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Abstract 29 
 30 

Coral reef ecosystems are at the forefront of biodiversity loss and climate change-mediated 31 

transformations. This is expected to have profound consequences for the functioning of these 32 

ecosystems. However, assessments of ecosystem function on reefs are often spatially limited, 33 

within biogeographic realms, or rely on presumed proxies such as traits. To address these 34 

shortcomings and assess the effects of biogeography and fish presence on the critical 35 

ecosystem function of macroalgal removal, we used assays of six algal genera across three 36 

reef habitats in two biogeographically distinct locations, Little Cayman in the Caribbean and 37 

Lizard Island on the Great Barrier Reef (GBR). Patterns of fish feeding, and realised 38 

ecosystem function, were strikingly similar between the two geographic locations, despite a 39 

3-fold difference in the local diversity of nominally herbivorous fishes, a 2.4-fold difference 40 

in the diversity of fishes feeding, and differences in the biogeographic history of the two 41 

locations. In both regions a single species dominated the function: a surgeonfish, Naso 42 

unicornis, at the GBR location and, surprisingly, a triggerfish, Melichthys niger, at the 43 

Caribbean location. Both species, especially M. niger, were relatively rare, compared to other 44 

nominally herbivorous fishes, in censuses covering more than 14000 m2 at each location. Our 45 

study provides novel insights into the critical function of macroalgal removal in hyperdiverse 46 

coral reef ecosystems, highlighting: a) that function can transcend biogeographic, taxonomic 47 

and historical constraints; and b) shortcomings in our assumptions regarding fish presence 48 

and realised ecosystem function on coral reefs. 49 

 50 

 51 
 52 
 53 
 54 
 55 
 56 
 57 
 58 



3 
 

Introduction 59 
 60 

Coral reefs are the embodiment of marine biodiversity in the tropics, with millions of 61 

people directly relying on these ecosystems for basic subsistence (Moberg and Folke 1999; 62 

Woodhead et al. 2019). Yet coral reefs are also at the forefront of ecosystem transitions, with 63 

the effects of climate change manifesting themselves in a particularly pronounced manner 64 

through repetitive, global coral bleaching events (Hughes et al. 2018). Coral reefs are primed 65 

to undergo major transitions including substantial losses in biodiversity, and the functional 66 

extinction of species (Hughes et al. 2017; Barlow et al. 2018). This is expected to have 67 

profound consequences for the functionality of these hyperdiverse tropical ecosystems, and 68 

makes understanding the nature and role of critical ecosystem functions on geographically 69 

distinct reefs, with different potential resilience, a particularly pragmatic endeavor (D’agata 70 

et al. 2016; Bellwood et al. 2019c). This situation raises the question: is the operation of 71 

critical ecosystem functions uniform or consistent across biogeographically distinct coral reef 72 

locations?  73 

Trait-based approaches have recently provided new insights into the potential 74 

relationships between diversity, ecosystem functions and redundancy of coral reef taxa at 75 

large biogeographic scales (Stuart-Smith et al. 2013; Mouillot et al. 2014; Hemingson and 76 

Bellwood 2018; McWilliam et al. 2018). Despite these advances, processes are rarely 77 

quantified directly at large scales, reducing the clarity of our understanding (Bellwood et al. 78 

2019a; Brandl et al. 2019). Indeed, there is a growing recognition of a mismatch between the 79 

insights gleaned from quantifying ecosystem functions or processes directly, vs. assumed 80 

functions based on proxies, such as traits, or from the presence of key taxa, especially if there 81 

is no demonstrable, causal, relationship between taxa or traits and specific ecosystem 82 

processes (Bellwood et al. 2019c). Surprisingly, we even lack a comprehensive understanding 83 

of the critical ecosystem function of ‘macroalgal removal’ (sensu Bellwood et al. 2004) at 84 
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large biogeographic scales. This is one of the most widely quantified processes on reefs, 85 

relying on estimated (fish feeding rates) or realised (mass of algae lost) functional metrics 86 

(e.g. Rasher et al. 2013; Longo et al. 2015; Plass-Johnson et al. 2015; Bonaldo et al. 2017; 87 

Loffler et al. 2018). Such studies on macroalgal removal have substantially enhanced our 88 

understanding of the identity of the key taxa involved and provided information on patterns 89 

of redundancy vs. complementarity on reefs (e.g. Bennett and Bellwood 2011; Vergés et al. 90 

2012; Rasher et al. 2013; Humphries et al. 2015; Loffler et al. 2015; Longo et al. 2015; Streit 91 

et al. 2015). Unfortunately, despite this large body of research, experimental limitations (e.g. 92 

the range of habitats and/or algal genera considered) have prevented comparisons across 93 

global biogeographic locations. This lack of cross-system comparisons limits our ability to 94 

understand the impacts of evolution, biodiversity or biogeography on this critical ecosystem 95 

function, and to assess our ability to infer function from presence in key fish species. 96 

A wide range of fishes have been identified as key players in macroalgal removal on 97 

coral reefs (Lewis and Wainwright 1985; Hoey and Bellwood 2009; Rasher et al. 2013; 98 

Loffler et al. 2015). Yet geological and evolutionary history has resulted in a situation where 99 

the taxonomic and functional diversity of fishes is not evenly distributed among the world’s 100 

coral reefs (Kulbicki et al. 2013; Bellwood et al. 2017). This is because the two major realms, 101 

the Atlantic and Indo-Pacific, have been largely separated for the last 12 million years 102 

(Siqueira et al. 2019b). During this time, the Caribbean, in the Atlantic, has been an area of 103 

geographic isolation and species extinction, while the Great Barrier Reef (GBR), in the Indo-104 

Pacific, has been a place of refuge and speciation (Floeter et al. 2008; Bellwood et al. 2017; 105 

Siqueira et al. 2019a, 2019b). As a result, few coral reef species are shared between the two 106 

locations and the GBR hosts a four-fold higher diversity of fishes compared to the Caribbean 107 

(Bellwood et al. 2004; Roff and Mumby 2012). This is expected to have significant flow-on 108 

effects for function, with the Caribbean and the GBR considered to be functionally distinct 109 
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(Bellwood et al. 2004, 2019c; Roff and Mumby 2012; Siqueira et al. 2019a). The Caribbean 110 

and the GBR therefore, are particularly amenable to examining variation in the nature of 111 

ecosystem functions, as reef systems with highly divergent histories. To-date, no single study 112 

assessing the ecosystem function of macroalgal removal has accounted for varying habitats 113 

and varying algal assay genera (accounting for niche partitioning) across these two disparate 114 

biogeographic localities.  115 

To capture and directly quantify the function of macroalgae removal, we conducted a 116 

series of macroalgal assays encompassing six macroalgal genera, across three distinct reef 117 

habitats at two locations: one on the GBR and the other in the Caribbean. Due to the 118 

divergent evolutionary histories of the GBR and Caribbean, one might expect a far higher 119 

number of macroalgae-feeding species at the high-diversity GBR location, resulting in a 120 

wider range of algal genera being targeted and a higher rate of the ecosystem process (i.e. 121 

algal removal) (sensu Hector and Bagchi 2007; Lefcheck et al. 2015). By contrast, in the 122 

lower diversity Caribbean location one might expect: a) reduced levels of the process in 123 

question, or b) the process to operate at a similar level, given that they are ecologically 124 

similar ecosystems (sensu Cody and Diamond 1975). If the latter is the case: a) the lower 125 

taxonomic diversity would suggest that fewer species would maintain this function, or that b) 126 

the same number of species could maintain the function, as a result of behavioural flexibility 127 

in this lower-diversity assemblage. These various alternatives will have implications for reef 128 

resilience in the face of changing ecosystem configurations. The aim of this study, therefore, 129 

is to quantify the magnitude of this key ecosystem process in the two systems and to examine 130 

the nature of its delivery in terms of the number and identity of the species involved.  131 

 132 
Methods 133 
 134 

This study was conducted in June 2007 at Snap Shot and Sailfin reefs off Little 135 

Cayman Island, in the Caribbean and in January 2008 at Bird Islet and South Island in the 136 
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Lizard Island Group, GBR (Fig. S1). All four reefs are located within marine management 137 

areas that limit fishing. At each reef, three habitats were examined, the reef slope (10–14 m 138 

depth), reef crest (2–4 m depth) and back reef (2–4 m depth) and within each habitat, three 139 

sites at least 30 m apart. Different habitats were used to encompass the breadth of 140 

herbivorous fish feeding activity on reefs in both biogeographic locations.  141 

To assess macroalgal removal rates across locations, a series of macroalgal transplant 142 

assays were used, consisting of six different macroalgal genera (Acanthophora, Galaxaura, 143 

Halimeda, Laurencia, Sargassum, Turbinaria), encompassing a range of taxonomic and 144 

functional groups. Species within each macroalgal genus were selected with similar growth 145 

forms to facilitate direct comparisons between biogeographic locations. Macroalgal thalli 146 

were collected by hand from adjacent shallow water habitats (primarily reef flat and shallow 147 

back reef/lagoonal areas) and transferred to recirculating seawater aquaria until they were 148 

used in the feeding trials. All algae were used within three days of collection.  149 

For algal assays, each thallus was spun in a salad spinner for 30 s to remove excess 150 

water, and the wet mass of the thallus recorded (see Table S2 for initial masses). Macroalgae 151 

were offered to reflect their usual growth form to assess selectivity of genera (rather than 152 

assessing preference by offering ‘equal-sized’ specimens, (see Mantyka and Bellwood 2007). 153 

The macroalgae were attached separately to coral rubble with a rubber band and deployed 154 

haphazardly together within a 1 m2 area at each site. After 8 h on the reef (~0900-1700 to 155 

encompass most herbivorous fish feeding activity), the macroalgae assays were collected, 156 

spun and reweighed (as above) to determine the mass of algae lost (details of handling 157 

controls are in the supporting information). The deployment procedure was replicated across 158 

three days in each site, reef and habitat (n = 54 in each biogeographic location).  159 

To identify the fish species feeding on the macroalgal assays, stationary underwater 160 

digital video cameras (Sony DCR-SR100 HDD cameras in Ikelite housings) were used to 161 
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record feeding activity. A camera mounted on a concrete block was positioned approximately 162 

2 m from one of the three macroalgal assays in each reef within each habitat. Filming 163 

commenced immediately after the assays were deployed (a small bar was placed adjacent to 164 

the assays for ~10 s to allow calibration of fish sizes on the footage) and was continuous for 8 165 

h (~0900 – 1700 h), apart from a 2 – 4 min interval after 4 h to change batteries. This 166 

procedure was replicated three times within each habitat in each reef (a total of 144 h of total 167 

video in each biogeographic location). All video footage was viewed, recording the number 168 

of bites on each macroalgal genus, the fish species and size (total length to the nearest cm). 169 

Fish biomass was estimated using Bayesian length-weight regression parameters (Froese and 170 

Pauly 2018), and a biomass-standardised bite impact (the product of biomass and number of 171 

bites following Bellwood et al. 2006a) was calculated to account for body size related 172 

variation in bite size.  173 

The nominal herbivorous fish community in the vicinity of the assay deployment sites 174 

was also characterized in each location (see ESM table S3). This was achieved by counting 175 

nominally herbivorous fishes >10 cm total length (TL) on SCUBA along 5 m wide transects 176 

and all fishes <10 cm TL on 1 m wide transects, during ten-minute timed swims. All relevant 177 

fishes from the benthos to the water surface were recorded during swims (size stratified 178 

censuses permitted full water column quantification, other methods such as traditional belt 179 

transects targeting more demersal fishes may be more limited in this regard). All fishes were 180 

placed into TL size categories (2.5 cm classes for fishes <10 cm, 5 cm classes for fishes >10 181 

cm TL). Fish biomass was subsequently estimated using Bayesian length-weight regression 182 

parameters and/or published length-weight regression parameters (Froese and Pauly 2018). 183 

For biomass estimates all fish size classes were considered. For total abundance estimates 184 

only fishes >10 cm TL were considered as fishes in smaller size classes have limited 185 

functional impacts on macroalgae but contribute disproportionately to abundance estimates 186 
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(following Bellwood et al. 2019c). Four timed swims were performed in each habitat at each 187 

reef, with each swim covering approximately 117 ± 27 m (mean ± SE). Full details of the 188 

methods are given in (Bellwood and Wainwright 2001; Wismer et al. 2009). 189 

 190 

Statistical analysis 191 

 A series of linear and generalised linear mixed effects models (LMEs and GLMMs) 192 

were used to examine herbivorous fish feeding rates and genera-specific macroalgal removal 193 

rates between biogeographic locations. Herbivorous fish feeding rate was examined using 194 

both absolute bites and biomass-standardised bites per hour. In both cases bite rates were 195 

standardised by the initial algal mass offered in each assay, separately for each genus, thus 196 

accounting for differences in algal assay mass. Macroalgal removal was also considered as a 197 

response variable in the models in two ways: absolute and relative loss of mass, to examine 198 

the function rate and also to account for differences in the initial mass. 199 

 In all cases both LMEs as well as GLMMs fitted with a Beta (proportional data) and 200 

Gamma, lognormal, or log-transformed distribution were considered. A small constant 201 

(0.001) was added across the data in the case of Gamma and lognormal models to allow them 202 

to be fitted, due to the presence of zeroes. Final models were selected based on the residual 203 

plots and the fit of the model to the data (Table S5). In all models, algal genera, 204 

biogeographic location and habitat were fitted as fixed effects with all two-way interactions. 205 

Reef and algal assay identity nested within reef were fitted as random effects to account for 206 

any lack of independence especially between algae within the same arrays. Full models with 207 

all two-way interactions were initially fitted, followed by subsequent model simplification 208 

based on six relevant models in each case. Selection of the most parsimonious model was 209 

based on the corrected Akaike Information Criterion (AICc) (Table S4). Model assumptions 210 

and fits were assessed using residual plots. To examine within-level differences, comparisons 211 
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between biogeographic locations for each algal genera were performed using pairwise means 212 

comparisons. All statistical analysis was performed in the software R (R Core Team 2018), 213 

using the lme4 (Bates et al. 2015), glmmTMB (Brooks et al. 2017), MuMIn (Barton 2018), 214 

bipartite (Dormann 2008) and emmeans (Lenth 2019) packages.   215 

 216 

Results 217 

 Estimated ecosystem function (biomass-standardised bite rate) was dominated by a 218 

single species at each location (Fig. 1). The surgeonfish, Naso unicornis, and the triggerfish, 219 

Melichthys niger, accounted for 82.5% and 62% of the biomass-standardised bites delivered 220 

to algal assays at Lizard Island and Little Cayman, respectively, while only accounting for 221 

4.7% and 2.7% of the total abundance (14.5% and 2.2% of total biomass), of species recorded 222 

feeding in the vicinity, respectively (Fig. 1). The biomass-standardised bites of N. unicornis 223 

were largely delivered on Sargassum (94.1% of bites), while M. niger predominantly fed on 224 

Galaxaura (79.7% of bites) (Figs 1e, f, S2). Collectively, the top three species at each 225 

location accounted for more than 93% of all biomass-standardised bites delivered in both 226 

cases (Fig. 1). Despite this marked similarity in patterns, there was a substantial difference in 227 

the diversity of fish species recorded biting the assays. Fish feeding richness was more than 228 

2.4-fold higher in the GBR location compared to the Caribbean location (Fig. 1), reflecting 229 

the diversity of nominally herbivorous fishes detected in the vicinity (3-fold higher on the 230 

GBR) (Table S3).  231 

Despite marked differences in the taxonomic richness of fishes recorded feeding on 232 

the macroalgal assays, this did not appear to translate to higher overall estimates of 233 

ecosystem function for either absolute bite rate, or biomass-standardised bite rate (Figs 2, S3) 234 

per gram of algae offered. Furthermore, it did not appear to result in a greater breadth of 235 

feeding across algal genera, with all genera being fed on to varying extents across both 236 
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biogeographic locations. For both absolute and biomass-standardised bite rates per gram of 237 

algae offered, the models suggested that the interaction between location and algal genera 238 

was influential (Table S4). However, only Sargassum and Acanthophora received 239 

significantly higher absolute bite rate on the GBR relative to the Caribbean (p <0.01 and 240 

<0.05 respectively; Tables S5, S6). Furthermore, in terms of biomass-standardised bite rates, 241 

significant differences were limited to higher rates on the GBR on Sargassum (p <0.01; Table 242 

S5, S6) and Turbinaria (p <0.01; Tables S5, S6). For the majority of algal genera, there were 243 

negligible differences in feeding rates between biogeographic locations with no statistically 244 

significant differences detected (Figs 2, S3; Tables S5, S6).  245 

The results of realised ecosystem function (macroalgae removed) were remarkably 246 

similar to those for estimated ecosystem function (fish feeding rate) (Figs 3, S4). For the 247 

majority of algal genera, there were negligible differences in terms of both percentage of 248 

mass removed and absolute mass removed (Figs 3, S4), with no statistically significant 249 

differences detected in most cases (Figs 3, S4; Tables S5, S6). The only significant 250 

differences between the Caribbean and GBR was a higher absolute loss of Sargassum and 251 

Halimeda (p <0.001 and <0.05 respectively; Tables S5, S6) on the GBR. Therefore, despite 252 

the use of two different metrics to quantify algal loss, with one accounting for differences in 253 

initial algal mass and the other focusing on a measure of the process (algal removal rates), 254 

both metrics largely converged on similar results: limited between-location differences.  255 

In all models, the interactions between habitat and both biogeographic location and 256 

algal genera were influential (Table S4). As expected, there were some nuanced differences 257 

in the response variables (feeding rates and removal rates) among different habitats across 258 

algal genera and between biogeographic locations (Figs S3, S4). However, in most cases, 259 

especially for feeding rates and absolute removal rates, the similarity between biogeographic 260 

locations was marked (Figs S3, S4).  261 

 262 
 263 
 264 
 265 
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 266 

Discussion 267 

Overall, the Caribbean and GBR exhibit a four-fold difference in the diversity of reef 268 

fishes as a result of markedly different biogeographic histories (Kulbicki et al. 2013; 269 

Bellwood et al. 2017; Hemingson and Bellwood 2018). The taxonomic and functional 270 

composition of the herbivorous fish assemblage is, likewise, strikingly different (Bellwood et 271 

al. 2004; Roff and Mumby 2012; Siqueira et al. 2019a). This is mirrored across reefs at our 272 

two locations, Little Cayman and Lizard Island, where there was a 3-fold difference in the 273 

richness of nominally herbivorous fishes. Despite expectations that such differences might 274 

yield increased ‘functionality’ at Lizard Island, we found no consistent between-location 275 

differences in macroalgal removal. Indeed, in the face of a 2.4-fold difference in the richness 276 

of fishes recorded feeding on the assays, we revealed marked similarities in the extent of 277 

algal consumption, in terms of both estimated (bites delivered) and realised (mass removed) 278 

ecosystem function. Furthermore, regardless of the location and regional diversity, a single 279 

species dominated the process, with more than 93% of biomass-standardised bites being 280 

delivered by just three species in each location. Despite biogeographic, taxonomic and 281 

historical constraints, there were remarkable similarities in the delivery of ecosystem process 282 

in these two biogeographic locations. When it comes to the process of macroalgal removal on 283 

coral reefs, it appears that the delivery of this function may transcend biodiversity, 284 

biogeographic locations, and evolutionary history. 285 

While a similar number of species contributed to >90% of mass-standardised bites at 286 

both locations, there was evidence of greater behavioural flexibility in the less species rich 287 

Caribbean location. At our GBR location, Naso unicornis, a specialist macroalgal feeder 288 

(Choat et al. 2002; Hoey and Bellwood 2009) dominated; however, the omnivorous 289 

triggerfish, Melichthys niger (Kavanagh and Olney 2006; Mendes et al. 2019), was the 290 
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dominant species at our Caribbean location. The identification of M. niger, in this context 291 

was particularly surprising (but see Randall 1967; Mendes et al. 2019). To-date, evidence 292 

from the Caribbean generally suggests that the sparisomatine parrotfishes dominate 293 

macroalgal removal (Sparisomatina; Bellwood et al. 2019b; Siqueira et al. 2019b) with 294 

secondary roles attributed to Acanthurus surgeonfishes (e.g. Lewis and Wainwright 1985; 295 

Burkepile and Hay 2008; Catano et al. 2016; Shantz et al. 2017; Topor et al. 2019). While 296 

four different species of Sparisoma were recorded feeding on assays, collectively making up 297 

40% (abundance) and 46% (biomass) of the nominal herbivorous fish community in the 298 

general vicinity, they contributed less than 3.3% of estimated ecosystem function (biomass-299 

standardised bites delivered).  300 

Our results differed from expectations based on previous herbivory studies in the 301 

Caribbean which may be due to location-specific variation in herbivore communities and/or 302 

methodological differences. Many previous Caribbean studies used the seagrass Thalassia in 303 

bio-assays (e.g. Hay 1984; Lewis and Wainwright 1985; Catano et al. 2016), whereas we 304 

used a representative range of macroalgal targets (with no seagrass). The clear preference of 305 

M. niger for feeding on Galaxaura (79.7% of all biomass-standardised bites delivered by M. 306 

niger where on Galaxaura) suggests that if this genus of macroalgae was not included in 307 

algal assays much of the feeding activity of M. niger would not be recorded. Indeed, studies 308 

from Brazilian reefs that share identical or sister-species to those found on Caribbean reef 309 

systems, have shown that a diversity of fishes are involved in macroalgae removal, with the 310 

fishes responsible being dependent on the identity of the algae used in assays (Longo et al. 311 

2015; Mendes et al. 2015).  312 

Although macroalgal removal is perhaps the single best-studied function on reef 313 

systems (Bellwood et al. 2019c) and the Caribbean is one of the most frequently studied coral 314 

reef regions, the identification of M. niger as the principle macroalgal remover came as a 315 
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surprise. Interestingly, our findings were remarkably similar to those found on the GBR 316 

where the batfish Platax pinnatus (Bellwood et al. 2006a) and the rabbitfish Siganus 317 

canaliculatus (Fox and Bellwood 2008), were identified as the key macroalgal removers of 318 

large (>2 m) Sargassum thalli and small <50 cm Sargassum fronds, respectively. The former 319 

was previously known as an invertivore and the latter had not been previously recorded at the 320 

study area. Collectively, this series of results highlight the inherent flexibility of fishes 321 

involved in the process of macroalgae removal. However, while the identity of the fishes 322 

involved in the process can differ fundamentally in different circumstances, the process itself, 323 

macroalgae removal, appears to be relatively conserved, supporting calls for a more direct 324 

process-based assessment of coral reef functioning (Bellwood et al. 2019a; 2019c).  325 

Our observations bring to the fore the dangers of attributing functional importance to 326 

species based solely on their presence, abundance, biomass and assumed trophic roles, an 327 

observation that has been raised repeatedly for more than three decades (Steneck 1983; Hoey 328 

and Bellwood 2009, 2010b; Bellwood et al. 2019c; Streit et al. 2019). Once again, despite 329 

relatively diverse nominal herbivorous fish assemblages in both localities, the key functional 330 

taxa involved in macroalgal removal were relatively rare (especially M. niger), even using 331 

methods specifically designed to minimise diver effects (Dickens et al. 2011; Emslie et al. 332 

2018). Unfortunately, as Steneck (1983) originally highlighted, such methods are designed to 333 

describe and quantify fish distribution patterns, not processes. Unlike sessile reef organisms, 334 

such as corals, our assumptions regarding the spatial delivery of functions by fishes can be 335 

overwhelmed by their inherent behavioural flexibility (Bellwood et al. 2006b, 2019c; Rasher 336 

et al. 2017).  337 

So, how useful are functional studies that apply functions to fishes based on their 338 

presence? Recent functional inferences from trait-based studies have suggested that despite 339 

large regional variation in taxonomic richness, functional redundancy and vulnerability, 340 



14 
 

functions may be maintained across biogeographic realms on reefs (Mouillot et al. 2014; 341 

Hemingson and Bellwood 2018; McWilliam et al. 2018). Unfortunately, such studies do not 342 

quantify functions directly. Instead, they rely on inferences from traits and ‘trait-space’. How 343 

such inferences translate to specific functions is currently unclear (Bellwood et al. 2019c). 344 

Our more direct approach herein, builds on these trait-based approaches (Mouillot et al. 2014; 345 

Siqueira et al. 2019a) by providing detailed, quantitative measures of one function across two 346 

vastly different biogeographic locations. Interestingly, despite the inherent problems with, 347 

and assumptions in, trait-based approaches, our study supports their general inference (that 348 

function can be conserved across biogeographic locations), at least for the process of 349 

macroalgal removal. Other functions require further assessment.   350 

If a difference in the function of macroalgae removal exists between 351 

biogeographically distinct coral reefs, it should have been reasonably pronounced between 352 

the two locations examined herein. Indeed, the Caribbean as a whole, represents a 353 

depauperate system as a result of extinctions and the loss of herbivorous taxa over 354 

evolutionary timescales (Bellwood et al. 2017; Siqueira et al. 2019a, 2019b). For example, 355 

fossil evidence suggest that the Caribbean contained nasine surgeonfish in the Neogene and 356 

probably also siganids (Bellwood et al. 2017; Siqueira et al. 2019a, 2019b). Given the loss of 357 

these key taxa, and a limited trait-space, one might reasonably expect some degree of 358 

functional constraint in today’s Caribbean reef fish assemblages. It is therefore quite 359 

remarkable that we found no major, consistent, differences in the magnitude of macroalgal 360 

removal between our two biogeographically distinct locations.    361 

 The removal of macroalgae is just one component of the broader ecosystem function 362 

of herbivory and is often performed by a narrow range of fish species which together 363 

represent a ‘secondary line of defense’ against the establishment and overgrowth of 364 

macroalgae (reviewed in Puk et al. 2016). The full suite of herbivory processes on coral reefs 365 
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encapsulates a wider range of species involved in the cropping of algal turfs (Robinson et al. 366 

2019), removal of algal turf sediments (Tebbett and Bellwood 2019), maintenance of 367 

microtopographic refuges (Brandl et al. 2014) and bioerosion (Perry and Harborne 2016). 368 

This full suite of herbivore activities collectively play an important role in limiting the 369 

overgrowth, development and/or establishment of macroalgae (Hughes et al. 2007; Dell et al. 370 

2016; Loffler and Hoey 2019). As such, directly quantifying and comparing other facets of 371 

herbivory across distinctly different global reef locations may offer other rich insights into 372 

coral reef functioning.  373 

Importantly, our study provides direct evidence, through quantification of macroalgae 374 

removal across a number of different algal genera and locations that estimating or attributing 375 

primary roles of macroalgal removal based on the abundance of resident herbivores or status 376 

quo of other reef systems may be incorrect. This further highlights the need to consider the 377 

context of the reef in question when implementing management approaches that aim to 378 

conserve ecosystem functioning and resilience (Bellwood et al. 2019c).  It is likely that 379 

investigation of the nuanced differences in fish species selectivity for different algal genera 380 

(see Longo et al. 2015; Mantyka and Bellwood 2007; Mendes et al. 2015) across different 381 

reef systems would offer further surprises, as was the case with M. niger in the current study. 382 

Many macroalgae are chemically defended and rich in structural carbohydrates (Hay and 383 

Fenical 1988; Rasher et al. 2013), representing significant digestive challenges (Choat and 384 

Clements 1998). This paves the way for evolutionary niche diversification of fish-related 385 

macroalgal palatability across locations which may be significant and differ even within-386 

species with broad distributions.   387 

Similarly, different fish species may play distinct roles in macroalgae removal among 388 

reef habitats (e.g. Hoey and Bellwood 2010a; Loffler et al. 2015; Longo et al. 2015). As reef 389 

zonation is a major structuring force on coral reefs (Bellwood et al. 2018; Hay et al. 1983; 390 
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Lewis and Wainwright 1985; Russ 1984), we accounted for habitat-level variability in our 391 

models to capture the process of macroalgae removal more holistically across our study 392 

locations. However, in doing so, we have not specifically explored habitat level variability 393 

beyond noting that there are differences among habitats (Figs S3, S4).  394 

It should be noted that this experiment, while biogeographically broad, was only 395 

conducted at a single location in each region and over a relatively short temporal scale. As 396 

such this limits the strength of regional-scale inferences in the present study, especially as 397 

previous evidence suggests different species may dominate algal removal in different 398 

locations or at different times (Steneck 1983; Bennett and Bellwood 2011; Lefèvre and 399 

Bellwood 2011; Vergés et al. 2012; Loffler et al. 2015; Longo et al. 2015; Topor et al. 2019). 400 

Nonetheless, our aim was to investigate variation in herbivory across very distinct locations 401 

to identify whether this important ecosystem process was delivered in a similar fashion.  If 402 

we are to move forward in our quest to quantify dynamic processes on coral reefs (see Brandl 403 

et al. 2019), we must recognise that ground-truthing our assumptions at such broad spatial 404 

scales is a necessary step towards asking the right questions using the most appropriate 405 

metrics in the first place. This study is a first step in examining realised functions across 406 

globally distinct locations without relying on proxies of functions, such as traits, that often 407 

have only weak correlative links to functions (Bellwood et al. 2019c).  408 

While it should be noted that the algal species were not identical between 409 

biogeographic locations and that they were presented in experimental arrays, we did use 410 

identical genera and techniques at both locations, and in both cases the response of fishes was 411 

rapid, i.e. they started feeding soon after deployment. While total function rates were broadly 412 

similar between locations, some differences between systems were still evident, especially 413 

that of Sargassum removal rates. These differences appear to be due to the impact of N. 414 

unicornis, a specialist Sargassum feeder (Choat et al. 2002; Hoey and Bellwood 2009), 415 



17 
 

and/or the use of larger Sargassum thalli at our GBR location (Hoey 2010). However, by 416 

using multiple metrics to quantify macroalgae removal we were able to assess removal rates 417 

and account for differences in initial algal mass between locations. If these metrics had 418 

diverged substantially in their conclusions, then this would have made the interpretation of 419 

results more complex and less relevant in a global context. However, the different metrics 420 

largely converged on similar results in terms of macroalgae removal between biogeographic 421 

locations. Indeed, the similarity in patterns for the bulk of macroalgal removal, including the 422 

role of just a small group of species, was remarkable considering the striking biogeographic, 423 

evolutionary and taxonomic differences between the locations.  424 

Our data suggest that ecosystem function can transcend biogeographic locations and 425 

associated taxonomic, historic and functional constraints on coral reefs. In both our GBR and 426 

Caribbean locations, a limited range of species fed disproportionately on the macroalgal 427 

assays. As coral reefs continue to be ravaged by anthropogenic stressors, especially climate 428 

change, and as they transition towards new lower-diversity configurations (Hughes et al. 429 

2017; Bellwood et al. 2019a), our results offer some cautious optimism that functions may be 430 

sustained. This study also provides a comparative framework for directly quantifying 431 

processes on coral reefs at a global scale, as opposed to relying on traits or proxies that are 432 

easier to measure (see Bellwood et al. 2019c). This framework revealed surprising results, 433 

even though macroalgal removal is perhaps the single best-studied function on coral reefs. 434 

Our study highlighted: a) the importance of key species in supporting critical functions on 435 

coral reefs, and b) in this example, the limited role of biogeography and biodiversity in 436 

shaping the magnitude of ecosystem functions in high-diversity ecosystems.   437 

 438 

 439 

 440 
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Figures 666 

 667 

Fig. 1 The contribution of fish species recorded feeding on the assays to a, b total abundance 668 

(based on individuals >10 cm) and c, d biomass (based on all fish size classes) in the vicinity 669 
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of algal deployment sites at Little Cayman (Caribbean) and Lizard Island (Great Barrier 670 

Reef), respectively. e, f The contribution of fish species, in terms of total biomass 671 

standardised bites on macroalgal assays, across six macroalgae genera, at Little Cayman 672 

(Caribbean) and Lizard Island (Great Barrier Reef), respectively (for more details see Fig. 673 

S2). Percent bites from 144 h of video recording in each realm. Note the large contribution of 674 

a single species in each case. Furthermore, note the far larger diversity of fishes feeding on 675 

assays in the GBR (29 spp.) relative to the Caribbean (12 spp.), yet their small overall 676 

contribution to the total function. NA indicates no abundance data for this species.  677 

 678 
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 679 

Figure 2 Differences in estimated ecosystem function. a fish feeding rates, and b biomass 680 

standardised feeding rates between Little Cayman (Caribbean) and Lizard Island (Great 681 

Barrier Reef; GBR) for each algal genus offered in the algal assays. Boxplots show the 682 

median and 25% quantiles, black dots are outliers, grey dots are raw data points, and crosses 683 

are the means. Note that both y axis are on a log10 scale. Black lines above boxplots indicate 684 

significant differences (α <0.05).  685 
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 687 

Figure 3 Differences in realised ecosystem function. a percentage of algae removed, and b 688 

absolute biomass of algae removed between Little Cayman (Caribbean) and Lizard Island 689 

(Great Barrier Reef; GBR) for each algal genus offered in the algal assays. Boxplots show the 690 

median and 25% quantiles, black dots are outliers, grey dots are raw data points, and crosses 691 

are the means. Note that both y axis are on a log10 scale. Black lines above boxplots indicate 692 

significant differences (α <0.05).  693 


