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Low-Energy and Fast Spiking Neural Network For
Context-Dependent Learning on FPGA

Hajar Asgari, Babak Mazloom-Nezhad Maybodi, Melika Payvand, and Mostafa Rahimi Azghadi

Abstract—Supervised, unsupervised, and reinforcement learn-
ing (RL) mechanisms are known as the most powerful learning
paradigms empowering neuromorphic systems. These systems
typically take advantage of unsupervised learning because they
can learn the distribution of sensory information. However,
to perform a task, not only is it important to have sensory
information, but also it is required to have information about
the context in which the system is operating. In this sense,
reinforcement learning is very powerful for interacting with the
environment while performing a context-dependent task. The
predominant motivation for this research is to present a digital
architecture for a spiking neural network (SNN) model with RL
capability suitable for learning a context-dependent task. The
proposed architecture is composed of hardware-friendly leaky
integrate-and-firing (LIF) neurons and spike timing dependent
plasticity (STDP)-based synapses implemented on a field pro-
grammable gate array (FPGA). Hardware synthesis and physical
implementations show that the resulting circuits can faithfully
reproduce the outcome of a learning task previously performed
in both animal experimentation and computational modelings.
Compared to the state-of-the-art neuromorphic FPGA circuits
with context-dependent learning capability, our circuit fires 10.7
times fewer spikes, which accelerates learning 15 times, while
requiring 16 times less energy. This is a significant step in
achieving fast and low-energy SNNs with context-dependent
learning ability on FPGAs.

Index Terms—Neuromorphic engineering, field programmable
gate array (FPGA), context-dependent task.

I. INTRODUCTION

BECAUSE of highly efficient performance-resources
trade-off of the biological brain in learning tasks, research

into hardware realization of brain-inspired computing plat-
forms is becoming increasingly popular [1]–[4]. Specifically,
SNNs are gaining more attention because of their biological
plausiblity and low power consumption as a result of the
sparse activity of their neurons [5]. Many groups have worked
on different implementation of such networks in analog and
digital systems [1]–[3], [6], [7]. Such intelligent low power
systems are perfect candidates for autonomous agents which
can learn to interact with the environment in an unsupervised
fashion [8]. However, the promise of the autonomous system
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is fundamentally based on the ability of the agent to learn and
act not only based on the sensory information, but also based
on the context and state it is operating at. Learning a context
dependent task thus involves encoding and remembering the
context of an event in which an item of object has been
observed [9]. Performing such task requires a precise, flexible,
and reliable implementation substrate such as FPGAs [10].
Several research groups have proposed approaches for mod-
eling SNNs on FPGA platforms [10]–[13]. However, efficient
digital implementation of SNNs with reinforcement learning
is yet to be fully explored.
This paper proposes a digital hardware architecture for spiking
neural networks with reinforcement learning. This network
is able to reproduce hippocampus principal neurons behavior
while learning a context-dependent task. Our novel hardware
is significantly faster than its counterpart FPGA designs, while
requiring much lower operational energy.
The study starts with a description of the context-dependant
task and SNN model in Section II. In Section III, we introduce
the hardware architectures for neurons, synapses, and network.
Section IV presents the implementation results accompanied
by an extensive comparison between the proposed and previ-
ous studies. Finally, section V concludes the paper.

II. BACKGROUND

This paper presents a digital spiking neural network with
reinforcement learning capability. To validate the proposed
network operation in a real task, an SNN for learning a
context-dependent task is designed using the proposed archi-
tecture. In this section a few concepts and SNN model of the
context-dependent task are described.

A. Description of The Context-Dependent Task
This task was designed to probe the behavior of individual

hippocampal principal neurons during learning rewarded items
depending on the environmental context properties [14]. In the
original experiment on rats, there were two boxes as contexts
A and B with different wallpapers and floors and a shared
entrance which separates the two boxes. Inside each of the
boxes, two pots (Item X and Y) were randomly located in
two different positions (position 1 and 2) and only one of them
contained a reward. In the experiment, animals were trained to
choose item X in context A and item Y in context B, regardless
of which position the items were located [15].

B. Spiking Neural Network Model
All visual appearance and spatial positions are abstracted

in the form of binary input vectors [14]. As shown in Fig. 1,
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the network for the context-dependent task includes an input
(sensory) layer, a hidden (Hippocampal) layer and an output
(motor) layer. In this model, the input layer includes six
neurons (which represent two contexts, two items, and two
positions) and provides eight different spatial information.
Adaptive excitatory weights connect all these input neurons to
all hippocampal neurons. All eight hippocampal neurons in the
hidden layer have inhibitory connections among themselves,
without self-inhibition. A few plastic excitatory synapses
connect hippocampal neurons to neurons in the output layer.
Similar to the hippocampus layer, neurons in the output layer
have inhibitory connections within themselves. As the output
layer includes two neurons, there are two actions in the
network output: dig and move1. Hidden and output layers are
two separate winner-take-all (WTA) networks [14].

WTA

WTA

Hidden: 
Hippocampus layer

Input:
 Sensory layer

Output:
 Motor layer

WTA: Winner-Take-All

Inh weights

exc weights

Fig. 1: The spiking neural network, used to model the rein-
forcement learning in the context-dependent task. All to all
excitatory synapses connect layers in this network. Inhibitory
synaptic connections among all neurons provide WTA net-
works. Only inhibitory synapses of one neuron are shown.

III. HARDWARE DESIGN AND IMPLEMENTATION

During our investigations at the design stage, we found out
that replicating the biological and computation results for the
targeted task require high-precision calculations. Therefore,
32-bit number representation was chosen, which enables us
to achieve state-of-the-art results. With the aim of achiev-
ing the maximum computational efficiency and a minimal
hardware cost, here we incorporate approximation techniques
for neurons and plastic synapses. Fig. 2 demonstrates our
neuromorphic system composed of five blocks. Here, sim-
ilar to all other neuromorphic systems Neurons Block
and Synapses Block are the main parts of the proposed
network. All connections among neurons and synapses are
defined in Crossbar block. Competition among neurons
groups including WTAs networks are done in Activities
plus WTAs block. The Peripheral Block contains all
the other required cores for synapse initializing and controlling
network sequences. The architecture of each block and system
operation for the context-dependent task are described in the
following subsections.

A. Neurons Block
In this block all neurons are LIF [16] and are sorted in

a column. Direct discretization of neuron’s dynamic results

1“Dig” in the experiment is an action that the agent takes if it decides that
there is a reward hidden in the current selection. Otherwise, the agent walks
to a different location, an action termed “move” in the experiments.

in Eq. 1 with a constant time step (dt). The membrane
voltage Vm is the potential of capacitance C that is driven
by input current I while there is leakage current through Gl

channel. In this equation, Vreset is the resting potential for
the membrane. Additionally when membrane voltage crosses a
threshold voltage (Vth) and goes above it, the neuron fires and
Vm sets to Vreset [16]. However, in this model for calculating
membrane voltage two multiplication operations are required
which results in high area and power consumption.

Vm[n+ 1] = (1 +
Gl

C
dt)Vm[n] +

dt

C
I[n]− Gl

C
dtVreset (1)

If C, Gl and dt values are chosen so that Vm[n]� Gl

C dtVm[n],
Eq. 2 can be efficiently approximated to:

Vm[n+ 1] ' Vm[n] + V [n]− Vleakage (2)

where V [n] = dt
C I[n] is the input voltage and Vleakage =

Gl

C dtVreset is leakage potential.
As shown in Fig. 3(a) this hardware is only composed of
add and accumulation operations without any multipliers. This
introduces a significant cost reduction in the neuron block.

B. Synapses Block

The other main unit of the network is the synapse. In
these networks, there are two synapse types: Inhibitory static
synapses and excitatory plastic synapses. The first group
of synapses has the strength of W=1 and provides strong
inhibition. In contrast to inhibitory synapses, the excitatory
synapses enhance neurons membrane voltage. The values of
these synapses are modified during the replay phase based on
an STDP-based learning mechanism. In the STDP algorithm,
the weight of a synapse modifies according to the timing
difference between the pre- and post-synaptic spikes arrival.
As shown in Fig. 4(a) the amount of modification in the
learning rule implemented in [14] depends on both arrival
timing difference and the strength of synapse just before
adaptation. In our implementation, we have utilized look-up-
table (LUT) approximation which is an efficient technique

Synapses Block Crossbar

Activities 
plus

 WTAs

C
tr

l-
B

eh
av

C
tr

l-
R

ep
la

y

S
ch

ed
u

le
r

In
it

-S
y
n
ap

se
s

H
is

t-
S

eq
u
en

ce

Peripheral Blocks

LIF

LIF

LIF

E

Run

Start-trial

E

E

E

I

I

I

I

E: Exitatory plastic

I: Inhibitory static

LIF: Leaky-integrate-and-fire
WTA: Winner-Take-All

N
eu

ro
n
 B

lo
ck

s

Fig. 2: High level block diagram of the network architecture.
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Fig. 3: (a) Simplified LIF neuron model. (b) Winner-Take-All
block diagram. (c) Low-level block diagram for calculating
neurons activity and WTA networks.

for reducing implementation complexities of neuromorphic
designs [17]. Fig. 4(b) shows the comparison between the
LUT-based synapse model with the size of 16 × 10 and
the original model for various spike time differences. In our
implementation, the initial values for excitatory weights are
small random numbers between 0 and 1.

(a) (b)

Fig. 4: (a) Synaptic modification over spike timing difference
for three various initial weights [14]. (b) LUT-based approxi-
mation of the synapse model (Winit = 0.5).

C. Error Analysis

As a consequence of the estimations for neuron and synapse
dynamics here, we use root means square error (RMSE) to
measure the time domain error of the approximated system
compared to the original model. The error equation is defined
as in [10]. In addition, similar to the previous studies, normal-
ized RMSE (NRMSE) for neuron and synapse approximations
are calculated (shown in Table I) to evaluate the error in
our approximate models compared to the original model
simulations. Based on the small estimated errors, both pro-
posed models for synapse and neuron comparatively replicate
original neuron and synapse behavior very closely.

D. Crossbar and Activities plus WTAs block

Crossbar block specifies all connections among neurons and
synapses. Hippocampal and output layers contain WTA net-
works. As shown in Fig. 3(b) each typical WTA is composed

TABLE I: Error values calculated for our approximate imple-
mentations, compared to other similar models.

Proposed Proposed [10] [4]
Rule Neuron Synapse Neuron Synapse
RMSE (%) 0.4966 0.155 3.49 -
NRMSE (%) 7.0942 2.146 3.53 5.9

of a comparator and an output assignment unit which pulls
up neurons input with the highest activity and pulls down
others. Fig. 3(c) illustrates a low-level block diagram of how
WTA networks are located in this SNN architecture with more
details. Blocks A in Fig. 3(c) calculate the activity of cells
(Acell) using Eq. 3.

Acell
j =

i=nk∑
i=1

(Vi − Vreset)W
exc
ij −

i=nl∑
i=1,i6=j

(Vi − Vreset)W
inh
ij

(3)
where i and j are the indexes of the neurons in the pre- and
post-synaptic layers, respectively. nk and nl are total neurons
in these layers. After calculating the cells activity, a WTA in
each layer compares all values to make sure that in each layer
only neurons with the highest activity are pulled up.

E. Peripheral Blocks

As shown in Fig. 2, this block contains all the other
sub-blocks responsible for controlling the network behav-
ior. Scheduler manages sequences in this network. This
unit gets neurons spikes and several controlling signals and
based on them provides controlling signals for the other
units. Init-Synapses gets orders from the scheduler and
provides initial values for synaptic weights. This core in-
cludes several Linear Feedback Shift Register (LFSR) block
to generate random numbers for each synaptic weight. The
Ctrl-Behav unit gets WTAs outputs and a controlling signal
from the scheduler and then provides input voltage for neurons
during the behavioral phase. Ctrl-Replay unit gets control-
ling signals from the scheduler and provides input voltage for
neurons during the replay phase to replicate the firing patterns
of the neurons during the feed-forward operation which is
used for the learning procedure. Hist-Sequence unit stores
neurons states (active or inactive) during the behavioral phase
and provides the required information for the Ctrl-Replay
unit during the replay phase.

F. Analysis of the Training Mechanism

After getting a Run order, all initial values for both
inhibitory and excitatory synapses are set. By arriving
Start-trial order, the behavioral phase starts and neurons
firing continue until getting a “dig” (with or without reward)
from the output layer. Dig event causes the network to switch
to the replay phase, in which the scheduler makes all plastic
synapses eligible to be modified. In case of getting a reward
signal, two latest stored action-sequences replay in forward
direction as is explained in section III-E. This way of replaying
causes related synaptic weights to enhance. Otherwise, the
network will replay in the reverse direction so several synapses
will be depressed. This procedure repeats around 100 times,
after which the network has learned the task.
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IV. HARDWARE RESULTS AND DISCUSSION

The proposed system contains LIF Neurons and STDP-
based synapses with reinforcement learning adaptation mech-
anism. Our designed network for the context-dependent task
contains 16 neurons, 64 excitatory plastic synapses, and 58
inhibitory fixed synapses. All neurons, synapses and other
peripheral parts are described using the standard top-bottom
digital design flow. In order to minimize FPGA resource
utilization, neuron and synapse blocks are designed efficiently
(as described in Section III-A and B). As a proof of concept
we implement our learning network on Kintex-7 XC7kt160t
FPGA which is hosted in opal kelly XEM7360 board. This
device contains 202800, 101400, and 600 Slice FFs, Slice
LUTs, and DSPs, respectively. Based on the results from
Table II, the entire proposed network uses only 2.51 percent
of available Slice FFs, 34.17 percent of available Slice LUTs
and 42.67 percent of available DSPs. This table also reports
the total on-chip power and energy based on the analytic
of the Xilinx Power Estimator (XPE) after HDL synthesis.
Moreover, Table II reports network latency which is defined
as the maximum delay time for making a decision in a
trained network. Table II also compares our proposed SNN
to several other studies which implement SNNs on FPGA for
different tasks. Please note that none of these FPGA networks
except [18], are capable of context-dependent on-line learning.
Furthermore, FPGA devices and synthesizer versions that have
been used for implementation are different. Therefore the
device utilization results presented in these tables must be
considered relatively.
We run the proposed network with randomly initialized
synaptic weights using Xilinx Vivado Design suit. During
the training of the network, all the results were stored in
different files and then analyzed and plotted in MATLAB.
Fig. 5 depicts the network performance in a number of trials.
Performance is calculated by measuring the percentage of the
mean number of correct responses over a sliding window of
30 trials. The proposed network is tested for more than 30
runs with different initial synaptic weights. The figure shows
that our hardware is able to learn the task within 100 trials
and reaches an approximate 90 % mean performance similar
to the computational model [14]. In addition, in the animal
experiment the context-dependant task was learned in about
100 trials and performance reached about 80% to 90% correct
behavioral responses [15]. Thus, the proposed digital network
can faithfully model the animal experiment result. Fig. 6
illustrates total number of spikes over each input triplet. This
figure and raster plots (see supplementary material) confirm
that neurons activities in the proposed network are similar
to the computational model. Fig. 6 shows four out of eight
neurons in hippocampus layer mostly participate in functional
network. To predict the reward, this network makes a link
between item and context to be associated with reward, inde-
pendent of items position. Toward the end of the simulation,
neuron 1 fires selectively for item Y in context B, regardless
of the item Y place. Neuron 2 fires selectively for item Y in
context A. Neuron 5 fires selectively for item X in context
A. As it can be seen, neuron 5 also fires for B2X. This is

TABLE II: Comparison of our developed neural network with
a number of previous spiking networks implemented on FP-
GAs. Abbreviations: Slice FFs (S.FFs), Slice LUTs (S.LUTs),
Max Frequency (M.F), This Work (T.W), Virtex (V), Spar-
tan (S), Kintex (K), Off-line learning (OFL), and Online-
learning (ONL).

[10] [13] [11] [12] [18] T.W
S.FFs 1023 50228 - 1676 8906 5088
S.LUTs 11339 86032 - 6214 19059 34646
DSPs 0 1112 - 32 0 256
M.F (MHz) 189 63.389 75 25 148.4 143
Device V.6 V.7 S.6 S.6 K.7 K.7
Power (W) - - 1.5 - 1.81 1.91
Energy (µJ) - - - - 2257 139.5
Learning OFL - OFL OFL ONL ONL
Latency (µs) - - - - - 45.6

Fig. 5: Behavioral performance during successful learning
of the context-dependent task for more than 30 runs (with
different initial weights). The solid line shows the mean
and the gray area behind the solid run shows the standard
deviation from the mean. Notice that the first 30 trials are not
shown because of boundary effects caused by using the sliding
window of 30 trials.

because, at the beginning of the trials for input triplets B1X
and B2X, different neurons fire. However, after learning is
complete, Neuron 6 is trained to fire selectively for item X in
context B regardless of its position. It is worth noting that, all
the observed firing patterns are in good agreement with animal
experiments [15] and computational models [14] and confirm
the functionality of our developed network on FPGA.
In a previous study performed on a digital substrate with

the same capabilities, we developed a network requiring less
FPGA resources [18]. However, the neurons in that network
required a large firing rate for learning, which resulted in
high energy consumption. Besides, tuning the network pa-
rameters proved much more time-consuming [18]. Neurons’
membrane voltages in the previous architecture are dependent
on synaptic weights strengths. To increase network learning
memory, weight adaptation parameters should be chosen as
small values. So for a successful learning of a task, the pre-
vious network needs many repetitions. These parameters also
affect the operation of WTA networks. The contribution of this
work is to reduce this dependency by employing “Activities
plus WTAs” (shown in gray box in Fig. 3) which results in
faster convergence and lower firing rate (energy consumption).
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Fig. 6: Number of neurons spikes over each triplet during
network operation in a successful learning of the context-
dependant task.

Fig. 7: Comparison of total number of spikes of our proposed
network, with computational simulations [14] and our previous
event-driven study [18].

Activities plus WTAs block is responsible for finding neurons
with a higher activity rate. Fig. 7 shows a comparison of
the total number of spikes in each learning triplet for the
proposed network, computational simulations [14], and our
previous study [18]. As shown, the proposed network has a
firing rate close to the computational model and significantly
lower than the prior event-driven hardware architecture. The
total number of spikes in a successful learning run and the
mean required times for each learning trial for the computation
simulations that run on a core i7 processor (1.6 GHz), as well
as the event-driven [18] and the proposed architectures on
FPGA at fclk = 100 MHz, are presented in Table III. As shown,
the proposed architecture is 15 and 37 times faster than the
previous FPGA counterpart, and computational simulations,
respectively. Additionally, as Table III shows, our proposed
hardware requires to generate 10.7 times fewer spikes, while
learning the same task learned by the event-driven hardware
proposed in [18]. This smaller number of spikes and the
shorter time required for learning, leads to a significant 16-
fold energy saving, as reported in Table II. These make our
new design suitable for learning context-dependent tasks on
FPGAs, which can improve real-time reinforcement learning
in various applications including robotics.

TABLE III: The total number of spikes in a successful learning
run and mean elapsed time for each learning trial.

Computational Event-driven This Work
Total number of spikes 1251 10633 990
Mean elapsed time 2.85 s 1.18 ms 77µs

V. CONCLUSION

This paper presents an implementation of a context depen-
dent task on an FPGA using a spiking neural network with
reinforcement learning capability. Neurons and synapses are
designed to minimize hardware cost. The proposed network
has been synthesized and as a proof of concept implemented
on Xilinx Kintext-7 FPGA device. The implemented hardware
shows performance on par with the computational model and
also animal experiment of previous studies. Moreover, results
show that the proposed network model has a significantly
lower firing rate and energy consumption and converges
faster in comparison with previous hardware architecture while
learning the same task. The result of this paper can facilitate
research to employ RL using neuromorphic systems.
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