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ABSTRACT
Extensive evaluation of RNA-seq methods have demonstrated that no single algorithm
consistently outperforms all others. Removal of unwanted variation (RUV) has also
been proposed as a method for stabilizing differential expression (DE) results. Despite
this, it remains a challenge to run multiple RNA-seq algorithms to identify significant
differences common to multiple algorithms, whilst also integrating and assessing the
impact of RUV into all algorithms. consensusDEwas developed to automate the process
of identifying significant DE by combining the results from multiple algorithms with
minimal user input and with the option to automatically integrate RUV. consensusDE
only requires a table describing the sample groups, a directory containing BAM files
or preprocessed count tables and an optional transcript database for annotation. It
supports merging of technical replicates, paired analyses and outputs a compendium
of plots to guide the user in subsequent analyses. Herein, we assess the ability of
RUV to improve DE stability when combined with multiple algorithms and between
algorithms, through application to real and simulated data. We find that, although
RUV increased fold change stability between algorithms, it demonstrated improved
FDR in a setting of low replication for the intersect, the effect was algorithm specific and
diminished with increased replication, reinforcing increased replication for recovery of
true DE genes. We finish by offering some rules and considerations for the application
of RUV in a consensus-based setting. consensusDE is freely available, implemented
in R and available as a Bioconductor package, under the GPL-3 license, along with
a comprehensive vignette describing functionality: http://bioconductor.org/packages/
consensusDE/.

Subjects Bioinformatics, Genomics
Keywords RNA-seq, Consensus, RUV, R, BioConductor, EdgeR, Voom, DESeq2, Software,
Benchmark

INTRODUCTION
Differential gene expression (DE) analysis aims to identify transcripts or features that
are expressed differently between conditions. For the detection of significant DE genes,
a number of Bioconductor/R (Gentleman et al., 2004) packages have been developed that
implement different statistical models for assessing DE significance. Reviews of RNA-seq
DE method performance have highlighted large sensitivity and specificity differences
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between methods (Rapaport et al., 2013; Seyednasrollah, Laiho & Elo, 2015). The confident
selection of genes that are truly DE is especially important when trying to define reliable
markers, e.g., as prognostics (Seyednasrollah, Laiho & Elo, 2015).

Currently, there is no gold standard approach for the analysis of RNA-seq data. Whilst
there remains no gold standard it is important that attention is restricted to the best
performing methods, to minimise negative results that are the consequence of technical
limitations. Benchmark analyses of existing algorithms for detection of DE are important
for the community to assess performance of different methods and existing analyses
(Costa-Silva, Domingues & Lopes, 2017; Rapaport et al., 2013) have popularised leading
algorithms, such as edgeR (McCarthy, Chen & Smyth, 2012; Robinson, McCarthy & Smyth,
2010), DESeq2 (Love, Huber & Anders, 2014) and limma/voom (Ritchie et al., 2015). Lin
and Pang et al. recently proposed selecting a ‘‘best’’ method based on ranking DE stability
against permutation (Lin & Pang, 2019). However, they found that no single DE method
was stable in all cases, with permutation or bootstrap strategies also being limited by
replicate number and computational demands. Another technique often used to assess
performance of DE methods is ‘False DE’, where genes not expected to exhibit significant
DE are examined (Rapaport et al., 2013; Seyednasrollah, Laiho & Elo, 2015). In negative
control ‘False DE’ experiments it was found that DE genes generally did not overlap and
were specific to individual algorithms (Soneson & Delorenzi, 2013). A comparison of 11
methods found that uniquely identified DE genes are often attributed to low fold changes
(Soneson & Delorenzi, 2013), but that methods largely (with some exceptions) ranked
genes similarly (Soneson & Delorenzi, 2013). These findings support a ‘‘combined’’ or
consensus-based approach or at the least a need to compare and ideally benchmark results
with known truth between different methods.

Removal of unwanted sources of variation (as implemented in RUVseq), is another
approach that has recently been proposed to improve DE accuracy (Risso et al., 2014).
RUV aims to improve normalization, by obtaining factors that are assumed to describe
unwanted variation, and subsequently including these factors in models used for DE
analysis (Risso et al., 2014). Three RUV methods have been proposed, RUVr, RUVg and
RUVs that utilise residuals, negative control genes or technical replicates, respectively to
estimate unknown factors of random variation, given a number of unknown parameters, k,
that are subsequently incorporated into the DE model for estimation of transcript counts.
RUV has been demonstrated to stabilize fold change, improving DE and separation of
biological samples. Whether RUV generalizes across multiple algorithms and improves
modelling in a ‘‘combined’’ or consensus-based setting has not been addressed to the best
of our knowledge.

Implementing any consensus-based approach is challenging and requires combining
individual algorithms that typically require different input parameters, use differentmethod
names, and generate different outputs, thus requiring the user to learn specific steps required
for each package. Furthermore, correction methods, such as RUV (Risso et al., 2014),
require users to learn additional steps for model integration. Although a number of tools
have been developed for combining RNA-seq algorithms, some do not compare results
from different algorithms (Delhomme et al., 2012; Varet et al., 2016), lack automation
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ability outside of a web-based setting (Jimenez-Jacinto, Sanchez-Flores & Vega-Alvarado,
2019), are not maintained in a central repository, require additional command line
knowledge for installation (Costa-Silva, Domingues & Lopes, 2017), implement predecessor
algorithms such as DESeq (Guo et al., 2014; Moulos & Hatzis, 2015) instead of DESeq2
(Love, Huber & Anders, 2014) and importantly none support RUV integration.

Integration of results from different RNA-seq algorithms would ideally allow users to
easily (1) import data, (2) run RNA-seq analysis across multiple algorithms, (3) require
minimal parameter input, (4) offer flexible but simple options for removal of unwanted
variation (e.g., RUV integration), (5) present results together in a simple table for further
analysis and finally (6) provide metrics for users to determine stability of DE calls from
multiple methods. Herein, we describe consensusDE, an R/Bioconductor package, which
enables the above, integrating DE results from edgeR (Robinson, McCarthy & Smyth, 2010),
limma/voom (Ritchie et al., 2015) and DEseq2 (Love, Huber & Anders, 2014) easily and
reproducibly, with the additional option of integrating RUV. Through reducing the results
of multiple algorithms into a single ‘consensus’ table with a number of descriptive statistics,
users can readily assess how consistently a gene is called DE by different methods and select
a consensus set for further analyses. We demonstrate the utility of consensusDE through
application to real and simulated data and assess the impact of RUV for comparability or
integration with multiple RNA-seq algorithms. We find that RUV improves stability of
reported DE fold change and improves FDR in a setting of low replication (with largest
improvements for voom). However, the application of RUV did not improve true positive
rates (recall) or with increased number of replicates. We finish by offering some guidelines
and considerations for application of RUV.

MATERIALS AND METHODS
Bioinformatics analyses were performed in R version 3.5.1 (R Core Team, 2018) using
Bioconductor (Gentleman et al., 2004) packages unless stated otherwise.

consensusDE
consensusDE version 1.3.4 (BioConductor Development version) was used for all analyses.
Versions of RNA-seq algorithms follow, edgeR version 3.22.5, voom (limma) version 3.36.5,
DESeq2 version 1.20.0 and RUVSeq version 1.16.1. For DESeq2, cooksCutoff is disabled
for comparable reporting and ranking of all p-values. Normalisation methods are set to the
default methods for each algorithm in multi_de_pairs (norm_method =’’all_defaults’’).
We implement RUVr, which we refer simply to RUV throughout, as described in the
RUVSeq BioConductor vignette (utlising edgeR and extracting residuals), with k set
to 1. RUVr removes sources of unwanted variation, by first fitting a generalised linear
model (GLM) to count data and obtaining model residuals that are then incorporated
into subsequent DE models. All code and parameters used in analyses are available at,
https://github.com/awaardenberg/consensusDE_material and a comprehensive vignette
describing functionality: http://bioconductor.org/packages/consensusDE/.
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Datasets
Weapply consensusDE to both real and simulated data. Real data consisted of RNA-seq data
comparing treatments to controls from human airway smooth muscle cells (Himes et al.,
2014) while for simulated data, we obtain negative binomial distribution parameters from
input read counts of real experimental data (using the simulator described here: (Moulos
& Hatzis, 2015). For parameter estimation, mouse RNA-seq data comparing striatum of
C57BL/6J and DBA/2J strains (Bottomly et al., 2011) was obtained from recount (Frazee,
Langmead & Leek, 2011). Values reported are the average of 10 simulations. We simulate
DE for 10,000 genes, defining the number of DE genes as 500 (5%), with equal up/down
regulation and simulate DE with 3 or 5 replicates.

Performance assessment
For assessment of RNA-seq algorithm agreement or performance we use a number of
statistics. Agreement of logFC was assessed by Bland-Altman analysis (Bland & Altman,
1986) of the differences of logFC versus average logFC between pairs of methods, as
implemented in the blandr package (version 0.5.1) (Datta, 2017). Bias is reported as the
mean shift from zero and limits of agreement defined by 95% confidence intervals. Where
R2 was reported, this was the resultant goodness of fit of a linear model comparing logFC.

Concordance (or agreement) of significant DE genes called by RNA-seq algorithms was
assessed using the Jaccard Similarity coefficient (JC), (Eq. (1)), representing the ratio of
the size of the intersecting set A and B to the total size or union of sets A and B. Here, the
size of set A was considered the intersecting set of all methods (voom, edgeR and DEseq2)
and B considered either the set size of each method individually (where reported as either
voom, edgeR or DEseq2) or the union of all methods (where reported as the union).

JC =
A∩B
A∪B

(1)

Where truth was known (in the case of simulation), positive predictive value (PPV)
or precision as the proportion of true positive (TP) versus false positives (FP) (Eq. (2)),
sensitivity (or recall or true positive rate) as the proportion of TP versus FN (Eq. (3)) and
False Discovery Rate (FDR) (Eq. (4)) were reported.

PPV (precision)=
TP

TP+FP
(2)

sensitivity(recall)=
TP

TP+FN
(3)

FDR=
FP∑

positive predictions
;or1−PPV (4)

RESULTS AND DISCUSSION
We begin by (1) describing consensusDE functionality, followed by (2) comparison to
existing software and the application to (3) real and (4) simulated data for assessing
performance, with and without RUV integration.
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Figure 1 consensusDE typical workflow. (A) consensusDE requires a table, here defined as ‘‘my_data’’,
for example purposes, that describes the experimental design and location of files. (B) running consen-
susDE requires two steps, first to build a summarized object, using the buildSummarized function, to
store all information and second to run analyses with all algorithms using the multi_de_pairs function.
Example code for a typical analysis with consensusDE is provided for illustration.

Full-size DOI: 10.7717/peerj.8206/fig-1

consensusDE functionality
consensusDE follows two simple steps for performing DE analysis with multiple RNA-seq
algorithms (1) building a summarized experiment object and (2) performing DE analysis
(including plotting) using the buildSummarized andmulti_de_pairs functions respectively.
Figure 1 provides an overview of a typical consensusDE workflow, and below we describe
its core functions.

buildSummarized
Generates a summarized experiment that contains all experimental data provided in the
sample table and the read counts mapped to transcript coordinates. To build a summarized
experiment object consensusDE simply requires a sample table describing the location of
BAM files or pre-computed counts from the popular HTSEQ (Anders, Pyl & Huber, 2015),
sample groupings, optional pairing or technical replicate information and transcript
database information (either gtf or txdb format). Where an output directory is specified,
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the user can save their compiled summarized experiment object for future analyses and/or
reproducibility purposes.

multi_de_pairs
Automatically performs DE analysis on all possible pairs of ‘‘groups’’ defined in a provided
sample table using all available DE methods (currently edgeR, voom and DESeq2) and
outputs a summary table (or merged table, described below) that merges the results of
all methods into one table. Options are provided for annotations, including an option to
annotate from gtf files, and users are provided the option to remove unwanted sources
of variation by RUVr (Risso et al., 2014). RUVr, in contrast to RUVg and RUVs (which
are currently not implemented in consensusDE) that rely on the assignment of negative
control genes or availability of technical replicates, is readily generalisable. RUVr first fits
an initial GLM fit of a supervised model to estimate unknown factors of random variation,
given a number of unknown parameters (k), that are subsequently incorporated into the
GLM model for each algorithm for estimation of transcript counts (referred to simply
as RUV here after). The number of unknown parameters (k) is also fixed at 1. Options
are provided for normalisation, permitting the same normalisation method to be applied
to all RNAseq algorithms or to utilise default normalisation methods for each algorithm.
Full results of each method and accessibility to model details is available (see vignette
accompanying BioConductor package for details of how to access) and where output
directories are provided, results and plots are automatically written to these directories,
supporting batch analyses.

Merged results
The final table of interest is described as the ‘‘merged’’ table (description of results provided
in Table 1). The merged table contains statistics including the ‘‘p_union’’ representing the
union p-value, ‘‘p_intersect’’ representing the intersect p-value and ‘‘rank_sum’’, being
the sum of the rankings for significance of DE reported by each method. In the case of
Average Expression and Log Fold Change (logFC), these represent the mean value across
all methods. Standard deviation of the logFC is reported for assessment of variation of fold
change between methods. Individual p-values (corrected for multiple hypothesis testing by
default), and additional information including annotated gene symbol, gene name, kegg
pathway and chromosomal coordinates are also reported when annotation is optionally
selected. Thus, the merged table provides a simple summary of all methods and statistics
in one location.

Plots
Ten diagnostic plots are generated and optionally saved as pdf files; (1) mapped reads for
a summary of transcript reads per sample, (2) Relative Log Expression (RLE) for quality
control (QC) inspection, (3) Principle Component Analysis (PCA), (4) RUV residuals,
(5) Hierarchical clustering, (6) Density distributions, (7) Boxplot, (8) Mean/Average
(MA) Plot, (9) Volcano plots and 10) p-value histogram. For MA and volcano plots, the
average logFC and averages of the average expression by each method are used. Features
are coloured by significance threshold (based on the intersect p-value) and the size of
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Table 1 consensusDEmerged table features and description.

Reported Feature Meaning Description

ID Identifier Identifier of feature used for mapping read counts against
AveExpr Average Expression Average of edgeR, DESeq2 and voom reported Average

Expression
LogFC Log Fold-Change, also known as a log-ratio Average of edgeR, DESeq2 and voom logFC
LogFC_sd Log Fold-Change standard deviation Standard Deviation of LogFC reported by edgeR, DESeq2

and voom
edger_adj_p edgeR p-value Adjusted for multiple hypotheses using benjamini and

hochberg (default)
deseq_adj_p DESeq2 p-value Adjusted for multiple hypotheses using benjamini and

hochberg (default)
voom_adj_p voom p-value Adjusted for multiple hypotheses using benjamini and

hochberg (default)
edger_rank rank of the p-value reported by edgeR smallest rank is most significant (or smallest p-value)

reported
deseq_rank rank of the p-value reported by DESeq2 smallest rank is most significant (or smallest p-value)

reported
voom_rank rank of the p-value obtained by voom smallest rank is most significant (or smallest p-value)

reported
rank_sum Sum of ranks Combination of ranks from edger_rank, voom_rank

and deseq_rank. Results are orderd by this sum, which
represents the order of the most stable reported p-values

p_intersect Largest p-value observed This represents the intersect when a threshold is set on the
p_intersect column

p_union Smallest p-value observed This represents the union when a threshold is set on the
p_union column

genename Extended gene name e.g., alpha-L-fucosidase 2 corresponds to FUCA2
symbol Gene symbol e.g., FUCA2
kegg kegg pathway identifier For further analyses of pathways where annotated
coords chromosomal coordinates e.g., chr6:143494811-143511690
strand transcript strand forward strand is +, reverse strand is -
width transcript width Reported in base pairs (bp) (transcript start to end) (e.g.,

16,880 bp)

the point weighted by fold change standard deviation, allowing assessment of deviation
of fold change by different methods. In addition to providing plots before and after
normalisation, if RUV is employed, plots before and after RUV correction are generated
thus allowing users to assess the impact of normalisation and/or RUV. Each plotting
function is accessible through the ‘diag_plots’ function in consensusDE and described in a
vignette that accompanies consensusDE: http://bioconductor.org/packages/consensusDE/.

Software Comparison
For summarization of software and their features, we exclusively focus on methods that
reportmultiple RNA-seq algorithm results in Table S1. Key criteria for software comparison
were (1) ease of use, (2) features, (3) correction capability and (4) integration method.
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IDEAMEX (Jimenez-Jacinto, Sanchez-Flores & Vega-Alvarado, 2019) and consexpression
(Costa-Silva, Domingues & Lopes, 2017) implement a consensus-based voting approach,
based on the number of algorithms reporting DE at a pre-defined significance threshold,
arguing that consensus amongst multiple methods improves accuracy of DE detection.
IDEAMEX, is web-based, targeted at non-bioinformaticians and requires users to click
through individual steps. consexpression is an instance released for assessing results and
is not readily generalizable. MultiRankSeq combines ranks derived from edgeR, DESeq
and baySeq ordered p-values as an overall rank sum for reporting of results (Guo et al.,
2014). Assessment of intersecting sets showed similar performance with DESeq and edgeR
however baySeq failed to identify a similar proportion of overlapping DE genes (Guo
et al., 2014). All software except metaseqR were developed outside of the widely used
R/Bioconductor repository, requiring users to install unix-based software and in some
instances install old versions of software. Rather than considering intersection of common
DE genes, metaseqR implements several methods for combining p-values, (Simes, Union,
Fisher’s, and Whitlock weighting) in addition to a proposed weighted PANDORA method
(Moulos & Hatzis, 2015). However, combining p-values using classical meta-analytical p-
value methods (e.g., Fishers) performed poorly and the weighted combination of p-values
(PANDORA and Whitlock) was sensitive to the selection of weights, requiring proper
simulation for definition of weights. Although the weighted combination of p-values
improved overall performance in some cases, it did not improve false discovery rate (FDR)
using simulated data (which is often an important goal, for example, in diagnostic settings)
or Area Under Curve (AUC) of real data in comparison to the intersection method (Moulos
& Hatzis, 2015). MultiRankSeq and metaseqR also implement DEseq, rather than DESeq2.
All software requires the user to specify the contrast (or comparison) and none support
RUV correction.

In comparison, consensusDE, is available in the BioConductor repository, implements
edgeR (McCarthy, Chen & Smyth, 2012; Robinson, McCarthy & Smyth, 2010), DESeq2
(Love, Huber & Anders, 2014) and limma/voom (Ritchie et al., 2015), which benchmark
analyses find to be some of the best-performing algorithms for DE analysis (Costa-Silva,
Domingues & Lopes, 2017; Rapaport et al., 2013). A key feature of consensusDE is ease of
use. consensusDE does not require the user to specify a contrast of interest or specify
models, instead automatically performing all possible comparisons from an annotation
table provided. consensusDE also improves on existingmethods by integrating RUV, which
has been reported to improve sample clustering by the removal of unwanted technical
variation and thereby improving biological significance (Risso et al., 2014). When selected,
consensusDE automatically updates the underlying model after estimating unknown
sources of variation from at initial GLM fit (RUVr) and including in subsequent edgeR,
DESeq2 and voom analyses, consistent with its goal of ‘‘ease of use’’. The user has the
option to flag technical replicates for merging of counts and paired samples (for paired
analyses) in the annotation table. To assess the performance of consensusDE and the utility
of incorporating RUV across multiple RNA-seq algorithms, we apply consensusDE with
and without RUV correction to real and simulated data.
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Application of consensusDE to real RNA-seq data (with and without
RUV)
RUV has been reported to stabilize fold-change and reporting of DE (Risso et al., 2014). To
assess if RUV improved the concordance of reportedDE across different algorithms, we first
use the Jaccard Similarity Coefficient (JC) (Eq. (1)) to measure similarity of reported DE
to the common (intersect) set of reported DE (adjusted p≤ 0.05). For assessment of RUV
to stabilize fold change variation between multiple algorithms, we perform Bland-Altman
analysis to assess bias and limits of agreement, being the mean agreement and 95%
confidence intervals of logFC differences between pairs of methods, respectively. Goodness
of fit of log fold-change (reported as R2) and standard deviation (SD) of log fold-change
in the intersecting and non-intersecting DE results are also evaluated for each algorithm.
consensusDE was ran without RUV and then with RUV to incorporate the same RUV
residuals into each algorithm for comparison of results. For application to real RNA-seq
data, we utilize data from human ‘‘airway’’ smooth muscle cells comparing glucocorticoid
treatment to untreated controls (Himes et al., 2014). This data is also available in the airway
R package and used as example data in the consensusDE vignette.

Application of consensusDE to airway data identified 1,878 DE genes for voom, 2,114
for edgeR and 2,747 for DEseq2 (adjusted p≤ 0.05), of which 1,728 were in common
(Fig. 2A). Voom shared the highest similarity to the intersect (JC = 0.92), followed by
edgeR (JC= 0.82) and DEseq2 (JC= 0.63). Application of RUV increased the overall sizes
of all sets reported as DE by 18% to 31% with 2,724 DE genes for voom, 2,935 for EdgeR
and 3,341 for DEseq2 (adjusted p≤ 0.05), with the common set increasing by 31% (Fig.
2B). The Jaccard Similarity Coefficient similarity increased substantially for EdgeR (0.857
vs. 0.817) and DEseq2 (0.752 vs. 0.629), but improved only marginally for voom (0.923
vs. 0.920) (Figs. 2B–2C). Therefore RUV increased the overall set size of reported DE for
each algorithm (largest for voom), but also increased the intersect and JC, thus appearing
to stabilize overlap. However it must be noted that an increase in JC, without known truth,
does not necessarily mean improved performance.

We next assessed agreement (or stability of fold change) between algorithms using
Bland-Altman analyses, linear regression and standard deviation of fold change. Bias,
being the mean shift of the differences between logFC values for each pair of algorithms
and the limit of agreement (LOA), being the range of values where 95% of data laid were
compared before and after RUV correction. Mean bias, with or without RUV was small
(ranging from ∼0.003–0.013) and consistently decreased with RUV correction (Table S2).
If RUV improved agreement, we would expect the LOAs to decrease, and indeed RUV
decreased the upper and lower limits of agreement between voom, DESeq2 and edgeR, but
not between DESeq2 and edgeR (Figs. 2C–2D, Table S2). DEseq2 and edgeR, however,
also maintained the tightest limits of agreement irrespective of RUV. These results were
consistent with correlation and standard deviation of logFC, where R2 improved between
DESeq2 (0.9796 vs. 0.9883) and voom, and edgeR (0.9799 vs. 0.9882) and voom, but did
not increase between DESeq2 and edgeR (0.9998 vs. 0.9999) (Table S2). RUV also resulted
in a more stable fold change of the DE set (Table S2). Overall fold change SD improved for
each method, 0.013 (reduction of 0.004) for voom, 0.016 (reduction of 0.005) for EdgeR,
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Figure 2 Application to airway data. (A) Jaccard Coefficient (JC) of each set to the intersect (common)
without RUV correction and (B) with RUV correction. Absolute upper (C) and lower (D) limits of log
fold change differences between pairs of algorithms (95% confidence intervals), with and without RUV
correction.

Full-size DOI: 10.7717/peerj.8206/fig-2

and 0.013 (reduction of 0.003) for DEseq2 (adjusted p ≤ 0.05). The non-intersecting set
for each algorithm also improved, 0.008 (reduction of 0.004) for voom, 0.027 (reduction
of 0.012) for EdgeR and 0.012 (reduction of 0.007) for DEseq2 and intersection 0.014
(reduction of 0.003). Only voom demonstrated lower fold change SD than the intersecting
set compared to DEseq2 and EdgeR which exhibited higher fold change SD.

Overall, these results found that RUV (1) increased the number of reported DE genes,
whilst (2) increasing the overlap of intersecting sets and (3) improving fold change
agreement between methods. Thus, RUV appeared to improve the overall concordance of
different methods, bringing their intersecting values closer to the union of all sets. This
was consistent with a reduction of variability of fold change between algorithms, especially
between voom and DEseq2 as well as edgeR. However, the smallest set of DE genes was also
derived from voom and voom had the highest level of agreement to the overall intersect.
Thus, it is important to note that consensus and improvement of consensus with RUV,
was largely driven by voom and the additional agreement of DEseq2 and edgeR with voom
after RUV application. As it is difficult to address what this means, especially JC, in the
context of false discovery rate or overall performance, we next simulate data with known
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numbers of DE genes and assess the utility of applying RUV in a consensus-based manner
across multiple RNA-seq algorithms for improving stability of the intersecting set.

Simulation results
For simulated data (described in Methods) we set an expected number of DE genes to
500 (or 5%), from a total of 10,000 genes with equal up/down regulation between two
groups. We simulate DE with 3 and 5 replicates (in equal groups), representing commonly
performed experimental designs, and report the average of 10 simulations. As per the
real ‘‘airway’’ dataset, we begin by assessing the JC of each method, with and without
RUV correction, followed by Bland-Altman analysis of bias, LOA, R2 and fold change SD.
Simulated data with 3 replicates (without RUV and adjusted p ≤ 0.05) identified 304.0 DE
genes for voom (JC= 0.999), 449.6 for edgeR (JC= 0.675), 438.1 for DEseq2 (JC= 0.693),
of which 303.6 were in common. In contrast to real data RUV did not improve JC values,
identifying 281.9 DE genes for voom (JC= 0.996), 462.2 for edgeR (JC= 0.608) and 415.5
for DEseq2 (JC= 0.676), of which 280.8 were in common (Fig. 3A and Table S2). Although
JC improved overall for all methods when increasing to 5 replicates, JC was once again
not improved with the application of RUV (Fig. 3A). For 5 replicates, comparing RUV vs
non-RUV corrected, this identified 413.1 vs. 415.5 (JC = 0.997 vs. 0.996) DE genes for
voom, 487.6 vs. 481.8 (JC = 0.845 vs. 0.859) for edgeR and 492.8 vs. 492.0 (JC = 0.837 vs.
0.841) for DEseq2 (adjusted p ≤ 0.05), of which 413.8 vs. 411.8 were in common. Thus,
replication rather than application of RUV had the greatest impact on JC in simulated data.

In contrast to the real data and albeit that the differences were negligible (a maximum
mean difference of 0.008), RUV increased the mean absolute fold-change bias in all
comparisons (Table S2). However, consistent with the real airway data, upper and
lower limits of agreement for simulated data decreased with RUV correction for voom
comparisons with DESeq2 and edgeR but not between DESeq2 and edgeR (Fig. 3B, Table
S2). Notably, limits of agreement were consistently lower for simulations with 5 replicates
(Fig. 3B, Table S2). Overall fold change R2 for 3 and 5 replicates also improved between
DESeq2 and voom, as well as edgeR and voom, but did not increase between DESeq2 and
edgeR (Table S2).

The greatest gains in fold change stability for voom were found in the 3-replicate setting,
doubling the improvement observed with RUV applied in a 5-replicate setting. Absolute
mean fold change SD of simulated results also improved with RUV correction, 0.0086 (vs
0.011 or a reduction of 0.024) for voom, 0.0147 (vs 0.0154 or a reduction of 0.007) for
edgeR, and 0.0133 (vs 0.0141 or a reduction of 0.008) for DEseq2 (adjusted p≤ 0.05). With
the exception of edgeR, the non-intersecting set of each method and the overall intersect
also improved with 5 replicates, which was 0.0534 (vs. 0.0315, an increase of 0.029) for
voom, 0.0242 (vs 0.0252, a decrease of 0.01) for EdgeR and 0.0232 (vs 0.0217, an increase
of 0.015) for DEseq2 and intersection (0.0085 vs 0.0107, a decrease of 0.022) (Table S2).
RUV also reduced mean absolute SD with 5 replicates and the intersect had the lowest
value (0.0085), but increasing to 5 replicates did not improve overall deviation of fold
change, compared to 3 replicates. Thus, the greatest gains of RUV were made in a setting
of 3-replicates, with diminished improvement for voom with additional replication.
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Figure 3 Simulated data for 3 and 5 replications with and without RUV. (A) Jaccard Coefficient (JC) of
each method (B) limits of log fold change differences between pairs of algorithms (95% confidence inter-
vals), with and without RUV correction (C) False Discovery Rates (FDR), lower number is better and (D)
Sensitivity (or recall), higher number is better. Each panel contains 3 replicates, 5 replicates and without
and without RUV correction–see central legend for colour coding scheme. All values represent the abso-
lute average of 10 simulations.

Full-size DOI: 10.7717/peerj.8206/fig-3

As we defined a truth set (known DE genes) we assess the performance of consensusDE
with and without RUV correction for each method, as well as the union and intersect.
We utilise (1) False Discovery Rate (FDR) (Fig. 3C, Eqs. (4)) and (2) sensitivity (or recall)
(Fig. 3D, Eq. (3)) for assessment of false positive and false negative rates. Mean FDR
(of 10 simulations) was lowest for the intersect and improved with correction of RUV
(0.0491 vs. 0.0384, for 3 replicates). FDR improved with the application of RUV for voom
(0.0494 vs 0.0390) and DESeq2 (0.1654 vs 0.1565), but it did not improve for the union
(0.1811 vs 0.1918) or edgeR (0.1610 vs 0.1847) (Fig. 3C). Although the same pattern
emerged for the FDR of 5 replicates, whereby the intersect had the lowest FDR (0.0405),
application of RUV did not improve the FDR for any individual method (Table S2).
Although a low FDR is desirable in some instances, ensuring the number of false positives
are minimised, controlling for false negatives whereby true results are incorrectly missed
(or recall/sensitivity) can also be of importance. In contrast to FDR, sensitivity did not
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increase with the application of RUV for any algorithm tested, indeed decreasing with RUV
application and was highest in a setting of 5 replicates for the union of all methods (0.872).

Here, we establish that RUV improved FDR for the intersect for 3 replicates, approaching
the same FDR as 5 replicates without application of RUV, but did not further improve
FDR with 5 replicates. The improvement of FDR related to a reduction of fold-change
variation and limit of agreement of different algorithms, which was greater in a setting
of 3 replicates versus 5 replicates. However, the same was not true for all algorithms
individually, suggesting that the greatest gain in FDR results from the combination
of different algorithms. Observing the lowest FDR for the intersect amongst different
algorithms and the highest for the union could be considered consistent with a model
where increased stringency through inclusion of multiple forms of evidence improves
FDR. Indeed, this would be consistent with previous benchmarking studies (Costa-Silva,
Domingues & Lopes, 2017; Guo et al., 2014; Moulos & Hatzis, 2015). However, we found
that voom was also the most conservative method, based on set size of DE, in both the
3 and 5 replicate experiments and that voom FDR was also the lowest. Hence voom was
the main driver of the low FDR observed in the intersect. This is consistent with previous
results demonstrating a lower proportion of false positive results by voom (Ritchie et al.,
2015). Overall, RUV improved the confidence of identifying true positives, or minimizing
false positives, when combined with the intersect of DE reported by multiple algorithms
and experiments performed with a lower number of replicates, but with minimal gains
over using voom alone. Importantly, the difference between FDR performance with the
application of RUV to lower numbers of replicates (3 versus 5) diminished with increased
replication. This was likely due to the improved performance of the linear model based
voom without RUV correction. Although a trade-off between recall and precision was
observed for voom,with voomalso being the least sensitive, RUVdid not improve sensitivity
for any method, in 3 or 5 replicate setting. Indeed the union, being the combination (rather
than intersection) of all evidence, performed better than any other individual method. This
suggests that RUV is favouring improvement of FDR (or precision) through minimising
false positives, but potentially at the cost of false negatives. In this context, we also note
that increased JC observed is a poor metric for assessment of FDR. Real data was not
replicated with our simulated data, where instead a decreased JC coincided with improved
FDR. However, RUV certainly improved logFC agreement between methods, especially
between voom and edgeR as well as DEseq2. Overall, these results support the application
of RUV in a low-replicate setting for stabilisation of fold-change, in particular for voom
and DEseq2, however RUV did not improve FDR with increased replication or sensitivity
in any setting.

CONCLUSIONS
We present consensusDE, a freely available R/Bioconductor package, that allows for simple
and automated DE analysis to be performed using multiple methods, readily allowing the
user to observe variability of DE due to method selection. Application of consensusDE to
real and simulated data highlights the following rules, some of which are already established
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in the RNA-seq community and others that require further consideration when analysing
RNA-seq data. (1) the intersect of multiple methods has lowest FDR (but this can be driven
by a single high performing algorithm, which we find to be voom), (2) RUV improves
the intersect FDR (as well as voom and DESeq2 individually) with smaller number of
replicates but this effect diminishes with increased replication, (3) RUV does not improve
FDR for all individual RNA-seq algorithms, (4) RUV does not improve sensitivity, (5)
the union appears to strike a balance for recovery of true positives, through minimising
loss of false negatives when using multiple methods, and finally (6) increased replicate
numbers, without RUV, has the best recovery of DE genes when considering FDR and
sensitivity together—reinforcing increased replication for recovery of true DE genes. We
do note however that this is not an exhaustive testing of all possible scenarios. For instance,
it remains to be explored if these rules apply with increased modelling of noise, RUV
correction methodology (here we apply RUVr), number of hidden variables or if these
rules generalize to other methods for combining RNA-seq algorithms, such as weighting
of p-values. However, our results do indicate the utility and ease of consensusDE for
performing analysis with multiple RNA-seq algorithms and integration with RUV, whilst
offering some rules for considering results. Future work will aim to incorporate additional
algorithms and combination methods.
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