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Abstract 

Fire is a significant natural and cultural phenomenon, affecting spatial scales from local to 

global, and is represented in most palaeoenvironmental records by fossil charcoal. Analysis is 

resource-intensive and requires high-level expert knowledge. This study is a preliminary 

investigation of the application of artificial neural networks to fossil charcoal particle analysis, 

utilizing a U-Net variant for charcoal particle identification and VGG for particle classification 

by morphology. Both neural networks performed well, reaching ~96 % accuracy for particle 

identification and ~75 % accuracy for classification. Future work will include expansion of the 

training dataset, including total number of particles and number of sites. The development and 

application of this automated system will increase the efficiency of fossil charcoal analysis. 
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Introduction 

Fire has existed on Earth for over 400 million years (Bowman et al. 2009:481) and is an 

important environmental process interconnected to climate, vegetation structure, and carbon 

cycling (Beringer et al. 2015; Bowman et al. 2009; Veenendaal et al. 2017). Fire occurrence is 

also linked to people; humans have had a long and complex history with fire (Bowman et al. 

2011; Scott et al. 2016), including the widespread use of fire as a landscape management tool 

(e.g. Anderson 1994; Archibald et al. 2012; Montiel and Kraus 2010; Rolland 2004; Rull et al. 

2015). Moss and Kershaw (2000), for example, suggest the impacts of Australian indigenous 

use of fire in the landscape can be seen over 38,000 years ago in the palaeoenvironmental 

record. Both natural and anthropogenic fire are connected to significant issues for asset 

management, conservation and cultural practice. 

 

Fossil charcoal is an important palaeofire proxy. It has high preservation potential (Conedera 

et al. 2009; Mooney and Tinner 2011; Whitlock and Larsen 2001), and charcoal records are 

available worldwide (see Global Paleofire Working Group 2017 as well as Power et al. 2010, 

for depictions of the spatial and temporal scope of global charcoal records). Analysis of fossil 

charcoal, including identification of the type of vegetation that burned to create it, allows for 

the creation of long term fire records contextualised by fuel type (e.g. Aleman et al. 2013; 

Crawford and Belcher 2014; Jensen et al. 2007). Such information allows for a greater 

understanding of fire and vegetation dynamics across time and space. However, traditional 

(optical) charcoal analysis is a time-intensive process; fossil charcoal is commonly quantified 

on pollen slides (particles <125 µm diameter) or wet sieved and suspended in water, with 

charcoal abundance measurements taken via microscope as either particle counts or area 

measurements (see Mooney and Tinner 2011; Stevenson and Haberle 2005). Increasing the 



speed of charcoal analysis will enable researchers to process a larger volume of samples in a 

given time frame, allowing for higher resolution records and broader sampling potential. 

 

Recent developments in artificial neural networks have led to their successful application to 

problems across a diverse range of disciplines (e.g. review of developments and applications 

including finance, bioinformatics and environmental risk, Bassis et al. 2014; engineering, 

Mehrjoo et al. 2008; medical imaging, Wu et al. 2017). Drawing from these developments and 

using them as a framework for this study, the identification and classification process of fossil 

charcoal particles is an ideal candidate for automation using neural networks. 

 

Background and Related Work 

While volumes of preserved charcoal (number of fossil charcoal particles) help indicate the 

amount of fire in past landscape, the fuel source (vegetation type) of a fossil charcoal particle 

is significant as this reflects the composition of the surrounding environment. The aspect ratio 

of a macroscopic (>125 µm) charcoal particle provides this data, with more elongated particles 

identified as grass-derived and blockier particles as wood- or leaf-derived (e.g. Umbanhowar 

and McGrath 1998; Aleman et al. 2013; Crawford and Belcher 2014; Leys et al. 2017). The 

threshold ratio for a particle to be considered elongate is a matter of debate, ranging from a 

length-width ratio of 2 or greater (Aleman et al. 2013) through to 3.7 (Crawford and Belcher 

2014). 

 

An alternative method of fuel identification is classification by morphology (morphotypes) 

(e.g. Jensen et al. 2007). Enache and Cumming (2006) present a 7-type classification scheme 

based on morphological differences such as elongate versus blocky, geometric versus irregular, 

and the presence of internal structure such as voids. Mustaphi and Pisaric (2014) expand this 



to 27 different morphotypes including types specific to a temperate biome, such as type C1 

(charred conifer needles). Enache and Cumming’s (2006) morphotype classifications are a 

simpler system applicable to a broader range of environments. 

 

The current standard for automated quantification of charcoal particles is ImageJ, originally 

developed by the US National Institutes of Health (Schneider et al. 2012; for examples of its 

application see Barr et al. 2017; Crawford and Belcher 2016; Halsall et al. 2018; Hawthorne 

and Mitchell 2016; Stevenson and Haberle 2005). The input image is a petri dish containing 

charcoal, and potentially other non-black particles; ImageJ output contains the total number of 

dark particles and particle area based on a user-defined threshold (Abramoff et al. 2004; 

Ferreira and Rasband 2011; see Mooney and Tinner 2011:11 for instructions on charcoal 

analysis using one of ImageJ’s predecessors, Scion Image). Image classification, as is required 

for identifying morphotypes, is currently beyond the capabilities of ImageJ. 

 

Few studies have applied neural networks to palaeoenvironmental problems. In 

palaeolimnology, Racca et al. (2003) use a multi-layer perceptron neural network to reduce 

diatom taxa for calibration purposes. Maruyama et al. (2018) use a convolutional neural 

network as a feature extractor to identify the species of native wood charcoal pieces, created 

from samples of modern trees. Weller et al. (2007) apply a supervised neural network to 

identification of sedimentary organic matter within pollen slides. A preliminary study 

automating pollen analysis by a neural network is presented by France et al. (2000). To date, 

no published studies have utilized neural networks for charcoal particle identification or 

classification. 

 

Methods 



In this study, two Convolutional Neural Networks (CNN) are used to identify and categorise 

charcoal particles: a variant of U-Net, and VGG, implemented in Keras with a Tensorflow 

backend (Abadi et al. 2015). 

 

The U-Net variant is used to first mask, per pixel, charcoal particles so as to eliminate image 

artifacts or non-charcoal particles that made it through the filtering process. U-Net is an 

autoencoder network that uses multiple alternating layers of convolutions followed by max 

pooling to “encode” features from an image input. In our case, strided subimages of 512x512x3 

pixels are encoded down to a feature space of 16x16x256. Once encoded into the feature space 

the network then “decodes” using alternating layers of upsampling, deconvolution (Zeiler et 

al. 2010) followed by the copy and crop of encoder layer outputs, sometimes referred to as skip 

connections, found in the U-Net architecture (Ronneberger et al. 2015). Training the network 

with binary images, representing “charcoal particle” and “not charcoal particle”, the network 

learns how to encode and decode information in images to generate the binary masks itself and 

generalises to images that are outside the training data. 

 

Due to the nature of charcoal particles being of high contrast, and the lack of similar looking 

distractors in the dataset, we deviated from the default U-Net architecture by removing the use 

of multiple layers of convolution and deconvolution between up-samples and down-samples. 

This drastically reduces the number of operations that the network needs to perform and still 

provided adequate results for the purposes of segmenting out individual particles for VGG to 

classify. 

 

VGG is a very deep convolutional network for image recognition and is considered a staple for 

image based classification (Simonyan and Zisserman 2014). To accelerate the training process 



we used the pre-trained version of VGG16 that comes with Keras and locked the first 25 layers. 

Referred to in the literature as transfer learning (Weiss et al. 2016), the initial layers of VGG 

encode simple shapes such as lines, gradients and basic textures, hence avoiding spending time 

relearning those features from scratch while also reducing the amount of training data needed. 

Transfer learning does have a limitation in that the input images must conform to the same size 

that VGG16 was originally trained on; therefore, cropped individual particles are scaled to fit 

the 221 x 221 image size that VGG expects.  

 

Implementation 

Sample Collection and Preparation 

Samples were taken from Holocene sediment cores collected from three wetlands in tropical 

northern Australia: Sanamere Lagoon (11.117°S, 142.35°E), Big Willum Swamp (12.657°S, 

141.998°E) and Marura Sinkhole (13.409°S, 135.774°E). Sediment samples were prepared for 

fossil charcoal analysis following the method outlined by Stevenson and Haberle (2005); 

samples were placed in mid-strength (~5 % concentration) bleach for 72 hours before wet 

sieving to isolate the >63 µm fraction. Samples were suspended in water and photographed 

through a dissecting microscope using a DSLR and lens adapter. 

 

The morphotype classification system devised by Enache and Cumming (2006) was selected 

for charcoal classification in this study (Figure 1). Two of the seven morphotypes (types B and 

D) were excluded from this study as they were insufficiently represented in the training dataset. 

 



 

Figure 1: Morphotype classification system of Enache and Cumming (2006) used in this 

study with example particle photographs from the validation dataset (adapted from Enache 

and Cumming 2006:285). 

 

Network Training 

To prepare the input dataset for the U-Net network, each photograph of suspended samples was 

manually labelled with binary masks indicating the locations of any present charcoal particles. 

These masks were then used to segment the training data and extract images of each individual 

charcoal particle, in the same manner that the final system segments images based on masks 

generated by the trained U-Net network. The individual charcoal particle images were then 

manually classified by morphotype to form the input dataset for VGG. 

 



The overall dataset for each network - 976 images for the U-Net network divided into 1714 

individual particle images for VGG - was then separated into training and validation datasets, 

with 90% of images allocated to the training dataset (Table 1) and the remaining 10% of images 

allocated to the validation dataset. The selection of the individual images in each allocation 

was randomly computed in order to prevent biases in the trained networks due to over- or 

under-representation of any given classification label. 

 

Table 1: Number of particle images of each morphotype classification in the network training 

dataset. 

Morphotype Images 

Type C 403 

Type F 465 

Type M 196 

Type P 167 

Type S 483 

 

Both the U-Net network and VGG were trained using the popular RMSProp optimiser 

(Tieleman and Hinton 2012), selected due to its ability to adaptively control the learning rate 

during training without the need to manually adjust this parameter. The U-Net network was 

trained from a blank state, whereas VGG was trained using transfer learning to accelerate the 

process, as stated previously. Each network was trained until the point at which its accuracy in 

predicting the classification labels of the validation dataset ceased to improve, as is standard 



practice for preventing overfitting and ensuring the generalisability of the trained networks (see 

Prechelt 1998). 

 

 

Results 

The trained U-Net network achieved 96.06% accuracy, while the trained VGG network 

achieved 75.15% accuracy (Figure 2). 

 



 

Figure 2: Example results from the validation datasets: a) U-Net network, with red bounding 

boxes around identified particles for segmentation, and b) VGG, with the highest probability 

classification underlined. 

 



The U-Net network results were sliced by using a connected components algorithm (Grana et 

al. 2010) to isolate individual particles, shown in Figure 2 as a red bounding box. Identified 

particles measuring less than 63 x 63 µm were discarded, as samples were processed to only 

contain particles >63 µm (described in Sample Collection and Preparation above). 

 

 

Discussion and Areas for Future Work 

This study is a proof of concept for the application of neural networks to charcoal particle 

analysis. Our initial results demonstrate the feasibility of this methodology, with high accuracy 

achieved by U-Net for charcoal identification and VGG for morphotype classification. In 

combination with an appropriate mechanical apparatus for particle photography such as an 

automated stage, this methodology has the potential to significantly accelerate particle analysis 

workflows, reducing the number of hours that human experts must spend on labour-intensive 

visual inspection and providing a foundation for more complex and comprehensive analysis 

tasks. 

 

As a proof of concept, the scope of this initial study is limited with respect to available image 

data. Training dataset images in this study are relatively clean with minimal non-charcoal 

particles and dark organics present. While this is the ideal result of sample preparation for 

charcoal analysis, the robustness of charcoal identification by U-Net could be improved by the 

inclusion in the training dataset of images containing more non-charcoal particles. Our training 

dataset also excludes morphotypes B (partially black, structured geometric) and D (elongate 

with ramifications) due to a lack of sufficient training images for these morphotypes. 

 



Future work could include an expansion of the training dataset to include a greater number of 

images from more sites, covering a larger geographic area and more diverse particle 

assemblages. With the increase of images, the reliance on transfer learning to detect simple 

features could potentially be mitigated and a more specialized network could be used in the 

place of VGG. A larger dataset would also likely provide sufficient samples to encompass the 

morphologies not present in the dataset for this study. To improve the scalability and 

accessibility of this expanded dataset, an online charcoal image library could also be created, 

facilitating contributions by international researchers and providing a central repository for 

researchers wishing to utilise the dataset to train neural networks. As a first step towards this 

goal, we have made the source code and training data for this study available online, 

accompanied by comprehensive instructions for reproducing our results. These resources can 

be found at: https://github.com/adamrehn/charcoal-morphotypes. 

 

 

Conclusion 

The automated classification presented in this experimental study provides a fast and flexible 

method of charcoal analysis. This two-stage pre-trained network utilising a broadly applicable 

morphotype classification system can be applied to samples from any site without requiring 

the creation of additional training datasets. Alternatively, these neural networks can be trained 

using any morphotype system, including classifications that may be more region- or biome-

specific. 

 

Automated charcoal identification and classification using neural networks will increase the 

efficiency of charcoal analysis, enabling higher sampling resolutions and/or the analysis of 

more sites and sediment cores. This study presents a promising preliminary investigation into 

https://github.com/adamrehn/charcoal-morphotypes


the application of neural networks to the automation of charcoal particle analysis, ultimately 

feeding into a broad shift to utilizing artificial neural networks to address increasingly complex 

analytical problems. 

 

Data Availability 

The training dataset of processed charcoal particle images used in this paper is available via 

the following: 

Rehn, E.; Rehn, A. (2019): Fossil charcoal particle training data for neural networks. James 

Cook University. (dataset). http://doi.org/10.25903/5d006c1494cf9. 

 

Acknowledgements 

This study forms one part of author ER’s PhD degree within the College of Science and 

Engineering, James Cook University. Sample collection was undertaken as part of an 

Australian Research Council Laureate Fellowship ID:FL140100044 (CI: M. Bird). ER 

acknowledges financial support from the Australian Institute of Nuclear Science and 

Engineering (Postgraduate Research Award 12143) and an Australian Government Research 

Training Program Scholarship. The authors would like to thank Cassandra Rowe and Sean Ulm 

for editorial feedback on the manuscript. This research was conducted by the Australian 

Research Council Centre of Excellence for Australian Biodiversity and Heritage (project 

number CE170100015). 

 

 

  



References 

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., 

Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, 

Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, 

S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., 

Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., 

Wattenberg, M., Wicke, M., Yu, Y., and X. Zheng 2015 TensorFlow: Large-scale 

machine learning on heterogeneous systems. Retrieved 20 May 2019 from 

<https://tensorflow.org >. 

Abramoff, M.D., Magalhães, P.J. and S.J. Ram 2004 Image processing with ImageJ. 

Biophotonics International (2004):36-42. 

Aleman, J.C., Blarquez, O., Bentaleb, I., Bonté, P., Brossier, B., Carcaillet, C., Gond, V., 

Gourlet-Fleury, S., Kpolita, A., Lefèvre, I., Oslisly, R., Power, M.J., Yongo, O., 

Bremond, L. and C. Favier 2013 Tracking land-cover changes with sedimentary 

charcoal in the Afrotropics. The Holocene 23(12):1853-1862. 

Anderson, M.K. 1994 Prehistoric anthropogenic wildland burning by hunter-gatherer societies 

in the temperate regions: A net source, sink, or neutral to the global carbon budget? 

Chemosphere 29(5):913-934. 

Archibald, S., Staver, A.C., and S.A. Levin 2012 Evolution of human-driven fire regimes in 

Africa. PNAS 109(3):847-852. 

Barr, C., Tibby, J., Moss, P.T., Halverson, G.P., Marshall, J.C., McGregor, G.B. and E. Stirling 

2017 A 25,000-year record of environmental change from Welsby Lagoon, North 

Stradbroke Island, in the Australian subtropics. Quaternary International 449:106-118. 

https://doi.org/10.1016/j.quaint.2017.04.011 

https://tensorflow.org/


Bassis, S., Esposito, A. and F.C. Morabito 2014 Recent Advances of Neural Network Models 

and Applications. Proceedings of the 23rd Workshop of the Italian Neural Networks 

Society (SIREN), May 23-25, Vietri sul Mare, Salerno, Italy. Springer: Switzerland. 

Beringer, J., Hutley, L.B., Abramson, D., Arndt, S.K., Briggs, P., Bristow, M., Canadell, J.G., 

Cernusak, L.A., Eamus, D., Edwards, A.C., Evans, B.J., Fest, B., Goergen, K., Grover, 

S.P., Hacker, J., Haverd, V., Kanniah, K., Livesley, S.J., Lynch, A., Maier, S., Moore, 

C., Raupach, M., Russell-Smith, J., Scheiter, S., Tapper, N.J. and P. Uotila 2015 Fire 

in Australian savannas: From leaf to landscape. Global Change Biology 21:62-81. 

https://doi.org/10.1111/gcb.12686 

Bowman, D.M., Balch, J.K., Artaxo, P., Bond, W.J., Carlson, J.M., Cochrane, M.A., 

D’Antonio, C.M., DeFries, R.S., Doyle, J.C., Harrison, S.P., Johnston, F.H., Keeley, 

J.E., Krawchuk, M.A., Kull, C.A., Marston, J.B., Moritz, M.A., Prentice, I.C., Roos, 

C.I., Scott, A.C., Swetnam, T.W., van der Werf, G.R. and S.J. Pyne 2009 Fire in the 

Earth system. Science 324(5926):481-484. 

Bowman, D.M., Balch, J.K., Artaxo, P., Bond, W.J., Cochrane, M.A., D’Antonio, C.M., 

DeFries, R.S., Johnston, F.H., Keeley, J.E., Krawchuk, M.A., Kull, C.A., Mack, M., 

Moritz, M.A., Pyne, S., Roos, C.I., Scott, A.C., Sodhi, N.S. and T.W. Swetnam 2011 

The human dimension of fire regimes on Earth. Journal of Biogeography 38:2223-

2236. 

Conedera, M., Tinner, W., Neff, C., Meurer, M., Dickens, A.F. and P. Krebs 2009 

Reconstructing past fire regimes: Methods, applications, and relevance to fire 

management and conservation. Quaternary Science Reviews 28:555-576. 

Crawford, A.J. and C.M. Belcher 2014 Charcoal morphometry for paleoecological analysis: 

The effects of fuel type and transportation on morphological parameters. Applications 

in Plant Sciences 2(8):1400004. https://doi.org/10.3732/apps.1400004 



Crawford, A.J. and C.M. Belcher 2016 Area-volume relationships for fossil charcoal and their 

relevance for fire history reconstruction. The Holocene 26(5):822-826. 

https://doi.org/10.1177/0959683615618264 

Enache, M.D. and B.F. Cumming 2006 Tracking recorded fires using charcoal morphology 

from the sedimentary sequence of Prosser Lake, British Columbia (Canada). 

Quaternary Research 65:282-292. https://doi.org/10.1016/j.yqres.2005.09.003 

Ferreira, T. and W. Rasband 2011 The ImageJ User Guide 1.44. Retrieved 17 September 2018 

from < https://imagej.nih.gov/ik/docs/user-guide.pdf >. 

France, I., Duller, A.W., Duller, G.A. and H.F. Lamb. 2000 A new approach to automated 

pollen analysis. Quaternary Science Reviews 19:537-546. 

Global Paleofire Working Group 2017 Global Charcoal Database. Retrieved 20 May 2019 from 

< https://www.paleofire.org/ >. 

Grana, C., Borghesani, D. and R. Cucchiara 2010 Optimized block-based connected 

components labeling with decision trees. IEEE Transactions on Image Processing 

19(6):1596-1609. 

Halsall, K.M., Ellingsen, V.M., Asplund, J., Bradshaw, R.H. and M. Ohlson 2018 Fossil 

charcoal quantification using manual and image analysis approaches. The Holocene 

28(8):1345-1353. https://doi.org/10.1177/0959683618771488 

Hawthorne, D. and F.J. Mitchell 2016 Identifying past fire regimes throughout the Holocene 

in Ireland using new and established methods of charcoal analysis. Quaternary Science 

Reviews 137:45-53. http://dx.doi.org/10.1016/j.quascirev.2016.01.027 

Jensen, K., Lynch, E.A., Calcote, R. and S.C. Hotchkiss 2007 Interpretation of charcoal 

morphotypes in sediments from Ferry Lake, Wisconsin, USA: Do different plant fuel 

sources produce distinctive charcoal morphotypes? The Holocene 17(7):907-915. 

https://doi.org/10.1177/0959683607082405 

https://imagej.nih.gov/ik/docs/user-guide.pdf
https://www.paleofire.org/


Leys, B.A., Commerford, J.L. and K.K. McLauchlan 2017 Reconstructing grassland fire 

history using sedimentary charcoal: Considering count, size and shape. PLoS ONE 

12(4):e0176445. https://doi.org/10.1371/journal.pone.0176445 

Maruyama, T.M., Oliveira, L.S., Britto, A.S. and S. Nisgoski 2018 Automatic classification of 

native wood charcoal. Ecological Informatics 26:1-7. 

https://doi.org/10.1016/j.ecoinf.2018.05.008 

Mehrjoo, M., Khaji, N., Moharrami, H., and A. Bahreininejad 2008 Damage detection of truss 

bridge joints using artificial neural networks. Expert Systems with Applications 

35:1122-1131. https://doi.org/10.1016/j.eswa.2007.08.008 

Montiel, C. and D. Kraus (eds.) 2010 Best Practices of Fire Use - Prescribed Burning and 

Suppression Fire Programmes in Selected Case-Study Regions in Europe. European 

Forest Institute: Joensuu, Finland. 

Mooney, S.D. and W. Tinner 2011 The analysis of charcoal in peat and organic sediments. 

Mires and Peat 7:1-18. 

Moss, P.T. and A.P. Kershaw 2000 The last glacial cycle from the humid tropics of 

northeastern Australia: comparison of a terrestrial and a marine record. 

Palaeogeography, Palaeoclimatology, Palaeoecology 155:155-176. 

Mustaphi, C.J. and M.F. Pisaric 2014 A classification for macroscopic charcoal morphologies 

found in Holocene lacustrine sediments. Progress in Physical Geography 38(6):734-

754. https://doi.org/10.1177/0309133314548886 

Power, M.J., Marlon, J.R., Bartlein, P.J. and S.P. Harrison 2010 Fire history and the Global 

Charcoal Database: A new tool for hypothesis testing and data exploration. 

Palaeogeography, Palaeoclimatology, Palaeoecology 291:52-59. 

https://doi.org/10.1016/j.palaeo.2009.09.014 



Prechelt, L. 1998 Early stopping - but when? In Orr, G.B. and Müller, K.R. (eds.) Neural 

Networks: Tricks of the Trade, p.55-69. Lecture Notes in Computer Science, vol 1524. 

Springer: Berlin. 

Racca, J.M., Wild, M., Birks, H.J. and Y.T. Prairie 2003 Separating the wheat from chaff: 

Diatom taxon selection using an artificial neural network pruning algorithm. Journal of 

Palaeolimnology 29:123-133. 

Rolland, N. 2004 Was the emergence of home bases and domestic fire a punctuated event? A 

review of the Middle Pleistocene record in Eurasia. Asian Perspectives 43(2):248-280. 

Ronneberger, O., Fischer, P. and T. Brox 2015 U-net: Convolutional networks for biomedical 

image segmentation. CoRR, abs/1505.04597. 

Rull, V., Montoya, E., Vegas-Vilarrúbia, T. and T. Ballesteros 2015 New insights on 

palaeofires and savannisation in northern South America. Quaternary Science Reviews 

122:158-165. https://doi.org/10.1016/j.quascirev.2015.05.032 

Schneider, C.A., Rasband, W.S. and K.W. Eliceiri 2012 NIH Image to ImageJ: 25 years of 

image analysis. Nature Methods 9:671-675. 

Scott, A.C., Chaloner, W.G., Belcher, C.M. and C.I. Roos 2016 The interaction of fire and 

mankind: Introduction. Philosophical Transactions of the Royal Society B 

371:20150162. 

Simonyan, K. and A. Zisserman 2014 Very deep convolutional networks for large-scale image 

recognition. CoRR, abs/1409.1556. 

Stevenson, J. and S. Haberle 2005 Macro charcoal analysis: A modified technique used by the 

Department of Archaeology and Natural History. Palaeoworks Technical Papers 5. The 

Australian National University: Canberra, Australia. 



Tieleman, T. and G. Hinton 2012 Lecture 6.5-rmsprop: Divide the gradient by a running 

average of its recent magnitude. COURSERA: Neural networks for machine learning 

4(2):26-31. 

Umbanhowar, C.E. and M.J. McGrath 1998 Experimental production and analysis of 

microscopic charcoal from wood, leaves and grasses. The Holocene 8(3):341-346. 

Veenendaal, E.M., Torello-Raventos, M., Miranda, H.S., Sato, N.M., Oliveras, I., van 

Langvelde, F., Asner, G.P. and J. Lloyd 2017 On the relationship between fire regime 

and vegetation structure in the tropics. New Phytologist 218(1):153-166. 

https://doi.org/10.1111/nph.14940 

Weiss, K., Khoshgoftaar, T.M. and D. Wang 2016 A survey of transfer learning. Journal of 

Big Data 3(1):9. 

Weller, A.F., Harris, A.J. and J.A. Ware 2007 Two supervised neural networks for 

classification of sedimentary organic matter images from palynological preparations. 

Mathematical Geology 39:657-671. https://doi.org/10.1007/s11004-007-9120-x 

Whitlock, C. and C. Larsen 2001 Charcoal as a fire proxy. In Smol J.P., Birks H.J.B., Last 

W.M., Bradley R.S. and K. Alverson (eds), Tracking Environmental Change Using 

Lake Sediments. Developments in Paleoenvironmental Research vol. 3. Springer: 

Dordrecht, Netherlands. 

Wu, D., Kim, K., El Fakhri, G. and Q. Li 2017 Iterative low-dose CT reconstruction with priors 

trained by artificial neural network. IEEE Transactions on Medical Imaging 

36(12):2479-2486. 

Zeiler, M.D., Krishnan, D., Taylor, G.W. and R. Fergus 2010 Deconvolutional networks. In 

2010 IEEE Computer Society Conference on Computer Vision and Pattern 

Recognition, p.2528-2535. 


