binarize weights, and after the parameter
update procedure, their full-precision representations were
clipped using tclip.

TABLE II
TUNED NETWORK HYPERPARAMETERS.

Optimizer = tclip η Validation Set Accuracy

FR-32 BNN

AdaGrad 64 0.64 1.60E-03 97.51
Adam 128 0.91 3.78E-03 96.45
SGDm=0 119 0.56 3.79E-03 96.71
SGDm=0.8 120 0.87 1.00E-03 97.97

FP-8 BNN

AdaGrad 64 1.00 4.53E-03 94.31
Adam 128 0.68 1.00E-03 98.35
SGDm=0 128 0.50 4.61E-03 95.97
SGDm=0.8 119 0.89 3.27E-03 96.64

A. Hyperparameter Optimization

Prior to training networks using the MNIST training set
hyperparameter optimization was performed by constructing
modified training and validation sets, using 80% (48,000) and
20% (12,000) of training samples, respectively. We performed
Bayesian optimization using Ax for a batch size = ∈ [64:128],
tclip ∈ [0.5:1.0], and a learning rate, η ∈ [1e−3:1e−2], for
AdaGrad, Adam, SGDm=0 (SGD with m=0), and SGDm=0.8.

The best validation set accuracy for each network during
20 training epochs for 15 Bayesian trials is presented in
Table II. We observed no notable drop in the validation
set accuracy between our optimized FR-32 BNN and FP-8
BNN implementations. Hence, herein, all memristive BNNs
adopt hybrid 8-bit fixed-point and memristive binary weight
representations.

B. Memristor Crossbar Programming and Tuning

After each crossbar was programmed using programming
and control circuitry, all trained binarized network weights
were programmed to the crossbars and then discarded, requir-
ing no further storage. Tuning was performed for all variation-
aware BMCNNs. We note that after training, for our proposed

Fig. 3. Test set classification accuracy for all FP-8 MBNN and TFP-8 MBNN networks.

hardware implementation, the offline training module can be
freely disconnected.

C. Performance Investigation

To investigate the performance of our networks, we di-
rectly compared the test set classification accuracy of all our
BNNs. FP-8 MBNN networks adopted fixed crossbar current
amplification parameters, K = 4000 for each layer, while
TFP-8 MBNN networks adopted tunable crossbar current
amplification parameters. Simulations of memristive BNNs
were performed using a modified Generalized Boundary Con-
dition Memristor TiO2 model [6] with RON = 1000Ω and
ROFF = 2000Ω. All results are presented in Table III.

D. Performance Degradation Due to Device Variability

To determine the effect of memristor variability on the
performance of each network, and how the tuning of K
improves their accuracy, resistive states for each memristor
were sampled from a Gaussian distribution with a standard
deviation of σ from the trained state of that memristor. As
the variability of the ROFF state can be higher than RON, we
used a larger σ value when sampling ROFF, i.e. σRON = σ and
σROFF = 2σ. The performance of all memristive BNNs under
such conditions are presented in Fig. 3.

For all networks, a test classification accuracy of > 90%
was obtained when σ ≤ 40 and the distributions of RON and
ROFF weights did not correlate. Even small correlations of RON
and ROFF states caused a substantial drop in accuracy. Fig. 3
demonstrates that the proposed tuning method can increase the
test set classification accuracy, when σ ≥ 100.

V. CONCLUSION

We proposed novel memristive BNNs with tunable crossbar
output current amplification factors. We benchmarked the per-
formance of our novel architectures and compared them to the

TABLE III
COMPARISON OF TEST SET CLASSIFICATION ACCURACY (%) FOR

MEMRISTIVE BNN AND DIGITAL IMPLEMENTATION OF BNN WITH
DIFFERENT WEIGHT RESOLUTIONS AND OPTIMIZATIONS.

Optimizer AdaGrad Adam SGDm=0 SGDm=0.8

FP-8 BNN 93.68% 93.42% 93.99% 94.31%
FR-32 BNN 93.93% 92.21% 94.17% 94.11%
FP-8 MBNN 93.56% 93.43% 93.90% 94.50%
TFP-8 MBNN 86.94% 93.33% 93.95% 94.41%

digital implementations of Binarized CNNs. We demonstrated
that memristor variabilities can degrade performance, and
proposed an alleviating tuning method. We leave the devel-
opment of full circuit level implementations of the proposed
architecture and specific device and technology investigations
to future works.

REFERENCES

[1] O. Krestinskaya, A. Irmanova, and A. P. James, “Memristive non-
idealities: Is there any practical implications for designing neural network
chips?” in 2019 IEEE International Symposium on Circuits and Systems
(ISCAS), May 2019, pp. 1–5.

[2] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Bi-
narized neural networks,” in Advances in neural information processing
systems, 2016, pp. 4107–4115.

[3] C. Lammie, W. Xiang, and M. R. Azghadi, “Accelerating Deterministic
and Stochastic Binarized Neural Networks on FPGAs Using OpenCL,”
CoRR, vol. abs/1905.06105, 2019. [Online]. Available: http://arxiv.org/
abs/1905.06105

[4] O. Krestinskaya and A. P. James, “Binary weighted memristive analog
deep neural network for near-sensor edge processing,” in 2018 IEEE 18th
International Conference on Nanotechnology (IEEE-NANO), July 2018,
pp. 1–4.

[5] K. Van Pham, T. Van Nguyen, S. B. Tran, H. Nam, M. J. Lee, B. J.
Choi, S. N. Truong, and K. Min, “Memristor binarized neural networks,”
J. Semicond. Technol. Sci, vol. 18, pp. 568–577, 2018.

[6] V. Mladenov and S. Kirilov, “A memristor model with a modified
window function and activation thresholds,” in 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), May 2018, pp. 1–5.

http://arxiv.org/abs/1905.06105
http://arxiv.org/abs/1905.06105

	I Introduction
	II Preliminaries
	II-A Binary Weight Regularization
	II-B Convolutional Operation as a Matrix Multiplication

	III Network Architecture
	IV Implementation Results
	IV-A Hyperparameter Optimization
	IV-B Memristor Crossbar Programming and Tuning
	IV-C Performance Investigation
	IV-D Performance Degradation Due to Device Variability

	V Conclusion
	References

