

This file is part of the following work:

Speare, Richard (1986) *Studies on the taxonomy of Strongyloides* (*Nematoda; Strongyloididae*). PhD thesis, James Cook University.

Access to this file is available from:

https://doi.org/10.25903/5e1bf2068703b

Copyright © 1986 Richard Speare.

If you believe that this work constitutes a copyright infringement, please email researchonline@jcu.edu.au

STUDIES ON THE TAXONOMY OF STRONGYLOIDES

(NEMATODA; STRONGYLOIDIDAE)

Thesis submitted by Richard Speare, B.V.Sc., M.B., B.S. University of Queensland, St Lucia, Queensland

for the Degree of Doctor of Philosophy in the Graduate School of Tropical Veterinary Science James Cook University of North Queensland

0

March 1986

DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institute of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

Richard Speare

March, 1986

I, the undersigned, the author of this thesis, understand that the James Cook University of North Queensland will make it available for use within the University Library, and, by microfilm or other photographic means, allow access to users in other libraries. All users consulting this thesis will have to sign the following statement:

> "In consulting this thesis I agree to make proper written acknowledgement for any assistance which I have obtained from it".

Beyond this, I do not wish to place any restriction on access to this thesis. In particular I wish to emphasise that I have no objection to this thesis being copied in whole or in part without my permission, and I deny any institution or organisation the right to impose this restriction on those wishing to do so.

J - 3 - 96

(Date)

(Signature)

Richard Speare

TABLE OF CONTENTS.

ABSTRAC	F <i></i>	i	
KEY TO A	ABBREVIATIO	NS iii	
GENERAL	INTRODUCTIO	NNC	1
CHAPTER	l	CLASSIFICATION OF STRONGYLOIDES	
	1.1	Higher Taxon Level	5
	1.2	Generic Level	7
	1.3	Name of the Genus	. 8
	1.4	Summary	14
CHAPTER	2	DEFINITION OF THE GENUS	
	2.1	Introduction	15
	2.2	Definition	22
	2.2.1	Parasitic Female	22
	2.2.1.1	Description	22
	2.2.1.2	Additions to Little's Definition	25
	2.2.1.3	Points of Disagreement	30
	2.2.2	Free-Living Female	32
	2.2.2.1	Description	32
	2.2.3	Free-Living Male	36
	2,2,3,1	Description	36
	2.2.3.2	Additions to Little's Definition	38
	2.2.3.3	Disagreements with Little's Definition	40
	2.2.4	Eggs	40
	2.2.4.1	Description	40
	2.2.4.2	Comment.	42
	2.2.5	First Stage Larva	43
	2.2.6	Second Stage Larva	43
	2,2,6,1	Second Stage Rhabditoid Larva	46
	2.2.6.2	Second Stage Filariform Larva	46
	2.2.6.3	Comment	46
	2.2.7	Third Stage Filariform Larva	46
	2.2.8	Third Stage Rhabditoid Larva	51
	2.2.9	Fourth Stage Rhabditoid Larva	51
	2.2.9.1	Description	51
	2.2.9.2	Comment	51
	2.2.10	Fourth Stage Parasitic Female	54
	2.2.10.1	Description	54
	2.2.10.2	Comment	54
	2.3	Generic Boundaries	56
	2.3.1	Buccal Capsule	56
	2,3.2	Buccal Teeth	57
	2.3.3	Seminal Receptacle	57
	2.3.4	Caudal Papillae	57
	2.3.5	Clarity of Generic Boundaries	60
	2.4	Summary	50 61
			<u> </u>

CHAPTER	3	STATUS OF NAMES USED FOR SPECIES OF STRONGYLOIDES
	3.1	List of Published Names 62
	3.2	Unavailable Names 63
	3.2.1	Comment on Unavailable names
	3,3	Invalid Names
	3.3.1	Comment on Invalid names
	3.4	Descriptions not Sighted 89
	3.5	Summary
	3.6	Further Aims of This Thesis 91
CHAPTER	4	TECHNIQUES AND EXPERIMENTS
	4.1	Introduction
	4.2	Techniques 92
	4.2.1	Collection of Strongyloides
	4.2.1.1	Parasitic Female 92
	4.2.1.2	Other Parasitic Stages
	4.2.1.3	Free-living Stages94
	4.2.2	Fixation
	4.2.3	Examination
	4.2.3.1	General
	4.2.3.2	Transfering into Glycerol
	4.2.3.3	En face Preparations
	4.2.4	Depigmentation technique
	4.2.5	Measurement
	4.2.6	Drawing
	4.2.7	Photography100
	4.2.8	Electron Microscopy101
	4.2.9	Histology
	4.2.10	Culture
	4.2.11	Experimental Infections102
	4.2.11.1	Percutaneous Penetration
	4.2.11.2	Subcutaneous Infection
	4.2.12	Statistical Analysis102
	4.3	Specific Experiments
	4.3.1	Post-Mortem Degeration
	4.3.2	Host Immunity
	4.3.2.1	Experimental Infections
	4.3.2.2	Natural Infection104
	4.3.3	Fixation Experiments
	4.3.3.1	Type of Fixative
	4.3.3.2	Temperature of Fixative
	4.3.4	Effect of Host
	4.3.5	Change of Morphology with Different Hosts107
	4.3.6	Effect of Temperature on Free-living Stages108

CHAPTER 5	ARTIFACTS
5.1	Introduction109
5.2	Parasitic Female,
5.2.1	Cuticle
5.2.1.1	Wrinklinglll
5.2.1.2	Splitting114
5.2.1.3	Anterior Prolapse117
5.2.1.4	Loss of Transverse Striations
5.2.1.5	"Cuticular Moulting"120
5.2.2	Reproductive Tract121
5.2.2.1	Degeneration121
5.2.2.2	Misinterpretations of the Ovary Type122
5.2.2.3	Failure of Oyaries to Spiral
5.3	Changes in Dimensions124
5.3.1	Too Large
5.3.1.1	Squashing
5.3.1	Too Small
5.3.2.1	Shrinkage
5.4	Shape
5.4.1	Conformation
5.5	Extraneous Material136
5.5.1	Bacteria
5.5.2	Immune Precipitates136
5.5.3	Pigment
5.5.4	Sheaths
5.6	Free-living Adults143
5.6.1	Death
5.6.2	Bacterial Attack143
5.6.3	Temperature of Culture144
5.6.5	Age of Culture148
5.6.6	Pigmentation150
5.7	Summary
CHAPTER 6	CRITERIA FOR THE DIFFERENTIATION OF SPECIES
6.1	Introduction151
6.2	Parasitic Female153
6.2.1	Stomal Shape153
6.2.2	Circumoral Lobulation159
6.2.3	Type of Ovary160
6.2.4	Shape of the Tail
6.2.5	Excretory System
6,2,6	Transverse Striations
6.3	Free-Living Male
6,3,1	spicule
6.3.1.1	Type of Tip
6.3.1.2	Curvature169

	6.3.1.3	Ventral Membrane17
	6.3.2	Gubernaculum
	6.3.3	Caudal Papillae17'
	6.3.4	Pericloacal Bulge175
	6.4	Free-Living Female180
	6.4.1	Post-vulval Narrowing180
	6.4.2	Rotation of the Vulva18
	6.5	Dimension and Proportions
	6.5.1	Body Length
	6.5.2	Body Width
	6.5.3	Width-Length Percent
	6.5,4	Use of Measurable Features
	6.6	Stage in Faeces192
	6.7	Site in Host
	6.8	Host
	6.9	Cross-Fertilization of Free-Living Adults23
	6,10	Autoinfection
	6.11	Summary23
HAPTER	. 7	APPLICATION OF CRITERIA
	7.1	Introduction
	7.2	Problems in Application
	7.3	The "Kanabea" - Strongyloides
	7.4	Application of Algorithm248
	7,5	Summary
BIBLIOG	RAPHY	
APPENDI	IXI	SPECIMENS EXAMINED28

LIST OF TABLES

TABLE	1:1		5
TABLE	1:2	••••••	9
TABLE	2:1	••••••••	18
TABLE	2:2		31
TABLE	2:3		36
TABLE	3:1		64
TABLE	3:2		68
TABLE	3:3	••••••••	78
TABLE	5:1A	•••••••	113
TABLE	5:1B		113
TABLE	5:2	• • • • • • • • • • • • • • • • • • • •	121
TABLE	5:3	• • • • • • • • • • • • • • • • • • • •	126
TABLE	5:4	• • • • • • • • • • • • • • • • • • • •	130
TABLE	5:5		130
TABLE	5:6	• • • • • • • • • • • • • • • • • • • •	133
TABLE	5:7	•••••••	135
TABLE	5:8	• • • • • • • • • • • • • • • • • • • •	146
TABLE	6:1	••••••••••	154
TABLE	6:2	•••••••••••••••••••••••••••••••••••••••	174
TABLE	6:3	• • • • • • • • • • • • • • • • • • • •	178
TABLE	6 : 4	•••••••••	183
TABLE	6:5	• • • • • • • • • • • • • • • • • • • •	185
TABLE	6:6	•••••••••	188
TABLE	6 : 7		198
TABLE	6:8	•••••	216
TABLE	6:9	••••••••••••	234
TABLE	7:1		249

FIG.	I		5	
FIG.	1:1		8	
FIG.	1:2		11	
FTG.	1.3		13	
FTC	1.4		14	
FIC.	2.1		21	
TIG.	2.1		22	
FIG.	2:2	* • • • • • • • • • • • •	22	
FIG.	2:3		22	
FIG.	2:4		23	
FIG.	2:5		24	
FIG.	2:6		24	
FIG.	2:7		24	
FIG.	2:8		26	
FIG.	2:9		28	
FIG.	2:10		28	
FIG.	2:11		29	
FIG	2:12		33	
FIG	2.13		34	
FIC	2.14		35	
FTC	2.15		37	
FIG.	2.16		39	
FIG.	2:10		20	
FIG.	2:17		29	
FIG.	2:18		41	
FIG.	2:19		41	
FIG.	2:20		44	
FIG.	2:21		44	
FIG.	2:22		45	
FIG.	2:23		45	
FIG.	2:24		47	
FIG.	2:25		47	
FIG.	2:26		48	
FIG.	2:27		49	
FIG.	2:28		49	
FIG.	2:29		50	
FIG.	2:30		51	
FTG.	2:31A		52	
FIG	2.31B		53	
FIC	2.310		55	
FTC	2.32		58	
FIG.	2.34	• • • • • • • • • • •	50	
FIG.	2:J4 3.1	* • * * * • • • • • •	90	
FIG.	J:1	· · <i>·</i> · · · · · · ·	90	
FIG.	4:1		95	
FIG.	⊃:⊥ - >		TOA	
FIG.	5:4			
FIG.	5:3	• • • • • • • • • •	114	
FIG.	5:4	• • • • • • • • • •	114	
FIG.	5:5A	• • • • • • • • • • • • • • • • • • •	115	
FIG.	5:5B	• • <i>•</i> • • • • • • • • • • • • • • • •	115	

FIG.5:6	0 0 0 0 0 0 0 0 0 0 0	116
FIG.5:7A	• • • • • • • • • • • •	118
FIG.5:7B		118
FIG.5:8		119
FIG.5:9	• ~ ~ • • • • • • •	120
FIG.5:10		123
FIG.5:11	• • • • • • • • • •	125
FIG.5:12	· · · · · · · · · · · · · · ·	128
FIG.5:13		128
FIG.5:14	• • • • • • • • • • • • • •	129
FIG.5:15		131
FIG.5:16	• • • • • • • • • • •	131
FIG.5:17	* * * * * * * * * * *	132
FIG.5:18		135
FIG.5:19	• • • • • • • • • •	137
FIG.5:20		137
FIG.5:21		139
FIG.5:22		141
FIG.5:23	• • • • • • • • • • •	142
FIG.5:24		145
FIG.5:25		148
FIG.6:1	c e e e e e e e e	155
FIG.6:2		157
FIG.6:3	• • • • • • • • •	160
FIG.6:4		162
FIG.6:5		164
FIG.6:6		168
FIG.6:7		170
FIG.6:8		170
FIG.6:10	~ * ~ ~ ~ * * * *	172
FIG.6:11		173
FIG.6:12	6 • 6 # 0 a e 0 # •	176
FIG.6:13	• • • • • • • • • •	178
FIG.6:14		180
FIG.6:15	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	181
FIG.7:1		241
FIG.7:2		242
FIG.7:3	• • • • • • • • • •	243
FIG.7:4	· · · · · · · · · · ·	246
FIG.7:5		251

۵ .

ABSTRACT

The taxonomy of *Strongyloides* has been critically assessed, firstly from the viewpoint of nomenclature, and subsequently from the aspect of morphology with emphasis placed on the practical problems of differentiating species.

On the higher taxon level, the classification of the genus was discussed and placement in the Rhabdiasoidea favoured, although it was acknowledged that this was a compromise based on lack of knowledge of the Rhabdiasidae. The argument was presented that the valid name of the genus is Strongiloides, not Strongyloides, but that adoption of the former name would lead to instability without benefit. One hundred and three names used for species were located Fifty three were considered valid, 18 invalid in the literature. and 32 unavailable. Of this latter group, 22 were lapsi calamorum, 5 were nomina. nuda, two had unacceptable spelling, and three lacked a differential diagnosis. The only species names which were considered invalid and are in common use were S.ransomi and S.planiceps, junior synonyms of S.suis and S.cati respectively.

The genus was defined by description of the eighteen life cycle This was based on Little (1966a,b) and some additions and stages. corrections made to his basically sound definition of Strongyloides. The proposal was made that the parasitic female lacks cephalic papillae. Some changes in the limits of dimensions of the parasitic female were made, and it was emphasized that the maximum width relative to length, the distance of the vulva from the mouth relative to length, and the intramucosal location of the parasite are significant generic characters. The existence of perivulval nerve endings in the parasitic female was noted. The definition of the free living adults was essentially unchanged from that of Little, with the exception that the midventral preanal papilla of the free living male differs from the six paired caudal papillae. The existence of a papilla on the midpoint of the anterior cloacal lip was confirmed.

most common were degeneration due to death of worms or their host and those caused by the immune response of the host. The significance of artifactual changes in the taxonomy of *Strongyloides* was addressed, with particular reference to unusual features described in the literature for various species of *Strongyloides*.

The criteria used to differentiate species in the genus were critically assessed. Those of most use were the stomal shape in the en face view and the ovary type of the parasitic famale, the distribution of caudal papillae in the free living male and features of gubernaculum and spicules, the post vulval constriction and posterior rotation of the vulva in the free-living female, and the stage of the parasite found in freshly voided faeces. Minor criteria were the shape of the tail in the parasitic female, the higher taxon classification of the host, and the occurrence of autoinfective larvae.

Practical problems arising in the identification of unknown specimens were discussed. A significant problem not solved by this thesis is that 41 of the 53 valid species have not been adequately described. Consequently, an unusual approach to identification of unknown specimens was developed. This involved the use of a comprehensive host-Strongyloides list to demarcate a series of selection groups comprised of different species. The unknown specimen is compared with the first selection group, and points of similarity noted. Comparison then proceeds through the selection groups whose base broadens progressively. In this way, poorly described species are not omitted from the differential diagnosis. attempt was made to apply these principles to the Strongyloides An sp infecting man in Papua Nuigini. Available information indicated it was most consistent with S.fuelleborni.

The nett effect of this thesis is a nomenclatural spring cleaning of the species in the genus, a precise definition of the genus with a clearer demarcation of generic characters, clarification of the significance of artifacts on the morphology useful for taxonomy, delimitation of those characters of use in differentiating species, and proposal of a practical scheme for identifying unknown specimens. ii

A	=	anus.
AAP	=	anterior anal papilla
ADl	-	anterior adanal papilla
AD2	=	posterior adanal papilla
ARO	=	anterior reflection of ovary
ARO-O	-	distance between anterior reflection of ovary and posterior
		end of oesophogus
ART	=	anterior reproductive tract
AU	=	anterior uterus
в	=	oesophageal bulb
BC	=	buccal capsule
Cl	=	anterior part of oesophogeal corpus
C2	Ħ	posterior part of oesophogeal corpus
D	=	deirid, cervical papilla
DLP	=	dorsolateral perivulval papilla
E	=	eggs
EP	=	excretory pore
G	=	gubernaculum
GP		genital primordium
I	æ	intestine
Is	=	oesophogeal isthmus
Ĵ	=	junction of testis and vas
L	=	length
LP	=	lateral papilla
MV	=	distance between anterior end of female and vulva
NR	-	nerve ring
0	-	posterior end of oesophogus
OES	=	oesophogus
OM	=	ovum
ov	-	ovary
Ovd	=	oviduct
₽	Ŧ	phasmid
PO	=	preanal organ
PRO	I	posterior reflection of ovary
PRO-A	-	distance between posterior reflection of ovary and anus
PRT	=	posterior reproductive tract

- PU = posterior uterus
- PVP = perivulval papillae
- S = spicule
- SDPo = subdorsal postanal papilla
- SVP = subventral preanal papilla
- SVPo = subventral postanal papilla

e

- Te = testis
- T = tail

.

- V = vulva
- U = uterus.

GENERAL INTRODUCTION

The differentiation of species in the genus *Strongyloides* has been a problem since discovery of the type species, *S.stercoralis*, in 1876. Members of the genus in many cases show an alternation of parasitic and free living generations with markedly different morphologies (Fig.I). A controversy occurred initially over whether the free-living stages of *S.stercoralis* and the parasitic form found shortly after represented one species or two. This was resolved by the early 1880's. The problem was then to find criteria by which separate species of *Strongyloides* could be distinguished. This has proved a difficult task.

Many of the difficulties are related to the size of the nematodes. Both the parasitic and free-living stages are small. Owing to their small size Strongyloldes are fragile, are difficult to find, post-mortem autolysis is rapid, and they are physically difficult to manipulate. The oil immersion lens is required for examination of many features. Their small size also means that differences in the shape of various body parts, or in the positions of papillae, are often expressed in distances less than 10µm. The difference between a stoma that is oval in en face view and one that dumb-bell shaped may be a medial deviation of 1μ of the lateral is margins. Consequently, uncertainty can arise in the mind of the observer over whether the differences seen are real, artifactual or even imagined.

A second set of problems is related to the biology of the genus. The parasitic generation consists of females only. There is no parasitic male, a stage which in nematode taxonomy usually forms the cornerstone of species diagnosis. This lack is compensated for by the existence of free-living males and females, although culture of faeces is necessary to obtain them, and they do not always occur, let alone develop. The parasitic female is parthenogenetic (Zaffagnini, 1973; Triantaphyllou and Moncol, 1977). Dioecious reproduction gives a species genetic polymorphism while the variation possible in a species reproducing parthenogenetically is

OUTSIDE CAT

much less. In the latter situation females faithfully reproduce themselves with progeny showing little change from the parent Parthenogenesis may account generation. for the remarkable uniformity of morphology in the genus. Differences between species of Strongyloides are rarely determined by the presence or absence of character but usually are expressed in terms of degree. а Uniformity is so great that superficially many species of Strongyloides look the same, adding to the taxonomic problems.

The taxonomy of *Strongyloides* is not in its infancy. Useful criteria have been established (Little, 1966a). They enable reasonably closely related species to be differentiated, but in practice have been rarely applied by parasitologists. A major problem is that so few species in the genus have been examined using the newer taxonomic criteria. Only 11 species have been fully described. One of the aims of this study, therefore, is to critically examine as many described species as possible to provide a basis with which comparisons can be made.

Perusal of the literature reveals that several processes are liable to cause artifactual changes in the morphology of *Strongyloides*. These will be examined.

Morphology was chosen as the main taxonomic tool to be used in this study. Several reasons prompted this. Firstly, Little (1966a) had shown species could be differentiated using criteria visible under the light microscope. Light microscopy is a technique which is universally available and relatively easily applied. For a technique to be useful in the practical sense it must have the latter characteristics. Biological studies such as host ranges of particular species of Strongyloides (Fleming et al, 1979; Melvin and Chandler, 1950) and ability of free-living stages of different strains to cross (Augustine, 1940) were cumbersome and added little to the understanding of the taxonomy of the genus. Two species examined immunologically showed many shared antigens (Grove and Blair, 1981), and although the species could be easily separated morphologically, differentiation by immunological techniques would not have been possible. Protein electrophoresis has not been used for Strongyloides, but minimum amounts of material for a full examination would require large numbers of worms owing to their small size. The technique could be of possible use in theoretical studies only.

Morphological criteria allow limited numbers of specimens whose identity is unknown to be compared with published descriptions and deposited specimens. Once species have been fully described, the next step is to use more sophisticated techniques to test the taxons delimited by the morphological criteria. We are not yet at this stage.

The aims of this study are:

- To examine the classification of the genus and the validity of the generic name (Chapter 1).
- (2) To redefine the genus (Chapter 2).
- (3) To list names of Strongylotdes found in the literature and to critically examine these from the nomenclatural viewpoint (Chapter 3).
- (4) To describe techniques which can be used in examining Strongyloides (Chapter 4).
- (5) To describe the morphology of artifactual changes (Chapter 5).
- (6) To critically examine the criteria used to differentiate between species (Chapter 6).
- (7) To illustrate how these criteria can be applied in a particular case (Chapter 7).

CHAPTER 1

CLASSIFICATION OF STRONGYLOIDES.

1.1 HIGHER TAXON LEVEL.

The classification of *Strongylotdes* shown in Table 1:1 was proposed by Little (1966a).

TABLE 1:1. Classification of Strongyloides and related genera.

Class:	Nematoda		
Order:	Rhabdita		
Superfamily:	Rhabdiasoidea Raill:	iet, 1916	
Family:	Strongyloididae Chi	twood and McIntosh,	1934
Genus:	Strongyloides	Parastrongyloides	Leipernema
	Grassi, 1879	Morgan, 1928	Singh, 1976

The relationship of *Strongyoides* to certain free-living rhabditoids was recognised when the type species, *S.stercoralis*, was discovered (Bavay, 1876). The superfamily Rhabditoidea was

subsequently proposed to accommodate this group. Strongyloides was not placed in a separate family until Chitwood and McIntosh (1934) proposed the family Strongyloididae. Prior to this Travassos (1930a) had placed Strongyloides in the family Rhabdiasidae and had proposed a new subfamily, the Strongyloidinae for Strongyloides and Parastrongyloides. Travassos had followed Railliet (1916) in dividing the Rhabditoidea into the Rhabdiasidea and the Rhabditoidea. Chitwood and McIntosh (1934), Chitwood and Chitwood (1950) and Anderson and Bain (1982) placed the Strongyloididae in the superfamily Rhabditoidea and ignored the Rhabdiasoidea.

Little (1966a) in a redefinition, of the genus StrongyLoides considered the Strongyloididae and the Rhabdiasidae to be sufficiently different to warrant their placement in the superfamily (1951) had separated Rhabdiasoidea and Rhabdiasoidea. Hyman Rhabditoidea, but had raised both to the rank of order. Yamaguti (1961) created a new order, Rhabdiasidea, for the rhabdiasoids. The most recent review of the higher taxon classification (Anderson and Bain, 1982) ignores Little's classification and uses that of Chitwood and McIntosh (1934), placing Strongyloididae in the Rhabditoidea. None of these workers, however, gave precise reasons why their particular classification should be adopted.

If Little's classification is accepted, the families remaining in the superfamily Rhabditoidea are Rhabditidae and Cephalobidae, free-living saprophagous forms rarely associated with vertebrates, Cylindrocorporidae, including free-living and saprophagous species and three species of Longibucca Chitwood, 1933 found in the gastrointestinal tract of a snake and two species of bat, and the Angiostomatidae, parasites of salamanders and terrestrial gastropods (Anderson and Bain, 1982). The Rhabdiasoidea contains only two families, Strongyloididae and Rhabdiasidae, all members of which are parasites of terrestrial vertebrates. These families may not be closely related. Ballantyne (1971) in an unpublished comparative study of the Rhabdiasidae and the Strongyloididae with some data on free-living rhabditoids found that the families Rhabdiasidae and Strongyloididae did not appear to be very closely related although they both had the same number of head papillae and exhibited alternation of parasitic and free-living generations. He concluded that the classification into two families in the Rhabdiasoidea was the most appropriate pending further study since it drew attention to the occurrance of free-living and parasitic generations and was convenient.

The limited number of chromosomal studies on Strongyloides have

shown that compared with the other members of the Rhabditida, a reduction in chromosal number has occurred (Triantaphyllou, 1983). S.ratti has n = 3 (Bolla and Roberts, 1968); while S.ransomi and S.papillosus has n = 2, where an X chromosome appears to have fused with an autosome (Triantaphyllou and Moncol, 1977). Most free-living rhabditoids have a haploid chromosome number of six, as do members of Rhabdias, the type genus of the Rhabdiasoidea. Strongyloides represents an advanced state of karyotypic evolution the Rhabditida (Triantaphyllou, 1983). among Strongyloididae, therefore, does not rest comfortably with the Rhabdiasidae in the Rhabdiasoidea. The Rhabdiasoidea contain no exclusively free-living members, the parasitic form is found only in the gut or lungs of terrestrial vertebrates and they exhibit alternation of generations. Such a classification is a compromise based on superficial data, but more accurately reflects relationships between the families than placement of all in the Rhabditoidea. The preliminary evidence cited suggests that the Strongyloididae are at least sufficiently different to warrant placement in their own superfamily, but more comprehensive comparative studies are required, particularly of the other members of the Rhabdiasoidea, before such a change is justified.

1.2 GENERIC LEVEL.

Strongyloididae contains three genera, Strongyloides, Parastrongyloides and Leipernema. The free-living generation in all are small rhabditoid nematodes, while the parasitic generation is a small, slender stage. The genera can be distinguished using the parasitic stage (Little, 1966a; Anderson and Bain, 1982). Strongyloides possesses only a parasitic female with a shallow buccal capsule (Little, 1966a), Parastrongylotdes is dioecious with a globular buccal capsule (Morgan, 1928), and Leipernema lacks a parasitic male and the anterior ends of the oesophagus of the parasitic female protrudes through the stoma (Singh, 1976) (see Fig.1:1).

Fig.1:1. Lateral view of heads of parasitic females from the Strongyloididae. A. Strongyloides stercoralts ex small intestine of dog; B. Parastrongyloides sp.nov. ex small intestine of echidna, Tachyglossus aculeatus; C. Letpernema letpert ex small intestine of pangolin, Manus pentadactylus (from Singh, 1976 p270 Fig.2).

1.3 NAME OF THE GENUS.

Strongyloides papillosus (Wedl, 1856) is the oldest species in the genus although originally placed in Trichosoma. The second oldest is the type species, S.stercoralis (Bavay, 1876), described originally as Anguillula stercoralis from the free-living generation in human faeces (Bavay, 1876). Initially the occurrence of both free-living and parasitic generations was not realised and in 1877 the parasitic female was found and described as Anguillula intestinalis (Bavay, 1877a). Suspicion that these were two forms of the same parasite soon arose (Bavay, 1877b). Conclusive proof was not provided until five years later (Grassi, 1882). A.intestinalis is, therefore, the junior synonym of A.stercoralis. Since the correct identity of S.papillosus was not recognised until 1911 when Ransom placed it in *Strongyloides*, *S.stercoralis* was established as the type species.

The generic name was unstable until the early 1900's. Various names used for both the genus and the type species are listed in Table 1:2.

TABLE 1:2. Names used for Strongyloides and S.stercoralis.

GENUS

Valid name: Strongiloides Grassi, 1879

Rejected names: Trichosoma Wedl, 1856 Rhabditis Bavay, 1876 Anguillula Bavay, 1876 Leptodera Cobbold, 1879 Pseudorhabditis Perroncito, 1881 Rhabdonema Leuckart, 1882 Strongyloides Anon, 1879

TYPE SPECIES Valid name:

Strongiloides stercoralis (Bavay, 1876) Grassi, 1879 Rejected names: Anguillula stercoralis Bavay, 1876 Rhabditis stercoralis Bavay, 1876 Anguillula intestinalis Bavay, 1877 Leptodera stercoralis (Bavay, 1876) Cobbold, 1879 Leptodera intestinalis (Bavay, 1877) Cobbold, 1879 Strongiloides intestinalis (Bavay, 1877) Grassi, 1879 Pseudorhabditis stercoralis (Bavay, 1876) Perroncito, 1881 Rhabdonema strongyloides Leuckart, 1882 Rhabdonema intestinale (Bavay, 1877) Blanchard, 1885 Rhabditis intestinalis (Bavay, 1876) Anon, 1879 Strongyloides intestinalis (Bavay, 1876) Anon, 1879 Hall (1916) and Yorke and Maplestone (1926) listed *Stercoralis* Tanaka, 1910 as a generic synonym. They failed to provide a reference and I have been unable to locate a paper by Tanaka in that year.

When Bavay (1876) placed his species in the pre-existing genus Anguillula, he also included Rhabditis as a generic synonym. Cobbold (1879) placed the parasite in Leptodera, another synonym of Rhabditis; Perroncito (1881) proposed the new generic name of Pseudo-rhabditis and Leuckart (1882) proposed Rhabdonema. The name currently used for the genus is Strongyloides and is attributed to Grassi (Thayer, 1902). Grassi (1879a), however, writing in Italian in Recondiconti Dell Instituto Lombardo, Di Scienze e Lettere, Milano : 2 ; xii (p233) used Strongiloides. Italian has no "y".

It is apparent from the text that Grassi was making a comparison with *Nematodirus filicollis*; a synonym at the time was *Strongylus filicollis* Molin, 1861 :

"Da questi studj e da altri comparativi, specialmente collo Strongilo filicolle della pecora col quale il nostro verme ha molta somiglianza, io sono venuto nella opinione che la cosidetta anguillula intestinale debba considerarsi come un genere molto affine allo strongilo, da denominarsi Strongiloides; ma sovra questo punto tornero in una prossima lettura in cui, se gli indizj di recenti sperimenti non mi ingannano, riferiro intera la storia dello sviluppo del-l'anguillula intestinale."

(see also Fig.1:2)

Fig.1:2. English translation of Grassi's Italian (1879a p233).

"From these studies and from other comparisons, especially with *Strongilo filicolle* in sheep with which our worm has much in common, I am led to believe that the so called intestinal anguillula is to be considered as a genus with close affinity to the strongyles, to be called *Strongiloides*; but I shall come back to this point in a future reading in which, if the indications of recent experiments do not decieve me, I shall relate the entire history of the development of the intestinal anguillula."

The generic name *Strongylus* was proposed by Muller in 1780 and was spelt with a "y". One could argue, therefore, that had "y" been available to Grassi, he would have used the spelling "*Strongyloides*", not "*Strongtloides*". *Strongtloides*, however, satisfies all provisions of Articles 10 to 20 of the International Code of Zoological Nomenclature, 1985. Emendation is possible only under Article 32 "Original Spelling" and only under c(ii):

"(ii) there is in the original publication itself, without recourse to any external source of information, clear evidence of an inadvertent error, such as a *lapsus calami* or a copyist's or printer's error (incorrect transliteration or latinisation and use of an inappropriate connecting vowel are not to be considered inadvertent errors);"

To assess whether Grassi's use of Strongiloides was inadvertent Grassi's subsequent publications were viewed (Grassi, 1879b; 1882a&b; 1883a,b,&c; 1885; Grassi and Parona, 1879; Grassi and Calandruccio, 1884 ; Grassi and Segre, 1887). Grassi did not use Strongiloides again. Strongyloides, however, was used in the same year in an abstracting journal (Medicina Contemparanea, Milano 3: 495-497). The anonomous author reviewed Grassi's 1879 paper and used the name Strongyloides Intestinalis. Strongyloides is therefore a lapsus calami by this reviewer and consequently unavailable. The next author to use Strongyloides appears to be Leuckart (1882), but the same ruling will apply to his and all subsequent uses. Grassi used Anguillula or Rhabdonema in all subsequent publications. Examination of Grassi's publications for the use of "y" revealed use for "Bavay" (Grassi 1882; Grassi and Calandruccio, 1884 p492) and for "Rhabdonema strongyloides" (Grassi, 1883b p261; Grassi and Calandruccio, 1884 pp492,494). Grassi therefore had the option of using "y" had he so desired. The use of "i" in Strongiloides was not inadvertent ; it was a result of the limitations of the language used and Grassi's choice to use a strictly latinised form. The correct name of the genus is therefore Strongiloides Grassi, 1879.

Hall (1916 p6) listed *Strongiloides* as a synonym of *Strongyloides*, but indicated the latter name was the valid name for the taxon. He gave as authorities *Strongiloides* Grassi, 1879a and *Strongyloides* Grassi, 1879b, and used *Strongyloides* as the valid name without comment. This was an error, since *Strongiloides* has priority. No other author has listed *Strongiloides*.

Adoption of *Strongiloides* as the valid name of the genus, although correct, would disrupt nomenclatural stability as a whole. Mindful of the accusation of "taxonomic nit-picker", I decided to consult the International Commission on Zoological Nomenclature. My attention was drawn to Opinion 66 of 1915, by which *Strongyloides* was placed on the Official list (Fig.1:3). Although this act does not give the name precedence over any other (Article 78), it clearly indicates that at that time *Strongyloides* was considered to be the most appropriate name for the genus. The same opinion holds true today. A change of name would be disruptive without benefit. *Strongyloides* should be retained.

In replying to this letter, please quote the following reference number:

ZN(G)34

c/o BRITISH MUSEUM (NATURAL HISTORY) CROMWELL ROAD, LONDON, SW7 5BD TEL. 01-589 6323, Ext. 387

3 February 1986

Dr. Richard Speare, Graduate School of Tropical Medicine, James Cook University, Townsville Q 4811, Australia.

Dear Dr. Speare,

Thank you for your letter of January 22.

The name <u>Strongyloides</u> was placed on the Official List by Opinion 66 of 1915. Under the Code (Article 78) this act does not of itself give the name precedence over any other, but it does clearly indicate that at that time specialists carefully considered it, and concluded it to be the appropriate name, as I believe has always been true.

I see that Grassi in 1879 used both <u>Strongiloides</u> and <u>Strongyloides</u>; presumably it is implicit in your letter that the former was earlier, and has priority. Nevertheless, the fact that the latter spelling has been on the Official List for over 70 years should not be ignored except for very good reasons, and I feel that to pursue the proposed case would probably be a rather unrewarding use of time.

We do of course very much appreciate your interest. If you do wish to present cases to the Commission we can send you a copy of the guide-lines to authors, and any recent number of the Bulletin of Zoological Nomenclature will provide models.

Yours sincerely,

Dr. P. K. Tubbs

FIG.1:3. Letter from the International Commission on Zoological Nomenclature re validity of generic name.

1.4 SUMMARY.

The classification of the genus has been discussed and that proposed by Little (1966a) considered to be the most suitable compromise, with the comment that further comparative work may show relationships between the Strongyloididae and the Rhabdiasidae to be not as close as implied by inclusion in the same superfamily.

The most controversial point to emerge from the historical review, however, is that the generic name as it now stands is in all probability incorrect. "Strongiloides" is the correct spelling. Adoption of this name would have the effect of changing all valid names in the genus. This would not serve stability of nomenclature in the genus. Opinion 66 of 1915 of the International Commission on Zoological Nomenclature placed Strongyloides on the Official list of Names. This opinion should be followed today. CHAPTER 2

DEFINITION OF THE GENUS

2.1 INTRODUCTION.

"define" :

- 1. to explain the nature or essential qualities of;
- 2. to determine or fix the boundaries or extent of.

(Random House Dictionary of the English Language)

.

These two meanings are highly germaine to taxonomy and the definition of taxa. They encompass both vital aspects of a "good" definition; firstly, the description of those essential qualities which make the taxon what it is, and secondly, the setting of limits to enable a particular taxon to be recognised as distinct from others. On the generic level, the definition should include only

those traits found in all members of the genus. It should not include those characters used to separate particular species within the genus.

Members of Strongyloides show a uniformity of morphology which simplifies the description of the generic characters and the fixing of generic boundaries. At first, the genus was poorly defined, and some species were included which did not belong (viz., S.bovis and S.viviparus). The first formal generic definition appears to be that of Brumpt (1913). This was expanded by Yorke and Maplestone (1926) and modified by Yamaguti (1961). Little (1966a) redefined the genus by giving comprehensive descriptions of 12 of the 18 life cycle stages. Emphasis was placed on the parasitic female, the free-living adults, and the infective larva, with descriptions of the first, second, third and fourth stage larvae of the indirect cycle, first and second stage larvae of the direct cycle and eggs both of the parasitic and free-living generations.

Prior to this redefinition, a number of characteristics had not been regarded as generic features, and had been used to separate species in the genus. Little's redefinition had great value in stating that certain features were generic. The most important of these was that the free-living males of all species had a solitary mid-line papilla and six pairs of caudal papillae, and that within certain limits these papillae were found in predictable locations. Other important points were that the spicules and gubernaculum of all males had a similar general morphology, the parasitic female had no lips and a constant number of cephalic papillae, and that the free-living females and larval stages varied little in morphology between species. Little's descriptions were comprehensive, precise and clearly stated.

The definition of *Strongylotdes* that follows is based on Little (1966a). It is intended to serve both as a definition of the genus and as an introduction to important aspects of its morphology. In this thesis Little's definition has been modified in two ways; firstly, generic features omitted by Little have been included, and secondly, errors have been corrected. If Little's description has been considered to be complete and correct, it has been reproduced unchanged and no comment made.

The specimens upon which the study is based are listed in Appendix I, and the techniques used are given in Chapter 4. The specific names used are those deemed to be valid in Chapter 3. Invalid synonyms used by the authors cited are given in parenthesis after the valid name.

Table 2:1 contains dimensions for the parasitic females of those species of *StrongyLoides* ruled to be valid in Chapter 3. These dimensions are taken solely from the literature, either from the original description or, if this was inadequate, the most complete set of data available was used.

Unavailable values are shown as "-", and calculated values as "*". Many of the earlier authors failed to give means and gave ranges only. In this case, "mean" was estimated as the mid-point of the range; i.e., minimum + maximum ÷ 2 = "mean". Some authors (Schwartz and Alicata, 1930; Basir, 1950) listed the dimensions of a series of individual worms; consequently, means and standard deviations could be accurately calculated. These values are marked with "•". Proportions, e.g., oesophageal length / body length, were calculated by dividing means. These are marked with "*". Where measurements of a series of worms were given, the proportions were calculated for each individual worm, and mean and standard deviation calculated for the series. This is indicated by "•".

TABLE 2:1. Dimensions of parasitic females of valid species of Strongyloides : from literature.

;

ID	SPECIES	LENGTH	MAX.	OESOPHAGUS	M-V	TAIL	WIDTH	OES	M-V	TAIL	REFERENCE
NO	·		WIDTH				/L %	/L %	/L %	/L %	
1	S.agoutii	5170±724.2	44±6.3	1210±135.9	3420*	91±9.9	0.85*	23.4*	66.2*	1.76*	Griffiths, 1940
		(3940-6450)	(30-59)	(975-1450)	(2665-4150)*	(75-109)		(20-25)	(64-68)*	(1.7-1.9)*	
2	5.akbari	1408.5*	32.5	650	887.4*	31	2.31*	42.1	63.0	2.0	Mirza &
		(1273-1544)	(31-34)								Narayan, 1935
з	S.amphibiophilus	1850	31*	517.5	1230	61*	1.68*	28*	66.5	3.3*	Perez
		(30-32)	(510-525)		(58-64)						Vigueras, 1942
4	S.ardeae	1890	35	650	1280	35	1.85*	34,4*	67.7*	1.85*	Little, 1966b
		(1500-2100)	(30-40)	(480-780)	(920-1500)	(30~50)					
5	S.avium	2200	42.5*	700	1400	55	1.93*	31.88*	63.6*	2.5*	Cram, 1929
			(40-45)								
6	S.bufonis	1650×	30*	440×	-	65*	1.82*	33.3	-	3.9*	Rao & Singh.
		(1500 - 1800)	(23-37)	(370-510)		(60-70)					1968
7	S.carinii	1500*	40	600×	1100*	60	2.67*	40 ×	75	4.0*	Pereira, 1935
		(1300-1700)		(500-700)	(1000 - 1200)						1020222,2700
8	5.cati	2800	40.2*	707*	1825.6*	37.9*	1.44*	25.2*	65.2	1.35*	Rogers, 1939
		(2370-3330)			101010	0		2012		2,00	109020,200
à	S. cebus	4070	59	930	2540	71	1 45 *	27 9.*	62 4*	1 74*	Tittle 19665
-	5100010	(2800-5000)	(50-80)	(740-1300)	(1800-2900)	(60-95)	1,45	22, 5	02.1	1.1.1	DICCIC, 19008
10	S chanini	4583 3+870 2*	27 8+1 2*	(110 1300)	(1000 1000)	(00 55)	0.6*		-		Sandground
10	Bienapono	(3800-5520)	(25-28)				0.0-			1925	Sanagrouna,
11	S cruzi	2425 *	(20-28)	579 F*	1542 54	77 5	2 60*	17 0*	63 6*	1925	Redriguog 1060
	5.01 420	(1630-3330)	(40-00)	(525-622)	(1205-1700)	(72-93)	2.00-	17.9"	03.0*	3.2"	KOULIGUES, 1900
12	S aubaenei e	(1030-3220)	(40-50)	(525~632)	(1295-1790)	(72-81)	2 00+	22.0*	66 6*	2 17*	Dowog
12	5.040481313	(2200-2400)	40	(540 500)	(1200 1400)	/3^	2.09~	23.9"	00.0^	3.1/~	Perez
12	5 demonskud	(2200-2400)	24 5+	(540~560)	(1300-1400)	(70-76)	2 20+	25 34		7 47*	Vigueras, 1942
13	5.ddfavskyv	1500*	34.5	530*	-	51.5*	2.30*	35.3*		3.43*	Snap110,1976
3.4	5 decurred a	(1400-1600)	(33-36)	(460-600)	1260	(48-55)	1 70*	20.0*	(7 7+	0.04*	Tithle local
14	s.aasypoats	()(00, 0000)	J0 (70 40)		1360	41	T./9*	38.8*	67.7*	2.04*	FICCIG'1300D
10	0	(1600-2300)	(30-40)	(630-870)	(1000-1000)	(33-52)					
12	S.elephantis	30901310*	35.6IJ.5*	750	2255.7*	49.6±2.5×	1.15*	24.3*	73±1.7*	1.61±0.16*	Greve,1969
	a	(2680-3670)	(29-39)	(680-830)		(46-54)					
10	5.erschowi	6500	87.5*	1052.5*	-	-	1.35*	16.2*			Popova, 1928
		(5500-7500)		(937-1168)							
17	S.eryxi	3180*	40	975*	2140*	76.5*	1.26*	33.3*	66.7*	2.41*	Mirza &
		(2670-3690)		(880-1070)	(1750-2530)	(63-90)					Narayan, 1935
T 8	S.jelis	2760*	42*	690*	1857.5*	70.4*	1.52*	25	67.3*	2.55*	Chandler,1925b
		(2600-2920)	(39-45)			(63-104)			(66.6-68)		(2.3-2.8)
19	S.fuelleborní	3470	51	800	2210	56	1.47*	23.1*	63.7*	1.61*	Little,1966a
		(2900-4200)	(43-55)	(710-980)	(1700-2700)	(45-70)					
20	S.gulae	2170	34	850	1510	77	1.57*	39.2*	69.6*	3.55*	Little,1966b
		(1800-2400)	(30-40)	(710-1000)	(1200-1700)	(60-95)					
21	S.herodiae	2585*	34*	595*	-	50.5*	1.32*	23	-	2.05*	Boyd, 1966
. 0		(2370-2800)	(32-36)	(530-660)		(48-53)					
22	S.lutraø	1860	29	750	1250	40	1.56*	40.33*	67.2*	2.15*	Little,1966b
_		(1600-2500)	(25-37)	(650-870)	(1100-1400)	(30-62)					
23	S.martis	2961*	48*	727*	-	61*	1.62*	24.6*	-	2.06*	Petrov, 1940
		(2856-3066)	(43-53)	(682-772)		(57-65)					
24	S.minimum .	1452.5*	38.5*	531*	-	50	2.65*	36,6*	-	3.44*	Travassos,1930
		(1125-1780)	(37-40)	(512-550)							

NO	LENGTH	MAX. WIDTH	OESOPHAGOS	74 — A	TALL	/L %	OES ∕L %	M-V /L &	TAIL /L %	REPERENCE	
25 S.mustelorum	3300	60	900	1900	-	1.92*	27.3*	57.6*	-	Cameron & Parnell, 1933	
26 S.myopotami	4120 (3100-5200)	37 (30-42)	1090 (80-1300)	2850 (2200-3600)	57 (A0-75)	0.90*	26.5*	69.2*	1.38*	Little,1966a	
27 S.nasua	2240*	50* (48-57)	880*	1608* (1472-1744)	-	2.23*	39.3*	71.9*	-	Darling, 1911	
28 S.ophidae	3150* (2700-3600)	40	1090* (1050-1130)	2101*	85* (70-100)	1.27*	33.3	66.7	2.7*	Pereira,1929	
29 S.oswaldi	3000	60	480	1800		2.0*	16*	60*	_	Travassos 1930	
30 S.papillosus	5312±371e	57.5e	839±83ø	3233±263@	64.5±7.10	1.08*	15.8±0.6#	50 9±2 Am	1 22+0 134	Bagir 1950	
	(4780-5850)	(50-65)	(720-950)	(2860-3540)	(54-78)	1.00	(15-17)	(59-67)	(1 1-1 4)	bas11,1990	
31 S payonte	3410	50 4	805	2090	(31 /0)	1 40*	22 6#	(36-07,0	1 93#	Sakamata r	
SI D. publication	(2720-4190)	(43~60)	(725-015)	(1685-2495)	(51-75)	T'49-	23.01	(50-65)	I.83" Vomoshit		
22 5 nemotiment	(2730 4130)	(45 00)	(725-515)	(1085-2495)	(31-73)	2 524	27 0+	(39-63)			
	(1560-1920)	(40-48)	(400-540)	1100.0*	(64-72)	2.53*	27.0*	00.7*	3.90*	TIAVA8909,1930	
33 S.petrovi											
34 S.physall	1650 (1400-2100)	38 (33~45)	550 (470-670)	1150 (1000-1400)	56 (50~65)	2.30*	33,3*	69.7×	3,39*	Little,1966b	
35 S.procyonis	2590 (1800-2900)	31 (28-37)	700 (640-760)	1710 (1200-1900)	53 (50-64)	1.2	26.9*	66.0*	2.05*	Little,1966	
36 S.putorii	2200* (2090-2310)	38.5* (33-44)	169.5* (166-173)	1358* (1261-1455)*	41	1.75*	7.7*	61,7*	1.86*	Morosov,1939	
37 S.quiscali	1825* (1630-2020)	43* (42-44)	520* (500540)	1135* (1000-1270)	42.5*	2.36*	28.5*	62.2*	2.3*	Barus,1968	
38 S.ratti	2370	34 (30-38)	740	1600 (1400-1900)	55	1,43*	31.2*	67.5*	2.32*	Little,1966	
39 <i>S.ratti</i> v. ondatrae	4000	33	1000	2500*	57.5* (55-60)	0.82*	25*	62.5*	1.44*	Chandler,1941	
40 S.robustus	6100	67.5*	1140	3560*	75*	0.61*	18.3*	61 O.X	1 22*	Chandler 1942	
	(4500~6800)	(60-75)	(860-1260)		(70-80)	0.01	(17 7-19	0)	(65-57)	chandle1,1,1,42	
41 S.rostombekowi	2740	60	1000	1815*	140	2.19*	36.5*	66.2*	5.1*	Gamzemlidse,	
42 S.serpentis	3170	40	1280	2180	75	1.26*	40.3*	68.8*	2.37*	Little,1966b	
	(2400-3700)	(30-50)	(890-1500)	(1700-2500)	(50~100)					· · · · ·	
-s s.srgmodonris	*000*	31	885×	2700*	53	0.72*	20,5*	63.5*	1.23*	Melvin &	
44 8	(3900-4700)		(870-900)	(2600-2800)		(19-22)	(63-64)		Chandler, 1950	
44 S.spiralis	(1200-2025)	31.8+2.0 (28-37)	601.2±55.6 (391-740)	1126.9±126.7 (860~1400)	54.6±6.0 (40-74)	2.03*	38,3*	71.9*	3.48*	Grabda-Kazubska 1978	
45 S.stercoralis	2420 (2100-2700)	37 (30-40)	570 (480-670)	1670 (1400-1800)	54 (40-70)	1.5*	23.8	69*	2.23*	Little, 1966a&b	
46 <i>S.stercoralis</i> v. vulpi	2200	32.5	575	1500	40	1.48*	26.1*	68.2*	1.82*	Mirza & Narayan,1935	
47 S.suls	3942.2±443.1@	61±2.8⊕ (54~62)	783±91.4© (605-883)	2527±419.30 (1922-2968)	70.9±9.5⊚ (67-83)	1,55*	19.20 (18-24)a	64.20	1.810 (1 4-2 2)0	Schwartz &	
48 S.thylacis	3040	40*	875*	1980	-	1.32*	28.8*	65.1	-	Mackerras, 1959	
49 S.tumefaciens	5000	109	875*	3400	110*	2,18*	17.5*	68.0	2,2	Price &	
50 S turkmenica	1905*	20+	(100 1000) A67 E*	1070+	(100-114)	2 OF +	04 F+	FC 0+	0.20+	DIKEANS, 1941	
50 5.001 MIGHTCO	(1740-2070)	(33-45)	407.5* (381~554)	1010*	45.5* (42-49)	2.05*	24.5*	56.2*	2.39*	Kurtieva,1953	

ID SPECIES NO	LENGTH	MAX. WIDTH	OESOPHAGUS	M-V	TAIL	WIDTH /L %	OES /L %	M-V ∕L %	TAIL /L %	REFERENCE
51 S.venezuelensis	2590 (2000-3200)	38 (33-41)	680 (650-780)	1740 (1400-2200)	44 (38-58)	1.47*	26.3*	67.2*	1.7*	Little,1966a
52 S.vulpis 53 S.westeri	8500* (8000-9000)	875* (80-95)	1350* (1200-1500)	5669.5*	125* (120-130	1.03*)	15.5*	66.7	1.47*	Ihle,1917

20

These values were inadvertently transposed in Little (1966b; Table V). Correct values.have been substituted.

* = calculated from original values as explained in text;

• = calculated from full series of original measurements as explained in text.

- = means not available in literature and insufficient data in literature to enable calculation.

2.2 DEFINITION.

STRONGYLOIDES Grassi, 1879.

2.2.1 Parasitic Female (Fig.2:1).

2.2.1.1 Description. -

Slender nematode, from 1.5mm to 10mm in length by 27 to 95µm in maximum width, average for genus 3013 by 44.8µm; width less than 4% of length. Cylindrical, slightly attenuated at anterior end, abruptly tapered at tail. Body wall thin, cuticle finely striated. Tail short, cone shaped. Head with circumoral elevation, lips absent. Stoma shallow, bilaterally symmetrical. No cephalic papillae, amphids at lateral margin of head (Fig.2:2).

FIG.2:2. En face view of parasitic female of Strongyloides westeri from small intestine of foal. Arrows mark amphids. SEM.

FIG.2:3. Vulva of parasitic female of *Strongyloides westeri* from small intestine of foal. SEM.

Single, dome shaped cervical papilla, bilaterally at level of excretory pore. Nerve ring crosses oesophagus in anterior 25%. Oesophagus cylindrical, portion anterior to nerve ring primarily muscular; portion posterior chiefly composed of a dorsal and two subventral glands each with a large nucleus near base of oesophagus; dorsal nucleus anterior to subventral nuclei which lie close together. Subventral glands drain into lumen of oesophagus at junction of glandular and muscular portions; dorsal gland empties into lumen near stoma. Intestine composed of 40 cells arranged in two rows (dorsal and ventral), each with a single nucleus; rectum short.

Excretory system composed of a single renette cell and lateral canals extending anteriorly and posteriorly in lateral chords. Excretory duct opens ventrally just posterior to nerve ring. Lateral chords larger than dorsal and ventral (Fig.2:1 A-C). Musculature meromyarian and platymyarian with one or two muscle cells per sector.

Reproductive system didelphic with opposed, equal uteri and reflexed ovaries; no seminal receptacles. Vulva two-thirds body length from anterior end, transverse slit (Fig.2:3), with a prominent cell forming anterior and posterior margins. Vagina very short, oviducts short with cellular walls (Fig.2:4), distal ends of ovaries lie near vulva.

FIG.2:4. Oviduct region of parasitic female of Strongyloides sp from stomach of spectacled hare wallaby, Lagorchestes conspicillatus. Scale line = 10 µm.

FIG.2:5. Perivulval papillae or nerve endings (arrows) lateral to vulva of parasitic female of *Strongyloides suis* from small intestine of pig. Scale line = 20µm.

FIG.2:6. Perivulval papillae (solid arrows) and cuticular modification (open arrow) lateral to vulva of parasitic female of *Strongyloides westeri* from small intestine of foal.

Paired nerve endings bilateral to vulva (Fig.2:5). Cuticle dorsal to these modified where vulval cells insert into hypodermis (Fig.2:6). Phasmids bilaterally tail, offset on (Fig.2:7). Parasitic in the mucosa of the gastrointestinal tract of vertebrates.

FIG.2:7. Phasmids, of parasitic female : Strongyloides sp from stomach of rufous rat kangaroo, Aepyprymnus rufescens. Dorso-lateral view. Scale line = 10µm.

Cervical Papillae.

All parasitic females have a small, dome shaped papilla bilaterally at the level of the nerve ring. Nerve fibres can be seen passing from the ring through the cuticle to each papilla. These papillae were noted by Arizono et al (1976) in *S.catt* (syn.*S.planiceps*) and by Sakamoto et al (1981) in *S.pavonis*. Both groups used SEM. The papillae are difficult to see using light microscopy, appear more prominent in some species (e.g., *S.suis*), but with care can be found in all. Little omitted this structure in his generic definition.

Position of vulva.

Many authors in the descriptions of their particular species have noted that the vulva divides the body in the proportions of 2:1. Little (1966a) included this in his definition of the genus. It is a point, however, which deserves greater emphasis. Fig.2:8 shows the plot of distance from mouth to vulva (M-V) against body length for valid species of *Strongyloides*. The regression coefficient is 0.991 and R squared is 0.981 indicating a very high degree of fit to the regression line. M-V/length is, therefore, a significant generic feature.

S.bovis has a M-V/length of 79% (calculated from Vryberg (1908, Plate 1, Fig 1) and the value for S.viviparus is 50% (Yorke and Maplestone, 1926). On the basis of other criteria, these two species were transfered from Strongyloides. Any species considered for placement in Strongyloides, and having a M-V/length not falling on the regression line, must be critically reassessed as to its true generic identity.

Perivulval Papillae.

The parasitic female has several cuticular structures lateral to the vulva. There is a pair of small papillae found bilaterally. Nerve fibres can be seen passing through the cuticle to each. The papillae appear as very small nerve endings just projecting above the cuticular surface (Fig.2:6) and are refractile under light microscopy.

BODY LENGTH mm

FIG.2:8. Regression of M-V against length for valid species of Strongyloides. Data from literature. R = 0.99058 $R^2 = 0.98125$, y = 0.63357x + 52.13136.

The members of each pair are in the same longitudinal line usually where the ventral border of the lateral chord meets the ventro-lateral muscle bundle (Fig.2:5). They are always within about 100μ m of the position of the vulva. These papillae have not been noted previously, but in suitable specimens can be seen in all species.

A larger dome shaped papillae is seen in some species in the dorso-lateral position, usually bilaterally. This is refractile under light microscopy, and nerve fibres can be seen to pass through the cuticle to it. It does not occur in all species of *Strongyloides*, however, so it is not a generic character.

The cuticle at about the mid-lateral point at the level of the vulva is modified in some way in all species. This is the area where the cells forming the anterior and posterior lips of the vulva terminate and appear to be attached into the hypodermis. The nature of the cuticle at this point varies with the species, but ranges from a depression to a dome. Nerve fibres are not apparent and so the structure seems to be solely cuticular and not sensory. These cuticular structures were described by Arizono et al (1976) and Sakamoto *et al* (1981) for *S.catt* (syn. *S.planiceps*) and *S.pavonis* respectively. The presence of a cuticular modification is a generic feature, while its nature is specific.

The paired perivulval papillae and the cuticular modification lateral to the vulva were not included by Little (1966a) in his redefinition.

Phasmids.

All parasitic females have a phasmid situated bilaterally at about the middle of the tail. These are pocket-like with a nerve fibre passing obliquely in a posterior direction through the cuticle. In some species they are difficult to make out by light microscopy, while in others they are very prominent in ventral or dorsal views (Fig.2:7). The phasmids are not found equidistant from the tail tip; they are always offset by about $1-2\mu$ m. McLaren (1976) suggested phasmids may function with amphids to detect differences in the intensity of a stimulus, thus helping to maintain the worm in a favourable environment. The fact that the phasmids of *StrongyLoides* are offset may allow directional localisation of a stimulus.

FIG.2:9. Parasitic female of *Strongyloides felis* in a mucosal tunnel in duodenum of cat. H & E X 400.

FIG.2:10. Mucosal tunnel containing eggs and parasitic female (arrow) in stomach of agile wallaby, *Macropus agilis*. H & E X 125.

Location of Parasite.

The parasitic female is a tissue parasite, living within the epithelium of the mucosa of the gastrointestinal tract (Fig.2:9) and forming tunnels in which eggs are laid (Fig.2:10). This has been noted in the literature for some species (Cram, 1929; Reesal, 1951; Worley and Barrett, 1964; Wertheim, 1970; Rego, 1972) but has not been stated to be a general trait of the genus. All the species examined by histological and dissection studies (see Appendix I) live for the most part in mucosal tunnels. No species have been found to occur outside the mucosa in the absence of a pathological response from the host.

Body Proportions.

The parasitic female is a slender , cylindrical nematode, much longer than wide, width 0.6% to 2.68% of length (Table 2:1). A serpentine body form, where width is less than 4% of total length, is associated in nematodes with mobility (Geraert, 1979), and in adult nematodes indicates a need to move in seeking nourishment. Confirmation of the mobility of the parasitic female is provided by biological data. The hypothesis that the parasitic female is constantly mobile was examined morphologically by using its tunneling behaviour. Infected mucosa was freed and examined intact in mucosal squashes by light microscopy. The eggs were arranged in a linear fashion, indicating the worm had moved forward as egg laying occurred (Fig.2:11). Wertheim (1970) made a similar observation for S.ratti. The progressive development of the embryos from one end of the line to the other confirmed this mobility, indicating that the more developed eggs were laid earlier, eggs being deposited in a temporal as well as a spacial sequence. The linear arrangement of eggs in the mucosa was seen during dissection for all species.

FIG.2:11. Mucosal squash from small intestine of foal infected with Strongyloides westeri. The eggs are laid in a linear sequence as the worm moves through the mucosa. Scale line = 100µm.

The parasitic female is mobile. Its general body shape is an expression of this. The body shape of the parasitic female is, therefore, a character of vital biological importance, and is an essential generic feature. A width/length ratio greater than 4% is atypical. Specimens or taxa considered for placement in Strongyloides, but with a width/length ratio greater than 4%, must be critically assessed as to their correct identities. 2.2.1.3 Points of Disagreement. -

Dimensions.

The upper limit of total body length has been increased from the six mm given by Little (1966a) to 10mm, as the average lengths of three species, *S.erschowi*, *S.robustus* and *S.westeri* exceeded the former upper limit (Table 2:1).

Similarly, the upper limit of maximum body width has also been raised from 75 μ m to 95 μ m, since *S.erschowi*, *S.tumefaciens* and *S.westeri* were wider. *S.tumefaciens* was reported to have a maximum body width of 109 μ m (Price and Dikmans, 1941). This was larger than it should have been since the specimens were squashed (see Chapter 5.3.1.1). The true diameter of 77 μ m has been substituted in Table 2:1. The largest species, *S.westeri*, sets the upper limits with maximum length of 10mm and width of 95 μ m.

The body dimensions, however, are only minor taxonomic criteria and specimens which fall outside these ranges should not be excluded on the basis of this character alone. The limits should be adjusted if other criteria are met.

Cephalic Papillae.

The number of cephalic papillae in the parasitic female has been a controversial point. Only 14 of the 51 original descriptions consulted gave the number of cephalic papillae. Little (1966b) was the author of seven of these. The literature contains comments on the number of cephalic papillae in 22 species, eight species having a more complete description subsequent to the original description (Table 2:2). The number of cephalic papillae ranged from four to eight, although in an unpublished dissertation Ballantyne (1971) stated the parasitic female had 10 cephalic papillae.

Little in his definition of the genus settled for four papillae, in subventral and subdorsal positions. Subsequently, some authors followed this convention (Rao and Singh, 1968) others proposed their species had six cephalic papillae (Sakamoto and Yamashita, 1970; Grabda-Kazubska, 1978), while others failed to state a number (Greve, 1969). None commented on Little's generic definition. The only point of agreement in the literature is that the cephalic papillae are very small and difficult to enumerate with confidence. TABLE 2:2. Number of cephalic papillae reported for parasitic females.

(If original and subsequent descriptions lacked no.of papillae, species has been omitted from list. If original description lacked number but it was given in subsequent descriptions, the deficit in original description has been indicated by NS).

	No.of		
SPECIES	PAPILLAE	REFERENCE	
S.agoutii	6	Griffiths, 1940	
S.ardeae	4	Little, 1966b	
S.cati	NS	Rogers, 1939	
	(see text)	Arizono et al, 1976	
S.cebus	6	Darling, 1911	
	4	Little, 1966a	
S.đasypodis	4	Little, 1966b	
S.erschowi	8	Popova, 1938	
S.eryxi	NS	Mirza & Narayan, 1935	
	4	Singh, 1954	
S.fuelleborní	NS	von Linstow, 1905	
	4	Little, 1966a	
S.gulae	4	Little, 1966b	
S.lutrae	4	Little, 1966b	
S.martis	6	Petrov, 1940	
S.myopotami	NS	Artigas & Pacheco, 1933	
-	4	Little, 1966b	
S.papillosus	NS	Wedl, 1856	
	4	Basir, 1950	
S.pavonis	6	Sakamoto & Yamashita, 1970	
	(see text)	Sakamoto <i>et al</i> , 1981	
S.physali	4	Little, 1966b	
S.procyonis	4	Little, 1966b	
S.ratti	NS	Sandground, 1925	
	4	Little, 1966a	
S.serpentis	4	Little, 1966b	
S.spiralis	6	Grabda-Kazubska, 1978	
S.stercoralis	NS	Bavay, 1876	
	4	Desportes, 1945	
	4	Little, 1966a	
S.venezuelensis	NS	Brumpt, 1949	
	4	Little, 1966a	

SEM studies provided an opportunity to resolve this point. Cephalic papillae, however, were not detected in expected locations. Arizono et al (1976) found papillae-like projections in S.cati (syn. S.planiceps) in lateral and ventral positions, while S.pavonis was reported to have papilliform projections in lateral, ventral and dorsal positions on the circumoral elevation (Sakamoto et al, 1981). Unfortunately, the latter authors did not illustrate this. None of these workers, committed themselves to stating whether cephalic papillae did or did not occur. In Figs 1,2 (p471) of Arizono et al (1976), no typical papilla can be seen, the papillae-like structures possibly being solely cuticular. In my SEM studies on 5. westeri and Strongyloides sp. from the agile wallaby, Macropus agilis, no cephalic papillae were detected, and I have not been able to see papillae by light microscopy in en face views of any of the species studied.

I therefore disagree with Little"s proposal that the parasitic female has four cephalic papillae. I consider that the parasitic female has no cephalic papillae, and that this is a generic character.

2.2.2 Free-living Female (Fig 2:12).

2.2.2.1 Description. -

Body small, up to 1.5 mm long by 85µm wide, spindle-shaped. Body wall thin, cuticle with fine transverse striations. Lateral chords broad, flat. Head with two lateral cephalic lobes projecting mouth, each bearing a small inconspicuous papilla beyond in subdorsal, lateral, and subventral positions. Lateral papíllae difficult to distinguish from slightly more posterior amphids from lateral view but distinct in *en face* and dorsal views. Mouth dorsoventrally elongated; stoma subglobular, laterally compressed, with thickened posterior wall. Collar-like, apparently cuticular structure, best seen in stained or glycerin mounts surrounding anterior part of stoma.

FIG.2:12. Free-living Female : Strongyloides felis from faecal culture of cat, 5 days at 23⁰C. Scale line 100µm.

Oesophagus rhabditoid (Fig.2:13); a short, anterior, muscular portion, set off from corpus by slight constriction; muscles of corpus and bulb coarser than those of isthmus. In anterior portion of corpus, radii of esophageal lumen terminate distally in incomplete tubelike structures with thickened cuticular walls. These "tubes" (referred to by some authors as "spears") arch distally and decrease in caliber as they extend posteriorly.

FIG.2:13. Oesophagus of free-living female : *Strongyloides felis* from faecal culture from cat. Scale line = 20µm.

Isthmus about one-half as long as corpus. Bulb with well-developed valvular apparatus. Short gastroesophageal sphincter present. Nucleus of dorsal oesophageal gland in anterior part of bulb, those of two subventral oesophageal glands at its base.

Intestine composed of 22 intestinal cells in two rows (dorsal and ventral), each with a single nucleus. Rectum short, compressed dorsoventrally. Anus subterminal, with small liplike swelling along posterior edge of transverse opening. Phasmids lateral, near middle of gradually tapering, finely pointed tail.

Nerve ring at posterior end of oesophageal isthmus. Excretory system composed of single renette cell located short distance behind oesophageal bulb, a duct extending anteriorly to pore just posterior -to nerve ring. Deirids very inconspicuous, on lateral surfaces near level of excretory pore.

Reproductive system didelphic with opposed, equal uteri and reflexed ovaries; anterior branch on right side of intestine, posterior branch on left. Vulva near middle of body; vagina very short, oviduct enters subterminally, with end of uterus, serving as seminal receptacle (Fig.2:34).

FIG.2:14. Free-living male : Strongyloides felis from 5 day faecal culture from cat. Scale line = $100\,\mu\text{m}$.

2.2.3 Free-living Male (Fig.2:14).

2.2.3.1 Description. -

Slightly smaller than female, up to 1.2mm in length by 55μ m wide, with shorter, broader tail ventrally curved when fixed. Body wall, cuticle, head, oesophagus, intestine, and excretory system as described for female.

Reproductive system single, straight. Testis blunt at anterior end, not reflexed, begins shortly behind oesophagus, extends to near Seminal vesicle and vas deferens middle of body. composing remainder of system not well differentiated. Cloaca short. Spicules equal, short, blade-like with laterally bent, knob-like anterior ends. Each spicule with two supporting ribs extending from base to near tip. Posterior part of spicule ventrally curved; thin membrane extending along curved portion of ventral edge gives spicule bow-like appearance. Gubernaculum laterally compressed with short wing-like structures extending laterally from posterior half of dorsal edge giving posterior end T-shaped appearance in cross-section with stem lying between spicules.

Caudal papillae (Fig.2:15) are one unpaired nerve ending on midpoint of anterior cloacal lip, six papillae bilaterally (one subventral preanal, two subventral adanal (anterior and posterior), one subventral postanal, one subdorsal postanal), and a dome shaped projection in midventral preanal position (preanal organ).

FIG.2:15. Caudal papillae, spicules and gubernaculum of free-living male and technique for quantifying positions and measuring dimensions. Key : l = preanal organ (PO); 2 = subventral preanal papilla (SVP); 3 = anterior adanal papilla (ADl); 4 = posterior adanal papilla (AD2); 5 = lateral papilla (LP); 6 = subventral postanal papilla (SVPO); 7 = subdorsal postanal (SDPO); a = distance from PO to cloaca; b = distance from SVP to transverse plane through PO; c = distance from ADl to transverse plane through cloaca; d = distance from AD2 to transverse plane through cloaca; e = distance from LP to transverse plane through cloaca; f = distance from SVPo to cloaca; g = distance from SDPo to transverse plane through SVPo; h = spicule length; i = length of gubernaculum; j = width of gubernaculum. Testicular Shape.

A feature which allows the free-living male of *Strongyloides* to be easily distinguished from those of free-living rhabditoids is the simple rounded anterior end of the testis of *Strongyloides* (Fig.2:16A).

FIG.2:16 Anterior ends of testicles : A. free-living male of Strongyloides westeri from faecal culture from foal at 23⁰C for 5 days; B. free-living male of unidentified rhabditoid from faecal culture from foal. Scale line = 20µm.

Most rhabditoids encountered as contaminants in faecal cultures have a more tapered end which is reflexed (Fig.2:16B). On superficial examination this frequently appears similar to the rounded end of the testis in *Strongyloides*, but that of *Strongyloides* is never reflexed. Papilla on Anterior Cloacal Lip.

Free-living males of all species examined had a single papilla on the midpoint of the anterior lip of the cloaca. Its degree of development varied with particular species. In many species, e.g., *S.stercoralis*, the papilla was not readily apparent, but could be detected in the lateral view as a small nerve ending projecting beyond the level of the cloacal lip. Other species, e.g., *S.westeri*, had a well developed papilla which appeared as a nerve ending in the centre of a small dome of cuticle (Fig.2:17). The only author to describe this papilla previously was Sandosham (1952) in a description of *S.stercoralis*. It was omitted by Little, but since it occurs in all species, it should be included in the definition of *Strongyloides*. The name anterior anal papilla is suggested for this papilla.

FIG.2:17. Free-living male of *Strongyloides westeri* showing anterior anal papilla, preanal organ and spicules. Scale line = 10µm.

Spicule Tip.

The spicules of most species terminate in a sharp point. The nature of the tip is, however, not constant throughout the genus and is a specific character (Fig.6:7, Table 6:2)). It is not a generic feature, and therefore "sharply pointed" has been omitted from the definition.

Preanal Organ.

The structure Little named the midventral preanal papilla differs from the other 13 caudal papillae. The 12 paired papillae appear as small, domed cuticular projections with a refractile, centrally placed nerve ending, slightly elevated above the surface of the dome. The nerve fibre can usually be traced a short distance through the cuticle and into the hypodermis. The midventral preanal structure is larger, and the deeper layers of the cuticle and adjacent hypodermis are modified (Fig.2:17). A nerve ending or nerve fibres passing through the cuticle could not be discerned in any specimen. This structure may not be a papilla, but may be solely a cuticular modification. Since the point has not been definitely resolved, however, the structure has been retained in the definition as a caudal papilla. To avoid confusion with the papilla on the cloacal lip the terminology used by Little has been replaced by the term "preanal organ" used by Cram (1936 p297 fig.3). This is more appropriate since it recognises that the structure is different from the typical bilateral caudal papilla.

2.2.4 Eggs (Fig.2:18 & 2:19).

2.2.4.1 Description. -

Eggs of parasitic and free-living females superficially identical in appearance though slightly variable in size, ellipsoidal with slightly flattened poles and extremely thin walls. Medium sized, 40-85µm in length with dimension of width about half that of length. The eggs of the free-living female possess a vitelline membrane, while the eggs of the parasitic female do not.

FIG.2:18. Eggs of Strongyloides : A. from parasitic female ex Strongyloides sp from large intestine of green tree frog, Litoria caerulea; B. from free-living female of same species. Scale line 10µm.

FIG.2:19. Eggs of parasitic female of *Strongyloides westeri* on the surface of the duodenal mucosa of foal. SEM.

2.2.4.2 Comment. -

Stage of Development.

Little (1966a) included information on the stage of development of the eggs at the time of laying for both adult female stages. He stated the parasitic female laid eggs in the stage of early cleavage. The eggs of *S.akbart* and *S.felts* have been reported to hatch in utero (Chandler, 1925b; Mirza and Narayan, 1935).

This phenomenon was not seen in any specimen examined, eggs usually containing a morula when laid. Many specimens of *S.felts* were examined, although none of *S.akbart* were available. Owing to the probability of some species proving exceptions, this point has been omitted from the definition.

Little (1966a) stated (p73) that the eggs of the free-living female were "usually in early cleavage when laid but may develop to larvae in utero". This is correct, younger females laying eggs in early cleavage, while hatching occurs inside the occasional effete female (Mackerras, 1959). This information, however, adds nothing to the definition since both options (oviparity or viviparity) are given. It has been omitted.

Vitelline Membrane.

The eggs of the parasitic female of *S.ratti* lack a vitelline membrane, while those of the free-living female posses one (Chitwood and Graham, 1940). Since the absence of a vitelline membrane is a consequence of parthenogensis (Chitwood and Graham, 1940), it is reasonable to predict that this situation would hold for all species in the genus.

Size.

The upper limit of 70 μ has been increased to 85 μ to accomodate the eggs of the parasitic female of *S.felis*.

Body up to 400µm long by 20µm wide. Oesophagus of newly hatched larva nearly one-third body length, structurely similar to that of free-living adult. Head with two cephalic lobes separated by transversely elongated, oval mouth. Although not evident at first, four cephalic papillae, a right and left subdorsal and a right and left lateral amphids appear later in this stage.

Cephalic lobes, apparently formed by inflations of cuticle, increase in size as larva progresses towards first molt. Stoma about 8µm long, cylindrical; posterior wall slightly thicker than anterior. Nerve ring in newly hatched larva at anterior end; at time of first molt near posterior end of isthmus.

Excretory system like that of free-living adult. Intestine patent, composed of 22 uninucleated cells in two rows (dorsal and ventral). Rectum short, anus about 60μ m from tip of tail. Genital primordium prominent, with five to nine nuclei, lying along ventral side near middle of intestine.

Although length of larva nearly doubles before first moult, depending upon culture conditions, oesophageal length increases very little. No morphological differences could be detected between first-stage larvae developing from eggs of parasitic and free-living females.

2.2.6 Second Stage Larva.

Just after the first moult second stage larvae are similar, but the morphology of larva at the second moult differs depending upon whether development is towards the direct or the indirect life cycle (Fig.I).

2.2.6.1 Second Stage Rhabditoid Larva (Fig.2:21). -

Body about 400µm long by 23µm wide Morphology similar to L1,

FIG.2:20. First stage larva of Strongyloides felis from faeces of cat immediately after voiding.

FIG.2:21. Second stage larva of *Strongyloides felis* from faeces of cat 6hr after voiding, 23⁰C.

Scale line = $50 \mu m$.

but organs more easily discerned. Buccal capsule still cylindrical, cuticle inflated anteriorly (Fig.2:22). Genital primordium increased in size but still oval in outline. In male cellular mass forms dorsal to rectum, thickening body; female lacks this mass and is thinner here (Fig.2:23).

FIG.2:22. Anterior end of second stage larva of *Strongyloides felis*, lateral view. Note parallel sides to buccal capsule and inflated cuticle anteriorly, as well as typical anterior segment of oesophageal corpus. Scale line 10µm.

FIG.6:23. Tails of late second stage rhabditoid larvae of Strongyloides felis : A. male with primordium of sexual apparatus dorsal to rectum; B. female. Scale line = 10µm.

2.2.6.2 Second Stage Filariform Larva. (Fig.2:24). -

Size at second ecdysis larger than for indirect; same as infective larva. In early second stage, morphology is similar to rhabditoid second stage. Later oesophagus elongates from 30% to 40% body length, posterior part is less muscular and more glandular; divisions less distinct; oesophageal gland nuclei become more prominent; nuclei dividing in all intestinal cells except first and last pair, increasing the number from 22 to 40. Genital primordium does not increase in size. Notched tail of filariform larva forms within the old cuticle of second stage, but cuticle has not separated from body to form a sheath (Fig.2:25). Some of these larvae have an elongated oesophagus, largely cylindrical, but with a terminal bulb. End of second stage is marked by moulting or by separation of cuticle to form a sheath.

2.2.6.3 Comment. -

Little emphasised that the morphology of the L2 depended on the route of development. He did not, however, describe the stages in such a way that they could be confidently identified. Separate descriptions for indirect and direct developing L2 have been given and additional morphological features included.

2.2.7 Third Stage Filariform Larva (Fig.2:26)

Larva slender, about 400-700µm long by about 12-20µm wide; oesophagus filariform as in parasitic female with length about 40% that of body; tail notched. Cuticle finely striated; lateral alae double, about 4µm apart (Fig.2:27). Head bearing two inconspicuous lateral cephalic lobes, each with small subdorsal and subventral papilla and lateral amphid. Mouth small, pore-like; stoma shallow, laterally compressed. Excretory system similar to that of free-living adult. Deirids between lateral alae near level of

FIG.2:24. Filariform second stage larvae of *Strongyloides* sp from spectacled hare wallaby; faecal culture at 25°C for 48hrs : A. with rhabditoid oesophagus; B. with filariform oesophagus and sheath. Scale line = 50µm. FIG.2:25. Tail of filariform second stage prior to sheath formation. Strongyloides sp from 48hr faecal culture at 25⁰C from spectacled hare wallaby. Scale line = 10µm.

FIG.2:26. Infective third stage larva of Strongyloides felis. Scale line = 50µm.

excretory pore. Pbasmids between lateral alae near middle of tail. Double lateral alae, extending to end of tail form tetafurcated tip; however, tail usually slightly twisted and may have trifurcated appearance (Fig.2:28). Intestinal cells 22, arranged in two rows (dorsal and ventral), the first and last pairs uninucleate, the remain ing are binucleate, making altogether 40 nuclei.

FIG.2:27. Transverse section of infective third stage larva in dermis of agile wallaby, *Macropus agilis*. Double lateral alae demarcated by arrows. Experimental percutaneous infection with *Strongyloides* sp. H & E X 1250.

FIG.2:28. Tail of infective third stage larva of Strongyloides felis. Note truncated and notched tip.

FIG.2:29. Third stage rhabditoid larva of Strongyloides felis. A. male; B. female. Scale line = 20µm.

FIG.2:30. Head of third stage rhabditoid larva of *Strongyloides felis*, lateral view. Note cone shaped buccal capsule. Scale line = 10µm.

2.2.8 Third Stage Rhabditoid Larvae (Fig.2:29).

Body about 450µm by 22µm wide. Morphological differences from L2 involve head and reproductive system. Walls of buccal capsule deviate anteriorly, giving a cone shaped buccal capsule in lateral view (Fig.2:30). Genital primordium elongated in both sexes. Cellular mass dorsal to rectum in male more distinct than in L2.

2.2.9 Fourth Stage Rhabditoid Larvae (Fig 2:31).

2.2.9.1 Description -

Morphology of head similar to adult, with two lateral lips. In female, the anterior and posterior ends of genital primordium are reflexed, vulval slit has formed under cuticle, and cells forming uterus have become vacuolated to form a lumen. In male, spicules have formed and become progressively sclerotised, genital primordium has elongated anteriorly and posteriorly, meeting posteriorly with a cord of cells growing from the rectum. At time of moult morphology is that of adult.

2.2.9.2 Comment. -

The fourth stage rhabditoid larva was not described by Little (1966a) in his redefinition.

2.2.10.1 Description -

Slender, size ranging from that of filariform larva to adult female. Oesophagus cylindrical, tail not notched. Reproductive system ranges from mass just larger than genital primordium of filariform larva to reflexed ovaries and uterus of adult. In those species in which the parasitic female has spiral ovaries the ovaries remain directly recurrent in L4. Vulva forms as transverse slit but has overlying layer of cuticle.

2.2.10.2 Comment. -

This stage was not included in Little's definition.

2.3 GENERIC BOUNDARIES.

Strongyloididae contains three genera, Strongyloides Grassi, 1879, Parastrongyloides Morgan, 1928 and Leipernema Singh, 1976. They can be distinguished using a number of criteria (Table 2:3). Some points warrant comment.

TABLE 2:3. Criteria used to distinguish between members of the Strongyloididae.

CRITERIA STRONGYLOIDES PARASTRONGYLOIDES LEIPERNEMA

PARASITIC FEMALE			
Buccal capsule	shallow	globular	conical
Buccal teeth	occas.present (1 pair)	absent	3 pairs
Cephalic	absent	absent	present
annulation			
Seminal	absent	present	?absent
receptacle			
PARASITIC MALE			
	absent	present	absent
FREE-LIVING ADUL	'IS		
Relative body lengths	₽> <i>व</i>	<u></u> ዩን ሮ	ç=q
Buccal teeth	absent	absent	3 pairs
FREE-LIVING MALE			
No. caudal	13	?variable	24
papillae	(1 single, 6 pairs)		(12 pairs)
Preanal organ	present	present	?absent

2.3.1 Buccal Capsule.

Although Singh (1976) did not describe the shape of the buccal capsule of *Letpernema*, his Fig.2 (p270) shows it to be cone shaped, narrower anteriorly. This is unlike the buccal capsule of *Strongyloides* which is very shallow, and that of *Parastrongyloides* which is globular in longitudinal section (Fig.1:1).
Singh (1976) reported three pairs of teeth in the buccal cavity of *Letpernema* in all adult stages. Although not stated, they were located in submedian and lateral positions (Singh, 1976: Figs 1&2, p270). Buccal teeth have not been reported for the other two genera, but the parasitic females of several species of *Strongyloides* have projections arising from the anterior ends of the oesophagus. These occur in dorsal and ventral positions (Fig.6:1).

2.3.3 Seminal Receptacle.

Morgan (1928) described a seminal receptacle in Parastrongyloides winchest. This was at the distal end of the uteri and ended as a blind sac with the oviduct entering subterminally. It usually contained sperm. The oviduct in Parastrongyloides is a narrow, thick walled and sometimes coiled duct (Morgan, 1928) and at its point of entry into the uterus is expanded to form a sphincter-like apparatus within the uterine wall (Fig.2:33). This is situated ventro-medially about 30µm from the distal end of the uterus. The free-living female also has a similar arrangement, with the oviduct entering the uterus subterminally on its ventro-medial side. The oviduct of the free-living female is abruptly narrowed just distal to the point of entry into the uterus and then expanded in the uterine wall into a bulb-like structure with a central lumen and several peripheral nuclei (Fig.2:34). This morphology is seen also in unfertilised female L5's and in L4's, although the length of the blind end of the uterus is reduced (30 vs 10µm). The oviducts of Strongyloides in the parasitic female pass directly into the terminal point of the uteri (Fig.2:4) and lack any obvious sphincter. The free-living female Strongyloides has a morphology similar to that of the free-living female of Parastrongyloides (Fig.2:34). Singh (1976) did not comment on the presence of a seminal receptacle in Letpernema, but in the absence of a parasitic male, the seminal receptacle is presumably lacking.

FIG.2:33. Distal uteri of parasitic females of Strongyloides and Parastrongyloides : A. Parastrongyloides sp from small intestine of echidna; B. Strongyloides sp from stomach of spectacled hare wallaby. Lateral views. Scale line = 10µm.

Α

В

С

FIG.2:34. Distal ends of uteri of free-living females of :
Parastrongyloides sp from echidna A. virgin fifth
stage; B. inseminated free-living female; and C.
Strongyloides felis inseminated free-living adult
female. Scale line = 10µm.

2.3.4 Caudal Papillae.

The number and positions of caudal papillae in the free-living male of Strongyloides is constant for the genus. Different numbers of caudal papillae have been reported for species of Parastrongyloides. This genus, however, has not been reviewed, and the apparent variation in number of caudal papillae in the genus may be a result of observer error. This was the situation existing for Strongyloides prior to Little's review and redefinition (Little, 1966a&b). The free-living males of both Strongyloides and Parastrongyloides have the preanal organ. Singh (1976) did not comment on this feature in Leipernema.

2.3.5 Clarity of Generic Boundaries.

The limits of the genus Strongyloides have been precisely Thus, any newly discovered nematodes which do not fall defined. within these boundaries can be assigned to different genera. As the genus has become more clearly defined, there has been less confusion about which species should be included. With the passage of the years the morphology of those species originally considered for inclusion in Strongyloides and subsequently placed elsewhere has approached closer to that of Strongyloides. In other words, the new genera proposed show a greater degree of relationship to Strongyloides than those proposed in former times. Probstmayria vivipara (syn. S. viviparus) and Cooperia punctata (syn. S. bovis) were included when the generic boundaries were still unclear (1905 and 1907, respectively). Morgan's (1928) proposal that only those species with no parasitic male be included in Strongyloides was a major benchmark. He also highlighted the importance of the shape and depth of the buccal capsule in separating Strongyloides from other genera. Little (1966a) also stressed this point. Boyd (1966) inadvertently trangressed this generic boundary by listing as a feature of her S.herodiae (syn. S.ardeae) the occurrence of a deep buccal capsule (Fig.5:9). This is dealt with in Chapter 5.2.1.3 and was an artifact due to degeneration of the specimens. Singh's

justification of *Letpernema* to accommodate his L.leiperi rested on the occurrence of buccal teeth in both the parasitic female and the free-living adults. The shape of the buccal capsule in the parasitic female also differed from that found in *Strongyloides*.

Little's review and redefinition established the generic boundaries of *Strongyloides* with great precision. *Parastrongyloides* now contains five species, but has not been reviewed. Consequently, in some areas, e.g. free-living stages, the generic boundaries are not clear, and when a host is infected with both *Strongyloides* and *Parastrongyloides* assignment to the correct genera is difficult (Mackerras, 1959). *Leipernema* contains only the single species *L.leiperi* from the pangolin, *Manus pentadactylus*. The free-living stages possess buccal teeth (Singh, 1976 p269 figs.9,10,11).

2.4 SUMMARY.

This chapter has dealt with the definition of the genus. Little's definition has been shown to be essentially correct. It has been modified in some respects. Larval stages have been more precisely defined, and minor additions and corrections made to his descriptions of other stages. The major theoretical modification has been to propose that the parasitic female lacks cephalic papillae. In the practical sense this is of no importance, since although Little's definition stated the parasitic female had four cephalic papillae, most authors had found them to be so small as to be indistinguishable. In no species had the number of cephalic papillae been of taxonomic weight.

The generic boundaries have been defined so precisely that closely related genera can now be confidently separated from Strongyloides.

CHAPTER 3

STATUS OF NAMES USED FOR SPECIES OF STRONGYLOIDES.

3.1 LIST OF PUBLISHED NAMES

A list of published names used for species of *Strongyloides* is given in Table 3:1. The authority proposing or first using the name is included as well as the scientific and common names of the type host, or if the name proposed for the parasite has no taxonomic status, the host name given is that associated with the use of the name. Names not used previously in the literature but considered by me to be the valid name of a taxon are also included. Unpublished names refering to new taxa are not listed. Where the scientific name of the host has been subsequently amended, the currently accepted scientific name is given followed by the binomial used by the parasitologist in parenthesis. There have been several attempts to publish comprehensive lists of species of *Strongyloides* (von Linstow, 1905; Stiles and Hassall, 1920; Hung and Höeppli, 1923; Sandground, 1925; Travassos, 1930a; Tomita, 1939; Griffiths, 1940; Yamaguti, 1961; Tanaka, 1966). The last list which included all names in the literature was by Sandground (1925) when 12 species had been named. Table 3:1 is the first complete list since 1925.

The original description or paper containing first use of a particular name was viewed and evaluated for conformity with the International Code of Zoological Nomenclature, 1985. Names were initially assigned to one of two categories, "available" and "unavailable".

3.2 UNAVAILABLE NAMES

An unavailable name is one whose original use does not comply with Articles 10 to 20 of the Code, or which has been introduced into the literature through an inadvertent error, a *lapsus calami*. Mayr (1971) suggests such names should not be listed, even in synonymy, in case such a listing constitutes an "indication" under Articles 12 and 13, and therefore makes the name valid. This is the extreme view, but certainly care is required in their use in publications (see Chap.3.1, *S.martis* and S.mustelorum). The status of such names can be clarified only by listing and critical evaluation. Unavailable names are listed in Table 3:2.

TABLE 3:1. List of Published Names for Strongyloides.

SPECIES	AUTHORS	Host	
		SCIENTIFIC NAME	COMMON NAME
S.agouti	Enigk, 1950	not given	not given
S.agoutii	Griffiths, 1940	Dasyprocta agouti	golden rumped agouti
S.akbari	Mirza & Narayan, 1935	Crocidura coerula	musk rat
S.amphibiophilus	Perez Vigueras, 1942	Bufo peltocephalus	toad
S.ardeae	Little, 1966	Butorides virescens virescens	eastern green heron
5.ardeae	Boyd, 1966	Ardea herodius herodius	great blue heron
S.avium	Cram, 1929	Gallus gallus	domestic fowl
5.bovis	Vryjburg, 1907	not given	domestic ox
S.bufonis	Rao & Singh, 1954	Bufo melanosticus	toad
S.bufonis	Anon, 1962	Bufo valiceps	Weigman's toad
5.Dufonis	Rao & Singh, 1968	Bufo melanostictus	toad
S.canis	Brumpt, 1922	Canis familiaris	domestic dog
S.carini	Pereira, 1935	Leptodactylus gracilis	frog
S.carinii	Pereira, 1935	Leptodactylus gracilis	frog
S.cati	Brumpt, 1927	Felis catus	domestic cat
S.cati	Rogers, 1939	Felis catus	domestic cat
	-	Felis planiceps	rusty tiger cat
5.ceDi	Travassos, 1930	Cebus capucinus	white -throated
		(Cebus hypoleucus)	capucin monkey
S.cebus	Darling, 1911	Cebus capucinus	white-throated
		(Cebus hypoleucus)	capucin monkey
S.chapini	Sandground, 1925	Hydrochoerus hydrochaeris	capybara
		(Hydrochoerus hydrochoera)	
S.chitwoodi	Srivastava, 1971	not given	poultry
S.cruzi	Rodrigues, 1968	Hemidactylus maboula	skink
S.cubaensis	Perez Vigueras, 1942	Butorides virescens maculatus	Cuban green heron
S.cubāensis	Perez Vigueras, 1942	Butorides virescens maculatus	Cuban green heron
S.cubanensis	Barus, 1968	not given	not given
S.darevskyi	Shapilo, 1976	Lacerta saxicola	skink
S.elephantis	Greve, 1969	Elephas indicus	Indian elephant
S.erschowi	Popova, 1938	Nyctereutes procyonoides usuriensis	raccoon dog
S.erycis	Baylis, 1923	Eryx jaculus	sand boa
S.eryxi	Mirza & Narayan, 1935	Eryx johnii	John's sand boa
S.felis	Chandler, 1925	Felis catus	domestic cat
S.fuellborni	Knight <i>et al</i>	Homo sapiens	man
S.fuelleborni	von Linstow, 1905	Pan troglodytes	chimpanzee

Papio cyanocephalus

yellow baboon

SPECIES	AUTHORS	HOST	
		SCIENTIFIC NAME	COMMON NAME
S.fuleborni	Panaitescu & Potorac, 1981	Cercopithecus pygerethus	vervet monkey
		Macaca irus	cymologus monkey
		(Macaca fascicularis)	
		Macaca mulatta	rhesus monkey
S.fullbornii	Held & Whitney, 1978	not given	non-human primates
S.fulleborni	Brumpt, 1949		
S.fulleborni	von Linstow, 1905	Pan troglodytes	chimpanzee
		(Anthropopithecus troglodytes)	
		Papio cyanocephalus	yellow baboon
		(Cyanocephalus babuin)	
5.füllebornii	Shulman, 1980	not given	3 5
S.gulae	Little, 1966	Natrix cyclopyon cyclopyon	green water snake
5.herodiae	Boyd, 1966	Ardea herodius herodius	great blue heron
5.hominis	Reisinger, 1915	Homo sapiens	man
5.intestinalis	(Bavay, 1876) Grassi, 1879	Homo sapiens	man
S.longus	(Grassi & Segre, 1887) Rovelli, 1888	Ovis aries	domestic sheep
S,longus bovis	de Gaspari, 1912	Bos taurus	domestic ox
S.longus ovis	Reisinger, 1915	Ovis aries	domestic sheep
S.longus suis	Reisinger, 1915	Sus scrofa	domestic pig
S.lutrae	Little, 1966	Lutra canadensis	common otter
S.martis	Petrov, 1940	Martes zibellina	sable
		Mustela ermina	stoat
		(Arctogale ermina)	
S.martis	Little, 1966	Martes zibellina	sable
		Mustela ermina	stoat
		(Arctogale ermina)	
S.minimum	Travassos, 1930	Dafilia bahamensis	duck
S.mirzai	Singh, 1954	Zamensis mucosus	rat snake
		(Ptyas mucosus)	
S.mustelarum	Yamaguti, 1961	Mustela erínacea	not given
S.mustelorum	Cameron & Parnell, 1933	Mustela ermina	stoat
S.mustelorum	Little, 1966	Mustela ermina	stoat
S.musterolum	Fukase <i>et al</i> , 1985	Mustelidae	
S.myopotami	Artigas & Pacheco, 1933	Myocastor coypus	coipu rat
		(Myopotamus colpus)	
S.nasua	Darling, 1911	Nasua narica panamensis	coatimundi
		(Nasua nasica panamensis)	

SPECIES	AUTHORS	HOST	
		SCIENTIFIC NAME	COMMON NAME
S.nutriae	Enigk, 1933	Myocastor coypus	coypu rat
S.ophidae	Pereira, 1929	Drymobius bifossatus	snake
S.oswaldei	Boyd, 1966	Gallus gallus	domestic fowl
S.oswaldí	Travassos, 1930	Gallus gallus	domestic fowl
		(Gallus domesticus)	
S.oswaldoi	Travassos, 1930	Gallus gallus	domestic fowl
	i.	(Gallus domesticus)	
S.ovocinctus	Ransom, 1911	Antilocapra americana	prong horned antelope
S.pallosus	Smits and Jacobi, 1965	Okapia johnstoni	okapi
S.papilosus	Lim and Lee, 1977	not given	deer
S.papíllosus	(Wedl, 1856) Ransom, 1911	Ovis aries	domestic sheep
S.papillousus	Miyamoto, 1929	not given	not given
S.pappillosus	Tomita, 1939	Sus scrofa	domestic pig
S.pavonis	Sakamoto and Yamashita, 1970	Pavo muticus	green peafowl
S.pereirai	Travassos, 1932	Elosia rustica	
S.petroví	Ryjova and Dubov, 1955		
S.physall	Little, 1966	Bufo valiceps	Wiegman's toad
S.planiceps	Rogers, 1943	Felis catus	domestic cat
		Felis planiceps	rusty tiger cat
S.procyonis	Little, 1966	Procyon lotor	raccoon
S.putorii	Morosov, 1939	Mustela putorius	polecat
		(Putorius putorius)	
S.quiscali	Barus, 1969	Quiscalus niger caribaeus	bird
S.ramsomi	Fukase et al, 1985	not given	
5.ransomi	Schwartz and Alicata, 1930	Sus scrofa	domestic pig
S.rasomt	Travassos, 1930	Sus scrofa	domestic pig
S.ratti	Sandground, 1925	Rattus norvegicus	brown rat
S.ratti v.ondatrae	Chandler, 1941	Ondatra zibethicus	musk rat
S.robustus	Chandler, 1942	Scirius niger rufiventer	fox squirrel
S.rostombekovi	Yamaguti, 1961	not given	hedgehog
S.rostombekowi	Gamzemlidse, 1941	Erinaceus europea	hedgehog
S.serpentis	Little, 1966	Natrix cyclopyon cyclopyon	green water snake
S.sigmodontis	Melvin and Chandler, 1950	Sigmodon hispidus	cotton rat
S.simiae	Hung and Höeppli, 1923	not given	"makaken"
S.spiralis	Grabda-Kazubska, 1978	Rana esculenta	edible frog
		Rana lessoni	edible frog

SPECIES	AUTHORS	HOST	
		SCIENTIFIC NAME	COMMON NAME
S.stercolaris	Ito <i>et al</i> , 1962	Canis familiaris	đog
S.stercoralis	(Bavay, 1876) Grassi, 1879	Homo sapiens	man
S.stercoralis v.eryxi	Mirza and Narayan, 1935	Eryx johnii	John's sand boa
S.stercoralis v.felis	Chandler, 1925	Felis catus	domestic cat
S.stercoralis v.vulpi	Mirza and Narayan, 1935	Vulpes alopex	artic fox
S.suis	von Linstow, 1905	Sus scrofa	domestic pig
S.thylacis	Mackerras, 1959	Isoodon macrouris (Thylacis obesulus)	short nosed bandicoot
S.tumefaciens	Price and Dikmans, 1941	Felis catus	domestic cat
S.turkmenica	Kurtieva, 1953	Himantopus candidus	stilt
S.turkmenicus	Barus <i>et al</i> , 1978	Larus canus	common gull
S.venezuelensis	Brumpt, 1934	Rattus norvegicus	brown rat
5.vesteri	Chilimoniuk, 1958		horse
S.vituli	Brumpt, 1921	Bos taurus	domestic ox
S.viviparus	(Probstmayr, 1865) von Linstow, 1905	Equus caballus	domestic horse
S.vulpis	Petrov, 1940	Vulpes vulpes	red fox
S.westeri	Ihle, 1917	Equus caballus	domestic horse

TABLE 3:2. Una	vailable names.		
NAME	AUTHOR	STATUS	REFERENCE
S.agouti	Enigk, 1950	lapsus calami	this thesis
S.bufonis	Rao & Singh, 1954	no differential diagnosis	this thesis
S.bufonis	Anon, 1962	nomen nudum	(see text
S.carini	Pereira, 1935	lapsus calami	this thesis
S.cati	Brumpt, 1927	nomen nudum	Rogers, 1943
S.cebi	Travassos, 1930	lapsus calami	this thesis
S.chituoodi	Srivastava, 1971	nomen nudum	this thesis
S.cupāensis	Perez Vigueras, 1942	unacceptable spelling	this thesis
S.cubanensis	Barus, 1968	lapsus calami	this thesis
S.fuellborni	Knight øt al, 1979	lapsus calami	this thesis
S.flleborni	Panaitescu & Potorac, 1981	lapsus calami	this thesis
S.fullbornii	Held & Whitney, 1978	lapsus calami	this thesis
S.fulleborni	Brumpt, 1949	lapsus calami	this thesis
S.fülleborni	von Linstow, 1905	unacceptable spelling	this thesis
S.fEllebornii	Shulman, 1980	lapsus calami	this thesis
S.hominis	Reisinger, 1915	nomen nudum	this thesis
S.martis	Petrov, 1940	no differential diagnosis	this thesis
S.mustelarum	Yamaguti, 1961	lapsus calami	this thesis
S.mustelorum	Cameron & Parnell, 1933	no differential diagnosis	this thesis
S.musterolum	Fukase et al, 1985	lapsus calami	this thesis

lapsus calami

lapsus calami

lapsus calami

lapsus calami

this thesis

this thesis

this thesis

• this thesis

S.oswaldei

S.pallosus

S.papilosus

S.papillousus

Boyd, 1966

Smits & Jacobi, 1965

Lim & Lee, 1977

Miyamoto, 1929

NAME	AUTHOR	STATUS	REFERENCE
5.pappillosus	Tomita, 1939	lapsus calami	this thesis
S.ramsomi	Pukase et al, 1985	lapsus calami	this thesis
S.rasomi	Travassos, 1930	lapsus calami	this thesis
5.rostombekovi	Yamaguti, 1961	lapsus calami	this thesis
S.stercolaris	Ito <i>et al</i> , 1962	lapsus calami	this thesis
S.turkmenicus	Barus et al	lapsus calami	this thesis
S.vesteri	Chilimoniuk, 1958	lapsus calami	this thesis
S.vituli	Brumpt, 1921	nomen nudum	Sandground, 1925

.

3.2.1 Comment on Unavailable Names.

S.agouti.

This name was used (p132) in a review by Enigk (1950), and again by Tanaka (1966 p593). It is obvious that they meant to refer to *s.agoutti*. It is a *lapsus calami*.

S.bufonis.

Little (1961) used this name in his PhD dissertation for a species from Wiegmann's toad, Bufo valiceps. The name had been used previously by Rao and Singh (1954) for a species from Bufo melanosticus, a toad from India. (In the 1954 abstract the host specific name was spelt "melanosticus"; but the 1968 paper gave it "melanostictus", with an additional "t". as I was unable to determine which was correct.) Little discovered this prior to publication of his species and instead used the name S.physalt. The dissertation did not constitute a valid publication, but an abstract, including list a of new species names without descriptions, was published in Helminthological Abstracts (vol 31, 1962, no.2953), four years before publication of the descriptions (Little, 1966b). This action introduced S. bufonts into the literature with Little as author. The U.S.D.A. Index-Catalogue of Medical and Veterinary Zoology Suppl. 17, Part 4, 1969 (p202-204) gave the names of all seven new species named by Little in his dissertation, including S. bufonis, the status of nomina nuda. The other names were subsequently published (Little, 1966b), but this use of S.bufonis remains a nomen nudum. This sequence of events serves to illustrate the problems caused by abstraction of proposed species names from dissertations prior to their publication in full.

The name S.bufonis as proposed by Rao and Singh (1954) was not accompanied by any attempt to differentiate the species from others. It was originally published as an abstract, listing the host and several measurements and proportions. Article 13a(i) states that a name published after 1930 must be :

"accompanied by a description or definition that states in words characters that are purported to differentiate the taxon," Clearly, Rao and Singh (1954) had failed to do this and the name was unavailable. Had Little chosen to use *S.bufonis* instead of *S.physali* in his 1966 paper, *S.bufonis* Little would have been available and valid. Little (1966b) suggested that *S.bufonis* Rao and Singh was not "valid" on the grounds of an inadequate description. This opinion is open to debate, but under Article 13a(i) there can be no doubt that *S.bufonis* as used by Rao and Singh (1954) is not an available name. In response to Little's criticsm Rao and Singh (1968) subsequently described the species more fully and provided a brief differential diagnosis. The correct citation for the species is *S.bufonis* Rao and Singh, 1968.

S.carini.

This name was used once (p20) in the original paper by Pereira (1935). The author intended the parasite to be known as *S.carinii*, named after A.Carini, and the name *S.carinii*, was used on four occasions in the same paper (pp 19,20 and 21). *S.carini* was obviously an inadvertent error and is therefore unavailable under Article 32c(ii).

S.cati.

Brumpt (1927) originally used the name in a footnote on page 662, "au Bengale, le chat presente, dans 20 pour 100 des cas sur 250 examines, un Strongyloides identifie au stercoralis par A.Chandler (1925) et considere comme une espece particuliere, S.cati, par d'auteurs." These other authors could not be found by Rogers (1943) or myself. Brumpt was apparently refering to S.stercoralis v.felis described by Chandler (1925a&b) from cats in Calcutta, not "Bengale". S.stercoralis v.felis was an available name, so if Brumpt's S.cati was available it was first published as a junior S.cati as used by Brumpt, however, was unaccompanied by a synonym. description, and lacking an indication, under Article 12, the name is a nomen nudum. Unaware of this prior use Rogers (1939) used the name to describe a species originating from the rusty tiger cat, Felis planiceps, and maintained experimentally in the domestic cat. Since Brumpt's use was invalid, his S.cati had no taxonomic standing, and S.catt Rogers, 1939 was not in homonymy. The latter was the only available name. Rogers (1943), however, discovered the former use of S.cati by Brumpt, suggested that this was a nomen

nudum, but then proposed an alternative name for his species, S.planiceps Rogers, 1939. This latter name has become universally accepted. An original name can be changed only if the error is inadvertent. S.catt Rogers, 1939 was valid. Consequently, his proposal to rename the species does not conform to the Code. S.planiceps Rogers, 1939 is therefore a junior synonym of S.catt Rogers, 1939.

S.cati has been used by several authors, mainly of veterinary reviews or textbooks (Soulsby, 1968; Prescott, 1972; 1977; Mason, 1980; Wilkinson, 1984), but only Soulsby (1968) listed S.cati and S.planiceps as synonyms. The other authors failed to make clear to which taxon they were referring in their use of S.cati. Wilkinson (1984 p466) clumsily indicated S.cati to be a junior synonym of S.stercoralis, when he listed them as "S.stercoralis, (cati)". He failed to give taxonomic references for this synonymy. This use is an error and of no taxonomic standing.

S.cebi.

Travassos (1930b p176) used this name in error for S.cebus. It is a lapsus calami.

S.chitwoodi.

This name was proposed as a *comb.nov*. by Srivastava (1971). No details were given, but reference was made to the author's dissertation. Unfortunately, a copy could not be viewed. This use is a nomen nudum and unavailable.

S.cubäensis.

Article 32c(vi) of the 1985 Code forbad the use of diacritic marks. Under Article 32d(i)2 the correct spelling is *S.cubaensis*. Little (1966b) and Boyd (1966) used the correct form without comment.

S.cubanensis.

Barus (1969) used this name twice (ppl32,133). It is a *lapsus* calami for S.cubaensis.

S.erycis.

Baylis (1923 p35) introduced this name when he reported on the *Strongyloides* collected by Looss. Looss had labelled specimens collected from a sand boa as *Rhabdonema erycis*. *Rhabdonema* is a synonym of *Strongyloides*. The name had not been published prior to Baylis's use. Baylis provided no description, so the name is a nomen nudum and unavailable.

S.fuelleborni.

This name was proposed by von Linstow (1905) for a species from the chimpanzee and a baboon. Article 32c(i) of the 1964 Code was a new provision and forbade the use of the umlaut, and replacement by the original vowel followed by "e". This provision is maintained in the 1985 Code. The correct spelling is S.fuelleborni. Many authors have persisted in using the unavailable form (Jaros et al, 1966; Little, 1966a; Gretillat et al, 1967; Beg, 1968; Wong and Conrad, Hansen et al, 1969, 1975; Pampiglione and Riccardi, 1968; 1971,1972; Healy and Myers, 1973; Myers and Kuntz, 1973; Arambulo et al, 1974; Goldsmid, 1974; Kagei and Hasegawa, 1974; Arizono, 1976a&b; Hira and Patel, 1977; Schultze, 1977; Hira, 1978; Prosl and Tamer, 1979; Karr et al, 1980; Rutherford, 1981; Horii et al, 1982; Usui and Horii, 1982; Fukase et al, 1985). Others have omitted the umlaut and used S.fulleborni (Brumpt, 1949; Lefrou and Michard, 1957; Guilloud et al, 1965; Gorkhali and Basir, 1968: Wong and Conrad, 1968; Rego, 1972; Kelly et al, 1976; Remfrey, 1978; Ashford et al, 1979; Vince et al, 1979; 1982; Eberhard, 1981). This latter spelling is also invalid as under section 32d(i)2, "" becomes "ue". S.fulleborni does not have the status of a junior synonym since the uses were inadvertent errors.

S.fuellborni, S.füleborni, S.fullbornii and S.füllebornii are lapsa calamorum.

S.hominis.

This name was used by Reisinger (1915); no authority was given and no details provided. The only other similar name found was *Rhabdonema hominis*, used by Lutz (1885 p387). *Rhabdonema* is a synonym of *Strongyloides*. In both cases the implication was that the name referred to the *Strongyloides* of man. The name as used is a nomen nudum since a definition or description was not given.

S.martis.

Petrov (1940a) proposed the name S.martis for specimens collected from the intestines of Martes zibellina and Mustela ermina. The description (pp221-222) was of the parasitic female only, and lacked key taxonomic features. An illustration of the whole worm (p221, unnumbered fig.) suggested that the ovaries were directly recurrent, and that the tail was narrowly tapered. The text contained no reference to ovary type, but stated that the tail was conical and bluntly rounded. Some measurements were given. There was no attempt to give a differential diagnosis; no other species of Strongyloides was mentioned in the paper. A name proposed after 1930 must be accompanied by a differential diagnosis (Article 13a(i)). Petrov (1940) made no attempt to do so. S.martis Petrov is therefore unavailable.

S.martis Little, 1966 is an available name, since Little (1966b p87) , in discussing Petrov's description, gave an indication and a differential diagnosis in his proposal for *S.Lutrae*.

S.mustelarum.

Yamaguti (1961) used this name in his list in error for S.mustelorum Cameron and Parnell, 1933, a species from the stoat, Mustela ermina. Yamaguti (1961) also erred in giving the host as Mustela erinacea. The name is a lapsus calami.

S.mustelorum.

This name was proposed by Cameron and Parnell (1933) to accommodate two parasitic females found in the small intestine of a stoat, *Mustela ermina*. A brief description, some dimensions, and an illustration of the whole worm was given (pp143,144 fig.8). No attempt to differentiate the taxon was made. Justification for the new species was (p144):

"We consider it advisable to have two names for a single species rather than have two species with the same name." Arguments can be presented for and against this principle, but the point is that Cameron and Parnell provided no means whereby their specimen could be distinguished from another. Apparently they did not deposit it. Since *S.mustelorum* was proposed after 1930 and no differential diagnosis was given, under Article 13a(i) of the Code, the name is unavailable.

Little used the name *S.mustelorum* in his discussion on *S,lutrae* (1966a p85,87). He gave the dimensions published by Cameron and Parnell (1933), and attempted to give a differential diagnosis. *S.mustelorum* Little is therefore an available name.

S.musterolum.

In a comprehensive paper on *Strongyloides* from *Mustela sibirica* Fukase et al (1985) used the name "*musterolum*" in error for "*mustelorum*" (p630). It is a *lapsus calami*.

S.oswaldei.

Boyd (1966) used this name for a species from "Gallus in Brazil", and gave as authority Freitas and Almeida (1936). These latter authors did not propose or use this name. Boyd apparently meant to refer to S.oswaldi Travassos, 1930. S.oswaldei is a lapsus calami.

S.pallosus.

This name was used by Smits and Jacobi (1965) (p146, Table 3) in a paper on the parasites of okapi, Okapia johnsoni. It is obvious the authors meant to record the presence of S.papillosus, a species found commonly in ruminants. S.pallosus is a lapsus calami.

S.papilosus.

Lim and Lee (1977) gave this name for specimens found in captive deer (species not stated). It is a *lapsus calami* for *S.papillosus*.

S.papillousus.

This name was used by Miyamoto (1929) when comparing the shape of the tail of *S.suis* from Formosan pigs. He meant to use *S.papillosus* group sensu Chandler (1925b). This use is a *lapsus* calami.

S.pappillosus.

In a comprehensive paper on the *Strongyloides* of pigs on Formosa, Tomita (1939) assigned the species found to *S.papillosus*. He used this consistently throughout, but erred in the abstract (p1624) in using "*pappillosus*". This use is a *lapsus calami*. Tomita was probably dealing with *S.suis*, not *S.papillosus*.

S.ramsomi.

Fukase et al (1985) used this name in a general discussion on Strongyloides of Canidae, Felidae and Mustelidae. They obviuosly intended to use the name S.ransomi. S.ramsomi is a lapsus calami.

S.rasomi.

Travassos (1930b) used this name (p176) in discussing the species from pigs "named by Schwartz". It is a *lapsus calami* for *S.ransomi*.

S.rostombekovi.

This name was used by Yamaguti (1961) in error for *S.rostombekowi* Gamzemlidse, 1941 from the hedgehog. It is a *lapsus calami*.

S.stercolaris.

The first to use the name *S.stercolaris* was Ito *et al* (1962; pp55,57,58,60 Tables 2 and 6) for specimens from a dog in Bangkok. Presumably, they meant to use the specific name "*stercoralis*". Hayama and Nigi (1963) also consistently used the name *S.stercolaris* (pp104,106, Tables 3 and 4) for a species from gibbons and chimpanzees. It is obvious from the text that they meant to refer to the parasite of primates, *S.stercoralis*. Hayama and Nigi (1963) did not refer to the earlier use. *S.stercolaris* is a *lapsus calami*.

S.turkmenicus.

This is a *lapsus calami* for *S.turkmenica* Kurtieva, 1953. It was used without comment by Barus *et al* (1978 pp46,47).

S.vesteri.

This name was used by Chilimoniuk (1958 pl69), presumably in error for S.westeri. It is a lapsus calami.

S.vituli.

Brumpt (1921) used this name for a parasite of calves in France. No morphological details were given and it is therefore a nomen nudum (Sandground, 1925).

3.3 INVALID NAMES.

Validity is a term that refers to the rights of names in relation to homonyms and synonyms (Mayr, 1971). At any particular time only one name can be the valid name of a taxon. Synonyms are different names for the same thing. The synonym which was published the earliest is the senior synonym and is the only valid name for the taxon. The synonyms published subsequently are junior synonyms and invalid. A name becomes a senior synonym at the time when a second name for the same taxon is made available. Names first published as synonyms may be available, that is fulfil the provisions of the Code, but will not be valid. A homonym is the same name for different taxa. The earliest name is the senior homonym and is valid ; the other names are the junior homonyms and are invalid. A primary homonym is a name originally published as a junior homonym. It must be renamed. Provisions governing the replacement of rejected primary homonyms are given in Article 60 of the Code, and give the author of the rejected name an opportunity to propose an alternative valid name.

Arguments about validity depend on whether the species in question are actually the same and priority. The date of publication is the important date when deciding on priority. The date of publication is the date on which the publication was mailed to subscribers, placed on sale, or, where the edition is distributed free of charge, mailed to institutions and individuals to whom such free copies are normally distrubited (Mayr, 1971). This date is not necessarily the date printed on the cover of the journal or book. The revelent provisions are dealt with in Articles 21 - 24. Invalid names are listed in Table 3:3.

INVALID NAME	STATUS	VALID NAME	REFERENCE
S.ardeae Boyd,1966	junior homonym	S.herodiae Boyd,1966	Boyd(1967)
S.bovis Vrijburg,1907	not Strongyloides	Cooperia punctata Ransom,1911	Ransom(1911)
S.canis Brumpt, 1922	nomen dubium	-	this thesis
S.intestinalis (Bavay,1876) Grassi,1879	junior synonym	S.stercoralis (Bavay,1876) Grassi,1879	Stiles&Hassall(1902)
S.longus (Grassi&Segre,1887) Rovelli,1888	junior synonym	S.papillosus (Wedl,1856) Ransom,1911	Ransom(1911)
S.longus bovis de Gaspari, 1912	junior synonym	S.papillosus (Wedl, 1856) Ransom, 1911	this thesis
S.longus ovis Reisinger,1915	junior synonym	S.papillosus (Wedl,1856) Ransom,1911	this thesis
S.longus suis Reisinger,1915	junior synonym	S.suis vonLinstow,1905	this thesis
S.mirzai Singh,1954	junior synonym	S.eryxi Mirza&Narayan,1935	this thesis
S.nutriae Enigk,1933	junior synonym	S.myopotami Artigas&Pacheco,1933	this thesis
S.oswaldoi Travassos,1930	junior synonym	S.oswaldi Travassos,1930	this thesis
S.ovocinctus Ransom,1911	junior synonym	S.papillosus (Wedl,1856) Ransom,1911	Sandground(1925)
S.planiceps Rogers,1943	junior synonym	S.cati Rogers,1939	this thesis
S.ransomi Schwartz&Alicata,1930	junior synonym	S.suis VonLinstow,1905	this thesis
S.simiae Hung&Höeppli,1923	nomen dubium	-	this thesis
S.stercoralis v.eryxi Mirza&Narayan,1935	elevation in rank	S.eryxi Mirza&Narayan,1935	Rodrigues, 1968
S.stercoralis v.felis Chandler,1925	elevation in rank	S.felis Chandler,1925	Goodey(1926)
S.vlviparus von Linstow, 1905	not Strongyloides	Probstmayria vivipara (Probstmayr,1865)	Ransom(1907b)

(Probstmayr, 1865) Ransom, 1907

S.ardeae Boyd, 1966.

Boyd published a description of *S.ardeae* from the eastern green heron, *Butorides virescens virescens*, in the Journal of Parasitology, 52, part 3, p503, June, 1966. Little in February of the same year published his description of *S.ardeae* from the yellow crowned night heron, *Nyctanassa violacea* in Journal of Parasitology, 52, part 1, p85. *S.ardeae* Little had priority and *S.ardeae* Boyd was therefore a primary homonym. Boyd (1967) considered her species was distinct from *S.ardeae* Little and renamed it *S.herodiae* Boyd, 1966.

S.bovis Vryjburg, 1907.

The original description of *S.bovis* (Vryjburg, 1907) consisted of fairly comprehensive descriptions and illustrations of male and female trichostrongyloid nematodes. Ransom (1911) commented that *S.bovis* "is very clearly not a *Strongyloides*. His description and figures indicate that he was dealing with *Cooperia punctata*, in part at least.".

S.canis Brumpt, 1922.

Fulleborn (1914) was the first to report *Strongyloides* in dogs. He proposed that the parasite in Chinese dogs was a biological variety of *S.stercoralis*. Brumpt (1922) considered that this variety should be given specific status, and proposed the name *S.canis*. His grounds for so doing were based solely on biological criteria :

(i) Differences in geographic ranges of the two species in their respective hosts. *S.canis* was found mainly in dogs in the "Orient", presumably China and Japan, and had a very low prevalence elsewhere. *S.stercoralis* in man was cosmopolitan, and occurred at high prevalences in areas where dogs were rarely affected.

(ii) Difficulty in infecting dogs with *S.stercoralis*. In general this point still holds; *S.stercoralis* can infect dogs, but the patency, intensity, and longevity of the infection varies with the strain used and the age of the dog (Galliard, 1951; Dawkins and Grove, 1982;). Puppies are more susceptible (Horie et al, 1974;?). Faust (1933) and Augustine (1940) produced persistent experimental infections in dogs using natural canine strains. Both, however, failed to give any morphological details of their strains.

(iii) Differences in the type of development in culture. Fulleborn (1914) found only indirect development with the canine strain, while Brumpt (1922) obtained mixed development with *S.stercoralis*. This point is of no significance, as with most species the type of development varies with factors other than the specific identity of the worm.

The status of *S.canis* has been uncertain since its proposal. It is an available name, since an indication, the "work" of the animal, was given (Article 16a(viii). The validity of S.canis is the point to be considered. The major weakness of Brumpt's argument, and of those supporting the validity of S.canis (Augustine, 1940), is that, apart from its "works", the parasite has not been well described. The key feature known is that larvae are found in faeces. Brumpt's argument rests mainly on biological criteria, and he and Augustine seem to adopt the approach that any Strongyloides found in a dog is S.canis by virtue of it being found as a natural infection in a dog. This is incorrect. S.cati (syn.S.planiceps) is a natural parasite of dogs in Japan (Arizono et al, 1976; Horie et al, 1980). Infection of dogs over three months of age with a species passing eggs in faeces is prevelant in Fiji (Munro and Munro, 1978). S.cati may be the parasite involved, but a more complete examination is required. An unidentified parasite, morphologically similar to S. stercoralis was described by Lucker (1942) from natural infections in seven dogs in USA. This was not S.cati since larvae were passed in faeces. S.stercoralis has been reported as natural infections in dogs (Ware and Ware, 1923; Whitney, 1936; Ito et al, 1962; Enyenihi, 1972; Georgi and Ohder and Hurni, 1978; Horie et al, 1980), but Sprinkle, 1974; none of the reports have given sufficient major criteria by which the identification can be evaluated. A group of dogs examined by me in Townsville, north Queensland, had larvae in faeces, and free-living adults consistent with S.felis were cultured. Naturally infected dogs in USA have had either eggs (Chandler, 1939) or larvae (Augustine and Davey, 1939; Augustine, 1940; Lucker, 1942) in faeces. Patent experimental infections of dogs have been reported for S.fuelleborni (Sandground, 1925) and S.suis (Kotlan and Vadja, 1934).

Consequently, to assume that the dog is naturally infected by only one species is incorrect. The clarification of the status of *S.canis*, even by means of a comprehensive investigation, is probably impossible since there are too few clues to indicate its morphology. The name, *S.canis*, is therefore a *nomen dubium*.

S.intestinalis (Bavay, 1876) Grassi, 1879.

Grassi (1879b) proposed this name for the species now known as S.stercoralis. The taxonomic history has been discussed under Section 1:2. The generic name Strongiloides was not widely accepted, even Grassi failed to use it after 1879, and the specific epithets stercoralis and intestinalis were used interchangeably often in the same publication (Golgi and Monti, 1884; Lutz, 1855; Grassi and Segre, 1887). Strict adherence to the generic case for the specific name was not followed, "stercorale" and "intestinale" also being used interchangeably (Grassi and Segre, 1887). The specific name "stercoralis" had priority over "intestinalis", and priority had been established in principle by Linneaus. Linneaus and his followers, however, were inveterate name changers ; often for quite minor reasons (Mayr, 1971). The principle of priority had been formalised in the Strickland Code (Strickland, 1842) backed by the British Association for the Advancement of Science, but was not adopted on an international scale until 1905. This may explain why one binomial had not been adopted to the exclusion of the other. By the late 1890's - early 1900's Anguillula intestinalis seemed to be the favourite in Europe ; but in American literature Strongyloides intestinalis was prefered (Strong 1901a&b; Thayer, 1902; Ginsburg, 1920). Stiles and Hassall (1902) discussed the naming of this species and proposed Strongyloides stercoralis as the correct binomial. They deemed their effort to be worthy of taxonomic recognition, S.stercoralis to be followed by (Bavay, 1876) Stiles and Hassall, 1902. Stiles and Hassall merely played the role of adjudicator, however, and had not contributed taxonomically. The credit should have been given to Grassi, the author who proposed the change in the generic name from Anguillula to Strongiloides. The correct name is Strongiloides stercoralis (Bavay, 1876) Grassi, 1879 and Strongiloides intestinalis is a junior synonym. If however Strongiloides is suppressed, the correct citation of authors should be Strongyloides stercoralis (Bavay, 1876) Anon, 1879. Miyamoto (1929) may have been the last to use Strongyloides intestinalis.

S. nutriae Enigk, 1933.

Enigk (1933) described a species from a South American rodent, the nutria or coypu rat, *Myocastor coypus*, and proposed the name *S.nutriae* in Zeitschrift fur Parasitenkunde 6, distributed on 18th December, 1933. Earlier in the same year Artigas and Pacheco had described the same species in Comptes Rendus de la Societe de Biologe, Sao Paulo 112, issued on 3rd February. The latter species was named *S.myopotami* and has priority. Consequently, *S.nutriae* is a junior synonym. Enigk's (1933) new name was provisional since he considered the specimens he described may have belonged to *S.chapini* Sandground, 1925 whose type host was another South₇ American rodent, the capabaya, *Hydrochoerus hydrochaeris*. The original description of *S.chapini* was incomplete and the specimens so degenerate (Sandground, 1925) that comparison is not possible without further collecting. S.longus (Grassi and Segre, 1887) Rovelli, 1888.

The name Rhabdonema longus, was used by Grassi and Segre (1887) for a species from sheep. The original description was incomplete but Ransom (1911) proposed that S.longus was a junior synonym of Trichosoma papillosum, a species which he transfered to Strongyloides thereby changing the name to S.papillosus. This was generally accepted; the last use of S.longus was in 1927 by Haupt. Rovelli (1888) was cited by Ransom (1911) as an author of S.longus, presumably responsible for change of name from Rhabdonema to Strongyloides. Unfortunately Rovelli's paper could not be located.

S.longus bovis de Gaspari, 1912.

Using the name S.longus bovis de Gaspari (1912) published a description of specimens collected from Bos taurus in Turin. The description is consistent with S.papillosus (Wedl, 1856), which has priority. S.longus bovis is a junior synonym.

S.longus ovis Reisinger, 1915.

In a paper dealing with the species of *Strongyloides* found in pigs Reisinger (1915) gave the parasites in their respective hosts subspecific status, naming that from sheep *S.longus* ovis and from pigs, *S.longus* suis. This convention has not been followed for sheep, as the species found in sheep readily infects goats (Turner, 1959; Bezubik, 1963), rabbits (Ransom, 1907a), and the springbok, *Antidorcas* marsupialis, an African antelope (Mönnig 1931). It is unlikely that the sheep strain is specific and the subspecific name should be considered a junior synonym of *S.papillosus*.

S.longus suis Reisinger, 1915.

See S.suis. Junior synonym of S.suis.

S.mirzai Singh, 1954.

See S.stercoralis var.eryxi below. Junior synonym of S.eryxi.

S.osualdoi Travassos, 1930.

S.osualdi was used in the original description of a species from the domestic fowl (Travassos, 1930a). In the same year Travassos (1930b) used the name S.oswaldoi and continued to use this latter form (Travassos, 1932) without commenting on the change. Subsequent parasitologists (Cram, 1936; Freitas and Almeida, 1936: Griffiths, 1940; Yamaguti, 1961; Little, 1966b; Barus, 1968) used S.oswaldoi. Tanaka (1966) appears to have been the only worker to use S.oswaldi. The species was obviously named after the Institute of Oswaldo Cruz, where the type specimens were first deposited in 1917 (Travassos 1930a), and "oswaldot" is the correctly latinised form. The change of the former name is a justified emendation under Article 32a(ii) if S.oswaldi was a lapsus calami or inadvertent error, either on the part of the author or printer. It is not justified if the error is one of transliteration on the author's part. If Travassos (1930a) had meant to use S.oswaldi in his had subsequently realised his incorrect initial publication, latinisation and then changed it, the error would be one of transliteration and therefore change of name would be unjustified under Article 32b. If on the other

hand, Travassos had used *S.oswaldoi* in the manuscript, but the printer had erred and used *S.oswaldi*, a *lapsus calami* would have occurred. *S.oswaldi* was used only once in the original publication. *S.oswaldoi* was not used. No comment was made in the subsequent paper (Travassos, 1930b) when *S.oswaldoi* was first used, but *S.oswaldi* was listed as a synonym (p177). Travassos by this action acknowledged the taxonomic status of *S.oswaldi*. Although *S.oswaldi* is not the correctly latinised form as the author intended, *S.oswaldi* is an available name. It is the senior synonym and *S.oswaldoi* the junior. The valid name of the taxon is therefore *S.oswaldi*.

S.ovocinctus Ransom, 1911.

Specimens from the prong-horned antelope, Antilocapra americana, were morphologically consistent with S.papillosus, but appeared to have an unusual method of egg laying. Eggs were deposited beneath a cuticle which was shed by the worm (Ransom, 1911). On this basis and several minor morphological differences Ransom (1911) proposed a new species, S.ovocinctus, but commented that the specimens may belong to *S.papillosus*. Sandground (1925) considered that Ransom's specimens were *S.papillosus*, and that *S.ovocinctus* was a junior synonym. This view has not been disputed.

S.planiceps Rogers, 1939.

The history of this name has been discussed under *S.cati* in Section 1:5. It is a junior synonym of *S.cati* Rogers, 1939.

S.ransomi Schwartz and Alicata, 1930.

This name was proposed for a species found in the small intestine of the domestic pig. *S.suis* had been used in the literature for *Strongyloides* from pigs, but the authors proposed that their species differed in several characteristics. This is discussed in full below under *S.suis*. *S.ransomi* is a junior synonym of *S.suis*.

S.simiae Hung and Hoeppli, 1923.

Specimens from a monkey, "makaken" (English "macaque"), were described as a new species, S.simiae (Hung and Hoeppli, 1923). They were morphologically similar to S.fuelleborni and S.cebus, previously described from non-human primates, but the parasitic females of these latter species had not been described with cuticular striations, while striations could be seen in S. simiae. Hung and Höeppli (1923) used this as the major criterion to justify their proposal for a new species. All Strongyloides have transverse striations and consequently it is not a useful feature for Sandground (1925), Goodey (1926) and Premvati differentiation, junior synonym (1959) considered the species to be a of . Premvati (1959) also synonymised S.cebus and S.fuelleborni S.fuelleborni. Little's (1966a) more definitive study showed S.fuellebornt and S.cebus to be distinct species. He suggested that only two spiral ovary species occurred in non-human primates, S.cebus in New World species and S.fuelleborni in Old World primates. He considered S.simiae was a junior synonym, but did not nominate a senior synonym. In view of the lack of details on the identity of the type host, the incompleteness of the original description and the lack of type specimens, the more accurate view is to regard S.simiae as a nomen dubium.

S.stercoralis var.eryxi Mirza and Narayan, 1935.

Singh (1954) proposed S.mirzai for a species from the rat-snake, Ptyas mucosus from India. Mirza and Narayan (1935) had described specimens from Eryx johnii, a boa from India, and had named the species S.stercoralis var.eryxi. Singh (1954), who previously had published as Narayan in Mirza and Narayan (1935) (Singh, 1954), stated S.stercoralis var. eryxi was a synonym of S.mirzai. The morphological details given in both descriptions were consistent ; the synonymy was justified. The occurrance of eggs in freshly voided faeces and spiral ovaries in the parasitic female indicated that the parasite was not S.stercoralis, which has directly recurrent ovaries and larvae in faeces (Little, 1966a). The initial proposal was in error. A name proposed as a variety prior to 1961 has the rank of a subspecies under Article 45q(ii) and is of taxonomic significance. The name "eryxi" was available for this particular species, although the specific identification was "eryxi" is the senior synonym and "mirzai" the junior. The wrong. valid name for the species is therefore S.eryxi. S.mirzai is invalid, S.stercoralis v.eryxi was first raised to specific status by Rodrigues (1968 p32).

S.stercoralis var.felis Chandler, 1925.

This variety was raised to specific rank by Goodey (1926). As discussed under *S.stercoralis* var.*eryxi* Article 45g(ii) gives a name proposed as a variety before 1961 subspecific rank. Goodey's action was consistent with the provisions of the Code.

S.suis von Linstow, 1905.

Both the availability and the validity of this name have caused controversy. It was originally used as a synonym for *S.longus* by von Linstow (1905), who gave Lutz as the author, but failed to give a date. The existence of *Strongyloides* in pigs was evidently well known prior to von linstow's (1905) paper (Grassi, 1885;?). Lutz had published on *Strongyloides* in pigs, but did not use the specific name "suis" in 1885 nor 1886. Travassos (1930a) listed *S.suis* (Lutz, 1894) von Linstow, 1905 as authors for *S.suis*, but stated the original use was a *nomen nudum*. An 1894 publication by Lutz could not be located. Von Linstow's description of *S.longus* and consequently *S.suis* consisted of a list of six hosts, the locality "Europa", and the clause "ist 6mm lang.". There were no illustrations. Under Article 12c mention of host or locality is not an indication, but the comment on length may have constituted an indication prior to 1931. Article 11e of the 1985 Code deals with publication in synonymy:

"A name first published as a junior synonym is not thereby made available unless prior to 1961 it has been treated as an available name and either adopted as the name of a taxon or treated as a senior homonym; such a name dates from its first publication as a synonym "

S.suts had been treated as an available name prior to 1961 and had been used to designate a taxon. It was described as a defined as a species without subspecies by Reisinger (1915); reference to von Linstow's use by Marotel (1920), and used by several workers (Ransom, 1907a; Ransom 1911; Stiles and Hassall, 1920; Chandler, 1925b; Sandground, 1925; Miyamoto, 1929; Travassos, 1930b; Schwartz and Alicata, 1930; Kotlan and Vajda, Stefanski, 1947; Brumpt, 1949; 1934; Tarczynski, 1956). The major problem concerning availability was authorship of the name. Lutz appears not to have used it (Stiles and Hassall, 1920; Sandground, 1925; Schwartz and Alicata, 1930; Stefanski, 1947; Tarczynski, 1956). The original use had been assigned to von Linstow by several authors (Stiles and Hassall, 1920; Sandground, 1925; Schwartz and Alicata, 1930; Travassos, 1930b; Kotlan and Vajda 1934; Stefanski, 1947; Brumpt, 1949; Tarczynski, 1956). All provisions of Article 11d namely, publication prior to 1961, treatment as an available name with original date and authorship, and adoption as the name of a taxon are fulfilled. S.suts von Linstow, 1905 is therefore an available name.

Since S.suis is available, the problem of validity must be considered. Debate till the 1930's concerned its synonymy with S.papillosus. Several workers considered S.suis a junior synonym (von Linstow, 1905; Sandground, 1925; Travassos, 1930b). Reissinger (1915) regarded it as a subspecies of S.papillosus (syn.S.longus). Schwartz and Alicata (1930) stated that the species in pigs was distinct from S.papillosus. The criteria used to

separate them was a blunter tail in S. papillosus and an inability of the Strongyloides from pigs to infect rabbits. Patent experimental infections of rabbits by Strongyloides from pigs were subsequently obtained (Kotlan and Vajda, 1934; Lucker, 1934; Oshio, 1956), making this an invalid criteria for differentiation of S. papillosus and the Strongyloides of pigs. Cytological studies by Triantaphyllou and Moncol (1977) showed the two species to be very closely related and that cross-mating of free-living stages were An attempt to infect a pig with S. papillosus fertile. was unsuccessful (Lucker, 1934), although this same pig was also refractory to infection with Strongyloides obtained from pigs, and consequently a negative result was of little significance. Morphologically, cytologically and biologically the two species are closely related, but insufficient data are available to designate them as synonyms.

The other aspect of nomenclatural significance is to decide which name, S.suis or S.ransomi, is valid. Schwartz and Alicata (1930) divided the Strongyloides of pigs into two species; that found most commonly in North American pigs which they named S.ransomi and a species with a longer, narrower tail which they designated S.suis. These authors suggested S.suis was the species found in European swine, although they had seen specimens of S.suis in American pigs. Brumpt (1949) had considered them synonymous, and had designated S.suis as the senior synonym, and S.ransomi as the junior. Kotlan and Vajda (1934) and Tarczynski (1956) considered the separation proposed by Shwartz and Alicata to be unjustified. The tail morphology in the Strongyloides of pigs was shown to vary to such an extent that in a population both types could be found. this was the criteria on which speciation relied, these authors As considered S.suis and S.ransomi to be synonymous. This opinion has been generally accepted, S.suis being last used in the literature by Tarczynski (1956) and S. ransomi being universally used as the name for the species in pigs. The reason for favouring S. ransomi was doubt concerning the availability of S.suis (Tarczynski, 1956). Since S.suis is available and it had priority, the species of Strongyloides in pigs should be known as S.suis with S.ransomi as its junior synonym.

S.viviparus (Probstmayr, 1865) von Linstow, 1905.

Only parasitic females of this species were originally discovered by Probstmayr (1865) in the caecum of the horse. Males are rare but were subsequently found by Jerke (1902).

Probstmayria (1865) proposed the name Oxyuris vivipara, but von Linstow (1905) listed the parasite as S.viviparus. Ransom (1907b) recognised that it did not belong to Strongyloides and proposed a new genus Probstmayria to accommodate it.

3.4 Descriptions not Sighted.

The original descriptions of *S.petrovi* and *S.vulpis* could not be obtained. Consequently their status was not able to be assessed. Since this was no fault of the authors, but a deficiency on my part, the names by default have been provisionally classed as valid. These two species were included with other valid species in Table 2:1, but no values given.

3.5 Summary.

The aim of Chapter 3 was to establish a basis for a comprehensive review of the species in the genus. This has been achieved by listing all names in the literature and eliminating those which are unavailable or need little further consideration since they are invalid. One hundred and three names were located and subdivided as shown in Fig.3:1.

The effects of most changes suggested in this review will be minor, since they concern species of little practical importance. The opinion that *S.planiceps* and particularly *S.ransomi* are junior synonyms and therefore invalid will cause some disruption, and perhaps controversy, particularly in the case of *S.suis* (syn.*S.ransomi*).

FIG.3:1. Subdivision of published names for Strongyloides. (number in each category is shown) 3.5 FURTHER AIMS OF THIS THESIS.

The task of clarifying the status of species in Strongyloides has now been made easier by the removal of unavailable names and invalid species. These rejected names will not be examined further unless the specimens upon which the species was based serve to illustrate a point which holds true for the genus as a whole. The next step in this generic spring-cleaning is to identify and describe those processes which distort or change the morphology of Strongyloides, and which, if not recognised, can lead to errors in description or identification of species.

CHAPTER 4

TECHNIQUES AND EXPERIMENTS.

4.1 INTRODUCTION.

The first section of this chapter contains details of techniques used to collect, fix, preserve and study the various stages of *Strongyloides*. The second section contains details of experimental procedures and particular experiments.

4.2 TECHNIQUES.

4.2.1 Collection of Strongyloides.

4.2.1.1 Parasitic Female. -

Since the parasitic female is a tissue parasite, it is normally not found in the lumen of the gut. In rare circumstances, however, usually due to a pathological host response, worms may be recovered from the gut contents (Speare et al, 1982). Usually they have to be extracted from the mucosa.
- 1. dissecting microscope with transmitted light
- 2. microscope slides
- 3. glass petri dish
- 4. dissecting needles or jeweller's forceps
- 5. pasteur pipette and bulb
- 6. fine wire hook or single hair
- 7. 0.9% saline solution
- 8. collecting bottle

- 1. Section of gut to be examined is opened longitudinally, placed flat, serosa down on a firm supporting surface.
- Narrow end of microscope slide is used to scrape the mucosa off the muscularis.
- 3. Scraped mucosa placed in petri dish.
- Moisten with saline and place a lake of saline on working edge.
- Using dissecting microscope and transmitted light, tease mucosa apart.
- 6. Pick up worms by pipette, hair or hook.
- 7. Transfer to saline in bottle.

Juvenile stages in the gut were also obtained using his technique. Collection of parasitic females after anthelminic treatment was made by microscopic dissection of the fixed contents of the large intestine using transmitted light.

4.2.1.2 Other Parasitic Stages. -

Third-stage larvae were collected from skin by active migration from skin fragments. Equipment needed:

1. test tube

- 2. 0.9% saline
- 3. scalpel blade

- 1. Cut skin into small pieces about 1-2mm diameter.
- 2. Place in saline at room temperature.
- 3. Remove after 12 hours.
- 4. Centrifuge at 1500rpm for 5 min.
- 5. Remove fluid from top, leaving 0.5cc in tube.
- 6. Examine under microscope.
- 7. Place larvae in saline prior to fixation.

Collection of larvae from lung was carried out using a Baermann technique similar to that described above but using .9% saline as the medium, cutting the lungs finely, floating the fragments on the surface of the saline and examining the sediment at 6 and 24 hours.

4.2.1.3 Free-living Stages -

All free-living stages as well as larvae in faeces can be collected by the Baermann technique. The technique used has been described by Speare and Tinsley (1986) and is illustrated in Fig 4:1. This technique relies on larvae moving through the faecal mass, passing into water and settling out.

Equipment needed:

- 1. funnel with flexible tube on the stem
- 2. clamp to close tube
- 3. wire shelf to fit into the funnel.
- 4. fine guaze or tissue paper
- 5. water at room temperature or greater than 25° but less than 38°.

FIG.4:1. Baermann technique for the collection of larvae and adults. Diagram illustrates its use in the diagnosis of *Strongyloides felis* infection in cats (from Speare and Tinsley, 1986).

- 1. Half-fill funnel with water.
- 2. Place wire shelf in funnel.
- 3. Place guaze or paper tissue on shelf.
- 4. Place matter containing worms on top.
- 5. Add sufficient water to cover the faeces.
- 6. Collect worms after 6hrs by running 5ml into a test tube.
- 7. Centrifuge at 1500r.p.m.
- 8. Discard top 4.5ml.
- 9. Collect worms from bottommost 0.5ml.

4.2.2 Fixation

All specimens when alive were fixed by the addition of hot fixative to parasites in a small amount of liquid, 0.9% saline for parasitic stages and water for free-living stages. The temperature of the fixative ranged from 60-100°C, and the volume added was always greater than the volume of liquid in which the parasites were contained. Specimens were stored in 10% buffered neutral formalin or 70% ethanol with 5% glycerol

4.2.3 EXAMINATION.

4.2.3.1 General. -

Most microscopic examinations were performed using water as a supporting medium. Contents of collecting bottles were placed into a cavity block, individual specimens transferred by a hair or pipette to water on a slide, and a coverslip applied. Sufficient water was used to prevent the specimen becoming flattened by pressure of the coverslip. If this was not possible, e.g. in some larger free-living females, fragments of glass coverslips were placed on the slide with the worms and a coverslip applied, the fragments supporting the weight of the coverslip. In most specimens, clearing was not required as the body was transparent.

4.2.3.2 Transfering into Glycerol. -

Glycerol was a good clearing medium and processing through glycerol was a necessary preliminary step prior to examination of the apical view. Specimens transfered directly from fixative into glycerol collapse badly. Wrinkling can also be a problem in some specimens transfered from formalin into alcohol. To maintain their shape, worms were transfered firstly from formalin into alcohol, then into glycerol. The following procedure was used for specimens fixed in 10% formalin:.

- 1. Place specimens in distilled water in a cavity block.
- 2. Place block above a 70% achohol solution in an enclosed container for 3 days.
- 3. Add 70% Ethanol with 5% glycerol drop by drop to cavity block, taking 24 hours to double the original volume.
- Place cavity block under inverted petri dish which is not airtight or is in a dessicator and leave for 4 days or until only glycerol remains.

A more rapid technique involved:

- 1. Placing specimens in distilled water.
- Adding 70% alcohol drop by drop over 12 hours until the volume was twice the original.
- 3. Adding glycerol drop by drop over 24hrs until the volume was increased by about 25%.
- Dehydrating and dealcoholising at 32°C, this step taking 24hr.

Specimens in glycerol tended to become friable and care was needed in handling.

4.2.3.3 En face Preparation. -

Apical views were made using a modification of the method of Anderson (1958). Only specimens in glycerol could be used. Equipment needed:

1. glycerol

- 2. eye-surgeons scalpel or 22G disposable needle
- 3. cutting slide (glass or perspex)
- 4. microscope slide
- 5. coverslip
- 6. plasticine
- 7. glycerine jelly
- 8. single hair
- 9. dissecting microscope with transmitted light
- 10. spirit burner and means of lighting
- 11. compound microscope
- 12. jeweller's forceps

- 1. Place worm in glycerol on cutting slide on plate of dissecting microscope, with head protruding peninsula like from edge of lake of glycerol.
- Using eye-surgeon's scalpel or edge of bevel of needle, cut off anterior 10µm.
- 3. By means of the hair move the severed head back into the glycerol.
- Place small amount of glycerine jelly on centre of coverslip and warm over spirit burner until the jelly liquifies.

- 5. Pick up the head on the hair and transfer it to the liquid jelly.
- Push the head down into the jelly, so that the mouth is against the coverslip. It is now at the bottom of the drop.
- 7. When the jelly is tacky, invert the coverslip using the forceps.
- 8. Place the inverted coverslip on two walls of plasticine about 1mm high lying transversely across the microscope slide at a distance of one coverslip diameter apart.
- 9. Press the coverslip down until the glycerine jelly makes contact with the slide.
- 10. While the jelly is still malleable, orient the head using the compound microscope so that the mount is not viewed obliquely. This is done by gently moving the coverslip on its plasticine supports, allowing the tension from the adherence of the bottom of the jelly to the slide to change the orientation of the severed head at the top of the jelly.
- 11. If jelly has set, heat it very slightly, enough to enable deformation but not enought to cause it to become poorly viscous and allow the head to fall away from the coverslip. If the head drops down into the jelly, steps 6-10 have to be repeated.
- 12. Examine under oil immersion.

4.2.4 Depigmentation technique.

A technique adapted by L.Owens for removal of pigmentation from crustacea and nematodes was used in an attempt to remove brown-black pigmentation from specimens.

Materials.

- 1. 0.25% potassium permanganate
- 2. 1% oxalic acid
- 3. cavity block
- 4. pipettes

- 1. Fill a cavity block with each solution.
- 2. Place specimens in potassium permangate in cavity block for 20mins.
- 3. Remove and place in oxalic acid for 1min.
- 4. Place in water and examine.
- 5. Repeat steps 2-4.

Specimens may break up with repeated treatments (Owens pers comm, 1986), so careful observation is needed. Only one repeat was used on specimens and no deleterious effects noted.

4.2.5 Measurement.

All measurements except those made using oil immersion were carried out using a calibrated eyepiece graticule. Measurements of various features on male tail were made from camera lucida drawings (see Fig.2:15), as was calculation for the free-living female of the angle of the vulva with the longitudinal axis (see Fig.6:15).

4.2.6 Drawings.

A drawing tube was used to make the initial outlines which were then completed free-hand by reference back to the specimen.

4.2.7 Photography.

Leitz and Zeiss photomicroscopes with Pan-X film were used for photomicroscopy.

4.2.8 Election Microscopy.

Specimens embedded partly in gut were prepared for SEM by stepwise dehydration in graded series of ethanol increasing in concentration to absolute, critical point drying and coating with gold-paladium. They were examined using an ETEC Autoscan and backscatter mode. Worms not in tissue were placed in a small bag made of plankton netting for critical point drying and treated similarly.

4.2.9 Histology.

Tissue for histology was fixed in either 10% BNF or Bouin's fixative, processed routinely by paraffin embedding, sectioned at 6µm and stained with haematoxylin and eosin (Culling, 1974).

4.2.10 Culture.

Free-living stages were cultured using various techniques, depending on the particular species of host involved. Species from poikilotherms e.g. snakes and frogs, grew best by placing faeces in the centre of a petri dish and adding sufficient water to form a small lake of fluid around the faecal mass. All stages could be collected by pipetting them up from the fluid. The faeces of herbivores were cultured by breaking up faecal pellets or faecal mass and placing them in containers in a slightly moist atmosphere. The faeces of omnivores and carnivores had to be mixed with an inert media e.g. sawdust or vermiculite, to allow aeration. These were then placed in a humid atmosphere. The culture technique for S.felis described by Speare and Tinsley (1986) was used for cats, dogs, and humans. Unless otherwise stated culturing was performed at room temperature, 22-26°C.

4.2.11 Experimental Infections.

4.2.11.1 Percutaneous Penetration.

Strongyloides infective larvae can burrow through intact skin. Percutaneous penetration was carried out by placing infective larvae onto a moist pad of tissue paper in a shallow petri dish. The pad was held in contact with the area of penetration, usually for 15min. Remaining larvae were recovered by Baermannisation.

4.2.11.2 Subcutaneous Infection.

Infective larvae were injected subcutaneously usually in distilled water in a volume not greater than lml, using a lml syringe and 19G needle. The numbers of larvae were calculated either by counting individually or by dilution and counting of larvae in an aliquot.

4.2.12 Statistical Analyses.

Means, standard deviations, coefficients of variation and proportions were calculated using a pocket calculator, Casio fx-510. Other statistical analyses were performed using a main $^{\circ}$ frame computer, DEC system-10, Digital Equipment Corporation, using programmes from SPSS Batch System, SPSS Inc.

4.3 SPECIFIC EXPERIMENTS

4.3,1 Post Mortem Degeneration.

Aim:

To study the morphological effects of the death of the host on the parasitic female.

Materials:

- 1. Host 5 albino rats, 2 months old
- 2. Parasite S.ratti
- 3. Infecting dose 200
- 4. Route Subcutaneous innoculation

- 1. All rats killed by percussion to head on day 8.
- 2. Carcases held in 25°C ambient temperature.
- One rat autopsied at each of following times, Ohr, 2hr, 6hr, 20hr, 25hr.
- Parasites collected from first quarter of small intestine within 15min of rat being opened.
- 5. Fixed in 10% BNF at 90°C.
- 6. Examined by light micropscopy.

4.3.2 Host Immunity.

4.3.2.1 Experimental infection. -

Aims:

- 1. To determine the effects of immunity on the morphology of the parasitic female.
- 2. To determine the effects of immunity on the distribution of the parasitic female.

Materials:

- 1. Host 5 albino rats, about 4 months of age
- 2. Parasite S.ratti
- 3. Infecting Dose 500
- 4. Route Subcutaneous innoculation

Technique:

- 1. Daily output of eggs and larvae in faeces measured.
- 2. One rat killed by percussion at day 7 and 30.
- 3. Small intestine divided into quarters and parasites collected from each.
- 4. Parasites examined by light microscopy.

4.3.2.2 Natural infection. -

Aims:

- 1. To determine the effect of immunity in a natural infection on the morphology of the parasitic female.
- 2. To examine the distribution of specific antibody on the parasite and in the gut of the host.

Materials:

- Host foal (Equus caballus), 10 months of age, which died from paralytic ileus secondary to strongyloidiasis.
- 2. Parasite S.westeri.
- 3. Reagents Anti-equine IgG, IgA.

- 1. Foal was euthanised in extremis, duodenum opened and fixed within 10min of death in 10% BNF.
- 2. Parasitic females obtained by dissection from the fixed gut and examined.
- 3. Fixed mucosal surface examined by SEM.
- 4. Histological sections prepared for routine examination.
- 5. Sections for immunoglobulin assessment stained by immunoperoxidase technique (Sinclair and Bourne, 1984) using modifications of Parsons (1984).
- 4.3.3 Fixation Experiments.
- 4.3.3.1 Type of Fixative. -

Aims:

- 1. To determine the effect of different fixatives on morph ology of the parasitic female.
- 2. To determine the effect of different fixatives on dimensions of the parasitic female.
- 3. To determine the effect of different fixatives on the infective larvae.

Materials:

- Parasite and Host: 1. Strongyloides sp. ex stomach of spectacled hare wallaby, Lagorchestes conspicillatus.
 2. S.felis ex small intestine of cat.
 3. Strongyloides infective larvae ex faecal culture of spectacled hare wallaby.
- 2. Fixatives: 10% buffered neutral formalin, 70% ethanol and Bles's fixative, following Gray, 1973.

Technique:

1. Parasitic females collected from mucosa by dissection; infective larvae from culture by Baermannisation.

Experiment 1.

2. 10 parasitic females from wallaby measured and examined while unfixed.

- 3. 5 placed in each of 2 collection bottles with normal saline.
- 4. 70% alcohol and Bles's fixative at 80°C added to one bottle each.
- 5. Specimens re-examined and measured after 48 hours.

Experiment 2.

- Parasitic females placed in normal saline in 3 collection bottles.
- 7. 70% alcohol, 10% BNFormalin and Bles's at 80°C added to separate bottles.
- 8. Specimens examined after 48 hours.

Experiment 3.

- 9. Infective larvae placed in water in 3 collection bottles.
- 10. 70% alcohol, 10% BNFormalin and Bles's at 80°C added to separate bottles.
- 11. Larvae examined and measured after 48 hours.
- 4.3.3.2 Temperature of Fixation. -

Aim: To determine the effect of temperature of fixation on the configuration of the parasitic female.

Materials:

- 1. Parasite and host: *S.ratti* ex small intestine of laboratory rat.
- 2. Fixative 10% Buffered neutral formalin.

- Route of infection subcutaneous injection of 5000 infective larve into laboratory rat.
- 2. Rat killed by cerebral percussion.
- 3. Worms dissected from mucosa of anterior quarter of small intestine.
- 4. 60 worms divided into 3 groups of 20.

- 5. One group per collecting bottle.
- 6. Each bottle containing 0.5ml normal saline.
- 10% buffered neutral formalin at desired temperature added to each bottle to give final temperature of 50°C, 75°C and 90°C.
- 8. Fixed worms assessed for configuration using the following criteria.
- 9. Criteria: loose turn = diameter across circle formed by body is greater than 2 body widths; tight turn = diameter less than 2 body widths; usable = specimen has no tight turns, or not more than two loose turns.

4.3.4 Effect of Host.

4.3.5 Change in Morphology with Change in Host Species.

Aim: To determine the effect of species of host on the morphology of the parasitic female.

Materials:

- 1. Hosts: sheep, Ovis aries, goat, Capra hircus, pig, Sus scrofa, rabbit, Oryctolagus cuniculus.
- 2. Parasite: S.papillosus.

- 1. Route of infection: subcutaneous.
- 2. Infecting doses: 1000 10,000.
- 3. Parasitic females collected from natural infections in small intestine of goats.
- 4. Infective larvae from faecal culture of goat faeces used to infect lamb, 9months old, pigs x 4, 10 weeks old, two rabbits (6mo and 2yr), two guinea pigs (approx.lyr old). No evidence of previous infection of any host with Strongyloides was found by repeated examination of and culture of faeces prior to infection.
- 5. Parasitic females collected from small intestines and examined.

4.3.6 Effect of Temperature on Morphology of Free-Living Stages.

Aim: To determine the effect of temperature on the morphology and dimensions of the free-living male, female and infective larvae.

Materials:

1. Parasite - S.felis.

- 1. Faeces collected within one hour of defaecation from cats experimentally infected with *S.felts*.
- 2. Faecal mass divided into three and equal amounts cultured at 15°, 23° and 32°C.
- Collection of free-living stages made daily from aliquots of faeces.
- 4. Free-living stages fixed and examined.
- 5. Comparison made between stages at similar physiological stages rather than on a chronological basis since rate of development is temperature dependent.

CHAPTER 5

ARTIFACTS

5.1 INTRODUCTION.

An artifact demands a natural state. Before defining the artifact the natural state must be defined. This is the "ideal" *Strongyloides* (Fig.5:1).

Fig.5:1. Criteria of the "ideal" Strongyloides.

- 1. same body shape as in life,
- 2. same morphology as in life,
- 3. same dimensions as in life,
- 4. all important features can be seen,
- 5. body is straight,
- 6. morphology is not obscured by extraneous material.

Artifacts are therefore changes 'in morphology which if not recognised for what they are may lead to the specimen in question being misidentified. All specimens are of necessity not natural. The worms have to be killed to be examined, and once dead, decay has to be prevented. The "ideal" *Strongyloides* is, therefore, an artificial creation, but one whose morphology we come to accept as a baseline. Artifacts are changes induced in this baseline by forces other than the specific identity of the particular worm.

Mackerras (1959) and Little (1961) noted that the parasitic female degenerated rapidly after death of the host, but both failed to describe the changes seen. The morphological changes caused by the immune response of the host have been described for *S.ratti* (Moqbel and McLaren, 1980; Moqbel *et al*, 1980). This latter artifact is the only one which has been described as such.

Artifacts were studied in both the parasitic and free-living adults, with greater emphasis being placed on the parasitic female. Experimental infections in various hosts were used to study the artifacts in the parasitic female caused by the following: death of host, host immunity, anthelmintic therapy, fixatives. Details of experiments were given in Chapter 4. Worms collected from natural infections were also used and correlations made on a semi-quantative basis. Deposited specimens were examined and evaluated to determine the significance of artifacts in causing aberrant findings which had been described in the literature.

In this chapter the changes seen in particular organs are described under the organ, and a differential diagnosis of causes given. Summaries of changes due to particular artifactual processes are then presented. Emphasis is placed on those changes of significance to the taxonomy of *Strongyloides* and other changes are mentioned only.

110

5.2.1 Cuticle.

5.2.1.1 Wrinkling. -

Appearance.

The parasitic female is a cylinder with smooth parallel walls (Fig.2:1). Transverse striations occur at a periodicity which varies with the region of the worm (Fig.5:2), but ranges between 0.5 μ m to 3.5 μ m. These striations do not distrupt the smooth contour of the "ideal" *Strongyloides*.

Wrinkling is detected as a deviation of the contour from this smooth outline. It gives the outline an irregular form, the sides in any one region losing their parallel disposition. It is often associated with shrinkage.

FIG.5:2. Variation of the periodicity of the transverse striations in the parasitic female. Periodicity varies between and within worms, according to region of the worm. Graph shows variation in periodicity for three paratypes of *Strongyloides elephantis*.

Causes.

Fixation.

Ten percent formalin causes less wrinkling than 70% alcohol or Bles's fixative (Table 5:1). Parasitic females in good condition fixed in 10% BNF have minimal wrinkling and maintain their cylindrical body shape. 70% alcohol can sometimes caused a marked distortion of specimens. Griffiths (1940), working with *S.agoutit*, found 5% formol-saline to be the most satisfactory fixative, with 70% alcohol containing 5% glycerol better than 70% alcohol alone.

Immunity.

Parasitic females affected by the immune response of the host are often wrinkled (see Chap.5.3.3) (and Moqbel and McLaren, 1980).

Autolysis.

The cuticle becomes wrinkled during autolysis.

TABLE 5:1A.Relative changes in dimensions of parasitic females
from rufous rat kangaroo, Aepyprymnus rufescens.
Measurements were made individually before and after
fixation. (Chap.4.3.3.1 Experiment 1)

FIXATIVE	LENGTH	MAX.WIDTH	OES	TAIL	OES/L	M-V/1
	(%)	(૬)	(%)	(%)	(%)	(%)
Bles's	-7.8±0.4	-6.4:7.8	-10.7±3.3	-15.5±13.2	-1.0±1.0	-0.4±0.
70% alcohol	-14.9±2.8	-8.6±3,9	-17.2±3.6	-12.4±11.2	-0.8±1.3	+0.3±1.

TABLE 5:18. Effect of fixation on the dimensions of infective larvae of Strongyloides sp from spectacled hare wallaby, Lagorchestes conspicallatus. (Chap.4.3.3.1 Experiment 3)

PARAMETER	HEAT KILLED UNFIXED	10% FORMALIN	BLES' FIXATIVE	70% ALCOHOL
n	10	10	10	10
length (µm)	531.2±15.2	491.3±27.2	468.6±25.6	459.6±19.9
change	-	-7.5%	-11.8%	-13.5%
oes (µm)	237.3±9.6	214.4:7.5	201.4±14.0	204.4±12.8
change	-	-9.6%	-15.1%	-13.9%
tail (μm)	62.2±1.8	58.5±2.8	57.9±4.1	57.3±3.0
change	-	-6.0%	-7.0%	∾-7.9%

FIG.5:3. Early split with clear fluid in cuticle of Strongyloides ratti 6hr after death of host (Chap.4.3.1).

FIG.5:4. Larger split in cuticle of *Strongyloides ratti* 6hr after death of host (Chap.4.3.1).

5.2.1.2 Splitting. -

Appearance.

The cuticle of *Strongloides* has three layers, cortex, matrix and fibre layers (Colley, 1970). Splitting refers to a deviation of the outer and the inner boundaries of the cuticle with formation of a space between them. The space can be transparent (Fig.5:3&:4) or contain granular material (Fig.5:5). The site of the split on the ultrastructural level was not investigated. Splitting is a focal change and can occur at any region of the parasitic female.

Causes

Autolysis

After a host dies, its *Strongylotdes* are doomed. One of the signs of autolysis is cuticular splitting. Initially only small

areas of cuticle are involved and the space formed between the separated layers is clear (Fig.5:4). With increasing time after the death of the host, the area of cuticle showing splitting increases, more foci appear and the contents of the split become granular (Fig.5:5a). Granularity varies from fine to dense, irregular aggregations. Fragmentation of the outer cuticular layer may occur at a later stage (Fig.5:5b).

FIG.5:5A. Cuticular splitting with granular contents in paratypes of *Strongyloides* ovocinctus.

FIG.5:5B. Cuticular splitting with granular contents and dense aggregations in paratypes of *Strongyloides ovocinctus*. Contiguity of pseudocoelome is disrupted at one point, and ovary is herniating.

FIG.5:6. "Inflated cuticle" in Strongyloides turkmenica was splitting of cuticle due to autolysis (from Barus, 1979 Fig.13c).

Barus (1979) in a redescription of the parasitic female of *S.turkmenica* noted that the cuticle was inflated in some regions. He illustrated this in Fig.13c p 47. He was without doubt describing cuticular splitting and not a specific feature of the parasite (Fig.5:6).

Cuticular splitting is a common artifactural change encountered in the parasitic female. It is not confined solely to *Strongyloides*. A similar change, but to a lesser extent was noted in the trichostrongyloid nematodes included in the bottle (USNMHC 14647) containing the paratypes of *S.ovocinctus* (see Chap.5.5.4).

Appearance.

In specimens showing other signs of degeneration (Table 5:2), the cuticle of the head and neck occasionly prolapses anteriorly to form a cylindrical tube having at its base or posterior end the buccal cavity of the worm (Fig 5:7). This sleeve is formed from thin, wrinkled cuticle and contains clear fluid or slightly granular material in its walls. It is a slipping forward of the cuticle of the head and neck, passing lateral to the cuticle of the circumoral elevation which remains anchored at the stomal edge. This artifact is seen nicely in the paratypes of S.herodiae and S.ovocinctus. Ransom (1911) ignored it in his specimens, but Boyd (1966;1967) listed "a deep buccal capsule" as a distinguishing feature in The paratypes of S.herodiae (USNMHC 60530) show marked S.herodiae. anterior prolapse (Fig.5:8). Boyd obviously failed to recognise it as an artifact. As discussed in Chapter 2.3.1 the feature as described by Boyd (1966) transgressed a generic boundary. If it had been real, either S.herodiae could not have been accomodated in Strongyloides or the generic definition was in error in stating Strongyloides had a shallow buccal capsule. Anterior prolapse of cuticle is seen commonly in degenerate specimens of S. papillosus, S.westeri and Strongyloides sp. from macropods.

9

Cause - Autolysis,

5.2.1.4 Loss of Transverse Striations.

Appearance.

All parasitic females have transverse striations (Fig. 2:3). The periodicity varies with the region of the worm (Fig.5:2) and the ease of detection under light microscopy varies with the species; e.g., striations are frequently difficult to see in *S.stercoralis* and *S.ratti*, but are easily seen in *S.suis*. Transverse striations can, however, become almost impossible to detect with light

FIG.5:7A. Anterior prolapse of cuticle of head of paratype of Strongyloides ovocinctus.

FIG.5:7B. Greater degree of anterior prolapse : paratype of Strongyloides ovocinctus.

FIG.5:8. Head of Strongyloides herodiae. A. from Boyd, 1967 showing "deep buccal capsule"; B. paratype showing anterior prolapse of cuticle. Scale line = 10µm.

119

microscopy owing to autolytic changes. In specimens so affected, striations are best looked for posterior to the posterior reflection of the ovary as this seems to be the area where they are least affected.

Cause.

Some species have striations which are much less distinct than in others. Degenerative changes occurring after death of the host are the major cause of loss of transverse striations.

5.2.1.5 "Cuticular Moulting". -

Appearance.

Ransom (1911) in S. ovocinctus described a phenomenon in which adult worms apparently experienced successive moults. The eggs passing out of the vulva lodged beneath an outer cuticular layer (plo8 figs 135-136)(Fig.5:9). This was a combination of cuticular splitting and sheath formation (see Chap.5.5.4). Ransom failed to recognise that two artifacts were present and thought that each was part of the same process.

ovocinctus from Ransom (1911 Fig. 134-136) showing sheaths and "moulting" of cuticle.

FIG.5:9. Original illustrations for Strongyloides

r., egg. int., Intestine, or., rul., vuiva. X 300, (Orig-

Posterior end of body of pan sitic adult, viewed from left sid and annus; cut, outer cuticular and layer: c_s eggs lodged beneath the outer loosened cuticle; int_s intestine. X 300. (Original.) 5.2.2.1 Degeneration. -

Appearance.

The type of ovary is a feature of major taxonomic importance in the parasitic female (Little, 1966a). Ovaries are classified into two classes; directly recurrent or spiral. Degeneration is marked by several changes in the reproductive tract (Table 5:2), but the only ones of taxonomic significance are those affecting the determination of the type of ovary. In severely degenerated worms, the ovaries are vacuolated, their outlines are indistinct, and the pseudocoelomic cavity contains debri. Occasional specimens are so affected that ovary type is difficult to determine with confidence.

Cause - Autolysis.

TABLE 5:2. Morphological changes of autolysis in parasitic female.

CUTICLE

Splitting and fragmentation Wrinkling Anterior prolapse Loss of transverse striations

GUT

Granularity of oesophagus becomes coarse Oesophageal nuclei disappear

REPRODUCTIVE TRACT Vacuolation of ovary, particularly proximally Outline of ovary less distinct Oviduct cells not discernable Uteri contain granular debri

PSEUDOCOELOME

Refractile granules increase in number and size

EXTRANEOUS MATERIAL Sheath size and number increase 5.2.2.2 Misinterpretations of the Ovary Type. -

It is important to understand the geometery of a spiraled The literature fails to describe this, and from many of the ovary. illustrations provided the parasitologist also has not understood it (see Singh, 1954, fig.l; Rao and Singh, 1968, fig.4; Lichenfelds, 1975 pl4 fig.2 ; Grabda-Kazubska, 1976, fig.1). The geometery of spiraled ovaries are amazingly uniform throughout the genus. The ovary does not spiral around the gut, it spirals with the gut; the intestine does not form a central axis, but participates completely in the spiraling process (Fig.6:4). Both distal and proximal arms of the ovary maintain the same relationship with each other and the gut. They do not cross over, out of position as it were, but form a unit of three, spiraling in a uniform manner. This point is important as it enables one to follow the individual units, e.g. distal ovary, and so determine the degree of spiraling for that particular unit.

The other key point is that the spiral is always in the same direction in all species of *Strongyloides*, and that is, anticlockwise from the anterior end. This direction is followed also in the posterior ovary. If these facts are heeded, it is not difficult to decide whether a species has or does not have spiral ovaries. Partial spirals can be identified from the tendency of the two ovarian arms and the gut to spiral as a unit.

In some specimens with directly recurrent ovaries the distal ovary is occasionally sinuous, and adopts a wandering course beside the gut (Fig.5:10). An inexperienced observer may mistake this for a spiraled ovary. Several early drawings show sinuous ovaries, and one cannot be sure of the ovary type (see Travassos, 1930b; Cameron and Parnell, 1933; Pereira, 1935; Perez Vigueras, 1942; Rao and Singh, 1968). These errors can be avoided if the generic geometery of the spiral is known.

122

Ov Ov 2.7 00000 0 60 0 0 0 0 000

FIG.5:10. Appearance of sinuous path in distal ovary of *Strongyloides* sp from large intestine of green tree frog, *Litoria caerulea*. Dorsal view. Arrows mark level of vulva.

5.2.2.3 Failure of Ovaries to Spiral. -

The ovary spirals only in mature parasitic females. Prior to this, in the larval stages and the young adult stage, all females have directly recurrent ovaries. Egg production frequently begins before spiraling has been completed, and sometimes before it has commenced. Worms collected at this stage will, therefore, have directly recurrent ovaries. *S.cati* Rogers, 1939 has spiral ovaries (Rogers, 1939). Specimens (L d'V) obtained from a cat experimentally infected by Erhardt and Denecke (1939) using Rogers' strain had directly recurrent ovaries. These worms had been collected on day seven of the infection. They were mature but spiraling of ovaries had not commenced.

5.3.1 Too Large.

5.3.1.1 Squashing. -

Specimens can be deformed by pressure of the coverslip. Their cylindrical cross-section then becomes a flattened ellipse, with the apparent diameter of the specimen approaching the theoretical maximum of half the circumference. An excellent example of this deformity is provided by the paratypes of S.tumefaciens. The width of 109 μ m given by Price and Dikmans (1941) is the greatest for the genus and far beyond the average of 44.3µm (Fig.5:11). The paratypes (USNHC nos. 28190, 28191, 28192) are specimens which were recovered from fixed tissues and permanently mounted on slides. A11 Nine fragments were examined and specimens are badly flattened. body widths measured. Widths were 120.9µm at the vulva (n=1) and 79.9±6.7 (75.0-87.6) μ m at the base of the oesophagus (n= 3). This is not the true diameter, but in a flattened state more closely represents half the circumference. Since the parasitic female is circular in cross-section, body width can be calculated from "2 radius = circumference/ π ; therefore, "body width = 2 radius = 1/2 circumference/ π X 2". Calculated diameter for *S.tumefaciens* is, therefore, $77\mu m$ at the vulva and $50.9\mu m$ at the level of the posterior end of the oesophagus. Dubey and Pande (1964) reported S.tumefactens from adenomas in the large intestine of the Indian wild cat (Felts chaus). Their specimens had length of 5.5mm and a diameter of 80µm, agreeing well with the calculated value for maximum body width.

The main visual clue to severe squashing in a specimen is a lack of optical depth, but only major degrees of squashing can be detected by visual means.

The plot of width against length for valid species of *Strongyloides* (Fig.5:11) indicated that the published values for *S.tumefaciens* fell well outside the general trend for the genus. A new regression programme confirmed this by identifying *S.tumefaciens* as the species with the worst fit to the regression equation (Table 5:3). Substitution of the correct value for width gives a

slightly changed equation and places *S.tumefaciens* closer to the regression line (Fig.5:11).

FIG.5:11. Regression of width on length for parasitic females. Data from literature. Note change in value for Strongyloides tumefaciens when corrected for squashing (arrow).

TABLE 5:3. Species with worst-fit for the regression of width on length.

ID	SPECIES	ZRESID
49	S.tumefaciens	3.92638
10	S.chapini	-2.35138
11	S.cruzi	1.91501
43	S.sigmodontis	-1.89102
39	S.ratti v. ondatrae	-1.55660
1	S.agoutii	-1.36038
16	S.erschowi	1.33648
41	S.rostombekowi	1.33242
26	S.myopotami	-1.30728
29	S.oswaldi	1.18094

5.3.2 Too Small.

A ZResidual of <2.0 is regarded as falling within two standard deviations of the regression line. *S.tumefaciens* had a ZResidual greater than two, while the next worst fit was for *S.chapini*, but in a negative direction (Table 5:3). *S.chapini* is atypically narrow, and is the species with the smallest width (Fig.5:11; Table 2:1). Two cotypes (USNMHC nos.24959) were examined and both had maximum diameters of 34.2μ m. Sandground (1925) gave maximum width as 27.3μ m. The value I obtained is closer to the generic average, but I am reluctant to substitute it since squashing of specimens may be responsible for this apparent increase in width.

Perusal of Table 5:3 reveals that the other species with negative ZResiduals are *S.sigmodontis* from the cotton rat, *S.ratti* v ondatrae from the musk rat, *S.agoutii* from the agouti and *S.myopotami* from the coypu rat. *S.chapini* was described from the capybara. All are parasites of American rodents. Specimens of *S.myopotami* (BMNH 1977.4661-4760) have been examined, and the width of $37\mu m$ agreed with those given by Little (1966a). These species may form a group, and *S.chapini* may not be so atypical as appeared on initial assessment.

Causes.

Processes which cause reduction in dimensions are fixation and immune damage (Moqbel and Denham, 1977; Moqbel and McLaren, 1980; Moqbel et al, 1980).

5.3.2.1 Shrinkage. -

Appearance.

Whereas wrinkling is a disruption of the smooth contour of the worm, shrinkage is a reduction in worm volume. Wrinkling can be one of its manifestations, but all wrinkled worms are not recessarily shrunken. A reliable morphological sign of shrinkage is collapse of the outer shell of the worm inwards, with moulding of the body wall onto the internal organs. Collapse is best seen in areas where the body wall is unsupported, e.g., the regions posterior to the base of the oesophagus, and anterior to the anterior reflection of ovary and in the tail. Moulding is seen best near the reflections of the ovaries where the body wall outlines the separate parts of the reproductive tract (Fig.5:12&13).In transverse section a shrunken worm is diminished in size and has lost its circular shape (Fig.5:17). Shrinkage can also be detected by measurement and statistical analysis (see Tables 5:1, 5:4, 5:5).

Causes.

Fixation.

70% alcohol causes considerable shrinkage, while 10% BN formalin causes less (Table 5:1).

FIG.5:12. Tail of parasitic female of Strongyloides sp from stomach of agile wallaby. Collapse of body wall onto posterior reflection of ovary can be seen. Bles' fixative. SEM.

FIG.5:13. Parasitic female of Strongyloides sp from stomach of agile wallaby. Body wall outlines the ovaries. Collapse due to Bles' fixative. SEM.
Immunity.

Shrinkage was a major feature in *S.ratti* during rejection by lab rats (Moqbel and Denham, 1977; Moqbel and McLaren, 1980; Moqbel *et al*, 1980). An experimental infection of lab rats with *S.ratti* (see Chap.4.3.2.1) was used to confirm this effect. Larval output per worm per hour decreased from 30.9 on day 6 to 0.48 on day 30, worms became smaller, eggs per worm decreased (Table 5:4), and worms were found more posteriorly in the small intestine (Fig.5:14). These effects are typical of the response of *S.ratti* to host immunity (Moqbel and Denham, 1977). Wrinkling of cuticle was observed, but morphological changes of shrinkage are subtle. Comparative measurement and transverse section are means by which shrinkage can be detected.

FIG.5:14. Change in position of Strongyloides ratti in small intestine of rats in response to development of host immunity (see Chap.4.3.2.1).

PARAMETER	NON-IMMUNE	IMMUNE		
		(from	(from	
		ant 1/4 s.int)	post 1/4 s.int)	
n	10	8	10	
length (μ m)	2817.9±189.8	1933.6±114.5	2164.5±59.9	
change		-31,4%	-23.2%	
width (µm)	44.0±1.5	34.6±1.1	36.9±1.0	
change		-21.4%	-16.1%	
oes (µm)	773.8±56.8	801.0±27.6	788.0±41.2	
change		+3.5%	+1.8%	
oes/length (%)	26.1±2.7	41.6±3.0	36.4±2.5	
change		+59.4%	+39.5%	
tail (μm)	48.6±5.7	45.3±3.5	45.9±3.4	
change	-	-6.8%	-5.6%	
<pre>tail/length (%)</pre>	1.73±0.19	2.35±0.18	2.72±1.83	
change		+35.8%	+57.2%	
M-V	1788.9±149.0	1291.5±96.4	1509.9±40.8	
change	-	-27.8%	-15.6%	
M-V/length (%)	63.4±1.7	66.7±1.6	69.8±2.1	
change	-	+5.2%	+10.1%	
eggs/worm	8.7±3.5	0.4±0.7	3.3±2.4	
change		-95.48	-62.1%	

TABLE 5:5. Dimensions of S. westert from foals: A. normal; B. rejected by immune response.

PARAMETER	FOAL A	FOAL B	REDUCTION
			(%)
Length (µ)	9506.0±1069.7	6567.4±1081.1	30.9
Max.width (μ)	81.3±7.9	73.4±4.6	9.7
Oes.length (μ)	1263.7±81.9	1158.1±86.1	8.4
M-V (μ)	5841.1±670.4	4221.5±636.0	27.7
Tail (µ)	129.0±16.3	114.5±14.0	11.3
Oes/length (६)	13.40±1.29	17.93±2.14	+33.8
M-V/length (%)	61.45±1.56	64.39±1.36	+4.8
Tail/length (%)	1.37±0.18	1.75±0.25	+27.7
Eggs/worm	59.4±14.7	26.8±9.7	54.9
Ant.uterus	1288.6±224.9	644.2±123.4	50.0
$length(\mu)$			
Post.uterus	1163.9±148.4	785.3±219.3	32.5
$length(\mu)$			

The effects on the parasite of host immunity in natural infections have not been described. A foal, aged two months, naturally infected with *S.westeri*, was found to have died from a paralytic ileus secondary to a rejection phenomenon. Heavy lymphocyte and plasma cell infiltration into the lamina propria of the duodenum was present, with focal haemorrhage and oedema, and marked villous atrophy (Fig.5:15). Examination of fixed gut under the dissecting microscope and by SEM confirmed the villous atrophy, showed the degree to vary from totally atrophic in one area to moderately atrophic in another even on the microscopic level, and revealed that many of the parasites were only partially embedded in the mucosa (Fig.5:16).

FIG.5:15. Duodenum of foal naturally infected with Strongyloides westeri, showing marked villous atrophy, oedema and focal haemorrhage with mononuclear infiltrate. H & E X 160.

FIG.5:16. Duodenum of foal naturally infected with Strongyloides westeri. Villous atrophy is marked, parasites are only partly embedded in mucosa. SEM. IgG was deposited onto the cuticle of the parasites and onto the brush borders of their intestines (Fig.5:17). IgA was also present in plasma cells and on the mucosal border of epithelial cells, but was not visible on or in the worms themselves. The majority of plasma cells in the lamina propria stained for IgG. IgM was not examined.

FIG.5:17. Parasitic female of Strongyloides westeri in small intestine of foal. The body is collapsed and lining of parasite gut stains positive for IgG. IgG Immunoperoxidase with haematoxylin X 320.

The parasitic females were wrinkled and shrunken and were smaller than specimens obtained from hosts not showing an immune response (Table 5:5). Several specimens were found which showed signs of autolysis, notably cuticular splitting, anterior prolapse and degeneration of the reproductive tract. Since the specimens had been fixed within 10min of death, too rapidly for host post mortem effects to cause autolysis, it is probable the worms had died in situ, and then undergone degenerative changes.

The host had evidently mounted both a cell-mediated and an humoral immunological response against the parasite. As shown by the effects on the parasites, and their displacement from their normal location in the mucosal layer, this attack was successful. The immune response, however, had extensively damaged the small intestine and led to the demise of the host.

S.westeri is normlly acquired at a young age by the transmammary route (Lyons et al, 1973) and is usually rejected by 24 weeks of age (Russell, 1948). S.westeri is rarely pathogenic (Drudge, 1972), but can occasionally cause disease and death. Surprisingly, there are no reports on the pathology of natural mortality in the horse, although the pathology associated with S.westeri in donkeys has been described (Pandey and Rai, 1960). The effects of the immune response of the host on the parasitic female are summarised in Table 5:6.

TABLE 5:6. Effects of host immunity on the morphology of the parasitic female.

CUTICLE Wrinkling

GUT

Luminal border of intestine thicker and more refractile

REPRODUCTIVE TRACT Numbers of eggs in uteri decrease

BODY Shrinkage

EXTRANEOUS MATERIAL Precipitates on mouth Precipitates on cuticle 5.4 SHAPE.

5.4.1 Conformation.

The easiest specimen to examine is one that is straight, Calculation of dimensions is more difficult in coiled specimens, and occasionally some important morphological details may be obscured at cross-over points. The shape adopted by the live parasitic female after removal from the mucosa and placement in saline is dependent the species of Strongyloides. S.ratti, for example, on an inhabitant of the small intestine of the rat tends to coil, while Strongyloides sp. from the stomach of macropods rarely does so. The former lives in the base of the crypts, twisting around villi in mucosal tunnels, while the latter lives in the flatter, mucosal layer of the macropod stomach (Winter, 1958; Speare et al, 1982, 1983). The physical nature of the microenvironment in which different species live may influence their coiling tendencies in vitro.

The temperature of the fixative influences the straightness of worms fixed when alive. Those species with little tendency to coil, can be fixed with good result in formalin at a temperature of 50° C. *S.rattt*, however, needs a much higher temperature. Table 5:7 and Fig.5:18 show the effect of temperature of the fixative on the degree of coiling in *S.rattt*.

In a situation where no other specimens were available, "unusable" specimens of *S.rattt* could be utilized. The tendency to coil is much less than that shown by trichostrongyles, but nonetheless, the ideal is a specimen which is straight. TABLE 5:7. Effect of temperature of fixative on the shape of *s.ratti*. (for definition of terms see Chap.4.3.3).

CRITERION	TEMPERATURE			
	60°C	75°C	90°C	
No. of turns per worm	2.29±1.04	1.36±1.21	1.1±0.91	
% of loose turns	10.9	20.0	72.7	
% of tight turns	89.1	80.0	27.3	
% of worms usable	8.0	36.4	70.0	

2 20	s S	63
7 5 8	<i>\$</i> 6 <i>\$</i>	~~ 2
r \$ 1	b er cz	6,65
هي هر	52 0	ξE
6 0°	75°	9 0°

5.5 EXTRANEOUS MATERIAL.

5.5.1 Bacteria.

Appearance.

Bacteria have been seen only on the cuticle. They appear as small refractile bodies, usually rod-shaped but occasionally coccoid, frequently clustered. Colley (1970) using TEM noted bacteria in the lumen of the intestine of the parasitic female of *s.myopotami*. The taxonomic significance of the bacteria is two fold. Firstly, if present in large numbers they can obcure cuticular details; eg., perivulval papillae and secondly, they can be confused with papillae.

5.5.2 Immune Precipitates.

Appearance.

Moqbel and McLaren (1980) described deposition of IgG on the cuticle of *S.ratti* during rejection by the host. The immunoglobulin appears as an amorphous, refractile mass in the buccal capsule, projecting anteriorly when present in large amounts (see Moqbel and McLaren, 1980; Fig.3). If extensive this material can obscure the stomal shape in the *en face* view (Fig.5:19). In lesser amounts the outline of the stoma appears blurred with the light microscope, while on SEM aggregates of amorphous material can be seen in and around the mouth and on the cuticle (Fig.2:2). Immunoglobulin on the cuticle is rarely seen by light microscopy, but can be detected by fluorescein labelled anti-globulin (Moqbel and McLaren, 1980) or peroxidase tagged anti-globulin (Fig.5:17).

The antibody class involved in the immune response of the foal described under 5.3.2.2 was IgG, while IgA appeared not to participate. IgG_{2a} was reported as the antibody with greatest affinity for the cuticle of the infective larvae of *S.ratti* (Murrell and Graham, 1982). The morphological effects on the parasitic

female of host immune response are given in Table 5:6.

FIG.5:19. Amorphous material (probably immunoglobulin) obscuring the stomal shape of Strongyloides sp from large intestine of green tree frog. Specimens from this naturally infected frog were smaller with fewer eggs per worm. A. Dorso-ventral view; B. en face view. Scale line = 10µm.

FIG.5:20. Material on head of parasitic female of *Strongyloides ratti* from small intestine of rat experimentally infected for 29 days. This is typical of immune precipitates.

Appearance.

When alive the parasitic female is colourless and transparent, and the internal organs are clearly visible. The taxonomic "ideal" retains these qualities. Most specimens are colourless, particularly if fixed while still alive. Only the occasional specimen is opaque or has morphological details obscured by pigment. The most common pigment encountered is tan in colour, and uniformly distributed through the body of the worm. Its taxonomic significance, apart from being an artifact per se, is that the internal organs, particularly the reproductive tract are difficult to see clearly. The paratypes of S. robustus (USNMHC 44911) are such a dark brown in colour, that the details of the buccal capsule are obscured.

Causes.

Anthelmintic Therapy.

A cat naturally infected with *S.felis* was treated with thiabendazole at 25mg/kg and killed six hours later. No worms were recovered from the small intestine, but dead parasitic females were found in the contents of the large intestine. These were uniformly tan in colour. The pigment was possibly bile absorbed by the worms killed by the anthelmintic.

Other causes have not been identified.

5.5.4 Sheaths.

Ransom (1911) introduced the concept of cuticular shedding based on specimens from the small intestine of a prong horned antelope, Antilocapra americana, which died at Washington in 1892. He proposed that this species had an unusual method of egg laying in which eggs were deposited under a cuticular sheath (Fig.5:9). Ransom thought this sheath was formed by successive moults of the cuticle, and eggs and sheath were shed by the worm to enable the eggs to gain the lumen of the bowel. This phenomenon was not reported in the literature, although Brumpt (1910) had noted the occurrance of strings of eggs in the faeces of sheep. Ransom had not seen it previously in any other specimens of *Strongyloides*. He considered that the formation of cuticular sheaths indicated the specimens belonged to a new taxon, for which he proposed the name *S.ovocinctus*. Ransom (1911), however, had fears that this phenomenon may have been artifactual. Without its cuticular sheath and enclosed eggs, *S.ovocinctus* varied in only minor details from *S.papillosus*. Sandground (1925) considered *S.ovocinctus* to be a junior synonym of *S.papillosus*. Ransom's cuticular sheath was dismissed.

Sheaths encircling fixed specimens of *Strongyloides* are commonplace. They appear to be of two types. The most obvious consists of host mucosal epithelial cells. Cell outlines can be seen together with nuclei. This sheath often extends at least half the body diameter on either side of the encircled worms and can have several layers of epithelial cells (Fig.5:21). It rarely extends

FIG.5:21. Cellular sheath around parasitic female of *Strongyloides ratti* from small intestine of rat 6hr after death of host.

the complete length of the worm, usually enclosing less than 25% of body length, and is frequently divided into several separate sections. This sheath is related to the trait of the parasitic female of threading its way through the mucosal cell layer. When the epithelial layer sloughs, cells adjacent to the worm, forming part of the wall of the tunnel, persist as an encircling sleeve. The other sheath is more subtle. It is closely applied to the worm and is thus inside the cellular sheath. It lacks obvious features and appears as a fine membrane. Although it is difficult to see by light microscopy, it can be seen in transverse sections of tunnels as a fine eosinophilic membrane lying between the parasitic female and the tunnel wall. In whole specimens it either can be seen as a fine, featureless membrane close to the cuticle, or gives the impression of a veil obscuring the cuticular features. Where parasitic females emerge from the mucosal layer, SEM shows this fine membrane to be present (Fig.5:21). The sheath lacks striations and

FIG.5:21. Fine inner sheath around parasitic female : A.Strongyloides westeri at point of emergence from mucosa of small intestine of foal; B. Strongyloides sp. at point of emergence from mucosa of stomach of agile wallaby. Delicate inner membrane is closely applied to worm while thicker outer membrane is separated from it. SEM.

looks more like a host product than that of the parasite. It does not appear to be derived from the cuticle. A study by Dawkins et al, (1983) showed *S.ratti* to lie between intestinal cells. The fine inner membrane, therefore, may be formed from the lateral walls of adjacent mucosal cells, and the outer cellular membrane from the remainder of the in contact epithelial cells together with variable numbers of cells adjacent to these. This theory assumes that the cells forming the tunnel may rupture their walls at right angles to the wall lining the tunnel, thereby allowing the inner and outer sheaths to separate. The fact that fine sheaths occur more commonly than cellular sheaths is consistent with the theory.

FIG.5:22. Advanced cuticular splitting with fragmentation
plus sheath formation. Paratype of Strongyloides
ovocinctus.

The specimens of *S.ovocinctus* (USNHC nos. 14647) examined were all enclosed in sheaths as Ransom (1911) had described. The specimens also showed advanced autolysis, with swelling, splitting and separation of the outer cuticular layers from the inner layers.(Fig.5:22 Ransom (1911) failed to appreciate that two processes were ocurring in his specimens. He noted the sheaths surrounding the worms and the splitting of the cuticle and assumed they were related, the latter giving rise to the former. The sheaths, however, were derived from the mucosal cell layer while the cuticular splitting was due to autolysis. Sheath formation is not, therefore, a feature of specific weight. It is a function of the biology of the parasitic female, and of ante and postmortem factors. Sheaths are formed when, at the time of collection, parts of the mucosal tunnel remain encircling the parasitic female. Sheaths are seen on worms collected alive by dissection from the mucosa of recently dead hosts; but the frequency and extent of sheath formation is increased as the mucosa undergoes post-mortem sloughing. Sheaths can also be formed by mucosal sloughing occurring prior to

death. Mucosal exfoliation was a feature of the response of the foal discussed in 5.3.3. The parasitic females of S.westeri were only partly embedded in the mucosa, and many had typical sheaths (Fig.5:23), complete with enclosed eggs. The small intestine from this foal had been fixed within 10 min of the animal being killed, so the effect was an ante-mortem one. Extensive sheaths on а particular specimen should alert one to be aware of autolytic or immune changes in the parasite.

FIG.2:23. Cellular sheath with entrapped eggs encircling parasitic female of Strongyloides westeri. The parasite was only partly embedded in mucosa of small intestine and host was mounting a marked immune response. SEM. 5.6 FREE-LIVING ADULTS.

5.6.1 Death.

Death of free-living stages is not uncommon. In all stages, including larvae, it can be recognised in fixed specimens by loss of definition of organs, granularity of the cuticle and other organs, wrinkling, and fragmentation of the specimen. Cuticular splitting as occurs in the parasitic female is not seen. Bacterial numbers on surface increased. the are It is of little importance taxonomically, since the specimens are readily recognised as degenerate. Its main significance is that in such specimens some of the finer features, e.g., caudal papillae, are hard to identify. In the male, spicules and gubernaculum remain unchanged even in badly degenerate specimens.

Lesser degrees of degenerative changes can be seen in the free-living stages just prior to their death in culture.

5.6.2 Bacterial Attack.

Bacteria can often be seen adhering to the surface of all stages, both parasitic and free-living, but are more common on the latter. They appear as refractile rods or cocci on the cuticular surface. In most free-living adults they can be seen in small numbers, scattered over the surface of the worm. Occasionally, they occur in dense colonies on the cuticle. These can obscure details of internal organs, and in the male make identification of a caudal papillae almost impossible. Bacteria present in smaller numbers can be confused with caudal papillae. Caudal papillae can be distinguished by the minute dome of cuticle which surrounds the refractile nerve ending, and in addition the fine nerve fibre can be seen passing through the cuticle and hypodermis to the papillae.

5.6.3 Temperature of Culture.

Premvati (1958) obtained faeces from rhesus monkeys, Macaca mulatta, naturally infected with S.fuelleborni, cultured them at temperatures ranging from 15°C to 37°C, and noted changes in the morphology of the free-living adults. She particularly examined the morphology of the oesophagus and the post-vulval reduction in body diameter. The latter feature was a character of specific weight for S.fuelleborni. At 25°C morphology typical, was while at temperatures above and below 25°C, the maximum body width, the degree of post-vulval.narrowing, and the number of eggs in utero decreased, while oesophageal length increased. The lips of the vulva were more salient at 25°C. The length of the infective larva was greatest at 25°C. The free-living male was not examined. Premvati concluded (p628):

"An examination of these free-living females developing at different temperatures would lead an observer to consider them as belonging to different species."

The major effect of Premvati's study was to cast doubt on the validity of post-vulval narrowing as an important criterion in the free-living female. This feature has been described in three species, S.fuelleborni, S.cebus (Little, 1966a) and S.felis (Goodey, 1926; Speare and Tinsley, 1986). Several other species have a slight reduction in body diameter, but not the typical waist-like appearance of S.fuelleborni. Little (1966a) in his redescriptions of S.fuelleborni and S.cebus did not investigate the problem. It became less important after Little's study since he showed that the free-living males were of greater use than the females for distinguishing between the species. Thus, the question was avoided. Little (1966a) did, however, note variability in the degree of post-vulval narrowing in S.fuelleborni and S.cebus.

Experiments were performed (see Chapter 4.3.6) to investigate the effect of temperature on the morphology of the free-living stages; in particular, to determine if free-living females of species with a post-vulval narrowing could be modified, and to determine whether temperature had any effect on the free-living male. As a source of *S.fuelleborni* was not available, Premvati's experiments could not be repeated. *S.felis* was used since it has a similar post-vulval narrowing and rotation of the vulva posteriorly.

Free-living females cultured at 22°C and 32°C had а characteristic post-vulval constriction (Fig.5:24), but this was less marked at 22°C. The proportions of the four regions of the oesophagus were the same (Table 5:8). The free-living males showed significant change in morphology. Free-living adults were no uncommon at 32°C and very reluctant to grow at 15°C, as the direct cycle predominated at the former temperature and death of larvae occurred at the latter temperature. A single fertile free-living female obtained after culture at 15°C showed a characteristic post-vulval narrowing and vulval rotation, but unfortunately was lost prior to drawing and measuring.

FIG.2:24. Vulval region of free-living female of *Strongyloides* felis : A. Temperature of culture 22^{0} C for 5 days; B. Temperature of culture 32^{0} C for 3 days. Scale line = 20μ m.

Premvati's findings with *S.fuellebornt* had by extrapolation to other species cast doubt on the value of the post-vulval constriction in all free-living females. The finding that temperature at which free-living adults are cultured does not necessarily affect morphology suggests that the morphology may for some species be independent of external influences. This will allow descriptions of species to be made with more confidence, rather than having the uncertainty that the anatomy seen may be a product of the temperature at which the worms were grown.

TABLE 5:8A. Dimensions of Strongyloides felts free-living females cultured at 22°C and 32°C.

FEATURE	22°C 32°C	
length	1338.0±57.0	1187.9±58.6
	(1275-1430)	(1094-1251)
max.width	83.0±5.4	72.3±5.6
	(75.0-93.8)	(66.7-83.4)
width post		. ,
to vulva	68.0±3.6	54.6±4.2
	(62.5-75.0)	(50.0-62.5)
% reduction	17.5±2.3	24.5±2.9
	(13.9-20.0)	(18.8-29.4)
oes	160.7±4.0	178.0±6.0
	(156.4-168.9)	(168.9-189.7)
oes/length %	12.0±0.5	15.0±0.6
	(11.1-12.6)	(14.0-15.8)
tail	100.7±3.9	109.0±6.5
	(93.8-106.3)	(104.2-120.9)
tail/length %	7.53±0.20	9.18±0.32
	(7.14-7.85)	(8.68-9.67)
M-V	700.0±27.9	615.0±39.2
	(646.3-746.3)	(550.4-665.0)
M-V/length %	52.3±0.6	51.7±0.9
	(50.8-53.3)	(50.3-53.3)
vulval rotation	114.2±7.0	110.6±6.5
	(100-125)	(100-117)

TABLE 5:8B. Oesophageal regions of free-living female of *Strongyloides* felis cultured at 22°C and 32°C.

(% = region of oes / length of oes X 100)

22°C 32°C		
11.5±1.1	11.5±1.1	
7.4±0.6	6.7±0.7	
82.8±2.0	90.3±3.8	
53.9±1.3	52.8±1.0	
32.9±1.3	40.0±1.3	
21.4±0.8	24.4±0.7	
26.5±1.4	29.2±1.9	
17.2±0.8	17.1±0.9	
	22°C 11.5±1.1 7.4±0.6 82.8±2.0 53.9±1.3 32.9±1.3 21.4±0.8 26.5±1.4 17.2±0.8	

147

15

0

5.6.4 Age of Culture.

The only point of any taxonomic significance in older cultures is that as the free-living females age, the rate of egg production slows and hatching can occur in utero (Fig.5:25). Mackerras (1959) described this process in *S.thylacts*. It is of biological, not of taxonomic, importance and indicates a culture in which free-living adults are becoming effete.

FIG.5:25. Effete free-living female of Strongyloides felis cultured for 100hr at 37 C. Note wasted ovaries, poor fucundity and larva in utero.'Scale line = 50µm.

5.6.5 Contamination of Cultures.

Cultures can become contaminated by free-living rhabditoids even when faeces are collected directly from the rectum. Kreis and Faust (1933) described two species of Rhabditis found living on the skin of the perianal region of dogs and monkeys, these species being responsible for contamination even if faeces were collected directly into sterile containers. Contamination is likely if faeces are collected off the ground or floor (Speare *et al*, 1982; Speare and Tinsley, 1986). The general morphology of all *Strongylotdes* is as described in Chapter 2. If worms are found in culture with

different morphologies they are not Strongyloides. The taxonomic consequences of contamination of cultures are usually minor apart from loss of a useful diagnostic tool. An unusually disasterous and far-reaching consequence is shown by the effect of a paper by Kouri et al (1936). These workers reported on the maintenance in continuous culture of the free-living stages of S.stercoralis. This report is probably the basis for the oft-quoted but never substantiated "fact" that the free-living adults of Strongyloides can live indefinately outside the host. A critical examination of this paper reveals a change in morphology of the parasite as culture continued, with the final form evolving towards that of the primitive rhabditoids, Illustrations more were given (Plates XI-XIV) which clearly showed male and female rhabditoids. These worms were not Strongyloides, but free-living contaminants. Kouri et al (1936) were reporting not an amazing biological trait of S.stercoralis, but merely that their cultures were contaminated. Unfortunately, the idea was adopted by many text books, in spite of evidence to the contary (Kreis, 1932), and the fact that no subsequent worker was able to establish a continuous culture.

5.6.6 Pigmentation.

A dense brown pigment was occasionally seen in specimens held for prolonged periods; e.g., 20 years. This pigment was uniformly distributed and could not be removed by dehydration into glycerol or Owen's technique. In affected specimens it was usually so dense as to prevent observation of the details of the tail of the male. All affected specimens were stored in 70% alcohol with 5% glycerol, but many other specimens in different bottles containing 70% alcohol and 5% glycerol were non-pigmented.

5.7 SUMMARY.

This chapter has examined artifacts liable to cause confusion or errors in interpretation of morphological features and so cause problems with taxonomy. The cuticle and reproductive tract of the parasitic female are organs in which the most significant artifacts can occur. Degeneration, particularly after death of the host, immune responses of the host, and techniques of fixation are the major causes of artifactual changes in the parasitic female.

Artifacts are of less importance in the free-living adults. Bacteria in the culture medium can cause cuticular changes, and temperature of culture can effect the morphology of some species, although the significant features in others are not changed.

An awareness of the range of artifacts that can occur in the different stages will prevent mistakes such have been made in the past (e.g., *S.herodiae* and its "deep buccal capsule"; *S.ovočinctus* and its cuticular shedding; *S.turkmenica* and its inflated cuticle). Parasitic females when first examined should always be assessed for the signs of autolysis and the effects of the immune response of the host. If no evidence of these are found the taxonomic criteria can be determined. If signs of degeneration or immune damage are seen, taxonomic criteria can still be determined, but interpretation can be modified in the light of the artifacts present.

CHAPTER 6

CRITERIA FOR THE DIFFERENTIATION OF SPECIES

6.1 INTRODUCTION

Criteria for the separation of species need to be:

 Unique to a particular species; or if not unique per se, to form a unique combination.

 Reliable; that is, to be always present in the particular species.

3. Detectable; that is, able to be determined.

In the present state of knowledge of speciation in *Strongyloides*, criteria must of necessity be morphological. Biochemical and immunological differences between species may exist, but so little work has been done on these aspects, that in practice, these techniques would not be useful without a comprehensive study of the genus.

Little's (1966a) criteria for species differentiation superceeded all previous ones. He examined seven previously named species (Little 1966a) and described seven new ones (Little 1966b); and in so doing showed the criteria worked for these 14 species. He did not, however, explain how to use the criteria for identifying unknown specimens, and failed to emphasise in the free-living male which were the most useful features for separating species.

How should one determine whether criteria are useful for species differentiation? The first point must be that they allow distinct taxa to be separated; uniqueness. In the practical sense, this is judged by their ability to separate what seem to be closely related species, species which show morphological similarities. Reliability, the second point, is determined in practice by looking within particular species for the ability to find the same criterion in different specimens of the same taxon; or if not found to be the same in a particular specimen, to be able to know why the particular criterion is different in those particular specimens. In a reliable character this difference from the norm will be due to factors external to the worm and not related to its identity. The final point, detectability, is assessed by the ease and confidence with which an experienced observer can identify the criterion.

The features proposed as useful for differentiation of the adult stages will be considered in turn, then other aspects thought to be of use will be examined. The assessment will be based on information from the literature and from my own studies. An attempt will be made to designate useful criteria as either major or minor, the former defined as a character which can be used as a primary tool for dividing species or specimens into categories, while minor criteria come into play only in separating species in those categories.

152

5.2.1 Stomal Shape.

Little (1966a) was the first to emphasise the importance of the shape of the stoma in the *en face* view. A few authors previously had noted this feature in their specimens (Kreis, 1932; Basir, 1950; Tarczynski, 1956), but had failed to note its usefulness in distinguishing between species. Little considered it one of the key features in speciation. In terms of uniqueness, it is an extremely useful criterion, as some species can be identified on this feature alone (Table 6:1).

Stomal shapes can be divided into four types: simple, angular, complex, and with oesophogeal teeth (Fig.6:1). A simple stoma is defined as a shape which has no angles; e.g., round, oval or dumbell. An angular stoma is angular; square, rectangular, hexagonal, badge-shaped. A complex stoma is multichambered, with compartments leading off from a central chamber. A stoma with oesophageal teeth has projections passing forward from the anterior end of the oesophagus to the level of the stomal verge.

Artifacts can affect the shape of the stoma. The extreme manifestation of autolysis is anterior prolapse (see Chapter 5.2.1.3). These marked changes make it impossible to determine stomal shape. Lesser degrees of autolytic change may modify the stoma, but in many species the head is one of the last regions of the cuticle to be affected. The edges of the stoma in specimens showing degenerative changes elsewhere are often unclear and not precisely defined. Precipitates of immunoglobulins on the stoma may blur the outline, making it difficult to determine, or they may form a refractile oral plug which obstructs the *en face* view. A reliable clue to a stoma that has been deformed by external forces is lack of TABLE 6:1. Key features of fully described parasitic females.

SPECIES	STOMAL SHAPE	CIRCUMORAL	OVARY TYPE	TAIL SHAPE	STAGE in	REFERENCE
7	1	LOBES			FAECES	
S.araeae	nexagonal	2	spiral ant.	bluntly rounded	unknown	Little 1966b
S.cati	dumbell with	6	spiral both	bluntly rounded	eggs	Rogers 1939
	oes.teeth					Arizono et al 1976
S.cebus	modified X	0	spiral both	narrowly tapered	eggs	Little 1966b
S.dasypodis	open-badge closed-Y	6	dir.recurr.	narrowly tapered	larvae	Little 1966b
S.elephantis	ornate	?	dir.recurr.	narrowly tapered	unknown	Greve 1969
S.eryxi	oval	4	spiral both	narrowly tapered	eggs	this thesis
S.felis	rectangular	6	dir.recurr.	narrowly tapered	larvae	this thesis
S.fuelleborni	modified X	0	spiral both	blunt	eggs	Little 1966a
S.gulae	oval	2	spiral ant.	pointed	eggs	Little 1966b
S.lutrae	X-shape	8	spiral ant.	pointed	eggs	Little 1966b
S.myopotami	ornate, 8 chambered	2	dir.recurr.	narrowly tapered	eggs	Little 1966a
S.papillosus	X-shaped	6	spiral both	bluntly rounded	eggs	Basir 1950; this thesis
S.pavonis	hexagonal	6	spiral both	narrowly tapered	larvae	Sakamoto & Yamashita 1970
S.physali	oval with	6	spiral ant.	pointed	eggs	Little 1966b
	concave sides	;				
S.procyonis	hexagonal	6	dir.recurr.	narrowly tapered	larvae	Little 1966b
S.ratti	badge	6	dir.recurrent	narrowly tapered	eggs and larvae	Little 1966a
S.serpentis	oval	2	spiral ant.	pointed	eggs	Little 1966b
S.spiralis	oval	6	spiral both	blunt	eggs	Grabda-Kazubska 1978
S.stercoralis	hexagonal	6	dir.recurr.	narrowly tapered	larvae	Little 1966a
S.suis	dumbell with	8	spiral both	pointed	eggs	this thesis
	oes.teeth					
S.turkmenica:	hexagonal	6	spiral ant.	narrowly tapered	unknown	Barus et al 1978
S.venezuelensis	ornate, 8 pointed	8	spiral both	short conical	eggs	Little 1966a
S.westeri	dumbell with oes.teeth	8	spiral both	narrowly tapered	eggs	this thesis

ANGULAR

S.sp ex Vombatus ursinus

triangular

X-shaped

8-chambered

rectangular

8-chambered

6-chambered S.elephantis

WITH OESOPHAGEAL TEETH

FIG.6:1. Types of stoma of parasitic female. En face view. Species with particular shapes listed in Table 6:1 or as indicated in Fig.6:2 or this Fig. bilateral symmetry. Many artifactual changes affecting the stoma can be anticipated by recognition of their existence prior to examination of the apical view.

The size of the stoma within particular species varies from one specimen to another, often in the same host. This is of no concern if the stomal shape is constant. Most simple and geometric stoma have the same shape irrespective of the size of the stoma (Fig.6:2A). More complex stoma, however, sometimes change shape with change in size (Fig.6:2B). This is due to differences in the proportional reduction in size of different dimensions of the stoma.

In a stoma which maintains the same shape, all dimensions are reduced to the same degree. Little (1966a) hinted at this concept, but did not describe or explain it. Without definition, Little used the terms "open" and "closed" stoma. It appears he meant these terms to refer to the extremes of the range of stomal shapes shown by a particular species. An "open stoma" is one with the largest dimensions, while a "closed stoma" is one with the smallest. The factors affecting stomal size in particular specimens are unknown; they may be intrinsic or external to the worm. The open stoma is one which is most characteristic of a species. The closed stoma is also characteristic, but since it is compressed and smaller, the subtleies of shape possible are limited and not as useful as in the open stoma. In describing or identifying specimens, it is essential therefore to examine a number of en face views, determine the range of shapes and their relative sizes, and note the extremes of this range; the "open" and "closed" forms. "Closed" stoma are less common.

156

FIG.6:2. Variation in stomal shape within species :
A. open and closed stoma with no change in shape;
B. open and closed stoma with change in shape.
En face view.

The shape of the stoma is a reliable criterion. Greve (1968) in his description of S.elephantis criticised use of the stomal shape on the basis of its "plasticity" (p498). He implied stomal shape was an unreliable criterion, but did not elaborate. Two paratypes of S.elephantis (USNMHC 70980) were examined. They showed minimal degenerative change, but shrinkage was marked, with the cuticle greatly wrinkled and collapsed around the internal organs. The specimens had been fixed in 10% formalin (Greve, 1968 p498), and were permanently mounted on slides. The mounting medium was not stated by Greve (1968) or noted on the slides themselves. The mounting process may have caused excessive shrinkage. If a similar process was used to prepare en face views, deformation of the head would be expected, leading to variation in the stomal shape for different specimens. "Plastic" means capable of maintaining a new shape once a deforming force has been removed. Greve's stoma were, indeed "plastic", but due to his techniques and not to an intrinsic characteristic of the stoma of Strongyloides. His criticism of the reliability of the criterion is therefore unjustified.

The head of the parasitic female is small. *S.westeri*, the largest species, has a head about 20µm across, with a stoma about 11µm in diameter. One of the smallest stoma, e.g. the oval stoma of *S.eryxi* collected from the snake, *Elaphe carinata*, (Sprent Colln. 1271/PF4485-C-N) measured 2µm by 1.5µm. Consequently, ease of detection of stomal shape may be a problem. Scanning electron microscopy may help in some cases to clarify stomal shape, but deformation caused by the techniques involved lessen one's confidence in use of SEM alone.

The techniques of making *en face* preparations (see Chap.4.2.3.3) are mastered with practice and should not pose a major obstacle. With an experienced parasitologist the stomal shape can be consistently determined.

In all respects, therefore, uniqueness, reliability and detectability, the shape of the stoma of the parasitic female is a useful criterion.

6.2.2 CIRCUMORAL LOBULATION.

The circumoral elevation is frequently divided into small lobes, whose number is characteristic of the particular species (Little 1966a, 1966b; Arizono et al, 1976). The number of lobes present are determined from lateral and dorso-ventral views of the head (Fig.6:3). The lobes are always paired, none, two, four, six and eight have been seen. Two lobes are usually broad lateral lobes; specimens with four lobes were not seen by Little and have broad lobes in lateral, ventral and dorsal positions; with six lobes they occur in lateral, subventral and subdorsal positions; while the additionl pair with eight lobes is found ventrally and dorsally. In some species the lobes are easily seen, while in others they are not so prominent and one feels less confident in their enumeration. In species with prominent lobes and using good specimens lobulation is reliable and fairly easily determined if both views of the head can be obtained. In theory they could be a useful character for differentiation, but one would use them only after other criteria had been unable to separate the species. In practice the number of lobes in the circumoral lobulation has not been used as a major criterion for distinguishing between species.

S.eryxi

FIG.6:3. Lobulation of circumoral elevation of parasitic female. Arrows indicate position of lobes; numbers indicate number of lobes.

L = lateral view; DV = dorso-ventral view.

6.2.3 Type of Ovary.

The ovary in the parasitic female either forms a spiral with the intestine or it does not. The degree of spiraling is usually greater in the anterior ovary than the posterior, although Cameron and Reesal (1951) reported otherwise for *S.agoutit*. Sandground (1925) first suggested ovary type as a useful criterion for speciation. Little (1966a,b) confirmed this, and proposed it as a key feature. It is not a feature with a high degree of uniqueness. There are only two options, spiral or directly recurrent. The degree of spiraling is of use in distinguishing between some species. *S.eryxi*, from snakes, usually has two anterior and one posterior coil (Singh, 1954), while similar species from snakes, *S.gulae* and *S.serpentis* have a single anterior coil only (Little, 1966a). It is easily detectable, except in specimens which are badly degenerated (Chap.5.2.2.1) or heavily pigmented (Chap.5.5.3). The reliability of the feature is good. One must be alert to the fact that the parasitic female in a species with spiralled ovaries may become mature before the ovary has begun to spiral (see Chap.5.2.2.2).

S.agoutii is one species in which spiralling has been noted to be variable (Griffiths, 1940; Cameron and Rheesal, 1951). Griffiths (1940) noted no constancy in the type of ovary in S.agoutii from the agouti, Dasyprocta agouti. Cameron and Reesal (1951) disagreed stating the species consistently had two coils posterior to the vulva and one anterior. They stated the variable ovary type noted by Griffiths was due to his use of specimens from experimentally infected guinea pigs, although Griffiths (1940) appeared to be using specimens only from agouti. The type of ovary in S.agoutii is, therefore, unresolved. It seems to be a special case and should not be taken to weaken the reliability of the criterion for other species.

Another species in which the ovary type was originally reported as variable was *S.ratti*. Sandground (1925) noted five out of 40 of his specimens had "sinuous" ovaries, while the remainder had "hairpin bend" ovaries. Early workers often used "sinuous" to refer to spiral ovaries. Plate IX Fig.B from Sandground (1925) shows a sinuous course for the ovaries, but if the geometery of the spiral is borne in mind spiral ovaries can be construed from the

FIG.6:4. Types of ovary of parasitic female : A. directly recurrent - Strongyloides ratti; B. spiral - Strongyloides venezuelensis; C. "sinuous" ovary of "Strongyloides ratti" from Sandground (1925 Plate IX Fig.B) was probably spiral ovary of Strongyloides venezuelensis. Scale line = 50µm.

illustration (Fig.6:4). Since Sandground's original report, spiral ovaries have not been seen in *S.ratti*. The most likely explanation is that Sandground (1925) had a mixed population of *S.ratti* and *S.venezuelensis*. Both species are similar in size and proportions (Little, 1966a), but *S.venezuelensis* has spiral ovaries and *S.ratti* directly recurrent ones. Both species can exist experimentally in the same host (Wertheim, 1970). Concurrent natural infections are not uncommon (Little, 1961; Wertheim and Lengy, 1964). Sandground (1925) collected his rats, *Rattus norvegicus*, from rubbish dumps in Baltimore. Little frequented New Orleans refuse tips where he found

162

Rattus norvegicus infected with both species. It is highly probable therefore, that Sandground's "S.ratti" included specimens of both S.ratti and S.venezuelensis. His observations on variation in ovary type of "Sratti" are therefore not valid, although his general conclusion that ovary type was a useful criterion is correct.

The type of ovary in the parasitic female is an easily detectable, useful criterion of low specificity, and in most species of high reliability.

6.2.4 Shape of the Tail.

Sandground (1925) dismissed this character as a means of distinguishing between species. He found the shape of the tail to show too much variation to be of use (see Sandground, 1925, p.81, Plate VIII). Goodey (1926) stated tail shape was an important feature for distinguishing between *S.felis* and *S.stercoralis*, the former having a finely tapered, often pointed tail, while the latter was narrowly tapered but never as acutely as *S.felis*. Swartz and Alicata (1930) used the shape of the tail to separate the parasitic females of *S.papillosus* and *S.suis* (syn.*S.ransomi*). They found the range of shapes shown by each did not overlap. Cram (1936) also considered the shape of the tail to be a significant character in the identification of species in birds. Little (1966a) noted *S.cebus* had a more tapered and sharper tail than *S.fuelleborni*.

The main features of the tail which seems to be of importance are the degree of taper and the nature of the tip, whether it is bluntly rounded or narrowly tapered. Sandground's (1925) observation that tail shape is variable is accurate (Fig.6:5). Sandground examined the tails of seven species. One, *S.ovocinctus*

FIG. 6:5. Categories of tails of parasitic females: Bluntly rounded -Strongyloides papillosus from various hosts as indicated; Narrowly tapered - A. Strongyloides suis from pig; B. Strongyloides felis from cat; C. Strongyloides stercoralis from human. Lateral views.
was a synonym of the other, *S. papillosus*. Five of the remaining six species had the same type of tail, bluntly rounded, while the sixth *S. stercoralis* has a narrowly tapered tail with a truncated tip, giving a bluntly rounded appearance. Consequently, there was no difference in this feature between the seven species examined and Sandground found tail shape to be of no use. Tail shape, however, although showing an intraspecies variation, does show a limited range of variation. *S. papillosus* never has a tapered tip; it is always bluntly rounded. *S. felis* consistently is finely tapered often pointed, while *S. stercoralis* is not. This is useful in differentiating the latter two species (Goodey, 1926; Speare and Tinsley, 1986).

The shape of the tail can be used for distinguishing between particular species. It is a character of limited uniqueness, since only two main options, narrowly tapered-pointed or bluntly tapered-rounded, are possible, although the first category can refer to species with narrow, but blunt tips. Detectability is good. Reliability is a problem. The range of shapes shown by a species has to be considered. The criterion is a minor one, but in particular instances a useful one in practice since it is easily determined. S.felis and S.stercoralis have both been reported from cats (Chandler 1925a,b; Levine, 1968; Froes, 1976; Speare and Tinsley, 1986). The parasitic females are similar in many respects, but they can be quickly distinguished by the shape of the tail. The identification can then be confirmed by determination of the shape of the stoma, a more time consuming task.

6.2.5 Excretory System.

The parasitic female has an excretory pore situated on the ventral midline just posterior to the level of the nerve ring. A sacciform canal passes posteriorly to join a common chamber, associated with a renette cell, from which bilateral canals run anteriorly and posteriorly in the lateral chords (Little 1966a). Little (1966a) suggested differences in the morphology of the system may prove to be of use in species differentiation. The major problem with this criterion is detectability. The excretory system is difficult to study and can be seen clearly in less than 10% of specimens. In the practical sense, therefore, it is not a suitable feature.

6.2.6 Transverse Striations.

All parasitic females have transverse striations. Hung and Höeppli (1923) used the presence of transverse striations as an argument to justify their proposal that *S.simiae* was a new species, distinct from *S.fuelleborni* and *S.cebus*. They had no specimens of the latter two species to examine, but assumed from the descriptions in the literature that both species lacked transverse striations. The ease with which transverse striations are detected varies with the species, but with care striations can be seen in all.

The presence or absence of striations is of no use in species identification (Sandground, 1925).

6.3 FREE-LIVING MALE.

5,3.1 Spicule.

The ways in which spicules of different species vary are difficult to express in terms which can be understood exactly by all workers. Little (1966a&b) was the first to attempt a comparison of spicules. He described the general morphological features of the spicule and modifications due to specific identity. He failed to emphasize which features were important in species differentiation.

6.3.1.1 Type of Tip. -

A key feature is the nature of the tip or ventral end of the spicule. There are four types (Fig.6:6) : Sharply pointed, blunt, hooked, and pointed with lateral projections. The last category can be identified in lateral view by a refractile area at the base of the pointed tip and recognition that a projection passes laterally into optical planes other than that of the tip. Little (1966a&b) described the sharply pointed and hooked tips, but omitted Mackerras's (1959) report of a blunt tip in *S.thylacis*.

The nature of the tip is consistent and easily determined. Most species have sharply pointed spicules. Species from Australian marsupials and a new species from the domestic fowl have blunt tips. A hooked tip is found in *S.serpentis* from north American snakes and a species from Australian snakes. The more elaborate sharply pointed tip with lateral projections has been seen only in a species from New Guinea cuscuses, *Phalanger spp*.

FIG.6:6. Categories of tips of spicule: A. pointed - Strongyloides sp from green tree frog, Litoria caerulea; B. blunt - Strongyloides sp from spectacled hare wallaby, Lagorchestes conspicillatus; C. hooked - Strongyloides serpentis; D. pointed with lateral projections - Strongyloides sp from cuscus, Phalanger vestitus. Arrow marks position of projection. Lateral views. Scale line = 10µm. 6.3.1.2 Curvature. -

The degree of curvature of the spicule is a character which is useful but difficult to quantitate. The curvature refers to the shape in lateral view of the dorsal edge of the spicule. Little the term "bowed" to refer to this, with (1966a) used the semiquantitative modifiers "slightly", "moderately", "markedly". The spicules of S.serpentis are unusual since they are straight with a dorsal bulge at the junction of the middle and ventral thirds. Fig.6:7 is made up of tracings from Little (1966a&b) of the curvature of the spicules of 12 species of Strongyloides. The general shape of the curves are similar, apart from that of S.serpentis. Quantification of degree of curvature is made difficult by differences in the form of particular species at particular points in the curve e.g., a bulge may occur earlier in the curve in one species than in another. Spicules of different sizes are difficult to compare and for meaningful comparison all should be brought to the same size. When this is done (Fig.6:8) it can be seen that the curves are very close. The curves of the dorsal halves of the "markedly bowed" spicule of S.fuelleborni and the "slightly bowed" spicule of S.stercoralis (Little 1966a) are, for example, separated only by about 20°; S.dasypodis classed as "moderately bowed" has the same curve as S.stercoralis, which is "slightly bowed".

Since intraobserver variation in classification is obviously a problem, interobserver variation would be expected to be greater. The degree of curvature of the spicule is, therefore, not a good criterion in terms of uniqueness, since the majority of spicules are the same. If one introduces spicules not examined by Little, one can separate the markedly curved spicule of *S.westeri* from that of

SLIGHT

MARKED

STRONG

CONVENTIONAL

Fig. 6:7. Curvature of spicules with pointed tips: classification according to Little (1966a). Line of dorsal border is compared with that of Strongyloides stercoralis. A. Strongyloides stercoralis; B. Strongyloides procyonis; C. Strongyloides dasypodis; D. Strongyloides physali; E. Strongyloides fuelleborni; F. Strongyloides lutrae; G. Strongyloides cebus; H. Strongyloides venezuelensis; I. Strongyloides myopotami; J. Strongyloides gulae

1.42

Fig. 6:8. Comparison of curvatures at different magnifications for spicules of different sizes. Strongyloides stercoralis to left, Strongyloides physali to right; numbers indicate magnification factor for Strongyloides physali S.stercoralis since they are at the extreme ends of a fairly narrow spectrum, but the separation of the species in between these extremes can not be done with confidence using this criterion.

Curvature of the spicule is therefore a useful criterion of low uniqueness, ranging from the "not curved" spicules of *S.serpentis*, to the "markedly" curved spicules of *S.westert*, with the majority of spicules being in the "slight-moderately" curved category. Comparison between spicules in this latter group is not of use, since their curvatures are essentially the same.

6.3.1.3 Ventral Membrane. -

Two features of the ventral membrane are of importance in species differentiation; the shape of the ventral border, and the prominence of the membrane. The ventral border is most usefully classified into convex, straight and concave (Fig.6:10). The "straight" category includes membranes with slight degrees of deviation from a central line. Most species fall into this category. "Convex" membranes are obviously so e.g. those of *S*. *cebus*; while the "concave" category refers to those which are obviously concave e.g. *S.westeri*. An indication that a membrane should be classed as "straight" is hesitancy on the part of the observer into which category it belongs. Only the obvious instances are otherwise classified.

FIG.6:10. Categories of ventral membranes as determined by shape of ventral border: A. Straight; top - Strongyloides westeri, bottom - Strongyloides stercoralis; B. convex -Strongyloides cebus (from Little, 1966a); C. concave -Strongyloides papillosus. Scale line = 10µm.

FIG.6:11. Technique for calculating prominence of ventral membrane : prominence = AB/AC %. Spicule of Kanabea Strongyloides. Scale = 10µm.

The prominence of the ventral membrane is also useful. Little (1966a&b) useđ the terms "prominent", "not prominent", "inconspicuous" and "narrow". The terms were not defined and "narrow" and "inconspicuous" were used interchangeably. А quantitative measure of the prominence of the ventral membrane can be obtained by drawing a line from the ventral border of the membrane at its widest point perpendicular to the membrane or its tangent across the spicule (Fig.6:11). The distance from this midpoint to the point of intersection of the line with the dorsal border of the membrane divided by the distance from the midpoint to the point of intersection with the dorsal border of the spicule is expressed as a percentage (Table 6:2). Narrow or inconspicuous membranes are less than 20%. There is good agreement with Little's description except for S.gulae which has a ratio of 29.8% and was classed as "not prominent".

The ventral membrane is a reliable criterion, but detectability is variable. It cannot be clearly seen in all specimens, but in good specimens can be detected in about 40%.

The most common combination of features is a slightly-moderately curved spicule, with a sharply pointed tip and a prominent ventral membrane with a straight edge. Spicule shape

TABLE 6:2. Features of spicules of free-living males.

SPECIES	TYPE of	PROMINENCE of	MEMBRANE	TYPE of	CURVATURE
	TIP	Qualitative Qua	antitative	EDGE	
			(%)		
S.cati	pointed	prominent	40.0	straight	sl-moderate
S.cebus	pointed	prominent	32.0	convex	sl-moderate
S.dasypodis	pointed	prominent	29.4	straight	sl-moderate
S.felis	pointed	inconspicuous	25.0	straight	sl-moderate
S.fuelleborni	pointed	prominent	29.1	straight	sl-moderate
S.gülae	pointed	prominent	29.8	straight	sl-moderate
S.lutrae	pointed	prominent	35.0	straight	sl-moderate
S.myopotami	pointed	prominent	40,0	straight	sl-moderate
S.papillosus	pointed	prominent	35.0	concave	marked ³
S.physali	pointed	prominent	37.5	straight	sl-moderate
S.procyonis	pointed	inconspicuous	16.0	straight	sl-moderate;
S.stercoralis	pointed	inconspicuous	17.6	straight	sl-moderate
S.suis	pointed	prominent	36.3	straight	sl-moderate
S.venezuelensis	pointed	prominent	38.2	straight	sl-moderate
S.uesteri	pointed	inconspicuous	15.0	straight	marked ³
Kanabea					
Strongyloides	pointed	prominent	36.5	straight	sl-moderate
S.serpentis	hooked	prominent	35.0	convex	straight ¹

1. Little (1966a,b) 2. Rogers (1939) 3. this thesis

therefore, is a useful criterion, and in some species the combination of the three major features will be unique, e.g. *S.cebus*. Table 6:2 lists the key features of spicules of fully described species.

6.3.2 Gubernaculum.

The shape of the gubernaculum in all species of Strongyloides, with one exception, S.serpentis, is fairly uniform (Fig.6:12). There are differences between species, but these are difficult to express and communicate. The features of the posterior half of the ventral border should not be used since this lies between the spicules and is hidden by them in many cases. The same applies to the ventral corner of the posterior pole, leaving the anterior pole, the dorsal border and dorsal aspects of the posterior pole to be considered. The shape of the wings in lateral view varies somewhat depending on which optical place is used for assessment. The dorsal border is always convex except in S.serpentis, which has a straight border. The dorsal pole seems to show slight differences between species in terms of prominence. There is however, intraspecific variation in the dorsal pole, some are rounded while others are almost pointed.

It is difficult to precisely define the limits of a particular species. This latter aspect becomes obvious when one tries to distinguish between the gubernacula of closely related species such as *S.stercoralis*, *S.procyonis* and *S.felis*. The gubernacula look slightly different, but not different enough to be able to confidently identify one or other of the species from the gubernaculum alone.

The percentage of width of gubernaculum to length was examined

- I. Strongyloides serpentis. Scale lines = 10µm;
- larger scale refers to H & I.

(Table 6:3). Most species fall between 30 and 45%. Values useful in separating the ends of the spectrum from the greater number of species are less than 30% and greater than 50%.

The shape of the gubernaculum is, therefore, useful in separating out some species, but will not distinguish between the majority.

6.3.3 Caudal Papillae.

The positions of caudal papillae (Fig.2:15) can be used for speciation (Little, 1966a&b). Their positions are referred to key points; e.g., the subventral preanal papilla to the preanal organ, the postanal papillae to the cloaca and each other. The positions of the adanal papillae to the cloaca and the position of the lateral papilla seem to be of little value. The triad of subventral preanal and adanal papillae are of value in terms of their positions in the longitudinal plane.

The subventral preanal and its relationship to the preanal organ can be used (Fig.6:13). The papilla may be found anterior, as in *S.serpentis*, level with as in *S.papillosus*, or posterior as in most species. The distance of the subventral postanal from the cloaca is not a useful trait, but the distance between subventral postanal and subdorsal postanal can be used to separate some species. The distance of the preanal organ from the cloaca can be used to distinguish between some species e.g. *S.felis* and *S.stercoralis*.

A very useful feature is the longitudinal allignment of the subventral preanal and the two adanal papillae. Most species have these three papillae in the same longitudinal line, so that when one

SPECIES	LENGTH	WIDTH	W/L	DORSAL	REFERENCE
	(µm)	(µм)	(%)	BORDER	
S.cati	24.5	10.0	40.8	straight	Rogers (1939)
S.cebus	23.3	8.3	35.7	curved	Little (1966a)
S.dasypodis	24.9	8.3	33.5	curved	Little (1966b)
S.felis	24.5	9.1	37.1	curved	this thesis
S.fuelleborni	23.3	7.5	32.2	curved	Little (1966a)
S.gulae	20.0	7.9	39.6	curved	Little (1966b)
S.lutrae	19.2	8.7	45.6	curved	Little (1966b)
S.myopotami	19.2	10.8	56.3	curved	Little (1966a)
S.papillosus	19.4	8,6	44.3	curved	this thesis
S.physali	15.0	5.4	36.0	curved	Little (1966b)
S.procyonis	24.2	9.2	38.0	curved	Little (1966b)
S.serpentis	16.7	4.6	27.5	straight	Little (1966b)
S.stercoralis	23.3	7.5	32.2	curved	Little (1966a)
S.suis	20.3	10.3	50.8	curved	this thesis
S.venezuelensis	15.8	7.1	44.7	curved	Little (1966a)
S.westeri	26.4	10.8	40.9	curved	this thesis

TABLE 6:3. Features of the gubernacula of free-living males.

FIG.6:13. Positions of Subventral preanal papillae in relation to preanal organ: A. anterior to - Strongyloides serpentis; B. level with - Strongyloides papillosus; C. posterior to -Strongyloides stercoralis. Solid arrows mark positions of SPA; open arrow indicates dorsal displacement of ADl from line of SPA, ADl & AD2. Scale line = 30 µm. is in focus in an optical plane so are the other two.

In S.westeri the posterior adamal papillae is more ventrally placed, i.e., closer to the cloaca, and consequently not in the same optical plane as the other two, while with S.fuelleborni, S.papillosus, S.suis, S.venezuelensis and the Strongyloides from PNG the anterior adamal papillae is dorsally displaced from the line of the subventral preamal and the posterior adamal papillae.

The reliabilities of the positions of caudal papillae are good, being least for the relationship of the postanal pair. The subventral preanal papilla varies to a moderate extent in any species. Consequently, if, for example, in a particular species, it is level with the preanal organ, in some specimens it will be found exactly level; in others it will be slightly anterior; while in others it will be just posterior, but always close to the preanal organ.

The relationships of the caudal papillae are major criteria. The greatest emphasis is placed on the longitudinal allignment of the subventral preanal and the two adanals, with the position of the subventral preanal with respect to the preanal organ, the separation of the two postanals, and finally the distance of the preanal organ from the cloaca also being useful features.

6.3.4 Pericloacal Bulge.

The free-living male of *S.gulae* has the cloaca on a prominent ventral expansion (Fig.6:14). This is unique, and is a useful feature for differentiating this species from others (Little, 1966b).

FIG.6:14. Pericloacal bulge of free-living male of Strongyloides gulae (from Little, 1966a). Scale = 20um.

6.4 FREE-LIVING FEMALE

Uniformity of morphology is the norm for the free-living female. Only two features are of use in distinguishing between species, and both are in the region of the vulva.

6.4.1 Post-Vulval Narrowing.

Some species have a uniform body diameter, anterior to as well as posterior to the vulva. Others show a reduction immediately posterior to the vulva (Fig.6:15). Of this latter group, two species, *S.fuelleborni* and *S.felis* have females with a marked reduction in diameter, while in others, e.g. *S.stercoralis*, the narrowing is present but is less. These latter species have reductions of over 15% in diameter, while the change in diameter in species with a lesser degree of narrowing is usually less than 10%. The main criticism of this character has been on the basis of reliability.

FIG.6:15. Postvulval narrowing and posterior rotation of the vulva in free-living female. Extent of narrowing is calculated by measuring across points before and after vulva as shown by double-headed arrows. Angle of vagina with longitudinal axis of anterior half of body is measured as shown. A. Strongyloides stercoralis; B. Strongyloides fuelleborni.

Premvati (1958) demonstrated that in *S.fuelleborni* the post-vulval narrowing was capable of variation in response to the external environment. In my own studies on *S.felis* the character was not affected significantly by temperature as had been *S.fuelleborni*. It is a major criterion with very good reliability in the case of *S.felis*, but perhaps less so for *S.fuelleborni*. It is easily determined.

6.4.2 Rotation of the Vulva.

In lateral view the angle formed by the vulval slit or the very short vagina with the long axis of the anterior half of the body (Fig.6:15) is a useful feature for differentiation. In most species the angle is 90 to 100°, but in *S.fuelleborni* and *S.felis* it is over 100°. The vulva has the appearance of being rotated in the posterior direction. This was a consistent feature in all *S.felis* (approximately 250) and in the 30 *S.fuelleborni* examined. Posterior rotation of the vulva was not seen in specimens of any other species. It is independent of the post-vulval constriction, and is a major criterion.

6.5 DIMENSIONS AND PROPORTIONS.

Many authors have relied heavily on measurements and proportions of various stages of *Strongyloides* to differentiate species due to a superficial assessment of morphological features. Those species descriptions in which mensuration has played a major role have been mainly generic, with occasionally no key feature relevent to that species being presented (Travassos, 1930a,b; Mirza and Narayan, 1935; Pereira, 1935; Chandler, 1941; Perez Vigueras, 1942; Kurtieva, 1953). Table 6:4 lists the dimensions and proportions that have been used as significant for species diagnosis. An assessment of their reliability is presented as well as a comment on their usefulness or significance.

Some features can be rejected on the grounds of poor reliability. The variation in specimens from the same source, e.g., TABLE 6:4. Dimensions and proportions used in literature to differentiate species of *Strongyloides* and assessment of reliability and usefulness.

PARASITIC FEMALE	RELIABILITY	COMMENT
Body length	average	major criterion
Maximum width	average	minor criterion
Oes.length	average	minor criterion
Tail length	average	minor criterion
Mouth-vulva	average	generic character
Vulva-tail	average	generic character
ARO-post.ces	poor	too variable
PRO-anus	poor	too variable
No.of eggs in utero	poor	variable
Egg size	good	minor criterion
Oes./body length %	good	minor criterion
M-V/body length %	good	generic character
Tail/body length %	good	minor criterion
FREE-LIVING ADULTS		
Body length	average	minor criterion
Oes.length	average	minor criterion
Tail length	average	minor criterion
Oes./length %	average	minor criterion
Tail/length %	average	minor criterion
FREE-LIVING MALE		
Spicule length Spicule length /	good	minor criterion
body length %	good	minor criterion
FREE-LIVING FEMALE		
M-V	average	generic character
M-V/length %	good	generic character
INFECTIVE LARVAE		
Body length	average	minor criterion

an individual host or the same faecal culture, can be assessed by calculation of the coefficient of variation (CV), where CV = mean / S.D. %. A reliable feature has a CV of 10% or less. ARO-oes and PRO-anus often have CV greater than 10%. In some species so do distances from the distal ends of the ovaries to the vulva, while in other species this feature has a good reliability. When populations from different sources are compared the CV of these features increase markedly. ARO-oes and PRO-anus have been used as a significant criterion in species from birds (Travassos, 1930a&b; Perez Vigueras, 1942; Kurtieva, 1953; Boyd, 1966&67). The variation is so great however, that they are unreliable.

6.5.1 Body Length.

The only measurable feature which is a major criterion is the body length of the parasitic female (Table 6:4). It is useful to place parasitic females into three categories: small, medium and large, where small = less than 2.0mm, medium = 2.0 to 5.0mm, and large = greater than 5.0mm (Table 6:5). The limits of the categories are not rigid, but are approximate only, those species with their means close to the border of one category and with a significant portion of their range in the other, are placed in the category in which their mean falls.

TABLE 6:5. Classification of parasitic females by size. SMALL S.akbari S.minimum S.amphibiophilus S.pereiri 5.ardeae S.physali S.Dufonis S.quiscali S.carinii S.spiralis S.darevskyi S.turkmenica MEDIUM S.avium S.herodiae S.ratti v.ondatrae *S.lutrae 5.cati S.rostombekowi S.cebus S.martis S.serpentis S.chapini S.mustelorum S.sigmodontis S.myopotami S.cruzi S.stercoralis S.cubaensis S.nasua S.stercoralis v.vulpi *S.dasypodis S.ophidae S.suis S.elephantis S.oswaldi S.thylacis S.eryxi S.pavonis S.tumefaciens S.felis S.procyonis S.venezuelensis S.fuelleborni S.putorii S.gulae S.ratti LARGE *S.agoutii *S.robustus S.erschowi S.westeri *S.papillosus

(Small = body length < 2.0mm; medium = body length between 2.0 and 5.0mm; large = body length > 5.0mm. * = about half of range in other category but mean in category indicated.)

Body length has been used in some species descriptions as the only specific character. Strongyloides akbari was described as the small est species (Mirza and Narayan, 1935); S.ratti v. ondatrae was reported to look like S.ratti but to be larger and more slender (Chandler, 1941); while S.robustus was "larger than S.ratti" (Chandler, 1942). In all cases, the descriptions were inadequate, key taxonomic features being absent. The use of body length as the only major feature for differentiating species of Strongyloides is usually an indication of incompetence on the part of the parasitologist concerned, and should serve to alert one to the fact that the species description is inadequate or that the identification is of dubious accuracy.

An excellent example of this is *S.akbari*. This species was described from the shrew, *Crocidura coerulea*, a Soricidae (although the common name of the host was given as "musk rat"). Mirza and Narayan (1935) gave it the distinction of being the smallest species of *Strongyloides*, with a body length of 1408.5µm. The only other record of *S.akbari* (Srivistava, 1964), used body length as the only criteria to identify as *S.akbari* a specimen from a new host, the honey badger, *Mellivora indica*, a Mustelidae. Although his specimen measured 1530µm, Srivastava apparently ignored the existence of *S.carinii* and *S.minimum* whose body lengths were smaller than his specimen. If body length was Srivistava's major criteria, the latter two species were closer to his specimen than S.akbari. The record of S.akbari in M.indica is unfounded.

Another example of the misuse of body length in the identification of specimens is a report of S. westert in pigs by Miyamoto (1929). In the small intestine of pigs from Taiwan he found some parasitic females with lengths of 9mm. These values are outside the normal range of S.suis (syn.S.papillosus), which he also recovered, but were similar to those of S.westeri, previously reported only from Equidae. Using size as the only criterion, Miyamoto tentatively identified the specimens as S.westeri. Georgi (1984), in a review of strongyloidiasis, listed S. westeri as occurring in pigs, but failed to cite the original source, which was in fact Galliard (1951) (Georgi, pers.comm. 1985). Miyamoto (1929) was the only original record found. Three attempts by me to experimentally infect pigs with S.westeri were unsuccessful. Thus the host record is unfounded.

The variation of body length within species can be great. Body length can be influenced by forces outside the genetics of the parasite. The immune response of the host has been shown to reduce body size (see Chap.5.3.3). The species of the host also has an effect on body length. A strain of *S.papillosus* originally collected from a goat was used to infect a lamb, a rabbit and a piglet.

PARAMETER	GOAT	SHEEP	PIG	RABBIT
length	5401.5±792.2	5709.8±321.9	4789.8±352.7	3979.9±406.1
(μm)	(4251-6871)	(5162-6231)	(4363-5281)	(3425-4751)
width	61.1±5.0	62.3±2.1	51.3±3.1	48.6±3.1
(µm)	(52.1-66.7)	(52.1-64.6)	(45.9-56.3)	(43.8-54.2)
oes	952.1±47.3	864.3±94.2	802.4±44.6	906.4±91.9
(µm)	(896-1017)	(615-952)	(740-867)	(763-1032)
M-V	3189.6±435.7	3527.9±204.3	3093.3±205.8	2580.4±249.7
(µm)	(2704-4088)	(3160-3846)	(2829-3425)	(2270-2783)
tail	59.6±8.8	63.0±7.5	53.0±5.8	58.4±4.6
(µm)	(50.0-73.0)	(50.0-75.0)	(47.9-66.7)	(50.0-66.7)
oes/length	17.9±2.0	15.1±1.4	16.8±1.0	23.0±3.0
(%)	(14.8-21.1)	(11.9-16.5)	(15.5-18.2)	(16.1-26.0)
M-V/length	59.2±2.1	61.8±1.1	64.6±1.9	64.9±1.6
(%)	(56.9-63.6)	(60.7-63.4)	(61.5-67.6)	(62.3-66.7)
tail/length	1.13±0.17	1.10±0.09	1.11±0.12	1.47±0.08
(%)	(0.81-1.32)	(0.97-1.2)	(0.92-1.28)	(1.40-1.59)
eggs/worm	14.3±2.1	28.6±2.6	13.6±3.7	4.1±2.7
	(11-17)	(24-32)	(8-19)	(0-8)
egg size				
length	53.6±3.7	53.6±2.3	53.8±2.6	51.5±1.9
(µm)	(45.9-58.4)	(50.0-56.3)	(51.2-56.3)	(47.9-54.2)
width	33.4±1.0	30.0±2.1	31.8±2.3	29.8±1.5
(µm)	(31.3-35.4)	(27.1-33.4)	(28.2-33.3)	(29.2-33.4)
prepatent				
period (days)	-	13-16	11-14	11-14

Morphology was not affected by the species of host, but dimensions varied both in absolute and relative terms (Table 6:6). The effect on body length was not so great, however, as to place *S.paptllosus* into a different category. This would have been a problem if its average length was near the lower limit of its category.

6.5.2 Body Width.

Body width has rarely been used for speciation. Chandler (1941) stated *S.ratti* v.ondatrae was "more slender" than *S.ratti*. In absolute terms this is not correct, both have average maximum diameters of 33 and 34µm respectively (Table 2:1). The width/length percentage is, however, 0.82% for *S.ratti* v.ondatrae and 1.43% for *S.ratti*, making the width to length less for the former, and causing the "slender" appearance. The large body diameter of *S.tumefaciens* has already been mentioned (Chap.5.3.1.1). This was an artifact due to squashing of specimens.

Apart from the examples given above body width has not been used as a taxonomic criteria. It shows a significant correlation with body length (R 0.580, R^2 0.336, sig.<0.001). It would therefore be expected to be of no more value than body length. 6.5.3 Width-Length Percent.

There is no correlation between length and width/length (R -0.0356, R² 0.00127, sig.0.402). This means the width/length values are a function of the species, not of the genus, as for example is M-V/length (see Chap.2.2.1.2). In theory width/length combined with total length could be of use in distinguishing between particular species. It would be a minor criterion. In practice no example of its use in this way is available.

6.5.4 Use of Measurable Features.

Measurable features are used in practice as a way of distinguishing between specimens which cannot be separated on morphological grounds. The morphological assessment is made initially and carries more weight. Examples of use of measurable features in this way are provided by Little (1966b). The first example was to separate two species of Strongyloides found as concurrent infections in snakes. The parasitic females were morphologically similar, both were in the medium size category, but the differences in their body lengths were significant. Other features which differed were the tail/length % and length of the egg of the parasitic female. Unfortunately, the differences were not

expressed statistically. These two species, *S.gulae* and *S.serpentis*, were subsequently found to have quite distinct free-living males, thus confirming the value of mensuration in this case as a taxonomic tool (Little, 1966b).

The second case was use of dimensions and proportions to two morphological identical species, S. procyonis and separate S.stercoralis. Statistically different values in the parasitic females were body length, maximum width, oesophageal length, width/length % and oes/length %. In the free-living male body length, oesophageal length, tail length, spicule length, oes/length %, tail/length % and spicule/length % were statistically different, while in the free-living female body length, oesophageal length and oes/length % were significant. Biological evidence supported Little's conclusion that the species were distinct. two S.procyonis, found commonly in raccoons, produced only a transient infection in a human volunteer. Little (1966b) recorded the number of specimens on which the statistics were based, but failed to comment on how many sources the parasites came from and what the variation was between sources. This aspect needs to be investigated when statistical methods are used to separate species. Little's action in proposing a separate species from the raccoon was justified, but a more comprehensive statistically and biological study is required to confirm the separation.

The role of dimensions and proportions in the differentiation of species is a minor one. In practice mensuration can be used to separate morphologically similar species, but it could similarly be used to separate specimens of the same species derived from different sources. Before mensuration is used to demarcate a particular species, a comprehensive study using specimens of the species concerned derived from many sources is required. This has not been done for any of the species for which dimensions and proportions have been used as a final means of differentiation.

6.6 STAGE IN FAECES.

As there are only three options, eggs , larvae, or both, for this criterion, uniqueness is limited. It is a reliable criterion as long as freshly collected faeces are used. Most species with only eggs in faeces have the embryo in the morula or tadpole stage when passed and hatching may occur within 24hr depending on the temperature. Those with both eggs and larvae, usually have eggs with well developed larvae and hatching occurs within hours. Eggs containing a morula usually take at least 24hr to hatch. Those species with larvae in faeces usually have first-stage larvae, except for autoinfective larvae. Finding autoinfective larvae

presently identifies the species as either *S.stercoralis* or *S.felts*, since these larvae have been found only in these species. Autoinfective larvae have not been reported previously for *S.felis*.

This is a major criterion with good reliablity. The literature contains three reports which indicate otherwise. In the original description of S.fuelleborni von Linstow (1905) stated only larvae were found in faeces. In the same paper he said S.stercoralis had These were both errors; no further workers have only eggs. confirmed his observations. Faust (1930) experimentally infected a spider monkey, Ateles geoffroyi, with a human strain of Strongyloides, presumable S.stercoralis, although few taxonomic details were given. After 27 days the monkey passed eggs in faeces weeks. No larvae, as would have been expected for for 2 S.stercoralis, were found in faeces. It is possible the monkey was already infected with S. cebus, found in South American non-human primates (Little 1966a), or that the human strain used for the infection was not S. stercoralis. Faust (1930) failed to make much of the discrepancy. Similarly Strong (1901b) claimed to have experimentally infected a "monkey" with S.stercoralis. He noted eggs in faeces, although also recording natural infections with Strongyloides in other wild "monkeys". Since Strong was working in the Philippines he may have been dealing with Macaca irus, but this is the only clue to the identity of the host. These experimental

infections by both workers were not clearly described, and are open to the criticism that the monkeys may have been previously naturally infected by a *Strongyloides* which has eggs in faeces.

Since no convincing evidence to the contrary is available, the stage in the faeces is regarded as a reliable criterion. Development of the embryo or larvae must be arrested if faeces are not examined immediately. Hot 10% BNF is suitable for this. If this is not done, eggs may hatch. The stage in faeces may be hard to determine if parasite numbers are low; e.g., this criterion was not determined for *S.ardeae* since the intensity of infection was low. It is a major criterion.

6.7 SITE IN HOST.

The site of the parasitic female in the host is too variable to be of use as a major criterion. Individual species do tend to occupy specific niches, usually in a longitudinal direction down the gut, but a radial separation has also been documented for *S.ratti* and *S.venezuensis* (Wertheim, 1970). The site is subject to outside forces, and occasionally varies for no apparent reason. The host immune response has been shown to be responsible for a posterior migration in the small intestine for S.ratti in lab rats (Mogbel and Denham, 1977). Fig 5:14 illustrates this for S.ratti. Increase in parasite numbers leads to less prefered niches in the gut being occupied. In an experimental hyperinfective syndrome in white handed gibbons, Hylobates lar, parasitic females of S.stercoralis were found in stomach, small intestine and large intestine (de Pauli, 1974). In lighter infections S.stercoralis is found in the anterior small intestine. Variation in site for no apparent reason was documented by Cram (1936) for S.avium. Infective larvae cultured from domestic fowls with a natural infection in the small intestine, give rise to parasitic adults in the caecum only. I found a species of Strongyloides from the green tree frog, Litoria caerulea, usually in the large intestine, but occasionally in both natural and experimental infections an individual parasite was found in the small intestine. In unusual hosts parasitic females may be found outside the gut, e.g., guinea pigs infected experimentally with S.ratti, had mature females in the lungs (Sheldon and Otto, 1938).

Most species do occupy a prefered region of the gut of the host, but this is subject to variation. It is a useful feature, but, if faced with a parasite that fulfils the major morphological criteria of a particular species, but occupies a different site in the host, one should not decide against the identification on the basis of differences in location.

6.8 HOST.

Table 6:7 is a host-parasite list for *Strongyloides*. Hosts are arranged alphabetically by class, order (for all classes except Aves), and then by family and genus. The binomial name used for the host is that currently accepted as valid. This aspect posed significant problems with some groups, e.g. primates and rodents. The authorities consulted were for primates, the series of monographs by Hill (1957-1970) and for rodents Ellerman (1940).

Invalid synonyms for the host used by the authors reporting the parasite are given in parenthesis. The specific name used for the *Strongyloides* is that considered valid in Chapter 3. Parasite synonyms used by the authors are also given in parentheses. INF refers to the type of infection; N = naturally acquired, E+ = patent experimental infection, E- = unsuccessful experimental infection. AC is the accuracy of the record assessed by data given in the publication, or, if inadequate details were provided, by

reference to other records for the same parasite and host. G = good (important taxonomic details given and consistent with diagnosis); M= mediocre (lacks some important taxonomic details, but consistent with diagnosis); P = poor (no taxonomic details or insignificant details given, but consistent with other records); D = dubious (no taxonomic details given, inconsistent with other records or experimental evidence); I = incorrect (taxonomic details differ from those of the species diagnosed). Assessment of accuracy is subjective to some extent, but will enable incorrect and dubious records to be treated as such.

Table 6:8 is a *Strongyloides* sp - host list. Both lists are not exhaustive, but the occurrence of a particular species of *Strongyloides* in a particular species of host is included at least once. When more than one particular *Strongyloides* - particular host record existed, the first record and the records most of use from the taxonomic viewpoint were included. For records of *Strongyloides* sp. usually the first and the most current were chosen.

Additional symbols used in Tables 6:7 and 6:8 are:

- * = my own new record
- = paper not sighted

TABLE 5:7. Host - Strongyloides list. (see text for key)

FAMILY	HOST		STRONGYLOIDES		REFERENCE	AC
	BINOMIAL	COMMON NAME	SPECIES	ŝ, s		
AMPHIBIA						
Bufonidae	Bufo marinus	cane toad	<i>S</i> .sp	E-	й	
Bufonidae	Bufo melanostictus	toad	S.bufonis	N	Rao&Singh 1968,1954	м
Bufonidae	Bufo peltocephalus	toad	S.amphibiophilus	N	Perez Vigueras 1942	м
Bufonidae	Bufo valiceps	Weigman's toad	S.physali	N	Little 1966b	G
Hylidae	Litoria caerulea	green tree frog	S.sp	N+	ŵ	-
Hylidae	Litoria lesueurii	Lesueur's frog	S, sp	N	Ballantyne 1971	м
	(Hyla lesueuri)	-	-		*	
Hylidae	Litoria rubella	desert tree frog	S.sp	E+	\$1	
Leptodactylidae	Adelotus brevis	tusked frog	S, sp	N	Ballantyne 1971	Р
Leptodactylidae	Leptodactylus gracilis	froq	S.carinii	N	Pereira 1935	- M
Leptodactylidae	Limnodynastes peronii	brown-striped frog	S.sp	N	Ballantyne 1971	M
	(Limnodynastes peroni)	& <i>4</i>	· •			
Leptodactylidae	Platypectron ornatus	ornate burrowing frog	S.sp	N	*	
Ranidae	Rana clamantans	froq	S.sp	N	Little 1966b	P
Ranidae	Rana esculenta	edible frog	S, sp	N	Voithova&Moravec 1977	M
Ranidae	Rana esculenta	edible frog	S, spiralis	N	Grabda-Kazubska 1978	G
Ranidae	Rana lessonae	edible frog	S.spiralis	N	Grabda-Kazubska 1978	G
Ranidae	Rana pipens	frog	S.sp	N	Rau et al 1978	-
Ranidae	Rana ribidunda	frog	S.spiralis	N	*	
		frog	S.stercoralis	Е	Sandground 1925	р
		frog	S.stercoralis	E+	Tessier 1896	- מ
		frog	S.stercoralis	N	Alfieri 1908	D
REPTILIA - SAURIA						
Agamidae	Physignathus cocincinus	green iguana	S.sp	N	Maier 1980	Р
Lacertidae	Lacerta armenica	lizard	S.darevskyi	N	Shapilo 1976	м
Lacertidae	Lacerta rostombekovi	lizard	S.darevskyi	N	Shapilo 1976	м
Lacertidae	_o Lacerta rudis	lizard	S.darevskyi	N	Shapilo 1976	м
Lacertidae	Lacerta saxicola	lizard	S.darevskyi	N	Shapilo 1973	М
Lacertidae	Lacerta saxicola	lizard	S.darevskyi	N	Shapilo 1976	м
Scincidae	Eumeces laticeps	greater five-lined skink	S.sp	N	Little 1966b	P
Scincidae	Tillqua gerrardi	pink-tongued lizard	S.sp	N	Ballantyne 1971	м
Scincidae	Tiliqua scincoide <mark>s</mark>	blue-tongued lizard	S.sp	N	Ballantyne 1971	M

FAMILY	HOST		STRONGYLOIDES		REFERENCE	AC
	BINOMIAL	COMMON NAME	SPECIES			
- SERPE	INTES			ŝ,		
Boidae	Chondropython viridis	green python	S.mirzai	N	Wiesman&Greve 1982	м
Boidae	Eryx jaculus	snake	S.sp	N	Bavlis 1923	P
Boidae	Eryx johnii	snake	5.ervxi	N	Singh 1954	M
Boidae	Eryx johnii	snake	S.eryxi	N	Shapilo 1973	M
Boidae	Eryx tataricus	snake	S.eryxi	N	Shapilo 1973	м
Boidae	Liasus fuscus	water python	S, sp	E+	*	
Boidae	Morelia spilotes	carpet snake	S.sp	N	*	
Boidae	Python reticulatus	reticulated python	S.sp	N	Holt et al 1979	Р
Colubridae	Amphiesma mairii	keelback	S.sp	N	Ballantyne 1971	M
Colubridae	Bolga dendrophila	mangrove snake	S.sp	N	Schmidt&Kuntz 1972	P
Colubidae	Boiga irregularis	brown tree snake	S.sp	N	*	-
Colubridae	Coluber constrictor flaviventris	blue racer	S.gulae	N	Little 1966b	G
Colubridae	Coluber constrictor flaviventris	blue racer	S.serpentis	N	Little, 1966b	G
Colubridae	Coronella austríaca	smooth snake	S.mirzai	N	Shapilo 1973	м
Colubridae	Demansia atra	black whipsnake	S.sp	N	± ±	
Colubridae	Dendrelaphis punctulatus	common tree snake	S.sp	N	\$	
Colubridae	Elaphe obsoleta obsoleta	yellow rat snake	S.sp	N	Holt et al 1979	р
Colubridae	Elaphe obsoleta quadrivittata	grey rat snake	S.sp	N	Holt et al 1979	P
Colubridae	Heterodon platyrhinos platyrhinos	common hog- nosed snake	S.gulae	N	Little 1966b	G
Colubridae	Heterodon platyrhinos platyrhinos	common hog- nosed snake	S.serpentis	N	Little 1966b	G
Colubridae	Lampropeltis getulis	speckled king snake	S.sp	N	Holt et al 1978	р
Colubridae	Lampropeltis getulis holbrooki	speckled king snake	S.gula 0	N	Little 1966b	G
Colubridae	Lampropeltis getulis holbrooki	speckled king snake	S.serpentis	N	Little 1966b	G
Colubridae	Natrix cyclopion cyclopion	green water snake	S.gulae	И	Little 1966b	G
Colubridae	Natrix cyclopion cyclopion	green water snake	S.serpentis	N	Little 1966b	G
Colubridae	Natrix natrix	grass snake	S.eryxi	N	Shapilo 1973	м
Colubridae	Natrix sipedon confluens	Mississippi River water snake	S.gula o	N	Little 1966b	G
Colubridae	Natrix sipedon confluens	Mississippi River water snake	S.serpentis	N	Little 1966b	G

FAMILY	HOST		STRONGYLOIDES	INF	REFERENCE	AC
	BINOMIAL	COMMON NAME	SPECIES			
Colubridae	Natrix taxispilota rhombifera	diamondback water snake	S.gulae	× N \$	Little 1966b	G
Colubridae	Natrix taxispilota rhombifera	diamondback water snake	S.serpentis	N	Little 1966b	G
Colubridae	Natrix taxispilota taxispilota	brown water snake	S.gulae	N	Little 1966b	G
Colubridae	Natrix taxispilota taxispilota	brown water snake	S.serpentis	N	Little 1966b	G
Crotalidae	Trimeresurus fravoviridis	yellow spotted lance head snake	S.sp	N	Hori&Kaneko 1969	P
Elapidae	Naja naja atra	Indian cobra	S.sp	N	Schmidt&Kuntz 1972	Р
Elapidae	Pseudonaja textilis	brown snake	S.sp	N+	*	
Viperidae	Arkistrodon contortrix contortrix	southern copperhead	S.gulae	N	Little 1966b	G
Viperidae	Arkistrodon contortrix contortrix	southern copperhead	S.serpentis	N	Little 1966b	G
Viperidae	Arkistrodon piscovorus leucostoma	cotton mouth moccasin	S.gulae	N	Little 1966b	G
Viperidae	Arkistrodon piscovorus leucostoma	cotton mouth moccasin	S.serpentis	N	Little 1966b	G
AVES						
Anatidae	Anas platyrhyncha domestica	domestic duck	S.avium	E-	Cram 1929	м
Anatidae	Anas platyrhyncha domestica	domestic duck	S.pavonis	E-	Sakamoto&Yamashita 1970	G
Anatidae	Anas platyrhyncha domestica	duck	S.sp	E-	t	
Anatidae	Anas platyrhynchos fulvigula	Florida duck	S.sp	N	Kinsella&Porrester 1972	р
Anatidae	Dafila bahamensis		S.minimum	N	Travassos 1930b	р
Anatidae	Malacorhynchus membranaceous	pink eared duck	S.sp	N	Harrigan 1981	P
Aramidae	Aramus gnarauna pictus	limpkin	S.avium	N	Barus 1969	-
Ardeidae	Ardea herodias herodias	great blue heron	S.herodiae (S.ardeae)	N	Boyd 1966	M
Ardeidae	^o Ardea herodias herodias	great blue heron	S.herodiae	N	Boyd 1967	М
Ardeidae	Butorides virescens maculatus	heron	S.cubaensis	N	Perez Vigueras 1942	М
Ardeidae	Butorides virescens virescens	eastern green hero n	S.ardeae	N	Little 1966b	м
Ardeidae	Nyctanassa violacea	yellow crowned night heron	S.ardeae	N	Little 1966b	M
Columbidae	Columba livia	domestic pigeon	S.pavonis	E-	Sakamoto&Yamashita 1970	G
Columbidae	Columba livia	domestic pigeon	S, sp	E-	τ μ	
Cuculidae	Centropus phasianinus	pheasant coucal	S.sp	N	*	
FAMILY	HOST		STRONGYLOIDES	INF	F REFERENCE	AC
-------------------	------------------------------------	---	-------------------------	----------	-------------------------	--------
	BINOMIAL	COMMON NAME	SPECIES			
Gruidae	Grus canadensis	greater sandhill crane	S.sp	N	Forrester et al 1974	P
Icteridae	Agelaius phoeniceus	red-winged blackbird	<i>S</i> ,sp	N	Little 1966b	Р
Icteridae	Quiscalus niger caribaeus	?	S.quiscali	N	Barus 1968	м
Laridae	Larus canus	common gull	S.turkmenica	N	Barus et al 1978	M
Malaamididaa		t	(S.turkmenicus)			
Meleagriuidae	Meleagris gallapavo	turkey	S.avium	E+	Cram 1931	M
Meleagrididae	Meleagris gallopavo	wild turkey	S.avium	N	Maxfield et al 1963	P
Meleagrididae	Meleagris gallopavo osceola	wild turkey	S.sp	N	How et al 1975	Р
Meleagrididae	Meleagris gallopavo silvestris	wild turkey	S.sp	N	Prestwood 1968	P
Numididae	Numida meleagridis galeata	grey-breasted hel- meted guinea fowl	S.avium	N	Fabiyi 1972	P
Phasianidae	Colinus virginianus	bob white quail	S.avium	N	Davidson et al 1980	Р
Phasianidae	Colinus virginianus	bob white quail	S.avium	N	Cram 1929	Р
Phasianidae	Coturnix coturnix japonica	Japanese quail	S.pavonis	E-	Sakamoto&Yamashita 1970	G
Phasianidae	Gallus gallus	domestic fowl	S.avium	N	Cram 1929	м
Phasianidae	Gallus gallus	domestíc fowl	S.oswaldi	N	Travassos 1930a	м
	(Gallus domesticus)					
Phasianidae	Gallus gallus	domestic fowl	S.papillosus	E-	Schwartz&Alicata 1930	Р
Phasianidae	Gallus gallus	domestic fowl	S.papillosus	N	Krijgsman 1933	D
Phasianidae	Gallus gallus	domestic fowl	S.pavonis	E+	Sakamoto&Yamashita 1970	G
Phasianidae	Gallus gallus	domestic fowl	S.pavonis	E+	Sakamoto et al 1981	G
Phasianidae	Gallus gallus	domestic fowl	S.suis	E-	Schwartz&Alicata 1930	м
	U U		(S.ransomi)			
Phasianidae	Gallus gallus	domestic fowl	S.sp	N+	*	
Phasianidae	Pavo cristatus cristatus	Indian peafowl	S.pavonis	E+	Sakamoto&Yamashita 1970	G
Phasianidae	Pavo muticus	green peacock	S.pavonis	N+	Sakamoto&Yamashita 1970	G
Pleocididae	Paser montanus kaibatoi	Japanese tree	S.pavonis	E-	Sakamoto&Yamashita 1970	G
Pallidao	Fuldaa amontoana	Sparrow Goot	C and up	NT.	Gran 1020	n
	Fulica americana	American coot	S.avrum	IN NT	Ciam 1930	R R
	Fullea atra	American coot	5.sp	in N	kinsella 1973	Р
			S.sp	14		
	Callinula chloropus	common gallinule	S.abtum	N	Barus 1969	-
	lupeo huemalia huemalia	Sundo	S.sp	LN NT	Dollius et al 1961	Р
Rallidao	Bornhunio pornhunio	Junco	S.abrum	IN N	Cram 1930	P
Pallidao	Porphyric porphyric	swamphen	S.sp	N		-
	Porphyrula martinica	purpre garrinule	S.sp	N	Kinsella et al 1973	P
Railluae	Rattus aquaticus thatcus	eastern water fall	S.abium	N	Sakamoto&Sarashina 1968	T
Motraonidao	Ronana umboliun	SUIIC	S.turkmenica S.audum	N	KULTIGA 1953	M
Tecraonidae	Bonasa umbellus	turred grouse	s,avium	E+	Cram 1930	M
Terraourade	Bunasa umberrus Fudocimus albur	rurrea grouse	S.sp	N	Davidson et al 1977	ъ Б
Threskiornithidae	Eudocimus albus	white 1018	S.sp	N	Bush&Forrester 1976	Р

FAMILY	HOST		STRONGYLOIDES	INF	REFERENCE	AC
	BINOMIAL	COMMON NAME	SPECIES			
MAMMALIA - ARTIOD	ACTYLA			ŝ) j		
Antilocapridae	Antilocapra americana	prong-horned	S.papillosus	N	Ransom 1911	M
		antelope	(S.ovocinctus)			
Antilocapridae	Antilocapra americana	prong-horned antelope	S.papillosus	N	Sandground 1925	M
Bovidae	Aepyceros melampus	impala	S.papillosus	N	Round 1968	Р
Bovidae	Aepyceros melampus	impala	S.sp	N	Horak 1980	P
Bovidae	Ammotragus lervia	Barbary sheep	S.papillosus	N	Tilc&Hanuskova 1976	Р
Bovidae	Antidorcas marsupialis	springbok	S.papíllosus	N	Ortlepp 1961	
Bovidae	Antidorcas marsupialis	springbok	S.papillosus	E+	Mönnig 1931	Р
Bovidae	Antidorcas marsupialis	springbok	S.sp	N	Horak 1980	Р
Bovidae	Bos banteng	banteng	S.paptllosus	N	Adewinata 1955	Р
Bovidae	Bos sondaicus	banteng	S.papillosus	N	Krijgsman 1933	
Bo vidae	Bos taurus	domestic ox	S.papillosus	E+	Vegors&Porter 1950	Р
Bovidae	Bos taurus	domestic ox	S.papillosus	N	Ransom 1911	м
Bovidae	Bos taurus	domestic ox	S.papillosus (S.vituli)	N	Brumpt 1921	Р
Bovidae	Bubalus bubalis	domestic buffalo	S.papillosus	N	Chauhan 1978	Р
Bovidae	Bubalus bubalis	domestic buffalo	S.papillosus	N	Chuahan et al 1973	Р
Bovidae	Capra aegagrus	?	S.papíllosus	N	Tilc&Hanuskova 1976	Р
Bovidae	Capra hircus	domestic goat	S.papillosus	E+	Borah et al 1983	Р
Bovidae	Capra hírcus	domestic goat	S,papillosus	E+	Turner 1959	P
Bovidae	Capra hircus	domestic goat	S.papillosus	N	Ransom 1911	м
Bovidae	Capra hircus	domestic goat	S.papillosus	E+	Bezubik 1963	Р
Bovidae	Capra prisca camerun.	?	S.papillosus	N	Tilc&Hanuskova 1976	Р
Bovidae	Capra sibirica	Siberian ibex	S.papillosus	N	Tilc&Hanuskova 1976	Р
Bovidae	Connochaetes taurinus	blue wildebeest	S.papillosus	N	Horak 1980	Р
	(Gorgon taurinus)					
Bovidae	Connochaetes taurinus	blue wildebeest	S.sp	N	Round 1968	P
Bovidae	Damaliscus dorcas albifrons	blesbok	S.papillosus	N	Mönnig 1931	Р
Bovidae	Damalíscus dorcas dorcas	bontbok	S.sp	N	Verster et al 1975	Р
Bovidae	Gazella granti	Grant's gazelle	S.sp	N	Eckert 1963	Р
Bovidae	Gazella subgutturosa	gazelle	S.sp	N	Cherthova 1971	-
Bovidae	Ovis aries	domestic sheep	S.papillosus	E+	Woodhouse 1948	Р
Bovidae	Ovis aries	domestic sheep	S.papillosus	N	Ransom 1911	м
Bovidae	Ovis aries	domestic sheep	S.papillosus	N	Basir 1950	G
Bovidae	Ovis aries	domestic sheep	S.papillosus	N	Wedl 1856	м
Bovidae	Ovis musimon	?	S.papillosus	N	Kotrly&Kotrla 1980	-

FAMILY	HOST		STRONGYLOIDES	INF	REFERENCE	AC
	BINOMIAL	COMMON NAME	SPECIES	4.7 <i>4</i>		
Camelidae	Camelus bactrianus	bactrian camel	S.sp	N	Silva et al 1973	Р
Camelidae	Camelus dromedarius	dromedary	S.sp	N	Steward 1950	P
Camelidae	Camelus dromedarius	dromedary	S.sp	N	Envehini 1972	P
Camelidae		camel (unspecified)	S.sp	N	Lim&Lee 1977	- P
Camelidae	Lama guanicoe	lama	S.sp	N	Tilc&Hanuskova 1976	P
Camelidae	-	lama	S.sp ,	N	Lim&Lee 1977	Р
Cervidae	Alces alces	moose	S.papillosus	N	Wetzl&Enigk 1937	_
Cervidae	Capreolus capreolus	roe deer	S.papillosus	N	Kotrlly&Kotrla 1980	-
Cervidae	Cervus elephus	red deer	S.papillosus	N	Kotrly&Kotrla 1980	-
Cervidae	Darma darma	fallow deer	S.papillosus	N	Barth&Matzke 1984	р
Cervidae	Mazama simplicicornis	Trinídad deer	S.papillosus	N	Cameron 1936	Р
Cervidae	Odocoileus hemionus	mule deer	S.sp	N	Reed et al 1976	Р
Cervidae	Odocoileus virginianus	white tailed deer	S.papillosus	N	Forrester et al 1974	м
Cervidae	Odocoileus virginianus	white tailed deer	S.sp	N	Glazener&Knowlton 1967	Р
Cervidae	Sikkon nippon	Japanese deer	S.papillosus	N	Kotrly&Kotrla 1980	
Cervidae		deer (unspecified)	S.sp	N	Lim&Lee 1977	Р
Giraffidae	Giraffa camelopardalis	giraffe	S.sp	N	Frank et al 1963	P
Giraffidae	Okapia johnstoni	okapi	S.papillosus	N	Smits&Jacobi 1965	P
Giraffidae	Okapia johnstoni	okapi	S.sp	N	Wetzel&Fortmever 1964	P
Hippopotamidae	Hippopotamus amphibius	hippopotamus	S.sp	N	Round 1968	P
Suidae	Sus scrofa	domestic pig	S.felis	E-	*	
Suidae	Sus scrofa	domestic pig	S.papillosus	E+	*	
Suidae	Sus scrofa	domestic pig	S.sp	N	Lutz 1885	Р
Suidae	Sus scrofa	domestic pig	S.stercoralis	E+	Lukshina et al 1971	P
Suidae	Sus scrofa	domestic pig	S.suis	N	von Linstow 1905	Р
			(S.longus)			
Suidae	Sus scrofa	domestic pig	S.suis (S.ransomi)	N	Schwartz&Alicata 1930	M
Suidae	Sus scrofa	domestic piq	S.suis	N	Tarczynski 1956	м
Suidae	Sus scrofa	domestic pig	S.westeri	Ň	Mivamoto 1929	<u></u> D
Suidae	Sus scrofa	domestic pig	S.westeri	E	*	2
Tragulidae	Tragulus javanicus	Malayan chevrotain	S.papillosus	N	Jaros et al 1966	Р

FAMILY	HOST	HOST		INF	REFERENCE	AC
	BINOMIAL	COMMON NAME	SPECIES			
	- CARNIVORA		1	é		
Canidae	Canis aureus	oriental jackal	S.sp	N	Rodononya 1966	Р
Canidae	Canis familiaris	dog	S.canis	N	Brumpt 1922	Р
Canidae	Canis familiaris	dog	S.cati (S.planiceps)	E+	Horie et al 1981	G
Canidae	Canis familiaris	dog	S.cati (S.planiceps)	E+	Fukase et al 1985	M
Canidae	Canis familiaris	dog	(S.planiceps)	N	Horie et al 1980	G
Canidae	Canie familiarie	pop	(S.ptantesps)	NT.L	Arizono ot al 1076	6
cuntuuc		uog	(S. plantaopa)	NT.	A1120H0 et al 1976	G
Canidae	Canic familiania	dog	(S. pranceps)	P	Sinch 1054	
Cantude	cants junitualis	dog	S.eryxt	E	51ngn 1954	м
Canidae	Canie familiarie	dog	(S.Mirzai)	N		
Canidae	Canie familiario	dog	S. jeus	N		
Canidae	Canis familiaris	dog	S. fuelleborni	57 51	Sandground 1925	M
Canidae	Canie familiarie	dog	S.procyclits	£т Т	LICCLE 1900d	G
Canidae	Canis familiaris	dog	S an	с 5-1	Azevedoameila 1947	-
Canidae	Canis familiaris	dog	5 80	БТ 2	Norio of al 1940	2 1
Canidae	Canis familiaris	dog	S an	N	Luckor 1942	m M
Canidae	Canis familiaris	dog	S an	N	Whitney 1936	n D
Canidae	Canis familiaris	dog	S sp	N	Envenibi 1972	г р
Canidae	Canis familiaris	dog	S SD	N	Chandler 1939	E M
Canidae	Canis familiaris	dog	S.sp	N		רו ס
Canidae	Canis familiaris	dog	S. SD	N	AugustinesDavey 1939	м
Canidae	Canis familiaris	dog	S.stercoralis	E+	Fülleborn 1914	
Canidae	Canis familiaris	dog	S.stercoralis	E+	Horie et al 1980	G
Canidae	Canis familiaris	dog	S.stercoralis	E+	Dawkins&Grove 1982	G
Canidae	Canis familiaris	dog	S.stercoralis	N	Ware&Ware 1923	м
Canidae	Canis familiaris	đog	S.stercoralis	N	Georgi 1984	P
Canidae	Canis familiaris	dog	S.stercoralis	N	Worley 1964	P
Canidae	Canis familiaris	dog	S.stercoralis	N	Ohder&Hurni 1978	Р
Canidae	Canis familiaris	dog	S.stercoralis	N+	Georgi&Sprinkle 1974	р
Canidae	Cants famillarts	dog	S.suis (S.ransomi)	E+	Kotlan&Vajda 1934	М
Canidae	Nyctereutes procyonoides usuriensis	raccoon dog	S.ershowl	N	Popova 1938	м
Canidae	Nyctereutes procyonoides viverrinus	raccoon dog	S.cati (S.planicens)	N	Horie et al 1981	м
Canidae	Nyctereutes procyonoides vinerrinus	raccoon dog	S.cati	N	Fukase et al 1985	м
Canidae	Vulpes alopex	fox	S.stercoralis	N	Mirza&Narayan 1935	P
Canidae	Aloper lagopus (Vulnes Lagopus)	Artic fox	S.vulpis	N	Petrov 1940b	-
Canidae	Vulpes vulpes	red fox	S.vulpis	N	Petrov 1940b	-

FAMILY	HOST		STRONGYLOIDES	INF	REFERENCE	AC
	BINOMIAL	COMMON NAME	SPECIES			
			3	43 3		
Felidae	Felis catus	cat	S.cati	E+	Rogers 1939	м
Felidae	Felis catus	cat	S.cati	E+	Rogers 1943	м
			(S.planiceps)		-	
Felidae	Felis catus	cat	5.cati	E+	Fukase et al 1985	м
			(S.planiceps)			
Felidae	Felis catus	cat	S.cati	E+	Horie et al 1980	G
			(S.planiceps)			
Felidae	Felis catus	cat	S.cati	N+	Horie et al 1981	G
			(S.planiceps)			
Felidae	Felis catus	cat	S.felis	N	Chandler 1925a,b	м
Felidae	Felis catus	cat	S.felis	N+	Speare&Tinsley 1986	М
Felidae	Felis catus	cat	S.fuelleborni	E-	Sandground 1925	м
Felidae	Felis catus	cat	S.papillosus	E+	\$	
Felidae	Felis catus	cat	S.sp	N	Miyamoto&Katsumi 1980	Р
Felidae	Felis catus	cat	S,sp	N	Sandosham 1952	Р
Felidae	Felis catus	cat	S.stercoralis	E+	Sandground 1925	м
Felidae	Felis catus	cat	S.stercoralis	E+	Horie et al 1980	м
Felidae	Felis catus	cat	S.stercoralis	E+	Sandground 1928	?
Felidae	Felis catus	cat	S.stercoralis	N	Froes 1976	D
Felidae	Felis catus	cat	S.suis	E+	Kotlan&Vajda 1934	м
			(S.ransomi)		-	
Felidae	Felis catus	cat	S,suis	E-	Schwartz&Alicata 1930	M
Felidae	Felis catus	cat	S.tumefaciens	N	Price&Dikmans 1941	М
Felidae	Felis chaus	Indian wild cat	S.tumefaciens	N	Dubey&Pande 1964	м
Felidae	Felis planiceps	rusty tiger cat	S.cati	N	Rogers 1939	м
Felidae	Lynx rufus	bobcat	S.sp	N	Little 1966b	Р
Felidae	Panthera leo	lion	S.sp	N	Enyenihi 1972	р
Mustelidae	Lutra lutra	otter	S.martis	N	Shakmatova 1966	
Mustelidae	Lutra canadensis	Canadian river otter	S.lutrae	N	Little 1966b	G
Mustelidae	Martes martes	?pine martin	S.martis	N	Shakmatova 1966	
Mustelidae	Martes zibellina	sable	S.martis	N	Petrov 1940a	Р
Mustelidae	Meles meles	badger	S.sp	N	Enyenihi 1972	P
Mustelidae	Mellivora capensis	ratel	S.akbari	N	Srivastava 1964	D
0	(Mellivora indica)					
Mustelidae	Mephitis mephitis	skunk	S.papillosus	N	Stiles&Baker 1935	D
Mustelidae	Mephitis mephitis	skunk	S.sp	N	Babero 1960	Р
Mustelidae	Mephitis mephitis	skunk	S.sp	N	Little 1966b	Р
Mustelidae	Mustela ermina	stoat	S.martis	N	Petrov 1940a	Р
Mustelidae	Mustela ermina	stoat	S.mustelorum	N	Cameron&Parnell 1933	Р
Mustelidae	Mustela lutreola	mink	S.papillosus	N	Zimmerman 1959	Р
	(Lutreola víson)					
Mustelidae	Mustela lutreola	mink	S.sp	N	Law&Kennedy 1932	P

FAMILY	HOST		STRONGYLOIDES	INF	REFERENCE	AC
	BINOMIAL	COMMON NAME	SPECIES			
Mustelidae	Mustela nivalis	weasel	S.papillosus	N	Stiles&Baker 1935	D
Mustelidae	Mustela nivalis	weasel	S.sp	N	Dollfus et al 1961	P
Mustelidae	Mustela putorius (Putorius putorius)	polecat	S.putorii	N	Morozov 1939	М
Mustelidae	Mustela putorius	polecat	S.papillosus	N	Stiles&Baker 1935	D
Mustelidae	Mustela sibirica	Japanese weasel	S.cati (S.planiceps)	N	Fukase et al 1985	М
Procyonidae	Nasua narica (Nasua nasica panamensis)	coati	S.nasua	N	Darling 1911	М
Procyonidae	Nasua narica	coati	S.stercoralis	E+	Sandground 1926	м
Procyonidae	Procyon lotor	raccoon	S.procyonis	N	Little 1966b	G
Procyonidae	Procyon lotor	raccoon	S.sp	N	Chandler&Melvin 1951	Р
Procyonidae	Procyon lotor	raccoon	S.stercoralis	E+	Johnson 1962	Р
Ursidae	Ursus americanus	black bear	5. sp	N	Crum et al 1978	Р
- EDENTAJ	'A					
Dasypodidae	Dasypus novemcinctus	nine-banded armadillo	S,dasypodis	N	Little 1966b	G
Myrmecophagidae	Tamadua longicaudata	lesser ant eater	S.sp	N	Cameron 1939	₽
- INSECTI	VORA					
Erinaceidae	Erinaceus europea	European hedgehog	S.rostombekovi	N	Gamzemlidse 1941	м
Erinaceidae	Erinaceus roumanicus	hedgehog	S.sp	N	Lukasiak 1939	Р
Soricidae	Crocidura coerula	white-toothed shrew (musk rat)	S.akbari	N	Mirza&Narayan 1935	M
Soricidae	Sorex minutus	pigmy shrew	S.ap	N	Cameron&Parnell 1933	Р
Talpidae	Talpa europaea	European common mole	<i>S</i> .sp	N	Cameron&Parnell 1933	P
- LAGOMOF	рна					
Leporidae	Lepus ruficaudatus	hare	S.papillosus	N	Mirza&Narayan 1935	Р
Leporidae	Oryctolagus cuniculus	rabbit	S.agoutii	E	Griffiths 1940	М
Leporidae	Oryctolagus cuniculus	rabbit	S.papillosus (S.longus)	E+	Ransom 1907a	М
Leporidae	Oryctolagus cuniculus	rabbit	S.papillosus	N	Hall 1916	Р

			(S.longus)			
Leporidae	Oryctolagus cuniculus	rabbit	S.papillosus	N	Hall 1916	Р
Leporidae	Oryctolagus cuniculus	rabbit	S,pavonis	E-	Sakamoto&Yamashita 1970	G

FAMILY	HOST		STRONGYLOIDES	INF	REFERENCE	AC
	BINOMIAL	COMMON NAME	SPECIES			
Leporidae	Oryctolagus cuniculus	rabbit	s.ratti	E	Sandground 1925	м
Leporidae	Oryctolagus cuniculus	rabbit	S.sigmodontis	E-	Melvin&Chandler 1950	M
Leporidae	Oryctolagus cuniculus	rabbit	S.sp	E-	Fleming et al 1979	Р
Leporidae	Oryctolagus cuniculus	rabbit	S.stercoralis	E-	Grove&Dawkins 1982	М
Leporidae	Oryctolagus cuniculus	rabbit	S.suis (S.ransomi)	E+	Kotlan&Vadja 1934	м
Leporidae	Oryctolagus cuniculus	rabbit	(S.suis (S.ransomi)	E+	Oshio 1956	M
Leporidae	Oryctolagus cuniculus	rabbit	S.suis (S.ransomi)	E-	Schwartz&Alicata 1930	M
Ochotonidae	Ochotona princeps	pika	S.sp	N	Grundman&Lombardi 1976	Р

- MARSUPIALIA

Didelphidae	Didelphis aurita	opossum	S.sp	N	Froes 1976	Р
Didelphidae	Didelphis virginiana	American opossum	S.sp	N	Little 1966b	Р
Didelphidae	Didelphis virginiana	American opossum	S.sp	N	Contacos 1954	Р
Macropodidae	Aepyprymnus rufescens	rufous rat-kangaroo	S.sp	N	Speare et al 1982	Р
Macropodidae		kangaroo	S.sp	N	Lim&Lee 1977	P
Macropodidae	Lagorchestes conspicillatus	spectacled hare- wallaby	S.sp	N	Speare et al 1982	р
Macropodidae	Macropus agilis	agile wallaby	S.sp	N	Speare et al 1983	Р
Macropodidae	Macropus agilis	agile wallaby	S.sp	N	Speare et al 1982	P
Macropodidae	Macropus antelopinus	antelopine kangaroo	s.sp	N	Speare et al 1982	₽
Macropodidae	Macropus dorsalis	black stripe wallaby	S.sp	N	Speare et al 1982	Р
Macropodidae	Macropus giganteus	eastern grey kangaroo	S.sp	N	Speare et al 1982	Р
Macropodidae	Macropus parryi	pretty face wallaby	S.sp	N+	Speare et al 1982	р
Macropodidae	Macropus robustus	eastern wallaroo	S.sp	N	Speare et al 1982	Р
Macropodidae	Macropus rufus	red kangaroo	S.sp	N	Mackerras 1958	Р
Macropodidae	Onychogalea fraenata	bridled nail-tail wallaby	S.sp	N	Speare et al 1982	Р
Macropodidae	Onychogalea ungulfera	northern nail-tail wallaby	S.sp	N	Speare et al 1982	Р
Macropodidae	Petrogale inornata	unadorned rock wallaby	S.sp	N	Speare et al 1982	Р
Macropodidae	Thylogale stigmatica	red legged padymelon	S.sp	N	Speare et al 1982	Р
Macropodidae		kangaroo	S.sp	N	Winter 1958	P
Peramelidae	Isoodon macrouris	short nosed	S.thylacis	N-	Mackerras 1959	М
Dhalangawidaa	(Inglacis obesulus)	Dandicoot	_			
Proude choixide		brush tailed possum	S.sp	N	Gordon&Summerville 1958	Р
rseudocheilidae	Daciyiopsila trivirgata	striped possum	S.sp	N	speare et al 1984	Р
rseudocneiridae	rseudochetrus herbertensis herbertensis	Herbert River ringtail possum	2.ab	N	Speare et al 1984	Р

FAMILY	BINOMIAL	HOST	COMMON	NAME	STRONGYLOIDES SPECIES	INF	REFERENCE	AC
- PERISSOD	ACTYLA							
					1	÷.	ار ا	
Equidae	Equus asinus		burro		S.westeri	N	Benbrook&Sloss 1962	P
	(Asinus asinus)							
Equidae	Equus asinus		donkey		S.westeri	N	Pande&Rai 1960	Р
Equidae	Equus burchelli		common	zebra	S.sp	N	Silva et al 1973	P
Equidae	Equus caballus		horse		S.westeri	N	Ihle 1917	м
Equidae	Equus caballus		horse		S.westeri	N	Schuurmans-Stekhoven	M
							1930	
Equidae	Equus caballus		horse		S.westeri	N+	Greer et al 1974	м
Equidae			zebra		S.sp	N	Eckert 1963	P
Rhinocerotidae	Rhinoceros sondo	licus	Javan r	chinoceros	S.sp	N	Palmieri et al 1980	P

- PRIMATA

Cebidae	Ateles geoffroyi	black-handed spider monkey	S.cebus	N	Little 1966a	G
Cebidae	Ateles geoffroyi	black-handed spider monkey	S.fuelleborni	E+	Sandground 1925	м
Cebidae	Ateles geoffroyi	black-handed spider monkey	S.fuelleborni	N	Hayama&Nigi 1963	₽
Cebidae	Ateles geoffroyi	black-handed spider monkey	S.simiae	E+	Beach 1936	р
Cebidae	Ateles geoffroyi	black-handed spider monkey	S.sp	N	Kreis 1932	M
Cebidae	Ateles geoffroyi	black-handed spider monkey	S.sp	E+	Faust 1930	Р
Cebidae	Ateles geoffroyi	black-handed spider monkey	S.sp	N	Eckert 1963	Р
Cebidae	Ateles paniscus	black spider-monkey	S.fuelleborni	N	Hayama&Nigi 1963	Р
Cebidae	Ateles paniscus	black spider-monkey	S.papillosus	N	Krynicka et al 1979	D
Cebidae	Ateles pentadactylus	monkey	S.sp	N	Leger 1921	Р
Cebidae	Cebus apella	tufted capuchin monkey	S.sp	N	Leger 1921	Р
Cebidae	Cebus apella	tufted capuchin monkey	S.sp	N	Augustine 1940	р
Cebidae	Cebus apella	tufted capuchin monkey	S.stercoralis	N	Jaros et al 1966	р
Cebidae	Cebus apella fatuellus (Cebus apella fatuella)	Columbian capucin monkey	S.cebus	N	Little 1966a	G
Cebidae	Cebus capucinus (Cebus hypoleucus)	white-throated capucin monkey	S.cebus	N	Darling 1911	М
Cebidae	Cebus capucinus	white-throated capucin monkey	S.simiae	N	Beach 1936	Р
Cebidae	Cebus capucinus	white-throated capucin monkey	S.sp	N	Noda 1962	М
Cebi dae	Cebus capucinus imitator	Panamanian white- throated capucin monkey	S.sp	N	Faust 1930	P
Cebidae	Cebus sp.		S.cebus	E+	Darling 1911	M

FAMILY	HOST		STRONGYLOIDES	INF	REFERENCE	AC
	BINOMIAL	COMMON NAME	SPECIES			
				V) d		
Cebidae	Lagothrix lagotricha	Humboldt's woolly	S.cebus	N	Little 1966a	G
	(Lagothrix lagotrica)	monkey				
Cebidae	Lagothrix lagotricha	Humboldt's woolly	S.papillosus	N	Pillers&Southwell 1929	D
	(Lagothrix humboldti)	monkey				
Cebidae	Lagothrix lagotricha	Humboldt's woolly	S.sp	N	Noda 1962	M
		monkey				
Cebidae	Saimiri orstedi orstedi	red-backed squirrel	S.sp	N	Faust 1930	P
		monkey				
Cebidae	Saimiri sciurea	common squirrel monkey	S.cebus	N	Little 1966a	G
Cebidae	Saimiri sciurea	Common squirrel monkey	S.sp	N	Noda 1962	М
Cebidae		squirrel monkey	S.sp	N	Cullum&Hamilton 1965	Р
Cercopithecidae	Cercopithecus aethiops	grivet	S.sp	N	Silva et al 1973	Р
Cercopithecidae	Cercopithecus aethiops	grivet	S.sp	N	Reardon&Rininger 1968	Р
Cercopithecidae	Cercopithecus ascanius	red-tailed guenon	S.fuelleborni	N	Hayama&Nigi 1963	Р
Cercopithecidae	Cercopithecus cephus	moustached guenon	S.fuelleborni	N	Hayama&Nigi 1963	P
Cercopithecidae	Cercopithecus diana	diana monkey	S.sp	N	Eckert 1963	P
Cercopithecidae	Cercopithecus mitis	daidemed guenon	S.fuelleborni	N	Dollinger&Ruedi 1974	Р
Cercopithecidae	Cercopithecus mitis	diademed guenon	S.fuelleborni	N	Hayama&Nigi 1963	P
Cercopithecidae	Cercopithecus mona	mona monkey	S.papillosus	N	Krynicka et al 1979	D
Cercopithecidae	Cercopithecus pygerythus	vervet monkey	S.fuelleborni	N	Blackie 1932	м
Cercopithecidae	Cercopithecus pygerythus	vervet monkey	S.sp	N	Yamashiroya et al 1971	P
	pygerethus (C.aethiops pyg.)	1				
Cercopithecidae	Cercopithecus sabaeus	green monkey	S.fuelleborni	N	Chung 1937	Р
	(Cercopithecus callitricus)					
Cercopithecidae	Cercopithecus sabaeus	green monkey	S.simiae	N	Azevedo&Meira 1947	
	(Cercopithecus callitrichus)					
Cercopithecidae	Cercopithecus sp		S.sp	N	Weinberg&Romanovitch	Р
Covernithesides			6		1908	_
Cercopithecidae	(Colobus guereza	COLODUS	S.sp	N	Cooper&Holt 1975	Р
Correspitheaidae	(Colobus geraza)		G = == d 1 1 s = s = s		The state of the s	_
Cercopithecidae	Erythrocebus patas	patas monkey	S.papillosus	N	Krynicka et al 1979	D
Cercopithecidae	Erythrocebus patas	patas monkey	S.sp	N	Noda 1962	M
	Engenrocebus patas	patas monkey	S.stercoralis	N	Cowper 1966	P
Corcopithogidae	Liginfocebus paras	pacas monkey	S.stercoralis	N	Harper et al 1982	M
Cercopithecidae	Macaca anotoides	stump-tailed macaque	S.sp	N	Jesse et al 1970	P
Cercopithecidae	Macaca anotoidos anotoidos	Trde Chinege bear	S.sp S.fuelleberrd	N	Wong&Conrad 1978	Р
Cercopichecidae	(Macaca speciosa)	macaque	S.juelleborni	N	Hansen et al 1969	ħ
Cercopithecidae	Macaca cyclopis	Taiwan macague	S.sp	N	Jesse et al 1970	р
Cercopithecidae	Macaca cyclopis	Taiwan macaque	S, sp	N	Noda 1962	- M
Cercopithecidae	Macaca fuscata	Japanese macaque	S,fuelleborni	N	Tanaka et al 1962	M
Cercopithecidae	Macaca fuscata	Japanese macaque	S.sp	N	Noda 1962	M

FAMILY	HOST		STRONGYLOIDES	INF	REFERENCE	AC
	BINOMIAL	COMMON NAME	SPECIES			
Cercopithecidae	Macaca irus (Macaca cynomolgus)	crab-eating macaque	S.fuelleborni	N _{(j) j} i	Weinberg&Romanovitch 1908	р
Cercopithecidae	Macaca irus (Macaca cynomolgus)	crab-eating macaque	S.ste rcoralis	N	Brumpt 1913	Р
Cercopithecidae	Macaca irus (Macaca fascicularis)	crab-eating macaque	S.fuelleborni	N	Wong&Conrad 1978	₽
Cercopithecidae	Macaca irus (Macaca fascicularis)	crab-eating macaque	S.fuelleborni	N	Panaitescu&Potorac 1981	Р
Cercopithecidae	Macaca irus (Macaca fascicularis)	crab-eating macaque	S.ap	N	Sano et al 1980	P
Cercopithecidae	Macaca irus	Java ape	S.fuelleborni	N	Tanaka et al 1962	м
Cercopithecidae	Macaca irus	Java ape	S.fuelleborni	N	Bisseru&Poopalachelvam 1968	P
Cercopithecidae	Macaca irus	Java ape	S.sp	N	Weinberg&Romanovitch 1908	P
Cercopithecidae	Macaca irus philippinensis (Macaca philippensis)	Philippine macaque	S.s p	N	Reardon&Rininger 1968	Р
Cercopithecidae	Macaca irus philippinensis (Macaca philippensis)	Philippine macaque	S .sp	N	Habermann&Williams 1957	P
Cercopithecidae	Macaca mulatta°	rhesus monkey	S.cebus	E+	Little 1966a	G
Cercopithecidae	Macaca mulatta	rhesus monkey	S.fuelleborni	N	Premvati 1958	м
Cercopithecidae	Macaca mulatta	rhesus monkey	S.fuelleborni	N	Little 1966a	G
Cercopithecidae	Macaca mulatta	rhesus monkey	S.fuelleborni	N	Sandground 1925	
Cercopithecidae	Macaca mulatta	rhesus monkey	S.papillosus	N	Poindexter 1942	D
Cercopithecidae	Macaca mulatta	rhesus monkey	S.s p	N	Weinberg&Romanovitch 1908	Р
Cercopithecidae	Macaca mulatta	rhesus monkey	S.sp	N	Cullum&Campbell 1963	Р
Cercopithecidae	Macaca mulatta	rhesus monkey	S.sp	N	Ford&Speltie 1973	Р
Cercopithecidae	Macaca mulatta	rhesus monkey	S.stercoralis	N	Brumpt 1913	Р
Cercopithecidae	Macaca nemestrina	pig-tailed macaque	S.fuelleborní	N	Wong&Conrad 1978	Р
Cercopithecidae	Macaca nemestrina	pig-tailed macaque	S.fuelleborni	N	Jesse et al 1970	Р
Cercopithecidae	Macaca nemestrina	pig-tailed macaque	S.fuelleborni	N	Weinberg&Romanovitch 1908	Р
Cercopithecidae	Macaca radiata	bonnet macaque	<i>S</i> .sp	N	Wong&Conrad 1978	Р
Cercopithecidae	Macaca radiata	bonnet macaque	S.sp	N	Reardon&Rininger 1968	Р
Cercopithecidae 🏻	Macaca sinica (Macaca sinicus)	toque monkey	<i>S</i> .sp	N	Gonder 1907	P
Cercopithecidae	Macaca sinica (Macaca sinicus)	toque monkey	S.sp	N	Weinberg&Romanovitch 1908	Р
Cercopithecidae	Macaca sinica (Macaca sinicus)	toque monkey	S.stercoralis	N	Brumpt 1913	Р
Cercopithecidae	Macaca sp	macaque	S.fuelleborni	N	Sandground 1925	
Cercopithecidae	Macaca sp	macaque	S.fuelleborní	N+	Wallace et al 1948	Р
Cercopithecidae	Macaca sp	macaque	S.sp	N	Höeppli 1927	Р

FAMILY	HOST		STRONGYLOIDES	INF	REFERENCE	AC
	BINOMIAL	COMMON NAME	SPECIES			
Concenitheridee						
Cercopitnecidae	Macaca sylvanus (Macaca sylvana)	Barbary ape	s.sp	NSI 3	Silva et al 1973	Б
Cercopithecidae	Mandrillus leucophaeus	drill	S.sp	N	Noda 1962	м
Cercopithecidae	Papio anubis	anubis baboon	S.sp	N	Owen&Casillo 1973	P
Cercopithecidae	Papio anubis	anubis baboon	S.sp	N	Jesse et al 1970	Р
Cercopithecidae	Papio cyanocephalus	yellow baboon	S.fuelleborni	N	von Linstow 1905	м
	(Cyanocephalus babuin)					
Cercopithecidae	Papio cyanocephalus	yellow baboon	S.fuelleborni	N	Gretillat et al 1967	м
Cercopithecidae	Papio cyanocephalus	yellow baboon	S.sp	N	Reardon&Rininger 1968	P
Cercopithecidae	Papio papio	Guinea baboon	S.fuelleborni	N	Goodey 1926	м
Cercopithecidae	Papio papio	Guinea baboon	S.simiae	N	Azevedo&Meira 1947	
Cercopithecidae	Papio papio	Guinea baboon	S.s p	N	Weinberg&Romanovitch 1908	р
Cercopithecidae	Papio sp	baboon	S.sp	N	Weinberg&Romanovitch 1908	P
Cercopithecidae	Papio ursinus	chacma baboon	S.fuelleborni	N	Goldsmid 1974	p
Cercopithecidae	Papio ursinus	chacma baboon	S,sp	N	McConnell et al 1974	P
Cercopithecidae	Papio ursinus	chacma baboon	S.fuelleborni	N	Blackie 1932	M
	(Papio porcarius)					
Cercopithecidae	Presbytis cristatus	silvered leaf monkey	S.fuelleborni	N	Arambulo et al 1974	Р
Cercopithecidae	Presbytis cristatus	silvered leaf monkey	S.fuelleborni	N	OwYang 1965	р
Cercopithecidae	Presbytis cristatus	silvered leaf monkey	S.sp	N	Palmieri et al 1977	P
Cercopithecidae		baboon (unspecified)	S.fuelleborni	N	Blackie 1932	P
Cercopithecidae		makaken	S.simiae	N	Hung&Höeppli 1923	Р
Cercopithecidae		stump-tailed monkey	S.sp	N	Cullum&Hamilton 1965	Р
Cercopithecidae			S.sp	N	Pandey 1978	Ρ.,
Hapalidae	Tamarin midas	red-handed tamarin	S.sp	N	Leger 1921	P
	(Midas midas)					
Hapalidae	Sanguinus fusicollis	brown-handed tamarin	S.sp	N	Cosgrove et al 1968	P
Homidae	Homo sapiens	man	S.canis	E-	Augustine 1940	P
Homidae	Homo sapiens	man	S.cebus	E-	Sandground 1925	М
Homidae	Homo sapiens	man	S.fuelleborni	N+	Blackie 1932	м
Homidae	Homo sapiens	man	S.fuelleborni	N+	Pampiglione&Ricciardi 1972	M
Homidae	Homo sapiens	man	S.fuølløborni- like	N	Kelly et al 1976	M
Homidae	Homo sapiens	man	S.myopotami	E-	Little 1965	Р
Homidae	Homo sapiens	man	S.myopotami	N	Burks&Jung 1960	P
Homidae	Homo sapiens	man	S.procyonis	E+	Little 1966b;1965	G
Homidae	Homo sapiens	man	S.simiae	E	Azevedo&Meira 1947	-
Homidae	Homo sapiens	man	S.sp	N	van der Hoeven&Rijpstra	P N
					1962	E E
Homidae	Homo sapiens	man	S.sp	Ń	Brown&Girardeau 1977	₽ ⊢
Homidae	Homo sapiens	man	S.sp (ex PNG)	N	Kelly&Voge 1973	Μ.

FAMILY	ILY HOST STRONGYLOIDES		STRONGYLOIDES	INF	INF REFERENCE	
	BINOMIAL	COMMON NAME	SPECIES			
Homidae	Homo sapiens	man	5.stercoralis	N	Bavay 1876	M
Homidae	Homo sapiens	man	5.stercoralis	N	Georgi&Sprinkle 1974	P
Homidae	Homo sapiens	man	S.suis (S.ransomi)	E+ ^()	Kotlan&Vajda 1934	M
Homidae	Homo sapiens	man	(S. suis	E-	Tomita 1940	Р
Hylobatidae	Hulobates dailis	agile gibbon	S stercoralis	м	HawamatNigi 1962	n
Hylobatidae	Hulobates concolor Leucogenis	black gibbon	5 gn	N	UrbainENouvel 1944	P
Hylobatidae	Hylobates hoolock	boolock	S nanillogua	N	Chandler 1925b	5
Hylobatidae	Hylobates lar	white handed gibbon	S stercoralis	N+	de Pauli 1974	M
Hylobatidae	Hylobates lar	White handed gibbon	S.stercoralis	N+	de PaulisJohnsen 1978	M
Hylobatidae	Hulobates moloch	silver gibbon	5 stercoralis	N	Havama(Nigi 1963	n
Hylobatidae	Hulobates pileatus	black breasted gibbon	S stercoralie	N	Havama (Nigi 1963	P D
Lemuridae	ngoodatoo poodatad	lemur	S.sp	N	Weinberg&Romanovitch 1908	P
Pongidae	Gorilla gorilla	gorilla	S.fuelleborni	N	Jaros et al 1966	р
Pongidae	Gorilla gorilla	gorilla	S.papillosus	N	Krynicka et al 1979	D
Pongidae	Gorilla gorilla	gorilla	S.sp	N	Noda 1962	м
Pongidae	Gorilla gorilla	gorilla	S.stercoralis	N	Penner 1981	м
Pongidae	Pan paniscus	pigmy chimpanzee	S.sp	N	Hagegawa et al 1983	
Pongidae	Pan troglodytes	chimpanzee	S.fuelleborni	N	von Linstow 1905	м
Pongidae	Pan troglodytes	chimpanzee	S.sp	N	Blacklock&Adler 1922	P
Pongidae	Pan troglodytes	chimpanzee	S.stercoralis	N	Desportes 1945	M
Pongidae	Pan troglodytes	chimpanzee	S.stercoralis	N	Penner 1981	м
Pongidae	Pongo pygmaeus	orang utan	S.fuelleborni	N	*	
Pongidae	Pongo pygmaeus	orang utan	S.papillosus	N	Krynicka et al 1979	D
Pongidae	Pongo pygmaeus	orang utan	S.sp	N	Vemera et al 1979	P
Pongidae	Pongo pygmaeus	orang utan	S.sp	N	Eckert 1963	Р
Pongidae	Pongo pygmaeus	orang utan	S.sp	N	McClure et al 1973	Р
Pongidae	Pongo pygmaeus	orang utan	S.stercoralis	N	Fox 1923	р
Pongidae	Pongo pygmaeus	orang utan	S.stercoralis	N	Swellengribel&Rijpstra 1965	P
Pongidae	Pongo pygmaeus	orang utan	S.stercoralis	N	Krynicka et al 1979	P
Pongidae	Pongo pygmaeus	orang utan	S.stercoralis	N	*	*
- PROBO	DSCOIDEA					
Proboscidae	Elephas indicus	Indian elephant	S.elephantis	N	Greve 1969	G
Proboscidae 0		elephant	S.sp	N	Lim&Lee 1977	р
- RODEI	NTIA					
Caviidae	Cavia porcellus	guinea pig	S.agoutii	E+	Griffiths 1940	м
Caviidae	Cavia porcellus	guinea pig	S.fuelleborni	E	Rego 1972	М
Caviidae	Cavia porcellus	guinea pig	S.papillosus	E+	Brumpt 1921	₽
Caviidae	Cavia porcellus	guinea pig	S,papillosus	E	Bezubik 1961	P
Caviidae	Cavia porcellus	guinea pig	S.papillosus	E	Schwartz&Alicata 1930	Р

FAMILY	HOST		STRONGYLOIDES	INF	REFERENCE	۵C
	BINOMIAL	COMMON NAME	SPECIES			AC
Caviidae	Cavia porcellus	guinea pig	S.ratti	E+	Sheldon&Otto 1938	p
Caviidae	Cavia porcellus	guinea pig	S.ratti	E- (,	Sandground 1925	м
Caviidae	Cavia porcellus	guinea pig	S.sigmodontis	E-	Melvin&Chandler 1950	м
Caviidae	Cavia porcellus	guinea pig	S.simiae	E-	Avezedo&Meira 1947	
Caviidae	Cavia porcellus	guinea pig	S.sp	N	Krediet 1921	
Caviidae	Cavia porcellus	guinea pig	S.stercoralis	E-	Dawkins&Grove 1982	Р
Caviidae	Cavia porcellus	guinea pig	S.suis	E-	Oshio 1956	Р
			(S.ransomi)			
Caviidae	Cavia porcellus	guinea pig	S.suis	E-	Schwartz&Alicata 1930	м
Caviidae	Hydrochoerus hydrochaeris (Hydrochoerus hydrochoera)	capybara	S.chapini	N	Sandground 1925	Р
Dasyproctidae	Dasuprocta agouti	golden rumped agouti	S gaoutil	N	Criffitha 1040	
Dasyproctidae	Dasuprocta agouti	dolden rumped adouti	S.agoutii	N		F1.
Muridae	Acomus cabirinus	going desert mouse	S ratti	N 17-	Worthoim 1950	m D
Muridae	Apodemis gararius	long-tailed field-	S ratti	E-	Werthelm 1959	Р
		mouse	5.14111	М	Schuldt 1962	-
Muridae	Apodemis flavicollis	yellow-necked field- mouse	S.ratti	N	Schmidt 1962	-
Muridae	Apodemis sylvaticus	wood-mouse	S.ratti	N	Roman 1964b	P
Muridae	Arvicanthus niloticus	mouse	S.sp	N	Paperna et al 1970	P
Muridae	Bandicoota indica	bandicoot rat	S.ratti	N	Sinniah 1979	P
Muridae	Clethrionomys glareolus	bank vole	S.ratti	N	Roman 1964a	P
Muridae	Mastomys natalensis	multimammate rat	S,sp	N	Paperna et al 1970	P
Muridae	Meriones tristrami	gerbil	S.ratti	E+	Wertheim 1959	P
Muridae	Mesocricetus auratus	golden hamster	S.papillosus	E-	Bezubik 1961	p
Muridae	Mesocricetus auratus	golden hamster	S.ratti	E+	Wertheim 1959	P
Muridae	Mesocricetus auratus	golden hamster	S.sigmodontis	E-	Melvin&Chandler 1950	M
Muridae	Micromys minutus	?	S.ratti	N	Schmidt 1962	
Muridae	Microtus agrestris	?	S.ratti	N	Roman 1964a	Р
Muridae	Microtus arvelis	?	S.ratti	N	Roman 1964a	P
Muridae	Microtus guentheri	?	S.ratti	E+	Wertheim 1959	P
Muridae	Mus musculus	house mouse	S.cati	E	Horie et al 1974	M
			(S.planiceps)			
Muridae	Mus musculus	house mouse	S.fuelleborni	E	Rego 1972	м
Muridae	Mus musculus	house mouse	S.papillosus	E-	Worley&Barrett 1964	р
Muridae	Mus musculus	house mouse	S.pavonis	E	Sakamoto&Yamashita 1970	G
Muridae	Mus musculus	house mouse	S.ratti	E+	Brackett&Bliznick 1949	p
Muridae	Mus musculus	house mouse	S.ratti	E+	Sheldon 1937	M
Muridae 👘	Mus musculus	house mouse	S.ratti	E-	Sandground 1925	м
Muridae	Mus musculus	house mouse	S.ratti	N	Prokopic&del Valle 1966	P
Muridae	Mus musculus	house mouse	S.sigmodontis	E	Melvin&Chandler 1950	M
Muridae	Mus musculus	house mouse	S.sp	E	Fleming et al 1979	м
Muridae	Mus musculus	house mouse	S.stercoralis	E+	Horie et al 1974	м
Muridae	Mus musculus	house mouse	S.suis	E-	Oshio 1956	P
Muridae	Mus musculus	house mouse	S.thylacis	E-	Mackerras 1959	м

FAMILY	HOST		STRONGYLOIDES	INF	REFERENCE	AC
	BINOMIAL	COMMON NAME	SPECIES		6	
Muridae	Andatra zibethica	rico rat	5 ratti	N	Chandley 1041	м
Mariade	(Ondetra zibethicus)	TICE THE	u ondatrao	70	Chandler 1941	£1
Muridao	Ondatra zibethica	rice rat		RT .	Marinal 1070	~
Hul Idde	(Ondatra zibethicus)	TICE LAC	5.35	54	Marvar 1976	P
Muridae	Rattus annandalai	rat	s ratti	N	Sinnish 1979	n
Muridae	Rattus argentiventer	rat	S.ratti	N	Sinniah 1979	r D
Muridae	Rattus erulans	rat	S.ratti	N	Sinniah 1979	P
Muridae	Rattus exulans	rat	S SD	N	Van Lov Fong et al 1977	F D
Muridae	Rattus fuscines	bush rat	S ratti	N	Ballantyne 1971	E M
Muridae	Rattus fuscipes	bush rat	S.venezuelensis	N	*	
Muridae	Rattus norvealcus	brown rat	S fuelleborni	F	sandground 1925	м
Muridae	Rattus norveaicus	brown rat	S.muopotami	10 12+	Fnick 1952	<i>F</i> 1
Muridae	Rattus norvealcus	brown rat	S papillosus	F	Sandground 1925	м
Muridae	Rattus norveaicus	brown rat	S.papillosus	N	Hall 1916	n
Muridae	Rattus norvealcus	brown rat	S. navonis	E-	Sakamoto&Vamaghita 1970	G
Muridae	Rattus norveaicus	rat	S.rattl	N	Sandground 1925	M
Muridae	Rattus norveaicus	brown rat	S.ratti	N+	Little 1966a	G
Muridae	Rattus norvegicus	brown rat	S.siamodontis	E	Melvin&Chandler 1950	M
Muridae	Rattus norvealcus	brown rat	S.SD	- E	Fleming et al 1979	M
Muridae	Rattus norvegicus	brown rat	S.stercoralis	E	Dawkins&Grove 1982	P
Muridae	Rattus norvegicus	brown rat	S.suis	E	Schwartz&Alicata 1930	M
	Ũ		(S.ransomi)			
Muridae	Rattus norvegicus	brown rat	S.venezuelensis	N	Wertheim&Lengy 1964	M
Muridae	Rattus norvegicus	brown rat	S.venezuelensis	N+	Little 1966a	G
Muridae	Rattus norvegicus	brown rat	S.venezuelensis	N+	Wertheim 1970	м
Muridae	Rattus rattus	black rat	S.ratti	N	Chu Tsio-chib 1937	_
Muridae	Rattus rattus	black rat	S.ratti	N	Dollfus et al 1961	P
Muridae	Rattus rattus	black rat	S.ratti	E+	*	-
Muridae	Rattus rattus	black rat	S.venezuelensis	N	Ballantvne 1971	м
Muridae	Rattus rattus alexandrinus	rat	S.ratti	N	Ash 1962	P
Muridae	Rattus rattus alexandrinus	rat	S.ratti	N+	Tanabe 1938	p
Muridae	Rattus rattus diardii	rat	S.ratti	N	Seng et al 1979	P
Muridae	Rattus rattus diardii	rat	S.ratti	N	Sinniah 1979	P
Muridae	Rattus sabanus	rat	S.ratti	N	Sinniah 1979	р
Muridae	Rattus tiomanicus	rat	S.ratti	N	Sinniah 1979	р
Muridae	Uromys caudimaculatus	giant tailed white rat	S.sp	N	tt.	
Muridae	Zyzomys argurus	common rock rat	S.sp	N	τ	
Muridae	Zyzomys woodwardi	large rock rat	S.sp	N	*	
Muridae		gerbil	S.papillosus	E-	Ryan 1976	-
Muridae		gerbil	S,sp	E+	Marval 1978	Р
Muridae		meadow mouse	S.papillosus	E-	Worley&Barrett 1964	Р
Muridae		white footed mouse	S.papillosus	E-	Worley&Barrett 1964	Р

FAMILY	Y HOST		STRONGYLOIDES	INF	REFERENCE	AC
	BINOMIAL	COMMON NAME	SPECIES			
Muscardinidae	Eliomys quercinus	garden doormouse	S.ratti	() E+	Roman et al 1970	Р
Sciuridae	Sciurus carolinensis	grey squirrel	S.papillosus	N	Reiber&Byrd 1942	D
Sciuridae	Sciurus carolinensis	grey squirrel	S.robustus	N	Conti et al 1984	Р
Sciuridae	Sciurus carolinensis	grey squirrel	S.robustus	N	Davidson 1976	Р
Sciuridae	Sciurus carolinensis carolinensis	grey squirrel	S.robustus	N	Chandler 1942	М
Sciuridae	Sciurus niger rufiventer	fox squirrel	S.robustus	N	Chandler 1942	м

· · ·

TABLE 6:8. STRONGYLOIDES - HOST PARASITE LIST. (see text for key to INF)

STRONGYLOIDES SPECIES	PAMILY	HOST	INF	REFERENCE
S.acoutit	Caviidae	Cavia porcellus	E+	Cameron&Reegal 1951
S.acoutii	Caviidae	Cavia porcellus	F+	Regal 1951
S. agoutii	Caviidae	Cavia porcellus	E+	Griffithg 1940
S.agoutii	Dasvproctidae	Dasuprocta agouti	N	Cameron&Reesa] 1951
S.agoutii	Dasyproctidae	Dasuprocta agouti	N	Griffiths 1940
S.acoutii	Leporidae	Oryctolaays cynicylys	E	Griffithg 1940
S.akbari	Mustelidae	Mellivora indica	N	Srivagtava 1964
S.akbari	Soricidae	Crocidura coerula	N	Mirza&Naravan 1935
S.amphibiophilus	Bufonidae	Bufo peltocephalus	N	Perez Vigueras 1942
S.ardeae	Ardeidae	Butorides virescens virescens	N	Little 1966b
S.ardeae	Ardeidae	Nuctanassa violacea	N	Little 1966b
S.avium	Anatidae	Anas platyrhyncha domestica	E	Cram 1929
S.avium	Aramidae	Aramus anarauna pictus	N	Barus 1969
S.avium	Meleagrididae	Meleagris gallapavo	E+	Cram 1932
S.avium	Meleagrididae	Meleagris gallapavo	N	Maxfield et al 1963
S.avium	Numididae	Numida meleagris galeata	N	Fabiyi 1972
S.avium	Phasianidae	Colinus virginianus	N	Davidson et al 1980
S.avium	Phasianidae	Colinus virginianus	N	Cram 1929
S.avium	Phasianidae	Gallus gallus	N	Cram 1929
S.avium	Rallidae	Rallus aquaticus indicus	N	Sakamoto&Sarashina 1968
S.avium	Rallidae	Fulica americana	N	Cram 1930
S.avium	Rallidae	Gallinula chloropus	N	Barus 1969
S.avium	Rallidae	Junco hyemalis hyemalis	N	Cram 1930
S.avium	Tetraonidae	Bonasa umbellus	E+	Cram 1930
S.bufonis	Bufonidae	Bufo melanostictus	N	Rao&Singh 1968
S.canis	Canidae	Canis familiaris	N	Brumpt 1922
S.canis	Homidae	Homo sapiens	E	Augustine 1940
S.carinii	Leptodactylidae	Leptodactylus gracilis	N	Pereira 1935
S.cati °	Canidae	Nyctereutes procyonoides	N	Fukase et al 1985
(S.planiceps)				
S.cati	Canidae	Canis familiaris	E+	Horie et al 1981
(S.planiceps)				
S.cati	Canidae	Canis familiaris	N	Horie et al 1980
(S.planiceps)				

s de la companya de la

STRONGYLOIDES SPECIES	FAMILY	HOST	INF	REFERENCE
S.catl	Canidae	Canis familiaris	N	Arizono et al 1976
(S.planiceps)				
S.cati	Felidae	Felis catus	E+	Rogers 1939
S.cati	Felidae	Felis catus	N+	Horie et al 1981
(S.planiceps)				
S.cati	Felidae	Felis planiceps	N	Rogers 1939
5.cati	Muridae	Mus musculus	E-	Horie et al 1974
(S.sp)				
S.cati	Mustelidae	Mustela sibirica	N	Fukase et al 1985
(S.planiceps)				
S.cati	Mustelidae	Mustela sibirica	N	Fukase et al 1985
(S.planiceps)				
S.cebus	Cebidae	Ateles geoffroyi	N	Little 1966a
S.cebus	Cebidae	Cebus apella fatuella	N	Little 1966a
S.cebus	Cebidae	Cebus capucinus	N	Darling 1911
		(Cebus hypoleucus)		
S.cebus	Cebidae	Cebus sp.	E+	Darling 1911
S.cebus	Cebidae	Lagothrix lagotricha	N	Little 1966a
S.cebus	Cebidae	Saimiri sciurea	N	Little 1966a
S.cebus	Cercopithecidae	Macaca mulatta	E+	Little 1966a
S.cebus	Homidae	Homo sapiens	E-	Sandground 1925
S.chapini	Hydrochoeridae	Hydrochoerus hydrochaeris	N	Sandground 1925
S.cruzi	Gekkonidae	Hemidactylus maboula	N	Rodrigues 1968,1970
S.cubaensis	Ardeidae	Butorides virescens maculatus	N	Perez Vigueras 1942
S.darevskyi	Lacertidae	Lacerta armenica	N	Shapilo 1976
S.đarevskyi	Lacertidae	Lacerta rostombekovi	N	Shapilo 1976
S.darevskyi	Lacertidae	Lacerta rudis	N	Shapilo 1976
S.darevskyi	Lacertidae	Lacerta saxicola	N	Shapilo 1973
(S.sp)				
S.đarovskyi	Lacertidae	Lacerta saxicola	N	Shapilo 1976
S.dasypodis	Dasypodidae	Dasypus novemcinctus	N	Little 1966b
S.elephantis	Proboscidae	Elephas indicus	N	Greve 1969
S.erschowi	Canidae	Nyctereutes procyonoides	N	Popova 1938
S.eryxi	Boidae	Chondropython viridis	N	Weisman&Greve 1982
(S.mirzai)				
S.eryxi	Boidae	Eryx johnii	N	Singh 1954
(S.mirzai)				

STRONGYLOIDES SPECIES	FAMILY	HOST	INF	REFERENCE
S.eryxi	Boidae	Eryx tataricus	N	Shapilo 1973
(S.mirzai)			1	i. i
S.eryxi	Canidae	Canis familiaris	E	Singh 1954
(S.mirzai)				
S.eryxi	Colubridae	Coronella austriaca	N	Shapilo 1973
(S.mirzai)				
S.eryxi	Colubridae	Elaphe carínata	N	*
S.eryxi	Colubridae	Natrix natrix	N	Shapilo 1973
(S.mirzai)				
S.eryxi	Colubridae	Ptyas mucosus	N	Singh 1954
(S.mirzai)				
S.felis	Canidae	Canis fmiliaris	N	*
S.felis	Felidae	Felis catus	N	Chandler 1925a,b
S.felis	Felidae	Sus scrofa	E-	*
S.fuelleborni	Canidae	Canis familiaris	E+	Sandground 1925
S.fuelleborni	Caviidae	Cavia porcellus	E-	Rego 1972
S.fuelleborni	Cebidae	Ateles geoffroyi	E+	Sandground 1925
S.fuelleborni	Cebidae	Ateles geoffroyi	N	Hayama&Nigi 1963
S.fuelleborni	Cebidae	Ateles paniscus	N	Hayama&Nigi 1963
S.fuelleborni	Cercopithecidae	Baboon unspecified	N	Blackie 1932
S.fuelleborni	Cercopithecidae	Cercopithecus ascanius	N	Hayama&Nigi 1963
S.fuelleborni	Cercopithecidae	Cercopithecus sabaeus	N	Chung 1937
		(Cercopithecus callitrichus)		
S.fuelleborni	Cercopithecidae	Cercopithecus cephus	N	Hayama&Nigi 1963
S.fuelleborni	Cercopithecidae	Cercopithecus mitis	N	Dollinger&Ruedi 1974
S.fuelleborni	Cercopithecidae	Cercopithecus mitis	N	Hayama&Nigi 1963
S.fuelleborni	Cercopithecidae	Cercopithecus pygerethus	N	Blackie 1932
S.fuelleborni	Cercopithecidae	Macaca fuscata	N	Tanaka et al 1962
S.fuelleborni	Cercopithecidae	Macaca irus	N	Weinberg&Romanovitch 1908
		(Macaca cynomolgus)		
S.fuelleborn i	Cercopithecidae	Macaca irus	N	Panaitescu&Potorac 1981
		(Macaca fascicularis)		
S.fuelleborni	Cercopithecidae	Macaca irus	N	Wong&Conrad 1978
		(Macaca fascicularis)		
S.fuelleborni	Cercopithecidae	Macaca irus	N	Bisseru&Poopalachelvam 1968
S.fuelleborni	Cercopithecidae	Macaca irus	N	Tanaka et al 1962
S.fuelleborni $^{\circ}$	Cercopithecidae	Macaca mulatta	N	Little 1966a
S.fuelleborni	Cercopithecidae	Macaca mulatta	N	Sandground 1925
S.fuelleborni	Cercopithecidae	Macaca nemestrina	N	Wong&Conrad 1978
S.fuelleborni	Cercopithecidae	Macaca nemestrina	N	Weinberg&Romanovitch 1908
S.fuelleborni	Cercopithecidae	Macaca nemestrina	N	Jessee et al 1970
5.fuelleborni	Cercopithecidae	Macaca sp	N	Sandground 1925
S.fuelleborni	Cercopithecidae	Macaca irus philippinensis (Macaca sp)	N+	Wallace et al 1948
S.fuelleborni	Cercopithecidae	Macaca speciosa	N	Hansen et al 1969

STRONGYLOIDES	FAMILY	HOST	INF	REFERENCE
SPECIES				
S,fuelleborni .	Cercopithecidae	Papio cyanocephalus	N	Gretillat et al 1967
S.fuelleborni	Cercopithecidae	Papio cyanocephalus	N	von Linstow 1905
		(Cyanocephalus babuin)		
S,fuelleborni	Cercopithecidae	Papio papio	N	Goodey 1926
S.fuelleborni	Cercopithecidae	Papio porcarius	N	Blackie 1932
S.fuelleborni	Cercopithecidae	Papio ursinus	N	Goldsmid 1974
S,fuelleborni	Cercopithecidae	Presbytis cristatus	N	Arambulo et al 1974
S.fuelleborni	Cercopithecidae	Presbytis cristatus	N	Ow Yang 1965
S.fuelleborni	Felidae	Felis catus	E-	Sandground 1925
S.fuelleborni	Homidae	Homo sapiens	N	Pampiglione&Ricciardi 1971
S.fuelleborni	Homidae	Homo sapiens	N+	Blackie 1932
S.fuelleborni	Muridae	Mus musculus	E-	Rego 1972
S.fuelleborni	Muridae	Rattus norvegicus	E-	Sandground 1925
S.fuelleborni	Pongidae	Gorilla gorilla	N	Jaros et al 1966
S.fuelleborni	Pongidae	Pan troglodytes	N	von Linstow 1905
S.fuelleborni	Pongidae	Pongo pygmaeus	N	ф
S.fuelleborni-like	Homidae	Homo sapiens	N	Kelly et al 1976
S.gulae	Colubridae	Coluber constrictor flaviventris	N	Little 1966b
S.gulae	Colubridae	Heterodon platyrhinos	N	Little 1966b
S.gulae	Colubridae	Lampropeltis getulis holbrooki	N	Little 1966b
S.gulae	Colubridae	Natrix cyclopion cyclopion	N	Little 1966b
S.gulae	Colubridae	Natrix sipedon confluens	N	Little 1966b
S.gulae	Colubridae	Natrix taxispilota rhombifera	N	Little 1966b
S.gulae	Colubridae	Natrix taxispilota taxispilota	N	Little 1966b
S.gulae	Viperidae	Arkistrodon contortrix	N	Little 1966b
5 011 00	Vinovidoo	contortrix		
5.90000	viperidae	Arkistroaon piscivorus leucostoma	N	LITTIE 1966D
S.herodiae	Ardeidae	Ardea herodias herodias	N	Boyd 1966,1967
(S.ardeae)				-
S.lutrae	Mustelidae	Lutra canadensis	N	Little 1966b
S.martis	Mustelidae	Lutra lutra	N	Shakhmatova 1966
S.martis	Mustelidae	Martes martes	N	Shakhmatova 1966
S.martis	Mustelidae	Martes zibellina	N	Little 1966b
S.martis	Mustelidae	Mustela ermina	N	Little 1966b
S.martis	Mustelidae	Mustela lutreola	N	Shakhmatova 1966
S.martis	Mustelidae	Mustela nivalis	N	Shakhmatova 1966
S.martis	Mustelidae	Mustela putorius	N	Shakhmatova 1966
S.minimum	Anatidae	Dafila bahamensis	N	Travassos 1930b
S.mustelorum	Mustelidae	Mustela ermina	N	Cameron&Parnell 1933

STRONGYLOIDES SPECIES	FAMILY	HOST	INF	REFERENCE
S.myopotami	Echimyidae	Myocastor coypus (Myopotamus coipus)	Ň	Artigas&Pacheco 1933
S.mvopotami	Homidae	Homo sapiens	E-	Little 1965
S.myopotami	Homidae	Homo sapiens	N	Burks&Jung 1960
S.myopotami	Muridae	Rattus norvegicus	E+	Enigk 1952
S.nasua	Procyonidae	Nasua narica	N	Darling 1911
	-	(Nasua nasica panamensis)		
S.ophidae	Snake	Drymobius bifossatus	N	Pereira 1929
S.oswaldi	Phasianidae	Gallus gallus	N	Travassos 1930a,b
(S.oswaldol)		(Gallus domesticus)		
S.papíllosus	Antilocapridae	Antilocapra americana	N	Sandground 1925
S.papillosus	Antilocapridae	Antilocapra americana	N	Ransom 1911
S.papillosus	Bovidae	Aepyceros melampus	N	Round 1968
S.papillosus	Bovidae	Ammotragus lervia	N	Tilc&Hanuskova 1976
S.papillosus	Bovidae	Antidorcas marsupialis	E+	Mönnig 1931
S.papillosus	Bovidae	Antidorcas marsupialis	N	Ortlepp 1961
S.papillosus	Bovidae	Bos sondaicus	N	Krijgsman 1933
S.papillosus	Bovidae	Bos taurus	E+	Vegors&Porter 1950
S.papillosus	Bovidae	Bos taurus	E	Woodhouse 1948
S.papillosus	Bovidae	Bos taurus	N	Brumpt 1921
(S.vituli)				-
S.papillosus	Bovidae	Bos taurus	N	Ransom 1911
S.papillosus	Bovidae	Bubalus bubalis	N	Chuahan et al 1973
S.papillosus	Bovidae	Capra hircus	E+	Bezubik 1963
S.papillosus	Bovidae	Capra hircus	N	Ransom 1911
S.papillosus	Bovidae	Capreolus capreolus	N	Kotrly&Kotrla 1980
S.papíllosus	Bovídae	Damaliscus dorcas albifrons	N	Monnig 1931
S.papíllosus	Bovidae	Ovis aries	E+	Woodhouse 1948
S.papíllosus	Bovidae	Ovis aries	N	Wedl 1856
(Trichosoma papillo	osum)			
S.papillosu s	Bovidae	Ovis musimon	N	Kotrly&Kotrla 1980
S.papíllosus	Caviidae	Cavia porcellus	E+	Brumpt 1921a
S.papíllosus	Caviidae	Cavia porcellus	E-	Schwartz&Alicata 1930
S.papíllosus 💡	Cebidae	Ateles paniscus	N	Krynicka et al 1979
S.papillosus	Cebidae	Lagothrix lagotricha	N	Pillers&Southwell 1929
		(Lagothrix humboldti)		
S.pap illosus	Cercopithecidae	Cercopithecus mona	N	Krynicka et al 1979
S.papíllosus	Cercopithecidae	Erythrocebus patas	N	Krynicka et al 1979
S.papíllosus	Cercopithecidae	Macaca mulatta	N	Poindexter 1942
S.papíllosus	Cervidae	Alces alces	N	Wetzel&Enigk 1937

STRONGYLOIDES SPECIES	FAMILY	HOST	INF	REFERENCE
S.papillosus	Cervidae	Cervus elephus	N	Kotrly&Kotrla 1980
S.papillosus	Cervidae	Dama dama	N	Barth&Matzke 1984
S.papillosus	Cervidae	Mazama ?	N	Cameron 1936
S.papillosus	Cervidae	Odocoileus virginianus	N	Forrester et al 1974
S.papillosus	Cervidae	Sika nippon	N	Kotrly&Kotrla 1980
S.papillosus	Cricetidae	Cricetus cricetus	E-	Bezubik 1961
S.papillosus	Felidae	Felis catus	E+	*
S.papillosus	Giraffidae	Okapia johnstoni	N	Smits&Jacobi 1965
S.papillosus	Homidae	Homo sapiens	E-	Tomita 1940
S.papillosus	Hylobatidae	Hylobates hoolock	N	Chandler 1925b
S.papillosus	Leporidae	Lepus ruficaudatus	N	Mirza&Narayan 1935
S.papillosus	Leporidae	Oryctolagus cuniculus	E+	Ransom 1907
S.papillosus	Leporidae	Oryctolagus cuniculus	N	Hall 1916
S.papillosus	Muridae	gerbil	E-	Worley&Barrett 1964
S.papillosus	Muridae	Mus musculus	E-	Worley&Barrett 1964
S.papillosus	Muridae	Rattus norvegicus	E-	Sandground 1925
S.papillosus	Muridae	Rattus norvegicus	N	Hall 1916
S.papillosus	Mustelidae	Mephitis mephitis	N	Stiles&Baker 1935
S.papillosus	Mustelidae	Mustela nivalis	N	Stiles&Baker 1935
S.papillosus	Mustelidae	Mustela putorius	N	Stiles&Baker 1935
S.papillosus	Phasianidae	Gallus gallus	E	Schwartz&Alicata 1930
S.papillosus	Phasíanidae	Gallus gallus	N	Krijgsman 1933
S.papillosus	Pongidae	Gorilla gorilla	N	Krynicka et al 1979
S.papillosus	Pongidae	Pongo pygmaeus	N	Krynicka et al 1979
S.papillosus	Sciuridae	Sciurus carolinensis	N	Reiber&Byrd 1942
S.papillosus	Suidae	Sus scrofa	E+	т т
S.papillosus	Tragulidae	Tragulus javan i cus	N	Jaros et al 1966
S.pavonis	Anatidae	Anas platyrhyncha domestica	E	Sakamoto&Yamashita 1970
S.pavonis	Columbidae	Columba livia	E-	Sakamoto&Yamashita 1970
S.pavonis	Leporidae	Oryctolagus cuniculus	E	Sakamoto&Yamashita 1970
S.pavonis	Muridae	Mus musculus	E-	Sakamoto&Yamashita 1970
S.pavonis	Muridae	Rattus norvegicus	E	Sakamoto&Yamashita 1970
S.pavonis	Phasianidae	Coturnix coturnix japonica	E-	Sakamoto&Yamashita 1970
S.pavonís	Dhasianidae	Gallus gallus	E+	Sakamoto&Yamashita 1970
S.pavonís	Phasianidae	Pavo cristatus cristatus	E+	Sakamoto&Yamashita 1970
S.pavonis	Phasianidae	Pavo muticus	N+	Sakamoto&Yamashita 1970
S.pavonis	Ploceidae	Passer montanus kalbatoi	E	Sakamoto&Yamashita 1970
S.pereirai	?	Elosia rustica	N	Travassos 1932
S.physali	Bufonidae	Bufo valiceps	N	Little 1966b

STRONGYLOIDES	FAMILY	HOST	INF	REFERENCE
SPECIES				
S.procyonis	Canidae	Canis familiaris) E+	Little 1966b 🥡 🤉
S.procyonis	Homidae	Homo sapiens	E+	Little 1966b
S.procyonis	Procyonidae	Procyon lotor	N	Little 1966b
S.putorii	Mustelidae	Mustela putoris	N	Morosov 1939
S.quiscali	Icteridae	Quiscalus niger caribaeus	N	Barus 1968
S.ratti	Caviidae	Cavía porcellus	E+	Sheldon&Otto 1938
S.ratti	Caviidae	Cavía porcellus	E	Sandground 1925
S.ratti	Cricetidae	Cricetus cricetus	E+	Wertheim 1959
S.ratti	Gerbillidae	Meriones tristrami	E+	Wertheim 1959
S.ratti	Gliridae	Eliomys quercinus	E+	Roman et al 1970
S.ratti	Leporidae	Oryctolagus cuniculus	E	Sandground 1925
S.rattl	Microtidae	Clethrionomys glareolus	N	Roman 1964
S.ratti	Microtidae	Micromys minutus	N	Schmidt 1962
S.ratti	Microtidae	Microtus agrestris	N	Roman 1964
S.ratti	Microtidae	Microtus arvelis	N	Roman 1964
S.ratti	Microtidae	Microtus guentheri	E+	Wertheim 1959
S.ratti	Muridae	Acomys cahirinus	E	Wertheim 1959
S.ratti	Muridae	Apodemis agrarius	N	Schmidt 1962
S.ratti	Muridae	Apodemis flavicollis	N	Schmidt 1962
S.ratti	Muridae	Apodemis sylvaticus	N	Roman 1964
S.ratti	Muridae	Bandicoota indica	N	Sinniah 1979
S.ratti	Muridae	Mus musculus	E+	Brackett&Bliznick 1949
S.ratti	Muridae	Mus musculus	N	Prokopic&del Valle 1966
S.ratti	Muridae	Rattus annandalai	N	Sinniah 1979
S.ratti	Muridae	Rattus argentiventer	N	Sinniah 1979
S.ratti	Muridae	Rattus exulans	N	Sinniah 1979
S.ratti	Muridae	Rattus fuscip o s	N	Ballantyne 1971
S.ratti	Muridae	Rattus norvegicus	N+	Little 1966a
S.ratti	Muridae	Rattus norvegicus	N	Sandground 1925
S.ratti	Muridae	Rattus rattus	N	Dollfus et al 1961
S.ratti	Muridae	Rattus rattus	N	Chu Tsio-chih 1937
S.ratti	Muridae	Rattus rattus	N	Hori et al 1967
S.ratti	Muridae	Rattus rattus	E+	*
S.ratti	Muridae	Rattus rattus alexandrinus	N	Ash 1962
S.ratti	Muridae	Rattus rattus alexandrinus	N+	Tanabe 1938
S.ratti	Muridae	Rattus rattus diardii	N	Sinniah 1979
S.ratti	Muridae	Rattus rattus diardii	N	Seng et al 1979

•

:

STRONGYLOIDES SPECIES	FAMILY .	HOST	INF	REFERENCE
S.ratti	Muridae	Rattus sabanus	N	Sinniah 1979
S.ratti	Muridae	Rattus tiomanicus	N	Sinniah 1979
S.ratti v.ondatra o	Microtidae	Ondatra zibethica (Ondatra zibethicus)	N	Chandler 1941
S.robustus	Sciuridae	Sciurus carolinensis carolinensis	N	Chandler 1942
S.robustus	Sciuridae	Sciurus niger rufiventer	N	Chandler 1942
S.rostombekovi	Erinaceidae	Erinaceus europea	N	Gamzemlidse 1941
S.serpentis	Colubridae	Coluber constrictor flaviventris	N	Little 1966b
S.serpentis	Colubridae	Heterodon platyrhinos	N	Little 1966b
S.serpentis	Colubridae	Lampropeltis getulis holbrooki	N	Little 1966b
S.serpent is	Colubridae	Natrix cyclopion cyclopion	N	Little 1966b
S.serpentis	Colubridae	Natrix sipedon confluens	N	Little 1966b
S.serpentis	Colubridae	Natrix taxispilota rhombifera	N	Little 1966b
S.serpentis	Colubridae	Natrix taxispilota taxispilota	N	Little 1966b
S.serpentis	Viperidae	Arkistrodon contortrix	N	Little 1966b
S.serpentis	Viperidae	Arkistrodon piscivorus leucostoma	N	Little 1966b
S.sigmodontis	Caviidae	Cavía porcellus	E-	Melvin&Chandler 1950
S.sigmodontis	Cricetidae	Cricetus cricetus	E-	Melvin&Chandler 1950
S.sigmodontis	Leporidae	Oryctolagus cuniculus	E	Melvin&Chandler 1950
S.sigmodontis	Muridae	Mus musculus	E-	Melvin&Chandler 1950
S.sigmodontis	Muridae	Rattus norvegicus	E-	Melvin&Chandler 1950
S.sigmodontis	Muridae	Sigmodon hispidus	N	Melvin&Chandler 1950
S.simiae	Canidae	Canis familiaris	Е	Azevedo&Meira 1947
S.simiae	Caviidae	Cavia porcellus	E-	Azevedo&Meira 1947
5.simia o	Cebidae	Ateles geoffroyi	E+	Beach 1936
S.simiae	Cebidae	Cebus capucinus	N	Beach 1935
S.simiae	Cebidae	Cebus capucinus	N	Beach 1936
S.simiae	Cercopithecidae	Cercopithecus sabaeus (Cercopithecus callitrichus)	N	Azevedo&Meira 1947
S.simiae	Cercopithecidae	Papio papio	N	Azevedo&Meira 1947
S.simiae	Homidae	Homo sapiens	E-	Azevedo&Meira 1947
S.spiralis	Ranidae	Rana esculenta	N	Grabda-Kazubska 1978
S.spiralis $^{\circ}$	Ranidae	Rana lessonae	N	Grabda-Kazubska 1978
S.spiralis	Ranidae	Rana ribidunda	N	*
S.stercoralis	Canidae	Canis familiaris	E+	Fülleborn 1914
S.stercoralis	Canidae	Canis familiaris	E+	Dawkins&Grove 1982
S.stercoralis	Canidae	Canis familiaris	N	Horie et al 1980
S.stercoralis	Canidae	Canis familiaris	N	Ware&Ware 1923
S.stercoralis	Canidae	Canis familiaris	N+	Georgi&Sprinkle 1974

\sim
\sim
S

.

STRONGYLOIDES SPECIES	FAMILY	HOST	INF	REFERENCE
S.stercoralis	Caviidae	Cavia porcellus) E	Dawking&Grove 1982
S.stercoralis	Cebidae	Cebus apella	N	Jarog et al 1966
S.stercoralis	Cercopithecidae	Eruthrocebus patas	N	Harper et al 1982
S.stercoralis	Cercopithecidae	Macaca irus	N	Brumpt 1913
	· · · · · · · · · · · · · · · · · · ·	(Macaca cunomolous)		Drampe ISTS
S.stercoralis	Cercopithecidae	Macaca mulatta	N	Brumpt 1913
S.stercoralis	Cercopithecidae	Macaca sinica	N	Brumpt 1913
	*	(Macaca sínicus)		F
S.stercoralis	Felidae	Felis catus	E+	Horie et al 1980
S.stercoralis	Felidae	Felis catus	E+	Sandground 1925
S.stercoralis	Felidae	Felis catus	N	Froes 1976
S.stercoralis	Homidae	Homo sapiens	N	Bavay 1876
S.stercoralis	Hylobatidae	Hylobates agilis	N	Hayama&Nigi 1963
S.stercoralis	Hylobatidae	Hylobates lar	N	Hayama&Nigi 1963
S.stercoralis	Hylobatidae	Hylobates lar	N+	de Pauli&Johnsen 1978
S.stercoralis	Hylobatidae	Hylobates moloch	N	Hayama&Niqi 1963
S.stercoralis	Hylobatidae	Hylobates pileatus	N	Hayama&Nigi 1963
S.stercoralis	Leporidae	Oryctolagus cuniculus	E	Dawking&Grove 1982
S.stercoralis	Muridae	Mus musculus	E+	Horie et al 1974
S.stercoralis	Muridae	Mus musculus	E	Dawkins&Grove 1982
S.stercoralis	Muridae	Rattus norvegicus	E-	Dawking&Grove 1982
S.stercoralis	Pongidae	Gorilla gorilla	N	Penner 1981
S.stercoralis	Pongidae	Pan troglodytes	N	Desportes 1945
S.stercoralis	Pongidae	Pan troglodytes	N	Penner 1981
S.stercoralis	Pongidae	Pongo pygmaeus	N	Krynicka et al 1979
S.stercoralis	Pongidae	Pongo pygmaeus	N	Swellengrebel&Rijpstra 1965
S.stercoralis	Pongidae	Pongo pygmaeus	N	Fox 1923
S.stercoralis	Pongidae	Pongo pygmaeus	N	*
S.stercoralis	Procyonidae	Nasua nasua	E+	Sandground 1926
S.stercoralis	Procyonidae	Procyon lotor	E+	Johnson 1962
S.stercoral i s	Suidae	Sus scrofa	E+	Lushina et al 1971
S.stercoralis	Amphibia	frogs	E+	Tessier 1895
S.stercoralis	Amphibia [°]	frogs	E-	Sandground 1925
S.stercoralis $_{\circ}$	Amphibia	frogs	N	Alfieri 1909
S.stercoralis	Canidae	Vulpes alopex	N	Mirza&Narayan 1935
v.vulpí				
S.suis	Canidae	Canis familiaris	E+	Kotlan&Vajda 1934
(S.ransomi)				
S.suis	Caviidae	Cavia porcellus	E-	Oshio 1956
(S.ransomi)				
S.suis	Caviidae	Cavia porcellus	E-	Schwartz&Alicata 1930
(S.ransomi)				

٦.

STRONGYLOIDES SPECIES	FAMILY	HOST	INF	REFERENCE
S.suis	Felidae	Felis catus	E+	Kotlan&Vajda 1934
(S. ransome)	Folidao		-	
(S = management)	relluae	retts catus	E-	Schwartz&Allcata 1930
(D.Tunsom) Sauta	Homidae	Homo sontens	ET.	KotlangVaida 1034
(S. ransomt)	nomidae	nome adprena	LT	Kotianavajua 1934
S. suis	Leporidae	Oructolague cuntculue	F-	KotlangVaida 1834
(S. ransomi)	Depotitude	orgovovagas canvoavas	1.1	Kotianavajua 1994
S.suis	Leporidae	Oructolagus cuniculus	F+	Oghio 1956
(S.ransomi)				00000 1990
suis	Leporidae	Oructolaaus cuniculus	E-	Schwartz&Alicata 1930
(S.ransomi)				Sound chamiltourd 1930
S.suis	Muridae	Mus musculus	E	Oshio 1956
(S.ransomi)			-	
S.suis	Muridae	Rattus norvegicus	E-	Schwartz&Alicata 1930
(S.ransomi)		Ū		
S.suis	Phasianidae	Gallus gallus	E-	Schwartz&Alicata 1930
(S.ransomi)		-		
S.suis	Suidae	Sus scrofa	N	Tarczynski 1956
S.suis	Suidae	Sus scrofa domestica	N	von Linstow 1905
S.suis	Suidae	Sus scrofa domestica	N	Schwartz&Alicata 1930
(S.ransomi)				
S.thylacis	Muridae	Mus musculus	E-	Mackerras 1959
S.thylacis	Peramelidae	Isoodon macrouris	N	Mackerras 1959
		(Thylacis obesulus)		
S.tumefaciens	Felidae	Felis catus	N	Price&Dikmans 1941
S.tumefaciens	Felidae	Felis catus	N	Dubey&Pande 1964
S.turkmenica	Laridae	Larus canus	N	Barus et al 1978
(S.terkmenicus)				
S.turkmenica	Recurvirostridae	Himantopus candidus	N	Kurtieva 1953
S.venezuelensis	Muridae	Rattus fuscipes	N	*
S.venezuelensis	Muridae	Rattus norvegicus	N	Brumpt 1934
S.venezuelensis	Muridae	Rattus norvegicus	N+	Little 1966a
S.venezuelensis	Muridae	Rattus rattus	N	Ballantyne 1971
S.vulpis	Canidae	Vulpes lagopus	N	Petrov 1940b
S.vulpis	Canidae	Vulpes vulpes	N	Petrov 1940b
S.Westerl	Canidae	Canis familiaris	E	Blieck&Baudet 1921
S.westerl	Equidae	Asinus asinus	N	Benbrook&Sloss 1962
S.Westeri	Equidae	Equus asínus	N	Pande&Rai 1960

•

STRONGYLOIDES SPECIES	FAMILY	HOST	INF	REFERENCE
S.westeri	∙Equidae	Equus caballus	'nN	Ihle 1917
S.westeri	Equidae	Equus caballus	N+	Greer et al 1974
S.westeri	Suidae	Sus scrofa	?	Georgi 1984
S.westeri	Suidae	Sus scrofa	N	Miyamoto 1929
S.sp	Agamidae	Physignathus cocincinus	N	Maier 1980
S,sp	Anatidae	Anas platyrhyncha domestica!	E-	*
S.sp	Anatidae	Anas platyrhynchos fulvigula	N	Kinsella&Forrester 1972
S.sp	Anatidae	Malacorhynchus membranaceous	N	Harrigan 1981
S.sp	Boidae	Eryx jaculus	N	Baylis 1923
S.sp	Boidae	Liasus fuscus	E+	*
S.sp	Boidae	Morelía spilotes	N	\$
S.s p	Boidae	Python reticulatus	N	Holt et al 1979
S.sp	Bovidae	Aepyceros malampus	N	Horak 1980
S.sp	Bovidae	Antidorcas marsupialis	N	Horak 1980
S.sp	Bovidae	Connochaetes taurinus	N	Round 1968
S.sp	Bovidae	Damaliscus dorcas dorcas	N	Verster et al 1975
S.sp	Bovidae	Gazella granti	N	Eckert 1963
S.sp	Bovidae	Gazella subgutturosa	N	Chertova 1971
S.ap	Bufonidae	Bufo marinus	N	*
S.sp	Camelidae	camel (unspecified)	N	Lim&Lee 1977
S.sp	Camelidae	Camelus bactrianus	N	Silva et al 1973
S.sp	Camelidae	Camelus dromedarius	N	Steward 1950
S.sp	Camelidae	Camelus dromedarius	N	Enyenihi 1972
S,sp	Camelidae	lama	N	Lim&Lee 1977
S.sp	Canidae	Canis aureus	N	Rodononya 1966
S.sp	Canidae	Canis familiaris	N+	Augustine 1940
S.sp	Canidae	Canis familiaris	N	Munro&Munro 1978
S.sp	Canidae	Canis familiaris	N	Enyenihi 1972
S.sp	Caviidae	Cavia porcellus	N	Krediet 1921
S.sp	Cebidae	Ateles geoffroyi	N	Kreis 1932
S.sp	Cebidae	Ateles geoffroyi	E+	Faust 1930
S.sp	Cebidae	Ateles pentadactylus	N	Leger 1921
S.sp	Cebidae	Cebus apella	N	Leger 1921
S.sp	Cebidae	Cebus capucinus	N	Noda 1962
S.sp	° Cebidae	Cebus capucinus imitator	N	Faust 1930
S.sp	Cebidae	Lagothrix lagotrica	N	Noda 1962
S.sp	Cebidae	Saimiri orstedi orstedi	N	Faust 1930
S.sp	Cebidae	Saimiri sciurea	N	Noda 1962
S.sp	Cebidae	squirrel monkey	N	Cullum&Hamilton 1965

STRONGYLOIDES SPECIES	FAMILY	HOST	INF	REFERENCE
S.sp	Cercopithecidae	Cercopithecus aethiops	N	de Silva et al 1973
S.sp	Cercopithecidae	Cercopithecus diana	» N	Eckert 1963 ()
S.sp	Cercopithecidae	Cercopithecus pygerythrus		
		pygerythrus	N	Yamashiroya et al 1971
		(Cercopithecus aethiops pygery	(thrus)	
S.sp	Cercopithecidae	Cercopithecus sp	N	Weinberg&Romanovitch 1908
S.sp	Cercopithecidae	Cercopithecus spp	N	Pandey 1978
S.sp	Cercopithecidae	Colobus geraza	N	Cooper&Holt 1975
S.sp	Cercopíthecidae	Erythrocebus patas	N	Noda 1962
S.sp	Cercopithecidae	Macaca arctoides	N	Jessee et al 1970
S.sp	Cercopithecidae	Macaca cyclopis	N	Noda 1962
S.sp	Cercopithecidae	Macaca fuscata	N	Noda 1962
S.sp	Cercopithecidae	Macaca irus	N	Weinberg&Romanovitch 1908
S.sp	Cercopithecidae	Macaca irus	N	Sano et al 1980
		(Macaca fascicularis)		
S.sp	Cercopithecidae	Macaca irus philippinensis	N	Haberman&Williams 1957
		(Macaca philippinensis)		
S.sp	Cercopithecidae	Macaca mulatta	Ń	Weinberg&Romanovitch 1908
S.sp	Cercopithecidae	Macaca radiata	N	Wong&Conrad 1978
S.sp	Cercopithecidae	Macaca sinica	N	Gonder 1907
		(Macaca sinicus)		
S.sp	Cercopithecidae	Macaca sp	N	Höeppli 1927
s.sp	Cercopithecidae	Macaca sylvanus	N	de Silva et al 1973
		(Macaca sylvana)		
S.sp	Cercopithecidae	Mandrillus leucophaeus	N	Noda 1962
S.sp	Cercopithecidae	Papio anubis	N	Jessee et al 1970
S.sp	Cercopithecidae	Papio cyanocephalus	N	Reardon&Rininger 1968
S.sp	Cercopithecidae	Papio papio	N	Weinberg&Romanovitch 1908
S.sp	Cercopithecidae	Papio sp	N	Weinberg&Romanovitch 1908
S.sp	Cercopithecidae	Papio ursinus	N	McConnell et al 1974
S.sp	Cercopithecidae	Presbytis cristatus	N	Palmieri et al 1977
S.sp	Cercopithecidae	stump-tailed monkey	N	Cullum&Hamilton 1965
S.sp	Cervidae	Odocolleus hemonionus	N	Reed et al 1976
S.sp	Cervidae	Odocolleus virginianus	N	Glazener&Knowlton 1967
S.sp	Cervidae	deer	N	Lim&Lee 1977
S.sp	CoenoDitidae	Coenovita clipeatus	N	Rowland&Vandenbergh 1965
s.sh	Colubridae	Amphiesma mairil Rojan der drertil	N	Ballantyne 1971
ຣູດກ ວຳສັກ	Colubridae	Bolga denarophila Rolog denarophila	N	Schmidt&Kuntz 1972
ວຸສµ Sen	Colubridae	bouga irregularis Domanaia atma	N	107
2.3P	Colubridae	Demansta atra	N	ជា
d'sh	cornnirage	penarelaphis punctulatus	N	101

STRONGYLOIDES	FAMILY	HOST	INF	REFERENCE
SPECIES				
S.sp	Colubridae	Elaphe obsoleta obsoleta	N	Holt et al 1979
S.SD	Colubridae	Elaphe obsoleta avadrivittata	N	Holt et al 1978 Holt et al 1978
S.sp	Colubridae	Lampropeltis actulis	N	Holt et al 1978
S.SD	Columbidae	Columba livia	N	*
S.sp	Crotalidae	Trimeresurus fravoviridis	N	- Hori£Kaneko 1969
S.sp	Cuculidae	Centropus phasianinus	N	*
S.sp	Didelphidae	Didelphis aurita	N	- Froeg 1976
S.sp	Didelphidae	Didelphis virainiana	N	Little 1966b
S.sp	Echimvidae	Muopotamus colpus	N	Sprehn 1930
S.sp	Elapidae	Naja naja	N	Schmidt&Kuntz 1972
S.sp	Elapidae	Pseudonaja textilis	N	
S.sp	Equidae	Eauus burchelli	N	de Silva et al 1973
S.sp	Equidae	zebra	N	Eckert 1963
S.sp	Erinaceidae	Erinaceus roumanicus	N	Tukasiak 1939
S.sp	Felidae	Felts catus	N	MivamotosKatsumi 1980
S.sp	Felidae	Felis catus	N	Sandosham 1952
S.sp	Felidae	Lunx rufus	N	Little 1966b
S.sp	Felidae	Panthera leo	N	Envenihi 1972
S.sp	Hapalidae	Tamarin midas	N	Leger 1921
-	-	(Midas midas)		
S.sp	Hapalidae	Saguinus fuscicollis	N	Cosgrove et al 1968
S.sp	Icteridae	Agelaius phoeniceus	N	Little 1966b
S.sp	Giraffidae	Giraffa camelopardalis	N	Frank et al 1963
S.sp	Giraffidae	Okapia johnstoni	N	Wetzel&Fortmever 1964
S.ap	Gruidae	Grus canadensis	N	Porrester et al 1974
S.sp	Hippopotamidae	Hippopotamus amphibius	N	Round 1968
S.sp	Homidae	Homo sapiens	N	van der Hoeven&Rijpstra 1962
S.sp	Homidae	Homo sapiens	N	Brown&Giradeau 1977
S.sp (ex PNG)	Homidae	Homo sapiens	N	Kelly&Voge 1973
S.sp	Hylidae	Litoria caerulea	N	*
S.sp	Hylidae	Litoria lesueurii	N	Ballantyne 1971
		(Hyla lesueuri)		-
S.sp	Hylidae	Litoria rubella	N	*
S.sp	[°] Hylobatidae	Hylobates concolor leucogenis	N	Urbain&Nouvel 1944
S.sp	Lemurídae	Lemur	N	Weinberg&Romanovitch 1908
S.sp	Leporidae	Oryctolagus cuniculus	E-	Fleming et al 1979
S.sp	Leptodactylidae	Adelotus brevis	N	Ballantyne 1971
S.sp	Leptodactylidae	Limnodynastes peroni	N	Ballantyne 1971
S.sp	Leptodactylidae	Platypectron ornatus	N	*

P

.

STRONGYLOIDES SPECIES	FAMILY	HOST	INF	REFERENCE
S an	Magropodidao) DT	())
5,5p 5 ap	Magropodidae	Aepyprymnus rujescens	N	Speare et al 1982
S.sp S.sp	Macropodidae	Lagorchestes conspicillatus	IN N	Speare et al 1982
S ap	Macropodidae	Macropus agtils	N	Speare et al 1983
S.sp	Macropodidae	Macropus anteroprinus	N	Speare et al 1982
S.sp S.an	Macropodidae	Macropus adreatis	N	Speare et al 1982
S.sp	Macropodidae	Macropus giganteus	. N	Speare et al 1982
5.sp S.ap	Macropodidae	Macropus parryt	N+	Speare et al 1982
S.sp S.co	Macropodidae	Macropus robustus	N	Speare et al 1982
5.sp S.an	Macropodidae	Onychogalea fraenata	N	Speare et al 1982
S.sp S.sp	Macropodidae	Onychogalea ungulfera	N	Speare et al 1982
S.sp	Macropodidae	Petrogale inornata	N	Speare et al 1982
S.sp S.sp	Macropodidae	Thylogale stigmatica	N	Speare et al 1982
S.sp	Macropodidae	kangaroo	N	Lim&Lee 1977
S.sp	Meleagrididae	Meleagris gallopavo osceola	N	Hon et al 1975
S.sp	Meleagrididae	Meleagris gallopavo silvestris	N	Prestwood 1968
S.sp	Microtidae	Ondatra zibethicus	N	Marval 1978
S.sp	Muridae	Arvicanthus niloticus	N	Paperna et al 1970
S.sp	Muridae	Gerbil	E+	Marval 1978
S.sp	Muridae	Mastomys natalensis	N	Paperna et al 1970
S.sp	Muridae	Mus musculus	E	Fleming et al 1979
S.sp	Muridae	Oryzomys palustris	N	Little 1966b
S.sp	Muridae	Rattus exulans	N	Yap et al 1977
S.sp	Muridae	Rattus norvegicus	E-	Fleming et al 1979
S.sp	Muridae	Sigmodon hispidus	N	Baylis 1945
S.sp	Muridae	Uromys caudimaculatus	N	1
S.sp	Muridae	Zyzomys argurus	N	4
S.sp	Muridae	Zyzomys woodwardi	N	\$
S.sp	Mustelidae	Meles meles	N	Enyenihi 1972
S.sp	Mustelidae	Mephitis mephitis	N	Babero 1960
S.sp	Mustelidae	Mustela lutreola	N	Law&Kennedy 1932
S.sp	Mustelidae	Mustela nivalis	N	Dollfus et al 1961
S.sp	Myrmecophagidae	Tamadua longicaudata	N	Cameron 1939
S.sp	Ochotonidae	Ochotona princeps	N	Grundman&Lombardi 1976
S.sp	Phalangeridae	Trichosurus vulpecula	N	GordonSommerville 1958
S.sp	Phasianidae	Gallus gallus	N+	*
S.sp	Pongidae	Gorilla gorilla	N	Noda 1962
S.sp	Pongidae	Pan paniscus	N	Hasegawa et al 1983
S.ap	Pongidae	Pan troglodytes	N	Blacklock&Alder 1922
S.sp	Pongidae	Pongo pygmaeus	N	McClure et al 1973
S.ap	Proboscidae	Elephant	N	Lim&Lee 1977

Υ.

STRONGYLOIDES SPECIES	FAMILY	HOST	INF	REFERENCE
0120120				41.2
S.sp	Procyonidae	Procyon lotor	N	Chandler&Melvin 1951
S.sp	Pseudocheiridae	Dactylopsila trivirgata	N	Speare et al 1984
S.sp	Pseudocheiridae	Pseudocheirus herbertensis herbertensis	N	Speare et al 1984
S.sp	Rallidae	Fulica americana	N	Kinsella 1973
S.sp	Rallidae	Fulica atra	N	*
S.sp	Rallidae	Gallínula chloropus	N	Dollfus et al 1961
S.sp	Rallidae	Porphyrio porphyrio	N	*
S.sp	Rallidae	Porphyrula martinica	N	Kinsella et al 1973
S.sp	Ranidae	Rana clamantans	N	Little 1966b
S.sp	Ranidae	Rana esculenta	N	Vojthova&Moravec 1977
S.sp	Ranidae	Rana pipens	N	Rau et al 1978
S.sp	Rhinocerotidae	Rhinoceros sondaicus	N	Palmieri et al 1981
S.sp	Scincidae	Eumeces laticeps	N	Little 1966b
S.sp	Scincidae	Tilique gerrardi	N	Ballantyne 1971
S.sp	Scincidae	Tilique scincoides	N	Ballantyne 1971
S.sp	Sciuridae	Marmota monax	N	Fleming et al 1979
S.sp	Soricidae	Sorex minutus	N	Cameron&Parnell 1933
S.sp	Suidae	Sus scrofa	N	Lutz 1885
S.sp	Talpidae	Talpa europaea	N	Cameron&Parnell 1933
S.sp	Tetraonidae	Bonasa umbellus	N	Davidson et al 1977
S.sp	Threskiornithidae	Eudocímus albus	N	Bush&Forrester 1976
S.sp	Ursidae	Ursus americanus	N	Crum et al 1978

•

Strongyloides is only moderately host specific. Its specificity on the level of host species is poor, members of the same genus seem to be readily infected by the same species of parasite. Infection of other genera within the same family as the natural host seems to be the rule, although infections may not be as readily established. On the host generic level differences in infectivity seem to be not in terms of positivety or negativety, but more in terms of intensity and longevity. Some species will infect hosts of different orders from that of the natural host; e.g., infect Primata, Carnivora, Rodentia and S.stercoralis can Artiodactyla (pigs)(Lukshina et al, 1971); S.papillosus can infect Artiodactyla and Lagomorpha. No species of Strongyloides has been clearly shown to infect hosts outside the class of its natural host. An early record of S.stercoralis in frogs (Alfieri, 1898) lacks taxonomic details and must be suspect. Similarly the report of patent experimental infection of frogs by S. stercoralis (Tessier, 1896) is dubious particularly in view of his report of the development of a giant form of the parasite in infected frogs. Sandground's (1925) efforts in a similar endeavour were negative. Schwartz and Alicata (1930) could not infect a domestic fowl with S.suis (syn.S.ransomi) from the pig. Sakamoto and Yamashita (1970) were unable to infect a range of mammals with the avian parasite, S.pavonis.

Range of hosts able to be experimentally infected is not a useful taxonomic tool. It may lead to errors, particularly if the number of experimental infections attempted is small (Sandground, 1925). Schwartz and Alicata (1930) used the failure of *S.suis*

(syn.S.ransomi) to infect rabbits as a feature to separate S.suis from S.papillosus. Kotlan and Vajda (1934) and Oshio (1956) contradicted this by obtaining patent infections. Reliance for differentiation of species on the range of hosts infected is usually an indication that the morphological taxonomy is inadequate; e.g. S.sigmodontis (Melvin and Chandler, 1950), unidentified species from the woodchuck, Marmota monor (Fleming et al, 1979). The inclusion of host range adds to an understanding of the biology of the parasite (Sakamoto and Yamashita, 1970), but it is only a minor taxonomic criteria.

6.9 CROSS FERTILIZATION OF FREE-LIVING ADULTS.

The free-living adult must mate to produce fertile eggs. The male, however, does not contribute genetic material, the penetration of sperm serving solely to initiate meiotic pathenogenesis in the ovum of the female (Triantaphylloń and Moncol, 1977). This is gynogenesis or obligatory pseudofertilization. Augustine (1940) attempted various combinations of matings of the free-living adults of strains from a chimpanzee, *Pan troglodytes*, a colombian capucin monkey, *Cebus apella*, rhesus monkeys, *Macaca mulatta* and a dog. No

U

fertile cross-matings were produced. He considered the complete failure of hybridization of the strains indicated they were distinct species. Unfortunately, no concurrent taxonomic study was carried out. Thus the work was essentially valueless from the taxonomic viewpoint.

Fertile matings were obtained between free-living adults of S.suis (syn.S.ransomi) and S.papillosus (Triantaphyllon and Moncol, 1977). These authors discovered that mating was an obligatory pseudofertilization, and did not consider that successful fertilization meant the two species were synonymous, but that they were closely related.

Fertilization studies are not a useful criterion for species differentiation at our present state of knowledge, and considering the nature of the fertilization it may be too insensitive to distinguish between related species.

6.10 AUTOINFECTION.

Infective larvae in fresh faeces have only been seen for S.stercoralis and S.felis. These larvae in the case, of S.stercoralis are responsible for autoinfection (Faust, 1937), a condition in which larvae migrate from the gut back into the tissues to complete the life cycle without passing outside the body. These infective larvae are morphologically similar, but are often smaller than the infective larvae developing normally (Nishigori, 1928; Faust, 1937). Infective larvae were found in faeces from cats naturally infected with *S.felis*. These were smaller than the normal infective larvae (Table 6:9), and suggested autoinfection could occur with *S.felis*. No evidence of hyperinfection was seen in cats infected with this species. The discovery of infective larvae, particularly dwarf infective larvae, in fresh faeces can be used to diagnose eiher *S.felis* or *S.stercoralis*, since this is unique to these species.

Rhabditoid larvae of S. stercoralis also have the ability to penetrate host tissues (Froes, 1931; Torres and Azevedo, 1938; de Pauli and Johnson, 1978; Penner, 1981). In a dog experimentally infected with S.stercoralis many rhabditoid larvae were found migrating down the crypts of the large intestine and were occasionally found passing into the lamina propria (Fig.6:16). Parasitic females were found only in the small intestine. This is a pathognomonic sign of the invasive tendency of S. stercoralis. It has not been seen in other species with the exception of S.felis. This tendency is present in both rhabditoid and filariform larvae and is responsible for autoinfection in S.stercoralis. Adult parasitic females found in the small intestine and rhabditiod larvae invading the large intestine is characteristic of S. stercoralis. Ά

FIG.6:16. Autoinfective tendency in Strongyloides stercoralis : A. rhabditoid larvae migrating from lumen of colon down crypts; B. larva passing through mucosa at base of crypt in colon. Dog immunosuppressed by prednisolone and experimentally infected with Strongyloides stercoralis. H & E AX180; BX420.

pathologist aware of this feature can, in primates, change his diagnosis from "Strongyloides sp" to "consistent with S.stercoralis. Invasion of the crypts of the large bowel is seen very occasionally with S.felis (Fig.6:17), and provides further evidence of the autoinfective tendency suggested by the finding of infective larval in faeces. This feature has not been seen in histological preparations of large bowel in hosts infected with other species.

Infective larvae in faeces or evidence of autoinfection is a useful character. Finding infective larvae in faeces is rare in both S.stercoralis and S.felis. Infective larvae formed 0.16% of 5000 larvae examined from the faeces of 200 humans infected with S.stercoralis (Bandyopadhay and Chowdhury, 1961), while only 12 infective larvae of S.felis were seen in my study in which at least several million larvae were examined. The autoinfective tendency in S.felis is obviously less. Thus, although useful the character is not consistent, and its occurrence cannot be relied upon for diagnosis.

FIG.6:9. Infective larvae of *Strongyloides felis* : A. normal; B. dwarf larvae in faeces.

PARAMETER	А	В	REDUCTION (%)
n	10	3	
length (µm)	524.5±9.8	379.4 ±7.5	27.7
	(808 - 538)	(373 – 388)	
width (um)	15.3±1.0	10.6±1.7	30.7
	(14.6-16.7)	(9.4-12.5)	
oes (um)	226.4±5.7	168.2±3.2	44.0
	(214.7-233.5)	(164.7-170.9)	Ô
ant end to GP	320.6±7.9	239.7±13.2	25.2
(um)	(304.4-327.3)	(230.4 - 249.1)	
tail (um)	59.8±1.5	40.6±7.4	32.1
	(58.4-62.5)	(35.4-45.9)	
oes/l (%)	43.2±0.9	44.3±0.4	-2.5
000, - ()	(42.2-45.2)	(44.1 - 44.8)	,
ant end-mid GP	61.1±0.9	62.6±2.3	-2.4
/1 (%)	(59.8-62.7)	(61.0-64.2)	
tail/l (%)	11.4±0.3	10.6±2.2	7.0
cu1=, = (-/	(11.0-11.8)	(9.1-12.2)	
6.11 SUMMARY.

The criteria used to differentiate species has been critically assessed in this chapter. The criteria were classified into major and minor, a major criterion being used as an initial tool for separating species, while minor criteria were used to distinguish between species of similar morphology demarcated at first by the major criteria. In the parasitic female the major criteria were the shape of the stoma in the *en face* view, the type of ovary, body length and the stage in freshly voided faeces. A useful minor criterion was the shape of the tail in lateral view.

Major criteria in the free-living male were the allignment of the subventral preanal and adanal papillae in the longitudinal axis, the position of the subventral preanal papillae with respect to the preanal organ, the distance between the preanal organ and the cloaca, and the type of spicule. In the free-living female the only criteria were the post-vulval narrowing and rotation of the vulva posteriorly.

Other criteria were only minor and included the presence of autoinfective larvae or evidence of an autoinfective tendency, and the taxonomic classification of the host, particular the order to which it belonged.

CHAPTER 7

APPLICATION OF CRITERIA.

7.1 Introduction.

An indication of the usefulness of criteria for speciation would be, one would expect, the number of new species described after the criteria were established. Seven new species were proposed after Little (1966a&b) published his criteria. One. S.herodiae, initially was described without knowledge of Little's work (Boyd, 1966&1967). Another, S.bufonis, was a poor quality upgraded version of an unavailable former attempt (see Chapter Both Boyd (1967) and Rao and Singh (1968) subsequently 3.2.1). ignored Little's suggestions. Of the remaining five new species described in the 19 years since Little's work was published, Little's criteria in two cases were incomplete but given to the best that the available specimens allowed (Greve, 1967 ; Grabda-Kazubska, 1978). The former, S.elephantis, was available only as parasitic females in fixed gut contents, while for the latter, S.spiralis, the free-living adults failed to develop in culture. For S.quiscali the en face view of the parasitic female, free living stages and stage in faeces were not described (Barus 1968). Sakamoto and Yamashita (1970) described all stages of S. pavonis but save a description of

the free-living male which failed to conform to Little's seneric definition in that nine pairs of caudal papillae were reported, rather than the six pairs typical of the genus. In describing S.cruzi Rodrigues (1968) appeared to be unaware of Little's work and gave a description reminiscent of the inadequate, almost generic, descriptions of the 1930's and 40's. Shapilo (1976) gave a mediocre description of only the parasitic female of S.darevskyi. Thus of seven new species described since 1966 none were fully the S.cati described. Only one species, (syn.S.planiceps), was redescribed using the new criteria (Arizono et al, 1976; Horie et al, 1980). Members of the genus are not scarce. Since 1966 at least 90 reports of Strongyloides sp. in new hosts have been made (Table 6:8). The inadequately described new species, the failure to redescribe "old" species and the large number of unidentified "new" records indicate that in practice Little's criteria are being ignored. Why is this so? What are the practical problems in applying Little's criteria?

7.2 Problems in Application.

A clue to these problems was provided by attempts to identify a species of Strongyloides found as a natural parasite of man in the Highlands of Papua Nuigini (Kelly and Voge, 1973; Kelly et al, 1976; Knight et al, 1979; Ashford et al, 1979; Vince et al, 1979; Ashford et al, 1981). This species has eggs in faeces, and in this respect resembles S.fuelleborni, reported from man in Africa (Blackie, 1932; Pampiglione and Riccardi, 1971; Hira and Patel, 1977) and the Philippines (Wallace et al, 1948). The free-living females obtained had a post-vulval narrowing (Kelly et al, 1976); again a characteristic of S.fuelleborni. No males were available. The parasitic female was obtained by anthelmintic therapy (Kelly et al, 1976), had spiral ovaries, and a stoma which in en face view was a modified X-shape, and a bluntly rounded tail. Why was this species not diagnosed as S.fuellebornt? Lesser information had led to the species in African man with eggs in faeces being diagnosed as S.fuelleborni (Pampiglione and Riccardi, 1971).

It seems that the major cause of reluctance was lack of non-human primates in PNG (Kelly et al, 1976). There was no excuse for short cuts. All stages were required. This is the first point. Parasitologists are often presented with fixed Strongylotdes of whatever stages. If these are not unique, other stages are also The second point is that free-living males could not required. initially be cultured (Kelly et al, 1976); consequently, a key stage was missing. This illustrates the often encountered problem, that even when one makes the effort to collect all stages, the biology of the parasite foils ones efforts. The third point, is that even when all stages are available and have been adequately studied, one has to compare them with valid species, too few of which have been fully described. If the descriptions are inadequate, one therefore has to reexamine those species related to the specimens to be diagnosed and fully describe them.

Once those species which appeared to share key morphological features with the Kanabea *Strongyloides* were examined, the fourth point become obvious. Little's criteria were not precise enough. He had made a highly significant contribution in clarifying what the generic morphology of *Strongyloides* was, and how gross differences could be used to separate species, but one needed to know what degree of difference, in which features, justified creation of a new species. Chapter 6 has answered some of these questions.

When faced with specimens to be identified, even if a full suite of stages is available, how does one start? Firstly, all stages must be examined and adequately described in terms of key features. Next comes the tedious and often frustrating process of matching the specimens to a described species. The alogorithm presented in the form of flow charts (Fig.7:1; 7:2; 7:3) makes this process easier. The principle underlying this schema is that if one searches through descriptions of valid species in an attempt to match key features e.g. stomal shape, many possible diagnoses will be discarded owing to their descriptions being deficient and lacking that key feature. Consequently one needs a schema which allows these inadequately described species to be presented for consideration. This is allowed for in the flow charts by utilizing If a species has been the host specificity of Strongyloides. already described from a particular host, it should be among the

FIG.7:1. Algorithm for the diagnosis of unidentified specimens of *Strongyloides*.

FIG.7:2. Flow chart for the evaluation of host - Strongyloides records as part of algorithm given in Fig.7:1.

first to be considered in diagnosis, even if the description is inadequate. In such a case, a "consistent-with" diagnosis can be arrived at by matching up the described features in the named species with those in the specimen. If no match is obtained, one then considers the next selection group which is based on host family. This approach does not advocate diagnosis of a particular species solely on the basis of host, but uses host as a means of bringing first to one's attention the most likely diagnoses.

Fig.7:1 presents the overall schema, Fig.7:2 the preliminary steps in evaluating records in selection groups and Fig.7:3 the general schema for comparing the unknown with known species. Fig.7:1 relies heavily on the host-Strongyloides list (Table 6:7). Fig.7:2 also utilizes this list. Sources for the descriptions of species required in Fig.7:3 can be found in Table 3:1. In Fig.7:3 note that comparisons of the parasitic female, free-living male, free-living female and stage in faeces are made independently leading to four diagnoses. These are then checked for agreement and if one is found to match all four, the "final" diagnosis made. "Final" is qualified since the finality will depend on various factors, eg. adequacy of specimens, adequacy of descriptions, commoness of host-parasite association. This latter category is illustrated by a diagnosis of S. papillosus in a sheep. This is an expected diagnosis, whereas diagnosis of S.stercoralis in a cat, being uncommon, would make one look more critically at other alternatives, eg. S.felis or lead one to search further through the flow chart to enable other diagnosis to be eliminated. It is also obvious from Fig.7:3 that a diagnosis can be made using only one stage of a parasite, rather than four, but that this diagnosis will be less reliable than if the other three stages were also compared.

To illustrate how this schema can be used in a particular case, that of the *Strongyloides* found in man in PNG will be considered. 7.3 The Kanabea Strongyloides.

The distribution in man in PNG of the *Strongylotdes* species with eggs in faeces is shown in Fig.7:4. The Karimui Plateau, Simbu Province, site of my own collection of the free living stages and stage in faeces, is also shown.

The literature contains a description of specimens collected from the Fly River region (Kelly et al, 1976). The free-living male / No description, but a brief comment on the was undescribed. comparative morphology of free-living females collected from the Highland area of Kamea was made by Ashford et al (1979). No name has been formally proposed for the parasite, but a confusing array of names have been used. The specimens from the Fly River region have been refered to as Strongyloides species (Kelly and Voge, 1973), S.fulleborni-like (Kelly et al, 1976), S.fuelleborni (Knight et al, 1979, p565), S.'fuellbornt' (Knight et al, 1979, p571), S.fuellebornt-like (Knight et al, 1979, p572), S.cf.fuellebornt (Ashford et al, 1981, p269), fuellebornt-like Strongyloides (Ashford et al, 1981, p270), and Kelly's Strongyloides (Ashford et al, 1981, p276). Those from Kamea in the Highlands have been called Kanabea Strongyloides (Vince et al, 1979; Ashford et al, 1979), S.cf.fuelleborni (Ashford et al, 1981, p269), fuelleborni-like Strongyloides (Ashford et al, 1981, p270), and Kelly's Strongyloides (Ashford et al, 1981, p276).

FIG.7:4. Distribution of the Kanabea Strongyloides in Papua Nuigini (from Ashford et al, 1981). Positive sites shown as larger dots; ? introduced positives as smaller dots; Karamui Plateau as indicated by arrow.

The present status is:

- 1. The parasitic female resembles *S.fuelleborni* but has not been diagnosed as such.
- 2. The parasitic female, free-living female, infective larvae and eggs have been described, but not the free-living male.
- 3. Undisclosed differences exist between free-living females from the Fly River region and from the Highlands of PNG (Ashford et al 1979).
- 4. These differences have led to a belief that two species of Strongyloides may occur (Ashford, pers. comm., 1985).

7.4 Application of Algorithm.

Only a brief resume will be given to merely illustrate the This is presented in Fig.7:5. The first principles involved. selection group is given in Table 7:1 and contains species extracted from Table 6:7. S.myopotami and S.felis were discarded since no patent infection has been demonstrated in man. S. cobus was retained since it naturally infects primates. The S.sp from the pretty faced wallaby which also failed to become patent on experimental infection was also discarded. All species discarded also were morphologically different from the Kanabea Strongyloides. In the course of events these species would normally be presented for reconsideration in another selection group. No descriptions were available for the Strongyloides sp. reported by Brown and Girardeau (1977) and van der Hoeven and Rijpstra (1962). The former authors found Strongyloides larvae, possibly S.fuelleborni, in breast milk, while the latter reported eggs in faeces of people in Dutch West New Guinea, possibly the same species under consideration in P.N.G.

The parasitic female described by Kelly *et al* (1976) had a stoma with a modified-X shape in *en face* view, spiral ovaries both anterior and posterior, was of medium length with a bluntly rounded tail. It was consistent with *S.cebus* and *S.fuelleborni*.

The free-living male had a sharply pointed spicule, with a moderate curvature and a prominent ventral membrane with a straight edge; the gubernaculum was curved, width/length 48.5%; SVP level with PO, AD1 was dorsal to line of SVP and AD2, and the postanals were moderaely separated; PO to cloaca was greater than body width, 1.34 ± 0.16 . It was consistent with that of *S.fuelleborni* and *S.suis* (Fig.7:5).

The free-living female had a post vulval constriction (reduction of 11.8±3.0%) but the vulva was not rotated posteriorly

TABLE 7:1. Species reported to infect man naturally or used for experimental infections.

SPECIES	INF	REFERENCE	AC
S.canis	E-	Augustine 1940	P
S.cebus	E	Sandground 1925	М
S.felis	E-	this thesis	
S.fuelleborni	N+	Blackie 1932	M
S.fuelleborni	N+	Pampiglione&Ricciardi 1972	M
S.fuelleborni-like	N	Kelly et al 1976	М
S.myopotami	E-	Little 1965	М
S.myopotami	N?	Burks&Jung 1960	P
S.procyonis	E+	Little 1966b	G
S.simiae	E-	Azevedo&Meira 1947	М
S.sp [°]	N	van der Hoeven&Rijpstra 1962	P
S.sp	N	Brown&Girardeau 1977	P
S.sp (ex PNG)	N	Kelly&Voge 1973	М
s.sp	E-	this thesis	
(ex Macropus parryi)			
S.stercoralis	N	Bavay 1876	M
S.stercoralis	N	Georgi&Sprinkle 1974	P
S.suis	E+	Kotlan&Vajda 1934	М
(S.ransomi)			
S.suis	E-	Tomita 1940	P
(S.papillosus)			

(angle 100.5 \pm 5.2°). S.fuellebornt and S.cebus have a post vulval narrowing which is variable (Little, 1966a). The variation in the orientation of the vulva has not been carefully examined, although Premvati (1958) in her illustrations showed the vulva rotated with temperature in S.fuellebornt. S.suts from PNG has a post vulval narrowing and a slightly rotated vulva.

All these species have eggs in faeces as does the Kanabea Strongyloides.

On comparing all four diagnoses only *S.fuellebornt* matches up, although the possible error in the free-living female reduces the degree of confidence with which the diagnosis is made. Further comparison using the same technique with other selection groups leaves only *S.paptllosus* as a possible diagnosis, although its free-living female does not have a post vulval constriction like the Kanabea *Strongyloides*.

It is obvious a more comprehensive study both of the Kanabea Strongyloides and of S.fuelleborni is required before a confident diagnosis can be made. The intraspecific variation in key features shown by these species must be examined to determine the range of morphology shown by both, particularly for the free-living adults, and most notably the post-vulval constriction and vulval rotation of the free-living female. Nevertheless, the example illustrates how the algorithm can be applied in practice.

7.5 SUMMARY.

Little's criteria for the differentiation of species in Strongyloides has been rarely used since their publication. Problems in the application of these criteria were assessed and an algorithm proposed to enable unknown specimens to be identified in a practical way. An example of the use of the schema was provided using the Kanabea Strongyloides, a parasite of humans in Papua Nuigini. Although a tentative diagnosis of S.fuelleborni was made, significant reservations due to unknowns regarding the intraspecific variation in morphology of the free-living stages of this species and those species morphologically similar to it, make the diagnosis uncertain.

the test case.

BIBLIOGRAPHY

- Adewinata, R.T. (1955) Tjatjing jang berparasit pada hewan menjusui dan unggas di Indonesia. Hemera Zoa, 62, 229-247.
- Alfieri, F. (1898) Intorno all genesi della "Anguillula intestinalis" della rana. Comunicazione falta alla R. Accad. di Med. di Torina nella Seduta del 20 Novembre 1898, 325-326.
- Anderson, R.C. (1958) Method pour l'examin des nematodes en vue apicale. Annales de Parasitologie, Humaine et Comparee, 33, 171-172.
- Anderson, R.C. and Bain, O. (1982) Keys to genera of the superfamilies Rhabditoidea, Dioctophymatoidea, Trichinelloidea and Muspiceoidea. CIH Keys to the Nematode Parasites of Vertebrates. No. 9, 26pp.
- Arambulo, P.V., Jaafar Bin Abass and Walker, J.S. (1974) Silvered leaf-monkeys (*Presbytis cristatus*) II Gastrointestinal parasites and their treatment. Laboratory Animal Science, 24, 299-306.
- Arizono, N. (1976a) Studies on the free-living generations of Strongyloides planiceps Rogers, 1943. I. Effects of quantity of food and population density on the development types. Japanese Journal of Parasitology, 25, 274-282.
- Arizono, N. (1976b) Studies on the free-living generation of Strongyloides planiceps Rogers, 1943. II. Effects of temperature on the developmental types. Japanese Journal of Parasitology, 25, 328-335.
- Arizono, N., Matsuo, K. and Yoshida, Y. (1976). Scanning electron microscopy of *Strongyloides planiceps* Rogers, 1943. Japanese Journal of Parasitology, 25, 468-474.
- Artigas, P. and Pacheco, G. (1933) Strongyloides myopotami n.sp. (Nematoda). Comptes Rendes de la Societe de Biologie de Sao Paulo, 112, 406-407.
- Ash, L.R. (1962) The helminth parasites of rats in Hawaii and the description of *Capillaria traverae* sp.n. Journal of Parasitology, 48, 66-68.
- Ashford, R.W., Hall, A.J. and Babona, D. (1981) Distribution and abundance of intestinal helminths in man in western Papua New Guinea with special reference to *Strongyloides*. Annals of Tropical Medicine and Parasitology, 75, 269-279.
- Ashford, R.W., Vince, J.D., Gratten, M.A. and Bana-Koiri, J. (1979) Strongyloides infection in a mid-mountain Papua New Guinea community. Results of an epidemiological survey. Papua New Guinea Medical Journal, 22, 128-135.

- Ashford, R.w., Vince, J.D., Gratten, M.J. and Miles, W.E. (1978) Strongyloides infection associated with acute infantile disease in Papua New Guinea. Transactions of the Royal Society of Tropical Medicine and Hygiene, 72, 554.
- Azevedo, J.F. and Meira, M.T.V. de. (1947) Helmintos intestinais de macucos de Guine Portuguese. Tentativo de infestacao experimental do homen. An. Assoc. Exp. Prog. Cienc., 12, 472-281.
- Augustine, D.L. (1940) Experimental studies on the validity of species in the genus Strongyloides. American Journal of Hygiene, 32, 24-32.
- Augustine, D.L. and Davey, D.G. (1939) Observations on a natural infection with *Strongyloides* in the dog. Journal of Parasitology, 25, 117-119.
- Babero, B.B. (1960) A survey of parasitism in skunks (*Mephitis mephitis*) in Louisiana, with observations on pathological damages due to helminthiasis. Journal of Parasitology, 46, 26-27.
- Ballantyne, R.J. (1971) Comparative Studies on Rhabdiasoid nematodes. PhD Dissertation, University of Queensland. 302pp.
- Bandyopadhay, A.K. and Chowdhury, A.B. (1961) Autoinfection in Strongyloides. Bulletin of the Calcutta School of Tropical Medicine, 9, 27.
- Barus, V. (1968) Parasitic nematodes of birds of the family Icteridae (Passeriformes) in Cuba. Folia Parasitologica, 15, 131-146.
- Barus, V. (1969) Nematodes parasitic in birds of Cuba. Vest. Csk. spol. Zool., 33, 193-210. (not sighted)
- Barus, V., Sergeeva, T.P., Sonin, M.D. and Ryzhikov, K.M. (1978) Helminths of fish-eating birds of the Palaeartic Region. I. Nematoda. (ed. Rysavy, B. and Ryzhikov, K.M.) Academia: Prague, 45-47.
- Basir, M.A. (1950) The morphology and development of the sheep nematode, Strongyloides papillosus (Wedl, 1856). Canadian Journal of Research D, 28, 173-196.
- Barth, D. and Matzke, P (1984) Gastro-intestinal nematodes of fallow deer (Dama dama L.) in Germany. Veterinary Parasitology, 16, 173-176.
- Bavay, M. (1876) Note sur l'anguillule stercorale. Comptes rendes Acadamie des Sciences, Paris, 83, 694-696.
- Bavay, M. (1877a) Sur l'anguillule intestinale (Anguillula intestinalis). Nouvea ver nematode trouve par le D.Normand chez les malades atteints de diarrhee de Cochinchine.Comptes Rendes Hebdomanes des seances de l'Acadamie des Sciences de Biologie, 74, 16-19.

- Bavay, M. (1877b) Note sur l'anguillule intestinale (Anguillula intestinalis), nouveau ver nematoide trouve par le Dr. Normand chez les malades atteints de diarrhee de Cochinchine. Arch. de med. nav., Paris, 28, 64.
- Baylis, H.A. (1923) Report on a collection of parasitic nematodes, mainly from Egypt. Part III Camallanidae, etc. Parasitology, 15, 24-38.
- Baylis, H.A. (1945) Helminths from the American cotton rat (*Sigmodon hispidus*). Annals of Magazine of Natural History, Series II, 12, 189-195.
- Beach, T. de V. (1935) Experimental propogation of Strongyloides in culture. Society for Experimental Biology and Medicine, Proceedings, 32, 1484-1486.
- Beach, T.de V. (1936) Experimental studies on human and primate species of Strongyloides. V. The free-living phase of the life cycle. American Journal of Hygiene, 1936, 243-277.
- Beg, M.K. (1968) Studies on the life-cycle of Strongyloides fulleborni(g) von Linstow, 1905. Annals of Tropical Medicine and Parasitology, 62, 502-505.
- Benbrook, E.A. and Sloss, M.W. (1962) Coccidial oocysts (Eimeria leuckarti) from north American donkeys (Asinus asinus). Journal of American Veterinary Medical Association, 140, 817-818.
- Bezubik, B. (1961) Investigations on the sheep strain of Strongyloides papillosus. I. Observations on the effect of cortisone on the susceptibility of hamsters and guinea pigs to the sheep and rabbit strains of the threadworm. Acta Parasitologia Polonica, 9, 427-437.
- Bezubik, B. (1963) Investigations on the sheep strain of Strongyloides papillosus. III. The effect of the threadworm after 5 or 7 serial passages through rabbits on sheep and goats. Acta Parasitologia Polonica, 11, 1-15.
- Bisseru, B. and Poopalachelvam, M. (1968) Allometric growth of oesophagus / body of rhabditiform and filariform larvae of Strongyloides stercoralis and Strongyloides fulleborni. Medical Journal of Malaya, 22, 234-235.
- Blackie, W.K. (1932) A helminthological survey of Southern Rhodesia. Number 5 of the Memoir Series of the London School of Hygiene and Tropical Medicine, 1-91.
- Blacklock, B. and Alder, S. (1922) The pathological effects produced by *Strongyloides* in a chimpanzee. Annals of Tropical Medicine and Parasitology, 16, 283-290.
- Bolla, R.I. and Roberts, L.S. (1968) Gametogenesis and chromosomal complement in *Strongyloides ratti* (Nematoda : Rhabdiasoidea). Journal of Parasitology, 54, 849-855.
- Borah, D.J., Baruah, P.K., Gogoi, A.R. and Roychoudhury, G.K. (1983) Studies on some of the haematological and biochemical changes in goat infected with *Strongyloides papillosus*. Indian Veterinary Journal, 60, 88-92.

- Boyd, E.M. (1966) Observations on nematodes of herons in North America including three new species and new host and state records. Journal of Parasitology, 52, 503-511.
- Boyd, E.M. (1967) Strongyloides ardeae Boyd, 1966 renamed. Journal of Parasitology, 53, 3.
- Brackett, S. and Bliznick, A. (1949) An attempt to adapt Strongyloides ratti to the mouse. Journal of Parasitology, 35, 41-44.
- Brown, R.C. and Girardeau, M.H.F. (1977) Transmammary passage of STrongyloides sp. larvae in the human host. American Journal of Tropical Medicine and Hygiene, 26, 215-219.
- Brumpt, E. (1910) Precis de Parasitologie, 1st edition. Mason et Cie, Paris, 431. (not sighted; from Ransom, 1911)
- Brumpt, E. (1913) Precis de Parasitologie, 2nd edition. Mason et Cie, Paris.
- Brumpt, E. (1921) Mode de penetration des nematodes dans l'organisme des mammiferes, histotropisme et histodiagnostic. Comptes rendes de la Societie de Biologie, 85, 204-206.
- Brumpt, E. (1922) Precis de Parasitology, 3rd edition. Mason et Cie, Paris.
- Brumpt, E. (1927) Precis de Parasitologie, 4th ed. Masson et Cie, Paris.
- Brumpt, E. (1934) Precis de Parasitology, 5th ed. Masson et cie, Paris.
- Brumpt, E. (1949) Precis de Parasitologie, 6th ed. Masson et Cie, Paris.
- Burks, J.W. and Jung, R.C. (1960) A new type of water dermatitis in Louisiana. Southern Medical Journal, 53, 716-719.
- Bush, A.O. and Forrester, D.J. (1976) Helminths of the white ibis in Florida. Proceedings of the Helminthological Society of Washington, 43, 17-23.
- Cameron, T.W.M. (1936) Studies on the endoparasitic fauna of Trinidad mammals. IV. Further parasites from Trinidad deer. Canadian Journal of Research, 14, 165-167.
- Cameron, T.W.M. (1939) Studies on the endoparasitic fauna of Trinadad mammals. VI. Parasites of edentates. Canadian Journal of Research, 17, 249-264.
- Cameron, T.W.M. and Parnell, I.W.(1933) X. The internal parasites of land mammals in Scotland. Royal Physical Society, Edinburgh, Proceedings, 22, 133-154.

- Cameron, T.W.M. and Reesal, M.R. (1951) Studies on the endoparasitic fauna of Trinadad mammals. VII. Parasites of hystricomorph rodents. Canadian Journal of Zoology, 29, 276-289.
- Chandler, A.C. (1925a) The helminthic parasites of cats in Calcutta and the relation of cats to human helminthic infections. Indian Journal of Medical Research, 13, 213-227.
- Chandler, A.C. (1925b). The species of *Strongyloides* (Nematoda). Parasitology, 17, 426-433.
- Chandler, A.C. (1939) A case of canine strongyloidiasis in Texas. Journal of Parasitology, 25, 157-158.
- Chandler, A.C. (1941) Helminths of muskrats in S.E. Texas. Journal of Parasitology, 27, 175-181.
- Chandler, A.C. (1942) Helminths of tree squirrels in Southeast Texas. Journal of Parasitology, 28, 135-140.
- Chandler, A.C. and Melvin, D.M. (1951) A new cestode, *Oochoristica pennsylvania*, and some new or rare helminth records from Pennyslvanian mammals. Journal of Parasitology, 37, 106-109.
- Chertova, A.N. (1971) [Helminth fauna of *Gazella subgutterosa*]. Izdatel'stvo "Kolos", Moscow, 436-440. (in Russian) (not sighted)
- Chilimoniuk, J. (1958) Cztery przypadki Strongyloidozy zrebiat. Medycyna Weterynnaryjna Medecine Veterinaire, 14,169.
- Chitwood, B.G. and Chitwood, M.D. (1950) Introduction to Nematology. University Park Press, Baltimore. pp334.
- Chitwood, B.C. and Graham, G.L. (1940) Absence of vitelline membranes on developing eggs in parasitic females of *Strongyloides ratti*. Journal of Parasitology, 26, 183-190.
- Chitwood, B.G. and McIntosh, A. (1934) A new variety of *Allotonema* (Nematoda : Diplogasteridae), with a note on the genus. Proceedings of the Helminthological Society of Washington, 1, 37-38.
- Chu Tsio-Chih. (1937) On the occurrance of *Strongyloides ratti* in Chinese rats. Lignan Science Journal, 16, 501-502. (not sighted)
- Chuahan, P.P.S. (1978) On the taxonomy and biology of the important nematode parasites of water buffalo (*Bubalus bubalis*) with remarks on the related forms in some of our domestic and wild ruminants. Agra University Journal of Research (Science), 27, 13-18.
- Chuahan, P.P.S., Bhatra, B.B. and Pande, P. (1973) Diagnosis of eggs and infective larvae of gastrointestinal nematode parasites of buffalo. Indian Journal of Animal Science, 43, 27-31.

- Chung, H-L. (1937) Observations on the filariform larvae of *Strongyloides* fulleborni in different media as well as in tissue cultures. Zeitschrift fur Parasitenkunde, 9, 28-49.
- Cobbold, T.S. (1879) Parasites; A Treatise on the Entazoa of Man and Animals, including Some Account of the Ectozoa. J. and A. Churchill, London, 234-237.
- Colley, F.C. (1970) Strongyloides myopotami : Fine structure of the body wall and alimentary tract of the adult and third stage larva. Experimental Parasitology, 28, 420-434.
- Contacos, P.G. (1954) Studies on the bionomics of Strongyloides stercoralis and related Strongyloides species. PhD dissertation, Tulane University, Louisiana, U.S.A. 82 pp.
- Conti, J.A., Forrester, D.J., Frohlich, R.K., Hoff, G.L. and Bigler, W.A. (1984) Helminths of urban grey squirrels in Florida. Journal of Parasitology, 70, 143-144.
- Cooper, J.E. and Holt, P.E. (1975) Veterinary work at a primate collection in Kenya. Tropical Animal Health and Production, 7, 219-228.
- Cosgrove, G.E., Nelson, B. and Gengozian, N. (1968) Helminth parasites of the tamarin, *Sanguinus fuscicollis*. Laboratory Animal Care, 18, 654-655.
- Cowper, S.G. (1966) A review of helminthiasis in the western region of Nigeria with special reference to the Ibadan area. West African Medical Journal, 16, 3-11.
- Cram, E.B. (1929) A new roundworm parasite, *Strongyloides avium* of the chicken with observations on its life history and pathogenicity. North American Veterinarian, 10, 27-30.
- Cram, E.B. (1930) (no title) Journal of Parasitology, 17, 55-56.
- Cram, E.B. (1931) (no title) Journal of Parsitology, 18, 48.
- Cram, E.B. (1936) Biological and morphological observations on a species of *Strongyloides* (Nematoda) of chickens in Puerto Rico. Revista de Parasitologica Clinica y Laboratoria, 2:289-304.
- Crum, J.E., Nettles, V.F. and Davidson, W.R. (1978) Studies on endoparasites of the black bear (*Ursus americana*) in southeast United States. Journal of Wildlife Diseases, 14, 178-186.
- Culling, C.F.A. (1974) Handbook of Histology and Histological Techniques (Including Museum Techniques) 3rd Ed. Butterworths, London.
- Cullum, L.E. and Campbell, D.J. (1963) Control of gastro-intestinal parasites in monkeys. Canadian Veterinary Journal, 4, 118-120.

- Cullum, L.E. and Hamilton, B.R. (1965) Thiabendazole as an anthelmintic in research monkeys. American Journal of Veterinary Research, 26, 779-780.
- Darling, S.T. (1911) Strongyloides infections in man and animals in the isthmian canal zone. Journal of Experimental Medicine, 14, 1-24.
- Davidson, W.R. (1976) Endoparasites of selected populations of grey
 squirrels (Sciurus carolinensis) in the Southeastern United
 States. Proceedings of the Helminthological Society of
 Washington, 43, 211-217.
- Davidson, W.R., Doster, G.L., Pursglove, S.R. and Prestwood, A.K. (1977) Helminth parasites of the ruffed grouse (*Bonasa umbellus*) from the eastern United States. Proceedings of the Helminthological Society of Washington, 44, 156-161.
- Davidson, W.R., Kellog, F.E. and Doster, G.L. (1980) Seasonal trends of helminth parasites of bobwhite quail. Journal of Wildlife Diseases, 16, 367-375.
- Dawkins, H.J.S. and Grove, D.I. (1982) Attempts to establish infections with *S. stercoralts* in mice and other laboratory animals. Journal of Helminthology, 56, 23-26.
- Dawkins, H.J.S., Robertson, T.A., Paoadimitriou, J.M. and Grove, D.I. (1983) Light and electron microscopical studies of the intestinal location of Strongyloides ratti. Paper presented to Australian Society of Parasitology : Annual Scientific and General Meeting, 1983, Canberra, 18-20 May, 41.
- Desportes, C. (1945) Sur Strongyloides stercoralis (Bavay 1876) et sur les Strongyloides de primates. Annals de Parasítologie, Humaine et Comparee, 20, 160-190.
- Dollfus, R.P., Desportes, C., Chabaud, A.G. and Rouget-Campana, Y. (1961) Station experimentale de parasitologie de Richelieu (Indre-et-Loire). Contribution a la faune parasitaire regionale. Chap.I. Liste des parasites par hosts par R.-Ph. Dollfus. Annals Parasitologie, Humaine et Comparee, 36, 174-261.
- Dollinger, P.von and Rüedi, D. (1974) Endoparasiten im affenbestand des Zoologischen Gartens Basel und behandlungsversuche mit mebendazol and levamisol. Zoologische Garten, 44, 329-337.
- Drudge, J.H. (1972) Metazoal Diseases. In: Equine Medicine and Surgery. 2nd ed. (Ed. Catcott, E.J. and Smithcors, J.F.) American Veterinary Publications Inc., Wheaton, Illinois, U.S.A., 157-187.
- Dubey, J.P. and Pande, B.P. (1964) On helminthic lesions encountered in the alimentary canal of the Indian wild cat (*Felis* chaus). Agra University Journal of Research, 13, 169-184.
- Eberhard, M.L. (1981) Intestinal parasitism in an outdoor breeding colony of *Macaca mulatta*. Laboratory Animal Science, 31, 282-285.
- Eckert, J. (1963) Versuche zur anwendung von thiabendazole als anthelminthikum bei Zootieren. Kleintier-Praxis, 8, 34-40.

- Ellerman, J.R. (1940) The Families and Genera of Living Rodents. Vol. 1. Rodents other than Muridae. British Museum (Natural History), London.
- Enigk, K. (1933) Einige nematoden aus der nutria. Zeitschrift fur Parasitenkunde, 6,326-331.
- Enigk, K. (1952) Zur epidemiologie des strongyloidesbefalles der haus-und nutztiere. Zietschrift fur Tropenmedizin und Parasitologie, 2, 124-142.
- Enigk, V.K. (1950) Pathogenitat und therapie des Strongyloides-defalles der haustiere. Monatschrift fur Tierheilkunde, 4, 97-112.
- Enyenihi, U.K. (1972) Parasitic infections of animals in the University of Ibadan Zoo. African Journal of Medical Science, 3, 282-293.
- Erhardt, A. and Denecke, K. (1939) A propos de la strongyloidaise des chats. Annales de Parasitologie, Humaine et Comparee, 17, 206-208.
- Fabiyi, J.P. (1972) Studies on the parasites of the grey breasted helmeted guinea fowl (Numida meleagridis galeata Pallas) of the Vom area of the Benue Plateau State, Nigeria. I. Helminth parasites. Bulletin of Epizootic Diseases of Africa, 20, 235-238.
- Faust, E.C. (1930) Infection experiments in monkeys with human, macaque and Ateles strains of Strongyloides. Proceedings of the Society for Experimental Biology and Medicine, 28, 919-920.
- Faust, E.C. (1933) Experimental studies on human and primate species of Strongyloides. II. The development of Strongyloides in the experimental host. American Journal of Hygiene, 18, 114-132.
- Faust, E.C. (1937) The life cycle of *Strongyloides*. Raboty po Gelmintologie, 1937, 160-166.
- Fleming, W.J., Georgi, J.R. and Caslick, J.W. (1979) Parasites of the woodchuck (Marmota monax) in Central New York State. Helminthological Society of Washington Proceedings, 46, 115-127.
- Ford, A.C. and Speltie, T. (1973) Some aspects of thep parasitology of the non-human primates at the Netherlands Primate Center. Experimentation Animale, 6, 1524.
- Forrester, D.J., Bush, A.O., Williams, L.E. and Weiner, D.J. (1974) Parasites of greater sandhill cranes (*Grus canadensis tabida*) on their wintering grounds in Florida. Proceedings of the Helminthological Society of Washington, 41, 55-59.
- Forrester, D.J., Taylor, W.J. and Nair, K.P.C. (1974) Strongyloidosis in captive white tailed deer. Journal of Wildlife Diseases, 10, 11-17.
- Fox, H. (1923) Disease in Captive Wild Mammals and Birds. Lippincott edition, Philadelphia, p654.

- Frank, W., Krauss, D. and Ostertag, H.G. (1963) Zur kenntnis von Monodontella giraffae York and Maplestone 1926 (Nematodes, Ancylostomatidae), einem parasiten der gallengange von giraffen und okapis (Mammalia, Giraffidae). I. Die pathologischen veranderungen, insbesondere der leber, sowie infektionsversuche mit gezuchteten larven. Zeitschrift fur Parasitenkunde, 23, 63-79.
- de Freitas, J.F.T and de Almeida, J.L. (1936) Notas sobre "Strongyloides" das aves domesticas (Nematoda - Rhabdiasoidea). Revista do Departamento Nacional da Produccao Animal, 3, 1-9.
- Froes, H.P. (1931) Some points of interest in the biology of Strongyloides stercoralis. Journal of Tropical Medicine and Hygiene, 34, 238-239.
- Froes, O.M. (1976) Novos registros para a faunaparasitaria do Rio Grande do Sul. Anais de Faculdade de Medicina, Porto Alegre (Brazil), 36, 23-26.
- Fukase, T., Chinone, S. and Itagaki, H. (1985) Strongyloides
 planiceps (Nematoda; Strongyloididae) in some wild carnivores.
 Japanese Journal of Veterinary Science, 47, 627-632.
- Fulléborn, F. (1914) Untersuchungen uber den infektionsweg bei Strongyloides und Anklostomum und bei biologie dieser parasiten. Archiv. fur Schiffs-und Tropen-Hygiene, 18, suppl 5, 26-80.
- Galliard, H. (1950) Recherches sur l'infestation experimentale a Strongyloides stercoralis au Tonkin. Annales de Parasitologie, humaine et comparee, 25, 441-473.
- Galliard, H. (1967) Pathogenesis of *Strongyloides*. Helminthological Abstracts, 36, 247-260.
- Gamzemlidse, S. (1941) Gattung Strongyloides Grassi,1879 art. Strongyloides rostombekowi nov.sp. Travaux de l'Universite Staline a Tbilissi (Tiflis), 21, 243-249.
- de Gasperi, F. (1912) L'*Uncinaria radiata* e l'*Anguillula intestinalis bovis*. Contributo alla conoscenza dell' uncinariosi dei bovini. Pathologica, 4, 248-253.
- Georgi, J.R. (1984) Strongyloidiasis. CRC Handbook Series in Zoonoses. (ed. Steele, J.H.). Section C: Parasitic Zoonoses. Vol.III. (sect.ed. Schultz, M.G.). CRC Press Inc., Boca Raton, USA, 257-267.
- Georgi, J.R. and Sprinkle, C.L. (1974) A case of human strongyloidosis apparently contracted from asymptomatic colony dogs. American Journal of Tropical Medicine and Hygiene, 23, 899-900.
- Geraert, E. (1979) Growth and form in nematodes. III. Comparison of oesophagus and body shape. Nematologica, 25, 1-21.

- Ghadirian, E. (1968) Nematodes parasites d'ophidiens malgaches. Memoires Museum Histoire Naturelle Paris, Series A, 54, 1-54.
- Ginsburg, L. (1920) Strongyloides intestinalis infestation. Journal of American Medical Association, 75, 1137.
- Glazener, W.C. and Knowlton, F.F. (1967) Some endoparasites found in Wilder Refuge deer. Journal of Wildlife Management, 31, 595-597.
- Goldsmid, J.M. (1974) The intestinal helminthzoonoses of primates in Rhodesia. Ann. Soc. belge. Med. Trop. 54:87-101.
- Golgi, C. and Monti, A. (1884) Intorna ad una questione elmentologica. Estratto della Gazzetta Degli Ospitali, 28, 1-4.
- Gonder, R. (1907) Beitrag zur lebensgeschichte von strongyloiden aus dem affen und dem schafe. Arbeiten aus dem K. Gesundheitsamte, Berlin, 25, 485-493.
- Goodey, T. (1926) Observations on *Strongyloides fulleborni*(g) von Linstow, 1905, with some remarks on the genus *Strongyloides*. Journal of Helminthology, 4, 75-86.
- Gordon, H.McL. and Sommerville, R.I. (1958) New records of nematode parasites in Australia. Australian Journal of Science, 21, 148.
- Gorkhali, L.P. and Basir, M.R. (1968) Effect of temperature on the course of development of the free-living generation of *Strongyloides fulleborni* von Linstow, 1805. Indian Journal of Helminthology, 20, 25-29. ("1805" in original title)
- Grabda-Kazubska, B. (1978) Strongyloides spiralis sp.n. (Nematoda : Strongyloididae) a parasite of Rana esculenta s.l. in Poland. Acta Parasitologica Polonica, 27, 235-242.
- Grassi, B. (1879a) Sovra l'anguillula intestinale. Recondiconti Dell Instituto Lombardo, Di Scienze e Lettere, Milano, 12, 228-233.
- Grassi, B. (1879b) Parassitologia umana. Rivista. Med. contemp., Milano 3 495-497.
- Grassi, B. (1882a) Anchylostomi e anguillule. Gazz. d. osp., Milano 3:325
- Grassi, B. (1882b) Un altra nota sulle Anguillule e sugli Anchilostomi. Giorkale di r. Accad. di med. di Torino, 31, 119-121.
- Grassi, B. (1883a) Un ultra nota sulle anguillule e sugli anchilostomi.Gior. di r. Accad. di med. di Torino, 31,119
- Grassi, B. (1883b) Un'ultima parola al Prof. Perroncito. Gazzetta Medica Italiana (Lombard), Milano, 5, 260-262.

- Grassi, B. (1883c) Intorno ad una questione parasitologica. Un' ultimissima parola al Prof. Perroncito. Gazzetta Medica Italiana (Lombard), Milano, 5, 391-392.
- Grassi, B. (1885) Contribuzione allo studio della nostra fauna. Atti Accademia Gioenia di Scienze Naturale, 18, 241-252.
- Grassi, B. and Calandruccio, S. (1884) L'anguillola (Rhabdonema). Gazzetta Medica Italiana (Lombard), Milano, 6, 492-494.
- Grassi, B. and Parona, C. (1879) Sovra l'anguillula intestinale (dell'uomo) e sovra embrioni probabilmente d'anguillula intestinale. Arch. per le sc. med., Torino, 3,1-14.
- Grassi, B. and Segre, R. (1887) I. Nuove osservazioni sull'eterogenia del Rhabdonema (Anguillula) intestinale. Ii. Considerazioni sull'eterogenia. Rendic. r. Accad. dei Lincei, roma, 283,100-108.
- Gray, P. (1973) Fixative formulas. In: The Encyclopedia of Microscopy and Microtechnique. Ed. P. Gray. Van Nostrand Reinhold Company, New York, 165-180.
- Greer, G.J., Bello, T.R. and Amboski, G.F. (1974) Experimental infection of *Strongyloides westeri* in parasite-free ponies. Journal of Parasitology, 60, 466-472.
- Gretillat, S., Monjour, L. and Vassiliades, G. (1967) L'anguillulose a Strongyloides fülleborni O. von Linstow, du cyanocephale (Papto cyanocephalus) au Senegal. Son traitement par l'ester dimethylique de l'acide (2-2-2-trichloro-1-hydroxyethylphosphonique). Revue d'Elevage et Medecine Veterinaire des Pays tropicaux N.S., 20,77-85.
- Greve, J.H. (1969) Strongyloides elephantis sp. n. from an Indian Elephant, Elephas indicus. Journal of Parasitology, 55, 498-499.
- Griffiths, H.J. (1940) Studies on Strongyloides agoutii sp.nov. from the agouti (Dasyprocta agouti). Canadian Journal of Research Section D, Zoology, 18, 173-190.
- Grove, D.I. and Blair, A.J. (1981) Diagnosis of human strongyloidiasis by immunofluorescence, using *Strongyloides ratti* and *Strongyloides stercoralis* larvae. American Journal of Tropical Medicine and Hygiene, 30, 344-349.
- Grove, D.I. and Northern, C. (1982) Infection and immunity in dogs infected with a human strain of *S.stercoralis*. Transactions of the Royal Society of Tropical Medicine and Hygiene, 76, 833-838.
- Grundman, A.W. and Lombardi, P.S. (1976) Parasitism of the pika, Ochotona princeps Richardson (Mammalia : Lagomorpha), in Utah and Nevada with the description of Eugenuris utahensis sp.n. (Nematoda : Oxyuridae). Proceedings of the Helminthological Society of Washington, 43, 39-46.

- Guilloud, N.B., King, A.A. and Lock, A. (1965) A study of the efficacy of thiabendazole and dithiazanine iodide-piperazine citrate suspension against intestinal parasites in *Macaca mulatta*. Laboratory Animal Care, 15, 354-358.
- Haberman, R.T. and Williams, F. (1957) Diseases seen at necropsy of 708 Macaca mulatta (rhesus monkey) and Macaca philippinesis (cynomolgus monkey). American Journal of Veterinary Research, 18, 419-426.
- Hall, M.C. (1916) Nematode parasites of mammals of the orders Rodentia, Lagomorpha and Hydracoidea. Proceedings of the Helminthological Society of Washington, 50, 1-258.
- Hansen, E.L., Buecher, E.J. and Cryan, W.S. (1969) Strongyloides
 fulleborni : environmental factors and free-living generations.
 Experimental Parasitology, 26, 336-343.
- Hansen, E.L., Buecher, E.J. and Yarwood, E.A. (1975) Strongyloides
 fulleborni : development in axenic culture. Experimental
 Parasitology, 38, 161-166.
- Harper, J.S., Rice, J.M., London, W.T., Sly, D.L. and Middleton, C. (1982) Disseminated strongyloidiasis in *Erythrocebus patas*. American Journal of Primatology, 3, 89-98.
- Harrigan, K.E. (1981) Parasitic diseases of birds. In: Aviary and Cage Birds. Proceedings No.55 Refesher Course for Veterinarians. Post-Graduate Committee in Veterinary Science, University of Sydney, Australia, 337-396.
- Hasegawa, H., Kano, T. and Mulavwa, M. (1983) A parasitological survey on the faeces of pygmy chimpanzees, Pan paniscus, at wamba, Zaire. Primates, 24, 419-423.
- Haupt, H.von (1927) Kurze mitteilung zur bekampfung der seuchenhaft auftretenden invasion der ferkel mit Strongyloides longus Grassi und Serge. Berliner Tierarztliche Wochenschrift, 43, 461-462.
- Hayama, S. and Nigi, H. (1963) Investigation on the helminth parasites in the Japan monkey centre during 1959 - 1961. Primates, 4, 97-112.
- Healy, G.R. and Myers, B.J. (1973) Intestinal helminths. In : The Chimpanzee Vol. 6 : Ed. Bourne, G.H. Karger, Basel and University Park Press, Baltimore. 265-96.
- Held, J.R. and Whitney, R.A. (1978) Epidemic diseases of primate colonies. In: D.J.Chivers (ed.) Recent Advances in Primatology, 4, 23-41.
- Hill, W.C.O. (1957) Primates: Comparative Anatomy and Taxonomy. III Pithecoidea Platyrrhini. Edinburgh University Press, Edinburgh.
- Hill, W.C.O. (1960) Primates: Comparative Anatomy and Taxonomy. IV. Cebidae Part A. Edinburgh University Press, Edingburgh.

- Hill, W.C.O. (1962) Primates: Comparative Anatomy and Taxonomy.V. Cebidae Part B. Edinburgh University Press, Edingburgh.
- Hill, W.C.O. (1966) Primates: Comparative Anatomy and Taxonomy. VI. Catarrhini. Edinburgh University Press, Edingburgh.
- Hill, W.C.O. (1974) Primates: Comparative Anatomy and Taxonomy. VII. Cynopithecinae, Cercocebus, Macaca, Cynopithecus. John Wiley and Sons, New York.
- Hill, W.C.O. (1970) Primates: Comparative Anatomy and Taxonomy. VIII. Cynopithecinae, Papio, Mandrillus, Theropithecus. Edinburgh University Press, Edingburgh.
- Hira, P.R. (1978) Some helminthozoonotic infections in Zambia. African Journal of Medical Science, 7, 1-7.
- Hira, P.R. and Patel, B.G. (1977) *Strongyloldes* fulleborni infections in man in Zambia. American Journal of Tropical Medicine and Hygiene, 26, 640-643.
- Höeppli, R. (1927) Uber beziehungen zwischen dem biologischen verhalten parasitischer nematoden und histologischen reaktionen des wirbeltierkorpers. Beihefte zum Archiv fur Schiffs-und Tropen-Hygiene Pathologie und Therapie Exotischer Krankheiten, 31, 5-88.
- van der Hoeven, J.A. and Rijpstra, A.C. (1962) Animal parasites in the human intestine in central south New Guinea. Tropical and Geographic Medicine, 14, 350-354.
- Holt, P.E., Brown, A. and Brown, B. (1978) A case of Strongyloides infestation in a speckled king snake. Veterinary Record, 102, 404-405.
- Holt, P.E., Cooper, J.E. and Needham, J.R. (1979) Strongyloides infection in snakes : three case reports. Veterinary Record, 104, 213-214.
- Hon, L.T., Forrester, D.J. and Williams, L.E. (1975) Helminths of wild turkeys in Florida. Proceedings of the Helminthological Society of Washington, 42, 119-127.
- Horak, I.G. (1980) The control of parasites in antelope in small game reserves. Journal of the South African Veterinary Association, 51, 17-19.
- Hori, E. and Kaneko, K. (1969) [On the parasites of habu, Trimeresurus fravoviridis.] Japanese Journal of Parasitology, 18, 667. (In Japanese)
- Hori, E., Miyamoto, K., Ikeda, O., Abe, H. and Nakasawa, H. (1967) A survey of parasitic helminths, especially Angiostrongylus cantonensis (Chen, 1935) Dougherty, 1946 from house rodents in the harbour side areas and overseas ships of Yokohama and Kawasaki. Japanese Journal of Parasitology, 3, 258-264.

- Horie, M., Noda, R., Noda, S. and Onishi, T. (1974) Studies on Strongyloides sp. isolated from a dog. I. Experimental infections in dogs and mice. Japanese Journal of Parasitology, 23, 1-7.
- Horie, M., Noda, R., Noda, S. and Onishi, T. (1980) Studies on Strongyloides sp. isolated from a dog. II. Experimental infections in cats. Japanese Journal of Parasitology, 29, 45-54.
- Horie, M., Noda, S., Noda, R. and Higashino, J. (1981) [Studies on Strongyloides sp isolated from a cat and a raccoon dog.] Japanese Journal of Parasitology, 30, 215-223.
- Horii, Y., Imada, I., Yanagida, T., Usui, M. and Mori, A. (1982) Parasite changes and their influence on the body weight of Japanese monkeys (*Macaca fuscata fuscata*) of the Koshima troop. Primates, 23, 416-431.
- Hung-See-Lu and Höeppli, R. (1923) Morphologische und histologische Bietrage zur Strongyloides – infektion der tiere. Archiv. fur Schiffs – und Tropenhygiene, 27, 118-129.
- Hyman, L.H. (1951) The Invertebrates : Acanthocephala, Aschelminthes and Entoprocta. McGraw-Hill Book Co. Inc., New York. 572pp.
- Ihle, J.E.W. (1917) Strongyloides westeri n.sp. Zentralblat fur Bakteriologie u Parasitenkunde 1.Abt. Originale, 80, 372-373.
- Ito, J, Papasarathorn, T. and Tongkoom, B. (1962) An investigation of parasitic helminths of stray dogs in Bangkok. Japanese Journal of Medical Science and Biology, 15, 53-60.
- Jaros, Z., Valenta, Z. and Zajicek, D. (1966) A list of helminths from the section material of the zoological garden of Prague in the years 1954 - 1964. Helminthologia, 7, 281-290.
- Jessee, M.T., Schilling, P.W. and Stunkard, J.A. (1970) Identification of intestinal helminth eggs in old world primates. Laboratory Animal Care, 20, 83-87.
- Jerke, H.W.M. (1902) Eine parasitische Anguillula des pferds. Archives fur wissensch. u. prakt. Thierh., Berlin, 29, 113-127.
- Johnson, A.D. (1962) Experimental infection of the raccoon with Strongyloides stercoralis. Journal of Parasitology, 48, 332.
- Kagei, N. and Hasegawa, H. (1974) On the faecal examination against helminthic ova of the Japanese-monkeys, Macaca fuscata (Blyth, 1875), from Takasaki-yama, Oita Prefecture. Problems as parasitic zoonoses. Institute of Public Health, Bulletin, 23, 234-238.

- Karr, S.L., Hendrickson, R.V. and Else, J.G. (1980) A survey for intestinal helminths in recently wild - caught Macaca mulatta and results of treatment with mebendazole and thiabendazole. Journal of Medical Primatology, 9, 200-204.
- Kelly, A., Little, M.D. and Voge, M. (1976) Strongyloides fulleborni - like infections in man in Papua New Guinea. American Journal of Tropical Medicene and Hygiene, 25, 694-699.
- Kelly, A. and Voge, M. (1973) Report of a nematode found in humans at Kiunga, Western District. Papua New Guinea Medical Journal, 16, 59.
- Kinsella, J.M. (1973) Helminth parasites of the American coot, Fultca americana americana, on its winter range in Florida. Proceedings of the Helminthological Society of Washington, 40, 240-242.
- Kinsella, J.M. (1974) Helminth fauna of the Florida scrub jay : host and ecological relationships. Proceedings of the Helminthological Society of Washington, 41, 127-130.
- Kinsella, J.M. and Forrester, D.J. (1972) Helminths of the Florida duck, Anas platyrhynchos fulvtgula. Proceedings of the Helminthological Society of Washington, 39, 173-175.
- Kinsella, J.M., Hon, L.T., Reed, P.B. (1973) A comparison of the helminth parasites of the common gallinule and the purple gallinule in Florida. American Midland Naturalist, 89, 467-473.
 - Knight, R., McAdam, K.P.W.J., Matola, Y.G. and Kirkham, V. (1979) Bancroftian filiariasis and other parasitic infections in the middle Fly River region of Western Papua New Guinea. Annals of Tropical Medicine and Parasitology, 73, 563-576.
 - Kotlan, S. and Vajda, T. (1934) Strongyloides tanulmanyok. Allatorvosi Lapok (Budapest), 57, 198-205.
 - Kotrly, A. and Kotrla, B. (1980) Ang. Parasitol., 21, 70-78. (not sighted, USDA Catologue, 24:4, 1982)
 - Kouri, P., Basnuevo, J.G. and Arenas, R. (1936) Contribution al conocimiento del cido evolutivo des Strongyloides stercoralis. (Nota praevia). Revista de Parasitologica Clinica y Laboratoria, 2, 1-6.
 - Krediet, G.J. (1921) Tydschr. Vergl. Geneesk. Leiden., 6, 136. (not sighted; from Sandground, 1925)
 - Kreis, H.A. (1932) Studies on the genus Strongyloides (nematodes). American Journal of Hygiene, 16, 450-491.
 - Kreis, H.A. and Faust, E.C. (1933) Two new species of (R:macrocerca and R.clavopapillata) associated with dogs and monkeys in experimental *Strongyloides* studies. Transactions of the American Microscopical Society, 52, 162-172.

- Krijgsman, B.J. (1933) De in zoogdieren en vogels parasiteerende wormen van Nederlandsch - Indie. Nederlandsch Indische Bladen voor Diergeneeskunde, 45, 1-4.
- Krynicka, I., Rzeczkowska, M. and Zlotorzycka, J. (1979) Zarobaczenie malp czlekoksztaltnych i zwierzoksztaltnych we wroclawskim ogrodzie zoologicznym. Wiadomosci Parazytologiczne, 25, 655-664.
- Kurtieva, L. (1953) [Strongyloides turkmenica nov.sp. parasite of birds in Turkmenia.] K.I. Skrjabin Anniversary Volume, 75, 347-348. (In Russian)
- Law, R.G. and Kennedy, A.H. (1932) Parasites of fur-bearing animals. Department of Game and Fisheries, Toronto, Bulletin No.4, 29.
- Lefrou, G. and Michard, V. (1957) Etude sur les causes de mortalite des chimpanzes en captivite a l'institut Pasteur de Kindia (1950 - 1956). Institut Pasteur, Paris, Annales, 93, 502-516.
- Leger, M. (1921) Anguillulose intestinale des singes a la Guyane Francaise. Comptes Rendus de la Societe de Biologie, 84, 555-558.
- Levine, N.D. (1968) Textbook of Veterinary Parasitology. Burgess Publishing Co, Minneapolis, Minnesota, 82-84.
- Leuckart, R. (1882) Uber die liebensgeschichte der sog. Anguillula stercoralis und deren Beziehungen zu der sog. Anguillula intestinalis. Abdruck aus den Berichten der math.-phys. Classe der Konigl. Sachs. Gesellschaft der Wissenschaften, 85-107.
- Lichenfelds, R.J. (1975) Helminths of domestic equids. Proceedings of the Helminthological Society of Washington, 42, 1-92.
- Lim, Y.J. and Lee, W.C. (1977) Epizootiological study on infestation rate of parasites in zoo animals. Korean Journal of Veterinary Research, 17, 17-26.
- von Linstow, O. (1905) Strongyloides fulleborni, n. sp. Zentralblat fur Bakteriologie und Parasitenkunde 1. Abt. Originale, 38, 532-533.
- Little, M.D. (1961) Comparative morphology of six previously described and seven new species of *Strongyloides*. PhD Dissertation, Tulane Univ., Louisiana. 119pp.
- Little, M.D. (1965) Dermatitis in a human volunteer infected with Strongyloides of nutria and raccoon. American Journal of Tropical Medicine and Hygiene, 14, 1007-1009.
- Little, M.D. (1966a) Comparative morphology of six species of *Strongyloides* (Nematoda) and redefinition of the genus. Journal of Parasitology, 52, 69-84.

- Little, M.D. (1966b) Seven new species of *Strongyloides* (Nematoda) from Louisiana. Journal of Parasitology, 52, 85-97.
- Lucker, J.T. (1934) Development of the swine nematode *Strongyloides* ransomi and the behaviour of its infective larvae. United States Department of Agriculture Technical Bulletin no.437, 1-30.
- Lucker, J.T. (1942) The dog Strongyloides. With special reference to occurrance and diagnosis of infections with the parasite. Veterinary Medicine / Small Animal Clinician, 37, 128-137.
- Lukasiak, J. (1939) Badania nad fauna helmintologiczna Polski. Recherches sur la faune helminthologique en Pologne. Fragmenta Faunistica Musei Zoologici Polonici, 4, 93-106.
- Lukshina, R.G., Glandero, V.J. and Korostisheva, A.G. (1971) [Experimental infection of pigs with *Strongyloides stercoralis*, the cause of strongyloidiasis in man.] Veterinariya (Kiev), 28, 99-100. (In Ukrainian)
- Lutz, A. (1885) Uber eine Rhabdonemaart des schweines, so wie uber den befund der Rhabdonema strongyloides (Anguillula intestinalis und stercoralis) beim menschen in Brasilien. Zentralblatt fur Klinische Medicin, 23, 385-390.
- Lutz, A. (1886) Ueber in Brasilien beobachtete darmparasiten des schweines und anderer hausthiere, sowie uber das vorkommen derselben arten beim menschen. Deutsche Zeitschrift fur Tiermedizin, 12, 61-62.
- Lyons, E.T., Drudge, J.H. and Tolliver, S.C. (1973) On the life cycle of *Strongyloides westeri* in the equine. Journal of Parasitology, 59, 780-787.
- Mackerras, M.J. (1958) Catologue of Australian mammals and their recorded internal parasites. Part I. Monotremes and marsupials. Proceedings of the Linnean Society of New South Wales, 53, 101-125.
- Mackerras, M.J. (1959) Strongyloides and Parastrongyloides (Nematoda : Rhabdiasoidea) in Australian marsupials. Australian Journal of Zoology, 7, 87-104.
- Maier, P.F. (1980) Behandlung eines an Ancylostomiasis erkrankten grünen leguans - Iguana iguana). Zoologische Garten, 500, 29-32.
- Marotel, G. (1920) Sur une maladie parasitaire nouvelle :
 l'anguillulose porcine. Bulletin Soc. Sci., Vet Lyons, 23,
 l10-116.

Marval, H.F. (1978) Attraccion sexual en Strongyloides sp. (Nematoda). Revista Iberica de Parasitologia, 38, 335-342.

- Mason, K. (1980) Diseases of the alimentary tract. In: Cats; Refresher Course for Veterinarians Proceedings No. 53. The Post-Graduate Committee in Veterinary Science, University of Sydney, 259-296.
- Maxfield, B.G., Reid, W.M. and Hayes, F.A. (1963) Gastrointestinal helminths from turkeys in Southeastern United States. Journal of Wildlife Management, 27, 261-271.
- Mayr, E. (1971) Principles of Systematic Zoology. TMH Edition. Tata McGraw-Hill Publishing Company Ltd., New Delhi. 428pp.
- McClure, H.M., Strozier, L.M., Keeling, M.E. and Healy, G.R. (1973) Strongyloidosis in two infant orangutans. Journal of the American Veterinary Medical Association, 163, 629-632.
- McConnell, E.E., Basson, P.A., de Vos, V., Myers, B.J. and Kuntz, R.E. (1974) A survey of diseases among 100 free-ranging baboons (Papio ursinus) from the Kruger National Park. Onderstepoort Journal of Veterinary Research, 41, 97-168.
- Mclaren, D.J. (1976) Nematode sense organs. Advances in Parasitology, 14, 195-265.
- Melvin, D.M. and Chandler, A.C. (1950) New helminth records from the cotton rat, Sigmodon hispidus, including a new species, Strongyloides sigmodontis. Journal of Parasitology, 36, 505-510.
- Mirza, M.B. and Narayan, S.S. (1935) Strongyloides akbari n.sp. a new nematode parasite from Crocidura coerules with a note on some species of the genus Strongyloides. Indian Academy of Sciences, Proceedings, 2, 503-507.
- Miyamoto, T. (1929) Strongyloides intestinalis in the farrow of Formosa. Far Eastern Association of Tropical Medicine, Transactions, 3, 686-698.
- Miyamoto, K. and Katsumi, H. (1980) [Studies on zoonoses in Hokkaido, Japan. IV. A survey on parasites of cats in Asahikawa.] Japanese Journal of Parasitology, 29, 75. (In Japanese)
- Monnig, H.O. (1931) Wild antelopes as carriers of nematode parasites of domestic ruminants. Part I. 17th Report of the Director of Veterinary Services and Animal Industry, Union of South Africa, August 1931, 233-254.
- Moqbel, R. and Denham, D.A. (1977) Strongyloides ratti. I. Parasitological observations on primary and secondary infections in the small intestine of rats. Journal of Helminthology, 51, 301-308.

- Moqbel, R. and Denham, D.A. (1978) Strongyloides ratti : the effect of betamethasone on the course of infection in rats. Parasitology, 76, 289-298.
- Moqbel, R. and McLaren, D.J. (1980) Strongyloides ratti : structural and functional characteristics of normal and immune damaged worms. Experimental Parasitology, 49, 139-152.
- Moqbel, R., McLaren, D.J. and Wakelin, D. (1980) Strongyloides ratti : reversibility of immune damage to adult worms. Experimental Parasitology, 49, 153-166.
- Morgan, D.O. (1928) Parastrongyloides winchesi gen. et sp. nov. A remarkable new nematode parasite of the mole and shrew. Journal of Helminthology, 6, 79-86.
- Morosov, F.N. (1939) [The parasitic worms of Mustelidae in Gorkiy's region.] Trudy Gorkovsk Gosudarstv. Pedagog. Instit., 4, 3-44. (in Russian; English summary).
- Munro, R. and Munro, H.M.C. (1978) Intestinal helminthiasis in dogs in Fiji. Australian Veterinary Journal, 54, 44.
- Murrell, K.D. and Graham, C. (1982) Solubilization studies on the epicuticular antigens of *Strongyloides ratti*. Veterinary Parasitology, 10, 191-203.
- Myers, B.J. and Kuntz, R.E. (1973) A checklist of parasites and commensals reported for the chimpanzee (*Pan*). Primates, 13, 433-471.
- Nishigori, M. (1928) On various factors influencing the development of Strongyloides stercoralis and autoinfection. Taiwan Igakkai Zassi, 27, 1-56. (Extracted from: Classic Investigations Vol II. (Eds. Kean, B.H., Mott, K.E. and Russell, A.J.) Cornell University Press, Ithaca, USA, 340-345.
- Noua, S. (1962) [Comparative studies on morphology of free-living stages of *Strongyloides* parasitic in monkeys]. Japanese Journal of Parasitology, 11, 207-229. (In Japanese; English summary)
- Ohder, von H. and Hurni, H. (1978) Strongyloides stercoralis in a dog breeding colony. Kleintier Praxis, 23, 381-386.
- Olson, C.E. and Schiller, E.L. (1978a) Strongyloides ratti infection in rats. I. Immunopathology. American Journal of Tropical Medicine and Hygiene, 27, 521-526.
- Olson, C.E. and Schiller, E.L. (1978b) Strongyloides ratti infection in rats. II. Effects of cortisone treatment. American Journal of Tropical Medicine and Hygiene, 27, 527-531.
- Ortlepp, R.J. (1961) N oorsig van Suid-Afrikaanse helminte met verwysing na die wat in ons wilderkouers voorkom. Tydskrift vir Natuurwetenskappe, Pretoria, 1, 203-212.

- Oshio, Y. (1956) [Studies on the migration of larvae of Strongyloides ransomi in the swine body after percutaneous infestation]. National Institute of Agricultural Sciences, Chiba. Series G. Animal Husbandry No. 12, 181-186. (in Japanese)
- Ow Yang Chee Kong (1965) The gastro-intestinal helminths of some Malaysian primates (and bats). Dissertation, London School of Hygiene and Tropical Medicine, University of London, 67pp.
- Owen, D. and Casillo, S. (1973) A preliminary survey of the nematode parasites of some imported old-world monkeys. Laboratory Animals, 7, 265-269.
- Palmieri, J.R., Krishnasamy, M. and Sullivan, J.T. (1977) Helminth parasites from the old world leaf monkey *Presbytis* from West Malaysia. Southeast Asian Journal of Tropical Medicine and Public Health, 8, 409.
- Palmieri, J.R., Purnomo, Ammaun, H. (1980) Parasites of the lesser one-horned rhinoceros (Rhinoceros sondaicus Desmarest). Journal of Parasitology, 66, 1031.
- Pampiglione, S. and Ricciardi, M.L. (1971) The presence of Strongyloides fulleborni von Linstow, 1905, in man in Central and East Africa. Parassitologia, 13, 257-269.
- Pampiglione, S. and Ricciardi, M.L. (1972) Experimental infestation with human strain Strongyloides fulleborni in man. Lancet, March 25, 663-665.
- Panaitescu, M. and Potorac, E. (1981) The etiopathogeny of gastrointestinal infections in newly imported monkeys with special emphasis on associated parasitic and bacterial infections. Archives Roumaines de Pathologie Experimentale et de Microbiologie, 40, 273-285.
- Pande, B.P. and Rai, P. (1960) The nematode genus Strongyloides Grassi 1879 in Indian livestock. I. Observations on natural infections in the donkey Equus asinus. British Veterinary Journal, 116, 281-283.
- Pandey, V.S. (1978) Observations on gastrointestinal helminths of zoo animals in Lubumbashi, Zaire - a coprological survey. Bulletin of Animal Health and Production in Africa, 26, 361.
- Paperna, I., Furman, D.P. and Rothstein, N. (1970) The parasitic fauna of rodents from urban and suburban areas of Accra-Tema, South Ghana. Review of Zoology and Botany of Africa, 81, 3-4.
- Parsons, J.C. (1984) An immunohistological study of some equine dermatoses. MSc. dissertation, James Cook University of North Queensland, Townsville, Australia, pp67.
- de Pauli, A. (1974) Strongyloidiasis : a comparative study in the gibbon and man. PhD Dissertation, The George Washington University.

- de Pauli, A. and Johnsen, D.O. (1978) Fatal strongyloidiasis in gibbons (Hylobates lar). Veterinary Pathology, 15, 31-39.
- Penner, L.R. (1981) Concerning threadworm (Strongyloides stercoralis) in great apes - lowland gorillas (Gorilla gorilla) and chimpanzees (Pan troglodytes). Journal of Zoo Animal Medicine, 12, 128-131.
- Pereira, C. (1929) Strongyloides ophidae n.sp. Boletim Biologico, S Paulo, 15, 16-17.
- Pereira, C. (1935) Sobre um Lepidonemidae Trav., 1919 e um Rhabdiasidae Raillet,1915 (Nematoda) novos. Revista de Biologia e Hygiene 6:19-21.
- Perez Vigueras, I. (1942) Notas helmintologicas. Universidad de la Habana, 40-42, 193-223.
- Perroncito, E. (1881) Observations sur le developpement de l'Anguillula stercoralis (Bavay) Pseudo-rhabditis stercoralis (Mihi) hors de l'organisme humain. J. de L'anat. et Physiol., paris 27:499-?.
- Petrov, A.M.. (1940a) [Parasitic worms of Mustelidae of the Moscow, Zoological Garden.] Trudy Moskovk. Zooparka, 1, 202-231. (in Russian)
- Petrov, A.M. (1940b) in : Malygin, F.A. Nematody roda Strongyloides Grassi 1879. Opyt izuchenyiya anatomii I sistematiki I nablyudeniya po biologii predstavitelei roda. Trudy Kirovskoi Oblaftnoi Veterinarnoi Bakteriologicheskoi Laboratorii, 11, 3-74. (not sighted)
- Pillers, A.W.N. and Southwell, T. (1929) Strongyloidosis of the woolly monkey (Lagothrix humboldti). Annals of Tropical Medicine and Parasitology, 23, 129.
- Poindexter, H.A. (1942) A study of the intestinal parasites of monkeys of the Santiago Island primate colony. Puerto Rico Journal of Public Health, 18, 175-191.
- Popova, T.I. (1938) (in russian no trans. of title; on S.erschowi) Trudy Kirovskoso Zootekluiches Ko Veterinarnoso Inst. 3, 125-133.
- Premvati (1958) Studies on Strongyloides of primates. IV. Effect of temperature on the morphology of the free-living stages of Strongyloides fulleborni Canadian Journal of Zoology, 36, 623-628.
- Premvati. (1959) Studies on *Strongylotdes* of primates. V. Synonymy of the species in monkeys and apes. Canadian Journal of Zoology, 37, 57-81.
- Prescott, C.W. (1972) Parasitic diseases of the cat in Australia. Veterinary Review Number 12. University of Sydney, Post-graduate Foundation in Veterinary Science. 37pp.
- Prescott, C.W. (1977) Parasitic diseases of the cat in Australia. Veterinary Review Number 12. University of Sydney, Post-Graduate Foundation in Veterinary Science.
- Prestwood, A.K. (1968) Parasitism among wild turkeys (Meleagris gallopavo silvestris) of the Mississippi Delta. PhD dissertation, University of Georgia, Georgia, U.S.A. pp67.
- Price, E.W. and Dikmans, G. (1941) Adenomatous tumours in the large intestine of cats caused by Strongyloides tumefaciens, n.sp. Helminthological Society of Washington, Proceedings, 8, 41-44.
- Probstmayria, W. (1865) Oxyuris vivipara. Wchnschr. fur Thierh. u. Viehzucht, Augsburg, 9, 178-180. (not sighted)
- Prokopic, J. and Valle, M.del. (1965) Aporte a la helmintofauna de los roedores en Cuba. Poeyana, Inst. de Biol., Serie A, 30, 1-15.
- Prosl, H and Tamer, A. 1979. Zur parasiten fauna des rhesusaffen (Macaca mulatta) und des jauneraffen (Macaca trus). Zentralblatt fur Veterinmedizin 26, 696-709.
- Pursglove, S.R., Prestwood, A.K., Nettles, V.F. and Hayes, F.A. (1976) Intestinal nematodes of white-tailed deer in Southeast United States. Journal of the American Veterinary Medical Association, 169, 896-900.
- Ransom, B.H. (1907a) Notes on parasitic nematodes, including descriptions of new genera and species, and observations on life histories. United States Department of Agriculture Bureau of Animal Industry - Circular 116, 7pp.
- Ransom, B.H. (1907b) Probstmayria vivipara (Probstmayr, 1865) Ransom, 1907, a nematode of horses heretofore unreported from the United States. American Microscopical Society, Transactions, 27,33-39.
- Ransom, B.H. (1911) The nematodes parasitic in the alimentary tract of cattle, sheep and other ruminants. United States Department of Agriculture Bureau of Animal Industry Bulletin, 127, 13-132.
- Rao, P.N. and Singh, S.N. (1954) A note on a new species of Strongyloides from the toad. 41st Indian Science Congress, Proceedings, 31
- Rao, P.N. and Singh, S.N. (1968) A note on a new species of Strongyloides from the toad (Nematoda, Strongyloididae). Papeis Avulsos de Zoologia, S.Paulo 21, 111-113.

- Rau, M.E., Doyle, J. and Gordon, D. (1978) Naturaliste Canad., 105, 56-57. (not sighted; USDA Catelogue, 24:4, 1982).
- Reardon, L.V. and Rininger, B.F. (1968) A survey of parasites in laboratory primates. Laboratory Animal Care, 18, 577-580.
- Reed, D.E., Shave, H., Bergeland, M.E. and Gates, C.E. (1976) Necropsy and laboratory findings in free-living deer in South Dakota. Journal of the American Veterinary Medical Association, 169, 975-979.
- Reesal, M.R. (1951) Observations on the development of *Strongyloides agoutii* of the agouti in the guinea pig. Canadian Journal of Zoology, 29, 116-120.
- Rego, A.A. (1972) Observações sobre a biologia do Srongyloides fulleborni von Linstow, 1905 e tentativas de infecção experimental de roedores. Atas da Sociedade de Biologia do Rio de Janeiro, 15, 99-103. ("t" omitted from generic name).
- Reiber, R.J. and Byrd, E.E. (1942) Some nematodes from mammals of Reelfoot Lake in Tennessee. Journal of the Tennessee Acadamy of Science, 17,78.
- Reisinger, L. (1915) Uber das vorkommen und die pathologische bedeutung von Strongyloides longus beim schwein Weiner Tierartzl. Monatsschr. Jahrg., 2, 209-239.
- Remfrey, J. (1978) The incidence, pathogenesis and treatment of helminth infections in rhesus monkeys (Macaca mulatta). Laboratory Animals, 12, 213-218.
- Remfrey, J. (1982) The endoparasites of rhesus monkeys (Macaca mulatta) before and after capture. Microbiologica, 5, 143-147.
- Rodrigues, H. (1968) Sobre uma nova especie do genero Strongyloides Grassi,1879 (Nematoda, Rhabdiasoidea). Atas. Soc. Biol. Rio de Janeiro, 12, 31-32.
- Rodrigues, H.de O. (1970) Estudo de fauna helmintologica de Hemidactylus mabouia (M de J.) no estado da Guanabara. Atas Soc. Biol. Rio de Janiero, 12, Suppl., 15-23.

- Rogers, W.P. (1939) A new species of *Strongyloides* from the cat. Journal of Helminthology, 17, 229-238.
- Rogers, W.P. (1943) Strongyloides planiceps, new name for S.cati Rogers. Journal of Parasitology, 29, 160.
- Roman, E. (1964a) Observations sur les nematodes du genre Strongyloides parasites des rats des champs. Bulletin de l'Association des Diplomes de Microbiologie de la Faculte de Pharmacie de Nancy, No.96, 18-22.
- Roman, E. (1964b) Etude biologique d'une souche de *Strongyloides ratti* provenant d'un rat des champs. Proceedings 1st Congress of Parasitology, Rome 1964 (publ.1966), 468-469.
- Roman, E., Michel-Brun, J. and Pothier, M.A. (1970) Essais d'infestation du Lerot par Strongyloides ratti (nematodes phasmidiens). Annals de Parasitologie, Humaine et Comparee, 45, 237-242.
- Round, M.C. (1968) Check list of the helminth parasites of African mammals of the orders Carnivora, Tubulidentata, Proboscidea, Hyracoidea, Artiodactyla and Perissodactyla. Technical Communication No.38 of Commonwealth Bureau of Helminthology, St.Albans, 56.
- Rowland, E. and Vandenbergh, J.G. (1965) A survey of intestinal parasites in a new colony of rhesus monkeys. Journal of Parasitology, 51, 294-295.
- Russell, A.F. (1948) The development of helminthiasis in thoroughbred foals. Journal of Comparative Pathology, 58, 107-127.
- Rutherford, A.M. (1981) Reflections on the passage of *Strongyloides* fulleborni to human infants in mother's milk. Tropical Doctor, 11, 184-185.
- Ryjova and Dubov, (1955) Nematody promyslovykh ptits belovezhskoi pyschiki. Trudy Gor'kovsk. s.-kh. inta. 7, 223-235.
- Sakamoto, T., Kono, I. and Yasuda, N. (1981) Studies on strongyloidiasis of the peacock. III. Scanning electron microscopy of Strongyloides pavonis Sakomoto and Yamashita, 1970. Memoirs of the Faculty of Agriculture, Kagoshima University, 17, 185-192.
- Sakamoto, T. and Sarashina, T. (1968) Strongyloides avium Cram, 1929 (Strongyloididae : Nematoda) from Rallus aquaticus indicus Blyth. Japanese Journal of Veterinary Research, 16, 44-47.
- Sakamoto, T. and Yamashita, J. (1970) Studies on Strongyloides of the peacock. II. Strongyloides pavonis n.sp. (Nematoda : Strongyloididae) from the green peafowl, Pavo muticus Linnaeus. Japanese Journal of Veterinary Research, 18, 163-171.

Sandground, J.H. (1925) Speciation and specificity in the nematode genus *Strongyloides*. Journal of Parasitology, 12, 59-80.

- Sandground, J.H. (1926) The role of *Strongyloides stercoralis* in the causation of diarrhoea. Some observations on the condition of dogs and cats experimentally infected with this parasite. American Journal of Tropical Medicine, 6, 421-432.
- Sandground, J.H. (1928) Some studies on susceptibility, resistance and acquired immunity to infection with *Strongyloides stercoralis* (nematoda) in dogs and cats. American Journal of Hygiene, 8, 507-538.
- Sandosham, A.A. (1952) An investigation into the association of creeping eruption with *Strongyloides* infection contracted in the far east. Journal of Helminthology, 26, 1-24.
- Sano, M., Kino, H., Guzman, T.S.de, Ishii, A.I. and Kino, J. (1980) Studies on the examination of imported laboratory monkey, *Macaca fascicularis*, for *Entamoeba histolytica* and other intestinal parasites. International Journal of Zoonoses, 7, 34-39.
- Schmidt, R. (1962) Wissenseh. Ztschr., Martin Luther Univ., Halle-Wittenberg, 11, 457-470. (not sighted).
- Schmidt, G.D. and Kuntz, R.E. (1972) Nematode parasites of Oceanica. XIX. Report on a collection from Philippine reptiles. Transactions of the American Microscopical Society, 91, 63-66.
- Schultze, H.R. (1977) Diagnose und therapie parasitarer infektionen bei affen. Praktische Tierarzt, 58, 53-56.
- Schuurmans-Stekhoven, J.H. (1930) Untersuchungen uber nematoden und ihre larven. V. Strongyloides westert Ihle und ihre larven. Zeitschrift fur Parasitenkunde, 2, 297-309.
- Schwartz, B. and Alicata, J.E. (1930) Species of the nematode genus *Strongyloides* parasitic in domestic swine. Journal of Agricultural Research, 40, 11-23.
- Seng, L.T., Liat, L.B., Fong, Y.L. and Krishnasamy, M. (1979) Parasite fauna of the house rat *Rattus rattus diardii* in Kuala Lumpur and nearby villages. Southeast Asian Journal of Tropical Medicine and Public Health, 10, 122-126.
- Shapilo, R. (1973) [First findings of the representatives of the genus Strongyloides Grassi, 1879 (Nematoda, Strongyloididae) in reptiles of Europe, Transcaucasia and Middle Asia.] Depova Akademia Naukova Ukrania SSR, 11, 1047-1050. (in Russian)
- Shapilo, R. (1976) [Parasitic worms of reptilian fauna of U.S.S.R. (Systematics, horology, biology)]. Akademia Naukova Kunka Kiev, SSR, 287pp. (in Russian)
- Shakhmatova, V.I. (1966) Trudy Gel'mint. Lab., Akad. Nauk. SSSR, 17, 277-289.

- Sheldon, A.J. and Otto, G.F. (1938) Infection of an abnormal host (guinea pig) with Strongyloides ratti. American Journal of Hygiene, 27, 298-300.
- Shulman, E.S. (1980) [On the question of study of certain anthropozoonematodoses]. Abstracts of IXth Ukrainian Parasitological Congress, 5, 114-116.
- Sinclair, R.A. and Bourne, C.A.J. (1984) A short immunoperoxidase method. Archives of Pathology and Laboratory Medicine, 108, 354.
- da Silva, R.G. (1969) Estudo preliminar sobre a epizootiologia de nematoides parasitas de *Bubalus bubalis* no estado do Para. Pesquisa Agroupe Cuaria Brasileira, 4, 155-160.
- Singh, S.N. (1976) On a new nematode Liepernema leiperi n.g., n.sp. (Strongyloididae), parasitic in the pangolin Manis pentadactyla from Hyderabad, India. Journal of Helminthology, 50, 267-274.
- Singh, S.N. (1954) Studies on the morphology and life history of Strongyloides mirzai n.sp. from snakes in India. Journal of Helminthology, 28, 25-34.
- Sinniah, B. (1979) Parasites of some rodents in Malaysia. Southeast Asian Journal of Tropical Medicine and Public Health, 10, 115-121.
- Smits, G.M. and Jacobi, E.F. (1965) Control of intestinal parasitism of okapi. Bijdragen tot de Dierkunde, 35, 145-148.
- Soulsby, E.J.L. (1982) Helminths, Arthropods and Protozoa of Domesticated Animals. 7ed. Bailliere Tindall, London, 168-172.
- Speare, R., Beveridge, I., Johnson, P.M. and Corner, L.A. (1983)
 Parasites of the agile wallaby, Macropus agilis (Marsupialia).
 Australian Wildlife Research, 10, 89-96.
- Speare, R., Haffenden, A.T., Daniels, P.W., Thomas, A.D. and Seawright, C.D. (1984) Diseases of the Herbert River ringtail, *Pseudocheirus herbertensis*, and other north Queensland rainforest possums. In: (ed. Smith, A. and Hume, I.) Possums and Gliders. Surrey Beattie and Sons, Chipping Norton, Australia, 283-302.
- Speare, R., Johnson, P.M. and Haffenden, A. (1982). Management of disease in captive macropods in north Queensland. In: (ed. Evans, D.D.) Management of Australian Mammals in Captivity. Zoological Board of Victoria, Melbourne, Australia, 117-124.
- Speare, R. and Tinsley, D.J. (1986) Strongyloides felis : an "old" worm rediscovered in Australian cats. Australian Veterinary Practitioner, (in press).

Sprehn, C. (1930) Krankheifen der pelztiere. Te Pelzticizucht, 6, 120-122.

- Srivastava, S.C. (1964) A new host record for *Strongyloides akbari* and *Artyfechinostomum sufrartyfex*. Indian Journal of Helminthology, 16, 24-26.
- Srivastva, S.C. (1971) Studies on the chief pathogenic helminths with observations on the associated lesions and some of the development stages in the different types of domestic poultry and some of their wild counterparts. Agra University Journal of Research (Science), 20, 91-94.
- Stefanski, W. (1947) Anoreksja powodowana u swin przez pasozytniczego nicienia Strongyloides suis i jej leczenie. Medycyna Weterynaryjna, 3, 634-637.
- Steward, J.S. (1950) Trichostrongylosis and haemonchosis in the camel : their recognition and response to phenothiazine. Veterinary Record, 52, 837-839.
- Stiles, C.W. and Baker, C.E. (1935) National Institute of Health Bulletin No.163, U.S. Public Health Service, December 1934, 913-1228. (not sighted)
- Stiles, C.W. and Hassall, A. (1902) Strongyloides stercoralis, the correct name of the parasite of Cochin China diarrhoea. American Medicine, 4, 343.
- Stiles, C.W. and Hassall, A. (1920) Index-catalogue of Medical and Veterinary Zoology. Subject: Roundworms (Nematoda, Gordiacea, and Acanthocephali) and the diseases they cause. Hygienic Laboratory - Bulletin No.114. Treasury Department, United States Public Health Service.
- Strickland, H.E. (1842) Rules for zoological nomenclature. Report
 of 12th meeting of British Association held at Manchester in
 1842. British Association for the Advancement of Science, Report
 1842, 105-121. (not sighted; from Mayer, 1971)
- Strong, R.P. (1901a) Circulars on tropical diseases, no. 1. Chief Surgeon's Office, Manila, 36pp. (not sighted; from Thayer, 1902)
- Strong, R.P. (1901b) cases of infection with Strongyloides intestinalis (first reported occurrence in North America). The Johns Hopkins Hospital Reports, 10, 91-132.
- Swellengrebel, N.H. and Rijpstra, A.C. (1965) Strongyloides stercoralis in de darm von een slecht gevoede (0) baby orang utan. Vers. van de Gervone vergad. der Afdeeling Natuurkunde, 74, 10-13.
- Tanabe, K. (1938) [Supplemental studies on determination of the types of the larvae in Strongyloides ratti.] Keiyo Igaku (Tokyo), 18, 1139-1143. (In Japanese : English summary)

Tanaka, H. (1966) Genus Strongyloides. Progress in Medical Parasitology in Japan. Vol.3, 591-629.

- Tanaka, H., Fukui, M., Yamamoto, H., Hayama, S. and Kodera, S. (1962) Studies on the identification of common intestinal parasites of primates. Experimental Animals, 11, 111-116.
- Tarczynski, S. (1956) Study of morphology and development cycle of European form of Strongyloides ransomi Schwartz and Alicata,1930. Acta Parasitologica Polonica, 4, 628-661.
- Teisser, M.P. (1896) Nouvelle contribution a l'etude de l'anguillule stercorale. Anguillulose experimentale de la grenouille. Archives de Medecine Experimentale et d'Anatomie Pathologique, 8, 586-595.
- Thayer, W.M. (1902) on the occurrence of *Strongyloides intestinalis* in the United States. Journal of Experimental Medicine, 6, 75-105.
- Tilc, K. and Hanuskova, Z. (1976) Dynamics of coccidiases and helminthiases in Siberian ibexes and other ruminants in a zoo and the respective control measures. Acta Veterinaria Brno, 45, 133-140.
- Tomita, S. (1940) [Experiment on the susceptibility of humans to infection by Strongyloides fulleborni and with Strongyloides papillosus.] Taiwan Igakkai Zasshi, 39, 1884-1885. (In Japanese; English abstract)
- Torres, C.M. and Azevedo, A.P.de (1938) Lesoes produzidas no homem por Strongyloides. Sobre a "hyperinfection". Livro Jubilar do Professor Lauro Travassos, editado para commemorar o 25 anniversario de suas actividades scientíficas (1913-1938), Rio de Janeiro, Brasil. Topographia do Instituto Oswaldo Cruz, 475-488.
- Travassos, L. (1930a) Pesquizas helminthologicas realizadas en Hamburgo VIII Notas sobre os Rhabdiasoidea Railliet,1916. Instituto Oswaldo Cruz, Memorias do, 24, 161-181.
- Travassos, L. (1930b) Um novo parasita de gallinhas, Strongyloides oswaldi sp. nov. O Campo, Rio de Janeiro, 1, 36.
- Travassos, L. (1932) Nota sobre *Strongyloides*. Academia Brasileira de Sciencias, Anais., 4, 39-40.
- Triantaphyllou, A.C. (1983) Cytogenetic aspects of nematode evolution. In: A.R. Stone, Platt, H.M. and Khalil, L.F. (eds) Concepts in Nematode Systematics. The Systematics Association, Special Volume, 22, 55-71. Academic Press, London and New York.
- Triantaphyllou, A.C. and Moncol, D.J. (1977) Cytology, reproduction and sex determination of *Strongyloides ransomi* and *Strongyloides papillosus*. Journal of Parasitology, 63, 961-974.
- Turner, J.H. (1959) Experimental strongyloidiasis in sheep and goats. I. Single infections. American Journal of Veterinary Research, 20, 102-110.

- Uemura, E., Houser, W.D. and Cupp, C.J. (1979) Strongyloidiasis in an infant orangutan (Pongo pygmaeus). Journal of Medical Primatology, 8, 282-288.
- Urbain, A. and Nouvel, J. (1944) Petite enzootie de strongyloidose observee sur des singes superieurs : gibbons a flavoris blancs (Hylobates concolor leucogents Ogilby) et chimpanzes (Pan troglodytes L.). Bulletin de l'Academie Vet de France, 17, 337-341.
- Usui, M. and Horii, Y. (1982) A survey on helminth parasites of the Japanese monkey (*Macaca fuscata*). Bulletin of the Faculty of Agriculture, Miyazaki University, 29, 269-274.
- Vegors, H.H. and Porter, D.A. (1950) Studies on life history nd pathogenicity of the intestinal nematode, Strongyloides papillosus in calves. Journal of Parasitology, 36, 33.
- Verster, A., Imes, G.D. and Smit, J.P.J. (1975) Helminths recovered from the bontbok, Damaliscus dorcas dorcas (Pallas, 1766). Onderstepoort Journal of Veterinary Research, 42, 29-32.
- Vince, J.D., Ashford, R.W., Gratten, M.J. and Bana-koiri, J. (1979) Strongyloides species infestation in young infants of Papua New Guinea : association with generalised oedema. Papua New Guinea Medical Journal, 22, 121-127.
- Vojthova, L. and Moravec, F. (1977) Der erste fund der nematoden der gattung Strongyloides Grassi 1879 in der amphibiendien CSSR. Scripta Fac. Sci. Nat. UJEP Brunensis, Biol., 6, 173-176. (not sighted; from Grabda-Kazubska, 1978)
- Vryjburg, A. (1907) Zwei neue nematoden im darmkanal des rindes in Deli - Sumatra. Centralblat fur Bakteriologie u Parasitenkunde 1. Abt. Originale, 45, 321-32.
- Wallace, F.G., Mooney, R.D. and Sanders, A. (1948) Strongyloides
 fulleborni infection in man. American Journal of Tropical
 Medicine, 28, 299-3002.
- Ware, F. and Ware, M. (1923) Strongyloides stercoralis in a dog. Journal of Comparative pathology and Therapeutics, 36, 104-108.
- Wedl, C. (1856) Uber einige nematoden. Sitzungh k. Acad. Wiss. Wien., Math. Naturw. Clas., 19, 122-34.
- Weinberg, M. and Romanovitch, M. (1908) Helminthiase de l'intestin grele du chimpanze et des singes inferieurs. Bulletin de la Societe de Pathologie Exotique, 1, 181-186.
- Wertheim, G. (1959) The infectivity of *Strongyloides ratti* for various rodent hosts. Journal of Parasitology, 45 (Suppl.), 37.
- Wertheim, G. (1970) Experimental concurrent infections with Strongyloides ratti and Strongyloides venezuelensis in laboratory rats. Parasitology, 61, 381-388.

- Wertheim, G. and Lengy, J. (1964) The seasonal occurrence of Strongyloides ratti Sandground, 1925 and S.venezuelensis Brumpt, 1934 in a population of Rattus norvegicus. Journal of Helminthology, 38, 393-398.
- Wetzel, R. and Enigk, K. (1937) Ein weiterer beitrag zur kenntnis der parasitenfauna des elches (*Alces alces*). Zeitschrift fur Parasitenkunde, 9, 695-697.
- Wetzel, R. and Fortmeyer, H.P. (1964) Ergebnisse von kotuntersuchungen bei okapis. Zeischrift fur Parasitenkunde, 24, 288-301.
- Whitney, L.F. (1936) A study of 1000 fecal examination reports. Veterinary Medicine, 31, 104-105.
- Wiesman, M.J. and Greve, J.H. (1982) Strongyloides mirzai infection in a green tree python. Journal of American Veterinary Medical Association, 181, 1329-1330.
- Wilkinson, G.T. (1984) Parasitic diseases. In: (ed. Wilkinson, G.T.) Diseases of the cat and their management. Blackwell Scientific Publications: Melbourne, 463-504.
- Winter, H. (1958) Gastric strongyloidosis in kangaroos. Australian Veterinary Journal, 34, 118-120.
- Wong, M.M. and Conrad, H.D. (1968) Prevalence of metazoan parasite infections in five species of asian macaques. Laboratory Animal Science, 28, 412-416.
- Woodhouse, C.A. (1948) Observations on pathogenicity of *Strongyloides* parasites in ruminants. Journal of the American Veterinary Medical Association, 113, 354-356.
- Worley, D.E. (1964) Helminth parasites of dogs in southeastern Michigan. Journal of the American Veterinary Medical Association, 144, 42-46.
- Worley, D.E. and Barrett, R.E. (1964) Infectivity and migratory behaviour of an ovine strain of *Strongyloides papillosus* in laboratory animals. Journal of Parasitology, 50 (Suppl.), 34-35.
- Yamaguti, S. (1961) Systema Helminthum. Vol.III. The Nematodes of Vertebrates. Parts I and II. Interscience Publishers Inc., New York. 1261pp.
- Yamashiroya, H.M., Reed, J.M., Blair, W.H. and Schneider, M.D. (1971) Some clinical and microbiological findings in ververt monkeys (*Cercopithecus aethiops pygerythrus*). Laboratory Animal Science, 21, 873-883.
- Yap Loy Fong, Lim Boo Liat, de Witt, G.F., Krishnasamy, M., Sivanandam, S. and Yen Kim Foong, P. (1977) Protozoan and helminth parasites of small wild mammals in a new felda settlement Jenderak Utara, Central Pahang, Peninsula Malaysia. Southeast Asian Journal of Tropical Medicine and Public Health, 8, 345-353.

- Yorke, W. and Maplestone, P.A. (1926) The Nematode Parasites of Vertebrates. Hafner Publishing Company, New York, pp536.
- Zaffagnini, F. (1973) Parthenogenesis in the parasitic and free-living forms of *Strongyloides papillosus*. Chromosoma, 40, 443-450.
- Zimmerman, H. (1959) Invasionskrankheiten bei farmnerzen. Acta Parasitologia Polonica, 7, 539-547.

APPENDIX 1. SPECIMENS OF STRONGYLOIDES EXAMINED.

ID	SPECIES	COLLECTION	STATUS	STAGE	D	H
1	S.agoutii	JP		P,FL	-	
4	S.ardeae	USNMHC	paratypes	P	-	
5	5. avium	USNMHC	cotypes	P		
	-maja	self		P,FL	+	
8	S.cati	MNHNLV		P	-	_
10	S.chapini	USNMHC	cotypes	P	-	
14	S.dasypodis	USNMHC	paratypes	P,FL	-	_
15	S.elephantis	USNMHC	paratypes	P	-	_
17	S.eryxi	BMNH		P	-	_
18	S.felis	self		P,FL	+	+
19	S.fuelleborni	JP		P,FL	-	-
	-	self		FL	-	_
20	S.gulae	USNMHC	paratypes	P,FL	-	-
21	S.herodiae	USNMHC	paratypes	P	-	-
22	S.lutrao	USNMHC	paratypes	FL	-	-
26	S.myopotami	BMNH		P	-	-
30	S.papillosus	self		P,FL	+	+
34	S.physali	USNMHC	paratypes	P,FL	-	-
35	S.procyonis	USNMHC	paratypes	P,FL	-	-
38	S.ratti	self		P,FL	+	+
40	S.robustus	USNMHC	paratypes	P	-	-
		Davidson		P	-	
42	S.serpentis	USNMHC	paratypes	P,FL	-	-
		self		P,FL	+	
44	S.spiralis	G-K	paratypes	P	-	-
		self		P	+	-
45	S.stercoralis	self		P,FL	-	+
		MNHNLV		P,FL	ł	
47	S.suis	MNHNLV		Р		-
		self		P,FL	+	+
		USMNHC	paratypes	P,FL	-	-

48	S.thylacis	QM	types	P,FL		
		self		P,FL	+	+
49	S.tumefaciens	USNMHC	paratypes	P		÷
51	S.venezuelensis	MNHNLV			+	
		self		P	+	40.75
53	S.westeri	self		P,FL	+	*
	S.ovocinctus	USNMHC	paratypes	P	-citatio	-1072
	S.vituli	MNHNLV		P		-
	Parastrongyloides					
	peramelis	QM	types	P,FL		-0
	Parastrongyloides					
	Chrysocloris	MNHNLV	types	P	-	-
	Parastrongyloides					
	trichosuri	QM	types	P,FL	-	
Str	ongyloides sp. ex :					
Am	phiesma mairii	self		P,FL	+	_
Boiga irregularis		self		P,FL	+	-
Centropus phasianinus		self		P,FL	+	-
Dactylopsila trivirgata		self		P	+	-
Demansia atra		self		P,FL	+	
De	ndrelaphis punctulatus	self		P	+	-
Fu	lica atra	self		Р	+	-
Ga	llus gallus	self		P,FL	+	+
Ho	mo sapiens	self		FL		
La	gorchestes conspicillatus	self		P,FL	+	+
Liasis fuscus		self		P,FL	+	
Litoria caerulea		self		P,FL	+	-0.00
Litoria rubella		self		P	+	
Macropus agilis		self		P,FL	+	+
M.dorsalis		self		P,FL	+	+
M.giganteus		self		P,FL	+	+
M.parryi		self		P,FL	+	+
Μ.	robustus	self		P,FL	+	+
М.	rufogriseus	Obendorf		P	-	+
М.	rufus	self		P,FL	+	+
Mo	relia spilotes	self		P,FL	+	*****
On	ychogalea fraenata	self		FL	-	-
On	ychogalea unguifera	self		P,FL	+	÷

Petrogale assimilis	self	P,FL	+	-
Petrogale inornata	self	P,FL	+	-
Platypectron ornatus	self	P,FL	+	
Porphyrus porphyria	self	P	+	_
Pseudocheirus herbertensis	CSIRO	P	_	
Pseudonaja textilis	self	P,FL	+	-
Thylogale stigmatica	self	· P		_
Trichosurus vulpecula	self	P,FL	+	-
Uromys caudimaculatus	self	P	+	+
Vombatus ursinus	Obendorf	P		+
Zyzomys argurus	PP	, b	+	
Zyzomys woodwardi	PP	P	+	-
Parastrongyloides sp. ex :				
Tachyglossus aculeatus	CSIRO	P,FL	-	-
	self	FL	-	-

Key to Collections: BMNH - Parasitic Worms, British Museum (Natural History), Cromwell Rd., South Kensington, London; CSIRO - Wildlife and Rangelands Research, CSIRO, Lynham, ACT; G-K - Dr. B. Grabda-Kazubska, Research Centre of Parasitology, Polish Academy of Sciences, ul.Pasteura 3, S.p. 153, 00-973 Warsaw; Davidson - Prof. W.R. Davidson, Department of Parasitology, College of Veterinary Medicine, University of Georgia, Athens, Georgia; JP - Dr. J. Pearson, Department of Parasitology, Veterinary School, University of Queensland, St. Lucia, Brisbane, Queensland; MNHNLV - Museum Nationale d'Histoire Naturelle, Labortoire der Vers, Rue Buffon, Paris; Obendorf - Dr. D. Obendorf, Department of Agriculture, Mt. Pleasant Laboratories, Launceston, Tasmania; PP - Dr. P. Presidente, Atwood Veterinary Laboratory, Parkville, Victoria; OM - Queensland Museum, Petre Terrace, Bowen Hills, Brisbane, Queensland; USNMHC - United States National Museum Helminthological Collection, Smithsonian Institute, Washington, D.C.;

P = parasitic

FL = free living

D =	=	specimen	obtained	from	mucosa	by	dissection
-----	---	----------	----------	------	--------	----	------------

H = specimen examined in histological section

ACKNOWLEDGEMENTS

I wish to thank the following people:

- For assistance with taxonomy: D.M.Spratt, who provided advice on legal aspects, and reviewed drafts of Chapter 1 and 3; E.A.Harris, for diligence in locating and obtaining obscure references; I Beveridge, for advice on techniques.
- For provision of specimens: D.M.Spratt and CSIRO Wildlife and Rangelands Research for specimens of Strongyloides and Parastrongyloides from rodents, monotremes and marsupials; J.P.Pearson, for specimens from marsupials, and from the Mackerras Collection; I.Beveridge, for specimens from marsupials, S.papillosus, and for S.fuelleborní and S.stercoralis cultured from an orang at the Adelaide Zoo; R.Parker, for S.westeri and fixed duodenum from the foal, S.sp from poultry from Bellenden Ker, and infective larvae of S.papillosus; D.Grove, for S.ratti infective larvae; R.Ashford, for specimens cultured from cuscus, Phalanger spp; Grabda-Kazubska, for loan of paratypes of S.spiralis; A.Chabaud, for loan of Strongyloides from the Laboratorie des Vers, Paris; D.Obendorf, for specimens from macropods, the common wombat and from horses; P.Carr, for calling my attention to S.felis; L.Ashdown, for notifying me of patients infected with S.stercoralis.
- For identification of hosts: A.Haffenden, K.McDonald, K.Aplin, I. Beveridge, P.M.Johnson, A.Taplin.
- For assistance with techniques: J.Parsons, for performing the immunoperoxidose technique on sections of foal gut; F.Hali for advice on computing and organisation of data; L.Owens, for

advise on and assistance with statistical analyses, and for use of depigmentation technique; J.Darley, for assistance with SEM; L.Reilly, C.Stace for preparation of histological sections.

- For provision of working space: Prof.R.Campbell and Graduate School of Tropical Veterinary Science, for tolerating my intrusive presence for so long; D.Gibson and the Parasitic Worms, British Museum (Natural History) for bench space, use of facilities, cups of tea and access to records; A.G.Chabaud and the Laboratore des Vers, for use of facilities, equipment and library; K.Aplin, for accepting me as a member of his Highlands expedition; R.Stokes of Institute of Human Buiology, Garoka, for assistance in the Highlands of PNG.
- For assistance with thesis preparation: Marion Hulme, for expertise and care in typing; S.Neilsen, for typing; L.Owens, for proofreading; B.Plumb and Photography Dept, James Cook University, for preparation of photographs; D.J.Tinsley, for assistance with figures and compilation; Vicki, Linda, Margaret and other operators at JCU Computer Centre for tolerance and advice; G.Hutchinson, L.Owens, D.Banks, and I.Barker for advice.
- For laboratory assistance: greatful thanks to D.J.Tinsley for care and enthusiasm in all aspects of the work; S.Neilsen and R.Kruhse for husbandry of experimental animals.
- For translation of papers: French I.Beveridge, D.M.Spratt, S. Mendelin, M.Nowak; Portugese - P.Ribola, T.Sausarig; Russian - Tahir, C.Hussey, L.Matthews; Italian - M.Verrall, E.Tucker; German - S.Mendelin, I.Beveridge;
- For funding: Commonwealth Post Graduate Research Award Scheme, for four years of financial support for myself and family; Clive

and Vera Ramaciotti Foundation, for provision of funds to enable research on *S.felts* and employment of D.J.Tinsley; Australian Research Grants Scheme for funds to travel to PNG; K.Kelly for funds to enable completion of the thesis.

For encouragement: my supervisor, Bruce Copeman, for letting me do my own thing, and advising and assisting when required; my friends, D.J.Tinsley, L.Owens, D.M.Spratt, and B.McLellan.

To my wife and friend, Kerry Kelly, for her emotional and financial support and for her tolerance with this study, which became an obsession, my grateful thanks.