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Abstract: Optimal strategies for the management of coastal groundwater resources can be derived
using coupled simulation-optimization based management models. However, the management
strategy actually implemented on the field sometimes deviates from the recommended optimal
strategy, resulting in field-level deviations. Monitoring these field-level deviations during actual
implementation of the recommended optimal management strategy and sequentially updating the
management model using the feedback information is an important step towards efficient adaptive
management of coastal groundwater resources. In this study, a three-phase adaptive management
framework for a coastal aquifer subjected to saltwater intrusion is applied and evaluated for a
regional-scale coastal aquifer study area. The methodology adopted includes three sequential
components. First, an optimal management strategy (consisting of groundwater extraction from
production and barrier wells) is derived and implemented for optimal management of the aquifer. The
implemented management strategy is obtained by solving a homogenous ensemble-based coupled
simulation-optimization model. Second, a regional-scale optimal monitoring network is designed
for the aquifer system considering possible user noncompliance of a recommended management
strategy, and uncertainties in estimating aquifer parameters. A new monitoring network design
objective function is formulated to ensure that candidate monitoring wells are placed in high risk
(highly contaminated) locations. In addition, a new methodology is utilized to select candidate
monitoring wells in areas representative of the entire model domain. Finally, feedback information
in the form of measured concentrations obtained from the designed optimal monitoring wells is
used to sequentially modify pumping strategies for future time periods in the management horizon.
The developed adaptive management framework is evaluated by applying it to the Bonriki aquifer
system located in Kiribati, which is a small developing island country in the South Pacific region.
Overall, the results from this study suggest that the implemented adaptive management strategy has
the potential to address important practical implementation issues arising due to noncompliance of
an optimal management strategy and uncertain aquifer parameters.

Keywords: adaptive coastal aquifer management; saltwater intrusion; simulation-optimization;
monitoring network design; feedback information; compliance monitoring

1. Introduction

Groundwater in coastal aquifers is a source of freshwater for many communities residing near
coastal zones. However, in many coastal areas, continuous unplanned extraction of groundwater
has resulted in saltwater intrusion, which is regarded as a common environmental issue for
groundwater-dependent coastal communities. Sustainable management of coastal groundwater
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resources is a key priority for many coastal communities, hydrologists, water resources planners, and
government stakeholders. This study evaluates the application of a three-phase adaptive management
framework for optimal and sustainable control of saltwater intrusion in coastal aquifers. In Phase
1, an optimal management strategy obtained by solving a coupled simulation-optimization (S/O)
model is implemented for optimal management of the aquifer. The next phase (Phase 2) consists
of the development of a regional-scale monitoring network for the aquifer system considering both
user noncompliance of a recommended management strategy and uncertainties in estimating aquifer
parameters. In the final phase (Phase 3), feedback information from the optimal monitoring wells
(OMWs) is used to sequentially modify/update pumping strategies for future time periods in the
management horizon.

Groundwater flow and transport models combined with optimization techniques have been
widely used to develop water resources management strategies that meet a user-defined management
objective [1]. A number of optimal coastal groundwater management strategies have been developed
and verified using a coupled S/O methodology, which utilizes a groundwater numerical simulation
model and an optimization model [2–8]. Coupling a variable-density flow and salt transport numerical
simulation model (simulates aquifer responses to stresses) to an optimization model is found to be
computationally demanding, requiring huge computational time. Hence, a trained approximation of
the groundwater numerical simulation model termed as surrogate models (data-driven mathematical
models) is extensively used in the coupled S/O models to prescribe computationally efficient
management strategies. In hydrologic literature, the use of surrogate models to improve computational
efficiency and feasibility of the S/O model is well-established. The alternative use of embedded linked
S/O models with either the finite element or finite difference equations embedded as constraints for
simulating transient three-dimensional density-dependent flow and transport processes in a coastal
aquifer have proven to be computationally infeasible [9]. The computational complexity is further
increased when multiple objective management problems are considered. The computational time
required to generate a single solution on the Pareto front, even for a small study area by externally
linking a numerical simulation model (FEMWATER) to an optimization model, took days of process
time (central processing unit time) [6]. Therefore, the approach of utilizing trained surrogate models as
reasonably accurate approximators of complex numerical models enhances the feasibility of identifying
an optimal solution for regional-scale study areas. Common surrogate modeling tools used in coupled
S/O models to prescribe optimal management strategies for saltwater intrusion control in coastal
aquifers can be found in Sreekanth and Datta [10], Roy and Datta [11], and Lal and Datta [12–14]. Also,
in some cases, ensemble surrogate models instead of a standalone surrogate model are used to develop
robust management strategies considering aquifer parameters’ uncertainties and surrogate models’
prediction uncertainties. The application of ensemble surrogate-based coupled S/O models can be
found in Sreekanth and Datta [15], Roy and Datta [16] and Lal and Datta [17].

The coupled S/O model provides optimal strategies for the management of coastal groundwater
resources. However, the correct implementation of the recommended optimal management strategies
on the field is always a concern for decision-makers. To monitor field-level deviations of a
recommended management strategy due to uncertain aquifer parameters and user noncompliance,
a well-designed, robust and efficient groundwater monitoring network design is essential. Major
objectives, criteria, and procedures for designing reliable groundwater monitoring networks can be
found in Yangxiao [18]. Some key reasons for formulating and developing a groundwater monitoring
network includes groundwater level monitoring [19–22], contamination detection [23–29], groundwater
quality assessment [30–34], and conflicting economical/financial factors [35–37]. In addition, a
comprehensive review by Loaiciga et al. [38] has documented the most important approaches to
consider when designing groundwater monitoring networks. In saltwater intrusion management
projects, a properly designed groundwater monitoring network design helps in collecting groundwater
quality data, during and after the implementation of an optimal management strategy. The collected
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field data can be used to assess and compare the compliance of an implemented management strategy
with the targeted coastal aquifer management objectives.

An optimal monitoring network design is an important step towards the attainment of an
adaptive coastal groundwater resource management goal. Adaptive management is crucial mainly to
counteract issues arising from the field-level implementation of a recommended optimal management
strategy. In an adaptive management structure, the management strategies for future time periods
in the management horizon are sequentially updated using feedback information gathered from
the OMWs. In the domain of saltwater intrusion research, only a few studies have developed and
evaluated adaptive management methods for management of coastal groundwater resources. Recently,
Sreekanth and Datta [39] developed an adaptive management methodology for saltwater intrusion
control in coastal aquifers using an optimal monitoring network design and sequential modification
of management strategies utilizing feedback information. Also, Dhar and Datta [40] developed and
implemented a monitoring network design to monitor compliance of an implemented robust optimal
aquifer management strategy. However, both of these previously developed methodologies used
hypothetical/illustrative coastal aquifer systems. This study, however, uses a regional-scale island
coastal aquifer system to assess the performance of the developed methodologies.

The application of a three-phase adaptive management framework for optimal and sustainable
control of saltwater intrusion in a coastal aquifer system presented in this study is of great significance.
This study illustrates the application of a combination of computational methodologies and an adaptive
approach of utilizing feedback information for enhancing or ensuring the practicability of field
implementation of a regional-scale natural resource management strategy. Adaptive management is
intended to be an iterative cycle in which groundwater pumping strategies and policies are regularly
revised/updated to changing pumping conditions and due to the uncertainties of aquifer parameters.
The main goal of using an adaptive management strategy is to ensure the prescribed strategies
and policies are accepted and correctly implemented onto the field. The implementation of these
adaptive management strategies will ensure the correct execution of the prescribed policies and will
suggest amendments to these pumping strategies if not correctly followed. The proposed approach
emphasizes the practical aspects of implementing a realistic coastal aquifer management strategy
especially considering the following two issues: First, the recommended management strategy for
optimal temporal and spatial groundwater withdrawals may differ from what actual users implement
as often as it may be very difficult to enforce the prescribed strategy. Second, even if the actually
implemented strategy is identical to the optimal recommended withdrawal strategy, the impact on the
aquifer may be different from predicted impacts due to ubiquitous uncertainties in the estimated and
modeled parameters, aquifer boundary conditions, errors in measurements including those in initial
conditions, and hydraulic heads. Therefore, the need arises to sequentially correct and modify the
actually implemented strategy, based on feedback field measurement information from the sequentially
designed and implemented monitoring network. Based on these field measurements, a new optimal
management strategy is derived by again solving the optimal management model, with updated
information (e.g., new hydraulic heads and saline concentration, which could be different from those
earlier predicted). The new management strategy is a modified or updated version of the earlier
obtained management strategy with its impacts differing from the predicted impacts. The revised
management strategy to be implemented in the next sequence tries to modify the prescribed strategy to
increase the possibility of matching the consequences or impacts with the original management goals.
This approach also makes it possible to address the practical issues of deviations from prescribed
optimal pumping strategies or errors in predicting the impacts of a prescribed strategy, even if exactly
implemented. In addition, this approach also helps in the convergence of prescribed management goals
by utilizing sequentially obtained feedback information in the form of sequential field measurements
of salt concentrations to achieve the goals of management efficiently and effectively. The practical
utility of this approach is enormous as this approach provides a solution to a very practical difficulty
in making optimal coastal aquifer management strategies achieve its goals and objectives. This study,
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in particular, applies this approach to the Bonriki aquifer and evaluates its implications in terms of
improving the effectiveness of sequentially using an integrated set of an optimal withdrawal strategy
design model and a monitoring network design model to ensure desired outcomes in real life. Hence,
this application, together with an evaluation of the performance of this integrated adaptive approach
is certainly a novelty and of significance.

In addition, this study is a logical extension of the authors’ earlier work in which groundwater
management methodologies were only tested using illustrative aquifer systems. The island aquifer
(Bonriki aquifer) considered in this study is situated in Kiribati, which is a small developing island
country in the central Pacific Ocean. This study was aimed to present a straightforward and step-wise
methodology for adaptive management of the Bonriki aquifer system. The first-ever monitoring
network design is formulated and implemented for adaptive management of the Bonriki aquifer.
The Bonriki aquifer is a crucial life-sustaining resource for the local Kiribati community and needs
sustainable coastal groundwater management strategies and policies. Hence, the development and
application of the methodologies presented in this study is a significant contribution to the framework
of sustainable water resources management and administration in developing countries of the Pacific
Islands. The study also presents many methodological contributions. First, the study presents the
combined use of a multi-objective optimization model, data clustering, and integer programming
to achieve the targeted adaptive coastal groundwater management goal. Second, a relatively new
technique, support vector machine regression (SVMR)-based prediction models are used in the coupled
S/O model to prescribe optimal management strategies for the aquifer system. Third, the k-means
clustering technique is used to obtain the locations of candidate monitoring wells. The k-means
clustering technique is a distinctive clustering algorithm, which offers an efficient and simple method
of data clustering [41]. A detailed explanation of the k-means clustering methodology is presented in
Bandyopadhyay and Maulik [42] and Nazeer and Sebastian [43]. Fourth, a new monitoring network
design objective function is formulated to ensure that optimal monitoring wells are located in high-risk
areas (highly concentrated areas). Lastly, a recent study by Post et al. [44] concluded that more
work focusing on the management options for groundwater pumping from the Bonriki aquifer and a
reevaluation of the appropriate sustainable yield is necessary. This work, therefore, was designed to
present a first-ever adaptive management framework for the Bonriki aquifer system, which if adopted,
can be beneficial to the local South Tarawa community. The results and evaluations are new and
represent an important step in the regional-scale application of adaptive management strategies for
sustainable management of coastal aquifers.

2. Materials and Methods

Details of the methodology proposed for the three-phase adaptive coastal aquifer management
framework are presented in the subsequent sections.

2.1. Phase 1: Prescription and Implementation of an Optimal Management Strategy

The first step towards adaptive management of coastal aquifers is the prescription and
implementation of an optimal management strategy. In this study, an optimal management strategy
was prescribed using a coupled S/O approach. To reduce computational time and to ensure feasibility,
SVMR-based homogenous ensemble models were used as approximates of the simulation model in
the S/O framework. Key details of the variable-density flow and salt transport numerical simulation
model, homogenous SVMR ensemble models, and the management model are described below.

2.1.1. Numerical Groundwater Flow and Transport Model

The FEMWATER computer code from licensed Groundwater Modeling Systems package was used
to simulate saltwater intrusion processes in the coastal aquifer system. FEMWATER [45] provides a
three-dimensional finite element-based methodology for simulating density-dependent flow (saturated
and unsaturated) and transport processes in a coastal aquifer system. Successful application of
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various groundwater variable-density flow and salt transport numerical models developed using
the FEMWATER code for solving coastal aquifer processes are evident in many studies, including
Sreekanth and Datta [10], Roy and Datta [46], and Lal and Datta [47].

The principal flow equation is in the form of the modified Richards equation [45]:
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operator, K is the hydraulic conductivity, z is the potential head, ρ∗ is the density of injection water or
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where e is the dimensionless density reference ratio, c is the material concentration in the queous phase,
and cmax refers to the maximum material concentration.

The governing transport equation defines the material transport through groundwater systems.
These equations are derived based on the laws of continuity of mass and flux. Some key processes that
are considered for explaining saltwater intrusion occurrences are advection, dispersion/diffusion, and
injection/withdrawal. The transport equation [45] is given by
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where θ refers to the moisture content, V is discharge, D is the dispersion tensor, α′ is the compressibility
of the medium, and cin is the material concentration in the source. Equations (1) and (3) characterize the
flow and transport processes in a coastal aquifer system, respectively. These two equations are coupled
together by the density coupling coefficient, and by the Darcy velocities, which make the saltwater
intrusion phenomenon extremely nonlinear. Hence, the finite element-based variable density flow
and salt transport numerical simulation model were used to solve the flow and transport processes
governing equations concurrently.

2.1.2. Homogenous Support Vector Machine Regression-Based Ensemble Surrogate Models

Homogenous SVMR ensemble models were used as approximate simulators of the saltwater
intrusion process in the S/O model. The support vector machine regression (SVMR) surrogate was
used because it is a relatively new and popular supervised data-driven methodology for constructing
surrogate models [48]. SVMR has been used in numerous recent prediction modeling studies.
The newly developed SVMR-based surrogate models have been evaluated for efficiency and accuracy
for hypothetical aquifer study areas, and the evaluation results were reported in Lal and Datta [12].
In addition, Lal and Datta [47] also established that SVMR prediction performance was relatively
better than genetic programming-based surrogate models. The main focus of the present study
was on monitoring network design and adaptive management of coastal aquifers using feedback
information. Hence, a detailed description of the SVMR working principle is not presented here.
To ensure the robustness of the optimal solutions, ensemble SVMR models were used to incorporate
aquifer parameter uncertainty into the management model.

Hydraulic conductivity and porosity were the two uncertain aquifer parameters considered while
developing the coastal aquifer management model. To train each SVMR model in the ensemble,
paired sets of input (hydraulic conductivity, porosity, and random transient groundwater pumping
patterns from active wells) and output (salinity concentration at salinity monitoring wells) datasets
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were generated. In this study, the aquifer materials within each layer were considered homogenous.
The specific values of hydraulic conductivity and porosity for each homogenous layer were obtained
from a specified log-normal distribution and normal distribution, respectively. Transient groundwater
pumping patterns were generated using uniformly distributed Latin hypercube sampling (LHS)
methodology. Different combinations of these two uncertain parameters for the respective aquifer
layers were implemented into the variable density flow and salt transport numerical model, keeping
the other parameters constant during the simulation period. Each set of pumping patterns were
provided as inputs to the variable density flow and salt transport numerical model, with different
combinations of the two uncertain parameter values yielding different output concentrations at each
specified monitoring well. From each of the input–output datasets, 80% was used for training the
SVMR models, while the remaining 20% was used for validating the performance of each SVMR model
developed. The resulting validated SVMR standalone models were strategically combined into an
ensemble model using the simple averaging methodology [49]. Each homogenous ensemble SVMR
model was constructed for predicting salinity concentration at each monitoring well. The simple
average methodology for constructing ensemble models is a popular technique and has been used
in various research applications [50,51]. A mathematical expression for constructing an ensemble
model (En) by integrating the predicted outputs (P) of various standalone models (n) using the simple
averaging methodology is given in Equation (4).

En =
1
N

N∑
n=1

Pn n = 1, 2, . . . , N (4)

Once trained and validated, the prediction capabilities of the standalone SVMR and ensemble models
were quantified using various statistical indices such as the root mean square error (RMSE), mean
bias error (MBE), Pearson’s correlation coefficient (r), Nash–Schliffe efficiency (NSE), and index of
agreement (IOA).

2.1.3. Formulation of the Multi-Objective Coastal Aquifer Management Model

The main aim of the developed management model was to prescribe an optimal pumping strategy
from the two groups of wells (production and barrier wells) and simultaneously maintain salinity
concentration in the aquifer within specified permissible limits. Production wells (PWs) were designed
to extract fresh groundwater for local consumption. The barrier wells (BWs) were installed closer
to the sea-side boundary and were used to extract saline water. BWs acted as a form of hydraulic
barrier, thus, preventing saltwater intrusion into the aquifer. The mathematical formulation of the two
conflicting objectives considered in the management model is given below.

Objective 1: Maximization of the total groundwater pumping from the PWs.

F1(PPW) =
N∑

n=1

T∑
t=1

PWt
n (5)

Objective 2: Minimization of the total groundwater pumping from the BWs.

F2(PBW) =
M∑

m=1

T∑
t=1

BWt
m (6)

PWt
n represents pumping from nth production well at time t, and BWt

m denotes pumping from the mth

barrier well at time t. N, M, and T are the total numbers of PWs, BWs, and time steps specified in the
management model, respectively.

The optimization problem also utilized various constraints and bounds. These constraints and
bounds are described below.
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Constraint set 1: Coupling of SVMR prediction models to the optimization model in terms of
the pumping decision variables. This constraint links the SVMR surrogate model to the optimisation
model so that it can evaluate the solutions presented by the optimizer.

ci = ξ(PWs, BWs) (7)

Constraint set 2: Specifying the permissible salinity concentrations at the respective
monitoring wells.

ci ≤ c max,i ∀i, t (8)

ci represents salinity concentration at the ith monitoring well at the end of the management time horizon.
The upper and lower bounds on pumping from PWs and BWs are given by

PWmin ≤ PWt
n ≤ PWmax (9)

BWmin ≤ BWt
m ≤ BWmax (10)

2.2. Phase 2: Regional-Scale Monitoring Network Design

2.2.1. Possible Deviations in Pumping and Aquifer Parameter Uncertainty

One of the key features of a monitoring network design is that it should be able to accommodate
possible deviations in field-level implementation of the prescribed optimal pumping strategy and
also uncertainties associated with the aquifer parameters. Therefore, in this study, uncertainty due
to possible field-level deviations in implementation of a prescribed optimal pumping strategy, and
uncertainty in aquifer parameter (hydraulic conductivity and porosity) estimates were incorporated
in the design of an optimal monitoring network. First, to implement field-level deviation in the
chosen optimal management pumping solution, slightly perturbed optimal pumping rates were
utilized. To achieve this perturbation, a truncated normal distribution of the deviations, ranging
from 0%–20% of the actual deviations in pumping rates, similar to Sreekanth and Datta [39] was
considered. Second, uncertainty in aquifer parameter estimation was incorporated by utilizing different
realization of the hydraulic conductivity and porosity values in the variable-density flow and salt
transport numerical simulation model. Different realization of hydraulic conductivity and porosity
were obtained using log-normal distribution and normal distribution, respectively. The perturbed
input optimal pumping rates and different realization of the two uncertain aquifer parameters were
used in the variable-density flow and salt transport numerical simulation model to obtain different
realizations of salinity concentration at all candidate (potential) monitoring wells.

2.2.2. Location of Candidate Monitoring Wells

Location of candidate monitoring wells demands careful consideration. A subset of these candidate
monitoring wells will be selected as OMWs. Many times, only a certain portion of the model domain is
used as locations of candidate monitoring wells. However, in real scenarios, any possible node on the
model domain can be considered as a location of a candidate monitoring well. In this study, k-means
clustering [52] was utilized to obtain locations of candidate monitoring wells representative of the entire
model domain. Clustering of all existing nodes using the k-means clustering methodology ensured
that candidate monitoring wells are chosen from the entire area of the model domain. The main idea
of using k-means clustering is to categorize the set of nodes into k disjoint clusters, where k is fixed in
advance. After convergence, the k-means clustering solution offers a centroid for each of the clusters.
The node number closest to this centroid is chosen as the node, where a candidate monitoring well is
to be installed.
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2.2.3. Formulation of the Optimal Monitoring Network Design Model

The main goal of designing an optimal monitoring network was to monitor compliance of the
salinity concentration resulting from an optimal management strategy with actual concentrations.
The concentration measurement information from a designed monitoring network also helps in
obtaining feedback information on the actual impacts of the field-level implementation of a management
strategy. This feedback information can be utilized to redesign the management strategy to better
achieve the objectives. In many cases, monitoring data can be collected from numerous locations
in the aquifer. However, this may be impractical and inefficient due to limited budget allocations
for monitoring projects and due to redundancy in data collected [53]. Therefore, a key feature of a
monitoring network design is to locate a permissible number of monitoring wells (within budgetary
limit) at locations suitable for collecting useful and reliable monitoring data. For the present study,
the average of the logarithmic concentration at each candidate monitoring well was maximized to
ensure that candidate monitoring wells were placed in high-risk areas (highly concentrated areas). The
objective function with respective constraints is described below.

Maximize

∑N
i=1 log(Ci)

N
Yi (11)

subject to;
N∑

i=1

Yi ≤MYi Ie (0, 1) (12)

where Ci is the concentration at the ith candidate monitoring well and Yi is the decision variable
indicating whether to install (Yi = 1) or not to install (Yi = 0) a monitoring well at the ith specified
location. The symbol M represents the maximum number of monitoring wells permitted in the
monitoring network (due to budgetary or other management limitations). Phase 2 is designed to
obtain optimal monitoring well locations. As an adaptive measure, feedback information in the form
of salinity concentration data will be used to sequentially modify the future year pumping rates.
The monitoring network is designed once. However, the information from this network of wells is
used sequentially for the modification of future year pumping rates.

2.3. Phase 3: Sequential Modification of the Management Strategy

Optimal coastal aquifer management strategies for sustainable control of saltwater intrusion are
largely developed for long time horizons, T. However, they are implemented in smaller time steps, t.
With the help of a properly designed monitoring network, it is possible to gather feedback information
regarding the compliance and/or noncompliance of an implemented optimal management strategy, or
noncompliance of the resulting concentrations with the predicted concentrations. This information can
be utilized to sequentially modify and/or update the management strategy at succeeding time steps,
improving the prospects of attaining saltwater intrusion management goals.

In this study, a management time horizon of 4 years (T = 4) was considered. However, a prescribed
management strategy was implemented in steps of 1 year (i.e., t = 1, 2, 3, and 4). The implemented 4-year
optimal pumping strategy (selected from the Pareto front) was obtained by solving the homogenous
ensemble SVMR surrogate-based coupled S/O model. Yearly salinity concentration data at the designed
optimal monitoring networks as a result of the implemented pumping rates can be obtained using
the variable density flow and salt transport numerical model. However, in real field scenarios, it is a
common practice that the prescribed optimal pumping strategy will not be accurately implemented,
and/or, the actual concentrations resulting from an implemented strategy will differ from the predicted
impacts due to various uncertainties in prediction. Here, for performance evaluation purposes only, the
field-level deviations between actual and predicted concentrations after the first year of implementation
(t = 1) of optimal pumping strategy is incorporated by simulating the concentrations taking into account
random deviations of actual pumping rates from prescribed pumping rates. The perturbed pumping
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rates different from optimal prescribed pumping rates are generated by adding random errors (0%–20%)
to the optimal prescribed pumping rates. The inclusion of these field-level deviations will affect the
resulting salinity concentration and may lead to noncompliance with management goals in terms of
permissible salinities. Again, for performance evaluation purposes, the actual salinity concentrations
at the designed OMWs for each time step can be simulated for the perturbed pumping rates, using
the variable density flow and salt transport numerical simulation model. In actual applications, no
such artificial perturbation is required, as the actual concentrations will be measured in the field using
the designed monitoring network. The optimal monitoring network designed to gather information
about the noncompliance of the prescribed management strategy helps in updating or revising the
management strategy for t = 2, 3, and 4 to achieve the original management goals. The multi-objective
coupled S/O model was utilized to sequentially update the management strategy using feedback
information from the earlier time steps. This was performed by re-running the S/O model for future
time steps after updating the initial and boundary conditions acquired from the monitoring network.
For sequential modification of the pumping rates using feedback information, the multi-objective
management model is solved as a single objective optimization problem. Objective 2 (Equation (6)) of
the original multi-objective management model (i.e., barrier well pumping for the selected management
strategy) is added as an additional constraint. The other constraints (Equations (7) and (8)) and bounds
(Equations (9) and (10)) of the optimization problem remained unchanged.

2.4. Case Study: Application and Evaluation of the Developed Methodology

The developed coastal aquifer adaptive management methodology was applied to the Bonriki
aquifer located in Kiribati. Kiribati is a small Pacific Island developing country situated in the central
Pacific Ocean. The Bonriki aquifer is located in South Tarawa, which is the most densely populated
area in Kiribati. The geographic location of Kiribati and the Bonriki aquifer is presented in Figure 1.
Extracted groundwater from the Bonriki aquifer is the main source of fresh water for the people of
South Tarawa [54]. Approximately more than 60% of the South Tarawa population are dependent on
the extracted groundwater from the Bonriki aquifer [55].
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Figure 1. (a) Location of the Bonriki aquifer on Tarawa atoll and (b) geographical location of Kiribati in
the central Pacific Ocean.

The Bonriki aquifer with an area of 1.50 km2 and a depth of 60 m was modeled using the
FEMWATER computer package. The lithology data from Bosserelle et al. [56] was used to map
the lithology of the Bonriki aquifer. Geologic data from 19 boreholes were utilized to characterize
the Bonriki aquifer as a two-layer system. Layer 1 comprised of Holocene sediments and layer 2
consisted of Pleistocene sediments, similar to other small Pacific Island aquifers [57]. The Bonriki
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aquifer consisted of 19 PWs for the extraction of groundwater. Also, as a management option, 6 BWs
were assumed to be located near the sea face (along the sea-side boundary) to hydraulically minimize
saltwater encroachment into the aquifer. Six active monitoring wells (MWs) were also used for salinity
concentration monitoring purposes. The entire model domain was horizontally discretized into a mesh
comprising of small triangular elements. The model domain with specific well locations is presented
in Figure 2.
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Figure 2. (a) Study area (Bonriki aquifer) model boundaries with specific well locations and (b)
developed three-dimensional (3D) numerical simulation model.

The three boundaries surrounding the model domain are labeled as Boundary I, Boundary II,
and the sea-side boundary. Boundary I and Boundary II are denoted with specified pressure head
boundaries as heads along these two boundaries are not strictly zero. A pressure head of 1 m (at the
top end) is assigned to Boundary I and II and allowed to vary linearly along the boundary until it
reaches a constant value of 0 m at the sea-side boundary. The sea-side boundary is in direct contact
with the sea. Hence, the sea-side boundary is specified as a constant head and constant concentration
boundary. A constant head of zero and a constant concentration of 35,000 mg/L is assigned to this
sea-side boundary. Groundwater recharge via rainfall was represented by a constant vertical flux
across the entire model domain.

The field values of groundwater pumping rates, groundwater level (GL), and electrical conductivity
(EC) data were obtained from Sinclair et al. [58]. During calibration and validation, pumping from all
19 PWs were considered. Barrier well pumping rate was set to zero. GL and EC data from 6 MWs
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were used for the calibration and validation process. The EC data were multiplied by a factor of 0.69
to obtain concentration data in mg/L, as proposed in Ghassemi et al. [59,60]. GL and EC data were
available for a period of 17 months only (April 2013 to August 2014). The accessible 17 months of data
were separated into two sets: SET I and SET II. SET I contained 12 months of data (April 2013 to March
2014), which were used for calibration. SET II contained 5 months of data (April 2014 to August 2014),
which were used for validation.

The calibration process was performed using the trial and error approach. The initial hydraulic
conductivity values for the two layers were obtained from Bosserelle, Jakovovic, Post, Rodriguez,
Werner, and Sinclair [56]. Layer 1, which contained Holocene sediments, had very low hydraulic
conductivity values when compared to Pleistocene sediments (layer 2). The large differences in the
hydraulic conductivity of the two layers are documented in Bosserelle, Jakovovic, Post, Rodriguez,
Werner, and Sinclair [56] and White et al. [61]. In this study, vertical heterogeneity of the two layers
was considered with each having different representative hydraulic conductivities. Also, the hydraulic
conductivity of both the layers was considered anisotropic in the x, y, and z directions. The average
representative hydraulic conductivity of each layer was used to simplify the variable density flow and
salt transport numerical model and also ensure its convergence. The other hydrological parameters of
each layer were considered homogenous. The final representative hydraulic conductivity for both
layers were obtained based on the calibration and validation process.

For calibration, the variable density flow and salt transport numerical simulation model was run
in a transient mode (with monthly time step) for 334 days. After gradually and iteratively modifying
hydraulic conductivity, porosity, and recharge within a reasonable range, an acceptable match (R2

value) between the field and simulated GL and concentration values at the 6 MWs were established. For
calibration, the aim was to achieve a targeted R2 value >90%. The other parameters were obtained from
available hydrologic literature (Table 1) and were omitted from the calibration process. The validation
stage using SET II was initiated only after the R2 value >90% for all the 6 MWs was recorded. The
calibrated aquifer parameters were verified by comparing them with the results from similar Pacific
Island aquifer modeling studies (e.g., Underwood et al. [62]) and also with the results from the earlier
developed SEAWAT model of the Bonriki aquifer presented in Bosserelle, Jakovovic, Post, Rodriguez,
Werner, and Sinclair [56]. The final representative aquifer parameters used to develop the Bonriki
aquifer model are listed in Table 1.

Table 1. Bonriki aquifer parameter values.

Parameter
Values

Source
Layer 1 Layer 2

Hydraulic conductivity
(m/day)

x 15 450
calibratedy 7.5 225

z 1.5 45

Porosity 0.2 0.3 calibrated
Recharge 0.0055 calibrated

Seawater density (kg/m3) 1025 Oberdorfer et al. [63]

Freshwater density (kg/m3) 1000 Oberdorfer, Hogan, and
Buddemeier [63]

Molecular diffusivity (m2/s) 1.5 × 10−9 Ghassemi, Jakeman, Jacobson, and
Howard [60]

Dynamic viscosity of water (kg/ms) 280,985.8 -

Longitudinal dispersivity (m) 1 Bosserelle, Jakovovic, Post, Rodriguez,
Werner, and Sinclair [56]

Lateral dispersivity (m) 0.05 Bosserelle, Jakovovic, Post, Rodriguez,
Werner, and Sinclair [56]

Compressibility of water (m2/N) 4.4 × 10−10 Oberdorfer, Hogan, and
Buddemeier [63]
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The validated model was used to evaluate the developed adaptive management coastal aquifer
framework. Firstly, the multi-objective management model was evaluated using the developed
variable-density flow and salt transport numerical model. All the 19 operational PWs and 6 BWs were
used. A total management horizon of 4 years was considered. A total of 100 decision variables (25 wells
× 4-year management horizon) were implemented into the S/O model. The maximum (1200 m3/day)
and minimum (0 m3/day) pumping limits for both well types were added as bounds. The maximum
allowable salinity concentration at the 6 MWs after the management period was incorporated as
an optimization constraint. Each SVMR model was developed (trained and validated) using 700
input–output datasets. The 700 sets of randomized input pumping rates from both well types were
generated using LHS methodology. The maximum (1200 m3/day) and minimum (0 m3/day) pumping
limits for both the well types were added as bounds. Each set of the generated input pumping rates
were fed to the variable-density numerical flow and transport model separately to obtain salinity
concentration data at the respective monitoring wells. Input pumping and output concentration
datasets were used to train and test an SVMR surrogate model for each location. The training and testing
of the SVMR models in the ensemble were done on the MATLAB 2017a platform. To achieve satisfactory
prediction results, the Gaussian kernel was used, with ε, C;, and γ (Gaussian kernel parameters) having
a value of 0.60, 10, and 0.001, respectively. These parameter values were obtained after numerous
experimental runs. Each standalone SVMR model could only predict the salinity concentration at a
specific monitoring well. Ten different combinations of hydraulic conductivity and porosity values
were used to develop 10 different SVMR models for each monitoring well. The prediction results
of these 10 SVMR models were integrated into an ensemble. Thus, 6 ensemble SVMR models were
developed to predict salinity concentration at the 6 corresponding MWs. For each SVMR model, the
hydraulic conductivity input values were derived from a log-normal distribution with the calibrated
value of hydraulic conductivity as the mean and using a variance of 0.4 m/d. Similarly, porosity input
values were derived using a normal distribution with a calibrated value of porosity as the mean and a
variance of 0.1.

The validated SVMR ensemble models were externally coupled to the multi-objective genetic
algorithm (MOGA) optimization model using the MATLAB 2017a platform. One of the main reasons
for using MOGA was its efficiency. In a single run, MOGA can provide the optimal Pareto front
comprising of non-dominated solutions at the end of the stated number of generations. For MOGA
implementation, a population size of 2000, function tolerance of 1 × 10−4, constraint tolerance of
1 × 10−3, Pareto front population fraction of 0.3, and crossover fraction of 0.8 were utilized. The number
of generations used was fixed to 10,000. This value was obtained after trying different generation sizes
for the convergence of the population. The constraint of the optimization (maximum allowable salinity
levels at the 6 MWs labeled as MW1, MW2, MW3, MW4, MW5, and MW6) ensured that the salinity at
the MWs was restricted to a pre-specified limit. The maximum tolerable salinities for MW1 and MW2
were set to 20,000 mg/L. MW1 and MW2 were closer to the shoreline and restricting the salinity levels
at these locations to very lower levels was impractical. The maximum acceptable salinity concentration
at MW3 and MW4 was set to 5000 mg/L and 4000 mg/L, respectively. Finally, the maximum acceptable
salinity concentrations at MW5 and MW6 were set to 450 mg/L. MW5 and MW6 are located in an area
of concentrated pumping well locations. It is anticipated that the water extracted from these locations
are of good quality and suitable for consumption by the local South Tarawa communities.

For Phase 2, 100 candidate monitoring well locations were chosen using the k-means clustering
methodology. The k-means clustering code was written and executed in the R platform. A fixed number
of iterations was used as the stopping criteria. In the present case, 50 iterations were considered.
Also, before the execution of the k-means clustering code, the number of candidate monitoring wells
to be used in the monitoring network project were specified as the value of k (number of clusters).
One hundred perturbed pumping rates from the chosen optimal pumping rates were obtained using the
LHS strategy. These perturbed pumping rates and 100 different combinations of hydraulic conductivity
and porosity were used in the variable-density flow and salt transport numerical simulation model
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to obtain 100 different realizations of salinity concentration at the 100 candidate monitoring wells.
Ten (M = 10) optimal monitoring well locations out of the 100 candidate monitoring well locations
were obtained by implementing the designed monitoring network. For Phase 3, the single objective
optimization problem used for sequential modification of pumping rates for the future time periods
was solved using the genetic algorithm optimization solver available in the MATLAB 2017 platform.
A flow diagram of the proposed adaptive coastal aquifer management framework is presented in
Figure 3.Int. J. Environ. Res. Public Health 2019, 16, x 13 of 25 
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Figure 3. Flow diagram of the proposed three-phase adaptive management framework. Abbreviations:
PWs: production wells; BWs: barrier wells; MW: monitoring well; S/O: simulation-optimization.

3. Results and Discussions

3.1. Development and Execution of the Coupled S/O Model

3.1.1. The Bonriki Aquifer Calibration and Validation Results

The calibration and validation results are presented in Figures 4 and 5, respectively. As observed,
the calibration and validation results signify the accuracy of the numerically simulated model in
replicating saltwater intrusion processes in the Bonriki aquifer. The relative differences between the
simulated and field groundwater level during the calibration and validation period was less than
10%. A similar trend was observed for the concentration data during the calibration and validation
period. Despite limited datasets, the calibration and validation results showed that the developed
variable-density flow and salt transport numerical model could approximate regional groundwater
flow and transport characteristics of the Bonriki aquifer with reasonable precision.
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Figure 4. Field and simulated groundwater level values during calibration at (a) 30 days, (b), 122 days,
(c) 244 days, and (d) 334 days; and validation period at (e) 123 days and (f) 185 days.
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The utility of using the integrated approach of management strategy development, implementation,
and the subsequent modification based on feedback measurements obtained from a designed
monitoring network were evaluated to establish the potential applicability for the selected aquifer
site. The homogenous SVMR ensemble model was used to approximately simulate aquifer responses
in the coupled S/O model consisting of 10 standalone SVMR models. Each standalone SVMR model
was trained and tested using datasets obtained from different variable-density flow and salt transport
numerical models developed using different combinations of hydraulic conductivity and porosity
values. The predictive accuracy of each standalone model in the ensemble is shown in Table 2. It is
observed that all the standalone models in the ensemble predicted salinity concentration at their
respective monitoring wells with reasonable accuracy (quantified in terms of RMSE, MBE, r, NSE, and
IOA). This accuracy of the standalone models eventually reflected on the accuracy of the ensemble
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3.1.2. The Performance Evaluation of the Proposed Methodology Utilizing Homogenous
Ensemble Models

The utility of using the integrated approach of management strategy development, implementation,
and the subsequent modification based on feedback measurements obtained from a designed
monitoring network were evaluated to establish the potential applicability for the selected aquifer
site. The homogenous SVMR ensemble model was used to approximately simulate aquifer responses
in the coupled S/O model consisting of 10 standalone SVMR models. Each standalone SVMR model
was trained and tested using datasets obtained from different variable-density flow and salt transport
numerical models developed using different combinations of hydraulic conductivity and porosity
values. The predictive accuracy of each standalone model in the ensemble is shown in Table 2. It is
observed that all the standalone models in the ensemble predicted salinity concentration at their
respective monitoring wells with reasonable accuracy (quantified in terms of RMSE, MBE, r, NSE, and
IOA). This accuracy of the standalone models eventually reflected on the accuracy of the ensemble
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models used in the coupled S/O model. The performances of the homogenous SVMR ensemble
surrogate model is presented in Table 3.

Table 2. Performance evaluation results of the standalone support vector machine regression (SVMR)
models in the validation period. Abbreviations: RMSE: root mean square error; MBE: mean bias error;
r: Pearson’s correlation coefficient; NSE: Nash–Schliffe efficiency; IOA: index of agreement.

Model Evaluation
Criteria SVMR1 SVMR2 SVMR3 SVMR4 SVMR5 SVMR6

NM1

RMSE 5.10 6.17 3.74 2.95 2.02 1.89
MBE 0.41 0.45 0.38 0.41 0.39 0.35

r 0.96 0.97 0.97 0.97 0.98 0.98
NSE 0.97 0.96 0.98 0.97 0.98 0.98
IOA 0.94 0.95 0.95 0.96 0.96 0.96

NM2

RMSE 5.98 5.62 2.82 2.04 1.59 1.33
MBE 0.47 0.56 0.62 0.52 0.39 0.44

r 0.97 0.97 0.98 0.97 0.98 0.98
NSE 0.96 0.96 0.96 0.97 0.97 0.97
IOA 0.95 0.94 0.95 0.96 0.96 0.96

NM3

RMSE 4.16 5.22 3.51 4.86 3.02 2.14
MBE 0.71 0.43 0.48 0.47 0.38 0.31

r 0.97 0.96 0.97 0.96 0.98 0.98
NSE 0.97 0.97 0.98 0.97 0.98 0.99
IOA 0.94 0.95 0.95 0.94 0.95 0.96

NM4

RMSE 6.60 5.33 5.27 4.65 3.53 3.05
MBE 0.52 0.55 0.64 0.64 0.43 0.48

r 0.97 0.98 0.96 0.97 0.97 0.97
NSE 0.97 0.96 0.96 0.97 0.97 0.98
IOA 0.95 0.94 0.93 0.95 0.95 0.96

NM5

RMSE 6.96 7.13 5.12 5.68 4.25 4.56
MBE 0.59 0.63 0.72 0.52 0.33 0.36

r 0.97 0.97 0.97 0.97 0.98 0.97
NSE 0.97 0.98 0.98 0.97 0.98 0.97
IOA 0.95 0.94 0.95 0.94 0.96 0.95

NM6

RMSE 7.63 5.32 5.24 5.69 4.25 3.57
MBE 0.44 0.65 0.66 0.46 0.41 0.34

r 0.97 0.98 0.98 0.97 0.99 0.99
NSE 0.98 0.98 0.98 0.98 0.98 0.99
IOA 0.96 0.97 0.97 0.97 0.98 0.98

NM7

RMSE 7.26 6.75 6.03 5.87 5.66 5.12
MBE 0.58 0.62 0.55 0.47 0.44 0.36

r 0.97 0.98 0.98 0.98 0.98 0.99
NSE 0.97 0.98 0.98 0.98 0.98 0.99
IOA 0.96 0.97 0.97 0.97 0.98 0.98

NM8

RMSE 6.35 7.16 5.57 5.31 5.26 5.19
MBE 0.54 0.58 0.52 0.49 0.33 0.41

r 0.98 0.97 0.98 0.98 0.98 0.98
NSE 0.97 0.97 0.97 0.97 0.97 0.97
IOA 0.96 0.95 0.96 0.96 0.96 0.96

NM9

RMSE 7.37 6.89 8.43 6.22 5.32 4.41
MBE 0.59 0.63 0.67 0.56 0.42 0.38

r 0.98 0.98 0.96 0.97 0.97 0.98
NSE 0.97 0.97 0.96 0.97 0.97 0.98
IOA 0.95 0.96 0.95 0.96 0.97 0.97

NM10

RMSE 7.14 6.59 6.91 5.88 4.71 4.28
MBE 0.55 0.62 0.52 0.55 0.39 0.44

r 0.98 0.98 0.98 0.98 0.98 0.99
NSE 0.98 0.98 0.98 0.98 0.98 0.99
IOA 0.96 0.97 0.97 0.97 0.97 0.98
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Table 3. Performance evaluation results of the homogenous ensemble models.

Evaluation
Criteria En_SVMR1 En_SVMR2 En_SVMR3 En_SVMR4 En_SVMR5 En_SVMR6

RMSE 4.70 5.61 3.34 2.99 2.16 1.79
MBE 0.42 0.44 0.36 0.41 0.33 0.31

r 0.97 0.97 0.98 0.97 0.98 0.98
NSE 0.98 0.97 0.98 0.98 0.98 0.98
IOA 0.96 0.96 0.96 0.97 0.97 0.97

En_SVMRn: homogenous ensemble surrogate model developed using 10 standalone SVMR surrogate models for
monitoring well n.

3.1.3. Implementation of the Optimal Aquifer Management Strategy

The executed homogenous SVMR ensemble-based coupled S/O model presented a Pareto front
containing several trade-off, optimal solutions in a runtime of ~3 h. Each optimal solution on the
Pareto front represents an optimal pumping strategy, which can be implemented as management policy.
The total optimal pumping rates from all the PWs and all the BWs for the four year management
horizon ranged from about 30,000–44,000 m3/day and 1000–9000 m3/day, respectively. These pumping
rates obtained are based on the imposed constraints (specified permissible concentration limits placed
at the different MWs) specified in the management model. The optimal pumping values were also
within the specified bounds used in the optimization model. The maximum and minimum annual
rainfall in Tarawa is approximately about 4300 mm and 2100 mm [56]. Based on this annual rainfall
over a highly permeable aquifer top cover with the proportionately very small built-up area, it is
reasonable to assume a vertical annual recharge rate of nearly 2000 mm. This vertical recharge amount
is itself around 3 million m3 per year. Therefore, if the barrier well extraction rate is excluded from the
total withdrawal computed above, as a large proportion of the barrier well extraction is contributed by
the sea face constant head boundary, the total specified withdrawal from water supply wells nearly
matches the vertical recharge estimated. Therefore, the recharge rate imposed appears to be reasonable.

Validation of these optimal solutions is a crucial step in S/O management framework. Validation
of optimal solutions was carried out by randomly selecting a few optimal solutions from the Pareto
front and implementing them on the original variable-density flow and salt transport numerical model.
In this study, five random optimal solutions were implemented into each of the 10 variable-density
flow and salt transport numerical models and 10 standalone SVMR surrogate models. The average
of the concentration values from 10 variable-density flow and salt transport numerical models is
compared with the homogenous SVMR ensemble surrogate models. These comparison results are
presented in Table 4. The percentage relative error for this comparison is less than 5% at all the
MWs. This establishes the fact that the homogenous ensemble SVMR surrogate model approximated
the variable flow and salt transport model with reasonable accuracy. Also, it was observed that the
concentration values converged to the upper limit of the set constraints (e.g., at MW1, the maximum
allowable salt concentration in the optimization model was specified as 20,000 mg/L). In the comparison
results presented in Table 4, it is seen that for all five selected optimal solutions, the concentration
values converged to the specified upper limit (20,000 mg/L). A similar pattern was observed for all
other MWs.
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Table 4. Optimal solution validation results.

Solution
Number MW1 MW2 MW3 MW4 MW5 MW6

NMav
(mg/L)

En_SVMR1
(mg/L)

NMav
(mg/L)

En_SVMR2
(mg/L)

NMav
(mg/L)

En_SVMR3
(mg/L)

NMav
(mg/L)

En_SVMR4
(mg/L)

NMav
(mg/L)

En_SVMR5
(mg/L)

NMav
(mg/L)

En_SVMR6
(mg/L)

1 19,870.4 19,677.0 19,795.63 19,742.53 4868.18 4844.85 3963.43 3932.23 447.82 444.94 432.72 429.88
2 19,708.8 19,621.2 19,783.73 19,735.64 4811.80 4776.57 3959.52 3916.66 433.94 429.27 435.97 433.33
3 20,009.2 19,846.9 19,975.89 19,949.89 4931.85 4928.47 3944.47 3911.19 444.84 437.12 436.18 431.45
4 19,798.4 19,660.5 19,793.16 19,757.80 4915.77 4906.76 3868.29 3868.82 433.54 427.58 439.93 436.34
5 19,727.4 19,567.6 19,829.44 19,795.19 4828.40 4839.35 3972.34 3967.71 430.35 427.29 427.90 426.47

NMAV: average concentration values from all 10 variable density flow and salt transport numerical models.
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The main focus of this study was to develop a monitoring network design for the Bonriki aquifer.
For this purpose, a randomly selected optimal solution (solution k in Figure 6) was selected and
implemented as a coastal aquifer management strategy. The total production well and barrier well
pumping for the selected optimal solution were 39,728.44 m3/day and 3630.89 m3/day, respectively.
The specific pumping from each PW and BW for the selected management strategy is demonstrated
using Figure 7.
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3.2. Optimal Monitoring Wells

The location of candidate monitoring wells obtained using the k-means clustering methodology is
presented in Figure 8. The clustering methodology ensured that the candidate monitoring wells were
scattered over the entire model domain. The truncated optimal pumping patterns (to demonstrate
field-level deviation) for the implemented management strategy and uncertain aquifer parameters
were used to generate 100 salinity concentration realizations at 100 candidate monitoring wells. Out of
the 100 candidate monitoring wells, only 10 were selected as the OMWs. The monitoring network
optimization formulation using the LINGO 17 platform [64] presented 10 OMWs, which are presented
in Figure 9.
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The average of the logarithmic concentration at each candidate monitoring well was maximized
to ensure that candidate monitoring wells were placed in high-risk areas (highly concentrated areas).
As seen in Figure 9, the location of all the OMWs were closer to the sea-side boundary, where salinity
concentration as a result of production well pumping was the highest. Also, well-spread OMWs are
observed, which avoid redundancy of monitoring well installation. The objective function used in the
design of a monitoring network is only one possible objective. Other objectives based on different
study area management scenarios can also be considered. The locations of the optimal monitoring
wells are dependent on the monitoring network design objective functions and will be different for a
different monitoring network objective. For example, maximizing weighted average concentrations



Int. J. Environ. Res. Public Health 2019, 16, 4365 21 of 26

at candidate monitoring locations as an objective function will result in a different set of optimal
monitoring wells compared to the one designed in this study. However, for this particular study, a
simple objective function is used to highlight the other aspects of linked S/O and the use of sequential
information to modify management strategies over time.

3.3. Modified Pumping Rates Using Feedback Information

The selected management strategy from the Pareto front was used to adaptively modify pumping
solutions based on the deviations in salinity concentration data (i.e., the difference in salinity
concentration after utilizing the recommended (optimal) and actually implemented management
strategy). The selected recommended four year management strategy was modified based on the
feedback formation obtained based on the preceding year implemented pumping rates. For the
selected management strategy, the total production well pumping and barrier well pumping rates
were 39,728.4 m3/day and 3630.9 m3/day, respectively. The resulting salinity concentrations obtained at
the OMWs at the end of year 1 as a result of the recommended pumping strategy are given in Table 5
as Situation A of year 1. It is highly likely that the pumping rates from the recommended management
strategy will not be exactly implemented in the field. To account for this field-level deviation, the
production well and barrier well pumping rates from the recommended management strategy were
perturbed within 0%–20% of the recommended rates. This perturbation reflects the actual pumping
rates implemented onto the field. However, this step is only relevant for performance evaluation
purposes. In actual field applications, the deviations from intended consequences will be measured
at specified monitoring wells in the designed monitoring network. The salinity concentration at the
OMWs at the end of year 1 as a result of this perturbed implemented pumping rates are given as
situation B of year 1. It is observed from Table 5 that the deviations in the pumping rates of year 1
also lead to a slight deviation in the concentration values. Based on this salinity concentration, the
pumping rates for year 2, 3, and 4 are modified by rerunning the coupled S/O model, while keeping the
other management constraints unchanged. The modified PW pumping rates are given in Table 6. The
modifications were only done to pumping rates of year 2, 3, and 4 after gathering feedback information
after the implementation of the year 1 pumping rates. These three changes are obtained based on the
fresh solution of the optimization model utilizing feedback information from the optimal monitoring
wells. The first year pumping rates remained unchanged.

Table 5. Salinity concentration (mg/L) at the optimal monitoring wells.

Year 1 Year 2 Year 3 Year 4

OMW Situation
A

Situation
B

Situation
A

Situation
B

Situation
A

Situation
B

Situation
A

Situation
B

1 24,168.1 24,135.2 25,951.3 25,612.3 27,952.7 27,956.3 30,215.3 30,258.1
2 23,256.9 23,247.7 24,696.1 24,616.6 26,151.9 26,146.5 27,298.6 27,204.7
3 23,055.8 23,016.3 24,856.2 24,843.2 25,871.4 25,886.9 26,598.3 26,577.2
4 24,136.8 24,089.6 24,623.6 24,647.9 25,027.0 25,049.7 26,884.3 26,813.6
5 17,452.3 17,486.3 17,898.2 17,954.6 19,560.1 19,587.8 22,389.7 22,384.0
6 19,585.6 19,546.2 20,115.0 20,168.8 22,895.4 22,905.7 25,468.9 25,424.0
7 23,657.0 23,641.3 24,891.3 24,923.6 26,454.7 26,484.7 28,355.8 28,397.1
8 24,556.3 24,587.3 25,831.3 25,838.5 27,206.8 27,198.2 28,114.0 28,046.8
9 23,584.0 23,547.0 24,669.3 24,646.9 26,158.3 26,144.3 27,138.2 27,138.2

10 25,136.6 25,136.2 26,882.2 26,876.3 28,654.2 28,679.3 30,219.0 30,158.5

Situation A: due to the recommended strategy; Situation B: due to implemented strategy; OMW: optimal
monitoring well.
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Table 6. Modified production well pumping rates (m3/day) during the entire management horizon.

Year 1 Year 2 Year 3 Year 4

R I R I R I R I

Year 1 9946.9 9822.6
Year 2 10,426.5 10,335.1 10,378.8
Year 3 9957.6 9987.1 9874.2 9904.4
Year 4 9397.5 9414.9 9369.2 9325.3 -

Total 39,728.4 29,737.1 19,243.4 9325.3

R: recommended; I: implemented.

The implemented year 1 pumping rates (9822.6 m3/day) and the future modified year 2, 3, and
4 modified pumping rates (29,737.1 m3/day) were 39,559.7 m3/day. This was less than the pumping
rates from the originally recommended management strategy. The salinity concentration due to the
modified recommended pumping rates at the end of year 2 is given in Table 5 as situation A of year 2.
Situation B of year 2 is the salinity concentration due to the implementation of the perturbed pumping
rates. Similarly, situation A and B for year 3 and 4 in Table 5 represent the salinity concentration due to
the modified and perturbed pumping rates, respectively. The pumping rates for the future (i.e., year 3
and 4) are modified using the same procedure as discussed above. The modified objective function
value for year 3 was 39,444.7 m3/day, which was also less than the total pumping rates from the original
recommended management strategy. With the adaptive management framework, the total of four
years implemented pumping rates obtained were 39,431.0 m3/day, which was less than the pumping
rates from the recommended management strategy (39,728.4 m3/day). This is intuitively justifiable, as
the actually implemented strategy for the initial year was suboptimal.

The solution results presented in Tables 5 and 6 demonstrate that optimal pumping solutions
recommended from the S/O model will need modification because of the field-level deviations
encountered during the implementation process, or noncompliance by the user. As observed,
the feedback salinity measurement information can be utilized to modify pumping rates for the
remaining future time periods of the management horizon. Therefore, a properly designed optimal
monitoring network and feedback information are crucial for adaptive management of coastal
groundwater resources.

In general, the evaluated adaptive management methodology for the Bonriki aquifer system
presented in the study gives promising results. Solving the multi-objective management model
prescribed a set of optimal solutions in the form of a Pareto front. The obtained solutions are
validated to ensure that the constraints are satisfied. Obtaining an optimal solution, and then
exactly implementing it in the field are two different but critical issues discussed in this study. An
optimal solution can be obtained using all the computational powers in hand. The issue of user
non-compliance due to incorrect implementation of a selected optimal solution is the main concern
addressed. To monitor the possible effects of user non-compliance and to update the subsequent
time period optimal solution in order to rectify the outcome, feedback information in the form of
salinity concentration data is obtained from the OMWs. The subsequently modified yearly pumping
strategies help in converging to the original management goals in spite of earlier deviations from the
prescribed strategy. All the computational powers can be used to develop an optimal pumping strategy
for the aquifer system, but the question of user non-compliance remains the same and not entirely
a computational issue. In a practical situation, we cannot guarantee if the optimal solution will be
correctly implemented. In such scenarios, the adaptive management framework presented in this
study will be useful. Theoretically, it is “possible” to search for and then identify an optimal solution
by enormous enumerations although, for complex large-scale problems, it is totally impractical. The
main contribution of optimization is to develop and use a formal search technique which efficiently
searches for an optimal solution that is almost impossible to identify by enumeration. When more than
one objective is considered, this becomes more critical.
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4. Conclusions

The main goal of this study was to develop an adaptive management strategy for the management
of coastal groundwater resources. Specifically, this study demonstrated the use of an integrated
approach of utilizing an optimal management strategy, designed optimal monitoring network, and
feedback information for adaptive management of an island coastal aquifer system. In achieving
the targeted management goal, optimal production well and barrier well pumping strategies were
considered as options for sustainable control of saltwater intrusion in the Bonriki aquifer system in the
South Pacific. Using this derived optimal strategy, OMWs are identified. A new monitoring objective
function is developed to determine OMWs in high salinity concentrated areas. The resulting OMWs
are then used to monitor the compliance of the recommended management strategy to those actually
implemented in the field. Based on the field-level deviations between the actual and planned salinity
levels, the pumping rates for future time periods in the management horizon are sequentially modified
using the updated coupled S/O model. It is noted that field-level deviations during the implantation of
the recommended pumping rates could lead to a significant difference in the salinity concentration at
OMWs. Hence, updating the management model using the feedback information from earlier time
periods can be crucial for the management of the Bonriki aquifer system. The results clearly establish
that subsequently modified yearly pumping strategies help in achieving the original management
goals in spite of earlier deviations from the prescribed strategy. The solution results presented in
this study open pathways for further similar studies that could be undertaken in other small island
countries, where saltwater intrusion due to excessive/disproportionate groundwater withdrawal is a
threat to the sustainable beneficial use of freshwater resources. The developed and evaluated adaptive
management methodology has the potential to be applied to other regional-scale coastal aquifers
subjected to saltwater intrusion. However, this application would require the development of a
variable-density numerical groundwater flow and transport simulation model for the proposed study
area. Development of a variable-density numerical groundwater simulation model would necessitate
numerical modeling skills, other software/computational requirements, and groundwater (head and
concentration) datasets. These datasets are not always readily available and may require rigorous field
surveys/investigations, which can be costly. One limitation of the present work is that not all aspects of
various uncertainties relevant to such a regional-scale natural resource management study could be
addressed. This was not within the scope of a single developmental study, and we keep these options
for the future.

Author Contributions: Conceptualization, A.L. and B.D.; methodology, A.L.; software, A.L.; validation, A.L.
and B.D.; formal analysis, A.L.; investigation, A.L.; resources, A.L.; data curation, A.L.; writing—original draft
preparation, A.L.; writing—review and editing, A.L. and B.D.; visualization, A.L.; supervision, B.D.; project
administration, A.L. and B.D.

Funding: This research received no external funding.

Acknowledgments: The authors are grateful to the Bonriki Inundation Vulnerability Assessment (BIVA) project
reports developed by the Secretariat of the Pacific Community (SPC) in partnership with the Government of
Kiribati under the Australian Government Pacific Australia Climate Change Science and Adaptation Planning
Program (PACCSAP).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Ahlfeld, D.P.; Barlow, P.M.; Mulligan, A.E. GWM–A Ground-Water Management Process for the US Geological
Survey Modular Ground-Water Model (MODFLOW-2000); US Department of the Interior, US Geological Survey:
Washington, DC, USA, 2005. [CrossRef]

2. Ataie-Ashtiani, B.; Ketabchi, H.; Rajabi, M.M. Optimal management of a freshwater lens in a small island
using surrogate models and evolutionary algorithms. J. Hydrol. Eng. 2013, 19, 339–354. [CrossRef]

3. Ataie-Ashtiani, B.; Ketabchi, H. Elitist continuous ant colony optimization algorithm for optimal management
of coastal aquifers. Water Resour. Manag. 2011, 25, 165–190. [CrossRef]

http://dx.doi.org/10.3133/ofr20051072
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000809
http://dx.doi.org/10.1007/s11269-010-9693-x


Int. J. Environ. Res. Public Health 2019, 16, 4365 24 of 26

4. Kourakos, G.; Mantoglou, A. Development of a multi-objective optimization algorithm using surrogate
models for coastal aquifer management. J. Hydrol. 2013, 479, 13–23. [CrossRef]

5. Park, N.; Shi, L. A comprehensive sharp-interface simulation-optimization model for fresh and saline
groundwater management in coastal areas. Hydrogeol. J. 2015, 23, 1195–1204. [CrossRef]

6. Dhar, A.; Datta, B. Saltwater intrusion management of coastal aquifers. I: Linked simulation-optimization.
J. Hydrol. Eng. 2009, 14, 1263–1272. [CrossRef]

7. Bhattacharjya, R.K.; Datta, B. Optimal Management of Coastal Aquifers Using Linked Simulation
Optimization Approach. Water Resour. Manag. 2005, 19, 295–320. [CrossRef]

8. Mantoglou, A.; Papantoniou, M. Optimal design of pumping networks in coastal aquifers using sharp
interface models. J. Hydrol. 2008, 361, 52–63. [CrossRef]

9. Das, A.; Datta, B. Development of multiobjective management models for coastal aquifers. J. Water Resour.
Plan. Manag. 1999, 125, 76–87. [CrossRef]

10. Sreekanth, J.; Datta, B. Multi-objective management of saltwater intrusion in coastal aquifers using genetic
programming and modular neural network based surrogate models. J. Hydrol. 2010, 393, 245–256. [CrossRef]

11. Roy, D.K.; Datta, B. A surrogate based multi-objective management model to control saltwater intrusion in
multi-layered coastal aquifer systems. Civ. Eng. Environ. Syst. 2018, 34, 238–263. [CrossRef]

12. Lal, A.; Datta, B. Modelling saltwater intrusion processes and development of a multi-objective strategy for
management of coastal aquifers utilizing planned artificial freshwater recharge. Model. Earth Syst. Environ.
2017, 4, 111–126. [CrossRef]

13. Lal, A.; Datta, B. Multiple objective management strategies for coastal aquifers utilizing new surrogate
models. Int. J. Geomate 2018, 15, 79–85. [CrossRef]

14. Lal, A.; Datta, B. Optimal Groundwater-Use Strategy for Saltwater Intrusion Management in a Pacific Island
Country. J. Water Resour. Plan. Manag. 2019, 145, 04019032. [CrossRef]

15. Sreekanth, J.; Datta, B. Coupled simulation-optimization model for coastal aquifer management using genetic
programming-based ensemble surrogate models and multiple-realization optimization. Water Resour. Res.
2011, 47. [CrossRef]

16. Roy, D.K.; Datta, B. Multivariate Adaptive Regression Spline Ensembles for Management of Multilayered
Coastal Aquifers. J. Hydrol. Eng. 2017, 22, 04017031. [CrossRef]

17. Lal, A.; Datta, B. Multi-objective groundwater management strategy under uncertainties for sustainable
control of saltwater intrusion: Solution for an island country in the South Pacific. J. Environ. Manag. 2019,
234, 115–130. [CrossRef]

18. Zhou, Y. Objectives, criteria and methodologies for the design of primary groundwater monitoring networks.
IAHS Publ. Ser. Proc. Rep. Intern Assoc. Hydrol. Sci. 1994, 222, 285–296.

19. Zhou, Y.; Dong, D.; Liu, J.; Li, W. Upgrading a regional groundwater level monitoring network for Beijing
Plain, China. Geosci. Front. 2013, 4, 127–138. [CrossRef]

20. Yang, F.-g.; Cao, S.-y.; Liu, X.-n.; Yang, K.-j. Design of groundwater level monitoring network with ordinary
kriging. J. Hydrodyn. 2008, 20, 339–346. [CrossRef]

21. Kumar, S.; Sondhi, S.; Phogat, V. Network design for groundwater level monitoring in upper Bari Doab canal
tract, Punjab, India. Irrig. Drain. J. Int. Comm. Irrig. Drain. 2005, 54, 431–442. [CrossRef]

22. Prinos, S.T.; Lietz, A.; Irvin, R. Design of a Real-Time Ground-Water Level Monitoring Network and Portrayal of
Hydrologic Data in Southern Florida; Geological Survey: Preston, UK, 2002. [CrossRef]

23. Meyer, P.D.; Valocchi, A.J.; Eheart, J.W. Monitoring network design to provide initial detection of groundwater
contamination. Water Resour. Res. 1994, 30, 2647–2659. [CrossRef]

24. Dhar, A.; Datta, B. Multiobjective design of dynamic monitoring networks for detection of groundwater
pollution. J. Water Resour. Plan. Manag. 2007, 133, 329–338. [CrossRef]

25. Storck, P.; Eheart, J.W.; Valocchi, A.J. A method for the optimal location of monitoring wells for detection
of groundwater contamination in three-dimensional heterogenous aquifers. Water Resour. Res. 1997,
33, 2081–2088. [CrossRef]

26. Mahar, P.S.; Datta, B. Optimal monitoring network and ground-water–pollution source identification. J. Water
Resour. Plan. Manag. 1997, 123, 199–207. [CrossRef]

27. Prakash, O.; Datta, B. Sequential optimal monitoring network design and iterative spatial estimation
of pollutant concentration for identification of unknown groundwater pollution source locations.
Environ. Monit. Assess. 2013, 185, 5611–5626. [CrossRef]

http://dx.doi.org/10.1016/j.jhydrol.2012.10.050
http://dx.doi.org/10.1007/s10040-015-1268-8
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000097
http://dx.doi.org/10.1007/s11269-005-3180-9
http://dx.doi.org/10.1016/j.jhydrol.2008.07.022
http://dx.doi.org/10.1061/(ASCE)0733-9496(1999)125:2(76)
http://dx.doi.org/10.1016/j.jhydrol.2010.08.023
http://dx.doi.org/10.1080/10286608.2018.1431777
http://dx.doi.org/10.1007/s40808-017-0405-x
http://dx.doi.org/10.21660/2018.48.7169
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0001090
http://dx.doi.org/10.1029/2010WR009683
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0001550
http://dx.doi.org/10.1016/j.jenvman.2018.12.054
http://dx.doi.org/10.1016/j.gsf.2012.03.008
http://dx.doi.org/10.1016/S1001-6058(08)60066-9
http://dx.doi.org/10.1002/ird.194
http://dx.doi.org/10.3133/wri20014275
http://dx.doi.org/10.1029/94WR00872
http://dx.doi.org/10.1061/(ASCE)0733-9496(2007)133:4(329)
http://dx.doi.org/10.1029/97WR01704
http://dx.doi.org/10.1061/(ASCE)0733-9496(1997)123:4(199)
http://dx.doi.org/10.1007/s10661-012-2971-8


Int. J. Environ. Res. Public Health 2019, 16, 4365 25 of 26

28. Hudak, P.F.; Loaiciga, H.A. A location modeling approach for groundwater monitoring network augmentation.
Water Resour. Res. 1992, 28, 643–649. [CrossRef]

29. Zhu, X.; Yue, Y.; Wong, P.W.; Zhang, Y.; Ding, H. Designing an Optimized Water Quality Monitoring Network
with Reserved Monitoring Locations. Water 2019, 11, 713. [CrossRef]

30. Baalousha, H. Assessment of a groundwater quality monitoring network using vulnerability mapping and
geostatistics: A case study from Heretaunga Plains, New Zealand. Agric. Water Manag. 2010, 97, 240–246.
[CrossRef]

31. Mogheir, Y.; Singh, V. Application of information theory to groundwater quality monitoring networks.
Water Resour. Manag. 2002, 16, 37–49. [CrossRef]

32. Masoumi, F.; Kerachian, R. Optimal redesign of groundwater quality monitoring networks: A case study.
Environmental Monit. Assess. 2010, 161, 247–257. [CrossRef]

33. Ammar, K.; Khalil, A.; McKee, M.; Kaluarachchi, J. Bayesian deduction for redundancy detection in
groundwater quality monitoring networks. Water Resour. Res. 2008, 44. [CrossRef]

34. Loaiciga, H.A. An optimization approach for groundwater quality monitoring network design. Water Resour.
Res. 1989, 25, 1771–1782. [CrossRef]

35. Zhang, Y.; Pinder, G.F.; Herrera, G.S. Least cost design of groundwater quality monitoring networks. Water
Resour. Res. 2005, 41. [CrossRef]

36. Reed, P.; Minsker, B.; Valocchi, A.J. Cost-effective long-term groundwater monitoring design using a genetic
algorithm and global mass interpolation. Water Resour. Res. 2000, 36, 3731–3741. [CrossRef]

37. Destandau, F.; Zaiter, Y. Optimal spatio-temporal design for water quality monitoring networks in maximizing
economic value of information. In Proceedings of the MATEC Web of Conferences; EDP Sciences: Les Ulis,
France, 2019; p. 03004. [CrossRef]

38. Loaiciga, H.A.; Charbeneau, R.J.; Everett, L.G.; Fogg, G.E.; Hobbs, B.F.; Rouhani, S. Review of ground-water
quality monitoring network design. J. Hydraul. Eng. 1992, 118, 11–37. [CrossRef]

39. Sreekanth, J.; Datta, B. Design of an optimal compliance monitoring network and feedback information
for adaptive management of saltwater intrusion in coastal aquifers. J. Water Resour. Plan. Manag. 2013,
140, 04014026. [CrossRef]

40. Dhar, A.; Datta, B. Saltwater intrusion management of coastal aquifers. II: Operation uncertainty and
monitoring. J. Hydrol. Eng. 2009, 14, 1273–1282. [CrossRef]

41. Žalik, K.R. An efficient k′-means clustering algorithm. Pattern Recognit. Lett. 2008, 29, 1385–1391. [CrossRef]
42. Bandyopadhyay, S.; Maulik, U. An evolutionary technique based on K-means algorithm for optimal clustering

in RN. Inf. Sci. 2002, 146, 221–237. [CrossRef]
43. Nazeer, K.A.; Sebastian, M. Improving the Accuracy and Efficiency of the k-means Clustering Algorithm.

In Proceedings of the World Congress on Engineering, London, UK, 3–5 July 2009; pp. 1–3.
44. Post, V.E.; Bosserelle, A.L.; Galvis, S.C.; Sinclair, P.J.; Werner, A.D. On the resilience of small-island freshwater

lenses: Evidence of the long-term impacts of groundwater abstraction on Bonriki Island, Kiribati. J. Hydrol.
2018, 564, 133–148. [CrossRef]

45. Lin, H.-C.J.; Richards, D.R.; Yeh, G.-T.; Cheng, J.-R.; Cheng, H.-P. FEMWATER: A Three-Dimensional Finite
Element Computer Model for Simulating Density-Dependent Flow and Transport in Variably Saturated Media;
CHL-97-12; DTIC Document: Vicksburg, MS, USA, 1997.

46. Roy, D.K.; Datta, B. Fuzzy C-Mean Clustering Based Inference System for Saltwater Intrusion Processes
Prediction in Coastal Aquifers. Water Resour. Manag. 2016, 31, 1–22. [CrossRef]

47. Lal, A.; Datta, B. Development and Implementation of Support Vector Machine Regression Surrogate Models
for Predicting Groundwater Pumping-Induced Saltwater Intrusion into Coastal Aquifers. Water Resour.
Manag. 2018, 32, 1–15. [CrossRef]

48. Liu, J.; Zio, E. An adaptive online learning approach for Support Vector Regression: Online-SVR-FID.
Mech. Syst. Signal Process. 2016, 76, 796–809. [CrossRef]

49. Shu, C.; Burn, D.H. Artificial neural network ensembles and their application in pooled flood frequency
analysis. Water Resour. Res. 2004, 40. [CrossRef]

50. Perrone, M.P.; Cooper, L.N. When networks disagree: Ensemble methods for hybrid neural networks. In
How We Learn; How We Remember: Toward An Understanding Of Brain And Neural Systems: Selected Papers of
Leon N Cooper; World Scientific: Singapore, 1995; pp. 342–358. [CrossRef]

51. Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 1995.

http://dx.doi.org/10.1029/91WR02851
http://dx.doi.org/10.3390/w11040713
http://dx.doi.org/10.1016/j.agwat.2009.09.013
http://dx.doi.org/10.1023/A:1015511811686
http://dx.doi.org/10.1007/s10661-008-0742-3
http://dx.doi.org/10.1029/2006WR005616
http://dx.doi.org/10.1029/WR025i008p01771
http://dx.doi.org/10.1029/2005WR003936
http://dx.doi.org/10.1029/2000WR900232
http://dx.doi.org/10.1051/matecconf/201928103004
http://dx.doi.org/10.1061/(ASCE)0733-9429(1992)118:1(11)
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000406
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000155
http://dx.doi.org/10.1016/j.patrec.2008.02.014
http://dx.doi.org/10.1016/S0020-0255(02)00208-6
http://dx.doi.org/10.1016/j.jhydrol.2018.06.015
http://dx.doi.org/10.1007/s11269-016-1531-3
http://dx.doi.org/10.1007/s11269-018-1936-2
http://dx.doi.org/10.1016/j.ymssp.2016.02.056
http://dx.doi.org/10.1029/2003WR002816
http://dx.doi.org/10.1142/9789812795885_0025


Int. J. Environ. Res. Public Health 2019, 16, 4365 26 of 26

52. MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of
the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, 7 January
1967; pp. 281–297.

53. Dhar, A.; Datta, B. Logic-based design of groundwater monitoring network for redundancy reduction.
J. Water Resour. Plan. Manag. 2009, 136, 88–94. [CrossRef]

54. White, I.; Falkland, T.; Crennan, L.; Jones, P.; Metutera, T.; Etuati, B.; Metai, E. Groundwater recharge in low
coral island Bonriki, South Tarawa, Republic of Kiribati: Isues, traditions and conflicts in groundwater use
and management. In Technical Documents in Hydrology; UNESCO: Paris, France, 1999; Volume 25.

55. Metutera, T. Water management in Kiribati with special emphasis on groundwater development using
infiltration galleries. In Proceedings of the Pacific Regional Consultation on Water in Small Island Countries,
Sigatoka, Fiji, 29 July 2002; p. 29.

56. Bosserelle, A.; Jakovovic, D.; Post, V.; Rodriguez, S.G.; Werner, A.; Sinclair, P. Bonriki Inundation Vulnerability
Assessment (BIVA): Assessment of Sea-Level Rise and Inundation Effects on Bonriki Freshwater Lens, Tarawa
Kiribati-Groundwater Modelling report; SPC00010; Secretariat of the Pacific Community (SPC): Suva, Fiji, 2015.

57. Bailey, R.T.; Jenson, J.; Olsen, A. Numerical modeling of atoll island hydrogeology. Groundwater 2009,
47, 184–196. [CrossRef]

58. Sinclair, P.; Singh, A.; Leze, J.; Bosserelle, A.; Loco, A.; Mataio, M.; Bwatio, E.; Rodriguez, S.G. Bonriki
Inundation Vulnerability Assessment: Groundwater Field Investigations Bonriki Water Reserve, South Tarawa,
Kiribati; SPC00009; Secretariat of the Pacific Community (SPC): Suva, Fiji, 2015.

59. Ghassemi, F.; Jakeman, A.; Jacobson, G. Mathematical modelling of sea water intrusion, Nauru Island.
Hydrol. Process. 1990, 4, 269–281. [CrossRef]

60. Ghassemi, F.; Jakeman, A.; Jacobson, G.; Howard, K. Simulation of seawater intrusion with 2D and 3D
models: Nauru Island case study. Hydrogeol. J. 1996, 4, 4–22. [CrossRef]

61. White, I.; Falkland, T.; Metutera, T.; Metai, E.; Overmars, M.; Perez, P.; Dray, A. Climatic and human
influences on groundwater in low atolls. Vadose Zone J. 2007, 6, 581–590. [CrossRef]

62. Underwood, M.R.; Peterson, F.L.; Voss, C.I. Groundwater lens dynamics of atoll islands. Water Resour. Res.
1992, 28, 2889–2902. [CrossRef]

63. Oberdorfer, J.A.; Hogan, P.J.; Buddemeier, R.W. Atoll island hydrogeology: Flow and freshwater occurrence
in a tidally dominated system. J. Hydrol. 1990, 120, 327–340. [CrossRef]

64. Scharage, L. Optimization Modeling with LINGO; LINDO Systems, Inc.: Chicago, IL, USA, 1999.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1061/(ASCE)0733-9496(2010)136:1(88)
http://dx.doi.org/10.1111/j.1745-6584.2008.00520.x
http://dx.doi.org/10.1002/hyp.3360040307
http://dx.doi.org/10.1007/s100400050251
http://dx.doi.org/10.2136/vzj2006.0092
http://dx.doi.org/10.1029/92WR01723
http://dx.doi.org/10.1016/0022-1694(90)90157-S
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Phase 1: Prescription and Implementation of an Optimal Management Strategy 
	Numerical Groundwater Flow and Transport Model 
	Homogenous Support Vector Machine Regression-Based Ensemble Surrogate Models 
	Formulation of the Multi-Objective Coastal Aquifer Management Model 

	Phase 2: Regional-Scale Monitoring Network Design 
	Possible Deviations in Pumping and Aquifer Parameter Uncertainty 
	Location of Candidate Monitoring Wells 
	Formulation of the Optimal Monitoring Network Design Model 

	Phase 3: Sequential Modification of the Management Strategy 
	Case Study: Application and Evaluation of the Developed Methodology 

	Results and Discussions 
	Development and Execution of the Coupled S/O Model 
	The Bonriki Aquifer Calibration and Validation Results 
	The Performance Evaluation of the Proposed Methodology Utilizing Homogenous Ensemble Models 
	Implementation of the Optimal Aquifer Management Strategy 

	Optimal Monitoring Wells 
	Modified Pumping Rates Using Feedback Information 

	Conclusions 
	References

