Sensitivity of live microalgal aquaculture feed to singlet oxygen-based photodynamic therapy

Malara, Danilo, Høj, Lone, Oelgemoeller, Michael, Malerba, Martino, Citarrella, Gabriella, and Heimann, Kirsten (2019) Sensitivity of live microalgal aquaculture feed to singlet oxygen-based photodynamic therapy. Journal of Applied Phycology, 31 (6). pp. 3593-3606.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website: https://doi.org/10.1007/s10811-019-01854...
 
2


Abstract

Highly nutritional microalgal species are extensively used in aquaculture as live feedstock. Due to difficulties in maintaining microalgae in axenic conditions, they represent a potential pathogen carrier and disease vector in aquaculture ponds. Photodynamic therapy (PDT) via singlet oxygen (1O2) production is a promising sterilization technique in aquaculture. Here, we report on the sensitivity of aquaculture-relevant microalgae towards 1O2 generated by the cationic photosensitizer TMPyP. Possible PDT sterilization protocols of contaminated microalgae cultures were evaluated using the luminescent bacterium Vibrio campbellii ISO7 as a model aquaculture pathogen. Species specific sensitivity of microalgae to TMPyP-mediated PDT was demonstrated and found to be strongly influenced by the nature and architecture of their respective cell wall. While cytotoxicity was not evident against Nannochloropsis oculata, toxicity of 1O2 was dose-, time- and light activation-dependent against Tisochrysis lutea, Tetraselmis chui, Chaetoceros muelleri and Picochlorum atomus. The 1O2-resilient N. oculata was sterilized when incubated under light in the presence of V. campbellii ISO7 (up to 107 CFU mL−1) and 20 μM TMPyP; hence, TMPyP based PDT sterilization of N. oculata could be suitable for aquaculture hatcheries. This study also suggests that PDT using cationic porphyrins such as TMPyP holds potential as an algicidal treatment in aquaria and aquaculture systems (but more research using opportunistic and toxic species is needed for confirmation).

Item ID: 61158
Item Type: Article (Research - C1)
ISSN: 1573-5176
Keywords: Microalgae, Photoinactivation, Sterilization, Aquaculture live feed, Photodynamic antimicrobial chemotherapy
Copyright Information: © Springer Nature B.V. 2019
Date Deposited: 10 Dec 2019 01:08
FoR Codes: 03 CHEMICAL SCIENCES > 0305 Organic Chemistry > 030505 Physical Organic Chemistry @ 100%
SEO Codes: 97 EXPANDING KNOWLEDGE > 970103 Expanding Knowledge in the Chemical Sciences @ 100%
Downloads: Total: 2
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page