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Abstract 

 Mangroves are commonly recognised as important fish habitats. 

However, studies that have quantified their utilisation by fish often found 

contrasting results, supporting the contention that mangrove forests provide 

heterogeneous values. Mangroves are dynamic, fluctuating and challenging 

environments consequently inducing variability in mangrove fish assemblages. 

Our understanding on the factors contributing to this variability is still limited, 

but essential to manage and conserve these valuable and threatened habitats. 

 Tide has been identified as one of the key factors to explain variations in 

mangroves utilisation. Tide is responsible for many physical changes such as 

water depth, current, connectivity, but also chemical changes such as dissolved 

oxygen (DO), salinity, temperature and pH. Considering the numerous changes 

driven by tide, it is difficult to quantify their specific influence on fish 

assemblages, and as a result, their role and relative importance is not fully 

understood. The objective of this thesis was to provide new understanding on 

temporal and spatial variability in the use of intertidal mangrove habitats by fish 

in response to fluctuating environmental factors. I identified that the two major 

challenges that fauna face while using intertidal mangrove habitats are the total 

drainage at low tide inducing a risk of stranding, and hypoxic conditions that 

can lead to physiological stress and death. Consequently, the importance of 

depth, hypoxia, but also the nature of the mangrove habitat were principally 

investigated as evidence shows that they could be key factors determining 

mangrove utilisation. 
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 To begin understanding how hypoxia can limit the utilisation of intertidal 

mangrove habitats, DO and depth loggers were deployed over several days 

and tidal cycles across a mangrove wetland innorth-east Australia (Chapter 2). 

I characterised the DO dynamics at a short-time scale (tidal and diel) and a fine 

spatial scale and I investigated the effects of tidal factors on DO fluctuations. I 

also determined potential risks from exposure to hypoxic events for fish 

occupying this wetland. Results showed that DO daily reached harmful and 

occasionally lethal levels, and therefore had the potential to temporarily limit the 

utilisation of this wetland by fish. I also identified that DO closely followed tidal 

fluctuations. 

 To extend our knowledge on variations in mangrove fish assemblages 

in relation to environmental fluctuations, I deployed underwater video cameras 

coupled with multi- parameter loggers (DO, depth, salinity, temperature). I 

sampled on the edge of, and 5 m inside (in-forest), an intertidal mangrove 

forest, New Caledonia, to identify whether these two major components of 

mangrove forests were used differently. Chapter 3 showed that fish 

assemblages on the mangrove edge and in-forest were highly distinct, with 

most species observed on the edge and few species entering in-forest. Fish 

assemblages also varied temporally across tide, most likely explained by 

species-specific tidal migrations, highlighting that fish responded to one or 

several environmental factors fluctuating with tide. The most evident factor 

varying with tide, and that can trigger tidal migrations, is water depth as the 

mangrove forest becomes temporarily unavailable to fish. However, chapter 2 

showed that DO and depth are highly correlated, and that DO can reach harmful 

levels in intertidal mangrove habitats.  As depth and DO are two potentially 
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limiting factors that vary across tide, I attempted to disentangle their 

confounding effects in causing fish tidal variations. Depth was statistically 

identified as the factor with the highest predictive power in explaining variations 

in fish assemblages, with species preferentially accessing mangrove habitats 

at different depth ranges. However, DO also varied with tide in this mangrove 

forest, reaching harmful levels especially early in the morning at low tide 

(Chapter 4). DO was also statistically identified as a key factor explaining fish 

tidal variations, therefore, I further investigated how fish responded to DO 

fluctuations. I found that fish displayed species-specific variations in response 

to DO, apparently explained by differential behavioural avoidance thresholds. 

Indeed, three distinct groups of species were identified based on distinct 

preferences for DO with species recorded from 30 to 110 % saturation, species 

recorded from 50-110 % saturation, and species recorded from 70 to 110 % 

saturation. Thus, I hypothesised that species-specific responses to DO could 

be explained by differential tolerances to hypoxia. 

 I used the results from chapter 3 to design laboratory experiments and 

test for this hypothesis (Chapter 5). I selected four species displaying distinct 

preferences for DO and I determined their physiological tolerances to hypoxia 

using intermittent-flow respirometry during which I decreased DO in 

accordance to what I observed in the natural environment. Results showed a 

causality between species physiological tolerance to hypoxia and mangrove 

habitat utilisation in response to DO. They suggest that species able to 

withstand low DO use mangrove habitats more extensively than more sensitive 

species. Consequently, it is probable that being highly tolerant to hypoxia is a 
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required pre-condition to thrive in these extreme environments, which could 

help explaining the little use of some intertidal mangrove forests. 

 The present research highlights that mangrove forests utilisation is 

highly variable over space and time. Their utilisation varies spatially depending 

on which components of the mangrove forest are studied such as the edge or 

the in-forest. Intertidal mangroves utilisation also varies temporally as tide 

creates many changes that can constraint fish. This study especially provides 

important knowledge on how DO can impact fish communities by favouring 

highly tolerant species to hypoxia, and on the other hand exclude more 

sensitive species. This new information can help explain the contrasting results 

found in the literature concerning the utilisation of mangrove forests. For 

instance, the higher contribution of coral reef fish to the mangrove fish 

assemblages in the Caribbean compared to other regions of the Indo-Pacific 

could be due to a lower hypoxia tolerance among coral reef fish compared to 

intertidal mangrove species. This study shows that fish using mangroves can 

sometimes be living on the edge of oxygen limitations. In the view of further 

predicted human-caused oxygen decrease, it is crucial to address the gaps of 

knowledge concerning DO dynamics in mangrove habitats, and its impacts on 

fish populations. This can assist managers and policy makers to establish 

appropriate management and conservation plans to ensure the sustainability of 

mangrove habitats. 
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Chapter 1 General introduction 

1.1. Discrepancies around the value of mangroves as fish habitats 

 Mangroves are commonly identified as important fish habitats (Mumby et al., 

2004; Nagelkerken et al., 2008). However, the extent to which mangrove habitats are 

used by fish is often unclear as studies show varying degrees of utilisation 

(Nagelkerken et al., 2001; Mumby et al., 2004; Faunce and Serafy, 2006; Barnes et 

al., 2012; Sheaves et al., 2016). For instance, mangrove fish richness is usually limited 

in intertidal forests of the Indo-West Pacific, with often only few taxa dominating the 

assemblage (Robertson and Duke, 1990; Dorenbosch et al., 2005; Barnes et al., 2012; 

Reis-Filho et al., 2016; Sheaves et al., 2016), and their use being restricted to the 

mangrove forest edge (Sheaves et al., 2016). On the other hand, in the Caribbean, 

studies often report a high contribution of reef fish species to mangrove fish 

assemblages and are observed on the edge and inside the forest (Mumby et al., 2004; 

Dorenbosch et al., 2007). The contention that mangroves are important fish habitats is 

often not evidence-based but generalised from one location in one part of the world to 

another in other parts of the world while supported by limited data demonstrating 

ecosystem equivalence (Sheaves, 2012). Consequently, the lack of detailed 

understanding about mangrove habitats utilisation create discrepancy around the 

value of mangrove habitats for fish that is important to address. 

 Part of this apparent discrepancy could be addressed by identifying the factors 

responsible for the variability in mangrove habitats utilisation (Beck et al., 2001). A 

recent meta-analysis identified that tidal amplitude is a critical factor to explain 

differences in fish assemblages among locations (Igulu et al., 2014). For instance, a 

higher use of mangroves by juvenile fish is observed in locations with a small tidal 

range compared to locations experiencing a high tidal range (Igulu et al., 2014). Tidal 

variations generate a range of constraints that can explain this pattern. In locations 
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experiencing high tidal ranges, ebbing tides lead to the drainage of mangrove habitats, 

temporarily limiting their utilisation (Sheaves, 2005; Unsworth et al., 2007; Baker et al., 

2015). Tidal variations also induce rapid changes in environmental conditions such as 

salinity, temperature, water depth, and dissolved oxygen (DO), that can temporarily 

and/or permanently create unsuitable habitats for fish (Davis, 1988; Rountree and 

Able, 2007; Brady and Targett, 2013; Mattone and Sheaves, 2017). Indeed, during 

tidal connections, sediments chemistry can impact water column chemistry through 

pore water exchange (Bouillon et al., 2007; Li et al., 2009; Gleeson et al., 2013). In 

mangroves, sediments are enriched in organic matter and reduced compounds such 

as NH3, H2S, FeS2, making them anoxic, acidic and toxic within a few centimetres 

(Marchand et al., 2011). During flooding tides, water infiltrates the sediments and then 

drains back to the water column at ebbing tide releasing pore water that is enriched in 

toxins, acidic and depleted of oxygen (Call et al., 2015; Leopold et al., 2017), creating 

a potentially harmful environment for organisms that could prevent their utilisation. 

Rapid and extreme decline in DO experienced in mangrove habitats is likely to be one 

of the key controlling factors of their utilisation by fish (Knight et al., 2013; Gedan et 

al., 2017; Mattone and Sheaves, 2017), but it has rarely been considered. 

1.2. Dissolved oxygen: a key controlling factor 

 One of the main limiting factors modified during tidal fluctuations in mangrove 

habitats is the oxygen content. Oxygen is a fundamental water quality parameter for 

all aerobic organisms, including fish, that depend on oxygen to survive (Driedzic and 

Hochachka, 1978). In the atmosphere, oxygen is freely available, and therefore almost 

never limiting. However, solubility of oxygen in water is poor (Kramer, 1987), and 

diminishes as temperature and salinity increase (Garcia and Gordon, 1992). 

Consequently, free molecules of oxygen are scarce in tropical marine environments 

which has resulted in the development of efficient mechanisms among fish to 

overcome the perpetual challenge of acquiring oxygen (Kramer, 1987). 
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1.2.1 Dissolved oxygen cycle in mangrove habitats 

 Many aquatic environments present an even greater challenge in terms of 

acquiring oxygen as they experience naturally low DO events, explained by dynamic 

physico-chemical processes (Mandic and Regan, 2018). In shallow water 

environments, such as mangroves, DO is extremely variable but generally predictable, 

as it varies on a diel basis (D'Avanzo and Kremer, 1994; Tyler et al., 2009; Knight et 

al., 2013; Mattone and Sheaves, 2017). During the day the autotrophic production is 

usually higher than oxygen consumption, consequently, DO can reach super-saturated 

concentrations in the mid-afternoon (Tyler et al., 2009). During the night, plants and 

animals respire, consuming oxygen produced during the day, leading to low DO, or 

hypoxia, early in the morning (Kenney et al., 1988; D'Avanzo and Kremer, 1994). There 

are five major processes that can explain why hypoxia occurs periodically in mangrove 

habitats (Figure 1). First, high biological oxygen demand (BOD), as mangrove trees 

produce a large amount of litterfall consisting of dead leaves, dead roots and dead 

fruits. This litterfall accumulates on the bottom, accounting for most of the organic 

matter found in mangrove forests degraded by bacteria that consume oxygen (Tanaka 

and Choo, 2000; Alongi et al., 2004b; Dittmar et al., 2006; Bouillon et al., 2008). 

Second, high chemical oxygen demand (COD), as mangrove sediments are active 

biogeochemial reactors generating many complex oxygen-dependent chemical 

reactions (Froelich et al., 1979; Van Cappellen and Wang, 1996; Marchand et al., 

2004; Marchand et al., 2011). Third, high biomass, as mangrove habitats shelter many 

organisms that consume oxygen to respire (Nagelkerken et al., 2008). Fourth, high 

water temperatures that reduce oxygen solubility as mangroves are tropical and sub-

tropical environments, therefore they are located in areas where the temperature is 

high (Duke et al., 1998). Fifth, lack of re-aeration processes, as mangroves are often 

sheltered areas, with low impact waves and little wind (Woodroffe, 1992; Augustinus, 

1995). Consequently, water movements are limited, reducing the exchange of oxygen 
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between the atmosphere and the water column, as well as the physical transfers of 

more oxygenated water masses from adjacent habitats (Butler and Burrows, 2007). 

 

Figure 1 Processes responsible for naturally low dissolved oxygen conditions in mangrove 
habitats. 

1.2.2 Impact of hypoxia on ecosystems functioning 

 The occurrence of hypoxia has important adverse effects on different 

organisational levels disrupting ecosystems functioning. On the individual level, 

hypoxia leads to changes in physiology and behaviour, affecting growth (Petersen and 

Pihl, 1995; Del Toro-Silva et al., 2008; Wang et al., 2009), reproduction (Wu, 2009; 

Wang et al., 2016), feeding (Pihl et al., 1991), and eventually survival (Ruggerone, 

2000; Townsend and Edwards, 2003). Depending on the hypoxic severity and time of 

exposure, hypoxia has acute or sublethal effects on organisms. These effects on the 

individual level have larger scale effects on populations and communities (Chabot and 

Claireaux, 2008), such as reduced species biomass, individuals size, and genetic 

diversity (Wu, 2002; Eby et al., 2005a; Steckbauer et al., 2011), major changes in 

species composition (Dauer, 1993), functional groups (Diaz and Rosenberg, 1995) and 

predator-prey interactions (Breitburg et al., 1994; Breitburg et al., 1997). If hypoxia is 

severe and persistent, entire ecosystems can be temporarily or permanently lost 

(Rabalais et al., 2002; Diaz and Rosenberg, 2008; Levin et al., 2009). As low DO is an 
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critical stressor, it is expected that fish communities of hypoxic environments such as 

mangroves would be largely influenced by hypoxia occurrence and severity. 

1.2.3 Specific adaptations to hypoxia 

 In response to the serious effects that hypoxia has on organisms, communities, 

populations and ultimately ecosystems, fish have developed specialised adaptations 

to tolerate and exploit hypoxic environments (Mandic and Regan, 2018). In intertidal 

environments experiencing rapid and severe changes in DO, such as mangroves, 

these strategies involve behavioural and physiological adaptations to enhance oxygen 

extraction and tissue delivery to sustain aerobic ATP production (Fry, 1971; Claireaux 

and Chabot, 2016; Mandic and Regan, 2018). Fish are mobile organisms and most 

likely able to sense oxygen changes (Das and Stickle, 1994; Claireaux et al., 1995; 

Schurmann et al., 1998; Wannamaker and Rice, 2000), thus, the first behavioural 

adaptation often involves temporal or permanent avoidance of hypoxic zones (Pihl et 

al., 1991; Brady and Targett, 2013). Fish able to withstand environmental hypoxia can 

perform other behavioural adaptations such as aquatic surface respiration (Kramer 

and McClure, 1982) or air-gulping (Burggren, 1982; McNeil and Closs, 2007). Fish also 

present physiological adaptations such as extended gill surface area (Nilsson, 2007), 

increased number of red cells (Wu, 2002) or higher oxygen binding capacity of 

haemoglobin (Craig et al., 2014). If the strategies to sustain aerobic ATP production 

listed above are not sufficient, fish can reduce energetic demands by suppressing non-

vital activities such as swimming, feeding, growth and reproduction, referred to as 

metabolic rate depression (Wu, 2002; Richards, 2009). Ultimately, fish can resort to 

anaerobic pathways to enhance energy production to maintain life-sustaining activities 

and survive (Kramer, 1987; Chabot and Claireaux, 2008). These strategies enhance 

hypoxia tolerance but come at a cost influencing how and to which extent species 

resort to these adaptations to use hypoxic environments (Mandic and Regan, 2018). 

The wide range of hypoxia tolerance strategies developed by fish lead to species-
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specific tolerances controlling hypoxic environments utilisation (Hilton et al., 2008; 

Vaquer-Sunyer and Duarte, 2008; Mandic and Regan, 2018). It is expected that fish 

living in mangrove habitats have developed species-specific adaptations to deal with 

oxygen vagaries, making them more or less susceptible to hypoxia, and therefore 

shaping mangrove fish assemblages. 

1.2.4 Estimating the impact of hypoxia on ecosystem functioning 

 Ecological patterns, such as species distribution or migrations, in response to 

hypoxia are difficult to interpret as organisms usually face multiple stressors in the 

environment that can alter their responses (Vaquer-Sunyer and Duarte, 2008; 

Breitburg et al., 2018). An effective way of establishing a link between observed 

ecological patterns and environmental hypoxia is to assess species hypoxia tolerance 

using a common performance currency among aerobic organisms such as metabolism 

performance (McGill et al., 2006; Killen et al., 2013). Metabolism is the ensemble of 

chemical reactions needed to transform food material, or stored reserve, into energy 

(ATP) needed to fulfil activities (Chabot et al., 2016a; Nelson, 2016). Species’ 

metabolism performance is related to their capacity to tolerate environmental hypoxia 

and therefore can explain patterns of hypoxic environments utilisation (Mandic et al., 

2009; Killen et al., 2013). As oxygen acts as a final electron acceptor in the transport 

chain of aerobic respiration to produce ATP, and represents the most efficient pathway 

to acquire energy, physiologists have used oxygen consumption rate (�O2) as a proxy 

of metabolism performance (Chabot et al., 2016b). 

 �O2 can be monitored using special techniques called respirometry. The most 

accurate to monitor metabolism is intermittent-flow respirometry, described below 

according to Svendsen et al. (2015), that I used during this thesis (Figure 2). This 

technique consists of placing a fish in a metabolic chamber and measuring the 

decrease in oxygen concentration over time induced by respiration inside the chamber. 

To do so, the metabolic chamber is connected to a flush pump and a recirculation 
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pump. Alternatively, the chamber is sealed by stopping the flush pump in order to 

measure �O2 induced by the individual, and then opened by turning the flush pump 

on to renew the water, replenish the oxygen, and flush away wastes. A recirculation 

pump is fitted on a recirculation loop to assure water homogenisation inside the 

chamber. On the recirculation loop, an oxygen electrode is connected to a computer-

controlled optical oxygen meter (firesting) via a fiber optic cable. It allows continuous 

oxygen measurements. 

 
Figure 2 Intermittent-flow respirometry design. 
The oxygen concentration (% saturation) is measured via a REDFLASH sensor spot adhered 
to the inside of the recirculation loop, which is connected to a four channel Firesting Optical 
Oxygen Meter via a fiber optic cable. The chamber is connected to two submersible pumps: a 
flush pump and a recirculation pump. 

 A set of metabolic measures quantifying hypoxia tolerance can be estimated 

with intermittent-flow respirometry while inducing a O2 decline that will cause a gradual 

decrease in fish metabolic rate (Claireaux and Chabot, 2016) (Figure 3): 1) maximum 

metabolic rate (MMR) that represents the maximum energy available to support 

activities; 2) standard metabolic rate (SMR) that represents the minimum energy for 

the subsistence of an organism; 3) aerobic scope (AS) that represents the total energy 

available to perform aerobic activities; 4) the critical oxygen level (O2crit) that represents 

the acute hypoxia tolerance below which vital maintenance cannot be sustained, 

compromising survival; 5) incipient lethal oxygen (ILO) level that represents the 

imminent-death hypoxia threshold at which a fish often loses its equilibrium (loss of 
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equilibrium: LOE) due to the accumulation of wastes following anaerobic ATP 

production; 6) time to LOE (time) that represents the amount of time spent in hypoxia 

between O2crit and LOE; and 7) index of cumulative ambient oxygen deficit (O2deficit) that 

represents the amount of O2 consumed below O2crit until LOE to assess resistance to 

hypoxia (Claireaux and Chabot, 2016). O2crit, LOE, time to LOE and O2deficit are ideally 

determined by inducing a O2 decline that is ecologically relevant, meaning that it 

reproduces “real-life” conditions that fish can experience in the environment. This 

facilitates the application of the knowledge obtained at an individual scale to the 

population level to allow a holistic approach. Therefore, it is important that laboratory 

experiments are combined with field data, which is rarely the case in the literature. 

 

Figure 3 Influence of ambient oxygen decline on the metabolism of an idealised fish individual. 
MMR: maximum metabolic rate; SMR: standard metabolic rate; O2crit: critical oxygen level; ILO: 
incipient lethal oxygen level; O2deficit: index of cumulative ambient oxygen deficit. 

1.3. Summary of knowledge gaps and thesis objectives 

 Discrepancies around the function and value of mangrove habitats among 

locations highlight the need for more explicit and detailed studies to characterise 

mangroves utilisation by fish. Mangroves are challenging environments, however, 

there is still little information on which factors influence or limit their value and 

utilisation. Tide is unarguably a key factor in influencing fish populations in intertidal 
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systems as it drives physico-chemical changes that make mangrove habitats 

temporarily inaccessible and unsuitable. Among changes caused by tide, DO is one of 

the most crucial as it is a key controlling factor of ecosystem functioning. Two recent 

studies have shown that DO can reach harmful levels in mangrove habitats, partly 

explained by tidal fluctuations (Knight et al., 2013; Mattone and Sheaves, 2017). These 

results support the idea that local DO conditions could be a key limiting factor to the 

value and use of intertidal mangrove habitats. However, this hypothesis has not been 

adequately investigated. While it is known that mangrove habitats can suffer from 

temporal hypoxia, it is not clear whether hypoxia is a common and widespread 

condition across different locations. The impact of hypoxia on mangrove fish 

communities is also largely unknown even though hypoxia is a strong selective factor 

in determining use of habitats. Concurrently investigating short-scale variations in DO 

and fish assemblages, and combining this field knowledge with physiological 

laboratory experiments to establish a link between hypoxia and observed ecological 

patterns is needed to investigate the potential of hypoxia to limit mangroves utilisation 

by fish. 

 The overarching aim of this thesis was to assess the role and importance of 

tidal fluctuations in environmental factors, especially DO, in influencing mangrove 

habitats utilisation by fish using field and experimental studies. The first aim of this 

thesis was to better understand DO fluctuations in intertidal mangrove habitats and 

answer specific questions such as how low does DO get, how often does hypoxia 

occur, and what is the role of tide in driving these fluctuations (Chapter 2). The second 

aim was to characterise and assess the role of tidal fluctuations in short-scale spatial 

and temporal variations in fish assemblages in intertidal mangrove habitats (Chapter 

3). The third aim was to assess fish responses to tidal variations in DO in intertidal 

mangrove habitats (Chapter 4). The fourth aim was to determine whether observed 

patterns of mangroves utilisation in response to fluctuating DO were linked to species 

hypoxia tolerance (Chapter 5).  
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Chapter 2 Extreme dissolved oxygen variability in 
urbanised tropical wetlands: the need for detailed 

monitoring to protect nursery ground values 

Published as: Dubuc, A., Waltham, N., Malerba, M., Sheaves, M.: Extreme dissolved 

oxygen variability in urbanised tropical wetlands: The need for detailed monitoring to 

protect nursery ground values, Estuar. Coast. Shelf Sci., 198, 163-171, 2017. 

2.1. Introduction 

 Unprecedented expansion of urban and industrial development has led to 

coastal wetland destruction, water quality degradation, and loss of biodiversity 

(Ehrenfeld, 2000; Roy et al., 2003; Argent and Carline, 2004). The remaining coastal 

wetlands suffer from a range of anthropogenic pressures (Lee et al., 2006), among 

which increased nutrient and organic matter loading, contributing to eutrophication, is 

one of the most important (Rosenberg, 1985). Severe and persistent hypoxia is a 

notable consequence of eutrophication (Nixon, 1995), and nowadays the increase in 

occurrence and severity of hypoxia are regularly reported in coastal waters because 

of continued eutrophication. 

 In shallow water habitats, such as coastal wetlands, diel-cycling hypoxia is 

common (Smith and Able, 2003; Knight et al., 2013), due to shorter, marked, dissolved 

oxygen (DO) fluctuations compared to subtidal areas (Kenney et al., 1988). Some 

aspects of diel-cycling DO are predictable, with lowest values occurring early in the 

morning (following night time respiration) and maximum values in the afternoon, 

following transition to photosynthesis (Mazda et al., 1990; D'Avanzo and Kremer, 1994; 

Tyler et al., 2009). These diel fluctuations are the result of a net difference between 

DO supply (photosynthesis, diffusion, tidal exchange) and consumption (biological 

oxygen demand, chemical oxygen demand). The amplitude of this cycling is influenced 

by environmental parameters such as solar radiation, salinity, temperature, wind 
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velocity, depth and tide (Mazda et al., 1990; Mandal et al., 2012; Baumann et al., 

2015). In eutrophic coastal wetlands, amplitude is higher (Bouillon et al., 2008), and 

hypoxia becomes more severe, intensifying in occurrence and duration, which in turn, 

further increases exposure risks for organisms occupying these habitats (Breitburg 

1992). 

 Low DO availability leads to perturbations in the bio-chemical dynamics of 

ecosystems, as many chemical reactions require oxygen (Hull et al., 2000; Hunt and 

Christiansen, 2000), and all aerobic organisms depend on oxygen for survival 

(Falkowski and Raven, 1997). Low DO has been linked to reduced growth (Del Toro-

Silva et al., 2008; Stierhoff et al., 2009), impaired reproduction (Ruggerone, 2000; 

Dantas et al., 2012), diet alteration (Pihl, 1994; Zambonino-Infante et al., 2017), 

modified predator-prey interactions (Breitburg et al., 1994), shifts in distribution (Pihl et 

al., 1991; Breitburg, 1992), and altered community dynamics of marine animals (Wu, 

2002). 

 Despite increasing coastal eutrophication (Breitburg, 2002) and the pressing 

need to monitor and limit the impact of hypoxia on aquatic fauna, there is surprisingly 

little information on DO dynamics for coastal wetlands (Knight et al., 2013), and 

particularly so in the tropics. Moreover, there is no agreed methodology to monitor DO 

or to examine the exposure risks to local aquatic fauna. Water quality monitoring 

programs in estuaries have typically adopted spot measurements. However, these 

data only represent a static point in time, which is likely to provide an incomplete  

representation of a dynamic parameter such as DO (Kerr et al., 2013). 

 To provide information on DO levels fish typically need to deal with daily in 

urbanised tropical wetlands, this study examines the fine temporal (15 minutes) and 

spatial (~50 m) scale DO fluctuations in an urbanised tropical coastal wetland typically 

found along the Great Barrier Reef (GBR) coastline in northern Queensland, Australia 

(Sheaves et al., 2007a; Waltham and Sheaves, 2015). Despite the potential impact of 

urbanisation on water quality, especially DO, this wetland functions as an important 
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regional nursery ground for invertebrates and fish (Sheaves et al., 2007a; Davis et al., 

2012; Davis et al., 2014b). The objectives of my research were to: 1) characterise the 

DO dynamics at a short-time scale (tidal and diel) and a fine spatial scale; 2) investigate 

the effects of time of day and tidal factors on DO variability; 3) determine potential 

exposure risks to hypoxic events for fish occupying this tropical urbanised wetland; 4) 

provide some insights to develop meaningful DO monitoring programs to implement 

appropriate management and policies. 

2.2. Materials and Methods 

2.2.1 Study site  

 The study was conducted in Annandale Wetland, Ross River (19.19°S; 

146.44°E), Townsville City, North Queensland, Australia (Figure 4). The region 

experiences meso-tidal and mixed semidiurnal tidal cycles (2 high tides and 2 low tides 

of different size each day). Annandale Wetland comprises an area of 0.4 km2 

dominated by Sporobolous virginicus saltmarsh and Aegiceras corniculatum / 

Rhizophora stylosa / Avicennia marina / Ceriops tagal mangroves (Davis et al., 2012). 

Annandale Wetland comprises more than 20 semi-permanent pools that range in size 

from 80 m2 to 2,500 m2, and in depth from 30 cm to 130 cm at low tide. These tidal 

pools vary from freshwater during the austral wet season, to saltwater in the dry 

season. They are connected to Ross River via a network of channels ranging between 

0.5 m to 10 m in width. During spring tides, pools get connected (at high tide) with the 

adjacent Ross River, renewing remaining water. The disconnected time depends on 

the pool elevation but was never too long concerning the selected pools as enough 

water remained in the pools throughout the study, providing potential temporal refuges 

for fish. 
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Figure 4 Map of the study site Annandale Wetland, Townsville, North Queensland, Australia.  
It comprises the 6 channels (CH1, CH2, CH3, CH4, CH5, CH6), highlighted in red, and the 4 
pools (C5, B1, B4, A1), highlighted in blue, sampled between the 26th of January and the 23rd 
of March 2014. 

 Pools differ in terms of extent and density of fringing mangrove (a dense, 

almost complete fringe in downstream pools, grading to sparse, incomplete fringes in 

upstream pools), in sediment composition (fine mud, through coarse sand, to cobble), 

and in positioning relative to the Ross River (Figure 4). In this study, four tidal pools 

were selected: C5 (area: 1,020 m2), B1 (area: 2,550 m2), B4 (area: 2,800 m2), A1 (area: 

1,130 m2) (pool names used here are the same reported in Davis et al. (2014a)). Six 

connecting channels were also selected, three directly connecting the study pools and 

the Ross River: CH6 (5 m width), CH5 (6 m width), CH1 (3 m width), and three other 

channels leading to pools that were not studied: CH2 (2 m width), CH3 (1 m width), 

CH4 (1 m width). The 10 locations were situated within 1.3 km range, with a minimum 

distance of 50 m between sites. 

2.2.2 Data collection 
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 Water column dissolved oxygen (DO) sampling was conducted over seven 

campaigns between January and March 2014 at 10 locations within the wetland, 

representing between 3 and 10 days of sampling at each of the 10 locations (Table 1).   
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Table 1 Summary of the sampling periods.  
They were conducted between the 26th of January 2014 and the 23rd of March 2014 at ten different locations in Annandale Wetland in Townsville. For each 
location, the number of days sampled is indicated, along with the dates of the different sampling periods. For each sampling period and sampled location, the 
minimum and maximum values recorded for DO, temperature and tidal range are provided, as well as the total rainfall. 

Location Number of days sampled Sampling periods Min and max DO (% sat) Min and max temperature (°C) Rainfall (mm) Min and max tidal range (m) 

CH1 (downstream-upstream) 10 26-28/01/14 
03-06/02/14 
11-13/03/14 

54.31-139.38 
19.25-178.91 
43.04-120.88 

24.2-33.9 
24.0-31.3 
22.6-32.3 

21.80 
10.00 
0.00 

1.2-2.5 
0.6-2.4 
1.4-2.3 

CH2 (downstream-upstream) 7 
 

10-11/02/14 
03-07/03/14 

48.60-98.90 
55.48-86.61 

25.2-30.8 
23.9-29.2 

23.40 
3.40 

1.3-2.4 
0.5-2.7 

CH3 (downstream-upstream) 7 10-11/02/14 
03-07/03/14 

42.59-123.77 
3.75-117.39 

26.0-33.4 
23.9-32.0 

23.40 
3.40 

1.3-2.4 
0.5-2.7 

CH4 (downstream-upstream) 7 10-11/02/14 
03-07/03/14 

42.45-141.24 
44.16-145.86 

26.4-35.3 
23.8-33.1 

23.40 
3.40 

1.3-2.4 
0.5-2.7 

CH5 (downstream-upstream) 3 11-13/03/14 54.09-97.51 25.7-29.0 0.0 
 

1.4-2.3 

CH6 (downstream-upstream) 3 11-13/03/14 44.96-142.55 22.6-31.9 0.0 1.4-2.3 

C5 8 14-16/03/14 
19-23/03/14 

13.06-92.05 
15.08-102.40 

24.2-31.2 
24.0-28.9 

0.0 
65.8 

1.7-2.3 
0.4-1.9 

B1 8 14-16/03/14 
19-23/03/14 

27.38-101.34 
15.88-134.75 

23.3-31 
23.2-31.8 

0.0 
65.8 

1.7-2.3 
0.4-1.9 

B4 8 14-16/03/14 
19-23/03/14 

18.15-136.08 
53.16-145.71 

23.0-33.3 
23.9-36.0 

0.0 
65.8 

1.7-2.3 
0.4-1.9 
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A1 8 14-16/03/14 
19-23/03/14 

49.44-128.44 
19.58-160.35 

26.3-32.5 
25.2-32.0 

0.0 
65.8 

1.7-2.3 
0.4-1.9 
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 Near-bottom (around 5 cm above the sediment) DO, water temperature, and 

atmospheric pressure in the four pools and the six channels were undertaken using multi-

parameter probes (YSI Pro ODO model (accuracy ± 1% saturation)). In each pool, a single 

logger was deployed on the edge as far as possible from the mouth of the supplying channel. 

To link diel DO-cycling with tidal fluctuations, the probes were coupled with depth loggers (In-

Situ Inc. Rugged Troll 100 model), which recorded total pressure every 15 minutes. Total 

pressure values recorded on the depth loggers were corrected for atmospheric pressure 

recorded with the YSI loggers to provide a record of water depth with approximately 5 cm 

accuracy. The YSI loggers were programmed to log every 5 minutes across the tidal cycle. To 

avoid calibration drift and fouling, probes were calibrated before and after each sampling 

campaign, however no drift was recorded. Photosynthetically Active Radiation (PAR) data 

were obtained from the nearby (27 km away) Australian Institute of Marine Science (AIMS) 

automatic weather station (Licor LI-192SA Quantum Sensor) site Cleveland Bay (19° 09.35S, 

146°52.87E) from the 26 January to the 23 March 2014. Tidal range data for the general area 

were obtained with the official software AusTides 2014 provided by the Australian 

Hydrographic Service. DO data were omitted when water column depth was less than 5cm as 

probes were exposed to air. 

2.2.3 Data analysis 

 All sites showed a non-linear trend in DO throughout the day that consistently peaked 

during the late afternoon, and declined at night, reaching minimum DO in the early morning. 

This non-linear trend is believed to be driven by photosynthesis activity affected by the rate of 

photosynthetically active radiations available, and respiration. As these biological processes 

follow a diel-cycle, time of day was used as a proxy to account for the diel-cycling DO. A model 

was built to subtract the diel-cycle trend from DO values. Therefore, a General Additive Mixed 

Model with a cubic spline smoother (GAMM) was used, with data grouped into 60-minute 

intervals for each site. The dependent variable was nested within the sampled sites. Hence, 

a random intercept was included for each site to account for the nested experimental design. 
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Overall, the model consisted of DO (% saturation) as the dependent variable, and two 

independent variables for hour of day (0 being midnight) (fixed effect) and sites (random 

effect). The analysis was completed using the package “mgcv” in R statistical software, fitted 

with Maximum-Likelihood techniques (Wood, 2011; R Core Team, 2014). The degree of 

smoothing in the GAMM was optimised with ordinary cross validation by minimising the mean-

squared prediction error. 

 Residuals were obtained from the previous model. They represent DO values free from 

any diel-cycle pattern, called time-corrected values for DO (tcDO). This step was necessary 

as the strong diel-cycle pattern observed could hide the effects of other factors such as tidal 

factors. To develop an understanding of the effect of tidal factors on DO, the residuals from 

the GAMM were analysed as the response variable in a linear mixed-effects model (LME) 

using the R package “lme” (Pinheiro et al., 2015). As tidal connectivity is complex, given tides 

continually change, the best characterisation was to use the four different factors: tidal range, 

water depth, tidal direction, and water velocity, to capture most of the variation to better 

understand the influence of tidal connectivity on high frequency DO dynamics. Therefore, the 

model consisted of ten fixed effects including four main effects (three continuous: tidal range 

(m), water depth (cm), tidal velocity (cm.min-1); one categorical: tidal direction (i.e. increasing 

or decreasing)) and all combinations of two-way interactions. Standardised (beta) coefficients 

were calculated in the LME to evaluate the relative effect on DO of each term in the model by 

standardising all continuous variables (i.e. subtracting the mean and divide by the standard 

deviation). As for the GAMM, a random intercept for each site was included in the LME to 

account for the nested experimental design. The suitability of the model was validated by 

ensuring low collinearity between main effects (i.e. variance inflation factor less than 5 (Zuur 

et al., 2009)), and that there were no systematic trends between normalised residuals and 

each of the covariates. In these data, the factors “water velocity” and “tidal range” were 

positively correlated, (variance inflation factor of 5.13), and could not be both included as 

explanatory factors in the same model.  Water velocity was calculated from the rate of change 

of the water depth and so, not considered as accurate as the tidal range given by the 
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Australian Hydrographic Service. Thus, water velocity was removed from the model, reducing 

the maximum variance inflation factor score to 2.82, which was below the assumed cut-off 

value of 5. Because heteroscedasticity was detected in the LME between sites, different 

variance coefficients were included for each site in the LME variance structure. A cumulative 

frequency plot was used to determine the occurrence of the different threshold of DO in each 

site. The data used for this plot were the 60-minutes mean values of DO for each site. 

2.3. Results 

2.3.1 Dissolved oxygen patterns 

 More than 1,152 hours of DO data were recorded, consisting of 360 hours of data from 

tidal pools, and 792 hours from channels, with 384 hours recorded during increasing tides and 

768 hours during decreasing tides. The maximum DO % saturation reached was 178.91 % 

saturation, while the minimum was 3.75 % saturation (Table 1). 

 Daily changes in DO saturation showed qualitatively consistent dynamics across sites: 

minimum values were recorded in the early morning between 3am and 6am, while maximum 

values were recorded between 2pm and 6pm (Figure 5). Magnitudes in DO saturation varied 

from site to site, highlighting a high spatial variability within this small-scale wetland. For 

instance, CH3 was the only case where DO saturation was close to zero for consecutive hours 

(< 5 % saturation), while DO saturation at other sites ranged between 13 % saturation and > 

100 % saturation (Figure 5). 
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Figure 5 Boxplot of the 60 minutes means of DO (% saturation) across time of day for each site.  
Sites were sampled in Annandale Wetland from the 26th of January 2014 to the 23rd of March 2014. 
The blue line represents the model fitted for each site (generalized additive mixed model with a cubic 
spline smoother 60 minutes definition) to model the DO trend during a daily cycle. Shaded areas 
represent sunset to sunrise. 

 The cumulative distributions for DO showed consistent trends across sites, with 

highest densities mostly between 50 % saturation and 100 % saturation (Figure 6). In this 

study, DO below 50 % saturation was considered harmful, and was therefore selected as the 

threshold for hypoxia (Breitburg, 2002; Perna and Burrows, 2005). In this study, more than 

118 h of low DO (≤ 50 % saturation) were recorded every day at 7 out of 10 sites (CH1, CH3, 

CH4, A1, B1, B4, C5), which represented a probability of approximately 0.11 of hypoxia 

(Figure 6). Around 80 % of low DO concentrations occurred between 1am and 11am, with 

approximately 60 % between 5am and 11am. Spatial variability was also evident, as the 
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locations experienced different probabilities for low DO or supersaturated DO. For instance, 

site CH3 showed a higher probability (around 0.41) for low DO (Figure 6). There was an overall 

probability of 0.2 of supersaturated DO observed at 7 of the 10 sites (Figure 6). 

 

Figure 6 Cumulative frequency distribution of the 60 minutes means of DO (% saturation) across the 
ten sites.  
Sites were sampled in Annandale Wetland from the 26th of January 2014 to the 23rd of March 2014. 
Each coloured line corresponds to a unique site among the ten sites sampled. The black line indicates 
the mean cumulative frequency of DO across all the sites. The dashed lines represent the ATV (Acute 
Trigger Value; 16 % saturation) and CTV (Chronic Trigger Value; 62.5 % saturation) for barramundi, 
the probabilities for low DO across all sites and for site CH3, and the probability for over-saturated 
values (1-0.8=0.2). 

2.3.2 Drivers of dissolved oxygen variability 

 There was a strong correlation between increasing DO and the increase in PAR 

beginning at sunrise (Figure 7). Peak DO was recorded between two and four hours after peak 

PAR, while minimum DO occurred between 9 to 13 hours after sunset (PAR reduced to zero; 

Figure 7). 

16 62.5 

0.02 

0.28 

0.41 

0.11 

0.80 

DO > 100 p=0.20 
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Figure 7 Boxplot of the 60 minutes means of (A) Photosynthetically Active Radiation (PAR) (µmol.s-
1.m-2) and (B) DO (% saturation), across the diel-cycle (from 0=midnight).  
Means were averaged across the ten sites sampled in Annandale Wetland from the 26th of January to 
the 23rd of March 2014. The blue line represents the model fitted (generalized additive mixed model 
(GAMM) with a cubic spline smoother 60 minutes definition averaged across all study sites) to model 
the DO trend during a daily cycle. The residuals (or time corrected values for DO (tcDO)) are scattered 
across this blue line. Shaded areas represent sunset to sunrise. 

 The GAMM accounted well for the non-linear daily patterns in DO (F = 164.3, p < 

0.001, estimated degree of freedom of 7.83). The residuals from the GAMM represent time-

corrected values for DO (tcDO). If the residual is on the blue line, the corresponding DO value 

follows perfectly the daily cycle model (GAMM); if the residual is below the blue line, the 

corresponding DO value is lower than the value predicted by the GAMM, probably because of 

other parameters that lowered the observed DO value; if the residual is above the blue line, 

the corresponding DO value is higher than the value predicted by the GAMM probably 

because of other parameters that increased the observed DO value. This strong diel-cycle 
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was hiding other potential DO variations. Therefore, these tcDO were used to identify whether 

other factors influenced DO fluctuations. LME highlighted that tcDO were significantly 

influenced by tidal range, water depth, direction of the tide (i.e. flood vs. ebb), and particularly 

by two two-way interactions between tidal range and water depth, and between tidal range 

and tidal direction (Table 2). 

Table 2 ANOVA table for the linear mixed-effects model.  
Variables NumDF DenDF F-value p-value 

Intercept 1 873 0.32224 0.5704 

Tidal range 1 873 84.19963 <.0001 

Water depth 1 873 90.72264 <.0001 

Direction 1 873 8.63912 0.0034 

Tidal range:Water depth 

depth 

1 873 9.36286 0.0023 

Tidal range:Direction 1 873 11.66720 0.0007 

Water depth:Direction 1 873 0.59173 0.4420 

LME model was performed on the residuals from the GAMM (tcDO). This ANOVA tested the effect of 
the four main standardised fixed effects (three continuous: tidal range (m), water depth (cm), tidal 
velocity (cm.h-1) and one categorical: tidal direction (i.e. increasing or decreasing)), and all combinations 
of two-way interactions between these four fixed effects on tcDO. The significant p-values are in bold 
letters. 

 tcDO decreased strongly with tidal range (Figure 8). This negative effect was 

dependent on the tidal direction, namely, if tide was ebbing or flooding (Figure 8). Indeed, 

during an ebb tide, the decrease of tcDO was greater than during a flood tide. Moreover, the 

model showed that the critical value of tidal range, above which tcDO became negative, was 

somewhat higher during a flood than an ebb tide. 
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Figure 8 Significant effect of the two-way interaction between tidal range and tidal direction (i.e. flood 
or ebb) on the residuals from the GAMM (tcDO). 
Effects were determined with a linear mixed-effects model that included ten fixed effects: four main 
effects (three continuous: tidal range (m), water depth (cm), tidal velocity (cm.h-1); one categorical: tidal 
direction (i.e. increasing or decreasing)) and all combinations of two-way interactions. The shaded 
areas represent the confidence interval at 95%. 

 tcDO increased with water depth (Figure 9). This relationship was dependent on tidal 

range (Figure 9). For small tidal ranges, the relationship was weak, however, above 1.5m the 

relationship improved, with the slope increasing across the tidal range. The maximum values 

of tcDO remained the same across the tidal range, but the minimum values of tcDO became 

more negative with the tidal range. 
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Figure 9 Significant effect of the two-way interaction between the water depth and the tidal range on 
the residuals from the GAMM. 
Effects were determined with a linear mixed-effects model that included ten fixed effects: four main 
effects (three continuous: tidal range (m), water depth (cm), tidal velocity (cm.h-1); one categorical: tidal 
direction (i.e. increasing or decreasing)) and all combinations of two-way interactions. The shaded 
areas represent the confidence interval at 95%. 

 DO was extremely variable over time and space. The high spatial and temporal DO 

variability was primarily affected by time of day and tidal factors, namely water depth, tidal 

range and tidal direction. Early morning hours, high tidal ranges, ebbing tides, and low water 

depth were all factors that negatively affect DO. Temporal variability was mainly explained by 

time of day, related to the diel-cycle of PAR affecting photosynthesis processes, while spatial 

variability was mainly explained by the location of the study pools and channels in relation to 

Ross River. Hypoxia, including a single event when DO declined to almost 0 % saturation for 

consecutive hours, was recorded almost daily at 7 of the 10 study sites. Overall, a probability 

of 0.11 for hypoxia was recorded during this study. 

2.4. Discussion 

2.4.1 Dissolved oxygen temporal and spatial variability  
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 Time of day was the main explanatory variable for temporal variability in DO saturation 

observed in pools and channels at the Annandale wetland. Changes in DO saturation closely 

followed the diel-cycle and were correlated with PAR, suggesting that photosynthesis was a 

major pathway of re-oxygenation. The high amplitude of DO measured over a 24h period 

characterises a habitat that is enriched in organic matter (Bouillon et al., 2008), a common 

occurrence in wetlands, as well as other shallow water and productive habitats such as 

estuaries, lakes, lagoons and mangroves (D'Avanzo and Kremer, 1994; Smith and Able, 2003; 

Tyler et al., 2009). 

 Tidal factors, especially tidal range, tidal direction (flood vs ebb), and water depth, were 

other key factors contributing to the temporal and spatial variability measured in this study. 

The tidal dynamics, representing a cycle of approximately 6 hours, determined temporal DO 

variations. As tidal pools and channels differ in their positioning relative to Ross River, tide did 

not influence them to equivalent extents, contributing to spatial variability observed among the 

locations. 

 The two-way interaction between tidal range and tidal direction had an important 

impact on tcDO, with tcDO decreasing as tidal range increased, the decrease being more 

important during ebbing tides. Spring tides can induce resuspension of sediments that can 

include sulfidic enriched sediments that consume DO (Nelson et al., 1994; Bush et al., 2004; 

Okamura et al., 2010). Low lying coastal wetlands located along eastern Australia, such as 

Annandale wetland, are likely to contain high concentrations of sulphides (Walker, 1972; 

Sammut et al., 1996), known as Potential Acid Sulfate Soils (PASS) (Alsemgeest et al., 2005). 

PASS are a particular problem where land is drained (White et al., 1997). When the PASS 

soils become oxidised, it creates severe and persistent hypoxia and acidification that can kill 

fish and crustaceans (Stumm and Morgan, 1981; Nelson et al., 1994; Bush et al., 2004). More 

data would be needed to determine whether past drainage works carried out in Annandale 

Wetland decades ago to increase tidal exchange and for mosquito control (Lukacs, 1996) play 

a role in determining the occurrence and extent of hypoxic events recorded here. 
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 tcDO decrease across the tidal range was less marked during flood tides than ebb 

tides. During flood tides, it is likely that freshly oxygenated sea water enters the wetland (as it 

is suggested by the increase in tcDO with water depth), supplying channels and pools with 

DO, and offsetting potential tcDO decrease induced by oxygenation of resuspended sulfidic 

enriched sediments. Consequently, the process of freshly oxygenated sea water entering the 

wetland is likely to be important in the provision of nursery habitat for fish, particularly in a 

region of massive urban development and industrial expansion (Waltham and Sheaves, 

2015). 

 The interaction between water depth and tidal range had a substantial impact on tcDO. 

tcDO were positively correlated with water depth, increasing during flood tides, and decreasing 

during ebb tides. In line with other studies conducted in tidal estuaries (Nezlin et al., 2009; 

Krumme et al., 2012; Knight et al., 2013), DO in Annandale Wetland varied with semi-diurnal 

tidal cycles. The relationship between tcDO and water depth was more apparent during spring 

tides. The amount of water flowing into the wetland with the tide was on average around three 

times less during neap tides than spring tides. Most of the wetland received little tidal 

exchange during neap tides, resulting in small tcDO changes across the tide. During spring 

tides, a greater tidal exchange seemed to deliver more freshly oxygenated water, leading to a 

consequent increase in tcDO across the tide. These results highlight that tidal connectivity, 

especially during spring tides, was an important process contributing to higher DO. 

Consequently, differences in tidal connectivity between the pools and channels (Davis et al., 

2014a) is likely to be a contributor to the observed temporal and spatial heterogeneity in DO. 

DO is likely to undergo seasonal changes as well. This study only considered DO over 

summer months, when extreme values of DO are most likely to occur because of high water 

temperature conditions in northern Queensland (Waltham & Sheaves 2017), increased 

freshwater inflow, and algal blooms (Gilbert et al. 1968; D’Avanzo & Kremer 1994; Nezlin et 

al. 2009). However, it is expected that DO dynamics would be different during the cooler dry 

season between June and August. 
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 Clearly, DO dynamics of coastal tidal wetlands are complex, and depend on a range 

of biotic and abiotic conditions that vary at multiple spatial and temporal scales (Smith and 

Able, 2003). This variability highlights the need to use appropriate intensities of data collection 

to fully represent this complexity (Mazda et al., 1990; D’Autilia et al., 2004; Knight et al., 2013). 

This is particularly necessary in tropical coastal wetland areas that are important habitat for 

fish and invertebrates (Sheaves et al., 2007a; Davis et al., 2012). Obtaining high frequency 

water quality measurements for DO, and other parameters such as temperature (Wallace et 

al., 2015), is becoming increasingly viable with advances in technology and reducing costs of 

purchasing equipment, providing substantial information over the spot measurements that are 

unable to appropriately characterise variability and underlying processes. 

2.4.2 Dissolved oxygen implications for fish 

 Fish use extensively salt-marsh tidal pools as temporal refuges or permanent habitats. 

However, exposure to low DO could be a constraint for the utilisation of these habitats by fish. 

The consequences of acute and chronic exposure effects to low DO on tropical estuarine fish 

in Australia is poorly known. The only Australian study available to compare here, is a study 

from Butler et al. (2007) and, while it focused on freshwater environments, the species 

investigated include a number of estuarine fish known to inhabit the Annandale wetland (Davis 

et al., 2012). Butler et al. (2007) presented two DO thresholds: 1) Chronic Trigger Value (CTV) 

- the limit for chronic exposure effects when fish start to increase gill ventilation rate, and 2) 

Acute Trigger Value (ATV) - the limit for acute exposure effects when fish are no longer able 

to increase gill ventilation rate to cope with lower DO values (Butler and Burrows, 2007).  In 

the example here, barramundi (Lates calcarifer), an iconic and economically important species 

well distributed across northern Australia (James et al., 2017), recorded in Annandale 

Wetland, has an estimated ATV of 16 % saturation, and a CTV of 62.5 % saturation 

(temperature comprised between 23 and 33°C) (Butler and Burrows, 2007). In applying these 

thresholds, I determined exposure risks for barramundi using accumulative frequency curves 

(Figure 6). There was a probability of 0.02 for Barramundi to be exposed to acute effects 
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during the study logging time, and a probability of 0.28 that they would be exposed to chronic 

effects (Figure 6). Barramundi is a moderate-sensitive species and it is likely that more 

sensitive species inhabit this wetland, being more vulnerable to DO conditions recorded here. 

These results assume that the Annandale Wetland does not always provide optimum DO 

conditions for fish. More data should also be collected to study the DO dynamics in relation 

with fish utilisation of these tidal pools during the dry season, and assess if they represent a 

good seasonal refuge with sustainable DO levels. 

 Fish are known to have strategies to cope with low DO conditions. They can remain in 

poorly oxygenated waters by displaying physiological and behavioural adaptations such as 

air-gulping, aquatic surface respiration, and changing metabolism to conserve energy 

(Kramer, 1987; Wu, 2002; Flint et al., 2015). They can also avoid harmful DO conditions by 

either not using the poorly oxygenated areas, or by moving away from these areas during 

critical hours (Brady and Targett, 2013), for instance early morning in summertime at 

decreasing tide, highlighting the importance of wetland connectivity (Sheaves and Johnston, 

2008). Exactly which of these adaption strategies are utilised by fish are not known and 

requires more detailed research. However, the utilisation of such strategies can certainly 

explain why Annandale Wetland is still a functional fish habitat despite the common 

occurrence of hypoxic events, and could play an important role in maintaining regional 

biodiversity. 

 There is still an on-going debate over the threshold for hypoxia that should be adopted, 

some authors arguing that the commonly used threshold (20 % saturation to 30 % saturation; 

(Vaquer-Sunyer and Duarte, 2008)) is not conservative enough (Breitburg, 2002; Vaquer-

Sunyer and Duarte, 2008). This study highlights that even if realistic laboratory-determined 

thresholds were applied, fish would still be exposed to potential chronic and acute effects in 

these wetland habitats. However, fish still use extensively these habitats because they are 

adapted to these naturally-stressed environments (Elliott and Quintino, 2007). Considering the 

complex DO dynamics and adaptations by fish to cope with low DO conditions, it does not 

seem feasible to define a unique threshold for hypoxia, explaining the wide range of values 
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found in the literature. Rather than trying to determine a common agreed hypoxia threshold, 

more studies investigating exposure risks, especially chronic exposure effects, over a range 

of species, using standardised approaches combined with field studies at local or regional 

scales, should be undertaken for conservation purposes. 

2.4.3 Management considerations 

 Measuring DO using high frequency loggers is probably more important than 

previously considered in the protection and management of coastal wetlands. I advocate here 

that DO should be measured at least every hour over a 24h cycle, across different tidal 

regimes, and across diverse types of habitats. Ideally, DO should be measured for an 

extended period that covers an entire tidal cycle (around 14 days), and across a fine spatial 

scale. 

 The high frequency data obtained during this study have important consequences 

when considering the applicability of water quality guidelines that aim to protect aquatic 

ecosystems. For instance, the Australian and New Zealand Guidelines for Fresh and Marine 

Water Quality (ANZECC/ARMCANZ, 2000) stipulate that DO in tropical Australian wetlands 

should not fall below 90 % saturation. Clearly this threshold is exceeded, and for many hours 

of the day, in the study wetland. However, the high abundance of fish recorded in this wetland 

suggests that they are adapted to deal with vagaries of diel hypoxia as highlighted in this 

study, and therefore, it cannot be assumed that normoxia is the only valid reference condition 

when assessing the utility of coastal wetlands as fish habitat. Consequently, managers need 

to investigate the origin of hypoxia, and identify the extent to which it is naturally-driven rather 

than the consequence of human activities. However, this is no simple task because it can be 

difficult to identify whether extreme water quality variations in transitional water systems are a 

response to human-induced stress or if they are natural (Elliott & Quintino 2007). 

 DO variations are driven by such complex interacting factors, most of which are 

affected by local vagaries in wetland habitats (i.e. depth, size, connectivity, shading, 

vegetation cover), therefore it is not practicable to develop meaningful national referential or 
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international guidelines on the bases of spot measurements, or, even for that matter, by 

calculating a daily mean or median DO value using multiple spot measurements. To be 

meaningful, any national guidelines should be supported by high frequency data for a local or 

regional area in conjunction with exposure risk studies. Too often, exposure risk studies are 

not supported by field data, or the field data presented include only 1 or 2 days of sampling at 

one location and therefore do not accurately represent the DO dynamics. Therefore, these 

studies lose their applicability as they do not represent what fish could be exposed to daily in 

the environment. 

 Results obtained from Annandale Wetland can potentially be applied to any similar 

tropical urbanised wetland found along the GBR coastline. As urban and industrial 

development expands (Waltham & Sheaves 2015), further degrading water quality (Tsatsaros 

et al. 2013), strategic environmental assessment need to be conducted to avoid serious 

consequences that spreading dead-zones would have along the GBR as it is currently seen 

along the West Coast of the United States (Hogue 2017). A powerful way for environmental 

managers to identify early warning signs and implement appropriate levels of management 

intervention (Perna and Burrows, 2005) is to develop accurate models to predict DO, such as 

D’Autilia et al. (2004) or Peña et al. (2010). This technique, based on high-frequency and long-

term water quality measurements, has been recently used in China to provide useful insights 

for better managing aquaculture ponds (Cui and Chui, 2017). As suggested by Brodie et al. 

(2008) having a local database, for all priority sites, that is cognisant of high temporal and 

spatial DO measurements such as those collected during this study, would enhance the 

predictive ability of models, and assisting with calibration and validation, improve confidence 

of managers facing the burgeoning challenge of protecting coastal seascapes in a changing 

world. 

2.5. Conclusion 

 Studying DO is complex and requires caution, especially in tidal and productive 

ecosystems such as tropical wetlands. DO fluctuated drastically over a 24h cycle in response 
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to daily PAR, and across the small-scale wetland. Water exchange was also a crucial driver 

of DO, acting as a natural aerator of the system. This study revealed that fish were exposed 

almost daily to low DO levels. As this study site represents a typical urbanised tropical wetland 

found along the GBR coastline, these results suggest similar patterns occur in other coastal 

wetlands within the region. Continuing urban expansion along the GBR is likely to lead to 

further coastal water quality degradation. Given the extent of DO fluctuations identified in the 

present study, further degradation is likely to result in wide-spread development of DO 

conditions that severely disadvantage species or even exclude them from transitional water 

systems, particularly in heavily urbanised areas. Therefore, it is important for managers to 

implement adequate monitoring and develop management strategies to avoid further 

degradation of these high nursery value habitats. More investigations on local fish exposure 

risk and fish adaptations to diel-cycling DO, conducted with standardised and realistic 

methodologies, in conjunction with high frequency DO field data are needed to allow the 

construction of more accurate models to underpin the development of appropriate 

management and policies for the sustainable use of coastal wetlands. 

2.6. Summary 

  In a mangrove wetland, Australia, identified as an important tidal refuge, 

extreme DO variations were recorded over the tidal and diel cycle, and across a small 

spatial scale (~10 m). DO was influenced by time of day and tide. Every day, and for 

around 25% of the logging time, fish were exposed to DO levels that have been linked 

to increased mortality and reductions in growth, reproduction and activity. These 

findings emphasised that DO was likely to be an important limiting factor, temporarily 

reducing the value of this system for fish. 
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Chapter 3 Patterns of fish utilisation in a tropical Indo-
Pacific mangrove-coral seascape, New Caledonia 

Published as: Dubuc, A., Waltham, N.J., Baker, R., Marchand, C., Sheaves, M.: Patterns of 

fish utilisation in a tropical Indo-Pacific mangrove-coral seascape, New Caledonia, PLoS ONE, 

14, e0207168, 2019. 

3.1. Introduction 

 Mangrove systems are part of a mosaic of productive coastal habitats (Sheaves, 2005) 

that provide a variety of services to fish and human populations (Hogarth, 1999; Nagelkerken 

et al., 2008). Mangrove forests are a fundamental component habitat of mangrove systems 

(Vance et al., 1996), and confer many of the attributes that make them highly valuable fish 

habitats (Bell et al., 1984; Beck et al., 2001; Laegdsgaard and Johnson, 2001; Nagelkerken 

and Faunce, 2007, 2008). However, studies have shown varying degree of mangrove forest 

utilisation, with for instance a higher contribution of reef fish species to mangrove fish 

assemblages in the Caribbean compared to several places in the Indo-Pacific (Lal, 1984; 

Robertson and Duke, 1990; Thollot, 1992; Nagelkerken et al., 2000b; Mumby et al., 2004; 

Dorenbosch et al., 2005; Dorenbosch et al., 2007; Unsworth et al., 2008; Unsworth et al., 

2009; Barnes et al., 2012; Paillon et al., 2014; Sheaves et al., 2016). These observations 

suggest that not all mangrove forests provide equivalent values to fish. Moreover, recent work 

in mesotidal Australia suggests that few fish penetrate beyond the forest boundary (Sheaves 

et al., 2016), suggesting that the use of mangrove forests is spatially heterogeneous. This new 

evidence raises the question relating to the specific ways in which mangrove forests are 

utilised by fish. More studies are needed to characterise fish assemblages in mangrove forests 

with different settings (coastal, estuarine, island, embayment), different tidal ranges (micro-, 

meso- or macrotidal), proximity of other high value habitats such as seagrass beds and coral 

reefs, or climatic zones (Sheaves and Johnston, 2008; Unsworth et al., 2008; Igulu et al., 

2014; Baker et al., 2015). A better understanding of how mangrove forest utilisation varies 
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spatially and temporally would provide new insights to help explaining the contrasting results 

found in the literature. 

 In many parts of the Indo-Pacific, the tidal range is greater than in the Caribbean, 

where mangrove forests are usually continually available to fish (Nagelkerken et al., 2008). 

Intertidal mangrove forests are challenging environments, most notably because they are only 

available to most aquatic organisms while they are flooded at high tide (Sheaves, 2005; 

Unsworth et al., 2007; Baker et al., 2015). The intermittent availability of mangrove forests 

may explain the low use by fish in the Indo-Pacific (Igulu et al., 2014). Indeed, tidal variation 

(extent, duration and frequency of flooding) generates a range of constraints for fish uti lising 

mangrove forests. Most evident is the decrease in water depth and eventual drainage of the 

forest as the tide ebbs, forcing fish out of intertidal mangrove forest zones. Several studies 

have indeed demonstrated that fish undertake regular migrations in tidally driven mangrove 

systems, with different patterns of mangrove use according to fish species, lunar cycle (neap 

vs spring tide) and tidal phase (flooding vs ebbing) (Laroche et al., 1997; Krumme, 2004; Ellis 

and Bell, 2008; Meynecke et al., 2008; Sheaves et al., 2016). Migration of fish in response to 

tidal movements results in substantial connectivity between the three major tropical coastal 

habitats: coral reefs, seagrass beds and mangrove forests (Unsworth et al., 2007; Krumme, 

2009), giving rise to the idea that mangrove forests are part of a wider interconnected habitat 

mosaic (Sheaves, 2005). Therefore, investigating tidal and spatial variations in fish 

assemblages in mangrove forests is a crucial step towards fully appreciating the value and 

functioning of the whole tropical coastal ecosystem. 

 The difficulty of sampling these habitats goes a long way towards explaining the 

paucity of information available on fish assemblages inside mangrove forests (Rozas and 

Minello, 1997; Unsworth et al., 2009). The use of conventional techniques such as underwater 

visual censuses or netting techniques is restricted across much of the Australasian region 

where saltwater crocodiles (Crocodylus porosus) are common, and where dense mangrove 

forests reduce the efficiency of most net-based approaches (Sheaves et al., 2016). Recently, 

underwater video has been successfully applied to study in-forest fish assemblages (Reis et 
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al., 2016; Sheaves et al., 2016; Dunbar et al., 2017), most notably because it overcomes a lot 

of sampling issues, substantially reduces field labour intensity, and allows for high-temporal 

and -spatial resolution data collection simultaneously in different habitats, such as the edge 

and the inside of a mangrove forest (Kimball and Able, 2012). 

 In this study I deployed underwater cameras on the edge and inside a mangrove forest 

(Ellis and Bell, 2008; Sheaves et al., 2016) coupled with high frequency depth loggers to 

record spatio-temporal variations in fish assemblages in a microtidal Indo-Pacific mangrove-

coral reef seascape. I identified fish species that use the mangrove forest, and used an array 

of exploratory data analyses and modelling techniques to describe how fish utilisation changes 

between the forest edge and in-forest habitats, and how fish assemblages vary across the 

tidal cycle. 

3.2. Materials and Methods 

3.2.1 Study site 

 My study focused on a relatively pristine mangrove forest in Bouraké, South Province 

of New Caledonia (21° 56.971S, 165° 59.481E; Figure 10). New Caledonia is an archipelago 

located in the South West Pacific, 1,500 km east of Australia. New Caledonia has the largest 

lagoon in the world, partly registered on the UNESCO World Heritage list. New Caledonia 

experiences a semi-arid to tropical climate with annual total rainfall of 1,000 mm, and a mixed 

semi-diurnal microtidal regime (maximum 1.8 m tidal range). Bouraké receives little freshwater 

inflow with no defined drainage. 

 The area comprises approximately 2.5 km² of mangrove forest dominated by 

Rhizophora stylosa on the seaward edge and Avicennia marina on the landward margin, with 

a large semi-enclosed central lagoon (1.2 km long, 60 m wide, 1-2 m depth). A channel (20-

70 m wide, 2-6 m depth, 700 m long) connects the main lagoon to the coastal waters of 

Pritzbuer Bay (~ 20 km2). The channel comprises two sheltered inlets (approximately 0.01 km² 

each), and a shallow (1-2 m depth) coral reef platform that extends from the middle of the 

channel to the edge of the mangrove forest. Corals could be seen right on the edge of the 



Chapter 3 

36 
 

forest in some places. I chose a study location where coral reefs occur in close proximity to 

mangrove forests (Figure 10), effectively a seascape comparable to the Caribbean coastline 

(Harborne et al., 2006), so I could relate my findings to this other ecoregion (Spalding et al., 

2007) where the tidal range is smaller. 

 

Figure 10 Map and picture of the study system in Bouraké, South Province, New Caledonia.  
The nine study sites in the mangrove channel sampled from the 21 February to 1 March 2017 are 
represented by their respective number. Light grey areas represent mangrove forest, dark grey areas 
represent mainland, and white areas represent water. 

3.2.2 Data collection 

 Fish using the mangrove forest were examined on an inland/offshore gradient along 

the channel (Figure 10). To assess differences in fish assemblage composition between edge 

and inside the forest, 4 paired sampling were conducted (sites 1 to 8). Each paired sampling 

consisted of two sites within 5-7 m distance; the even site number of the paired sampling was 

located on the mangrove forest edge (defined as the boundary between mangrove prop-roots 

and bare substrate), and the odd site number located about 5 m inside the forest. Site 9 
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(considered an edge site in the analyses) was located on the reef platform of the innermost 

bay, at the edge of scattered mangrove trees slightly away from the main forest. The substrate 

at sites 1 and 9 consisted of dead corals, small live coral boulders and sand, while on other 

edge sites it comprised mainly dead corals and small and larger live coral boulders. The 

substrate was homogeneous and consisted of silt material at in-forest sites. 

 Fish assemblages were sampled using underwater video cameras (UVCs; Model 

ATC9K Oregon Scientific) to investigate tidal variations in fish assemblages simultaneously 

on the edge and inside the forest. Unbaited UVCs mounted on stable bases were deployed at 

each site during neap (21 to 23 February 2017) and spring tides (28 February to 1 March 

2017). A sampling day consisted of cameras first deployed at sites early in the morning (first 

light), continuing until the battery was discharged, and, with a replacement battery, again 

deployed mid-afternoon at all sites until the battery was discharged (recording lasted between 

2h and 2.5h). Four sampling days were completed (two during neap tides and two during 

spring tides). Cameras were positioned around 7 cm above the substrate, facing towards the 

channel. A marker mounted on a flexible rod (3 mm diameter, 0.5 m long) was placed 0.5 m 

in front of the camera lens as a visibility indicator to ensure a minimum visibility of 0.5 m was 

achieved in all videos. Visibility was very good and consistent during the sampling period, and 

fish could be identified confidently up to approximately 2 m from the UVCs in all videos. As 

depth is one of the main limiting factors to mangrove accessibility, tidal variations in water 

depth (cm) were measured every 15 minutes at each site with depth loggers (In-Situ Inc. 

Rugged Troll 100 model). James Cook University issued a permit for a limited impact research 

to deploy underwater cameras in New Caledonia (no endangered or protected species were 

involved as no collection of any specimen was conducted). The study area does not benefit 

from any special protection, therefore, access and activities are not restricted, and no specific 

permit was required to sample. 

3.2.3 Data extraction from videos 
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 While UVCs allow large amounts of data to be gathered quickly in the field, 

considerable time is required to process these videos. Therefore, I subsampled the acquired 

video footage. From the two neap tide sampling days, one day was randomly selected and 

videos at all sites were processed for that day. For the remaining sampling day, all videos 

were processed from five sites; being the reef platform (site 9) and two pairs of in-forest and 

forest edge sites (sites 5-8). These sites were selected so one replicate for a site located on 

the reef platform, and two replicates of paired sites not located on the reef-platform were 

available. Considering this selection, the sites were then randomly chosen. The same 

selection was applied to the two sampling days conducted during spring tides. 

 Once sediments had settled after camera deployment (typically 2-3 min), videos were 

viewed using VLC media player (VideoLAN, 2001) and subdivided in 5-min intervals to follow 

tidal variations in fish assemblages. The occurrence of each fish taxon in each 5-min interval 

was recorded. Only presence/absence data were recorded to avoid biases induced by count 

data when using UVCs (Sheaves et al., 2016). Fish were identified to the lowest possible 

taxonomic level. Features useful in discriminating species within some genera or families such 

as Plectorhinchus spp., Mugilidae spp., or Gobiidae spp. were difficult to distinguish in videos, 

therefore these taxa were identified to genus or family level only. When possible, juvenile fish 

were identified based on colour patterns and body shape. Any activity such as feeding, hiding, 

cruising or escaping was also noted. All fish identifications were validated by two additional 

experts. For each 5-min interval video processed, the information concerning the date of 

sampling, site, time of day, habitat (edge vs in-forest), lunar phase (neap vs spring), tide 

direction (flooding vs ebbing), and corresponding water depth was recorded (S1 Appendix). 

3.2.4 Data analyses 

 An index depending on observation per unit effort, similar to the catch per unit effort 

index (CPUE) when dealing with fishing techniques, was developed to calculate frequencies 

of occurrence of taxa from the video data. The frequency of occurrence of each taxon was 

calculated per site (the total number of 5-min intervals in which a taxon was observed at a site 
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was divided by the total number of 5-min intervals recorded at this site). Only taxa with a 

frequency of occurrence ≥ 0.05 at one or more sites were retained for analyses (referred to as 

“common taxa”). Taxa with a frequency of occurrence < 0.05 (referred to as “rare taxa”) were 

excluded from analyses. 

 Non-metric multidimensional scaling (nMDS) was used as an exploratory analysis to 

assess differences in fish assemblages among sites during spring and neap tides. The 

frequency of occurrence of each common taxon was calculated per site per lunar phase. Data 

were square root transformed (SQRT) to decrease the impact of extreme values, and an 

nMDS analysis based on Bray-Curtis dissimilarities, the most appropriate distance measure 

when using abundance data (Bray and Curtis, 1957), was conducted. Clusters within the 

nMDS were determined by conducting an overlay cluster analysis at 40% and 45% similarity 

on the dissimilarity matrix of all frequencies of occurrence. A two-way analysis of similarity 

(ANOSIM) was used to test whether there were significant differences in fish assemblages 

between sites and lunar phase. Pearson correlations exceeding R > 0.7 between the 

ordination and taxa were used to fit vectors on the nMDS plot. All analyses were performed 

using PRIMER 6 software (Clarke and Gorley, 2006). Additionally, frequencies of occurrence 

of each common taxon at in-forest and edge sites were calculated and plotted using horizontal 

bar plots to further investigate differences in fish assemblage composition between the two 

habitats. 

 To investigate the factors impacting fish presence/absence, a General Linear Mixed 

Model (GLMM) was conducted using the package “glmm” in R (Knudson et al., 2018). The 

GLMM was conducted on all the 5-min intervals recorded (S1 Appendix) with 

presence/absence of any common taxa for each 5-min interval (1 if any common taxa were 

observed in the 5-min interval, or 0 if no common taxa were observed) as the response 

variable, “Depth”, “Habitat” (edge vs in-forest), “Lunar phase” (neap vs spring), and “Time of 

day” (morning vs afternoon) as the fixed factors, and “Site”, “Date”, “Tide direction” (flooding 

vs ebbing) and a nested effect of “Site” within “Habitat” as the random factors, using a Bernoulli 

distribution and a logit link function. 
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 Cumulative depth frequency curves were plotted for each site to highlight differences 

in temporal dynamics. To further understand how fish utilisation varies across depth, variations 

of SQRT frequencies of occurrence across depth, over flooding and ebbing tide on the edge 

and in-forest were assessed using a General Additive Mixed Model (GAMM). Each 5-min 

interval was allocated to a class of water depth of 10 cm (from 10-20 cm to 120-130 cm) 

according to the water depth value recorded, and the SQRT frequencies of occurrence of each 

common taxon was calculated per class of water depth during flooding and ebbing tide per 

habitat (the total number of 5-min intervals in which a taxon was observed at a class of depth 

during flooding and ebbing tide per habitat was divided by the total number of 5-min intervals 

recorded for this same sample unit). Frequencies of occurrence were SQRT to reduce the 

impact of extreme values. To avoid false absence recordings, taxa never recorded in the 

habitat of interest were not considered (i.e. if a taxon was never recorded in-forest during the 

study it was not included in the in-forest analysis). To run the GAMM, SQRT frequencies of 

occurrence were used as the response variable, “Depth” as a smooth term, and “Habitat” and 

“Tide direction” as parametric terms using a Gaussian distribution and an identity link function. 

“Habitat” was included in the model to avoid any nesting issue. The model was built using the 

package “mgcv” in R (Wood, 2007). Patterns of variations of SQRT frequencies of occurrence 

were then investigated graphically using boxplots to examine the variations of average SQRT 

frequencies of occurrence among taxa at each depth interval, and a LOESS curve was fitted 

to the data to analyse the general pattern of habitat use. Patterns of mangrove habitat use for 

each taxon were then plotted using a LOESS curve and individually assessed graphically to 

examine similarities and classify patterns of fish occurrence across depth. Taxa were grouped 

in similar patterns if their maximum average occurrence was observed at a similar depth stage. 

Three equivalent depth stages were defined for this purpose: Low depth (between 10-20 and 

40-50 cm); Intermediate depth (between 50-60 and 80-90 cm); High depth (between 90-100 

and 120-130 cm). 

3.3. Results 
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3.3.1 Fish composition 

 Fifty-six video deployments were analysed (totalling more than 118h of video). 

Seventy-two taxa from 29 families were recorded, with 36 common taxa (frequency of 

occurrence ≥ 0.05 on at least one site) retained for further statistical analyses (Table 3). Most 

species recorded were marine and reef-associated (Froese and Pauly, 2017) including fish of 

families Scaridae, Chaetodontidae, Pomacanthidae, Siganidae, Acanthuridae, Lutjanidae, or 

Labridae. 

Table 3 Summary of all the families and taxa identified at Bouraké, New Caledonia. 

Family Taxon  Table 3 (continued) 
Acanthuridae Acanthurus auranticavus* 1  Family Taxon  

Acanthurus grammoptilus 2  Haemulidae Plectorhinchus lineatus 
Acanthurus sp. cf blochii   Plectorhinchus spp. 2 
Ctenochaetus sp.   Pomadasys argenteus 2 
Zebrasoma velifer  Hemiramphidae 

Labridae 

 

Hyporhamphus sp. 
Apogonidae Fibramia lateralis* 3  Labridae 

 

 

 

Lethrinidae 

Choerodon graphicus 
Ostorhinchus septemstriatus  Labridae spp. 

Belonidae Belonidae spp.  Lethrinidae 

 

 

Lutjanidae 

Lethrinus harak* 2 

Blenniidae Blenniidae spp.  Lethrinus lentjan 1 
Carangidae Caranx ignobilis  Lethrinus obsoletus 

Caranx papuensis 1  Lutjanidae Lutjanus argentimaculatus* 3 
Caranx sp.  Lutjanus fulviflamma 4 

Chaetodontidae Chaetodon auriga* 2  Lutjanus fulvus 1 
Chaetodon bennetti 2  Lutjanus russellii 2 
Chaetodon ephippium  Monodactylidae Monodactylus argenteus* 1 
Chaetodon flavirostris  Mugilidae 

Mugilidae 

 

Mugilidae spp.* 3 
Chaetodon lineolatus 2  Mullidae Mulloidichthys flavolineatus 2 
Chaetodon lunula 2  Parupeneus ciliatus 
Chaetodon melannotus  Parupeneus indicus 4 
Chaetodon speculum  Upeneus tragula 1 
Chaetodon vagabundus 2  Pomacanthidae Pomacanthus sexstriatus 2 
Heniochus acuminatus 1  Pomacentridae Neopomacentrus spp. 2 

Clupeidae Clupeidae spp. 2  Scaridae 

 

Bolbometopon muricatum 
Diodontidae Diodon hystrix   Scarus sp. cf ghobban 1 
Ephippidae Platax pinnatus  Scatophagidae Scatophagus argus 
Fistulariidae Fistularia spp.  Serranidae 

 

 

Epinephelus caeruleopunctatus 

Gerreidae Gerres filamentosus   Epinephelus lanceolatus 

Gerres oyena* 4   Epinephelus malabaricus 
Gobiidae Amblygobius linki   Epinephelus sp. 

Amblygobius nocturnus  Siganidae Siganus canaliculatus 1 
Amoya gracilis 3   Siganus lineatus* 2 
Asterropteryx sp. cf striata 4   Siganus punctatus 
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Taxa highlighted in bold represent the common taxa (frequency of occurrence ≥ 0.05 on at least one 
site) that were kept for statistical analyses. Taxa highlighted with a * represent the 10 most common 
taxa. Taxa or families underlined mean that juveniles were potentially observed for that taxon or for at 
least one taxon within the family that could not be identified. The superscript number corresponds to 
the pattern of mangrove habitat utilisation across depth followed by the taxon as described in Figure 
15: 1) High-depth users; 2) Intermediate-depth users; 3) Low-depth users; 4) Generalist users. 
 

 Fish composition varied significantly among sites (ANOSIM: R = 0.793, p < 0.001), 

with distinct assemblages generating three and four different clusters at 40 % and 45 % 

similarity respectively on the nMDS plot (Figure 11). At 40 % similarity, the 1st cluster 

comprised all the samples conducted in-forest. The samples were characterised by a lower 

taxonomic richness (23 common taxa; Figure 12) dominated by Fibramia lateralis and all the 

taxa belonging to the Gobiidae family (except Cryptocentrus leptocephalus and Asterropteryx 

spp.), that were the only taxa recorded almost exclusively at in-forest sites (Figure 12). The 

2nd cluster comprised all the samples conducted on the edge but site 7 at spring tide. The 

samples were characterised by a higher taxonomic richness (34 common taxa; Figure 12), 

among which 10 taxa, mostly reef-associated, significantly contributed to the fish assemblage 

composition at edge sites (Figure 11). Site 7 at spring tide was an outlier and made the 3rd 

cluster driven by the abnormally high occurrence of Neopomacentrus spp. (Figure 11). 

Interestingly at 45 % similarity, another cluster was generated, separating deep edge and 

shallow edge sites (Figure 12; Figure 13). Three species of snappers, Lutjanus fulviflamma, 

Lutjanus argentimaculatus and Lutjanus russellii were the only three species not showing 

apparent preference for edge or in-forest sites as they were almost evenly recorded on the 

two habitats (Figure 12), and therefore did not significantly characterised any of the two 

habitats (Figure 11). Replicate samples plotted close to each other and were grouped in the 

same clusters (Figure 11). Lunar phase did not significantly influence fish assemblages 

(ANOSIM: R = 0.2, p > 0.2). 

Cryptocentrus leptocephalus 2  Sparidae Acanthopagrus sp. cf akazakii 2 
Eviota sp.  Sphyraenidae Sphyraena barracuda 
Exyrias puntang  Tetraodontidae Arothron hispidus 
Gobiidae spp.* 3    
Gobiidae spp.2    
Redigobius balteatus 3    
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Figure 11 nMDS analysis performed on square root transformed frequencies of occurrence for each 
taxon per site per tide.  
Edge sites are represented by squares and in-forest sites by circles. Sites sampled at neap tide are 
coloured in deep pink, and sites sampled at spring tide in navy blue. Solid green and dotted blue ellipses 
represent overlay clusters determined at 45 and 40 % similarity respectively. Vectors represent taxa 
with a Pearson correlation with the ordination R > 0.7. 



Chapter 3 

44 
 

 
Figure 12 Proportion of time spent by each of the common taxa on the edge versus inside the forest. 
edge=green and in-forest=brown. Proportions range from 0 to 1, 1 corresponding to a taxon exclusively 
recorded on the edge or in-forest and 0.5 corresponding to a taxon recorded on the edge as frequently 
as in-forest. 

 “Habitat” (GLMM: z = -2.637; p < 0.005), “Lunar phase” (GLMM: z = -9.406; p < 0.001) 

and “Depth” (GLMM: z = -2.118; p < 0.05) significantly influenced the presence/absence of 

taxa. However, “Time of day” (GLMM: z = -1.519; p > 0.1), date of sampling (GLMM: z = 1.555; 

p > 0.05), “Tide direction” (GLMM: z = 0.991; p > 0.1) and sites within a same habitat (GLMM: 

z = 1.394; p > 0.05) did not significantly influence presence/absence of taxa. Further data 

exploration following the GLMM results showed that at edge sites there was a higher 

proportion of 5-min intervals in which a taxon was observed compare to in-forest sites. 
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Similarly, during neap tides, there was a higher proportion of 5-min intervals in which a taxon 

was observed compare to spring tides (S2 Appendix). 

3.3.2 Tidal variations in fish assemblages  

Average depth was substantially shallower at in-forest than edge sites (neap tides 

(mean ± SE): 34 ± 0.57 and 55 ± 0.66 cm respectively; spring tides: 48 ± 1.11 and 71 ± 1.23 

cm respectively), as was maximum depth (95 cm and 133 cm respectively; Figure 13). 

Moreover, in-forest sites were exposed (i.e. not flooded) for 4-5 h per day during neap tides, 

and 2-3 h per day during spring tides, while sites on the edge were always submerged. Sites 

could be classified into three groups according to depth profiles (Figure 13): deep edge sites 

(sites 3, 5, 7; maximum depth 133 cm); shallow edge sites (sites 1 and 9; maximum depth: 

107 cm); in-forest sites (sites 2, 4, 6, 8; maximum depth: 95 cm; Figure 13). 

 

 

Figure 13 Site-specific cumulative depth frequencies.  
Each colour represents a paired edge and in-forest site, and edge sites are represented by dashed 
lines and in-forest sites by solid lines. The dashed dark line indicates the mean cumulative depth 
frequencies across all edge sites. The solid black line indicates the mean cumulative depth frequencies 
across all in-forest sites. An example is provided to help interpret the figure (for 25 % of the recorded 
time depth was on average equal or below 37 cm at edge sites). 
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 As the GLMM showed that depth had a significant effect on presence/absence of taxa, 

a GAMM was used to further explore the response of frequencies of occurrence of fish across 

increasing and decreasing depth (equivalent to flooding and ebbing tide) and by habitat. SQRT 

frequencies of occurrence of fish significantly varied across depth (GAMM: F = 6.756; p < 

0.001; S3 Appendix), and significantly differed between “Habitat” (GAMM: F = 39.792; p < 

0.001) and “Tide direction” (GAMM: F = 9.056; p < 0.005). Magnitude of variations in SQRT 

frequencies of occurrence across depth was higher at edge than in-forest sites (Figure 14, S3 

Appendix). However, the patterns were similar between the two habitats, with overall 

frequencies of occurrence highest at intermediate depth values, especially at ebbing tide, and 

lowest at extreme depth values (low or high depth; Figure 14, S3 Appendix). 
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Figure 14 Boxplots of average square root transformed frequency of occurrence of common taxa across 
depth on a) edge sites; b) in-forest sites.  
The blue line is the LOESS curve representing the general pattern of habitat use for all common taxa 
considered. Shaded area around the LOESS curve represents the 95% confidence interval. On Figure 
14b, interval 90-80 cm has been removed as no data were recorded. 

 Similarities in mangrove forest utilisation among common taxa clearly determined 4 

main patterns of utilisation: 1) taxa with higher frequencies of occurrence at highest depth 

values (90-130 cm; High-depth users); 2) taxa with higher frequencies of occurrence at 

intermediate depth values (50-90 cm; Intermediate-depth users); 3) taxa with higher 

frequencies at low depth values (10-50 cm; Low-depth users); 4) taxa with similar frequencies 

of occurrence across depth (Generalist users); Figure 15, S4 Appendix). 
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Figure 15 Patterns of mangrove habitat utilisation across the depth profile.  
The curves represent the LOESS curves constructed with the square root transformed frequencies of 
occurrence of fish across depth. Common taxa followed four main patterns of mangrove habitat 
utilisation across depth: 1) taxa using mangrove habitats mainly at high depth values (High-depth 
users); 2) taxa using mangrove habitats mainly at intermediate depth values (Intermediate-depth users); 
3) taxa using mangrove habitats mainly at low depth values (Low-depth users); 4) taxa without any 
apparent preferences for depth (Generalist users). Table 3 identifies the taxa allocated to each 
category. 

3.4. Discussion 

 Understanding the spatial and temporal variations in the use of mangrove habitats by 

fish is important when considering conservation and resource management to protect 

mangrove ecosystems from human and natural disturbances. This study highlights that the 

edge and inside of mangrove forests, the two major component habitats of mangrove forests, 

featured distinct taxonomic diversity and fish assemblage composition. Fish assemblages 

varied significantly across the tidal cycle, with species-specific patterns of mangrove habitat 

utilisation. Spatial differences in water depth among sites within a same habitat also seemed 

to influence fish assemblages across this mangrove/coral system. While only a small portion 
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of the species observed on nearby coral reefs were recorded in Bourake, I found that this 

mangrove forest does have a role in supporting reef fish species, emphasising the importance 

of Indo-Pacific mangroves as valuable fish habitats. 

 The setting of this tropical mangrove/coral system influenced the nature of the fish 

assemblages recorded. At least 72 taxa made use of this relatively small mangrove/coral 

system, with most species classified as tropical marine and reef-associated (Froese and 

Pauly, 2017). Most taxa recorded have not been identified as mangrove-associated in 

previous studies in coastal mangroves in the west Pacific (Robertson and Duke, 1990; 

Sheaves et al., 2007b; Sheaves et al., 2016), suggesting that their presence is linked to the 

proximity of coral reefs, further supporting the contention that mangrove-coral habitats are 

interconnected. Conversely, many fish families important in other Indo-Pacific mangrove 

systems remote from coral reefs, such as Leiognatidae, Ambassidae, Sillaginidae, 

Terapontidae, or Toxotidae (Thollot, 1989; Robertson and Duke, 1990; Laroche et al., 1997; 

Sheaves et al., 2016) were not recorded in Bouraké. Most individuals observed were at a sub-

adult stage, however, juveniles where occasionally recorded for several taxa. Juveniles of at 

least 12 reef fish species were commonly recorded (Lutjanus fulviflamma, Lutjanus 

argentimaculatus, Lutjanus russellii, Lethrinus spp. (2 species), Bolbometopon muriculatum, 

Siganus lineatus, Caranx sp., Epinephelus caeruleopunctatus, Scarus sp., Acanthurus sp., 

Neopomacentrus sp.). Additionally, relatively small individuals of Epinephelus lanceolatus and 

Acanthopagrus akazakii were observed. Thus, the fish community using this system consisted 

of a substantial number of juvenile reef species, including juveniles of two species classified 

as vulnerable on the IUCN list (E. lanceolatus and B. muricatum), and one endemic species 

(A. akazakii) (Iwatsuki et al., 2006). These findings highlight that near-coral mangrove habitats 

in the Central Indo-Pacific, such as Bouraké, have a role in providing habitats for juvenile reef 

fish in parallel to the situation in the Tropical Atlantic (Sedberry and Carter, 1993; Nagelkerken 

et al., 2002; Mumby et al., 2004). 

 While early studies concluded that high connectivity between coral reefs and 

mangroves had little influence on mangrove fish assemblages (Quinn and Kojis, 1985; Thollot, 
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1992; Laroche et al., 1997), recent evidence suggest that in many instances there is a high 

occurrence of reef-associated fish in mangroves adjacent to reefs (Dorenbosch et al., 2007; 

Unsworth et al., 2009; Barnes et al., 2012; Olds et al., 2013). While supporting this idea, the 

current study emphasises that the utilisation and value of mangrove forests vary locally and 

cannot be generalised from one system to another (Dorenbosch et al., 2007; Unsworth et al., 

2008; Sheaves et al., 2016). 

 This study highlighted clear spatial variations in fish assemblages across the two 

different habitats mangrove edge and mangrove in-forest. Indeed, fish assemblages were 

distinctly different between the mangrove edge and just a few meters inside the mangrove 

forest. Most fish were recorded cruising on the edge of the mangrove forest, while sightings 

inside the mangrove forest were sparser. Two main hypotheses, namely increased food 

supply and providing shelter, have been suggested to explain why fish use mangrove forests. 

However, neither of these two hypotheses were confirmed by the current study as few foraging 

activities were recorded and few individuals were observed actively sheltering among 

mangrove prop-roots. In fact, few species made regular use of the mangrove forest, 

supporting the idea that most fish species simply remain on the edge and potentially retreat 

into the forest for opportunistic feeding, or to escape presence of larger predators 

(Laegdsgaard and Johnson, 2001). This result aligns with the observations in estuarine 

mangrove forests of northern Australia where few species made regular use of the in-forest 

habitat (Sheaves et al., 2016). These two habitats (edge and in-forest) probably confer 

different values to fish, however, fish could benefit from most attributes that physically attract 

them in mangrove systems (Nagelkerken and Faunce, 2008) by using the mangrove fringe 

without venturing into the forest. This result supports the idea that high tidal range leading to 

forest drainage limits the use of mangrove forests in the Indo-Pacific compare to the 

Caribbean. Accessing the forest could be disadvantageous because of increased risk of 

becoming trapped after the tide falls, but could also be linked to adverse water quality such 

as low dissolved oxygen that develops at low tide (Chapter 2; Mattone and Sheaves, 2017). 
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 Fish assemblages exhibited small-scale spatial (dozens of meters) heterogeneity, 

particularly along the forest edge compared to in-forest sites. There was a clear distinction in 

terms of fish assemblages in the nMDS plot between sites 1 and 9, and sites 3, 5 and 7. This 

pattern could be explained by water depth profile and substrate differences, with sites 1 and 

9 featuring dead corals, small live coral boulders and sand, and shallow depth, while other 

edge sites also had dead corals, along with small and larger live coral boulders but lacked 

sand, and experienced deeper depth. Conversely, all the in-forest sites were quite similar in 

terms of fish assemblages, suggesting that they provide a homogeneous habitat with similar 

substrate and depth profile throughout the system. Johnston and Sheaves (2007) also 

identified species-specific responses to different small-scale habitats according to their depth 

and substrate composition. The importance of accounting for spatial heterogeneity of fish 

assemblages when characterising the habitat value of a system, or when using fish 

assemblages as a bio-indicator of ecological change or ecosystem health (Whitfield and Elliott, 

2002), was highlighted by Becker et al. (2012) who observed the influence of small spatial 

scale changes in water depth and substrate composition on fish assemblages at seagrass 

beds in South Africa. 

 Fish assemblages varied temporally across the tidal cycle. Tide-induced depth 

variations have been linked to changes in fish assemblages (Laroche et al., 1997; Ellis and 

Bell, 2008; Becker et al., 2012; Harborne et al., 2016). This result was corroborated here as 

fish assemblages varied across depth, with more fish observed during intermediate depth 

values, especially at ebbing tides, and most species generally avoiding extreme shallow or 

deep water. In fact, fish displayed species-specific responses to depth with four main patterns 

identified: 1) taxa using mangrove habitats mainly at high depth values (High-depth users); 2) 

taxa using mangrove habitats mainly at intermediate depth values (Intermediate-depth users); 

3) taxa using mangrove habitats mainly at low depth (Low-depth users); 4) taxa without any 

apparent preferences for depth (Generalist users). Patterns 3 and 4 mainly comprised taxa 

that frequently used mangrove habitats such as Fibramia lateralis, Lutjanus argentimaculatus, 

Siganus lineatus, Gerres oyena, or taxa belonging to the Gobiidae family (Sheaves et al., 
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2016), while the other two profiles comprised mainly marine and reef-associated species. In 

essence, rather than accessing mangrove habitats as soon as they become available, many 

species seem to use mangrove habitats only for a restricted period of time. Other studies that 

looked at variations in fish assemblages across the tidal cycle also reported species-specific 

responses to the depth profile and highlighted that species using mangrove habitats 

extensively were accessing them at a shallower depth than other less frequently observed 

species (Bretsch and Allen, 2006; Ellis and Bell, 2008; Castellanos-Galindo et al., 2010; 

Becker et al., 2012; Harborne et al., 2016; Reis-Filho et al., 2016). Factors driving these tidal 

migrations are not fully understood, and the fact that species do not enter mangrove habitats 

as soon as they become available may suggest that these patterns could be the result of 

behavioural adaptations to avoid adverse water conditions such as low dissolved oxygen that 

can occur early or late in the tide (Chapter 2; Mattone and Sheaves, 2017). Species using 

extensively mangrove habitats could be adapted to tolerate lower depth and adverse dissolved 

oxygen conditions compare to species that would occasionally use mangrove habitats when 

they are more suitable. More studies are needed to link tidal fish migrations with dissolved 

oxygen conditions in mangrove habitats because dissolved oxygen is likely to be a critical 

environmental factor determining the value of these habitats. 

 Lunar phase was another influential factor responsible for temporal variations in 

mangrove habitats utilisation by fish. More fish were detected during neap tide than spring 

tide, however, taxonomic richness and fish assemblage composition were similar. These data 

oppose previous studies that observed more fish at spring tide than neap tide (Hampel et al., 

2003; Krumme et al., 2004; Ramos et al., 2011). These authors suggest that spring tides result 

in more habitats available and for longer duration, attracting more fish. I firstly thought this was 

an artefact of the methodology, with fish disappearing from the field of view as water became 

too deep. However, I compared fish occurrence within the same depth intervals between neap 

and spring tides, and fish presence was still substantially lower during spring tides, which 

suggests that there may be another explanation. One explanation could be that at spring tides 

fish can access more intertidal habitats, reducing the probability of encounter with the UVCs. 
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I also observed very strong currents in the channel and along the mangrove edge during spring 

tides that could reduce the time fish can benefit from using mangrove habitats as the energy 

needed to remain on the mangrove edge may be too high. 

3.5. Conclusion 

The results here provide further support that within a mangrove forest, the inside and 

edge of the forest are two distinct habitats characterised by different fish assemblages. The 

study mangrove forest plays a role in maintaining a substantial number of f ish species. 

However, the habitats use was species-specific, suggesting that utilisation and value need to 

be considered species-by-species if we want to fully understand the role mangrove systems 

play in maintaining fish communities. The high spatial and temporal heterogeneity of fish 

assemblages complicates the characterisation of mangrove forests value and utilisation, 

suggesting that results from one location are unlikely to be applicable to other systems more 

broadly. This is an important conclusion for managers when considering to adapt conservation 

strategies from other locations, to local-specific habitat mosaics. 

3.6. Summary 

 A mangrove forest in New Caledonia was studied to determine how fish responded to 

tidal fluctuations, potentially reducing the habitat quality. Fish assemblages were very distinct 

between the mangrove edge and 5 m inside the forest (in-forest), with few taxa making 

extensive use of the in-forest habitat. These results highlight that the different components of 

mangrove forests probably confer different values to fish, and showed that for most taxa, using 

the in-forest habitat may not be beneficial. The species-specific patterns of mangrove habitats 

utilisation observed over tidal scales indicated that fish were responding to one or several 

factors covarying with tide. 
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Chapter 4 Hypoxia in mangroves: occurrence and impact 
on valuable tropical fish habitat 

In review as: Dubuc, A., Baker, R., Marchand, C., Waltham, N. J., and Sheaves, M.: Hypoxia 

in mangroves: occurrence and impact on valuable tropical fish habitat, Biogeosciences 

Discuss., https://doi.org/10.5194/bg-2019-178, in review, 2019. 

4.1. Introduction 

 Mangrove forests are recognised as important habitats for fish (Robertson and Duke, 

1990; Nagelkerken et al., 2002; Nagelkerken et al., 2008). However, their value has been 

shown to be heterogenous and influenced by local environmental factors influencing 

mangrove forests accessibility and suitability (Faunce and Serafy, 2006; Bradley et al., 2019). 

Mangroves can be challenging habitats, especially in regions where they are subjected to tide 

(Unsworth et al., 2007; Olds et al., 2012), as tidal variation generates a range of constraints 

for marine organisms. Indeed, mangrove forests generally become only accessible for short 

periods while flooded at high tide, and the decrease in water depth as the tide ebbs leads to 

eventual drainage of the forest (Sheaves, 2005; Baker et al., 2015). Tidal variation also 

induces short-term changes in environmental conditions such as salinity, temperature, water 

depth, turbidity, light, and dissolved oxygen (DO), that can lead to a temporarily unsuitable 

habitat for fish utilisation (Chapter 2; Davis, 1988; Rountree and Able, 2007; Brady and 

Targett, 2013; Mattone and Sheaves, 2017). 

 Several studies have demonstrated that fish undertake regular migrations in intertidal 

mangrove forests. Migration patterns have been shown to be species-specific and influenced 

by tide (Chapter 3; Laroche et al., 1997; Krumme, 2004; Ellis and Bell, 2008; Meynecke et al., 

2008; Sheaves et al., 2016). Tidal migrations indicate that fish respond to one or several 

factors varying with tide. However, there is still uncertainty on what environmental factors 

induce these tidal migrations. The factors driving these species-specific tidal migrations could 
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be changing water depth (Bretsch and Allen, 2006; Ellis and Bell, 2008; Reis-Filho et al., 

2016), or alternatively the result of active avoidance to adverse changes in water quality. 

 A key factor determining water quality and that can rapidly fluctuate across tide is DO. 

DO is crucial for all aerobic organisms, including fish (Driedzic and Hochachka, 1978; 

Falkowski and Raven, 1997). However, DO availability varies extremely over the tidal- and 

diel-cycle in mangrove habitats, reaching levels that can lead to physiological stress (Chapter 

2; Knight et al., 2013; Gedan et al., 2017; Mattone and Sheaves, 2017). Consequently, it is 

likely that some fish species respond to changes in DO by undertaking tidal migrations, or by 

avoiding mangrove forests permanently to prevent the adverse effects following exposure to 

low DO. Despite the importance of DO and its extreme variability in shallow-water 

environments, our understanding on how DO fluctuations shape patterns of fish utilisation on 

a tidal and diel scale is limited (Davis, 1988; Smith and Able, 2003; Rountree and Able, 2007). 

 DO is maybe the most complex and variable parameter to study, as it is influenced by 

multiple interacting biotic and abiotic parameters at a range of spatial and temporal scales 

(Buffoni and Cappelletti, 1999; Diaz and Rosenberg, 2008; Nezlin et al., 2009). However, 

minimum and maximum DO levels are partially predictable, with the lowest DO levels 

occurring at night or dawn at low tide, following nighttime respiration, while maximum levels 

are recorded in the afternoon at high tide, following autotrophic production (Kenney et al., 

1988; Mazda et al., 1990; D'Avanzo and Kremer, 1994; Tyler et al., 2009). This diel pattern 

gives part of the answer of when fish could use mangrove habitats without being exposed to 

high risks of low DO. However, fish species have developed physiological and behavioural 

adaptation strategies (Kramer, 1987; Breitburg, 1994; Diaz and Rosenberg, 1995), leading to 

species-specific hypoxia tolerances (Vaquer-Sunyer and Duarte, 2008). Consequently, these 

adaptations could result in species-specific tidal migrations of nekton, as species highly 

tolerant to hypoxia would be adapted to use more often and remain longer in mangrove 

forests, compared to other less tolerant species that would be restricted to access mangrove 

forests at higher DO levels. 
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 Although it is known that other mangrove forests in the Indo-Pacific experience natural 

low DO (Knight et al., 2013; Mattone and Sheaves, 2017), it is unknown how general this 

phenomenon is, and what are the potential consequences on fish populations. Understanding 

DO dynamics and the impacts on fish utilisation and value of highly productive habitats such 

as mangroves is crucial, especially in the context of global ocean deoxygenation (Diaz and 

Rosenberg, 2008; Breitburg et al., 2018). Ocean deoxygenation is mainly due to the increase 

of human activities along the coastlines during the past 50 years responsible for the release 

of nutrient-enriched effluents (Vaquer-Sunyer and Duarte, 2008), implying that mangrove 

forests are especially vulnerable to anthropogenic deoxygenation due to their location along 

the coasts. By addressing the gaps of knowledge around hypoxia in mangrove forests, 

managers would be in a stronger position to implement adequate action plans to limit the 

impact of hypoxia that is predicted to worsen in the coming years (Breitburg et al., 2018). 

 This study examines the impact of DO fluctuations on the utilisation of mangrove 

forests by fish in a mangrove-coral reef seascape in the Indo West Pacific (IWP). I assessed 

how fish utilisation changes across tidally varying DO levels, and I determined the relative 

importance of DO, depth, lunar phase (neap vs spring), location within the mangrove forest 

(edge vs in-forest), time of day, and tide direction (flooding vs ebbing) in explaining variations 

in fish assemblages. To address this aim, I used unbaited underwater video cameras, 

simultaneously deployed at dawn and mid-afternoon on the edge and 5 m inside a mangrove 

forest, coupled with high frequency DO and depth loggers. The study site was located in an 

IWP mangrove-coral reef seascape experiencing a microtidal regime. 

4.2. Materials and Methods 

4.2.1 Study site 

 The study was conducted in a semi-enclosed lagoon (1.2 km long, 60 m wide, 1-2 m 

depth) located in Bourake, South Province of New Caledonia (21° 56.971S, 165° 59.481E; 

Figure 10). The system comprises a 2.5 km2 mangrove forest dominated by Rhizophora 

stylosa on the seaward edge and Avicennia marina on the landward margin. A channel (20-
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70 m wide, 2-6 m depth, 700 m long) bisects the mangrove forest and connects the semi-

enclosed lagoon to the coastal waters of Pritzbuer Bay (~ 20 km2). The channel comprises 

two sheltered inlets (approximately 0.01 km² each), and a shallow (1-2 m depth) coral reef 

platform that extends from the middle of the channel to the edge of the mangrove forest. New 

Caledonia is an archipelago located in the South West Pacific, around 1500 km east of 

Australia. It is characterised by a semi-arid to tropical climate with annual total rainfall of 1000 

mm, and a mixed semi-diurnal microtidal regime (maximum 1.8 m tidal range). The study 

system receives little freshwater inflow with no defined drainages. 

4.2.2 Data collection 

 Nine sites were selected on an inland/offshore gradient along the channel (Figure 10). 

Sites 1 to 8 were 4 paired sites, with odd site numbers located on the mangrove forest edge 

(defined as the boundary between mangrove prop-roots and bare substrate) and even site 

numbers located 5 m inside the mangrove forest. Site 9 was located on the edge of scattered 

mangrove trees growing on the reef platform of the innermost inlet and was considered as an 

edge site. 

 Fish assemblages were examined at the sites using unbaited underwater video 

cameras (UVCs). UVCs were deployed at dawn until the battery was discharged (around 2.5 

h) and again mid-afternoon, during neap (21 to 23 February 2017) and spring tides (28 

February to 1 March 2017), simultaneously at the 9 sites. This sampling design was applied 

to capture fish assemblages as close as possible to the expected lowest daily DO levels 

(dawn), and the expected highest DO levels (mid-afternoon; Chapter 2). Cameras were 

positioned around 7 cm above the substrate, facing towards the channel. A marker was placed 

0.5 m in front of the camera lens as a visibility indicator to ensure all videos had a minimum 

visibility of 0.5 m. Visibility was relatively consistent during the sampling period, and fish could 

be identified confidently up to approximately 2 m from the UVCs in all videos. 

Over this study, I examined the effects of: tidal factors (depth, lunar phase (spring vs neap) 

and tide direction (flooding vs ebbing)) related to habitat accessibility; DO, temperature and 
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salinity related to habitat suitability; and two different components of the mangrove forest 

(edge and in-forest) related to the nature of mangrove habitats. Between 21 February and 1 

March 2017, near-bottom (~ 5 cm above the sediment) DO (% saturation) and water 

temperature (°C) were measured every 15 minutes at each site using calibrated multi-

parameter loggers (YSI Pro ODO model (accuracy ± 1 % saturation). A depth logger (In-Situ 

Inc. Rugged Troll 100 model) was coupled with each multi-parameter logger to measure water 

depth (cm) every 15 minutes. Salinity was measured every 15 minutes from 21 to 23 February, 

and between 28 February to 1 March 2017 using another multi-parameter logger (YSI 6920 

V2-2) positioned at site 5. Tidal range was obtained from the SHOM website (SHOM, 2017). 

4.2.3 Data extraction from videos 

 Methodological details to extract data from the videos are reported in Chapter 3. 

Briefly, as considerable time is required to process videos, I subsampled the acquired 

recordings. One neap tide and one spring tide sampling were randomly selected for 

processing. Five sites from the second neap and spring tide sampling were also processed so 

one randomly selected replicate on the reef platform (site 9), and two replicates of randomly 

selected paired sites, not located on the reef platform, were acquired (sites 5-8). Videos were 

viewed using VLC and subdivided in 5-min intervals to follow the temporal variations in fish 

assemblages. All taxa observed in each 5-min interval were identified and recorded. Only 

presence/absence data were recorded to avoid biases induced by count data when using 

UVCs (Sheaves et al., 2016). Fish were identified to the lowest possible taxonomic level, with 

all fish identifications validated by two additional experts. For each 5-min interval video, 

information about depth, DO, time of day, lunar phase (neap vs spring), habitat (edge vs in-

forest), and tide direction (flooding vs ebbing) was recorded. 

4.2.4 Data analysis 

 All data collected during the study on depth, DO, temperature and fish observations 

were collated into a unique dataset available as an appendix to this chapter. To graphically 
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investigate temporal dynamics of DO on the edge and in-forest, and covariance with depth 

and temperature, cubic spline smoothers were fitted to the three time series (DO, depth and 

temperature data collected every 15 minutes during 8 days) using R. DO residuals were 

graphically added to emphasise extreme DO levels. Despite the proximity between edge and 

in-forest sites of a same pair (within 5 m), it was expected that DO would be lower inside the 

forest due to the strong accumulation of organic matter. To test this hypothesis, a Kendall’s 

correlation test (as DO did not follow a normal distribution) was used to determine whether 

patterns of change in DO were significantly correlated between edge and in-forest sites. 

Cumulative DO frequency curves (Chapter 2) were plotted for each site to highlight differences 

in spatial and temporal dynamics. 

 Following the methodology described in 3.2.3 Chapter 3, an index depending on 

observation per unit effort (OPUE) was used to calculate frequencies of occurrence for each 

taxa (the total number of 5-min intervals in which a taxon was observed in one sample unit 

was divided by the total number of 5-min intervals recorded for the same sample unit). I 

acknowledge the existence of non-independence issue created by subsampling videos in 5-

min intervals. Indeed, this can potentially lead to the count of the same individual fish in 

sequential time windows. However, the objective here was to characterise environmental 

conditions suitable for the utilisation of mangrove habitats through time by different taxa. 

Therefore, I assumed that if an individual of a taxon was present (no matter if it was the same 

individual or another one to any recorded in previous 5-min intervals), then conditions were 

suitable. Frequencies of occurrence were first calculated per site. Only taxa with a frequency 

of occurrence ≥ 0.05 on at least one site were retained for analyses (hereafter referred to as 

“common taxa”). 

 I hypothesised that presence of fish is partly driven by DO. To test this hypothesis, a 

random forest (RF) model (Breiman, 2001) was used to quantify the relative importance of DO 

and the other measured environmental factors, and identify how well the combination of the 

selected environmental factors predicted fish taxonomic richness. This machine learning 

algorithm permits analysis of data that do not meet the requirements of normality and 
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homoscedasticity required for approaches such as general linear models, and include 

repeated measurements (Mercier et al., 2011). The taxonomic richness (ranging from 0 to 13 

taxa recorded within 5-min interval) was determined for each 5-min interval recorded (1434 5-

min intervals in total). The dataset (available as a DOI: 

http://doi.org/10.25903/5cd4d312cbcfb) was then split in two to obtain a training dataset (875 

5-min intervals obtained from the two entire sampling days processed) to build the RF model, 

and a test dataset (559 5-min intervals obtained from the 5 replicate sites processed) to test 

the robustness of the model at predicting taxonomic richness. The RF model, consisting of 

1000 regression trees generated using 2 predictors at each split (default value), was created 

to predict taxonomic richness, with “Habitat” (edge vs in-forest), “Depth”, “DO”, “Lunar phase” 

(neap vs spring), “Time of day” (morning vs afternoon), and “Tide direction” (flooding vs 

ebbing) as predictors. The out-of-bag error estimate was used to validate the model. The 

increase mean-square error was calculated to determine the variable importance in predicting 

taxonomic richness, i.e. its predictive power, defined by the percentage of variability in the 

model explained by each variable. The model was then run on the test dataset to generate a 

confusion matrix. From the confusion matrix, the percentage of cases when the model was 

able to predict the exact taxonomic richness observed was calculated, as well as the 

percentage of cases where the model was able to predict the taxonomic richness observed at 

± 1 taxon. All RF model-related analyses were conducted using the ‘randomForest’ package 

in R (Breiman, 2001). As a RF model is built from many classification trees, it is not accurate 

to draw a single tree from this model. Therefore, a univariate classification tree analysis was 

carried out on the training dataset with the same variables as the RF, and the tree obtained 

from this analysis was used to visually interpret the RF model. The univariate classification 

tree analysis was performed using the package “party” in R (Hothorn et al., 2010). 

 After quantifying the importance of DO, the goal was to understand when fish initiated 

responses to DO. Each 5-min video interval was allocated to a DO % saturation class in 10 % 

intervals (from 30-40 % saturation to 100-110 % saturation) according to the DO level 

recorded. The frequency of occurrence of each common taxon per class of DO was then 



Chapter 4 

61 
 

calculated to investigate whether intensity of utilisation varied in response to DO. A General 

Additive Mixed Model (GAMM) was built with log10(X + 1) transformed frequencies of 

occurrence of each common taxon as the response variable, “DO” as a smooth term, and 

“Habitat” (edge vs in-forest) as a parametric term, using a Gaussian distribution and an identity 

link function. The model was built using the package “mgcv” in R (Wood, 2007). Frequencies 

were log10 (X + 1) transformed to reduce the impact of extreme values and improve 

visualisation. The frequencies of occurrence of each common taxon across DO were also 

plotted individually using a LOESS curve. Patterns were then investigated individually and 

visually grouped by similarity of mangrove utilisation in response to DO. No grouping was 

imposed, and visualisation of the data identified three common patterns of mangrove 

utilisation across DO among all common taxa. These three patterns were based on distinct 

preferences for DO with taxa recorded from 30 to 110 % saturation, taxa recorded from 50-

110 % saturation, and taxa recorded from 70 to 110 % saturation. 

 Taxa observed in mangrove habitats even at low DO (from 30 to 110 % saturation) 

may indicate that these fish are well adapted to use mangrove habitats extensively and 

therefore expected to be observed more frequently than the other taxa. To test this hypothesis, 

overall frequencies of occurrence were calculated for each common taxon by dividing the total 

number of 5-min intervals in which a taxon was observed by the total number of 5-min intervals 

recorded during the study at the DO range corresponding to that taxon’s assigned pattern of 

utilisation (30-110 % saturation; 50-110 % saturation; 70-110 % saturation). Following this 

methodology allows to calculate frequencies of occurrence according to the effective sample 

size; it therefore overcomes the unbalanced sampling effort as species recorded across the 

entire range of DO would automatically be more frequent than species only recorded from 70-

110 % saturation as it represents a smaller proportion of the sample size. Species-specific 

overall frequencies of occurrence were then plotted by type of patterns of utilisation assigned 

using boxplots. To test for differences in overall frequencies of occurrence among the different 

types of patterns of utilisation, a Kruskal-Wallis test followed by a post-hoc Dunn’s test were 

performed (data did not follow a normal distribution). 
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4.3. Results 

 DO was highly variable at the mangrove study sites in Bourake (Figure 16). DO 

reached levels as low as 14 % saturation at night low neap tides during the entire logging 

period, and as low as 35 % saturation during the morning hours that coincided with low spring 

tides while UVCs were deployed (Figure 16; Table 4). DO closely followed the diel- and tidal 

cycles, with daily maximum levels recorded during the afternoon high tide, and minimum levels 

during the night or early morning low tide. Temperatures followed a typical diel cycle, peaking 

during the late afternoon and declining at night reaching minimum levels in the early morning 

hours. Salinity was relatively constant during the study, ranging between 32.1 and 34.9. 

 

Figure 16 Cubic spline smoothers for dissolved oxygen (DO), depth and temperature.  
Data are from the 21 February to 25 February 2017 and from the 27 February to 1 March 2017. For 
DO, edge sites are represented by the blue smoother and black points, and in-forest sites by the grey 
smoother and red points. For the other factors, edge sites are represented by the black lines and in-
forest sites by the grey line. Shaded areas represent sunset to sunrise. Each red box represents a 
UVCs sampling. 

Table 4 Summary of the environmental factors during the study period. 
Values Neap Spring 
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Environmental 
factors 

Edge In-forest Edge In-forest 
DO (% saturation) Min 13.7 14.3 30.9 22.6 

Max 110.6 114.4 105.5 103.3 
Mean (± SE) 67.2 (± 0.6) 71.4 (± 0.6) 76.8 (± 0.7) 79.5 (± 0.7) 

Temperature (°C) Min 26.2 25.8 25.9 25.1 
Max 32.0 31.5 30.5 30.4 
Mean (± SE) 29.1 (± 0.0) 28.9 (± 0.0) 28.0 (± 0.0) 28.0 (± 0.0) 

Water depth (cm) Min 1.1 0.0 2.4 0.0 
 Max 118.1 77.8 133.7 95.5 
 Mean (± SE) 55 (± 0.7) 34 (± 0.6) 71 (± 1.2) 48 (± 1.1) 
Tidal range (m) Min 0.35 0.35 1.25 1.25 

Max 0.59 0.59 1.38 1.38 
Mean 0.46 0.46 1.31 1.31 

For each factor, the minimum, maximum and mean (± SE) values are provided for neap tides and spring 
tides, on the edge and in-forest sites. 

 Temporal dynamics in DO were significantly correlated between in-forest and edge 

habitats (p < 0.0001; r = 0.95; Figure 16; S5 Appendix). DO minima and maxima were also 

similar between edge and in-forest sites (Table 4). Most DO levels were between 70 and 80 

% saturation, nevertheless, DO levels were equal or below 50 % saturation (adopted threshold 

for hypoxia; Chapter 2; Breitburg, 2002) for around 11 % of the time inside the forest and 21 

% on the edge (Figure 17). Mean and minimum DO levels were lower during neap tides than 

spring tides for both edge and in-forest sites (Table 4). The duration of low DO tended to 

increase with distance from the mouth of the channel, with DO at or below 50 % saturation 4 

% of the time at the in-forest site closest to the channel entrance (site 2), and 14 % of the time 

at the in-forest site furthest from the channel entrance (site 8; Figure 17). 
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Figure 17 Site-specific cumulative DO frequencies.  
Each colour represents a paired site (edge and in-forest), and edge sites are represented by solid 
coloured lines and in-forest sites by dashed coloured lines. The solid black line indicates the mean 
cumulative DO frequencies across edge sites and the dashed one the mean cumulative DO frequencies 
across in-forest sites. The frequency of hypoxia (DO ≤ 50 % saturation) at sites 2 and 8 is indicated to 
help read the figure. 

 Fifty-six video deployments were processed (totalling more than 118 h of video). 

Seventy-two taxa from 29 families were recorded, with 36 common taxa (frequency of 

occurrence ≥ 0.05) retained for further statistical analyses (Table 5). The full list of taxa 

identified is provided in Chapter 3.Table 3. 

Table 5 The 36 common fish taxa identified by underwater video cameras at Bouraké, New Caledonia. 
Family Taxon  Table 5 (continued) 
Acanthuridae Acanthurus auranticavus 1  Family Taxon   

Acanthurus grammoptilus 3  Lethrinidae 

 

Lethrinus harak 2 
Apogonidae Fibramia lateralis 1   

Labridae 

 

Lethrinus lentjan 3 
Carangidae Caranx papuensis 1  Lutjanidae 

 

 

Lethrinidae 

Lutjanus argentimaculatus 1 
Chaetodontidae Chaetodon auriga 1   Lutjanus fulviflamma 1  

Chaetodon bennetti 1   

 

 

Lutjanidae 

Lutjanus fulvus 1 
 Chaetodon lineolatus 1   Lutjanus russellii 1 
 Chaetodon lunula 3  Monodactylidae Monodactylus argenteus 1 
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Chaetodon vagabundus 3  Mugilidae 

 

Mugilidae spp.1  
Heniochus acuminatus 3  Mullidae Mulloidichthys flavolineatus 1 

Clupeidae Clupeidae spp. 3   Parupeneus indicus 3 
Gerreidae Gerres oyena 2   Upeneus tragula 2 
Gobiidae Amoya gracilis 1  Pomacanthidae Pomacanthus sexstriatus 3  

Asterropteryx sp. cf striata 1  Pomacentridae Neopomacentrus spp. 1  
Cryptocentrus leptocephalus 3  Scaridae Scarus sp. cf ghobban 3  
Gobiidae spp. 1  Siganidae Siganus canaliculatus 2  
Redigobius balteatus 1   Siganus lineatus 1 

Haemulidae Plectorhinchus spp. 2  Sparidae Acanthopagrus sp. cf akazakii 2  
Pomadasys argenteus 2    

The superscript number corresponds to the type of patterns of mangrove habitat utilisation across DO 
followed by the taxon (Figure 20). Taxa highlighted in bold represent the 10 most common taxa. Taxa 
recorded in-forest (5 m inside the forest) are underlined. 

 I used a RF model to assess the relative importance of several environmental factors 

in determining taxonomic richness. The robustness of the model in predicting taxonomic 

richness at this location was also tested. The RF model consisted of 875 5-min intervals and 

6 independent environmental factors. It explained 50.2 % of the total variance in taxonomic 

richness, which considering the biological nature of the data is substantial. “Depth” had the 

highest predictive power for predicting taxonomic richness with its exclusion from the model 

increasing the mean-square error (MSE) by more than 61 % (Figure 18a). “Lunar phase”, “DO” 

and “Habitat” had similar predictive power (between 45 and 55 % increase in MSE) and 

explained a substantial part of taxonomic richness variability. “Time of day” and “Tide 

direction” had a lower predictive power but still accounted for an increase in MSE of more than 

35 %. The RF model successfully predicted the exact taxonomic richness observed on the 

replicate sites for 23 % of the 5-min intervals recorded, and for 60 % of them at ± 1 taxon (S7 

Appendix). As DO and depth were highly correlated, a RF model was built only with “Depth”, 

and then only with “DO” to test for the effect of multicollinearity on their relative predictive 

power. In both cases, the total variability explained by the model was much lower (33.42 % 

with only “Depth” included and 26.36 % with only “DO” included) than when “Depth” and “DO” 

were both included (50.22 %). The univariate tree corroborated the results of the RF in terms 

of variable importance, and proved to be an effective way of getting a visual interpretation of 

the RF (Figure 18b). The taxonomic richness was the lowest at in-forest sites, and on the edge 
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during spring tides. Conversely, taxonomic richness was the highest when water depth was 

the deepest during neap tides, and when DO was greater than 83 % saturation. 

 

Figure 18 Importance of environmental factors in explaining variations in taxonomic richness. 
(a) Random forest importance plot. Importance plot was obtained from a random forest model built with 
Site, Depth (cm), Lunar phase (neap vs spring), DO: Dissolved oxygen (% saturation), Time: Time of 
day (morning vs afternoon), Tide dir: Tide direction (flooding vs ebbing) and Habitat (in-forest vs edge) 
as predictors for taxonomic richness. (b) Univariate classification tree. The tree was built using the same 
variables and provides a visual interpretation of the random forest model. Numbers in the boxes in each 
terminal leaf represent the average taxonomic richness, the number of samples (n), and the total % of 
data that n represents. 

 The RF model showed that DO was a key factor in explaining variations in taxonomic 

richness. I therefore further investigated fish responses to DO. Log10 transformed frequencies 

of occurrence of all taxa combined varied significantly across DO (GAMM: F = 3.693; p = 

0.0166) and differ between habitat (GAMM: F = 11.48; p < 0.0001). On average, frequencies 

of occurrence were highest once DO reached 70-80 % saturation (Figure 19). The spread of 
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the frequencies of occurrence around the median was also substantially reduced once DO 

was between 70 and 110 % saturation, indicating that taxa were more equally frequent, 

whereas at low DO levels only a few taxa were abundant, with the rest rarely observed, or 

absent entirely. The patterns of utilisation across DO intervals differed between the in-forest 

and edge habitat (Figure 19). Although, on average, the highest frequencies of occurrence 

were recorded once DO reached 70-80 % saturation for both habitats, there were larger 

disparities between taxa at edge sites, with some being frequently observed at low DO and 

some being rarely observed, or absent entirely until DO reached 70-80 % saturation (Figure 

19a), while at in-forest sites, frequencies of occurrence were more stable across DO (Figure 

19b). 
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Figure 19 Variation in frequencies of occurrence of fish across DO.  
Frequencies of occurrence were log10 transformed. Each data point used to draw the boxplots 
represents the frequency of occurrence of one common taxon during a specific DO class. The blue line 
represents the GAMM model fitted with DO as the smooth term using a Gaussian distribution and an 
identity link function for (a) Edge sites; and (b) In-forest sites. Shaded areas represent the confidence 
interval at 95 %. 

 Disparities in frequencies of occurrence between taxa were explained as fish appeared 

to respond differently to DO fluctuations. I identified 3 distinct types of patterns of mangrove 

utilisation across DO while investigating species-specific variations in frequencies of 

occurrence across DO: 1) Pattern 1: ”High tolerance” – these taxa (19 taxa) were recorded 
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across the entire range of DO (30-110 % saturation) and were usually known to use mangrove 

habitats extensively (Figure 20; Table 5; S6a, b Appendix); 2) Pattern 2: “Medium tolerance” 

– these taxa (7 taxa) were not observed once DO was below 50-60 % saturation and were 

also usually known to use mangrove habitats extensively (Figure 20; Table 5; S6c Appendix); 

and 3) Pattern 3: “Low tolerance” – these taxa (10 taxa) were not observed once DO was 

below 70-80 % saturation and were usually reef-associated taxa (Figure 20; Table 5; S6d 

Appendix). Figure 20 only shows one example of taxa per type of patterns, however, all the 

species-specific patterns are provided in S6 Appendix. 

 

Figure 20 The three common patterns of mangrove utilisation across DO identified.  
Each LOESS curve represents one example of taxa per type of patterns of mangrove utilisation across 
DO: Pattern 1: “High tolerance” represented by taxon Fibramia lateralis; 2) Pattern 2: “Medium 
tolerance” represented by taxon Acanthopagrus sp.; 3) Pattern 3: “Low tolerance” represented by taxon 
Heniochus acuminatus. LOESS curves were built with the log10 transformed frequencies of occurrence. 

 The type of patterns followed by a taxon and its overall frequency of occurrence 

appeared to be significantly correlated (Figure 21; Kruskal-Wallis: χ2 = 9.8757; p < 0.01). Taxa 

following a ”High tolerance” pattern were on average significantly more frequently observed 
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than taxa following a “Low tolerance” pattern (Dunn’s test: p < 0.01). Overall frequencies of 

occurrence of taxa following a “Medium tolerance” pattern were intermediate but not 

significantly different than “High tolerance” taxa (Dunn’s test: p > 0.5) or “Low tolerance” taxa 

(Dunn’s test: p > 0.1). 

 

Figure 21 Relationship between frequencies of occurrence and type of patterns followed. 
Overall frequencies of occurrence were calculated for each common taxon at the DO range 
corresponding to that taxon’s assigned pattern of utilisation. Differential letters above boxes denote 
statistically different values between patterns of utilisation (Dunn’s test: p < 0.05). 

4.4. Discussion 

4.4.1 Tidal migrations: stranding or hypoxia? 

 Fish assemblages were shown to be highly variable over time and space in the study 

area (Chapter 3). About half of this variability was explained by multiple environmental factors 

among which depth, DO, lunar phase, and location within the mangrove forest (edge or in-

forest) had the highest predictive power. The main trend identified among the temporal 

variability in fish assemblages occurred at a tidal scale (Chapter 3). This highlights that fish 

were responding to one or several factors covarying with tide. Tidal variations in fish 

assemblages are common in intertidal environments (Laroche et al., 1997; Ellis and Bell, 
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2008; Becker et al., 2012), however, the factors responsible for their occurrence have rarely 

been investigated. There was a high collinearity between depth and DO as both varied across 

the tidal cycle, and the importance of these two factors to explain variations in fish 

assemblages was high. Consequently, it is likely that depth and DO play an essential role in 

triggering tidal migrations. Previous studies have shown that fish can respond to both water 

depth and DO changes (Wannamaker and Rice, 2000; Bretsch and Allen, 2006; Johnston and 

Sheaves, 2007; Rountree and Able, 2007; Ellis and Bell, 2008; Brady and Targett, 2013), 

emphasising the idea that fish could be using depth and DO interchangeably as cues to initiate 

tidal migrations, a trigger that might be dependent on the perceived upcoming risk (stranding 

or hypoxia). 

 Depth becomes limiting when fish cannot safely access the area because it is too 

shallow, with associated risk of stranding. However, many taxa, including small sized species, 

avoided mangrove habitats even when they potentially had enough water (Chapter 3). On the 

other hand, changes in DO can rapidly impair fish fitness (Chabot and Claireaux, 2008; 

Vaquer-Sunyer and Duarte, 2008). Indeed, in aquatic environments, DO is considered as the 

primary limiting factor (Fry, 1971; Claireaux and Chabot, 2016) as it is naturally scarcer than 

in the atmosphere (Diaz, 2001), making it a perpetual challenge for fish to access available 

oxygen in the water. In the mangrove forest examined here, changes in DO across tide were 

extreme, with up to 80 % loss during one tidal period (high to low), supporting the notion that 

DO could be a critical constraint for fish to access mangrove habitats, even when depth is 

suitable. Considering the relevance of both factors, and the fact that the risk of stranding and 

hypoxia are concomitant, it is likely that fish are adapted to respond to either depth or DO, 

depending on which one becomes limiting first, and this may vary among taxa. 

 The hypothesis that fish can interchangeably respond and tolerate adverse depth and 

DO conditions was supported by the fact that all taxa that access mangrove habitats at low 

depth in Bourake (Pattern 3: “Low-depth users”; Chapter 3) were all following a “High 

tolerance” pattern here in response to DO, indicating that they were able to tolerate low depth 

as well as low DO. The effects of depth and DO might well be mostly confounded as DO 
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fluctuations overall follow depth, however, DO amplitude (difference between minimum and 

maximum levels) depends on many interacting factors including weather (Tyler et al., 2009), 

local geomorphology or biological and chemical activities (Mazda et al., 1990; Peña et al., 

2010). Therefore, minimum and maximum DO levels for a same depth can differ and vary in 

complex spatial and temporal scales, independent from the tidal scale, probably explaining 

why the predictive power of both depth and DO was  high. These results emphasise the 

importance to understand the DO dynamics and its impacts on fish to comprehend how 

mangrove forests are being used. 

4.4.2 Tidal-induced dissolved oxygen variations 

 During this study, I hypothesised that DO could be a keyt limiting factor for fish utilising 

intertidal mangrove forests, and my findings support this hypothesis. However, the associated 

risk of hypoxia in the study system was still to be tested. Diel-hypoxia conditions observed in 

other mangrove systems (Chapter 2; Knight et al., 2013; Gedan et al., 2017; Mattone and 

Sheaves, 2017) was also a seemingly common condition in Bourake. DO showed extreme 

and rapid fluctuations with the diel and tidal cycles. Low DO was recorded daily during 

nighttime when the tide was ebbing, reaching levels that can compromise fish fitness (Rogers 

et al., 2016). It is likely that hypoxia is a common condition of intertidal mangrove forests due 

to the mineralisation of a large amount of organic matter produced by mangrove trees, 

responsible for a high consumption of oxygen by bacteria (Alongi et al., 2004a; Dittmar et al., 

2006), but also due to the exchange of porewater between sediments and water column, 

known as “tidal pumping” (Li et al., 2009; Gleeson et al., 2013; Call et al., 2015; Leopold et 

al., 2017). Briefly, at each flooding tide, water infiltrates intertidal sediments and then drains 

back to the water column during the next ebbing tide. While in the sediments, water becomes 

enriched in reduced compounds such as NH3, H2S, FeS2, resulting in water acidification and 

deoxygenation (Marchand et al., 2011). As porewater accumulates in the water column 

throughout ebbing tide (Bouillon et al., 2007), it drives extreme drops of oxygen usually 

observed at low tide. Connectivity with the Pritzbuer Bay was crucial here in this mangrove-
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coral semi-enclosed lagoon as the flooding tide presumably brings oceanic water that is more 

saturated, replenishing DO levels. During spring tides, higher DO levels were recorded, 

probably driven by higher water renewal compared to neap tides. There was no difference 

observed between DO dynamics on the edge and in-forest, however minimum values were 

slightly lower on the edge because water remained permanently at low tide being subjected 

to further decline compare to in-forest that became exposed earlier during the tide and 

therefore experiencing a shorter DO decline period. 

4.4.3 Species-specific responses to DO variations  

 Fish significantly responded to DO variations, with taxonomic richness and average 

frequencies of occurrence higher and more consistent once DO reached 70-80 % saturation. 

This result indicated that DO levels reached during the study were probably low enough to 

cause harmful effects, and therefore, many taxa responded by temporarily avoiding the area. 

Apparent behavioural avoidance thresholds observed were species-specific and were initiated 

at different DO levels, potentially driven by differential tolerances to low DO (Claireaux and 

Chabot, 2016). Three main types of patterns of mangrove utilisation were identified driven by 

taxa’s behavioural avoidance thresholds. Most taxa did not display any behavioural avoidance 

(”High tolerance” pattern), and some of these taxa even reached their maximum frequency of 

occurrence at the lowest DO levels recorded (30-40 % saturation). Most of these taxa are 

known to commonly use mangrove habitats such as L. argentimaculatus, Mugilidae spp., and 

Gobiidae spp. (Froese and Pauly, 2017). On the other hand, other taxa were not observed 

either below 50-60 % saturation (“Medium tolerance” pattern), or below 70-80 % saturation 

(“Low tolerance” pattern). Taxa following a “Low tolerance” pattern, were mostly reef-

associated species, and therefore are not usually seen in mangrove habitats, such as C. 

vagabundus, H. acuminatus, and Scarus sp. (Froese and Pauly, 2017). The three different 

types of patterns of utilisation observed may highlight that taxa following a “High tolerance” 

pattern, and therefore taxa commonly seen in mangrove habitats, are more tolerant to low DO 

than taxa following “Medium tolerance” and “Low tolerance” patterns. 
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 Even though the underlying adaptations behind these patterns still need to be 

investigated, these observations suggest that taxa able to withstand low DO appeared as the 

most successful at using mangrove habitats (more frequently observed and more abundant) 

over taxa displaying avoidance behaviour. Indeed, “High tolerance” taxa were on average 

more frequently observed than “Medium tolerance” taxa, themselves more frequently 

observed than “Low tolerance” taxa. Tolerance to low DO provides an evident benefit as taxa 

can use mangrove habitats more often and for longer periods compared to taxa that need to 

migrate temporarily to avoid harmful DO levels. Moreover, remaining in low DO when most 

other taxa must leave, can provide opportunistic feeding and limited competition (Diaz et al., 

1992; Rahel and Nutzman, 1994). On the other hand, tidal migrations can have indirect costs 

as they can increase risk exposure to predators as fish travel to open water, aggregate fish in 

suboptimal habitats (less food, more predation) while waiting for DO conditions to improve, 

and increase energetic costs during extended swimming activities (Eby et al., 2005b; Shoji et 

al., 2005; Chabot and Claireaux, 2008; Craig, 2012). This implies that being adapted to 

withstand low DO might be critical for taxa using mangrove habitats extensively. 

 While no differences in DO levels were found between the edge and inside of the 

forest, it was interesting to note that most taxa venturing in-forest (23 taxa) were following a 

“High tolerance” pattern (16 taxa; 4 taxa were following a “Medium tolerance” pattern, and 3 

taxa a “Low tolerance” pattern). In other mangrove forests, DO can reach levels close to 0 % 

saturation (Knight et al., 2013; Mattone and Sheaves, 2017), so it is possible that such lethal 

levels are also occasionally reached in Bourake. This could explain why relatively few taxa 

venture inside the forest, and those that do, appear to be highly tolerant to hypoxia. 

4.5. Conclusions 

 The overall value of mangrove forests has been linked to parameters such as 

geographical location, tidal range (micro-, meso- or macrotidal), setting (coastal, estuarine, 

island, embayment), and connectivity to adjacent habitats (Unsworth et al., 2008; Igulu et al., 

2014; Bradley et al., 2019). While these factors provide important information, this study also 
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shows that for a same mangrove forest, its value is temporally and spatially variable. About 

half of the variability in fish assemblages was explained by changes in depth, DO, lunar phase, 

position within the mangrove forest, time of day and tide direction. Most of the temporal 

variability occurred on a tidal scale, highlighting the importance of tide in driving mangrove 

forests utilisation. Here, depth and DO were mostly considered to explain tidal variations in 

fish assemblages, however, tide can induce variations in many other factors. For instance, a 

recent study suggested that the resuspension of mangrove-derived organic matter via 

porewater exchange could temporally boosts primary and secondary production, attracting 

fish regardless of water quality conditions (David et al., 2018). These results highlight the 

complexity to quantify the utilisation, and consequently, the value of mangrove forests and call 

for more investigations, especially on the effects of tide. 

 This study is the first to provide insights on how mangrove forests utilisation by fish is 

influenced by DO. It suggests that tolerance to low DO may be a widespread adaptation for 

taxa commonly using mangrove forests and could explain why they manage to thrive in these 

harsh environments. The need of being tolerant to low DO, or able to undertake tidal 

migrations while limiting alternative costs, is likely to limit the number of taxa using intertidal 

mangrove habitats that experience low DO. However, with only field data it is difficult to 

attribute specific fish responses to DO. Physiological techniques could be used to determine 

whether a difference in hypoxia tolerance could explain why some species access mangrove 

habitats at low DO levels while others access at higher DO levels (Lawton, 1991; McGill et al., 

2006). This is the first study to look at, and suggest, a relationship between DO and fish 

utilisation of mangrove habitats. It adds to our knowledge on factors determining mangrove 

habitats value and highlights the importance to consider DO as a key controlling factor. More 

in-depth evaluation of DO dynamics and its impacts on fish populations in other locations 

would certainly help understanding the heterogeneous value of intertidal mangrove forests. 

4.6. Summary 
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 Tidal variations in fish assemblages recorded in chapter 3 were further investigated to 

identify the driving factors. Depth was identified as the most important factor to explain tidal 

variations. However, DO showed a high correlation with water depth, as DO is highly 

influenced by tide as demonstrated in chapter 2. Moreover, the minimum DO values recorded 

are commonly associated with adverse effects on behaviour and physiology. DO was also 

identified as a key factor in explaining tidal variations in fish assemblages. In-situ video 

observations reveal species-specific avoidance strategies in response to developing hypoxia. 

Taxa commonly using mangroves could withstand hypoxia while others usually associated 

with reef habitats were not recorded below 70 % saturation.  These results suggest that being 

tolerant to low DO could be a required adaptation for the extensive use of mangrove forests. 
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Chapter 5 Mangrove habitats utilisation is related to 
species hypoxia tolerance 

Prepared for submission in Functional Ecology 

5.1. Introduction 

5.1.1 Environmental hypoxia – why is it a problem? 

 Dissolved oxygen (DO) is considered the main limiting factor for marine aerobic 

organisms to perform all energy-requiring activities (Fry, 1947; Fry, 1971). Environmental 

hypoxia develops in aquatic environments as DO declines and aquatic organisms respond by 

modifying their behaviour (Kramer, 1987; Breitburg, 1994; Diaz and Rosenberg, 1995; Craig, 

2012) and physiology (Greaney et al., 1980; Peterson, 1990; Breitburg et al., 1997; Wu, 2002; 

Zambonino-Infante et al., 2017). These responses lead to ecosystem scale impacts such as 

modifications of species distributions (Eby and Crowder, 2002), predator-prey interactions 

(Breitburg et al., 1994), and in severe cases, habitat loss and mass mortality (Townsend and 

Edwards, 2003; Chabot and Claireaux, 2008; Diaz and Breitburg, 2009). Environmental 

hypoxia has severe consequences on marine ecosystems and is therefore considered one of 

the most pressing threats for the ocean (Diaz and Rosenberg, 1995; Rabalais et al., 2010; 

Breitburg et al., 2018). The frequency and severity of hypoxia is expanding worldwide due to 

anthropogenic nutrient enrichment and is expected to further exacerbate in the context of 

climate change, placing further environmental pressure on marine ecosystems (Diaz and 

Rosenberg, 2008; Breitburg et al., 2018). 

5.1.2 How do fish respond to hypoxia? 

 Fish elicit a range of behavioural and physiological responses to environmental 

hypoxia (Wu, 2002). Common behaviours involve avoidance of hypoxic areas, reduction of  

activity level, use of aquatic surface respiration and air-breathing strategies (Kramer, 1987; 

Chapman and McKenzie, 2009). Such responses occur often in addition to physiological 
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changes, such as increase in haemoglobin–O2 binding affinity, blood haemoglobin content or 

gill surface area, that aim to enhance oxygen extraction and transportation in order to sustain 

metabolic needs for aerobiosis as DO rarefies in the surrounding environment (Richards, 

2009; Wells, 2009; Rogers et al., 2016). Metabolic rate, measured through oxygen uptake, is 

a useful tool to estimate energy production, and therefore characterise species ecological 

performances (Chabot et al., 2016a). Species capacity for aerobic metabolism declines 

concomitantly with DO until the critical oxygen level (O2crit or Pcrit) is reached (Fry, 1971; 

Chabot and Claireaux, 2008). At O2crit, maximum metabolic rate (MMR) is equal to standard 

metabolic rate (SMR), therefore only minimal cost of living can be sustained with no excess 

activity possible, such as swimming or digesting (Chabot et al., 2016b). Above the O2crit short-

term survival is not compromised, therefore the ability of fish to maintain aerobic metabolism 

as DO decreases is important in determining fish hypoxia tolerance (Claireaux and Chabot, 

2016). 

 Capacity for survival at DO below O2crit is also important in determining fish hypoxia 

tolerance. The ability to survive at DO below O2crit is determined by the capacity of fish to 

maintain ATP supply through a combination of anaerobic metabolism and metabolic rate 

depression (Guppy and Withers, 1999; Richards, 2009). Fish can also develop physiological 

adaptations, such as high levels of tissue glycogen and changes in enzyme and protein 

expression, to improve anaerobiosis (Nilsson and Östlund‐Nilsson, 2008; Richards, 2009; 

Speers-Roesch et al., 2013). As secondary wastes from anaerobiosis accumulate, fish may 

show acute signs of distress such as loss of equilibrium (LOE), indicating the limit to anaerobic 

capacity corresponding to the incipient lethal oxygen (ILO) level (Gaesser and Brooks, 1984; 

Claireaux and Chabot, 2016). Survival below O2crit is a function of hypoxic severity and time, 

therefore time spent in DO levels below O2crit is important to consider when quantifying hypoxia 

tolerance of fish (Nilsson and Östlund‐Nilsson, 2008; Claireaux and Chabot, 2016). 

5.1.3 Application of laboratory experiments to field observations 
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 A causal link between environmental hypoxia and responses to hypoxia is difficult to 

establish using only field observations as fish rarely respond to changing DO only, but rather 

to a range of interacting stressors, such as high temperature, low pH, and toxins accumulation, 

that can generate similar responses (Wu, 2002; Vaquer-Sunyer and Duarte, 2008). Several 

studies have described a relationship between fish movements in estuaries and environmental 

hypoxia (Eby and Crowder, 2002; Bell and Eggleston, 2005; Tyler and Targett, 2007; Brady 

and Targett, 2010; Craig, 2012; Brady and Targett, 2013), however few studies have directly 

integrated such observations with empirical determinations of metabolic responses in 

controlled laboratory conditions. Metabolic adjustments play an important role in driving 

responses to stressors, hence, the integration of physiological responses observed in 

laboratory conditions with environmental DO and fish responses observed in the natural 

environment is crucial for predicting changes in fish communities (Lawton, 1991; Helmuth, 

2009; Stoffels, 2015), and provide crucial information for conservation and management (Illing 

and Rummer, 2017). As metabolic adjustments are species-specific (Breitburg, 2002; Vaquer-

Sunyer and Duarte, 2008; Rogers et al., 2016) and depend on the type of hypoxic 

environments fish live in (Mandic and Regan, 2018), existing knowledge cannot be extended 

to other species. Thus, species-specific characterisation of metabolic responses is needed 

when evaluating the potential impact of environmental hypoxia on fish communities inhabiting 

a particular hypoxic environment. 

5.1.4 Hypoxia in mangroves 

 Mangroves are considered highly valuable habitats for fish (Nagelkerken et al., 2008), 

however the occurrence of diel-cycling environmental hypoxia, that may range from 

moderately to severely hypoxic and last for hours, suggests that they may be temporally 

unsuitable for some fish species (Chapter 2, Chapter 4, Mattone and Sheaves, 2017). Indeed, 

diel-cycling hypoxia in mangrove forests was shown to induce behavioural responses, that 

were indicated by species-specific variations in fish occurrence in relation to DO (chapter 4). 

Such responses may be the result of differential tolerances to hypoxia, leading to different 
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strategies in mangrove utilisation that are dependent on DO. Like in other hypoxic 

environments, it is likely that DO plays a key role in shaping mangrove fish communities 

depending on their hypoxia tolerance (Dauer, 1993; Eby and Crowder, 2002; Wu, 2002; 

Mandic et al., 2009). Despite the importance of mangroves for many fish species and the 

increasing evidence of hypoxia occurrence, little is known on hypoxia tolerance of mangrove 

fish species and the capacity of hypoxia to reduce mangrove habitat quality. 

 Here, I used existing knowledge on DO and fish occurrence in response to DO 

fluctuations from an Indo-Pacific mangrove forest to design laboratory experiments to 

characterise hypoxia tolerance of mangrove fish species. The results are used to examine 

whether a causal link between hypoxia tolerance and species-specific utilisation of mangrove 

forests exists. Four fish species were selected for this study: two that are commonly observed 

in mangrove forests, and two that are occasionally observed but are more commonly 

associated with adjacent coral reef ecosystems. Each of these four fish species has been 

observed to access mangrove forests at different DO ranges believed to be due to differential 

hypoxia tolerances. Metabolic responses to hypoxia were characterised for each of these four 

species using intermittent-flow respirometry. I hypothesised that the two species selected that 

are frequently observed in mangrove forests and at low DO (Acanthopagrus pacificus and 

Siganus lineatus), would be more tolerant to hypoxia than the two reef species that 

infrequently visit mangrove forests and are present only at high DO (Chaetodon vagabundus 

and Heniochus acuminatus). 

5.2. Materials and methods 

5.2.1 Study Species 

 Four species were selected for determination of metabolic responses to hypoxia, 

based on field data collected in a mangrove/coral system in New Caledonia (21˚56.971S, 

165˚59.481E), revealing their contrasting patterns of mangrove utilisation in relation to DO. 

Golden-lined spinefoot, S. lineatus (Valenciennes, 1835) was following a “High tolerance” 

pattern: it had no apparent preference for DO and was frequent at the lowest DO levels 



Chapter 5 

81 
 

recorded (30-40 % saturation; Figure 22; Chapter 4). It was therefore chosen as a species 

potentially highly tolerant to hypoxia. Pacific seabream, A. pacificus (Iwatsuki et al., 2010), 

was following a “Medium tolerance” pattern: it was not recorded at DO below 50-60 % 

saturation but occurred frequently (Figure 22; Chapter 4) and was therefore selected as a 

species potentially medium tolerant to hypoxia. Pennant coralfish, H. acuminatus (Linnaeus, 

1758) and vagabond butterflyfish, C. vagabundus (Linnaeus, 1758) were following a similar 

“Low tolerance” pattern of mangrove utilisation: they were not recorded at DO below 70-80 % 

saturation and were less frequently observed than the two other species (Figure 22; Chapter 

4). Therefore, they were selected as species potentially low tolerant to hypoxia. 

  

Figure 22 Occurrence of the four study species in relation to DO.  
Occurrences were determined from a field study conducted in a mangrove/coral system in New 
Caledonia (Chapter 4). Fish were observed with underwater video cameras coupled with DO loggers. 
Occurrences represent the percentage of time a species was recorded over the sampling period (more 
than 118 h of video recording) at a specific DO int (dissolved oxygen interval). 

 Juvenile A. pacificus (0.021 – 0.137 kg, n = 20) and S. lineatus (0.021 – 0.164 kg, n = 

15) were collected from the Ross River, Townsville, Australia (19°17'2.45"S, 146°48'53.80"E) 

using hook and line and cast net methods, respectively. H. acuminatus (0.200 – 0.250 kg, n = 

15), and C. vagabundus (0.015 – 0.020 kg, n = 15), were professionally hand-caught in the 
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Coral Sea. Fish were maintained in multiple shaded outdoor 900 L flow-through tanks at 

James Cook University’s Marine Aquarium Research Facilities Unit (MARFU). Tanks were 

continuously supplied with aerated, recirculating UV-filtered saltwater (salinity = 34 psu). Fish 

were maintained for a minimum of ten days post-capture to acclimate to captivity and the 

experimental temperature of 28 °C. This experimental temperature represents the average 

temperature recorded in mangrove habitats over summer months in New Caledonia and north 

Queensland, Australia (Chapter 2, Chapter 4). During this acclimation period, fish were fed 

twice daily ad libitum but were fasted 24 h prior to experimentation. 

5.2.2 Respirometry 

 Oxygen consumption rate (�O2) measurements were completed using static 

intermittent-flow respirometry (Figure 2), following best practices highlighted by Svendsen et 

al. (2015). Three different sizes of acrylic custom-made chambers were used to fit the different 

sizes and shapes of the four species (10.5 L; 1.9 L; 1.1 L). Two to six chambers were 

submerged in a thermoregulated (28.4 ± 0.2 °C) and aerated 300 L experimental tank. Each 

chamber was connected to two submersible pumps: a flush pump that intermittently 

replenished water in the chambers between oxygen measurements, and a recirculation pump 

that continuously mixed water within the chamber. A timer was connected to the flush pumps 

to repeat an 8-minute measurement cycle that consisted of a 3-minute measurement period 

followed by a 5-minute flush period. DO within chambers was measured every 2 s using 

oxygen-sensitive REDFLASH® dye on contactless spots that was connected to the 

recirculation loop. Each oxygen sensors were connected to a four channel Firesting Optical 

Oxygen Meter (Pyro Science e. K, Aachen, Germany) via fibre-optic cables. Before each 

experiment, the oxygen sensors were calibrated to 0 % saturation (using a sodium sulfite 

solution) and 100 % saturation (using aerated seawater). The experimental tank was 

surrounded by an opaque curtain and the individual chambers were fitted with opaque covers 

to minimise stress caused by visual stimuli. 



Chapter 5 

83 
 

 Fish were transferred individually to the chambers using scoop nets and plastic bags 

to limit stress induced by air exposure. Fish were left undisturbed for around 70 h at normoxia 

(> 80 % saturation) to acclimate to the chamber environment and for subsequent 

determination of SMR. To validate the applicability of my laboratory results, DO was slowly 

decreased for about 6 h, from 100 % saturation until fish lost equilibrium (rate of around 20 % 

saturation per hour), to simulate natural conditions in mangrove habitats harbouring the four 

species tested (Figure 23), using nitrogen gas connected to a degassing column. LOE was 

deemed to have occurred when a fish was no longer able to elicit a righting response. At LOE, 

both time and DO were recorded and fish were removed from the chamber, wet weighed, 

measured, and transferred to a recovery tank with 100 % saturated water. DO measurements 

were recorded in all chambers for 30 min before and after introduction of fish for subsequent 

determination of background respiration. To limit bacterial growth, all respirometry equipment 

(experimental tank, degassing column, chambers, connecting pipes and pumps) was 

bleached following the completion of each trial and the experimental tank was continuously 

supplied with UV-filtered seawater until the beginning of the hypoxia challenge. Data 

exploration showed that any change in background respiration between the start and end of 

experiments was better explained by an exponential model, therefore an exponential 

relationship was fitted when correcting fish �O2 for background respiration. 

 

Figure 23 Rates of DO decline in the natural environment and during the experiments.  
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The green curve represents a typical DO profile obtained in the field in Bourake, New Caledonia, and 
the orange curve represents a typical DO decline applied during the respirometry trials. 

5.2.3 Calculations and Statistical Analysis 

 All oxygen consumption rate measurements (�O2 in mgO2.kg-1.min-1) were calculated 

from the slope of the decline in oxygen concentration according to the following formula 

(Steffensen, 1989; Collins et al., 2013) using the commercial software LabChart v. 8.1.10 

(ADInstruments, Sydney, NSW, Australia):  

ṀO2 =  
[(𝑠𝑙𝑜𝑝𝑒𝑎 ∗ 60) ∗ (𝑉𝑐 − 𝑀𝑏)] − [(𝑠𝑙𝑜𝑝𝑒𝑏 ∗ 60) ∗ 𝑉𝑐]

𝑀𝑏
 

where slopea was the decline in oxygen (mg.L-1.s-1) in the presence of the fish, slopeb was the 

decline in oxygen (mg.L-1.s-1) in the absence of the fish (background respiration), Vc and Mb 

are the volumes (L) of the chamber and the fish, respectively. Only slopes with an R2 > 0.90 

were included in this analysis. 

 Four parameters were calculated from the �O2 measurements to determine hypoxia 

tolerance for the four species (Figure 3): O2crit (DO below which the fish is not able to maintain 

SMR); O2deficit (the amount of O2 consumed below O2crit until LOE); LOE (DO at which the fish 

was not able to maintain a righting response); time to LOE (the amount of time between O2crit 

and LOE). SMR was determined by removing �O2 measurements from the first 10 h 

(estimated chamber acclimation period) and from the hypoxia challenge using the calcSMR 

function in fishMO2 package (Claireaux and Chabot, 2016). The quantile method (p = 0.2) 

was deemed the most appropriate to calculate SMR on the remaining �O2 measurements as 

coefficients of variation of the mean of the lowest normal distribution (MLND) were > 5.4 in 

most cases (Chabot et al., 2016b). Then, after adding back the �O2 measurements from the 

hypoxia challenge, two functions from the R package fishMO2 were used to calculate the O2crit: 

calcO2crit and plotO2crit (Claireaux and Chabot, 2016). The O2crit was determined as the 

intersection of the horizontal line determining SMR and the linear regression between DO and 

�O2 once �O2 became proportional to DO (Nilsson et al., 2004; Claireaux and Chabot, 2016). 

All statistical analyses were conducted in R v.3.1.3 (R Core Team, 2014). 
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 An index of cumulative ambient oxygen deficit (O2deficit) (Claireaux and Chabot, 2016) 

integrating hypoxic severity and time was used to assess the capacity for fish to survive below 

O2crit. O2deficit was determined by plotting �O2 across time and then by calculating the area 

between the horizontal line representing SMR and the �O2 curve between O2crit and LOE 

(Figure 3). A pseudo-integration was conducted to calculate the area as described in 

(Claireaux and Chabot, 2016): O2deficit = ∑ (ṀO2 − 𝑆𝑀𝑅) ∗ (𝑛=𝑒𝑛𝑑
𝑛=0 𝑡𝑛+1 − 𝑡𝑛). 

 Results were analysed using a one-way ANOVA and Tukey HSD post hoc test to 

identify species that significantly differ from each other. When normality and/or 

homoscedasticity were not verified, a Kruskal Wallis test was used in combination with a 

Dunn’s post-hoc test. Mass was explored as a potential covariate but failed to meet the 

assumptions of linearity and homogeneity of variances, even after log transformation, to be 

included as a covariate in an ANCOVA model. Additionally, no obvious trends were observed 

when exploring the relationship between mass and the other metabolic measures. 

5.2.4 Comparison to a field measured DO profile 

 To estimate the risk of exposure to hypoxia in natural mangrove environments for each 

species, DO measurements recorded at the Annandale Wetland, located on the Ross River 

in Townsville, Australia (Chapter 2), and at Bourake, New Caledonia (Chapter 4) were used 

to plot cumulative DO frequency curves. All four study species were observed at these two 

sites therefore I knew they used these areas. The average O2crit values determined for each 

species were plotted on the cumulative DO frequency plots to estimate the percentage of time 

these species would have been exposed to acute hypoxia. 

5.3. Results 

5.3.1 Metabolic parameters 

 The four measured parameters selected to examine hypoxia tolerance (O2crit, O2deficit, 

LOE, and time to LOE) revealed significant differences among the four species (Table 6; 

Figure 24; one-way ANOVA: F = 17.49, p < 0.0001). S. lineatus had significantly lower O2crit 



Chapter 5 

86 
 

than the three other species (Tukey HSD: p < 0.0001 for all significant comparisons). O2crit 

was not significantly different among A. pacificus, C. vagabundus and H. acuminatus. O2deficit 

significantly varied among the four species (Figure 24; Kruskal Wallis: χ2 = 20.744, p < 

0.0005). S. lineatus had a significantly greater O2deficit than H. acuminatus and C. vagabundus 

(Dunn’s test: p < 0.01 and p < 0.05 respectively). Likewise, A. pacificus had a significantly 

greater O2deficit than H. acuminatus and C. vagabundus (Dunn’s test: p < 0.0001 and p < 0.0005 

respectively). No significant differences in O2deficit were found among the two estuarine species 

(S. lineatus and A. pacificus) or the two reef species (H. acuminatus and C. vagabundus; 

Figure 24). LOE occurred at significantly different DO values among the species (Figure 24; 

Kruskal Wallis: χ2 = 38.493, p < 0.0001). S. lineatus lost equilibrium at lower DO values than 

A. pacificus (Dunn’s test: p < 0.005), H. acuminatus (Dunn’s test: p < 0.0001) and C. 

vagabundus (Dunn’s test: p < 0.0001). A. pacificus also lost equilibrium at lower DO values 

than H. acuminatus and C. vagabundus (Dunn’s test: p < 0.05 and p < 0.0005 respectively). 

The LOE between the two reef fish species however did not significantly differ. Lastly, time to 

LOE also significantly differed among the four species (Figure 24; Kruskal Wallis: χ2 = 18.346, 

p < 0.0001). The time it took for S. lineatus to lose equilibrium was longer than H. acuminatus 

and C. vagabundus (Dunn’s test: p < 0.0005 for both comparisons). Similarly, time to LOE for 

A. pacificus was significantly longer than H. acuminatus and C. vagabundus (Dunn’s test: p < 

0.005 for both comparisons). No significant differences in time to LOE were detected among 

the two estuarine species or the two reef species. 

Table 6 Summary of metabolic measures determined for the four species tested.  
Species n Mass (g) SMR  

(mgO2.kg-1.min-1) 

O2crit  

(% 

saturati

on) 

Pcrit  

(kpa) 

O2deficit  

(mgO2.kg-1) 

LOE  

(% 

saturation

) 

Time to LOE 

(hh:mm) 

S. lineatus 15 96  

(21-164) 

1.72  

(± 0.11) 

13.0  

(± 0.7) 

2.3 85.8  

(± 15.6) 

7.0  

(± 0.5) 

02:04  

(± 00:14) 

A. pacificus 20 62  

(21-137) 

2.59  

(± 0.13) 

20.0  

(± 0.8) 

3.5 103.1  

(± 11.9) 

9.8  

(± 0.5) 

01:44  

(± 00:09) 
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C. vagabundus 15 51  

(23-71) 

1.97  

(± 0.11) 

20.2  

(± 0.7) 

3.5 39.8  

(± 7.0) 

13.1  

(± 0.6) 

01:03  

(± 00:07) 

H. acuminatus 15 223  

(155-260) 

1.52  

(± 0.08) 

18.7  

(± 0.8) 

3.3 33.1  

(± 4.7) 

11.7  

(± 0.4) 

01:05  

(± 00:06) 

For each factor, the mean, standard error (SE), and range of values are provided when relevant. 

 

Figure 24 Variations in hypoxia tolerance among four fish species using mangrove habitats. 
Hypoxia tolerance is characterised by four metabolic parameters: A) O2crit; B) O2deficit; C) LOE; D) Time 
to LOE. Differential letters above boxes denote statistically different values between species (p < 0.05). 

5.3.2 Risk of exposure to acute hypoxia 

 The O2crit determined for each species was used to assess the risk of exposure to acute 

hypoxia in the natural environment. Cumulative DO frequencies curves obtained for the two 

sites where the study species were observed revealed species-specific differences in risk of 

hypoxia exposure (Figure 25). For 4 % of the recorded time (total of 24h over 25 days period; 

A) B) 

C) D) 
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Chapter 2), A. pacificus and S. lineatus would have been exposed to DO below or equal to 

their O2crit in Annandale Wetland (Figure 25). In Bourake, A. pacificus, C. vagabundus and H. 

acuminatus would have been occasionally (total of 1h30 over 8 days period) exposed to values 

below or equal to their O2crit (Chapter 4), while DO was never below the O2crit determined for 

S. lineatus (Figure 25). 

 

Figure 25 Risk of exposure to acute hypoxia in the natural environment for the four study species. 
Species-specific observed O2crit are used as a threshold for acute hypoxia exposure (13 % saturation 
for S. lineatus and 20 % saturation for A. pacificus, H. acuminatus and C. vagabundus). The two curves 
represent the cumulative DO frequencies recorded for several days at two mangrove systems 
(Annandale Wetland, Australia and Bourake, New Caledonia) where the study species have been 
observed. 

5.4. Discussion 

5.4.1 Major findings 
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 There is a growing need to determine thresholds to hypoxia in controlled laboratory 

conditions that are ecologically relevant, meaning that they approximate natural conditions 

and are therefore meaningful when establishing links between ecological responses and 

environmental hypoxia, and when evaluating the risk of exposure to hypoxia for conservation 

and management. Field observations of fish responses to hypoxia and laboratory studies 

determining metabolic performances are rarely conducted in parallel, making it challenging to 

infer a link between laboratory-determined thresholds and field observations. This study 

presents novel information combining behavioural and metabolic responses to hypoxia for four 

fish species known to utilise mangrove habitats that experience diel hypoxia. Field 

observations revealed distinct preferences for DO among the four species examined that were 

reflected in their metabolic responses to low DO measured via respirometry. The results from 

this study demonstrate that hypoxia tolerance parameters measured under controlled 

laboratory settings are strongly related to observed variations in occurrence of fish in 

mangrove habitats. 

5.4.2 High tolerance to hypoxia relates to high occurrence in mangroves 

 The study species most commonly observed in mangrove habitats and following a 

“High tolerance” pattern (S. lineatus) was also the most tolerant to hypoxia (lowest O2crit and 

LOE, highest O2deficit and longest time to LOE). Similarly, the two species that were the least 

frequently observed in mangroves and following a “Low tolerance” pattern (H. acuminatus and 

C. vagabundus) were the least tolerant to hypoxia (highest O2crit and LOE, lowest O2deficit and 

shortest time to LOE). A. pacificus was almost as commonly observed in mangrove habitats 

as S. lineatus, but was following a “Medium tolerance” pattern. This species was more tolerant 

to hypoxia than the two reef fish species (lower LOE, highest O2deficit and longer time to LOE) 

but less tolerant than S. lineatus (higher O2crit). These results indicate that fish species which 

are more highly associated with mangrove habitats may also have a correspondingly high 

tolerance to hypoxia. While the O2crit of A. pacificus was similar to C. vagabundus and H. 

acuminatus, this species displayed better hypoxia tolerance at DO below O2crit. Such higher 
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resistance to hypoxia may allow A. pacificus to use mangrove habitats more effectively than 

the two reef species. Interestingly, C. vagabundus and H. acuminatus showed similar patterns 

of utilisation (both entirely absent at DO < 70 % saturation) that were associated with similar 

and poorer ability to tolerate hypoxia than the two estuarine species. A previous study, 

combined field observations in intertidal rockpools in New Zealand where the team studied 

two fish species distributions and their metabolic measurements. The authors  identified that 

the species having the highest tolerance to hypoxia was able to inhabit warm and hypoxic 

rockpools while the other species was missing, thus suggesting that species tolerances to 

hypoxia was an important factor to explain habitat utilisation (Hilton et al., 2008). 

5.4.3 Mangrove-associated species have a better ability to maintain aerobic 

metabolism 

 S. lineatus displayed the lowest O2crit in this study, that also occurred to be lower than 

observed O2crit of fish species primarily associated with coral reefs (O2crit = 13-34 % saturation) 

(Nilsson and Ostlund-Nilsson, 2004; Wong et al., 2018) and other fish associated with 

mangrove habitats in tropical Australia (e.g. barramundi; 16-20 % saturation (Collins et al., 

2013). Juveniles S. lineatus are commonly found in mangrove habitats that naturally 

experience lower DO levels (Chapter 4; Sheaves et al., 2016) than coral reef habitats (Camp 

et al., 2017; Wong et al., 2018). Fish frequently and repetitively exposed to hypoxia have 

developed strategies to tolerate and exploit these hypoxic environments. The lower O2crit 

measured in S. lineatus indicates a higher capacity for oxygen extraction and tissue delivery 

at low DO (Mandic et al., 2009), and suggests that S. lineatus is better adapted to use 

mangrove habitats, allowing it to thrive in these hypoxic environments, compared to fish that 

are more frequently associated with adjacent reef habitats. 

5.4.4 Mangrove-associated species have a better capacity to survive below 

O2crit 
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 Capacity to survive below O2crit is critical to resist to hypoxia. S. lineatus and A. 

pacificus had a better capacity to survive below O2crit (higher O2deficit) compared to C. 

vagabundus and H. acuminatus. These results suggest that species commonly using 

mangrove habitats may also be better adapted than reef-associated species to resist to 

hypoxia when DO levels fall below their O2crit. The utilisation of anaerobic pathways and the 

capacity to perform metabolic rate depression predict survival below O2crit (Richards, 2009). 

Therefore, it is probable that S. lineatus and A. pacificus are better adapted to perform 

anaerobiosis and metabolic rate depression compared to the two reef fish species. This may 

explain why they were remaining in mangrove habitats at DO levels closer to their O2crit, 

whereas the two reef fish species were avoiding the area at DO much above their O2crit. The 

high inter-individual variability for time to LOE, and consequently for O2deficit, observed for both 

mangrove-associated species (> 4-fold for both measurements) may however highlight that 

the capacity to survive below O2crit varies between individuals and could be the result of 

different genetic pools or different life-histories exposure to hypoxia (Vanderplancke et al., 

2015; Norin et al., 2016). Based on the results from chapter 4 that highlighted 3 main patterns 

of mangrove utilisation across DO for 36 common fish taxa, I hypothesise that the results 

found in chapter 5 for 4 model species would be applicable to the other 32 species. Thus, taxa 

following a “High tolerance” pattern will have a greater hypoxia tolerance than taxa following 

a “Medium tolerance” pattern that would themselves have a greater hypoxia tolerance than 

taxa following a “Low tolerance” pattern. 

5.4.5 Acute hypoxia thresholds do not predict behavioural avoidance 

 The four parameters assessed via respirometry established that the ability to tolerate 

hypoxia (capacity to maintain aerobic metabolism and capacity to survive below O2crit) was 

related to mangrove habitat utilisation for the species examined in this study. However, all 

species displayed avoidance strategies at DO levels substantially higher than their O2crit in the 

environment, except S. lineatus that did not display avoidance within the range of DO values 

recorded. Fish respond to DO levels well above O2crit because they rapidly start suffering from 
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a shortage in oxygen as DO falls under saturation, compromising other physiological functions 

(Richards, 2009). Indeed, fish in the environment engage in many physiological functions, 

usually supressed during experiments, such as digestion, swimming, foraging and avoiding 

predators. These activities increase the metabolic demand above SMR and concurrently 

diminish the metabolic scope available to respond to hypoxia (Wang et al., 2009; Jourdan‐

Pineau et al., 2010; Zambonino-Infante et al., 2017). Additionally, when environmental hypoxia 

occurs, it is usually accompanied by other stressors such as high temperature, low pH, or high 

concentration of toxins that can reduce hypoxia tolerance (Sokolova, 2013), and consequently 

lead to fish responding to environmental hypoxia much before it reaches their acute hypoxia 

tolerance threshold. 

 A good indicator to determine when fish are likely to start responding to environmental 

hypoxia is the DO level at which haemoglobin saturation in oxygen starts to decrease, 

indicating the potential to limit aerobic activities and consequently to lead to sublethal effects 

(Richards, 2009; Rummer and Brauner, 2015). Sublethal effect thresholds may better relate 

to behavioural avoidance and could predict the differential DO preferences observed in the 

field for the four study species. For instance, the two reef fish species avoided mangrove 

habitats at 70-80 % saturation, that interestingly is often used by physiologists as a threshold 

for normoxia because majority of studies have highlighted a sharp decline in haemoglobin-O2 

binding affinity at these levels (Rummer et al., 2013; Svendsen et al., 2016). To minimise the 

concomitant reduction in aerobic scope that is associated with declining DO, it is very likely 

that fish start displaying behavioural avoidance at sublethal hypoxia thresholds and not at 

acute hypoxia thresholds. 

 Metabolic parameters measured in this study provide useful information on ecological 

responses to hypoxia. However, such measures do not fully represent the species overall 

hypoxia tolerance (Claireaux and Chabot, 2016; Wood, 2018; Regan et al., 2019). Indeed, this 

study strongly suggests that fish species responded to DO levels substantially higher than 

their acute hypoxia tolerance threshold, meaning that species relocation, and therefore critical 

changes in ecosystem functioning, may happen much before O2crit is reached. Therefore, 
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caution should be exercised in the application of O2crit as a conservative hypoxia threshold in 

natural environments because it most likely underestimates the impact of environmental 

hypoxia. The ecological relevance of O2crit is most of the time overlooked and not validated as 

laboratory studies determining hypoxia tolerance thresholds are mostly conducted without 

field data to support their findings. To increase the applicability of O2crit, additional information 

can be collected by measuring the total hypoxia response (Mandic and Regan, 2018), and by 

characterising sublethal effects such as increase ventilation rate, avoidance behaviour and 

haemoglobin-O2 binding affinity (Mandic and Regan, 2018; Wood, 2018; Regan et al., 2019). 

These measures need to be determined in experimental conditions that are ecologically 

relevant and standardised when applicable (for instance units or calculations/determinations; 

(Wood, 2018; Regan et al., 2019). Subsequently, it is essential to understand the implications 

of the laboratory findings and validate their applicability in the natural environment. 

5.4.6 Ecological implications of this study 

 Natural diel-cycling hypoxia temporarily reduces habitat value of mangroves and likely 

shapes mangrove fish assemblages. Field measurements conducted in habitats commonly 

used by the four study species showed that, on most days, DO reached values below their 

O2crit. Below this threshold, short-term survival is compromised, and additionally, fish may 

suffer from sublethal effects much before O2crit is reached. Minimum DO values recorded (13 

% saturation in Bourake, Chapter 4; and near-zero saturation in Annandale, Chapter 2) were 

even below their ‘near-death’ (LOE) thresholds and would lead to mass mortalities if fish 

remain. It is expected that the results found for these 4 species apply to most species found 

in mangrove habitats. Therefore, this study suggests that DO impacts the mangrove fish 

community by favouring highly tolerant species and by temporarily or permanently excluding 

sensitive species. Species not specifically adapted to deal with low DO are probably not 

venturing in mangrove habitats. The concept that increased hypoxia tolerance confers a 

greater capacity to utilise mangrove habitats may explain the relatively low fish diversity found 

in some intertidal mangrove habitats, with few species usually dominant in the community (Lal, 
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1984; Quinn and Kojis, 1985; Blaber et al., 1989; Robertson and Duke, 1990; Thollot, 1992; 

Castellanos-Galindo et al., 2012; Reis-Filho et al., 2016; Sheaves et al., 2016). It can also 

help to explain the lower contribution of coral reef fish species to mangrove fish assemblages 

in highly-dynamic intertidal mangrove habitats compare to the Caribbean that could 

experience higher and stable oxygen conditions (Chapter 2; Chapter 4; Lal, 1984; Quinn and 

Kojis, 1985; Thollot, 1992; Laroche et al., 1997; Mumby et al., 2004; Dorenbosch et al., 2007; 

Unsworth et al., 2009; Barnes et al., 2012). 

5.5. Conclusion 

 There is abundant evidence that hypoxia is increasing in coastal habitats and it is 

considered as one of the most pressing threats to the ocean (Breitburg et al., 2018). Coastal 

habitats such as mangroves are prone to natural occurrences of hypoxia (Chapter 2; Chapter 

4; Mattone and Sheaves, 2017) and anthropogenic disturbances, such as agriculture, 

urbanisation (Pollock et al., 2007) and climate change (Keeling et al., 2009) are likely to 

exacerbate this natural phenomenon. If severity and occurrence of hypoxia in mangrove 

habitats were to increase, it could have disastrous consequences for mangrove ecosystems 

functioning. This study has shown that fish species using mangrove habitats are highly tolerant 

to hypoxia, however it also showed that these species are already dealing with DO conditions 

approaching their physiological limitations, therefore, if further degraded, hypoxia could cause 

loss of mangrove habitats value and have severe consequences for fish communities. 

5.6. Summary 

 To test whether differential hypoxia tolerances could explain mangrove habitats 

utilisation patterns revealed in chapter 4, laboratory experiments were conducted on 4 species 

displaying different patterns in response to DO. Results showed that the most hypoxia tolerant 

species (Siganus lineatus) was not displaying any apparent DO avoidance, accessing 

mangrove habitats even at low DO, while the least tolerant species (Heniochus acuminatus 

and Chaetodon vagabundus) were avoiding mangrove habitats at DO below 70-80 % 
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saturation. These findings suggest that mangrove utilisation relates to species hypoxia 

tolerance in terms of both DO preferences and occurrence, supporting the hypothesis that 

hypoxia may be a pre-condition for fish to thrive in mangroves. The resulting selectivity for 

highly tolerant species could explain the low taxonomic richness recorded in other intertidal 

mangrove habitats, or their low utilisation by reef fish species that are not known to naturally 

use hypoxic habitats.  
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Chapter 6 General discussion 

6.1. Ecological implications 

6.1.1 General use of intertidal mangrove habitats 

 Mangrove habitats are commonly viewed as important nursery, refuge and feeding 

grounds for fish (Nagelkerken et al., 2008). However, the reality is much more nuanced, with 

their relative importance determined by location-specific characteristics such as their 

geographical location, setting (estuarine, coastal, marine), connectivity with other habitats, 

tidal range (micro-, meso- or macrotidal), and tidal cycle (semi-diurnal, diurnal, mixed tides) 

(Bradley et al., 2019). 

 Chapter 3 provides a detailed investigation of the use of an intertidal mangrove forest 

nearby coral reefs located in a microtidal area of the Indo-West Pacific. The results did not 

support the hypothesis that mangrove habitats act as important nursery, refuge or feeding 

grounds, actually showing that overall fish make a very limited use of these habitats, and that 

fish using them extensively are highly adapted to do so.  Relatively few species were recorded 

in the study area compared to adjacent coral reef habitats, suggesting that the use of intertidal 

mangrove habitats is limited. Few feeding activities were recorded, conducted by a small 

portion of taxa, consisting mostly of bottom feeders such as Gerres oyena, Parupeneus 

indicus, Mugilidae spp., and Gobiidae spp., or grazers like Siganus lineatus, Chaetodon 

auriga, Acanthurus auranticavus, and Scarus sp. However, in-situ observations of predator-

prey interactions are rare, therefore, feeding activities were probably underestimated. For 

instance, Lutjanus argentimaculatus, Acanthopagrus spp., and Epinephelus spp., are known 

to specifically feed on mangrove-associated sesarmid crabs (Sheaves and Molony, 2000). 

Except for these specific taxa, studies have shown contrasting results concerning food 

availability in mangrove habitats, and therefore questioned their value as feeding grounds. For 

example, (Mattone, 2016) has not recorded any peracarids inside mangrove forests in north-

east Australia, that represent a key prey source for many fish taxa. Similarly, the extensive 
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use of prop-root structures as shelter (Laegdsgaard and Johnson, 2001; Nagelkerken and 

Faunce, 2008) was questioned here as fish were mostly observed cruising on the edge of the 

forest with few individuals actively sheltering among mangrove prop-roots. The mangrove 

forest studied provided no evidence that predation was on average reduced, as has been 

suggested in numerous studies (Nagelkerken et al., 2008). Predatory fish were observed, 

visibility was good, and on the edge of the forest water depth was deep enough to allow access 

to large fish. This was even confirmed by the observation of several large bull sharks hunting 

along the mangrove edge. These results suggest that the role of mangrove forests as refuges 

may be limited, with fish mostly cruising along the edge and potentially using the forest as a 

refuge when feeling threatened. A total of 12 juvenile species were recorded, also highlighting 

the limited importance of intertidal mangrove habitats as nursery grounds. 

 The findings of this thesis only fuel the debate around the value of mangrove habitats 

for fish. The general assumptions that mangrove habitats globally act as important nurseries, 

feeding grounds or shelters need to be reconsidered and explored case by case. The role 

mangrove habitats play is clearly defined at the whole ecosystem-scale and depends on local 

characteristics, and consequently vary within locations (Sheaves, 2005; Bradley et al., 2019). 

Moreover, different values are most likely associated with different components of mangrove 

habitats such as the edge of the forest and the in-forest, leading to high spatial variations in 

fish assemblages among studies. 

6.1.2 Risks of stranding and hypoxia limit the use of mangrove habitats 

6.1.2.a Permanent limitations 

 Tidal fluctuations are a permanent constraint for fish using intertidal habitats as they 

are responsible for rapid and extreme physical and chemical changes that can drastically 

reduce habitats value (Furukawa et al., 1997; Krumme et al., 2012) and justify for their limited 

use. Because the numerous changes driven by tides can be discrete, synergistic or 

antagonistic, it is difficult to quantify their specific influence on fish assemblages, and as a 

result, their relative importance is often not fully understood. This study is the first to investigate 



Chapter 6 

98 
 

the role of two key limiting factors, depth and DO, in controlling fish utilisation of a tropical 

intertidal mangrove forest. 

 Results from chapter 3 and 4 suggest that the combined risks of stranding and hypoxia 

that species face constantly, induced by rapid and sharp declines in depth and DO, can partly 

explains the low species richness generally recorded in intertidal mangrove habitats (Laroche 

et al., 1997; Barnes et al., 2012; Reis-Filho et al., 2016; Sheaves et al., 2016). Indeed, these 

harsh conditions imply that fish need specific adaptations to deal with intermittent availability 

and suitability of mangrove habitats. Increasing risks of stranding and hypoxia with distance 

inside the mangrove forest (Mattone and Sheaves, 2017) also probably prevent species from 

venturing deep inside mangrove forests. Instead, most species were rather observed cruising 

on the edge, especially at deeper sites that remain available throughout the entire tidal cycle 

and provide more stable environmental conditions. The edge may provide opportunistic 

feeding and allow fish to retreat inside the forest if endangered, but also provide an easy 

escape route from falling water depth or developing hypoxic conditions. Therefore, using the 

mangrove fringe seems to offer a good compromise for fish to enjoy the benefits of mangrove 

habitats while limiting the hazards related to the use of these intertidal habitats. These results 

corroborate those of another study conducted in intertidal mangrove forests of north-east 

Australia (Sheaves et al., 2016), suggesting that these patterns of utilisation could be a 

widespread feature among intertidal mangrove forests. 

6.1.2.b Temporary limitations 

 Tidal fluctuations probably exclude permanently a substantial amount of species, but 

chapter 3 also reveals that tidal fluctuations temporarily exclude fish using mangrove habitats 

in a species-specific way. Species not recorded in the area below a certain depth threshold 

most likely highlight that these species resort to tidal migrations to avoid unfavourable 

conditions. Fish tidal migrations are often recorded in intertidal environments, usually initiated 

as an active process in response to changing environmental conditions (Burrows, 2001; 

Rountree and Able, 2007; Ellis and Bell, 2008; Reis-Filho et al., 2016). Fish can use tidal 
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migrations to maximise the benefits of utilising intertidal zones, and escape to more suitable 

adjacent habitats when intertidal habitats become either inaccessible or unsuitable (Barletta 

et al., 2000; Rountree and Able, 2007; Ellis and Bell, 2008). Tidal migrations are adopted as 

an advantageous strategy by many species (Ellis and Bell, 2008), however, they also have 

inconveniences. First, fish need to have access to cues to determine when and where they 

need to migrate before being exposed to danger (Chabot and Claireaux, 2008; Ellis and Bell, 

2008). Second, suitable adjacent habitats need to be accessible within a few meters as it is 

unlikely that fish will engage in long migrations over a tidal-scale (Tulevech and Recksiek, 

1994; Krumme, 2009). Third, performing tidal migrations require energy that is therefore not 

directed towards other activities such as growth, reproduction, or feeding, potentially reducing 

fitness (Gibson, 2003). Fourth, tidal migrations can aggregate fish in suboptimal habitats, 

increase their predation risk, decrease their feeding opportunities, or make them more 

vulnerable to fishing gears (Gibson, 2003). Consequently, fish undertaking tidal migrations 

have evolved to maximise the benefits and limit the costs (Krumme, 2009) associated with 

this strategy. Thus, these results corroborate the idea that only adapted species capable of 

undertaking tidal migrations use intertidal mangrove habitats, representing a strong selective 

factor shaping mangrove fish assemblages. However, if species have evolved to be 

specifically adapted to use intertidal mangrove habitats, this probably emphasises the 

importance of their value for these species. 

 Triggers responsible for initiating tidal migrations in fish remain unclear, but chapter 3 

and 4 suggest that fish could respond to both falling depth and DO. As depth decreases, fish 

can use the receptors on their lateral line, that are sensitive to changes in hydrostatic pressure, 

(Mogdans and Bleckmann, 2012; Liu et al., 2016) to move away before risk of stranding 

becomes too high. Although depth seems to be the most obvious factor to explain tidal 

migrations, chapter 2 and 4 have shown that depth and DO are highly collinear. Depth 

becomes limiting once fish cannot longer safely access the area, while DO becomes rapidly 

limiting below saturation as it impairs physiological processes (Chabot and Claireaux, 2008; 

Vaquer-Sunyer and Duarte, 2008). This suggests that most of the time hypoxia could actually 



Chapter 6 

100 
 

represent a greater risk than stranding, and as a consequence, be the main trigger of fish tidal 

migrations. Few studies have suggested that fish can directly sense DO, allowing them to 

orientate towards more oxygenated areas (Wannamaker and Rice, 2000). This process may 

be explained by the presence of a molecular sensor to oxygen (Wu, 2002) that would allow 

fish to use ambient DO as a cue to initiate tidal migrations. However, fish could also benefit 

from the high collinearity between depth and DO and use depth as a proxy for upcoming 

hypoxia, therefore seemingly responding to depth but in fact avoiding hypoxia. For instance, 

Brady and Targett (2013) looked at fish migrations in response to DO and found that juvenile 

weakfish and spot were using ebb tidal flow to escape low DO, potentially responding to 

current or changes in hydrostatic pressure. The confounded effects of depth and DO are 

extremely difficult to disentangle, and this is because fish probably use depth and DO 

interchangeably as cues to initiate tidal migrations depending on which factor becomes limiting 

first (stranding or hypoxia). These cues could for instance change in a species-specific way 

depending on tidal direction, as flooding tides could potentially allow DO to replenish quicker 

than depth, while ebbing tides would carry hypoxic water from sediments and in-forest, 

reducing DO faster than depth. 

6.1.3 Hypoxia tolerance could explain mangrove utilisation 

 DO is a factor rarely considered when investigating the value and utilisation of 

mangrove habitats, with only three studies prior to this thesis that have looked at detailed 

short-time scale DO fluctuations (Knight et al., 2013; Gedan et al., 2017; Mattone and 

Sheaves, 2017). Similarly to these studies, the two different locations I sampled in chapter 2 

and chapter 4 experience diel hypoxia, reaching levels that had been linked to physiological 

and behavioural responses of fish, and even death in the literature (Rogers et al., 2016). These 

two locations were in the Indo-West Pacific, in areas experiencing moderate and high tidal 

amplitudes. Tidal factors were shown to largely contribute to DO declines that coincided with 

ebbing tides for both locations, probably explained mostly by the tidal-pumping theory (Maher 

et al., 2013; Call et al., 2015). These results highlight that hypoxia is likely to be a widespread 
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environmental condition in intertidal mangrove habitats and consequently should be 

considered as a strong selective factor in determining fish communities as it has been 

demonstrated to be in other hypoxic environments (Hilton et al., 2008; Mandic et al., 2009; 

Chapman, 2015; Gallo et al., 2019), but for some reasons has been overlooked in mangrove 

habitats. 

 The combination of field data (chapter 4) and laboratory analyses (chapter 5) allowed 

to establish that in-situ species-specific responses to declining DO relate to differential 

tolerances to hypoxia. Even if further analyses are necessary to confirm this trend, species 

frequently observed, including at low DO levels, such as Siganus lineatus and Acanthopagrus 

pacificus, were shown to have a higher capacity to extract and transport oxygen and to perform 

in anaerobiosis compared to less frequently observed reef-associated species avoiding DO 

levels below 70-80 % saturation such as Heniochus acuminatus and Chaetodon vagabundus. 

Mangrove-associated species likely rely on physiological adaptations that they have 

developed over time after frequent exposures to hypoxia making them more tolerant (Borowiec 

et al., 2015) and allowing them to thrive in these temporarily hypoxic environments. 

 High tolerance to hypoxia may be a required pre-condition to extensively use intertidal 

mangrove habitats and would therefore act as a strong selective factor and partly explain why 

mangrove fish species richness is usually limited with only few taxa dominating the 

assemblages (Robertson and Duke, 1990; Dorenbosch et al., 2005; Reis-Filho et al., 2016; 

Sheaves et al., 2016). Mangrove fish assemblages in regions with a small tidal amplitude such 

as the Caribbean tend to comprise not only mangrove-associated species but also reef-

associated species (Nagelkerken et al., 2000a; Nagelkerken et al., 2001; Mumby et al., 2004; 

Dorenbosch et al., 2007), that are usually absent or limited in regions with a higher tidal 

amplitude, even in mangrove habitats located nearby coral reefs (Lal, 1984; Quinn and Kojis, 

1985; Thollot, 1992; Laroche et al., 1997; Unsworth et al., 2008; Barnes et al., 2012). These 

discrepancies could possibly be explained by DO, as in the absence of tide, mangrove habitats 

could experience higher and more stable DO than intertidal forests, providing more favourable 

environmental conditions for reef fish species. Indeed, as coral reef species are not known to 
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naturally experience diel hypoxia, they would not be adapted to deal with DO levels recorded 

in intertidal mangrove habitats and consequently would not use them because of a high risk 

of physiological impairment. However, no studies have investigated DO dynamics in clear-

water coastal mangrove habitats subjected to small tidal amplitudes such as in the Caribbean. 

Evaluation of these dynamics in future studies will assist in determining whether hypoxia 

conditions also occur in non-intertidal coastal mangrove habitats and confirm whether DO 

conditions can help to explain discrepancies in fish communities between locations 

experiencing high and small tidal amplitudes.  

 Surprisingly, most of the recorded time DO levels were above the determined acute 

hypoxia tolerance thresholds of the two study reef fish species (chapter 5), and were similar 

to the thresholds of reef fish species determined by other study (Nilsson and Ostlund-Nilsson, 

2004; Wong et al., 2018). These thresholds indicate that, similarly to mangrove-associated 

species, reef fish species could use mangrove habitats even at the lowest DO values recorded 

(up to 30 % saturation) without being exposed to lethal values. However, most reef fish species 

were displaying apparent behavioural avoidance at 70-80 % saturation, much before their 

acute hypoxia tolerance thresholds, while mangrove-associated species were recorded at DO 

levels closer to their acute hypoxia tolerance thresholds. This behavioural response threshold 

is an interesting result as 70-80 % saturation is often used by physiologists as the limit for 

normoxia during experiments (Svendsen et al., 2015) because a sharp decline in haemoglobin 

O2 saturation is usually observed around these values (Rummer et al., 2013) and lead to 

sublethal effects such as reductions in growth or reproduction (Wu, 2002; Chabot and 

Claireaux, 2008). Perhaps species commonly using mangrove habitats are also better 

adapted to mitigate sublethal effects, while coral reef species may rapidly experience sublethal 

effects. These results highlight that acute hypoxia tolerance thresholds do not fully represent 

species overall hypoxia tolerance and therefore do not predict behavioural avoidance. 

Determining sublethal effects following diel-cycling hypoxia exposure is a future research 

direction that would allow for a more complete understanding of the impact of hypoxia on 
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mangrove fish assemblages and would be very informative for management and conservation 

purposes. 

6.2. Management and conservation implications 

6.2.1 Local management considerations 

 Mangrove habitats are facing numerous anthropogenic threats, mostly generated by 

agriculture, coastal development, and increasingly urbanisation, compromising their value and 

utilisation (Kathiresan and Bingham, 2001; Alongi, 2002; Sheaves et al., 2014). These threats 

can modify hydrological flows, alter water quality, impede biological connectivity, and have 

severe consequences on mangrove functioning (Sheaves et al., 2014). In response to the 

intensification of anthropogenic degradation, projects aiming to increase mangrove habitats 

protection, replant mangrove trees to offset the loss of others, and rehabilitate degraded 

mangrove habitats have flourished in the recent years globally (Lewis and Gilmore, 2007; Dale 

et al., 2014; Das, 2017). A comprehensive knowledge base on mangroves functioning is 

important to maximise the probability of success of these projects (Sheaves et al., 2014). 

However, much about mangroves functioning is still not fully understood, and there is a need 

for more specific research to truly understand the function and importance of mangrove 

habitats to better inform managers and policy makers (Lee et al., 2014; Sheaves et al., 2014; 

Sheaves et al., 2016). This thesis illustrates well this lack of knowledge, as it is the first study 

to investigate the role of a crucial limiting factor, oxygen, in affecting fish assemblages, despite 

that mangroves have been known to be hypoxic environments. 

 This thesis provides important information for management as it shows that there is a 

high spatial and temporal variability in mangrove utilisation induced by tidal and diel variations 

of abiotic factors such as depth, DO, lunar phase, mangrove components habitats, time of day 

and tide direction. This implies that depending on when and where sampling is conducted, 

results obtained to characterise the importance of a site can be substantially different and lead 

to inaccurate, flawed and unsubstantiated conclusions if the sampling is not conducted 

appropriately or generalised from one location to another. Consequently, high variability 
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among and within locations provides challenges for ecosystem managers because it cannot 

be assumed that mangrove habitats are all equivalent and require the same conservation and 

restoration strategies. Previous studies such as (Beck et al., 2001; Igulu et al., 2014; Sheaves 

et al., 2016; Sheaves, 2017; Bradley et al., 2019), supported by the current one, advocate for 

an approach that takes management decisions at site-specific level, supported by a robust 

understanding of context (Bradley et al., 2019), and local data on abiotic factors collected at 

an appropriate temporal and spatial scale. For instance, local data need to be collected over 

several days and tidal cycles, at different time of day and at multiple spots within a same 

location to accurately capture variability within the system. Accounting for these factors while 

assessing the value of mangrove habitats would surely lead to an overall better 

implementation of management decisions. 

 Budgets and timeframe are often limited, therefore, prioritising management actions 

and assuring their success is crucial. However, unsuccessful mangrove rehabilitation projects 

are frequently reported (Lewis and Gilmore, 2007; Bosire et al., 2008; Mangora, 2011), due to 

a lack of basic understanding about mangrove functioning (Dale et al., 2014). For instance, 

water quality is rarely considered or monitored before, during, and after rehabilitating 

mangrove habitats. However, water quality is crucial and often compromised by former 

actions, or restoration actions such as digging, installation of small and large-scale barriers, 

water pumping, nutrient-enriched water sewage, and aquaculture ponds. For instance, low 

DO and acid sulfate soils are common stressors occurring after digging actions are conducted 

to modify tidal connectivity or hydrology (Chapter 2; Sammut et al., 1996; Lin et al., 2004; 

Alsemgeest et al., 2005). If water conditions are toxic for the fauna, no life will return even if 

connectivity is restored. Therefore, if suitable water quality, especially DO, pH, temperature, 

and sulfuric acid, as well as connectivity to other important habitats such as seagrass, rocky 

and coral reefs, or any other structured habitats are assured (Lefcheck et al., 2019), more 

successful projects will be carried on. 

 Managers also need to be able to distinguish from anthropogenic and natural changes 

occurring in mangrove habitats. Mangroves are dynamic and complex environments, often 
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presenting extreme conditions. However, many species are adapted and will take advantage 

of these naturally non-optimal conditions over less tolerant species to thrive. For instance, this 

thesis has shown that diel hypoxia naturally occurs in mangrove habitats and species are 

specially adapted to deal with this stressor. Therefore, normoxia is not the only valid reference 

condition when assessing the water quality of mangrove habitats. However, if human-induced 

changes amplify these natural extreme conditions, this could have disastrous consequences 

and would need to be addressed. 

 This study has revealed that mangrove habitats can be temporarily unsuitable, thus 

many species will only use them transiently, undertaking tidal migrations to adjacent habitats 

on which they also depend. It has also established that few species physically use intertidal 

mangrove habitats, suggesting that their importance in sustaining fish populations is more 

complex than previously thought (Sheaves et al., 2016). Direct utilisation of mangrove habitats 

may benefit few species, however, it is likely that they indirectly sustain fish populations by for 

instance transferring organic matter to adjacent habitats through faunal migrations and tidal 

connections (Sheaves and Molony, 2000; Sheaves, 2005; Francis and Côté, 2018). This study 

supports the idea that the importance of mangrove habitats for fish populations needs to be 

considered at an ecosystem scale, with mangrove habitats being one of the essential habitats 

forming a mosaic of interconnected habitats (Nagelkerken et al., 2013; Sheaves et al., 2016). 

Consequently, it is important to consider a whole-ecosystem approach to management and 

restoration (Sheaves et al., 2014), that have proved to be successful in temperate estuaries 

(Weinstein et al., 2005; Weinstein and Litvin, 2016). Adopting this approach would surely 

improve our ability to locally protect, conserve and restore tropical mangrove habitats and 

consequently entire ecosystems functioning. 

6.2.2 International management considerations 

 Pressures on the ocean are increasing worldwide. One of the most prominent issues 

is the global loss of oxygen, referred to as ocean deoxygenation (Diaz and Rosenberg, 2008; 

Breitburg et al., 2018). Discharge of nutrients including nitrogen, phosphorus and organic 
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matter to the ocean, as well as climate change, are the two primary causes of ocean 

deoxygenation (Breitburg et al., 2018). Mangrove habitats are particularly vulnerable as they 

are located along the coasts, strongly influenced by their watershed directly receiving nutrient-

enriched effluents. The evidence that mangrove habitats already experience natural diel 

hypoxia, is concerning for the future. As this study has shown, some species inhabiting 

mangrove habitats temporarily or permanently live on the edge of oxygen limitation. 

Consequently, further degradation of DO conditions by human-caused changes may lead to 

the complete exclusion of species, resulting in the loss of mangroves as valuable fish habitats. 

 There is no easy solution against ocean deoxygenation. However, ocean 

deoxygenation needs to be considered as one of the most important aquatic stressors, with 

the main causes addressed if we are to stop the spread of ocean deoxygenation and prevent 

the loss of key habitats such as mangroves. International management actions need to be 

taken to reduce nutrient and organic matter enrichment as well as greenhouse gas emissions 

(Conley et al., 2009; Breitburg et al., 2018). Improving understanding of the extent of ocean 

deoxygenation and the consequences on mangrove systems is also crucial to predict and 

offset future impacts. Many questions remain that adequate monitoring at appropriate 

temporal- and spatial-scale can address (Breitburg et al., 2018). Accurate monitoring can help 

understanding, detecting and predicting hypoxic events and limit mass mortality events or 

disruption of mangrove functioning in the long term and therefore monitoring programs should 

be implemented more broadly and data made available to track and manage human-induced 

changes in mangroves. The improvement of water quality monitoring technologies has 

provided crucial tools to managers, scientists and policy makers to monitor and record DO 

fluctuations and its effects, and to model and predict hypoxia occurrence. However, continued 

local and regional DO monitoring data are still limited and rarely used to design laboratory 

experiments or develop modelling tools, reducing our ability to predict the effects of hypoxia, 

changes in DO dynamics and outcome of management action plans and policies at local, 

regional and global scales. 
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 Most guidelines specify that management actions are necessary if DO falls below 2 

mg.L-1, representing a commonly used hypoxia threshold (Pihl et al., 1991; Diaz, 2001; 

Breitburg et al., 2018). However, the adoption of this value as a conventionally accepted 

hypoxia threshold is misleading when used for management and conservation purposes. 

Indeed, studies have shown that many species respond to falling DO prior to this threshold 

(Vaquer-Sunyer and Duarte, 2008), and this has also been observed during this study. 

Therefore, 2 mg.L-1 is not conservative enough if we are to protect the majority of species, 

including the most sensitive ones. Moreover, hypoxia rarely occurs as the only stressor, but is 

usually associated with low pH, high temperatures, and presence of toxins such as sulphates, 

ammonia and methane, that can reduce hypoxia tolerance (Wu, 2002; Breitburg et al., 2018). 

Therefore, guidelines need to be conservative enough to allow for cumulative adverse effects. 

On the other hand, numerous species are highly adapted to hypoxia, and thrive in 

environments commonly experiencing DO levels below 2 mg.L-1  (Mandic et al., 2009; 

Fagernes et al., 2017; Gallo et al., 2019), including mangrove habitats (Chapter 4; Chapter 5). 

Concluding that these habitats cannot support aquatic life because DO levels are too low, and 

consequently need to be restored or disregarded as important habitats is inappropriate. High 

variability in hypoxia tolerance thresholds, and therefore, in the associated effects on marine 

ecosystems, emphasise that adopting one single universal hypoxia threshold is not realistic. 

A better approach is to consider taxon-specific thresholds to allow the implementation of more 

specific guidelines and conservation strategies, as well as the development of models capable 

of predicting distribution of, and changes in fish populations in response to hypoxia. 

6.3. Thesis limitations and future directions 

 This thesis provides important knowledge about the impact of diel hypoxia on the value 

of mangroves as fish habitats. However, this thesis only investigated one location to quantify 

the effect of DO on fish utilisation and therefore more studies would be needed to assess if 

these results apply to other locations. Future studies should focus on other geographical 

locations experiencing different tidal ranges as tide was shown to be largely responsible for 
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DO fluctuations. Different settings should also be tested, especially estuarine settings, as it is 

expected that estuarine mangrove habitats would experience lower DO than coastal 

mangrove habitats, resulting in lower species richness dominated primarily by species highly 

tolerant to hypoxia. 

 The underwater video camera (UVC) technique was used during this study. While this 

technique has many advantages, it also carries limitations. UVCs can only be used during 

daytime, therefore, this study does not provide any information about fish assemblages at 

night. The relationship between DO and fish utilisation could be different and even more 

pronounced as lowest DO levels were usually recorded at night, reaching lethal levels, 

therefore, night sampling would be highly informative. Results obtained with UVCs were based 

on the presence or absence of fish, therefore no information was available about where 

missing fish were. Future studies could use acoustic tagging techniques to specifically track 

fish movements and identify adjacent habitats that fish use when leaving mangrove habitats. 

This technique will also enable the exclusion of the hypothesis that some fish species were 

not recorded on the UVCs because they were at the surface using the first few centimetres of 

highly oxygenated water, out of the field of view of the camera. While this behavioural 

technique cannot be performed by all species, adapted species may resort to surface 

respiration and air-gulping when conditions worsen. 

 During this thesis, I have collected data only during summer as it is the season that 

poses more problem for hypoxia because of high water temperature. Mangrove habitats 

utilisation could be substantially different during winter, with an associated lower risk of 

hypoxia. However, it is still to determine whether hypoxia is indeed less common during winter, 

and whether a potentially more stable environment in terms of DO modifies mangrove fish 

assemblages, either by allowing identified species here to use habitats more extensively, or 

by allowing new non-identified species here to use mangrove habitats. 

 This study is the first to link species-specific acute hypoxia tolerance thresholds with 

patterns of mangrove utilisation. While this information is valuable for management purposes, 

determining species-specific sublethal hypoxia thresholds would benefit decision-makers as 
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fish most likely start to respond behaviourally at this threshold. It will provide invaluable 

information to determine species-specific mangrove value. This study showed that fish 

commonly using mangrove habitats were very tolerant to hypoxia, and therefore suggests that 

being hypoxia tolerant is a required adaptation. Testing whether hypoxia tolerance of species 

known to use adjacent habitats not commonly experiencing diel hypoxia (for instance coral 

reefs) and not venturing in mangrove habitats, are different than species known to extensively 

use mangrove habitats, would provide support to this hypothesis. To enhance the ecological 

relevance of future experimental studies on hypoxia tolerance of estuarine fish, additional 

stressors should be integrated. Indeed, hypoxia rarely occurs independently in mangroves, 

but often is coupled with low pH, high temperature, and potential high concentration of toxins 

such as sulphates, ammonia and methane. It would be very informative to study their 

combined effects on fish as it is expected that they will lower hypoxia tolerance. 
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Appendices 

S1 Appendix: Dubuc, A. (2019): Dataset: fish assemblages and environmental parameters in Bourake. 
James Cook University. (dataset). http://doi.org/10.25903/5cd4d312cbcfb 

 

S2 Appendix: Percentage of 5-minutes intervals with no common taxa observed at a) neap tide vs 
spring tide and b) edge vs in-forest habitats.  
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S3 Appendix: General Additive Mixed Model for a) in-forest sites and b) edge sites. 
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S4 Appendix: Species-specific patterns of mangrove utilisation across depth: a) High-depth users; b) 
Intermediate-depth users; c) Intermediate-depth users (continued) d) Low-depth users; e) Generalist 
users. 
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S5 Appendix: Kendall’s correlation test used to determine whether patterns of change in DO were 
significantly correlated between edge and in-forest sites. 



 

131 
 

 



 

132 
 

 

S6 Appendix: Species-specific patterns of mangrove utilisation grouped by type of patterns: (a) Pattern 
1: “High tolerance; (b) Pattern 1: “High tolerance” (continued); (c) Pattern 2: “Medium tolerance”; (d) 
Pattern 3: “Low tolerance”. 
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  Taxonomic richness predicted and corresponding number of 5-

min intervals recorded 

Taxonomic richness obs 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 9 20 25 4 0 0 0 0 0 0 0 0 0 

1 11 13 49 13 1 0 1 0 0 0 0 0 0 

2 5 36 93 8 4 0 1 0 0 0 0 0 0 

3 0 37 69 5 5 0 2 0 0 0 0 0 0 

4 0 16 36 3 5 0 1 0 0 0 0 0 0 

5 1 5 22 1 4 0 2 0 0 0 0 0 0 

6 0 5 13 2 2 0 1 0 0 0 0 0 0 

7 0 6 7 1 0 0 0 0 0 0 0 0 0 

8 0 4 1 0 0 0 0 0 0 0 0 0 0 

9 0 2 1 0 0 0 1 0 0 0 0 0 0 

10 0 1 3 0 0 0 0 0 0 0 0 0 0 

11 0 1 1 0 0 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 0 

Total nb of 5-min intervals 559                         

% exact prediction 126 23                       

% of prediction at +/- 1 taxon 333 60                       

S7 Appendix: Robustness of the random forest model to predict taxonomic richness. The confusion 
matrix was generated by running the random forest model, built from the training dataset, on the test 
dataset to identify the percentage of cases when the model was able to predict the exact taxonomic 
richness observed and the taxonomic richness observed at ± 1 taxon. 
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