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Abstract 22 

Marine Protected Areas (MPAs) are effective resource management and conservation 23 

measures, but their success is often hindered by non-compliant activities such as poaching. 24 

Understanding the risk factors and spatial patterns of poaching is therefore crucial for efficient 25 

law enforcement. Here, we conducted explanatory and predictive modelling of poaching from 26 

recreational fishers within no-take zones of Australia’s Great Barrier Reef Marine Park 27 

(GBRMP) using Boosted Regression Trees (BRT). Combining patrol effort data, observed 28 

distribution of reported incidents, and spatially-explicit environmental and human risk factors, 29 

we modeled the occurrence probability of poaching incidents and mapped poaching risk at 30 

fine-scale. Our results: (i) show that fishing attractiveness, accessibility and fishing capacity 31 

play a major role in shaping the spatial patterns of poaching; (ii) revealed key interactions 32 

among these risk factors as well as tipping points beyond which poaching risk increased or 33 

decreased markedly; and (iii) highlight gaps in patrol effort that could be filled for improved 34 

resource allocation. The approach developed through this study provide a novel way to 35 

quantify the relative influence of multiple interacting factors in shaping poaching risk, and 36 

hold promises for replication across a broad range of marine or terrestrial settings.  37 



1. Introduction 38 

Marine Protected Areas (MPAs) are widely promoted as a tool for natural resource 39 

management and conservation (Lubchenco and Grorud-Colvert, 2015). While various 40 

elements of MPA design and implementation are essential (Claudet et al., 2008; Gill et al., 41 

2017; Green et al., 2015; Jupiter and Egli, 2011), the effectiveness of an MPA is also reliant on 42 

its users’ compliance with regulations. Yet, ensuring compliance remains a persistent 43 

problem, and numerous non-compliant activities (e.g. harvest, waste disposal, dampening, or 44 

illegal infrastructure development) continue to occur within many MPAs worldwide. Of these, 45 

illegal fishing in MPAs (i.e. poaching) is particularly prevalent, and can render MPAs ineffective 46 

(Campbell et al., 2012; Guidetti et al., 2008; Harasti et al., 2019; Samoilys et al., 2007) and 47 

erode trust in management (Di Franco et al., 2016). 48 

As with all regulatory frameworks, individual reasons for not complying with rules vary 49 

between negligent, opportunistic and intentional offending. To be effective, compliance 50 

management should address each level of offending through appropriate strategies including, 51 

education, engagement and enforcement, respectively (Ivec and Braithwaite, 2015). 52 

Enforcement is often the most expensive management activity in MPAs; due to vessel, 53 

personnel and legal costs. Strategic allocation of resources by targeting patrols to locations 54 

and times at which poaching is most likely to occur is sensible and necessary. This is 55 

particularly critical in large scale MPAs where whole of area cannot practically be patrolled 56 

continually due to sheer size.  57 

The present study draws on a growing body of evidence about wildlife crime. These studies 58 

demonstrate that various forms of wildlife crime tend to be concentrated in space (Brill and 59 

Raemaekers, 2009; Kurland et al., 2018a; Maingi et al., 2012) and time (Critchlow et al., 2015; 60 

Diogo et al., 2016), as well as on target species (Kurland et al., 2018b; Pires, 2015) and among 61 

offenders (Stevenson et al., 2012; Weekers et al., 2019). In line with the ‘law of crime 62 

concentration’ (Weisburd, 2015), these findings suggest that far from being a random activity, 63 

poaching across a broad range of contexts represents a highly structured activity defined by 64 

the convergence of willing offenders and vulnerable targets at suitable places (Moreto and 65 

Pires, 2018). ‘Poaching hotspots’ are formed when these points of convergence are repeated 66 



over time, revealing an underlying opportunity structure which supports the specific type of 67 

illegal activity. 68 

Poaching hotspots tend to share a set of common characteristics, or risk factors. In coastal 69 

and marine environments, they include the target species’ availability and attractiveness, 70 

accessibility (e.g. travel costs and travel time), opportunism (e.g. near the boundaries of 71 

MPAs), guardianship effectiveness, and the perceived likelihood and consequence of getting 72 

caught (Arias et al., 2016; Arias and Sutton, 2013; Bergseth et al., 2017; Weekers et al., 2019; 73 

Weekers and Zahnow, 2019). Surveillance activities are more effective when adequately and 74 

sustainably funded and staffed, and targeted to the right places at the right times (Critchlow 75 

et al., 2016, 2015; Jachmann, 2008; Petrossian, 2015). 76 

Determining patterns of poaching is nonetheless challenging and often context-specific. 77 

Approaches assessing poaching hotspots based on raw patterns of incidents reported by 78 

patrols are useful tools to identify primary spatial trends (Arias et al., 2016; Brill and 79 

Raemaekers, 2009; Diogo et al., 2016; Haines et al., 2012). These logically cover areas that are 80 

routinely surveyed. Thus, failure to account for spatiotemporal variation in surveillance effort 81 

runs the risk of systematically over- or underestimating non-compliant activities (Keane et al., 82 

2008; Plumptre et al., 2014). Other approaches have been proposed to explicitly account for 83 

detection biases (Critchlow et al., 2016, 2015), but they tend to rely on assumptions that may 84 

not necessarily hold in marine systems, such as the form of the relationship between 85 

predictors and incident occurrence. They also do not account for interactions between risk 86 

factors. These limitations represent a bottleneck for understanding how the potentially 87 

complex interactions between various risk factors determine poaching risk in MPAs, and thus 88 

for improving compliance patrol efficiency. 89 

Here, we apply Boosted Regression Trees (BRT) to assess recreational fisher poaching risk 90 

within Australia’s Great Barrier Reef Marine Park (GBRMP) between 2015-2019. We use 91 

spatially-explicit environmental and human predictors combined with patrol-collected 92 

incident and monitoring data commonly available across various settings to (1) quantify the 93 

relative influence of various risk factors in shaping poaching risk; (2) identify the main 94 

interactions and critical tipping points; (3) predict poaching risk in 44 no-take zones and 95 

quantify prediction uncertainty; and (4) identify potential gaps in patrol surveillance effort. 96 



2. Methods 97 

2.1 Study site 98 

The Cairns Management Region (CMR) is located within Australia’s Great Barrier Reef Marine 99 

Park (GBRMP) (Fig. 1). It is broadly bounded by Lizard Island in the North and Mission Beach 100 

in the South. The current GBRMP zoning plan was established in 2003 and came into force on 101 

July 2004 with the aim to protect the Reef’s values and improve its resilience to a range of 102 

threats and pressures, including climate change. It consists of various types of multiple-use 103 

areas (GBRMPA, 2018). We focused here on Marine National Park (Green) Zones, a key zone 104 

type for the managing authority’s resilience-based strategy (GBRMPA, 2018). Marine National 105 

Park (Green) Zones are ‘no-take/regulated access’ areas (Horta e Costa et al., 2016) where all 106 

extractive activities like fishing or collecting are prohibited (from now on, we refer to Marine 107 

National Park (Green) Zones as no-take zones). No-take zones represent about a third of the 108 

GBRMP total area (11.7% of the CMR, that is ~8,300 km2), are located between 5 and 127 km 109 

from the nearest town (Supporting Information), and thus require extensive surveillance 110 

effort. 111 

Management and enforcement efforts are focused on activities presenting the highest risks 112 

to the Reef. Due to their ecological (e.g. removal of biomass, coral damage via anchors, coral 113 

disease from discarded fishing line) and social impacts (e.g. affecting the legitimacy of zoning 114 

plan), illegal fishing and poaching represent a ‘very high risk’ to the GBRMP’s values (GBRMPA, 115 

2019). Poaching by recreational fishers in no-take zones is the most common form of offence 116 

in the GBRMP (GBRMPA, 2018), and a number of studies have suggested that such activity 117 

may be occurring significantly more frequently than previously thought (Bergseth et al., 2017; 118 

Castro-Sanguino et al., 2017; Davis et al., 2004). Improving recreational fishing compliance 119 

with the zoning plan thus represents a significant priority for GBRMPA to achieve its broader 120 

resilience-based strategy. 121 



 122 

Figure 1: Location of the Cairns Management Region (CMR) within the Great Barrier Reef Marine Park, Australia. 123 

2.2 Incidents’ presence and pseudo-absence 124 

Drawing on spatially explicit occupancy models increasingly used in the predictive ecological 125 

community (Marmion et al., 2009), we modelled the spatial distribution of poaching risk 126 

within the CMR’s no-take zones using Boosted Regression Trees (BRT; Elith et al. (2008) based 127 

on observed distribution of reported incidents as a function of geographically-referenced 128 

predictor variables. Gradient boosted regression tree approaches such as BRT are increasingly 129 

used over statistical approaches for prediction because they better handle interactions among 130 

predictor variables and non-linearity than regression-based approaches; both of which were 131 

expected to emerge in our case. BRTs also can prevent overfitting by providing regularization 132 

(Elith et al., 2008). 133 

Presence records (i.e. occurrence of poaching incidents) were obtained from the Field 134 

Management Compliance Unit (FMCU) at the Great Barrier Reef Marine Park Authority 135 

(GBRMPA). The data includes all reported incidents of illegal recreational fishing in CMR’s no-136 

take zones for the period January 2015 to March 2019 (n=221; Supporting Information). It 137 



represents reliable records at GPS recorded resolution, with heterogeneous detectability due 138 

to heterogeneous monitoring effort across the study area. To account for this, we assigned a 139 

weight to presence points based on monitoring effort, on the basis that incidents detected in 140 

highly monitored areas had lower weight than incidents detected in areas that are monitored 141 

more rarely (see Supporting Information). 142 

In our case, confirmed absences of incidents (i.e. locations where poaching never occurred) 143 

are more difficult to obtain due to the diffuse nature offenses and the impracticability of 144 

monitoring the entire area constantly. Therefore, we created artificial absence data (pseudo-145 

absence) following guidelines from (Cerasoli et al., 2017). Specifically, we generated the 146 

pseudo-absences using geographically stratified random selection (i.e. based on density 147 

estimate of presences) so that the sum of the weights on the pseudo-absences points (i.e. 148 

proportional to monitoring effort) equals the sum of those on the presence points (i.e. inverse 149 

of monitoring effort). This process yielded a total of 498 pseudo-absence points (Supporting 150 

Information). 151 

2.3 Predictors of poaching risk 152 

To predict the probability of incident occurrence, we considered ten spatially-explicit variables 153 

relating to environmental and human dimensions and expected to influence poaching by 154 

recreational fishers (Table 1). Distance-related predictors (i.e. accessibility, facilities, islands, 155 

reefs, and boundary) were derived from the most up-to-date data available on each of the 156 

elements’ locations using the cost distance tool in ESRI’s ArcGIS 10.5. Bathymetry data (depth) 157 

was obtained from the DeepReef database (https://www.deepreef.org/bathymetry/65-158 

3dgbr-bathy.html). Slope and aspect were derived from the bathymetry model, using the 159 

‘Slope’ and ‘Aspect’ tools in QGIS, respectively. Coral was modeled as the sum of the 160 

surrounding living coral patches, described as the number of 15x15m cells dominated by a 161 

coral taxon within a 1 km radius around each focal cell on the basis of the Benthic cover type 162 

map for Reef Top areas of the Cairns Management Region (GBRF, 2019). Finally, fishing 163 

capacity, defined as the overall ability of the recreational fishery to extract resources in a 50 164 

km radius, was modeled by summing the number of motorized recreational boats (all size 165 

classes) registered within a 50 km radius around each cell. 166 

https://www.deepreef.org/bathymetry/65-3dgbr-bathy.html
https://www.deepreef.org/bathymetry/65-3dgbr-bathy.html


Table 1 | Description and justification of variables used to predict poaching risk in no-take zones of the Cairns 167 

Management Region (CMR). 168 

Name Description Rationale Range 
(unit) 

Accessibility Distance to the nearest 
boat ramp access point 

Determines ease and cost to access a given 
area from access nodes. Also has safety 
implications 

0-107 
(km) 

Aspect Compass direction that a 
slope faces (E:90°; S: 180°; 
W:260°; N:0°=360°) 

Influences exposure to particular wind and 
current conditions 

0-360 
(°) 

Coral Number of coral-
dominated cells within a 1 
km radius 

Specifically describes coral-related habitats 0-656 
(no) 

Depth Distance from the surface 
to the sea bottom 

Shapes fish composition and biomass and 
determines anchoring length 

-150 - -
0.6 (m) 

Facilities Distance to the nearest 
pontoon or mooring 

Public infrastructures can provide safety 
and facilitate access to high use sites 

0-53 
(km) 

Fishing 
capacity 

Number of motorized 
recreational boats 
registered within a 50 km 
radius 

Provides a proxy of the number of 
potential fishers in a given area 

2.6-
197.2 
(n) 

Islands Distance to the nearest 
island 

Land masses provide shelter and a 
potential access node 

0-53.3 
(km) 

Reefs Distance to the nearest 
reef 

Specifically describes reef habitats 0-19.6 
(m) 

Slope Incline of the sea bottom Topography influences fish composition 
and biomass 

0-63.6 
(°) 

Boundary Distance from the nearest 
boundary 

Poachers may fish in close proximity to no-
take zone boundaries so as to be able to 
reduce their perceived risk of detection by 
patrols 

0-6.8 
(m) 

 169 

All these predictor variables were generated at a spatial resolution of 50m and showed a 170 

Pearson correlation coefficient lower than |0.51| and a Variance Inflation Factor (VIF) lower 171 

than 1.6. Using this set of predictors, we were able to capture some previously unexplored 172 

potential risk factors in the GBRMP, although we acknowledge that poaching risk can have 173 

other dimensions such as individual determinants inherent among offenders, the weather, 174 

and/or the time of the day/week/year (Arias and Sutton, 2013; Bergseth et al., 2017; Bergseth 175 

and Roscher, 2018; Oyanedel et al., 2018; Weekers et al., 2019; Weekers and Zahnow, 2019) 176 

that we were not able to incorporate here. Hence, our predictive model provides a static 177 

picture of poaching risk, and assumes that other potential drivers are evenly distributed 178 

throughout the study area. 179 



2.4 Building a predictive model of poaching risk 180 

We fitted the BRT model with a weighted logistic regression for binary classification against 181 

the ten predictors (Table 1) using the {dismo} package (Hijmans et al., 2016) in the R statistical 182 

software version 3.4.0 (R Core Team, 2017). This technique requires the specification of three 183 

main parameters: the shrinkage parameter (tc) limiting the contribution of the single trees 184 

added to the model through the boosting algorithm, the minimum loss reduction required to 185 

make a split (lr), and the proportion of data to be selected at each step (bf). In order to identify 186 

the best set of parameters, we implemented a two-step tuning process that retained the set 187 

of parameters maximizing cross-validated Area Under the Curve (AUC) (see Supplementary 188 

Information). We also explored the possibility of eliminating non-informative predictor 189 

variables to select the most parsimonious model, which led to the exclusion of the variable 190 

coral. The final model explained 61% of the cross-validated variance and had an AUC score of 191 

0.93, indicating strong explanatory and predictive performance, respectively. 192 

We calculated the median relative influence of the nine remaining predictor variables and 95% 193 

confidence intervals from 1,000 bootstrap replicates of the original dataset. Based on the 194 

same bootstrap replicates, we obtained partial dependency plots with 95% confidence 195 

intervals to visualize the relationships between the most influential predictor variables and 196 

the response (occurrence probability), while keeping all other predictors constant. We also 197 

quantified the relative interaction strength and significance between predictor variables using 198 

500 bootstrap replicates (Pinsky and Byler, 2015). Maps of poaching risk (i.e. predicted 199 

probability of incident occurrence) were generated from the optimal BRT model’s projections 200 

over the whole study area at each 50m x 50m cell with a continuous scale 0-1 for each 201 

bootstrap replicate, allowing the median poaching risk to be mapped as well as the 2.5% and 202 

97.5% quantiles. Detailed methods used for model building and bootstrapping are provided 203 

in Supplementary Information. 204 

Because the model underlying this map accounts for heterogeneous detectability, we were 205 

able to overlap poaching risk with patrol effort and identify potential spatial mismatches. We 206 

visualized how predicted poaching risk overlapped with patrol effort using a bivariate 207 

choropleth map.  208 



3. Results 209 

Almost 75% of the variability of incident occurrence was described by four predictors (Fig. 2). 210 

Fishing capacity was the most important predictor variable, accounting for 25.7% of the 211 

explained variability in incident occurrence. depth, accessibility, and slope explained a broadly 212 

similar portion of the variability in incident occurrence, ranging between 17.8% and 14.3%. 213 

Boundary, islands, and facilities had smaller contributions to the model prediction (7.1% 214 

each). Reefs and aspect explained little variability of incident occurrence. 215 

 216 

Figure 2: Predictors of poaching risk in no-take zones. The left panel shows the relative influence (and 95% 217 

confidence intervals) of the predictor variables. The right panel shows partial dependency plots and 95% 218 

confidence intervals for the four most influential variables. The graphs show the effect of a given predictor on 219 

the probability of incident occurrence while holding all other predictor variables constant at their mean. Note 220 

that sum of variables’ relative influence does not equal 100 because estimates were obtained from 221 

bootstrapping. 222 

Fitted function remained low at low levels of fishing capacity (25.7% relative influence) and 223 

then steadily increased from 100 boats per 50 km radius onwards (Fig. 2). Similar patterns 224 

were observed for depth (17.8%), with initially low levels of poaching likelihood (low fitted 225 

function) below -40m increasing until reaching a plateau around -20m depth. Accessibility was 226 

the third most important predictor of poaching occurrence (15.6%), with a negative sigmoid 227 

relationship displaying a threshold around 45 km from the nearest boat ramp. Fitted function 228 

for Slope (14.3%) displayed a positive asymptotic relationship that reached a plateau around 229 



15° angle. Other less significant predictors with negative relationships were distance to: 230 

boundary (7.1%), islands (7.1%), and reefs (4.6%). 231 

The analysis of interaction strength between predictor variables highlighted strong 232 

interactions, especially for fishing capacity. The four strongest pairwise interactions were 233 

fishing capacity x accessibility (71.51; p-value<0.001), fishing capacity x depth (36.9; p-234 

value<0.001), slope x accessibility (14.1; p-value<0.001) and fishing capacity x slope (9.9; p-235 

value<0.01). Occurrence probability for incidents was higher in areas characterized by higher 236 

fishing capacity, shallower depths, shorter distances to boat ramps (i.e. accessibility), and 237 

steeper sea bottom (Figs. 2-3). 238 

 239 

Figure 3: Pairwise interaction plots of the four strongest interactions between variables predicting poaching 240 

risk in no-take zones. Each panel indicates the median fitted function calculated on 1,000 bootstrap replicates. 241 

All interactions were significant. See Supporting Information for uncertainty surrounding these estimates. 242 



Poaching risk was highly heterogeneous across the study area (Fig. 4). Poaching risk was 243 

concentrated on inshore and mid-shelf reefs located near three major towns: Port Douglas, 244 

Cairns, and Innisfail. Conversely, no-take zones located far off-shore and in the north of the 245 

Cairns Management Region were exposed to lower levels of poaching risk. Poaching hotspots 246 

include sites such as Low Isles Reef, Upolu Reef, Green Island Reef, Wide Bay, and Sisters-247 

Stephens Reef (Fig. 4). 248 

 249 

Figure 4: Poaching risk within the no-take zones of the Cairns Management Region of the Great Barrier Reef 250 

Marine Park, and associated level of patrol monitoring effort. Numbers indicate predicted poaching hotspots 251 

within no-take zones: 1- Tongue Reef; 2-Low Isles Reef; 3-Michaelmas Reef; 4-Upolu Reef; 5-Green Island Reef; 252 

6-Wide Bay; 7-Scott Reef; 8-MNP-17-1070; 9-Normanby-Mabel Reef; 10-MNP-17-1066; 11-Feather Reef; 12-253 

Sisters-Stephens Reef; 13-Gardens Beach. See Supporting Information for uncertainty surrounding poaching 254 

risk estimates. 255 



Patrol effort was skewed towards a few no-take zones around Cairns and, to a lower extent, 256 

Port Douglas (Fig. 4). Of the 44 no-take zones located within the CMR, four accounted for 75% 257 

of the total patrol activity conducted between 2015 and 2019 (Supporting Information). This 258 

concentration of patrol effort partially matched with the spatial distribution of poaching risk 259 

(Fig. 5). While the highest levels of patrol effort were found in the three major poaching 260 

hotspots (yellow in Fig. 5), other areas with comparable levels of poaching risk received much 261 

less monitoring. These areas, which may represent enforcement gaps, were mostly located in 262 

the south of the CMR (maroon in Fig. 5). Areas predicted to be exposed to low poaching risk 263 

tended to be monitored less (blue in Fig. 5). 264 

 265 

Figure 5: Congruence and mismatch between patrol effort and poaching risk. Bi-plot represent no-take zones’ 266 

averages. Areas in yellow and blue respectively indicate where patrol distribution matches with poaching risk. 267 

Areas in greatest risk of poaching exposure with low surveillance effort are shown in maroon. Numbers 268 

indicate the poaching hotspots shown in Fig. 4: 1- Tongue Reef; 2-Low Isles Reef; 3-Michaelmas Reef; 4-Upolu 269 

Reef; 5-Green Island Reef; 6-Wide Bay; 7-Scott Reef; 8-MNP-17-1070; 9-Normanby-Mabel Reef; 10-MNP-17-270 

1066; 11-Feather Reef; 12-Sisters-Stephens Reef; 13-Gardens Beach.  271 



4. Discussion 272 

Identifying the underlying drivers of poaching and understanding how they interact and 273 

structure poaching risk offer great value to managers seeking to strategically prioritize the 274 

distribution and allocation of limited resources. This study presents the first attempt at 275 

quantifying the relative influence of, and interaction between multiple risk factors of 276 

recreational poaching in a large Marine Protected Area (MPA) using commonly available 277 

patrol-collected data and spatial predictors. It offers novel insights that can inform 278 

management strategies and planning, via a new predictive approach that can potentially be 279 

applied to other marine and terrestrial settings. 280 

Four predictors; fishing capacity, depth, accessibility and slope, dominate in explaining 281 

poaching risk. Our analysis confirms the assumption that poaching hotspots are characterized 282 

by substantial fishing capacity; however, our model identifies a threshold (i.e. about 100 boats 283 

within a 50 km radius; Fig. 2) beyond which poaching risk increases markedly. Similarly, 284 

poaching hotspots were predicted by the model at depths shallower than 40 m, short(er) 285 

distances to the nearest boat ramp of 0 to 45 km and in areas of complex topography, defined 286 

by a steep(er) sea bottom (Figs. 2-3). Overall, these findings emphasize the value of these 287 

simple yet critical features in the assessment of a no-take zone’s likelihood to be exposed to 288 

poaching, and provide insights into the mechanisms by which they can interact. 289 

Our results highlight the important role of benthic topography (described by depth and slope) 290 

in driving poaching risk. In coral reefs, areas with high slope and low depth –where poaching 291 

risk is the highest– typically reflect reef slopes and edges, which often harbor higher target 292 

fish abundance and biomass. Thus, these two variables can broadly define environmental 293 

bounds of “attractiveness” to recreational poachers, and may also represent places offering 294 

easier and safer anchorage to fishers. This attractiveness is affected by accessibility, the cost 295 

of travelling, in time and/or monetary value, across the intervening sea which remains a major 296 

constraining factor (Maire et al., 2016). It is worth noting that the tipping point beyond which 297 

poaching risk diminishes significantly (around 45 km from the nearest boat ramp) remains 298 

substantially higher in the GBRMP than in other places (Daw, 2008; Daw et al., 2011; Metcalfe 299 

et al., 2017). Such long travel distances might reflect the unique characteristics of this case 300 

study, including the large size of the zoning plan (GBRMPA, 2018) as well as the relative wealth 301 



of Australians and the investment by recreational fishers in faster and more sea-worthy 302 

vessels as fishing platforms (CRC, 2018, 2017). 303 

Poaching risk was better predicted when drivers related to fishers’ spatial preference (i.e. 304 

accessibility and attractiveness) interacted with fishing capacity (Fig. 3). The combined effects 305 

of attractiveness (depth and slope), accessibility and fishing capacity in driving fishing pressure 306 

generally (Castro-Sanguino et al., 2017; Daw, 2008; Harborne et al., 2018; Metcalfe et al., 307 

2017; Thiault et al., 2017), and poaching risk specifically (Diogo et al., 2016; Weekers and 308 

Zahnow, 2019) have been shown elsewhere. 309 

The critical roles of fishing capacity (determined by the number and location of registered 310 

recreational boats) and accessibility (determined by the number and location of boat ramps) 311 

indicate potential benefits associated with increased integration of new and updated data, for 312 

example, in coordination with the Queensland Department of Transport and Main Roads 313 

(TMR). Although the number of boats registered cannot be capped, TMR registration data, 314 

regulatory conditions, and planning schemes (e.g. for development and maintenance of 315 

recreational access points) represent potentially valuable points of opportunity around which 316 

to foster collaborative monitoring and management. 317 

This approach will enhance resilience-based management of the Great Barrier Reef through 318 

the provision of prioritization guidance for compliance activities. Our findings indicate that 319 

patrolling effort only partially matches with the identified spatial patterns of our modelled 320 

poaching risk. Designing more cost-effective enforcement strategies may require 321 

redistributing partly patrol effort where enforcement gaps are likely to occur (i.e. higher 322 

poaching risk and lower patrol effort). Our model suggests that no-take zones that may benefit 323 

from increased effort are often adjacent to shore, indicating that land-based compliance 324 

officers might be deployed in these areas. Systematic resource allocation methods (e.g. 325 

MARXAN software or prioritizer R package) could also be used in future to optimize 326 

deployment of patrols (Plumptre et al., 2014). 327 

This study provides a nuanced understanding of the interactions between various risk factors 328 

related to recreational poaching in the GBRMP. This allows reliable and accurate prediction of 329 

poaching risk to determine where to allocate enforcement patrols. The relatively low sample 330 



size, however, means that we were not able to incorporate the temporal dimension and 331 

identify when such patrols should be deployed. Future applications based on a higher number 332 

of incidence data collected over a longer period of time would provide more generalizable and 333 

dynamic predictions. For instance, understanding weather effects would enable better 334 

prediction of poacher behavior on a day-to-day basis (Critchlow et al., 2015) while longer 335 

temporal changes could help determining the deterrence effects of patrols (Dobson et al., 336 

2018). Likewise, we acknowledge that while our model treats poachers as a homogeneous 337 

group, poaching intention, severity and behavior may vary from one individual to another 338 

depending on gear, values and other individual factors. Future studies should aim to refine 339 

predictive models by differentiating spatial patterns across disparate groups, and by 340 

accounting for other potentially influential variables (e.g. weather, seasonality, time of day). 341 

Combined, these insights will aid patrol strategy decisions and improve patrol ability to inhibit 342 

poaching opportunities (via targeted enforcement presence), which will in turn provide 343 

spillover benefits into surrounding areas (Eng Leong, 2014; Johnson et al., 2014). 344 

Beyond the immediate compliance optimization benefits, this approach offers managers the 345 

opportunity to consider poaching risk along with other relevant elements such as additional 346 

ecosystem threats, resilience potential and sociocultural and economic values which, 347 

together, will enhance managers’ capacity to implement strategic resilience-based 348 

management.  349 



Supporting Information  350 

Additional details on the spatial information on no-take zones (Appendix S1) describing 351 

methods used to weight presence/pseudo-absence data (Appendix S2), fine-tune BRT 352 

parameters and the bootstrapping procedure (Appendix S3), along with additional results on 353 
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