Avian ecological succession in the Amazon: a long‐term case study following experimental deforestation

Rutt, Cameron L., Jirinec, Vitek, Cohn-Haft, Mario, Laurance, William F., and Stouffer, Philip C. (2019) Avian ecological succession in the Amazon: a long‐term case study following experimental deforestation. Ecology and Evolution, 9 (24). pp. 13850-13861.

[img]
Preview
PDF (Published Version) - Published Version
Download (855kB) | Preview
View at Publisher Website: https://doi.org/10.1002/ece3.5822
 
25
859


Abstract

1. Approximately 20% of the Brazilian Amazon has now been deforested, and the Amazon is currently experiencing the highest rates of deforestation in a decade, leading to large‐scale land‐use changes. Roads have consistently been implicated as drivers of ongoing Amazon deforestation and may act as corridors to facilitate species invasions. Long‐term data, however, are necessary to determine how ecological succession alters avian communities following deforestation and whether established roads lead to a constant influx of new species.

2. We used data across nearly 40 years from a large‐scale deforestation experiment in the central Amazon to examine the avian colonization process in a spatial and temporal framework, considering the role that roads may play in facilitating colonization.

3. Since 1979, 139 species that are not part of the original forest avifauna have been recorded, including more secondary forest species than expected based on the regional species pool. Among the 35 species considered to have colonized and become established, a disproportionate number were secondary forest birds (63%), almost all of which first appeared during the 1980s. These new residents comprise about 13% of the current community of permanent residents.

4. Widespread generalists associated with secondary forest colonized quickly following deforestation, with few new species added after the first decade, despite a stable road connection. Few species associated with riverine forest or specialized habitats colonized, despite road connection to their preferred source habitat. Colonizing species remained restricted to anthropogenic habitats and did not infiltrate old‐growth forests nor displace forest birds.

5. Deforestation and expansion of road networks into terra firme rainforest will continue to create degraded anthropogenic habitat. Even so, the initial pulse of colonization by nonprimary forest bird species was not the beginning of a protracted series of invasions in this study, and the process appears to be reversible by forest succession.

Item ID: 61259
Item Type: Article (Research - C1)
ISSN: 2045-7758
Copyright Information: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.© 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd
Funders: US National Science Foundation (NSF), Gordon and Betty Moore Foundation (GBMF), National Geographic Society, National Institute of Food and Agriculture (NIFA), US Department of Agricluture (USDA)
Projects and Grants: NSF LTRB 0545491, NSF LTRB 1257340, USDA #94098, USDA #94327
Date Deposited: 29 Jan 2020 02:15
FoR Codes: 41 ENVIRONMENTAL SCIENCES > 4104 Environmental management > 410401 Conservation and biodiversity @ 100%
SEO Codes: 96 ENVIRONMENT > 9608 Flora, Fauna and Biodiversity > 960899 Flora, Fauna and Biodiversity of Environments not elsewhere classified @ 100%
Downloads: Total: 859
Last 12 Months: 2
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page