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the Rarity of Depth Refugia from 
coral Bleaching Heat Stress in the 
Western and Central Pacific Islands
Roberto M. Venegas1,2,7*, Thomas oliver2,7*, Gang Liu3,4, Scott F. Heron  3,5, 
S. Jeanette clark6, Noah pomeroy1,2, Charles Young1,2, C. Mark eakin  3 & Russell e. Brainard2

Some researchers have suggested that corals living in deeper reefs may escape heat stress experienced 
by shallow corals. We evaluated the potential of deep coral reef refugia from bleaching stress by 
leveraging a long record of satellite-derived sea surface temperature data with a temporal, spatial, and 
depth precision of in situ temperature records. We calculated an in situ stress metric using a depth bias-
adjusted threshold for 457 coral reef sites among 49 islands in the western and central Pacific Ocean 
over the period 2001–2017. Analysis of 1,453 heating events found no meaningful depth refuge from 
heat stress down to 38 m, and no significant association between depth and subsurface heat stress. 
Further, the surface metric underestimated subsurface stress by an average of 39.3%, across all depths. 
combining satellite and in situ temperature data can provide bleaching-relevant heat stress results to 
avoid misrepresentation of heat stress exposure at shallow reefs.

Mass coral bleaching events due to anomalously warm ocean water have increased in both frequency and severity, 
and represent a significant threat to coral reef ecosystems worldwide1–4. Coral bleaching occurs when environ-
mental stressors cause a breakdown in the relationship between corals and their algal endosymbionts5. Mass coral 
bleaching is most commonly caused by abnormally high temperatures, 1–2 °C above the usual summer maximum 
for several weeks and can result in widespread coral mortality5–8. Coral mortality, in turn, can reduce coral diver-
sity and habitat complexity8,9 and negatively impact species richness, abundance, and biomass of coral reef fishes 
and other associated biodiversity8,10,11. These attendant ecological consequences of mass coral bleaching and the 
corresponding declines in ecosystem services (e.g., food source, fisheries, and tourism) support the need for an 
accurate understanding of heat stress exposure on corals.

Currently, scientists and managers primarily use satellite-derived sea surface temperature (SST) data products 
to understand heat stress and predict coral bleaching due to the near real-time availability, global coverage, and 
ease of data access. The most extensively used metric is the Degree Heating Week12 developed by the U.S. National 
Oceanic and Atmospheric Administration’s (NOAA) Coral Reef Watch (CRW) program3. Despite the continued 
improvement and validation of SST data and satellite-derived products6,13,14, uncertainty has continued to exist 
in how well the SST data and derived metrics represent in situ conditions on coral reefs, especially at depth15,16. 
Sources of uncertainty include: (1) depth – satellites measure the radiance from the ocean skin layer (upper ~10 
μm) to derive temperature (that is typically cooler than the surface water below due to evaporative cooling) in 
contrast to loggers that measure at the depth of their deployment; (2) spatial scale – satellite measurements inte-
grate across a large area (hundreds of square meters to square kilometers) compared with the point measurement 
of an in situ temperature logger; and (3) temporal scale – the frequency of satellite temperature measurements is 
typically once per 3–12 hours (but up to 6 times per hour in some regions), with data products derived from these 
reported once per day; in contrast, in situ measurements are typically logged once per 5–30 minutes. As infrared 
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sensors measure the temperature within the ocean skin layer (to ~10 μm depth), SST data represent water tem-
perature and thus can be used to compute heat stress, at the sea surface.

Because of these uncertainties, SST data only estimate the temperature at any reef site and provide a less 
accurate estimate of thermal variability below the surface at a particular point than does a high-quality tem-
perature logger. Notably, the CRW evaluation of heat stress is not based on absolute temperature but rather the 
temperature anomaly relative to a location-specific baseline value. The accuracy of using satellite measurements 
from the surface to estimate conditions at depth depends on the consistency of temperature anomaly through 
water depth14. Although comparisons between SST and in situ are plentiful, most studies use very near-surface 
temperature measurements17–21, with fewer studies comparing SST and in situ temperature at greater depths22–25.

Under vertically-stratified conditions, many stressors vary with depth (light attenuates and temperature gen-
erally decreases7,26,27) leading to the hypothesis that depth provides a potential refuge for coral reefs in future cli-
mate scenarios28. However, even when stratification leads to lower temperatures at depth, coral colonies at depth 
may be acclimated to lower temperatures or a reduced level of temperature variability than those at the surface. 
Bleaching thresholds have been shown to vary with depth, with higher sensitivities in deeper waters29,30. Further, 
stratification does not always exist in shallow waters and temperature anomalies may not decrease with depth due 
to physical forcing22,23,28,31. This means that heat stress does not necessarily decrease with depth.

The NOAA Pacific Reef Assessment and Monitoring Program (Pacific RAMP) has been assessing and mon-
itoring coral reef ecosystems since 2000 across 49 islands, atolls and subsurface reefs on the western and central 
Pacific spanning an area of over 30 million square kilometers (Fig. 1). We divided this vast domain into six regions 
(Table 1): the Mariana Archipelago (comprised of the Commonwealth of the Northern Mariana Islands and 
Guam, CNMI-G); the Northwestern Hawaiian Islands (NWHI); the Main Hawaiian Islands (MHI); American 
Samoa (AMSM); the northern Pacific Remote Island Areas (N-PRIA); and the equatorial Pacific Remote Island 
Areas (EQ-PRIA). In this study, we utilized this large dataset of in situ temperature measurements from sub-
surface temperature recorder (STR) data collected as part of Pacific RAMP, and SST-derived products from the 
NOAA Coral Reef Watch program at 5-km resolution to quantify the levels of heat stress that influenced a wide 
range of coral reef ecosystems distributed broadly across the Pacific.

To better understand the potential for heat stress refugia across the western and central Pacific, we aimed 
to generate a site-specific metric of coral heat stress that accounts for differences across depths. To leverage the 
relative strengths of in situ and satellite temperature data, we calculated a depth-specific version of a standard 
measure of coral heat stress exposure, the Degree Heating Week (DHW). Satellite-derived bleaching thresholds 
used by CRW were adjusted for bias between the satellite records and in situ records at a variety of depths. Using 
the resulting in situ heat stress exposure metric, we explored the patterns of heat stress and refugia with depth 
across the western and central Pacific.

Results
Long-term nighttime (local sunset to sunrise) temperature bias between SST (satellite) and STR (i.e. in situ) data 
for all sites (a site is defined as stable positions for a series of temperature loggers over time) at various depths with 
a full year of continuous data revealed significant temperature differences occurred with depth across the western 
and central Pacific (Fig. 1). These differences varied between summer (using values from the climatologically 
warmest month) and winter (six months offset from the climatologically warmest month) (Fig. 2).

The bias (STR minus SST) was greater in summer (Fig. 2a) than in winter (Fig. 2b). During summer the mean 
bias across all sites and depths was −0.21 °C (SE = 0.015), with the greatest divergence at a single site/depth of 
−2.04 °C (at 38 m, Fig. 2a). In contrast, bias during winter was −0.08 °C (SE = 0.008) with the greatest divergence 
of 0.97 °C (at 12 m, Fig. 2b). Mixed model regressions for both seasons found that bias was significantly associated 
with depth and its magnitude increased more rapidly with depth during summer: Negative biases (STR cooler) 
increased in the summer at −0.15 °C for every 10 m (Z = −12.45, p < 0.0001), compared with −0.028 °C for every 
10 m (Z = −2.86, p < 0.0001) in the winter (Fig. 2a,b, respectively).

During the summer, while most of the study sites demonstrated significant cooling (increase in negative 
bias) with depth, the magnitude of bias varied dramatically among the six regions (Fig. S1). SST differed sig-
nificantly from STR temperatures at reef depths during the summer period in all regions except AMSM. In the 
mixed-model framework, five of the six regions showed cooling (STR minus SST) with depth, with only AMSM 
showing no significant relationship between temperature bias and depth during summer (Fig. S1a). Linear mixed 
model for summer and winter statistics underlying data are presented in Figs. S8 and S9, respectively. The MHI 
and the NWHI showed the strongest depth-dependent cooling, even though at some sites small positive biases 
(warmer STR values) were observed between the surface and 25 m depth (Fig. S1a,b). Similar patterns of overall 
negative bias with occasional positive bias at some sites occurred in the N-PRIA, and the CNMI-G. The EQ-PRIA 
islands of Howland, Baker, and Jarvis experienced significant interannual variability associated with the El Niño 
Southern Oscillation (ENSO), and had some of the greatest site-based biases occurring over a range of depths and 
the greatest mismatch between STR and SST Maximum Monthly Mean (MMM) months (Figs. S2 and S3). Due 
to the interannual nature of temperature variability in the equatorial Pacific and relatively weak seasonal cycle32, 
the MMM-based method developed by CRW may not be well-suited to this region, an issue that remains to be 
evaluated fully.

To illustrate our new method of calculating in situ coral bleaching heat stress at depth, DHW was calcu-
lated with three combinations of SST MMM thresholds and temperature data on Pearl & Hermes Atoll in the 
NWHI, representing one of the sites with strong stratification. We used (i) SST temperature with surface MMM; 
(ii) STR temperature at 23 m depth with (unadjusted) surface MMM; and (iii) STR temperature at 23 m depth 
with bias-adjusted MMM threshold (reflecting subsurface conditions) for the period 2007 through 2012 (Fig. 3). 
For the climatologically warmest month of September at the site, the bias between STR and SST at 23 m depth 
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was −0.93 °C, defining the bias-adjusted MMM (subsurface) threshold as 0.93 °C cooler than the surface MMM 
(Fig. 3a).

The DHW calculated from the SST time-series and SST MMM replicates CRW’s DHW product (Fig. 3b). The 
result shows four heat stress events that occurred during late 2007, 2009, 2010, and 2011, each with a duration of 
about two months. The 2009 event accumulated more than 4 °C-weeks (a stress level for likely bleaching), whilst 
the remaining three events accumulated fewer than 4 °C-weeks (Fig. 3b).

The second combination applied the surface MMM directly to the STR temperature data to estimate sub-
surface DHW at the 23 m depth. The result highlights that assuming applicability of the surface threshold at 
depth can lead to potential error (Fig. 3c). This calculation resulted in no DHW events during the time period, 
potentially underestimating heat stress at 23 m. The data analysis on our significantly large number of study sites 
spreading over a large ocean basin concludes that the application of satellite MMM to in situ temperature data 
must be accompanied by a bias evaluation to avoid a likely underestimate of bleaching heat stress.

However, the subsurface DHW calculated for the 23 m depth using bias-adjusted MMM threshold reveals 
heat stress events at 23 m during each of the five years (Fig. 3d), one more event (in 2008) than the surface DHW 

Figure 1. Subsurface temperature recorder (STR) study sites monitored by NOAA’s Pacific Reef Assessment 
and Monitoring Program (Pacific RAMP) in the six archipelagic regions: The Commonwealth of the Northern 
Mariana Islands and Guam (CNMI-G) with 17 islands (subsurface Santa Rosa Reef, Supply Reef, and Zealandia 
Bank not shown); the Northwestern Hawaiian Islands (NWHI) with nine islands (Gardner Pinnacles not 
shown); the Main Hawaiian Islands (MHI) with 10 islands (Lehua and Five Fathom Pinnacle not shown); 
American Samoa (AMSM) with six islands (South Bank not shown); the Northern Pacific Remote Island Areas 
(N-PRIA) with four islands; and the equatorial Pacific Remote Island Areas (EQ-PRIA) with three islands. A 
total of 1076 individual STR were deployed in depths ranging between 1 and 38 m at a total of 492 coral reef 
sites distributed among 49 islands in the six regions. Circles indicate the 457 sites with at least 365 consecutive 
days of data analyzed in the study. Color in circles represent STR deployment depths in meters (White = 0 to 
10, Yellow = 10.1 to 20, Red = 20.1 to 30, and Blue = 30.1 to 40). Overlapping in the location of STRs (circles) is 
due to instrument proximity. Global map insert shows the location of the 457 sites at the six regions, and their 
associated names and symbols. The maps were generated by using the free version of Google Earth Pro (https://
www.google.com/earth) with data from the following providers: Image Landsat/Copernicus, Image @2019 
Maxar Technologies, and Image @ 2019 CNES/Airbus. The NOAA Pacific RAMP STRs location is overlapped 
to the individual maps.

https://doi.org/10.1038/s41598-019-56232-1
https://www.google.com/earth
https://www.google.com/earth


4Scientific RepoRtS |         (2019) 9:19710  | https://doi.org/10.1038/s41598-019-56232-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

reveals (Fig. 3b). Furthermore, the magnitudes of most of the subsurface heat stress events at 23 m do not match 
those of the corresponding surface events, although the 2009 events were similar (Fig. 3d). Notably, the mag-
nitude of the subsurface DHW during the event in late-2010 was substantially greater (and above 4 °C-weeks; 
Fig. 3d) than the surface DHW (Fig. 3b). In contrast, the magnitude of the subsurface DHW during the event in 
late-2011 (Fig. 3d) was substantially smaller than the surface DHW (Fig. 3b).

As shown in the above example from Pearl and Hermes Atoll, adjusting the MMM threshold can have dra-
matic impacts on estimated levels of accumulated heat stress. To highlight these potential impacts at an island 
scale, Fig. 4 shows the temperature and three heat stress calculations at Pearl and Hermes Atoll between 2002 
and 2016 from surface to a depth of 38 m with depths binned every 5 m. The STR temperature bias relative to SST 

Region Islands

Commonwealth of the Northern Mariana Islands 
and Guam (CNMI-G, 17 islands)

Agrihan (3), Aguijan (1), Alamagan (2), Anatahan (1), Asuncion (3), Farallon de 
Pajaros (6), Guam (16), Guguan (3), Maug (17), Pagan (7), Rota (2), Saipan (12), 
Sarigan (3), Santa Rosa Reef (1), Supply Reef (1), Tinian (5), and Zealandia Bank (2)

Northwestern Hawaiian Islands (NWHI, 9 
islands)

French Frigate Shoals (22), Gardner Pinnacle (1), Kure Atoll (19), Laysan (4), Lisianski 
(17), Maro Reef (6), Midway Atoll (9), Necker (2), and Pearl & Hermes Atoll (30)

Main Hawaiian Islands (MHI, 10 islands) Hawai’i (10), Kaua’i (9), Lana’i (5), Lehua (3), Maui (11), Molokini (1), Molokai (7), 
Ni’ihau (2), O’ahu (13), and Five Fathom Pinnacle (1)

American Samoa (AMSM, 6 islands) Ofu and Olosega (13), Rose Atoll (11), South Bank (1), Swains (7), Ta’u (9), and 
Tutuila (25)

Northern Pacific Remote Island Areas (N-PRIA, 
4 islands) Wake Atoll (26), Johnston Atoll (10), Kingman Reef (20), and Palmyra Atoll (40)

Equatorial Pacific Remote Island Areas (EQ-PRIA, 
3 islands) Baker (13), Howland (9), and Jarvis (16)

Table 1. Names and abbreviations of Pacific coral reef regions, islands, atolls, and subsurface reefs monitored 
by NOAA’s Pacific Reef Assessment and Monitoring Program (Pacific RAMP) and studied in this analysis. The 
number of sites at each island with at least 365 consecutive days of in situ data is shown in parentheses.

Figure 2. Nighttime temperature bias (in situ STR minus satellite SST) at depth for 457 sites from all six regions 
(n = 457). (a) Summer temperature bias during the climatologically warmest month as determined by the SST 
record (Fig. S8 and Table S1 shows details on statistics underlying data). (b) Winter temperature bias during the 
month that is six months offset from the summer climatologically warmest month (Fig. S9 and Table S2 shows 
details on statistics underlying data). In both seasons the blue line represents the linear mixed model regression 
and the dashed lines represent standard error of the model fit. The six regions are identified with different 
symbols and colors as defined in the legend. Both summer and winter temperature bias show significant 
association with depth (p ≪ 0.001 and p < 0.01, respectively). Histogram on top of plots refers to x-axis and 
represents the total count of sites associated to temperature bias bins. Histogram on right side of plots refers to 
y-axis and represents the total count of STRs associated to depth bins.
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data shows seasonally-varying temperature differences increasing in magnitude with depth (Fig. 4) and reaching 
−3.87 °C at 38 m (Fig. 4a). Within the top 10 m, the unadjusted subsurface DHW roughly matches surface DHW 
events with similar heat stress intensity up to 8 °C-weeks (Fig. 4b). Below 10 m, however, the unadjusted data arte-
factually suggest a refuge from stress, with few DHW positive events, and none above 4 °C-weeks, emphasizing 
the potential dangers of applying an unadjusted threshold to in situ data (Fig. 4b).

In contrast, subsurface DHW metrics using a bias-adjusted threshold (Fig. 4c) show that in most cases, 
heat stress events occurred from the surface to depths of 38 m with no apparent depth refuge from heat stress. 
Furthermore, the majority of the differences between the surface and bias-adjusted subsurface DHW (Fig. 4c,d) 
reveal greater heat stress at depth, especially beyond 30 m. The difference between bias-adjusted subsurface DHW 
and surface values (Fig. 4d) ranges from negative to positive, but positive differences appear at all depths and all 
years – surface DHW underestimates heat stress at depth most of the time. Notably, negative values of this differ-
ence (i.e., lower DHW at depth than in the satellite measurement) appear to be associated with a delayed onset of 
subsurface heat stress compared with surface values (e.g., late-2014 in the 40 m-depth bin).

Expanding our focus to sites across the central and western Pacific (Fig. 1), we assessed the relationship 
between depth and our in situ heat stress metric (bias-adjusted subsurface DHW, Fig. 5). We found no significant 
association between depth and subsurface heat stress considering all 1,453 recorded DHW positive heating events 
in our analysis (Fig. 5, Z = 1.42, p > 0.05, NS). We estimated the correlation between depth and subsurface DHW 
in a generalized linear mixed model (GLMM) framework, using the heating event severity as our response vari-
able, calculated as the maximum DHW for each of the 1,453 positive DHW heating events recorded at 388 STR 
sites (of the total 457 sites). Controlling for site-level variation using site, island, and region as random effects, the 
GLMM showed that subsurface DHW calculated using bias-adjusted MMM thresholds show, collectively, no sig-
nificant association between heating event severity and depth (slope: +0.05 °C-weeks for every 10 m, NS; Fig. 5). 
This lack of correlation between DHW and depth was apparent considering both the dataset of all heating events 
(N = 1,453, Z = 1.416, p = 0.157), and only those events considered severe (i.e. DHW ≥4 °C-weeks, N = 501, 
z = −10.24, p = 0.496). The only exception was in the CNMI-G, where we found a significant increase of DHW 
with depth (z = 2.626, p < 0.01). This pattern of ‘no refuge’ at depth was consistent across the six regions (Fig. S4), 
with no region showing a significant decrease in heat stress with depth.

Finally, we compared surface heat stress (i.e. DHWSST) with the bias-adjusted subsurface DHW metric 
(DHWSTR), analyzing estimates of severity from 501 severe heating events (DHW ≥4 °C-weeks or above by either 
metric, Fig. 6). In this comparison, the surface metrics (DHWSST) showed a significant tendency to underestimate 
subsurface heat stress (DHWSTR) (Fig. 6a,b). Overall, the surface heat stress showed values 39.3% lower than the 
bias-adjusted subsurface value (Fig. 6b, mean accuracy ratio = 60.7% +/− 1 SE bounds: 51.4–71.7%, p < 0.01). 
The magnitude and vertical profile of this underestimation of event severity are region dependent within the 
spatial domain of the study: the MHI and NWHI show no significant difference between surface DHWSST and 

Figure 3. Satellite (SST) and 23 m-depth in situ (STR) temperature and calculated heat stress (DHW) for Pearl 
and Hermes Atoll, 2007–2012. (a) SST (red dots) and STR (blue dots) daily temperature time series with SST 
and STR bias-adjusted MMM thresholds (red and blue lines, respectively) for the SST climatologically warmest 
month (September, gray bars). (b) Surface DHW (MMM applied to SST surface temperature). (c) Subsurface 
unadjusted DHW (MMM applied directly to STR temperature) – the inappropriate nature of this combination 
is identified with the red prohibition sign). (d) Bias-adjusted subsurface DHW (bias-adjusted MMM applied to 
STR temperature). Horizontal black dashed line in (b,d) represents the threshold of DHW associated with the 
start of severe bleaching (i.e., DHW = 4 °C-weeks).
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subsurface DHWSTR; in contrast, the surface value in each of the other four regions significantly underestimated 
subsurface heat stress (Figs. S5 and S6).

There was no consistent, significant association across the whole spatial domain of the study in the difference 
between surface and subsurface DHW with depth (Fig. 6c, NS, p > 0.1). However, the association of bias with 
depth varies dramatically, even with opposite relationships, among regions (Fig. S7). While there were no signif-
icant patterns in difference of surface and subsurface DHW with depth in the MHI, NWHI, and EQ-PRIA, both 
AMSM and N-PRIA showed underestimation of stress by SST primarily in the shallows (z = −2.086, p < 0.05 and 
z = −2.757, p < 0.01, respectively), while CNMI-G showed greater underestimation of stress by SST primarily at 
depth (z = −2.437, p < 0.05).

Discussion
Due to direct and indirect effects of ocean warming, coral reefs are increasingly being affected by extreme heat 
stress events14,32, which represent one of the greatest threats to coral reefs in a changing climate33–35. Researchers 
have suggested that depth may provide a refuge for corals from bleaching33,34,36,37, but varying results had left this 
hypothesis as an area of active research35. The literature provides examples of both effects under heat stress: that 
deeper reef areas provide refuge for some coral reefs28,31,33,36,38,39, and also that this “deep reef refugia hypothesis” 
should not be assumed as a broad ecosystem-wide phenomenon34,40.

Across the domain of our study, depth does not provide a consistent refuge from coral bleaching heat stress 
down to ~35 meters. Our results indicate it is likely that many deeper coral reefs are at least as vulnerable to 
climate variability and change as shallower reefs35. After adjusting for depth-dependent thermal biases, we show 
coral heat stress event severity does not decline with depth across the western and central Pacific domain of our 

Figure 4. An example results of the new method of using bias-adjusted MMM to estimate DHW at depth of 
38 m at Pearl & Hermes Atoll site between 2002 and 2016 (depths binned every 5 m, n = 30). (a) In situ (STR) 
temperature bias relative to satellite (SST) data (red = STR warmer, blue = STR cooler). (b) Subsurface DHW at 
depth using unadjusted MMM threshold (inappropriate in situ DHW calculation identified with red prohibition 
sign). (c) Subsurface DHW using bias-adjusted MMM threshold. (d) Difference between surface and bias-
adjusted subsurface DHW (red indicates surface DHW is greater and blue indicates surface DHW lower than 
subsurface DHW).
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study (Fig. 5). This result is particularly striking given the apparently robust but artefactual refuges present in STR 
data analyzed without appropriate bias adjustment (e.g. Fig. 4b). The lack of a depth refuge from subsurface heat 
stress is consistent across the entire spatial domain of our dataset as well as at individual regional scale (Fig. S4). It 
is notable that the only significant regional scale association of bias-adjusted subsurface DHW event severity and 
depth was in CNMI-G, where the DHW increased with depth (Fig. S4).

Our results also show that relying on SST data alone could pose the potential risk of underestimating 
subsurface heat stress, as using satellite products alone tends to report levels of stress 39% lower, on average, 
than those estimated by our in situ DHW (Fig. 6). Surface estimates of DHW provide an excellent perspec-
tive of what’s occurring on broad spatial scales, but our results suggest that what’s occurring at specific points 
on reefs can be substantially worse than surface estimates alone would suggest. Surface heat stress substan-
tially differed from bias-adjusted subsurface metrics in about half of the events we examined, counting both 
over- and under-estimation; i.e. 52.1% of events (261 of 501) had greater than 30% difference (Fig. 6b). Among 
these discrepancies, underestimation is arguably more cause for concern and occurred over twice as often as 
overestimation.

The ability of surface heat stress measurements to represent subsurface conditions varies by region, site, 
and sometimes even time. These variations make it difficult to simply state under which contexts surface values 
(DHWSST) will be representative of subsurface conditions (DHWSTR). We found no consistent association between 
depth and the difference between surface and subsurface DHW across the domain of our analysis (Figs. 6c, S7). 
This would suggest that, after correcting the MMM threshold for known depth-dependent biases, the surface 
DHW, on average, represents subsurface conditions as well at depth as it does in the shallows. However, at the 
regional scale, there was substantial variation in the representation. More specifically, in some regions there was 
no pattern with depth (MHI, NWHI, EQ-PRIA), in some there was apparent underestimation primarily in shal-
lower depths (AMSM, N-PRIA), and in others underestimation was primarily in deeper sites (CNMI-G; Fig. S7). 
In two regions, MHI and NWHI, there was no significant difference between surface and subsurface DHW across 
all depths, suggesting that subsurface conditions are generally well represented by surface values. Further study 
on these patterns is needed. Coral reefs can experience horizontal temperature gradients and temporal varia-
bility on scales that SST products cannot resolve, and in some cases this difference in scale can lead to incorrect 
assessment of bleaching heat stress in specific parts of reefs at specific times3,41,42. This study provides a method to 
enhance the service provided by near real-time satellite monitoring at reef sites with sufficient in situ temperature 
data records.

Figure 5. Maximum subsurface heat stress estimates for all 1,453 heating events at depth for all six regions 
and 457 sites across the western and central Pacific (n = 1,453). The blue line represents the linear mixed 
model regression fit and the blue dashed lines bound the standard error of the model fit showing no significant 
association between depth and observed heat stress events (NS, p > 0.05). Vertical light gray lines show DHW 
values reflecting likely bleaching (DHW = 4 °C-weeks, dashed) and likely widespread bleaching and significant 
mortality (DHW = 8 °C-weeks, solid). Fig. S10 and Table S3 shows statistical summary from linear mixed model 
of relationship between Maximum DHW and depth during major warming events. The six regions are identified 
with different symbols and colors as defined in the legend. Table S3 shows details on statistics underlying data.
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There are four main caveats to our conclusions. First, the adjustments we apply to bleaching thresholds in 
situ mirror those used for regional adjustment of satellite bleaching thresholds3, but are not based on in situ 
biological bleaching observations. The regional corrections of satellite records have performed well in modeling 
bleaching3,13, but whether this pattern is consistent across depths has yet to be shown at scale. Confirming that 
these in-situ adjustments are consistent with biological responses will be a focus of further work. Second, our 
method rests on the current definition of the MMM threshold by NOAA’s CRW, which, due to the fact it assigns 
a ‘summer’ month (i.e. the climatologically warmest month), assumes some degree of annual seasonality. Our 
calculations assumed that the warmest month used by CRW at the surface applies at depth as well, which is gen-
erally, but not universally true (Figs. S1 and S2), especially for deeper water depths. We observed some important 
deviations between SST warmest month and STR warmest month in the EQ-PRIA, where the assumption of con-
sistent seasonality does not hold43 (Figs. S1 and S2). Even in the face of that variability, we believe that using the 
long-running SST data is a more responsible choice than using the available shorter term in situ data to define the 
warmest month. Third, given the relatively short-time series from most in situ datasets, we assume that the years 
of data used to define the bias between SST and STR time series are representative of all years. This assumption 
becomes more tenuous for shorter time series and under varied climatic conditions such as positive and negative 
phases of ENSO, as such events in the in situ record make it potentially less representative of the long-term cli-
matology. Finally, although discussions of the deep refugia hypothesis often include or invoke the poorly studied 
mesophotic depths from 30 to 150 m, our dataset does not extend beyond 38 m, so only provides a perspective on 
the presence or absence of thermal refugia to that depth. However, with more distinctive thermal conditions in 
mesophotic depths compared with the sea surface, the proposed method may be even more applicable to deeper 
mesophotic temperature datasets – this remains to be tested.

The patterns we show assume that coral bleaching thresholds track a location’s long-term maximum tem-
peratures, and as long-term temperatures tend to decrease with depth (Fig. 2a), our modeled thresholds tend to 
decrease with depth as well. As the thresholds we use are modeled on in-situ temperatures and not on realized 
patterns of biological bleaching response, our results may miss other important drivers of bleaching thresholds, 
including light, water quality, and species/colony-specific performance. Therefore, our results do not imply that 
there would never be respite from coral bleaching at depth, just that heat stress events above location-specific 
baselines do not broadly decrease with depth.

Figure 6. Subsurface (DHWSTR) and surface (DHWSST) DHW comparison for 501 severe heat stress events 
(n = 501), defined as events with a maximum severity of 4 °C-weeks or greater by either metric. (a) Subsurface 
vs surface DHW maximum event severity. Region-mean DHW (only major events) is shown by a larger symbol 
with black whiskers indicating standard error (Fig. S11 and Table S4 shows details on statistics underlying data). 
Minor DHW events of <4 °C-weeks by both metrics are shown in pale colors for reference. (b) Distribution of 
ratio of surface to subsurface DHW for severe heating events (DHWSST/DHWSTR), plotted on a log2 transformed 
axis (Fig. S12 and Table S5 shows details on statistics underlying data). Counts with DHWSST = 0 are plotted 
at ratio = 10%; counts with DHWSTR = 0 are plotted at ratio = 1000%; and counts with both DHW values = 0 
are plotted at 100%. The vertical gray bar highlights the mean mixed model estimate of ratio of surface to 
subsurface DHW (i.e. black line at 60.7%) with standard error of the model fit in gray (±1 standard error range: 
51.4–71.7%), indicating overall underestimation by DHWSST of 39.3% (**p < 0.01). (c) Relationship between 
depth and Accuracy Ratio in DHW estimates shows no significant association (NS, p > 0.05. Fig. S13 and 
Table S6 shows details on statistics underlying data). The six regions are identified with different symbols and/or 
colors as defined in the legend.
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Light exposure also plays a major role in causing bleaching27, and is attenuated with depth even in olig-
otrophic coral reef waters (albeit more slowly)44,45. A number of studies have shown bleaching declining with 
depth31,33,36,38,39, but others have shown either increasing bleaching at depth or no relation with depth34,35,37. As 
the coral-algal holobiont can adapt to local conditions of temperature and light, the interaction of exposure to 
heat stress, exposure to light, the bleaching tolerance of a given coral, water quality, and past heat stress exposure 
(among other stressors) make bleaching responses complex to model. Our results suggest that to best model 
bleaching will require at least accurate models of both heat and light exposure at the coral27.

While our two major conclusions (i.e. that heat stress exposure does not decline reliably with depth, and satel-
lites tend to under-estimate in situ heat stress) here are “bad news” for coral reef persistence, the method we apply 
does identify a substantial number of sites that show reduced in situ heat stress relative to their satellite records. 
Of all 257 sites with major bleaching events (DHW >4), 111 (43%) of them showed at least one event in which in 
situ stress was less than that reported in the satellite (Fig. 6). These “relative refugia” sites are in the minority in our 
dataset, but may be of particular interest to researchers and managers. For example, a disproportionate number of 
these sites (81/111; 73%) occur in the Northwest Hawaiian Islands (Fig. S6C), a region characterized by internal 
wave activity during stratified summer conditions. The technique we apply here can serve to identify such regions 
of relative refugia to aid in management.

Comprehensive geographic and temporal coverage is a universally acknowledged strength of satellite-derived 
SST data, at least since the beginning of the ‘satellite era’ in the early 1980s41. Subsurface in situ temperature data-
sets rarely match the 35-year coverage and don’t compare with the spatial repleteness that today’s best SST prod-
ucts can provide41,46. However, in situ time-series observations provide location-specific information, accurately 
representing variation across small spatial scales, sub-daily time scales, and down to any depths a temperature 
recorder can be deployed25. By combining these data types as we have done here, the long climatological reach of 
SST data and the location-specific accuracy of subsurface in situ data can be combined to provide more accurate 
estimates of physiologically-relevant heat stress to corals. Our analysis may help to enable identification of unde-
tected bleaching at depth, as well as actual rare depth refuges and their characteristics. We also expect the method 
can provide relevant meaning for coastal managers and be applied to output from climate modelling to better 
understand the impact future climate change may bring to reefs.

Materials and Methods
Study sites and data description. The STR data were collected at coral reef study sites monitored by 
NOAA’s Pacific RAMP in the western and central Pacific spanning an area of 31,074,540 km2 (Fig. 1 and Table 1) 
across six regions: the Mariana Archipelago (Commonwealth of the Northern Mariana Islands and Guam, 
CNMI-G); the Northwestern Hawaiian Islands (NWHI); the Main Hawaiian Islands (MHI); American Samoa 
(AMSM); the northern Pacific Remote Island Areas (N-PRIA); and the equatorial Pacific Remote Island Areas 
(EQ-PRIA). The Pacific Remote Island Areas were divided into two subregions, N-PRIA and EQ-PRIA, based on 
the significant oceanographic differences observed between the two groups32.

The individual STR positions within these six regions were selected to provide baseline observations of the 
prevailing spatial and temporal thermal conditions necessary to understand and predict the ecological impacts of 
climate change on coral reef ecosystems. A total of 1076 individual STRs, with an accuracy of ±0.002 °C (SeaBird 
Electronics recorders SBE 39 and 56 models), were deployed in depths ranging between 1 and 38 m at a total of 
492 coral reef sites distributed among 49 islands, atolls, and subsurface reefs within the six regions. The STRs were 
deployed at sites for multiple years started as earlier as 2002 and replaced every 2–3 years until 2017. Among these 
492 sites, 457 sites (93%) with at least 365 days of continuous data were analyzed.

SST and heat stress time series data for the same time period (2002 to 2017) than STR data were extracted 
from NOAA Coral Reef Watch’s (CRW) daily global 5-km v3.1 coral bleaching heat stress product suite that is 
based on CRW’s CoralTemp v1.041,47 SST dataset. SST data were extracted from the 5-km pixels that contain or 
were nearest to the survey sites.

SSt vs StR Bias analysis and threshold adjustment. For each of the 457 sites, we calculated the 
bias between coincident SST (nighttime temperature records) and STR nighttime (local sunset to sunrise) 
daily-averaged temperature records available within the years 2001–2017. We define an STR site as a stable posi-
tion for a series of temperature loggers over time. We calculated the difference between daily, nighttime-only 
temperatures from STR and SST records (STR-SST) for each STR site to examine overall patterns in the daily tem-
perature difference with depth and region (Figs. 2 and S1a,b). We evaluated the correlation between mean daily 
temperature bias and depth using linear mixed regression models that included region and island, as random 
effects. Statistical models of temperature bias were calculated using the glmmTMB function from the R package 
glmmTMB, using Gaussian errors with an exponential transform, and evaluated for uniformity of residuals, over-
dispersion, zero-inflation, and heteroscedasticity using the R package DHARMa48.

We used the temperature threshold of CRW’s daily global 5 km v3.1 product suite to determine coral bleaching 
heat stress at the surface. This “MMM” (maximum of the monthly mean climatologies) reflects the climatologi-
cally warmest month based on SST data from 1985–20123 (Fig. 3a). Throughout our analysis, we used the warm-
est month as defined by the CRW’s multi-decadal SST datasets, which exactly matches the STR observed warmest 
month 45% of the time, is offset by one month or less 83% of the time, and is offset by two months or less 96% of 
the time (Figs. S1 and S2). Note: per the CRW methodology, DHW is accumulated only for SST values that are at 
least one degree Celsius above the MMM threshold.

To examine seasonal patterns, which varies per region, in bias between STR and SST we calculated bias across 
all months; during the climatologically warmest month from SST data (representing summer); and during the 
month that is six months offset from the climatologically warmest month (representing winter).We estimated 
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the bias between STR and SST data at each depth during the warmest month across all years for which STR data 
are available, as the mean of daily differences between the STR and SST data (see Fig. 3a, dark bars). Finally, we 
subtracted the depth-dependent bias from the surface MMM threshold to obtain the bias-adjusted subsurface 
MMM threshold at each depth for each location.

DHW calculation. The DHW, as developed by Coral Reef Watch (CRW)3, is a cumulative measure of the 
intensity and duration of coral bleaching heat stress, and is expressed in the unit °C-weeks. The DHW calculation 
requires two inputs – (i) daily temperature values experienced and (ii) a threshold for expected summertime 
temperature (MMM). DHW is calculated by subtracting the MMM threshold from the temperature time series, 
then summing anomalies greater than or equal to 1 °C over a rolling 12-week (84-day) window. Here, we calcu-
lated DHW using three combinations of inputs: (i) applying the SST MMM threshold to SST data, emulating the 
CRW product (SST DHW, Fig. 3a,b); (ii) applying the SST MMM threshold directly to STR data to generate STR 
DHW (Fig. 3c); and (iii) applying the STR bias-adjusted MMM threshold, based on the calculations defined in the 
SST vs STR Bias Analysis and Threshold Adjustment section, to STR data to generate the STR bias-adjusted DHW 
(Fig. 3d). SST and SST DHW timeseries are available for each location, while STR temperatures, STR non-bias 
adjusted DHW, and STR bias-adjusted DHWs are available for each depth at each location. DHW values between 
4 and 8 °C-weeks are taken to indicate likely bleaching, while 8 °C-weeks and above indicate likely widespread 
bleaching and significant mortality36.

event analysis. We analyzed all 457 sites for the effect of adjusting the MMM threshold. Heat stress events 
were identified as periods during which any of our DHW estimates (SST, STR unadjusted, STR bias-adjusted) 
were non-zero. For each of the 1,453 events recorded, we noted the maximum DHW achieved (event max DHW) 
for each of the three methods. Exceptions to this occurred at the beginning or end of an STR time series, in which 
cases we noted maximum severity observed during the period of STR data availability.

Heat stress with depth. We used the event-scale maximum STR bias-adjusted DHW (Fig. 3d) as the 
response variable for a set of GLMMs. In the GLMMs, we correlated event-scale maximum STR bias-adjusted 
DHW with depth, while holding the site, island, and region in which the event was recorded as random varia-
bles in the model. As these models were fit using zero-inflated negative binomial errors (i.e. a discrete distribu-
tion), the response variable was rounded to the nearest DHW integer value. All models were calculated using the 
glmmTMB function from the R package glmmTMB, and evaluated for uniformity of residuals, overdispersion, 
zero-inflation, and heteroscedasticity using the R package DHARMa48. To determine the most appropriate model, 
results were compared among models with: Gaussian errors using a range of transformations (square root, third 
root, log); models with zero-inflated negative binomial errors; and models with zero-inflated Poisson error. All 
Gaussian-error models showed significant overdispersion and zero-inflation, and were therefore discarded. In 
contrast, negative binomial and Poisson model results were similarly well-behaved with regard to overdispersion 
and zero-inflation, but the negative binomial model outperformed Poisson in both uniformity and goodness of 
fit. Therefore, negative binomial models were chosen for further analysis.

SSt vs StR bias-adjusted DHW severity. We also evaluated the ability of the surface heat stress to esti-
mate subsurface values by examining deviations from a 1:1 correlation between the surface and bias-adjusted 
subsurface DHW (Fig. 6a), and the difference between these (Fig. 6b,c). As our statistic of difference, we used 
the “Accuracy Ratio”, i.e., the ratio of surface to subsurface maximum DHW recorded in each event (DHWSST/
DHWSTR), which we log2-transformed in both visualizations and statistics. All descriptions of results of the 
Accuracy Ratio, however, have been back-transformed into percentages based on the ratio. In plots, instances 
where DHWSTR was zero were treated as a large, fixed value (800%, i.e. a log2 ratio of +3), but in statistical test, 
these values were removed as they generated models with poor fits. Similarly, where DHWSST was zero a small 
fixed value (12.5%, i.e. a log2 ratio of −3) was assigned for plots, but these values were excluded in the statistical 
test. Instances with both values equal to zero (rarely present, only as an artefact of rounding fractional DHW 
events) were treated as accuracy ratios of 100% or log2 accuracy ratios of 0, in both plots and statistics.

Data availability
Raw in situ temperature data used in this study can be downloaded from https://www.nodc.noaa.gov/access/
index.html. Satellite-derived temperature data used in this study can be downloaded from CRW website (https://
coralreefwatch.noaa.gov/satellite/index.php).

Received: 21 June 2019; Accepted: 26 November 2019;
Published: xx xx xxxx

References
 1. McWilliams, J. P., Côté, I. M., Gill, J. A., Sutherland, W. J. & Watkinson, A. R. Accelerating Impacts of Temperature-Induced Coral 

Bleaching in the Caribbean. Ecology 86, 2055–2060 (2005).
 2. Eakin, C. M. Coral Bleaching. In Coral Bleaching (ed. M. J. H. van Oppen, J. M. L.) 205, (Springer-Verlag, 2009).
 3. Liu, G. et al. Reef-scale thermal stress monitoring of coral ecosystems: New 5-km global products from NOAA coral reef watch. 

Remote Sens. 6, 11579–11606 (2014).
 4. Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).
 5. Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50, 839–866 (1999).
 6. Glynn, P. W. Coral reef bleaching: ecological perspectives. Coral Reefs 12, 1–17 (1993).
 7. Brown, B. E. Coral bleaching: causes and consequences. Coral reefs 16, S129–S138 (1997).

https://doi.org/10.1038/s41598-019-56232-1
https://www.nodc.noaa.gov/access/index.html
https://www.nodc.noaa.gov/access/index.html
https://coralreefwatch.noaa.gov/satellite/index.php
https://coralreefwatch.noaa.gov/satellite/index.php


1 1Scientific RepoRtS |         (2019) 9:19710  | https://doi.org/10.1038/s41598-019-56232-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

 8. Graham, N. A. J. et al. Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conserv. Biol. 
21, 1291–1300 (2007).

 9. Alvarez-Filip, L., Dulvy, N. K., Gill, J. A., Côté, I. M. & Watkinson, A. R. Flattening of Caribbean coral reefs: Region-wide declines 
in architectural complexity. Proc. R. Soc. B Biol. Sci. 276, 3019–3025 (2009).

 10. Friedlander, A. M. & Parrish, J. D. Habitat characteristics affecting fish assemblages on a Hawaiian coral reef. J. Exp. Mar. Bio. Ecol. 
224, 1–30 (1998).

 11. Morgan, S. P. et al. Effects of climate-induced cora l bleaching on cora l-reef fishes — Ecological and economic consequen ces. 
Oceanogr. Mar. Biol. 46, 251–296 (2008).

 12. Gang, L. et al. NOAA Coral Reef Watch’s 5 km Satellite Coral Bleaching Heat Stress Monitoring Product Suite Version 3 and Four-
Month Outlook Version 4. In Coral Reef Remote Sensing: A Guide for Mapping, Monitoring and Management (ed. et al.) 32, 285–312 
(Springer, Dordrecht, 2013).

 13. Heron, S. F., Maynard, J. A., Van Hooidonk, R. & Eakin, C. M. Warming Trends and Bleaching Stress of the World’s Coral Reefs 
1985–2012. In Scientific Reports (ed. Goodman, J. A. et al.) 6, 285–312 (Springer, Dordrecht, 2016).

 14. Heron, S. F. et al. 285–312, https://doi.org/10.1007/978-90-481-9292-2_11 (Springer, Dordrecht, 2013).
 15. Alvarez-Filip, L., Dulvy, N. K., Gill, J. A., Côté, I. M. & Watkinson, A. R. Flattening of Caribbean coral reefs: Region-wide declines 

in architectural complexity. Proc. R. Soc. B Biol. Sci., https://doi.org/10.1098/rspb.2009.0339 (2009).
 16. Marshall, P. & Schuttenberg, H. Adapting coral reef management in the face of climate change. Phinney JT, Hoegh-guldb. O, Kleypas 

J, Ski. WJ, Strong A Coral reefs Clim. Chang. Sci. Manag. Am. Geophys. Union, Washington, DC 223–241 (2006).
 17. Barton, I. & Pearce, A. Validation of GLI and other satellite-derived sea surface temperatures using data from the Rottnest Island 

ferry, Western Australia. J. Oceanogr. 62, 303–310 (2006).
 18. Smale, D. A. & Wernberg, T. Satellite-derived SST data as a proxy for water temperature in nearshore benthic ecology. Mar. Ecol. 

Prog. Ser. 387, 27–37 (2009).
 19. Lathlean, J. A., Ayre, D. J. & Minchinton, T. E. Rocky intertidal temperature variability along the southeast coast of Australia: 

Comparing data from in situ loggers, satellite-derived SST and terrestrial weather stations. Mar. Ecol. Prog. Ser. 439, 83–95 (2011).
 20. Smit, A. J. et al. A coastal seawater temperature dataset for biogeographical studies: Large biases between in situ and remotely-sensed 

data sets around the coast of South Africa. PLoS One 8, 13 (2013).
 21. Baldock, J., Bancroft, K. P., Williams, M., Shedrawi, G. & Field, S. Accurately estimating local water temperature from remotely 

sensed satellite sea surface temperature: A near real-time monitoring tool for marine protected areas. Ocean Coast. Manag. 96, 
73–81 (2014).

 22. Leichter, J. J., Helmuth, B. & Fischer, A. M. Variation beneath the surface: Quantifying complex thermal environments on coral reefs 
in the Caribbean, Bahamas and Florida. J. Mar. Res. 64, 563–588 (2006).

 23. Neal, B. P. et al. When depth is no refuge: Cumulative thermal stress increases with depth in Bocas del Toro, Panama. Coral Reefs 33, 
193–205 (2014).

 24. Stobart, B., Mayfield, S., Mundy, C., Hobday, A. J. & Hartog, J. R. Comparison of in situ and satellite sea surface-temperature data 
from South Australia and Tasmania: how reliable are satellite data as a proxy for coastal temperatures in temperate southern 
Australia? Mar. Freshw. Res. 67, 612–625 (2015).

 25. Schramek, T. A., Colin, P. L., Merrifield, M. A. & Terrill, E. J. Depth-Dependent Thermal Stress Around Corals in the Tropical Pacific 
Ocean. Geophys. Res. Lett. 9739–9747, https://doi.org/10.1029/2018GL078782 (2018).

 26. Glynn, P. W. Coral reef bleaching: Facts, hypotheses and implications. Glob. Chang. Biol. 2, 495–509 (1996).
 27. Skirving, W. et al. Remote sensing of coral bleaching using temperature and light: Progress towards an operational algorithm. 

Remote Sens. 10, 18 (2018).
 28. Bridge, T. C. L. et al. Depth-dependent mortality of reef corals following a severe bleaching event: implications for thermal refuges 

and population recovery. F1000Research 1–15, https://doi.org/10.12688/f1000research.2-187.v3 (2014).
 29. Oliver, T. A. & Palumbi, S. R. Distributions of stress-resistant coral symbionts match environmental patterns at local but not regional 

scales. Mar. Ecol. Prog. Ser. 378, 93–103 (2009).
 30. Safaie, A. et al. Author Correction: High frequency temperature variability reduces the risk of coral bleaching. Nat. Commun. 9, 2244 

(2018).
 31. Rocha, L. A. et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science (80-.). 361, 

281–284 (2018).
 32. Brainard, R. et al. The State of Coral Reef Ecosystems of the U.S. Pacific Remote Island Areas. 338–372 (2005).
 33. Riegl, B. & Piller, W. E. Possible refugia for reefs in times of environmental stress. Int. J. Earth Sci. 92, 520–531 (2003).
 34. Bongaerts, P. et al. Deep reefs are not universal refuges: Reseeding potential varies among coral species. Sci. Adv. 3, 1–12 (2017).
 35. Smith, T. B. et al. Caribbean mesophotic coral ecosystems are unlikely climate change refugia. Glob. Chang. Biol. 22, 2756–2765 

(2016).
 36. Baird, A. H. et al. 2018 - Baird - Decline in Bleaching with Depth. 603, 257–264 (2018).
 37. Frade, P. R. et al. Deep reefs of the Great Barrier Reef offer limited thermal refuge during mass coral bleaching. Nat. Commun. 9, 1–8 

(2018).
 38. Smith, T. B., Glynn, P. W., Maté, J. L., Toth, L. T. & Gyory, J. A depth refugium from catastrophic coral bleaching prevents regional 

extinction. Ecology 95, 1663–1673 (2014).
 39. Muir, P. R., Marshall, P. A., Abdulla, A. & Aguirre, J. D. Species identity and depth predict bleaching severity in reef-building corals: 

Shall the deep inherit the reef? Proc. R. Soc. B Biol. Sci. 284 (2017).
 40. Morais, J. & Santos, B. A. Limited potential of deep reefs to serve as refuges for tropical Southwestern Atlantic corals. Ecosphere 9 

(2018).
 41. Liu, G. et al. NOAA Technical Report NESDIS 143 NOAA Coral Reef Watch 50 km Satellite Sea Surface Temperature-Based 

Decision Support System for Coral Bleaching Management. 41, https://doi.org/10.1007/slll62-008-9105-8 (2013).
 42. Castillo, K. D., Lima, F. P., Karl, D. C. & Fernando, P. Lima. Comparison of in situ and satellite-derived (MODIS-Aqua/Terra) 

methods for assessing temperatures on coral reefs. Limnol. Oceanogr.: Methods 8, 107–117, https://doi.org/10.4319/lom.2010.8.107 
(2010).

 43. Brainard, R. E. et al. Ecological Impacts of the 2015/16 El Niño in the Central Equatorial Pacific. Bull. Am. Meteorol. Soc. 99, S21–S26 
(2018).

 44. Lesser, M. P., Mazel, C., Phinney, D. & Yentsch, C. S. Light absorption and utilization by colonies of the congeneric hermatypic corals 
Montastraea faveolata and Montastraea cavernosa. Limnol. Oceanogr. 45, 76–86 (2000).

 45. Takahashi, S., Nakamura, T., Sakamizu, M., Van Woesik, R. & Yamasaki, H. Repair Machinery of Symbiotic Photosynthesis as the 
Primary Target of Heat Stress for Reef-Building Corals. Plant Cell Physiol. 45, 251–255 (2004).

 46. Karl, D. M. & Lukas, R. The Hawaii Ocean Time-series (HOT) program: Background, rationale and field implementation. Deep Sea 
Res. Part II Top. Stud. Oceanogr. 43, 129–156 (1996).

 47. Skirving, W. J. et al. The relentless march of mass coral bleaching: A global perspective of changing heat stress. Coral reefs.
 48. Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.2.0, 

https://CRAN.R-project.org/package=DHARMa (2018).

https://doi.org/10.1038/s41598-019-56232-1
https://doi.org/10.1007/978-90-481-9292-2_11
https://doi.org/10.1098/rspb.2009.0339
https://doi.org/10.1029/2018GL078782
https://doi.org/10.12688/f1000research.2-187.v3
https://doi.org/10.1007/slll62-008-9105-8
https://doi.org/10.4319/lom.2010.8.107
https://CRAN.R-project.org/package=DHARMa


1 2Scientific RepoRtS |         (2019) 9:19710  | https://doi.org/10.1038/s41598-019-56232-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

Acknowledgements
We thank each of the editors and reviewers for helpful guidance and support throughout the submission process. 
We also thank Jamison Gove and Kevin Trick from the National Oceanic and Atmospheric Administration’s 
(NOAA) Pacific Islands Fisheries Science Center (PIFSC) for thoughtful guidance and suggestions to improve 
this manuscript. We are grateful for support from the NOAA’s Coral Reef Conservation Program, NOAA’s Ocean 
Remote Sensing Program, PIFSC, and the University of Hawaii (UH) Joint Institute for Marine and Atmospheric 
Research (JIMAR). We are grateful for substantial financial, operational, and technical support provided to the 
NOAA National Coral Reef Monitoring Program by the NOAA Coral Reef Conservation Program (CRCP), the 
NOAA Office of Marine and Aviation Operations, PIFSC, and UH JIMAR. We also thank the officers and crews 
of the NOAA ships Townsend Cromwell, Oscar Elton Sette, and Hi’ialakai that operationally supported the field 
deployment and recovery of the many hundreds of subsurface temperature recorders used in this study. Finally, 
we thank the dozens of field scientists and divers that deployed and recovered each of these instruments over the 
past 17 years. The scientific results and conclusions, as well as any views or opinions expressed herein, are those of 
the author and do not necessarily reflect the views of NOAA or the Department of Commerce.

Author contributions
R.M.V., T.O., S.J.C., R.B. and S.F.H. designed the study; R.M.V., T.O., R.B., S.J.C., N.P. and Ch. Y. contributed 
to data collection; R.M.V., T.O., G.L., S.J.C. and S.F.H. conducted and performed data processing and analysis. 
R.M.V. and T.O. produced figures; R.M.V. and T.O wrote the manuscript, with all authors contributing to 
manuscript revisions; R.B., T.O. and C.M.E. attracted funds for the project.

competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-019-56232-1.
Correspondence and requests for materials should be addressed to R.M.V. or T.O.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-56232-1
https://doi.org/10.1038/s41598-019-56232-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	The Rarity of Depth Refugia from Coral Bleaching Heat Stress in the Western and Central Pacific Islands
	Results
	Discussion
	Materials and Methods
	Study sites and data description. 
	SST vs STR Bias analysis and threshold adjustment. 
	DHW calculation. 
	Event analysis. 
	Heat stress with depth. 
	SST vs STR bias-adjusted DHW severity. 

	Acknowledgements
	Figure 1 Subsurface temperature recorder (STR) study sites monitored by NOAA’s Pacific Reef Assessment and Monitoring Program (Pacific RAMP) in the six archipelagic regions: The Commonwealth of the Northern Mariana Islands and Guam (CNMI-G) with 17 island
	Figure 2 Nighttime temperature bias (in situ STR minus satellite SST) at depth for 457 sites from all six regions (n = 457).
	Figure 3 Satellite (SST) and 23 m-depth in situ (STR) temperature and calculated heat stress (DHW) for Pearl and Hermes Atoll, 2007–2012.
	Figure 4 An example results of the new method of using bias-adjusted MMM to estimate DHW at depth of 38 m at Pearl & Hermes Atoll site between 2002 and 2016 (depths binned every 5 m, n = 30).
	Figure 5 Maximum subsurface heat stress estimates for all 1,453 heating events at depth for all six regions and 457 sites across the western and central Pacific (n = 1,453).
	Figure 6 Subsurface (DHWSTR) and surface (DHWSST) DHW comparison for 501 severe heat stress events (n = 501), defined as events with a maximum severity of 4 °C-weeks or greater by either metric.
	Table 1 Names and abbreviations of Pacific coral reef regions, islands, atolls, and subsurface reefs monitored by NOAA’s Pacific Reef Assessment and Monitoring Program (Pacific RAMP) and studied in this analysis.




