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Abstract: We demonstrate a simple, spectrally resolved ocean color remote sensing model to 
estimate benthic photosynthetically active radiation (bPAR) for the waters of the Great Barrier 
Reef (GBR), Australia. For coastal marine environments and coral reefs, the underwater light 
field is critical to ecosystem health, but data on bPAR rarely exist at ecologically relevant 
spatio-temporal scales. The bPAR model presented here is based on Lambert-Beer’s Law and 
uses: (i) sea surface values of the downwelling solar irradiance, Es(λ); (ii) high-resolution 
seafloor bathymetry data; and (iii) spectral estimates of the diffuse attenuation coefficient, 
Kd(λ), calculated from GBR-specific spectral inherent optical properties (IOPs). We first 
derive estimates of instantaneous bPAR. Assuming clear skies, these instantaneous values 
were then used to obtain daily integrated benthic PAR values. Matchup comparisons between 
concurrent satellite-derived bPAR and in situ values recorded at four optically varying test 
sites indicated strong agreement, small bias, and low mean absolute error. Overall, the 
matchup results suggest that our benthic irradiance model was robust to spatial variation in 
optical properties, typical of complex shallow coastal waters such as the GBR. We 
demonstrated the bPAR model for a small test region in the central GBR, with the results 
revealing strong patterns of temporal variability. The model will provide baseline datasets to 
assess changes in bPAR and its external drivers and may form the basis for a future GBR 
water-quality index. This model may also be applicable to other coastal waters for which 
spectral IOP and high-resolution bathymetry data exist. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Benthic irradiance is defined as photosynthetically active radiation (PAR, or benthic PAR) at 
400 – 700 nm wavelengths that reaches the seafloor. Benthic PAR provides the primary 
energy resource that drives benthic photosynthesis, thus essentially defines primary 
production in the benthic coastal ocean [1]. Previous studies have emphasized the importance 
of light availability for benthic habitats. For example, light limitation determines 
photosynthesis, growth, and distribution of seagrasses [2–5], depth limits for coral reef 
development [6–9], and vulnerability of coral reefs to ocean acidification as a result of 
reduced calcification [10,11]. On the other hand, high light levels in combination with heat 
stress from elevated seawater temperature can also lead to coral bleaching [12,13]. Such 
juxtaposition thus highlights the need for an improved understanding of the underwater light 
field and benthic light availability, to better assess and manage marine ecosystem health [3,8]. 
Efficient management of these benthic ecosystems would greatly benefit from a synoptic-
scale understanding of spatial and temporal patterns of benthic light availability. 
Unfortunately, benthic light availability remains poorly understood [1,14], because datasets 
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that could provide the much-needed information are either insufficient or lacking, including 
in one of the largest coral reef ecosystem on Earth, the Great Barrier Reef (GBR). As such, 
our main objective is to demonstrate the feasibility of estimating benthic light values within 
the GBR region using a remote sensing model to bridge this knowledge gap. 

The GBR Marine Park (GBRMP) is a world heritage listed site adjacent to northeastern 
Australian coast spanning from 10°S to 24°S latitude. It is located on a continental shelf with 
an area of ~344,000 km2. While direct observations of the underwater light field have 
historically been measured by ships of opportunity and in situ moorings in the GBR, these 
existing data are spatially and temporally sparse. Although PAR in surface waters is 
frequently reported for marine ecosystems [15,16], benthic PAR is usually available only at a 
few point locations over relatively short periods [17–19]. To understand the responses of 
whole ecosystems at regional scales, we need to estimate environmental conditions, including 
benthic PAR, at relevant scales (in this case, the scale of the whole GBR). Ocean color 
remote sensing presents an option for observing benthic PAR in the GBR at ecologically 
relevant spatio-temporal scales, which can provide near-daily images of the entire GBR at a 
nominal pixel resolution of 1 km2. While a number of ocean color satellite processing 
algorithms have been developed for monitoring optically complex waters of the GBR [20–
23], we note that none have focused on deriving benthic light availability. 

Benthic irradiance, here denoted as Eb(λ), is essentially regulated by three factors. First, 
the downwelling irradiance incident on the ocean surface, Es(λ,0+) (W m−2), which is subject 
to atmospheric processes (e.g., gaseous absorption and molecular scattering) that diminishes 
light as it makes it way to the sea surface. Second, the absorption and scattering processes 
within the water column [14,24,25] that depends on wavelength and have magnitudes and 
shapes that are proportional to the relative concentration of optically-active constituent matter 
[26] including: phytoplankton, non-algal particles (NAP) and colored dissolved organic 
matter (CDOM). It is important to note that IOPs are impartial to the direction and magnitude 
of the ambient light field [27]. In coastal regions, IOPs can be regulated by a number of 
drivers including, but not limited to: run-off and resuspension of fine sediments, nutrients and 
organic matter due to wave-induced vertical mixing, human activity such as dredging and 
dredge-spoil placement on the seafloor, and biological processes related to phytoplankton 
growth. Collectively, these drivers make the inversion of sensor-observed remote sensing 
reflectance, Rrs(λ) (sr−1), to derive IOP values, a non-trivial problem. Third, and also 
important is the water column depth which defines the distance of light penetration. 

In optically shallow waters like those of the GBR, light reflected off the seafloor is 
another factor that limits the application of contemporary ocean color algorithms developed 
for deep, open-ocean waters [22,28]. Fortunately, a GBR-specific IOP inversion model 
(Shallow Water Inversion Model, SWIM) has recently been developed [22] that improves the 
derivation of spectral estimates of IOPs, specifically, total absorption coefficients, a(λ) (m−1), 
and total backscattering coefficients, bb(λ) (m−1), for any pixel within the GBR where Rrs(λ) 
are available. We note that Rrs(λ) is a fundamental sensor-observed radiometric variable used 
in ocean color algorithms. SWIM is described in detail elsewhere (see [22]). In brief, SWIM 
takes advantage of two mapped GBR-specific ancillary datasets, namely: (i) a high-resolution 
shelf bathymetry map [29] matching the resolution of the remote sensing datasets, and (ii) a 
bottom substrate brightness (albedo) map [30]. Using these ancillary datasets, SWIM can 
generally correct for optically shallow effects. Note however, that for more optically complex 
waters, the skill of the SWIM model may still be challenged in deriving IOP values. 
Nonetheless, the IOP estimates that can be obtained via SWIM are very valuable and 
sufficient for our current purpose. By using SWIM-derived IOPs, it is thus possible to 
spectrally characterize near-daily GBR-wide light attenuation and, in turn, estimate benthic 
light availability (i.e., PAR) using ocean color remote sensing. 

A contemporary approach for estimating PAR at depth is to use the broadband, water-
column averaged diffuse attenuation coefficient of PAR, Kd(PAR) (m−1), and the Lambert-
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Beer’s Law which assumes Kd(PAR) is constant over the optical pathlength (depth). 
However, in practice, Kd(PAR) exhibits strong depth dependence, particularly in the upper 
water column, even in well-mixed waters [31,32]. Thus, using a Kd(PAR)-based method may 
lead to inaccurate estimates of PAR at depth. We note that usable solar radiation (USR), a 
spectrally integrated broadband term (integrated over the 400 – 560 nm range), has recently 
been proposed as a promising alternative to PAR [31] as its diffuse attenuation coefficient, 
Kd(USR) (m−1), exhibits less depth dependence. However, most ecological studies report their 
findings (e.g., benthic light stress thresholds) in terms of PAR. Here, we described a remote 
sensing approach to estimate benthic PAR that does not utilize Kd(PAR). 

In this study, we demonstrate a simple physics-based ocean color remote sensing model to 
estimate two spectrally integrated benthic light variables, namely: (i) instantaneous PAR at 
the seafloor (hereby denoted as bPARi) (μmol photons m−2 s−1), and (ii) daily integrated PAR 
at the seafloor (hereby denoted as bPARd) (mol photons m−2 d−1). Estimates are derived from 
(i) Es(λ,0+), (ii) high resolution shelf bathymetry, and (iii) spectral estimates of IOPs obtained 
using SWIM [22]. Here, Es(λ) and IOPs are derived from data collected by NASA’s Moderate 
Resolution Imaging Spectroradiometer aboard the Aqua spacecraft (MODISA). We then 
validate the model by comparing concurrent satellite-derived and observed in situ benthic 
PAR values from four test sites within the GBR. Finally, results, as well as limitations and 
future applications of the model within the GBR region are discussed. 

2. Benthic irradiance model 

2.1. Benthic irradiance model description 

To derive Eb(λ), the total amount of subsurface downwelling planar irradiance, Ed(λ,0–) (W 
m−2), transmitted to a depth z (m) under a clear sky, we used the Lambert-Beer’s Law: 

 ( ) ( ,0 )exp( ( ) )b d dE E K zλ λ λ−= −  (1) 

where Kd(λ) (m−1) is the spectral diffuse attenuation coefficient. We emphasize that in our 
approach, spectral dependence was kept throughout all calculations. 

Satellite-derived Es(λ,0+) (W m−2) represents the downwelling planar irradiance when the 
Sun is at zenith and just above the air-sea surface. Here, Es(λ,0+) was obtained by employing 
the standard NASA atmospheric transmittance model as described in Mobley, et al. [33] 
which assumes that the cloud/surface system is non-reflecting and non-absorbing. Because 
Es(λ,0+) is estimated just above the sea surface, it is necessary to propagate this parameter 
across the air-sea interface to derive Ed(λ,0–) [25,34]. Here, we followed Baker and Smith 
[35] and used: 

 ( ,0 ) ( ,0 )d g sE t Eλ λ− +=  (2) 

where tg is the global transmittance of the air-water interface [36]. Essentially, the total 
downwelling global irradiance just above the interface can be decomposed into direct (“sun”) 
and diffuse (“sky”) components, both of which are functions of wavelength and the 
corresponding solar zenith angle in air [35] and tg is equal to tg = (1 - ρsun)(1- y) + (1 - ρsky)(y), 
where ρsky and ρsun are the sea surface reflectance of the diffuse and the direct irradiances, 
respectively. The value of ρsky is roughly equivalent to 0.066 for cloud-free conditions [35] 
while the ρsun can be approximated by employing the Fresnel reflectance equation for 
unpolarized light [27] written as: 

 

2 2
sin( ) tan( )

*0.5
sin( ) tan( )

solz t solz t
sun

solz t solz t

θ θ θ θρ
θ θ θ θ

    − − = +    + +    
 (3) 
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where θsolz (degrees) is the solar zenith angle in air at the time of satellite overpass and θt 
(degrees) is the solar zenith angle of light transmitted downward in the water calculated as: 

 1sin (sin )/t solz wnθ θ−=  (4) 

where nw is the real refractive index of seawater approximately equal to 1.34 [27]. For cases 
where θsolz ≠ 0.0 (e.g., sun not overhead), Eq. (3) was used. Otherwise, for normally incident 
light, the reflectance of the direct irradiance was calculated as: 

 
2

1

1
w

sun
w

n

n
ρ

 −
=  + 

 (5) 

We note that in this study we have assumed cloud-free, clear sky conditions for all 
calculations and neither considered the effect of a wind-roughened surface in our air-sea 
transmittance calculations. Further details on deriving the transmitted irradiance across the 
interface are described elsewhere [35,36]. 

An IOP-based method for deriving  Kd(λ) [37] was employed as this approach is more 
robust in optically complex coastal waters relative to simple empirical methods [38–41]. The 
IOP-based Kd(λ) model we have used in this study is described and evaluated in detail 
elsewhere [37,42] and has a general form: 

 10.18 ( )( ) (1 0.005 ) ( ) 4.18(1 0.52 ) ( )a
d solz bK a e bλλ θ λ λ−= + + −  (6) 

where a(λ) and bb(λ) are the coefficients of spectral total absorption and spectral total 
backscattering, respectively. An interesting feature of this model [37] is that it allows 
estimation of the attenuation coefficient for any wavelength with high accuracy, given the 
coefficients for a(λ) and bb(λ) for any region-of-interest can be obtained with suitable 
accuracy. For our purpose, we obtained location- and time-specific estimates of a(λ) and bb(λ) 
from the SWIM algorithm and implemented Eq. (6) for each pixel location within our test 
sites to obtain Kd(λ). We note however, that the Kd(λ) model above can utilize IOPs derived 
from other IOP algorithms and is hence not tied to the SWIM algorithm. 

2.2. Integrating benthic irradiance within the PAR range 

2.2.1. Instantaneous benthic PAR 

Values of bPARi were calculated by spectrally integrating the values of Eb(λ) as: 

 
700

400
( ) .i bbPAR E dλ λ=   (7) 

Note that the spectral range (as further detailed later) is not continuous and corresponds to the 
MODISA ocean color band centers. The integration was performed in Python 3.6.3 using the 
numerical python (numpy) library’s “trapz” function that implements the trapezoidal method 
to numerically approximate the area under the curve using definite integral over discrete 
intervals (i.e., here defined by the band centers of MODISA). 

2.2.2 Daily integrated benthic PAR 

To obtain bPARd from sunrise to sunset for any given day and pixel location, we first 
estimated the instantaneous benthic PAR at noon, bPARn (μmol photons m−2 s−1), which gives 
the maximum potential PAR irradiance at the seafloor, using: 

 
700

( )

400

( ,0 )cos dK z
n g s solzbPAR t E e dλλ θ λ+ =    (8) 
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where the subsurface downwelling planar irradiance is multiplied by the cosine of θsolz (the 
term enclosed in square brackets). Assuming clear skies (i.e., no clouds) and that the 
cloud/sky system is non-reflecting and non-absorbing, the magnitude of Es(λ,0+) can be 
estimated as a function of θsolz and is approximately sinusoidal in relation to the daylight 
hours and symmetric about noon [25]. Further, we can compute the solar zenith angle for a 
given solar hour angle, φ, as: 

 ( )1( ) cos sin( )sin( ) cos( )cos( )cos( )solz lat latθ φ δ δ φ−′ = +  (9) 

where, for a given pixel on a single day latitude, lat (radians), the solar declination angle, δ 
(radians) is computed as: 

 

0.006918 0.399912cos( )

0.070257sin( ) 0.006758cos(2 )

0.000907sin(2 ) 0.002697cos(3 ) 0.00148sin(3 )

δ γ
γ γ

γ γ γ

= − +
− +

− +
 (10) 

The term γ (radians) is the date expressed as an angle: 

 
2

*( 1)
365

jday
πγ = −  (11) 

where jday is the Julian day (0-365 in regular year, or 0-366 in leap year). 
Thus, bPARd can be expressed as the double integral: 

 { }
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 
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

′


   (12) 

where φrise and φnoon = 0 denote hour angles at sunrise and noon, respectively. The integral 
with respect to solar hour angle in Eq. (12) is computed numerically using a trapezoidal rule 
by discretizing the solution into fifty φ steps ranging from φrise to φnoon = 0, where φrise is 
computed as: 
 ( )1cos tan( ) tan( ) .rise latφ δ−=  (13) 

3. Data and model evaluation 

3.1. Satellite data processing 

MODISA raw Level-1A (L1A) data files spanning 2002 – 2018 were downloaded from 
NASA (https://oceancolor.gsfc.nasa.gov/) and spatially subsetted to encompass four test sites 
within the GBR (black filled circles in Fig. 1). These data files were then processed to 
geophysical Level-2 (L2) data products using NASA’s Ocean Color Software Suite 
(OCSSW) processing code that is distributed as part of the SeaDAS display and analysis 
software package [44]. L2 data products were produced for ten visible MODISA bands 
centered on: 412, 443, 469, 488, 531, 547, 555, 645, 667, and 678 nm and stored in NetCDF4 
files. These L2 data products included: Es(λ,0+), θsolz, and SWIM-derived IOPs, a(λ) and 
bb(λ). NASA’s standard ocean color atmospheric correction was used to produce all L2 data 
products [45–47]. The data processing yielded nearly 5500 daily MODISA L2 files for each 
of the four test sites. 

3.2. GBR bathymetry data 

Bathymetric data used to define the water column depth (datum: mean sea level (MSL)) were 
extracted from a gridded high-resolution bathymetry and digital elevation model (DEM) of 
the GBR, 3D-GBR [29]. This DEM dataset has a grid pixel resolution of ~100 m x 100 m that 
can resolve fine-scale details of the bottom topography of the GBR reefs and inter-reefal 
systems (see Fig. 1). The full GBR bathymetric dataset is available from Australia’s eAtlas 
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website and environmental research data mapping and management system at 
https://eatlas.org.au/data/uuid/200aba6b-6fb6-443e-b84b-86b0bbdb53ac. 

 
Fig. 1. Location map of the four validation test sites (black filled circles) within the GBR 
region along the north eastern coast of Australia (inset map). The color gradient indicates 
depth contours within the 200 m bathymetric shelf. The blue rectangle indicates the boundary 
of the small regional box, Burdekin region, used for temporal evaluation of the model (as 
detailed in section 3.6) with the corresponding subset bathymetry showing the complex 
topographic features in the model region. Red filled circle indicates location of the Burdekin 
River mouth while gray masked regions indicate land and coral reefs. 

3.3. In situ data collection and processing 

The Australian Integrated Marine Observing System (IMOS) maintains an array of observing 
sub-facilities [48]. One of the regional Shelf Mooring Array sub-facilities is located on the 
coast of Queensland, which is part of the Queensland IMOS (Q-IMOS) node established in 
2007 and currently operated by the Australian Institute of Marine Science (AIMS). To 
conduct validation for this study, four existing mooring stations: Yongala, Palm Passage, 
Myrmidon, and Heron Island South (referred to as Heron throughout the manuscript) were 
expanded in 2015/2016 to also include PAR sensors, all located >1 km away from reefs and 
other geometrically shallow features (Table 1). These four mooring stations were therefore 
selected as in situ benthic PAR validation sites. 

It is worth noting that the sites used for validation represent spatially and optically diverse 
water bodies. The Yongala mooring site is located inshore with shallow lagoon waters often 
subject to wind-driven resuspension of bottom sediments and terrestrial influence. Hence, it 
encompasses both turbid and moderately clear seawater conditions and strong variation in 
optical properties (>20-fold range in PAR values). It is also exposed to seasonal runoff from 
the nearby Burdekin River. The Palm Passage and Myrmidon test sites are both located on the 
edge of the continental shelf, and although they are seasonally exposed to the influence of the 
East Australian Current (EAC), the southwest Pacific poleward western boundary current, 
these two stations most typically represent clear oceanic optical conditions (four- to six-fold 
range in PAR values), typical of oligotrophic waters. Meanwhile, the Heron station represents 
relatively stable intermediate in-water optical conditions (clarity and variability) although it 
may also be influenced by other important local oceanographic features (e.g., eddy-driven 
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intrusion and productivity, tidally-driven flows, seasonal Trichodesmium blooms), yet not 
much more than the effects of the EAC oceanic intrusions experienced by the two deep 
oceanic test sites. Overall, the selected test regions comprise a range of optical water types 
within the GBR lagoon, and hence, suitable to test the capability of the newly developed 
benthic irradiance model over an optical dynamic range found in this region. 

Table 1. IMOS mooring stations for in situ PAR data collection in the GBR. 

IMOS 
Mooring 
station 

Latitude 
(°S) 

Longitude 
(°E) 

Characteristics 
Station 
depth 
(m) 

Mean 
PAR 

logger 
depth 
(m) 

Dates of 
deployment 
(inclusive) 

No. of in 
situ data 
collected 

Yongala 19.302 147.621 

shallow 
inshore, 

periodically 
turbid 

30 29 
22 Mar 2015 to 

26 Sep 2017 
77,486 

Heron 23.513 151.955 
shallow mid-
shelf, clear 

46 24.5 
03 Apr 2016 to 

04 Oct 2017 
248,849 

Palm 
Passage 

18.308 147.167 
deep, outer 
shelf, clear 

oceanic 
70 25 

28 May 2016 to 
22 Nov 2016 

84,920 

Myrmidon 18.220 147.344 
deep, shelf 
edge, clear 

oceanic 
192 19 

25 May 2016 to 
15 Nov 2017 

145,859 

To measure in situ benthic PAR at Yongala, a Seabird Scientific SBE16PLUS v2 
SEACAT profiler with upward facing WETLabs Environmental Characterization Optics 
(ECO) PARSB sensor was deployed 0.5 m above the bottom substrate at ~30 m water depth. 
At the other three mooring sites, WETLabs ECO PARSB sensors were clamp-mounted to a 
permanent mooring wire at a fixed distance from the seafloor at each deployment period. 

PAR sensors collected 5-second data bursts every 15 minutes (480 benthic PAR records 
per day) at all stations except Yongala where single measurements were collected every 15 
minutes (96 benthic PAR records per day). Deployments and servicing of sensors occurred 
approximately every six months. After each deployment period, data were downloaded and 
the instrument’s optical component was checked, characterized and tested to ensure the 
quality and validity of the data between deployments. For each recovery period, the data was 
analyzed and quality controlled such that: (i) data records from the beginning and end of each 
deployment were excluded to ensure that only stable PAR measurements were included in 
subsequent analysis or within a complete day cycle in the case of bPARd validation, (ii) data 
points when instrument failure was experienced (e.g., battery problems) were also excluded 
(e.g., Palm Passage deployments 2 and 3), and (iii) night-time values were forced to zero by 
applying an offset based on the dark count readings of the sensor for each deployment period. 
Table 1 lists the deployment details and total number of in situ PAR data remaining after 
quality controls were applied. 

3.4. Algorithm validation approach 

The model performance was evaluated via matchups between: (i) concurrent instantaneous 
parameters, bPARi and in situ measured instantaneous PAR near the seafloor (Yongala) or in 
the water column (Myrmidon, Palm Passage and Heron), (ii) concurrent daily-integrated 
parameters, bPARd and the daily-integrated in situ measurements, and (iii) all four test sites 
combined against overall satellite retrieval performance for both instantaneous and daily 
integrated cases. 

For clarity, because the PAR loggers, except in Yongala, were mounted in mid-water 
rather than on the bottom, the model was also run for the depths that complemented the in situ 
data for each site and deployment period. Consequently, for brevity, we use the term ‘benthic 
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PAR’ hereto for both PAR near the benthos (i.e., Yongala) or at specific water column depth 
(i.e., clamp-mounted logger depths at Palm Passage, Myrmidon and Heron). 

3.4.1. Matchups of satellite-derived to in situ data pairs 

For each L2 file containing results of the benthic irradiance model (either the instantaneous 
bPARi and daily integrated bPARd) corresponding to an in situ measurement, satellite-derived 
values were extracted for a 3 x 3 pixel box centered at the mooring station locations (see 
Table 1 for coordinates). Next, image pixels were discarded if any of the pixels were 
associated with the following NASA L2 quality flags: LAND, CLDICE, HILT, HIGLINT 
and STRAYLIGHT [49] for quality assurance. Extracted pixels were also discarded using 
two additional quality control procedures: (i) if any of the 9 pixels within the test box had 
been masked [50], and (ii) if the coefficient of variation (CV, standard deviation/mean) 
between the nine pixels of the satellite-derived bPARi or bPARd was greater than 15%, 
indicating low intra-pixel stability of the modeled parameter over relevant time-scale [51]. 
Finally, common statistical parameters including minimum, maximum, mean, standard 
deviation, and median values were calculated for each nine-pixel box as a final check; 
however, we only reported and used median values in further analysis. Matchups between 
concurrent data pairs of satellite-derived and in situ measured bPAR were then performed 
using quality controlled median bPARi (and bPARd) timeseries compared against the in situ 
bPAR timeseries. To qualify as ‘concurrent’, we included in situ data from ±3 hours around 
the MODISA satellite overpass time similar to previous studies [52]. Matchups were 
conducted using R Studio (version 1.1.456) running R version 3.5.2 [53] (codes available 
upon request). 

3.4.2. Regression analysis and other performance metrics 

Type-II linear regression analysis was used to compare the concurrent satellite-derived and in 
situ measured bPAR values per test site and on the combined dataset to assess how well the 
model performed over the dynamic range of benthic PAR in the GBR. The regression slope, 
intercept, and coefficient of determination (r2) were calculated on log10-transformed data. 
Reduced major axis regression analysis was completed using lmodel2 package [54] in R 
version 3.5.2. Model type II linear regression was chosen due to assumed inherent error in 
both the satellite and in situ datasets (e.g., because pixels from satellite imagery are not in 
exactly the same location and time as the in situ data, etc.). Lastly, additional metrics, 
including bias and mean absolute error (MAE), were calculated on log10-transformed data as 
measures of overall algorithm bias (i.e., systematic error) and accuracy (i.e., average model 
prediction error) that were back-transformed out of logarithmic scale before interpreting the 
results. Following Seegers, et al. [51], bias and MAE were calculated as: 

 
10 101

log ( ) log ( )
10 ^

n

sat insitui
bPAR bPAR

bias
n

=
 −
 =
 
 


 (14) 

 
10 101

| log ( ) log ( ) |
10 ^

n

sat insitui
bPAR bPAR

MAE
n

=
 −
 =
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 


 (15) 

where bPARsat is either bPARi or bPARd, bPARinsitu is the corresponding in situ measured 
benthic PAR, and n is the number of observations. The resulting error metrics are in 
multiplicative space and dimensionless. As such, multiplicative bias values of 1.0 indicates no 
bias, and bias <1.0 denotes negative bias (e.g., underestimation of the observed values). 
Whilst for a multiplicative MAE, lower values (or closer to 1.0) would indicate better model 
performance. 
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3.5. Evaluation of model components: the diffuse attenuation model coefficients and 
spectral IOP-based approach (Kd(λ) vs. Kd(PAR)) 

It is worth noting that the Kd(λ) model coefficients (0.005, 4.18, 0.52, and −10.18) in Eq. (6) 
were derived empirically from a dataset simulated with radiative transfer code [37]. These 
coefficients best estimate layer-averaged Kd(λ) for the photic zone depth (i.e. the layer of 
water over which irradiance is diminished to 10% of surface incident values). Because we 
wish to estimate irradiance at the seafloor, the Lee, et al. [37] Kd(λ) model may be limited 
when the geometric depth is not equivalent to the photic depth. Hence, to evaluate the 
limitations of the Kd(λ) model, we conducted a cursory comparison study for two optical 
scenarios: (i) ‘oligotrophic’ (chlorophyll-a concentration of 0.05 mg m−3) and (ii) 
‘mesotrophic’ (chlorophyll-a concentration of 0.5 mg m−3); where the IOPs were known. We 
then compared layer-averaged Kd(λ) values computed using the Lee, et al. [37] model against 
the Kd(λ) values more accurately simulated with Hydrolight-Ecolight 5.1 (HE5) radiative 
transfer code [43]. We used absolute percent difference (APD) as metric for this comparison. 
The radiative transfer modelling exercise we used followed the methodology described in 
McKinna, et al. [22] and considered four geometric depths (5, 10, 20, and 30 m), four θsolz 
(10, 30, 50, and 80ο) and used sand seafloor albedo for all simulations. 

We next evaluated the skill of our spectrally-resolved bPARi model and two other 
approaches based on the method of Morel, et al. [41]. These alternative methods use 
Kd(PAR). In one model, Kd(PAR) is modelled as a function of known/derived chlorophyll-a 
pigment concentration. We refer to this as the “Chlorophyll-based” approach. In the other 
approach, Kd(PAR) is modelled as a function of known/derived Kd(490). We refer to this as 
the “Kd(490)-based” approach. Our spectrally-resolved bPARi model is referred to as the 
“IOP-based” approach. In this case study we also used HES radiative transfer modelling to 
accurately simulate bPARi values to which we could compare modelled bPARi. For this 
radiative transfer modelling exercise, a large set of synthesized IOPs were used as HE5 inputs 
and simulations were run over 14 depths (spanning 3 – 30 m), with fixed θsolz = 30° and a 
sand seafloor albedo. These simulated data were generated by McKinna, et al. [28] and 
further details can be found therein. Also, note that we used a consistent value of tg for 
transmitting surface irradiance values, either Es(λ,0+) or PAR, across the air-water interface. 
We note that for this radiative transfer study, model inputs for each of the three approaches 
(Chlorophyll-based, Kd(490)-based, and IOP-based) were taken directly from the radiative 
transfer simulation outputs (i.e., no satellite algorithms were employed in this brief case 
study). 

3.6. Temporal evaluation 

Performance metrics described above (see section 3.4.2) are robust indicators of the absolute 
accuracy of the model but do not provide additional information on temporal structure or 
variability of the parameter being considered against the validation dataset used. To assess 
whether the benthic irradiance model produces temporally stable estimates of benthic PAR 
(e.g., no unreasonable extreme values or unrealistic trends in the time series), we examined a 
regional box, the Burdekin region, within the central GBR that encompasses three of the four 
test sites considered in the study (inset map on Fig. 1) by implementing the model to 
MODISA data from July 2002 to December 2018. 

3.7. Simple depth sensitivity analysis 

So far, we have used the MSL Beaman 3D-GBR bathymetry [29] as a proxy for water-
column depth. However, one of the possible sources of error of our benthic irradiance model 
could be driven by changes in water-column depth due to tidal fluctuations. The tides in the 
GBR are predominantly semidiurnal (tidal cycle with two high and two low tides of 
approximately equal size each lunar day) and with regional differences in maximum 
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amplitudes ranging between 2.5 to 7 m [55]. To assess the importance of correcting the water 
depth for tidal effects, we also conducted a bPAR model run using in situ depth (i.e., pressure 
data measured using seafloor-mounted SEABIRD SBE16 + V2 SEACAT CTD with pressure 
sensor at the Yongala site) as z in Eq. (1). The depth sensitivity analysis (DSA), thus 
compared two bPAR model parameterizations: (i) the original model using MSL Beaman 3D-
GBR bathymetry referred to as “3D-GBR” model, and (ii) a model using in situ CTD depth 
measurements referred to as “pressure” model, to assess and evaluate differences, if any. As 
neither of these two model parameterizations was assumed initially superior, difference was 
quantified using unbiased percent difference (UPD) calculated as per [50]. 

4. Results and discussion 

4.1. Spectral IOP-based Kd model structure 

Figures 2 and 3 show the various layer-averaged Kd(λ) spectra calculated for four different 
layer depths and two optical water scenarios. The solid lines in the upper panels of Figs. 2 and 
3 respectively show the radiative transfer-modelled layer-averaged Kd(λ) values for 
oligotrophic and mesotrophic optical scenarios, while the black dotted lines (also in upper 
panels of Figs. 2 and 3) show the model layer-averaged Kd(λ) calculated via Eq. (6). For both 
examples, layer-averaged Kd(λ) values for a given θsolz are generally consistent with each 
other over the spectral range 400 – 600 nm, with the exception of the 30 m layer in the 
mesotrophic scenario. It can also be seen that as θsolz increases, the magnitude of Kd(λ) also 
increases slightly whilst the shapes stay much the same. Plots of APD show that the analytical 
Kd(λ) model typically agrees to within 10% of radiative transfer values over 400 – 600 nm. 
We note that for the 30 m depth mesotrophic scenario, radiative transfer-simulated Kd(λ) 
consistently deviates from the model of Lee, et al. [37] in both the blue (400 – 450 nm) and 
red regions (600 – 700 nm) for all solar zenith values. 

This brief analysis, whilst not exhaustive, nonetheless provides some confidence that the 
Lee, et al. [37] model, although tuned for the photic depth layer, can estimate Kd(λ) to within 
10% of true values over a range of geometric depths. Indeed, Lee, et al. [37] model for Kd(λ) 
has been previously tested in optically shallow coral reef waters of the West Florida Shelf by 
Barnes, et al. [50]. Using in situ validation data, Barnes, et al. [50] showed the Lee, et al. [37] 
model had good skill at estimating Kd(λ) at wavelengths shorter than 500 nm, which is 
consistent with this cursory case study. 

 
Fig. 2. Top row: solid lines represent layer-averaged spectral diffuse attenuation coefficients 
for four different layer depths for an oligotrophic scenario. Blue, orange, green, and red lines 
correspond to layer depths of 5, 10, 20, and 30 m, respectively. The dashed line represents 
layer averaged spectral diffuse attenuation coefficient derived by the Lee, et al. [37] model. 
Each panel (left-to-right) corresponds to four solar zenith angles (10, 30, 50, and 80°). Bottom 
row: absolute percent difference (APD) between radiative transfer modelled layer-averaged 
spectral diffuse attenuation coefficients and values estimated using the Lee, et al. [37] model. 
The horizontal gray line represents 1% APD. 
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Fig. 3. Top row: solid lines represent layer-averaged spectral diffuse attenuation coefficients 
for four different layer depths for a mesotrophic scenario. Blue, orange, green, and red lines 
correspond to layer depths of 5, 10, 20, and 30 m, respectively. The dashed line represents 
layer averaged spectral diffuse attenuation coefficient derived by the Lee, et al. [37] model. 
Each panel (left-to-right) corresponds to four solar zenith angles (10, 30, 50, and 80°). Bottom 
row: absolute percent difference (APD) between radiative transfer modelled layer-averaged 
spectral diffuse attenuation coefficients and values estimated using the Lee, et al. [37] model. 
The horizontal gray line represents 1% APD. 

Figure 4 shows scatter plots comparing modelled bPARi with values computed from 
radiative transfer simulations. The results show that the IOP-based model derives bPARi with 
root mean square error (RMSE) and mean bias statistics that are better than the Chlorophyll-
based and Kd(490)-based methods. Thus, this brief analysis demonstrates the benefit of using 
our spectrally resolved Kd(λ)-based model as opposed to a Kd(PAR)-based methods when 
estimating bPARi. 

 

Fig. 4. Scatter plots that compare known bPARi (i.e., derived from radiative transfer 
simulations) with modelled values. Each panel (left-to-right) corresponds to a different model 
approach: (a) Chlorophyll-based, (b) Kd(490)-based, and (c) the IOP-based. The one-to-one 
line is plotted in black solid line. Data points are color coded by geometric depth. Highest 
values of bPARi typically occur in shallow waters less than 5 m in depth. For our radiative 
transfer simulations, incident surface PAR values were 1679 μmol photons m−2 s−1. 

4.2. Instantaneous benthic PAR matchup analysis 

We acquired 1134 matchup pairs (i.e., days of observations) between satellite-derived bPARi 
and in situ measured data across the test sites when only the L2 quality flags were used as 
exclusion criterion (Table 2). After the application of the two additional exclusion criteria 
(i.e., adjacent to a masked pixel in the 3 x 3 pixel box and CV > 0.15), 696 data pairs 
remained. These quality-controlled data pairs comprised the dataset that was subsequently 
used in the regression analysis. The highest number of valid concurrent data pairs were found 

                                                                                      Vol. 27, No. 20 | 30 Sep 2019 | OPTICS EXPRESS A1360 

 



for Yongala and Heron, with 348 and 210 days of observations considered for the matchups, 
respectively. Palm Passage had the lowest number of valid concurrent data pairs at 45 days, 
as this test site had only one deployment period with good data because of in situ instrument 
failures experienced during the other deployment periods. Consequently, the number of 
concurrent matchups between the test sites varied by almost a factor of eight between sites 
with the most and the least data pairs. Nevertheless, across all test sites, only high-quality 
concurrent data pairs were included in the validation analyses, hence, the veracity of the 
model performance evaluation should not be diminished. 

In situ measurements of instantaneous benthic PAR varied by almost two orders of 
magnitude ranging from 13 to 906 μmol m−2 s−1, indicating that the validation dataset spanned 
a wide range of environmental conditions (Table 2). The satellite-derived bPARi values 
showed comparable magnitudes spanning 22 to 672 μmol m−2 s−1. Despite the wide range of 
inherent optical diversity across the test regions, regression analyses showed strong 
agreement between concurrent satellite-derived and in situ bPAR data pairs (Fig. 5, Table 2), 
indicating that our approach was able to produce realistic estimate of bPAR values across a 
range of complex and optically shallow coastal waters. The model performed strongest at 
Heron and was only slightly weaker at Yongala and the two deep oceanic test sites, Palm 
Passage and Myrmidon. Yongala and Heron had smaller dynamic ranges of benthic PAR over 
the period of observation compared to Palm Passage and Myrmidon, and may somewhat 
explain the better agreement found in the two former test sites. 

Note that the capability of our newly developed benthic irradiance model may be limited 
under certain environmental conditions. For example, tropical cyclones can lead to extreme 
optical conditions via mixing and re-suspension of near bottom sediments which might not be 
fully captured by remotely sensed datasets. Excessive rainfall events during the wet season 
can also cause major flooding of river catchments [56]. During such events, freshwater 
plumes discharge from rivers and disperse outward across the GBR lagoon, leading to distinct 
stratification in near-shore regions. Buoyant freshwater flood plumes are typically NAP- and 
CDOM-laden, thus the water column becomes optically inhomogeneous and the bPAR 
model’s assumption of vertically homogenous IOPs is violated. 

Table 2. Matchup statistics for instantaneous satellite-derived (bPARi) and concurrent in 
situ bPAR observations for the four test sites and all sites combined (denoted as ALL). 

The number of concurrent valid data pairs (days of observation) after all quality criteria 
were applied and used in regression analyses is indicated as n. The number of valid data 
points when only the L2 flags were used as the exclusion criterion is given by (n0), shown 
to emphasize the importance of additional exclusion criteria as described in section 3.4.1. 
The highlighted row for Yongala indicate matchup statistics when extremely low bPAR 

values (coinciding with a severe tropical cyclone that passed across the Queensland coast 
in late March 2017) were included in the regression analysis. Note that model 

performance metrics are in multiplicative-space, while range of concurrent satellite-
derived and in situ PAR values are given in the observed (non-transformed) scale to 

facilitate interpretation. 

Site n (n0) 
PAR range (μmol photons m−2 

s−1) 
Model II regression 

bias MAE 
in situ bPARi r2 slope intercept 

Yongala 348 (523) 13.1, 247.3 21.9, 274.0 0.71 0.90 0.25 1.15 1.26 
Heron 210 (320) 25.4, 288.8 26.5, 283.6 0.73 1.10 −0.23 0.95 1.22 
Palm 

Passage 
45 (81) 80.2, 353.6 54.6, 332.4 0.68 1.18 −0.49 0.82 1.31 

Myrmidon 93 (210) 146.7, 906.1 102.2, 672.1 0.66 1.08 −0.26 0.88 1.26 

ALL 
696 

(1134) 
13.1, 906.1 21.9, 672.1 0.80 0.91 0.19 1.03 1.25 

Yongala 353 1.1, 247.3 8.0, 274.0 0.73 0.83 0.41 1.18 1.28 

The bPAR model’s limitation under optically extreme conditions can be seen at the 
Yongala test site during early April 2017 when several extremely low in situ bPAR values 
(filled triangles in Figs. 5(a), 5(c), and 5(f)) resulted in a weaker overall agreement between 
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the derived and actual measurements (i.e., lower slope = 0.83 and higher intercept = 0.41, 
hence less unity, but high r2 = 0.73) (see last row of Table 2). The in situ bPAR values, the 
minimum of which were an order of magnitude smaller than satellite-derived values during 
this extreme event period, coincided with Tropical Cyclone Debbie that affected the 
Queensland coast in late March 2017 [57] and led to low water clarity (due to high terrestrial 
river runoff) in the vicinity of the Yongala site long after the event [58]. In Fig. 5(a), wet 
season (color-coded red) validation data for the Yongala site, which is seasonally dominated 
by the Buderkin River plume, were biased slightly high; again suggesting that the bPAR 
model is underperforming during optically challenging events. Although the scope of the 
current study did not allow to further explore this limitation, an additional investigation is 
warranted. 

Further analysis conducted on the combined dataset also echoed the overall strong 
agreement between derived and in situ measured bPAR values (Figs. 5(c) and 5(f), Table 2). 
Across all test sites, the calculated bias was small and ranged between 0.82 (–18%) at Palm 
Passage to 1.15 (+15%) at Yongala which respectively suggest an underestimation and 
overestimation of the observed PAR values by an average of ±16.5%. MAE values were very 
similar for all four test sites. Again, Heron had the smallest MAE of 1.22 while Palm Passage 
had the highest MAE of 1.31 indicating an average error of satellite-derived bPARi ranging 
between 22% to 31%, respectively. The overall model error of the combined satellite-derived 
bPARi values was about 25% (ALL dataset MAE = 1.25). This average model prediction 
error is much smaller and well within the 35% uncertainty and accuracy goal set for the 
retrievals of chlorophyll-a concentration which is a widely-used ocean color variable ([59] as 
mentioned in [60,61]). 

 
Fig. 5. Scatterplots of concurrent log-transformed instantaneous satellite-derived (bPARi) and 
in situ bPAR for the four test regions of varying optical properties (a-b, d-e) plotted according 
to month of observation, and ALL sites combined plotted (c) by month of observation and (f) 
according to site. Color scale gradient for the months of observations are defined to delineate 
seasonal contrast between austral wet (November to April of following calendar year, yellow-
red) and austral dry (May to October, green) seasons. The thin and thick black solid lines 
indicate the 1:1 line and the reduced major axis regression slope, respectively. Filled triangles 
in (a, c, and f) indicate the extremely low bPAR values coinciding with a severe tropical 
cyclone but were excluded in the regression analysis. 
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Collective consideration of the bias and MAE suggest agreement between satellite-derived 
bPARi and in situ was best at the optically variable site Heron where many validation points 
existed, and lowest at the optically clear-water sites Palm Passage and Myrmidon, where 
relatively fewer data points were available. Given the overall strong agreement and small 
error of the derived values, we suggest that the larger error noted in Palm Passage and 
Myrmidon was more related to the quality of the in situ validation datasets and/or possibly 
related to fewer data points resulting in higher variability in the regression statistics rather 
than to a diminished ability of the model in these water bodies. 

Table 3. Matchup statistics for daily integrated satellite-derived (bPARd) and concurrent 
in situ bPAR observations. The number of concurrent valid data points (days of 

observation) after all quality criteria were applied and which were used in regression 
analyses is indicated as n. Note that model performance and error metrics are in 

multiplicative-space, while range of bPAR values are given in the observed scale to 
facilitate interpretation. 

Site n 
PAR range (mol 
photons m−2 d−1) 

 
Model II regression 

bias MAE 
in situ bPARd  r2 slope intercept 

Yongala 347 0.4, 6.6 0.6, 6.9  0.65 0.98 0.06 1.13 1.26 
Heron 208 0.9, 7.7 0.8, 7.2  0.80 1.16 −0.09 0.96 1.21 

Palm Passage 21 2.5, 6.7 1.9, 5.3  0.73 1.08 −0.18 0.75 1.35 
Myrmidon 90 4.8, 22.7 3.1, 17.1  0.75 1.21 −0.29 0.83 1.28 

ALL 666 0.4, 22.7 0.6, 17.1  0.80 0.94 0.04 1.01 1.25 

4.3. Daily integrated benthic PAR matchup analysis 

The same in situ validation datasets used for the instantaneous matchup analysis were 
integrated to obtain daily in situ benthic PAR values and compared with concurrent satellite-
derived bPARd. The dynamic range of the in situ and satellite-derived daily values were 
comparable at 0.4 to 23 mol photons m−2 d−1 and 0.6 to 17 mol photons m−2 d−1, respectively. 
Results of the Type II linear regression analysis on the daily integrated datasets also showed 
an overall strong positive relationship (Fig. 6, Table 3). Again, agreement between derived 
and in situ values is most notable at the Heron test site with small negative bias (–4%) and 
highest accuracy (smallest MAE of 21%). Although Yongala showed a relatively lower 
coefficient of determination (r2 = 0.65) amongst the test sites, the other regression statistics as 
well as bias and accuracy metrics indicate better model performance compared to the two 
deep test sites. 

As previously discussed, relatively weaker agreement between the satellite-derived and 
the in situ data at Yongala may be attributed to our bPAR model underperforming under more 
complex and/or stratified in-water optical conditions in this shallow inshore test site. More 
specifically, this effect may be compounded when estimating daily-integrated PAR due to 
intra-daily temporal variability in physical factors that drive nearshore IOPs. For example, 
clear water, offshore pixels will have optical variability that occurs at longer time-scales, 
being distant from terrestrial sources of particles and other pollutants, such that temporally 
extrapolating the IOPs derived at the time of the MODISA satellite overpass for the whole 
day, is a reasonable assumption and one that indeed showed strong agreement with observed 
values. However, for more dynamic inshore waters that may have IOPs with variability 
occurring at shorter time-scales or higher frequency (e.g., hours), it becomes more 
challenging to temporally extrapolate the IOPs over the whole day. On the other hand, while 
the agreement between satellite-derived and in situ values was strong for the deep oceanic test 
sites, the bias and MAE at Yongala showed better results than at Palm Passage or Myrmidon. 
Again, we suggest that these results may be related to the quality of the validation data 
obtained for these test sites. As for the combined dataset, satellite retrievals showed strong 
positive agreement with an almost negligible systematic error (bias of +1%) and high 
accuracy (low MAE of 25%) (see Figs. 6(c) and 6(f) and Table 3). 
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Fig. 6. Scatterplots of concurrent log-transformed daily integrated satellite-derived (bPARd) 
and in situ bPAR for the four test regions of varying optical properties (a-b, d-e) plotted 
according to month of observation, and ALL sites combined plotted (c) by month of 
observation and (f) according to site. Color scale gradient for the months of observations are 
defined to delineate seasonal contrast between austral wet (November to April of following 
calendar year, yellow-red) and austral dry (May to October, green) seasons. The thin and thick 
black solid lines indicate the 1:1 line and the reduced major axis regression slope, respectively. 

Although we consider bPARd to be an ecologically important parameter due to its role as 
an autotrophic requirement (e.g., energy source for photosynthesis), we also acknowledge that 
perhaps a more complete measure of light relevant for marine photosynthetic organisms is a 
PAR value estimated from the scalar irradiance [25,27] wherein light in every direction is 
considered (e.g., PAR measured by a spherical collector). However, as discussed earlier, the 
available validation dataset for this study is only collected for visible light measured on a 
plane (i.e., plane irradiance) which allowed us to only consider the downwelling plane 
irradiance in our model development. Indeed, if in situ scalar irradiance data becomes 
available in the future, this potential improvement could be considered. 

While we acknowledge that our approach has several limitations and has room for further 
improvement, the baseline results obtained via this newly developed approach have 
demonstrated that our simple model can realistically estimate daily benthic PAR values 
within the GBR with good skill. Our new GBR-specific ocean color benthic irradiance 
algorithm can thus be utilized for ecological studies within this important and world-heritage 
listed region by providing estimates of benthic light values. 
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Fig. 7. Timeseries plot of satellite-derived (a) instantaneous benthic PAR, bPARi, and (b) daily 
integrated benthic PAR, bPARd, for the Yongala test region from July 2002 to December 2018. 
The color gradient indicate bPAR values while dashed horizontal line indicate the median 
value of the entire time series data for each parameter, overlaid for reference. The grayed out 
areas indicate the austral wet season months (extending from November to April of following 
calendar year). Downward pointed black arrows on the x-axes denote occurrences of selected 
severe tropical cyclones that hit the eastern Australian coast. Note that vertical axes are in 
logarithmic scale. 

4.4. Time series case study 

The 16+ year time-series of satellite-derived benthic PAR values for the Yongala site exhibits 
strong seasonality (Fig. 7). Lower values (purple to blue spots below the median lines) 
coincide at the end of austral wet season months (which extends from November to April the 
following calendar year, denoted as gray areas on both panels of Fig. 7) and beginning of 
austral dry season (May to October). Relatively higher values (green to red spots above the 
median lines) were derived for most of the austral dry season towards the proper austral wet 
season. This temporal pattern agrees with the variability of satellite-derived photic depth data 
previously obtained for GBR [21]. This time-series provides insight into the influence of local 
events or phenomena that can drive variability of the underwater light field. As an example, 
decreased benthic light values are seen to coincide with tropical cyclones events (downward 
arrows in Fig. 7). Indeed, the future near-synoptic, high-temporal resolution output of this 
model, which will be the first of its kind for the GBR, will provide a critical dataset that will 
allow us to further explore and understand how light availability varies both in space and time 
and in relation to the presence of important benthic organisms that is found within the GBR. 

4.5. Understanding the effects of tide on instantaneous benthic PAR estimates 

Both “3D-GBR” and “pressure” models show good temporal coincidence with the observed 
instantaneous benthic PAR values (Figs. 8(a) and 8(b)). For the purpose of this exercise, a 
large difference between the satellite-derived bPARi values (for either model) would mean it 
is necessary to correct the original 3D-GBR bathymetry data for tidal effects. Otherwise, we 
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can reasonably assume minimal tidal influence in the results of our new benthic irradiance 
model, but sentient of caveats when interpreting results. 

 

Fig. 8. Depth sensitivity analysis and model results comparison at the Yongala test site. (a) plot 
of satellite-derived instantaneous benthic PAR values modeled using Beaman 3D-GBR 
bathymetry as z (red, 3D-GBR model) with in situ instantaneous benthic PAR (black); (b) plot 
of satellite-derived instantaneous benthic PAR values modeled using in situ pressure data as z 
(blue, pressure model) with in situ instantaneous benthic PAR (black); (c) unbiased percent 
difference (UPD) between bPARi, calculated as: |(bPAR3D-GBR – bPARpressure)|/(0.5 * bPAR3D-GBR 
+ 0.5 * bPARpressure) * 100; and (d) scatterplot of the residuals (against in situ values) of the two 
models where diagonal black solid line denotes the 1:1 line. Gaps in plots a-c indicate periods 
where there were no in situ data available for validation. 

The comparison showed a mean UPD of 7.9% between the two models, equivalent to ~7 
μmol photons m−2 s−1 (roughly 0.6 mol photons m−2 d−1) (Fig. 8(c)). Scatterplot of residuals 
between the two satellite-derived bPARi values against in situ values (Fig. 8(d)) also show 
good agreement. This difference is relatively small compared to published ecologically-
relevant minimum irradiance value required to maintain autotrophic health, which depending 
on the benthic organisms considered may vary between 0.4 to 5.1 mol photons m−2 d−1 [1]. 
We concede that the tidal influence will vary depending on a location’s known bathymetry 
and range of daily tidal fluctuations such that effects will be greater in areas with shallow 
depths and bigger tides. We note, however, that our model does not consider intertidal regions 
of the GBR or locations where MSL bathymetry is less than 5 m and where influence of the 
bottom can be significant [50]. 

5. Conclusion 

Here we have demonstrated that our simple benthic irradiance model can be employed to 
estimate realistic benthic PAR values within the GBR with good accuracy. We emphasize 
once again that although our results were reported in terms of a single broadband PAR 
irradiance, our approach does not utilize Kd(PAR). Instead, our model resolved Kd(λ) by 
carrying out all calculations spectrally, where the full spectral variability of Eb(λ) in Eq. (1) 
has been retained in the process. Thus, aside from its simplicity, the key strength and novelty 
to our benthic irradiance model mean it can be easily extended to other ocean color sensors. 
In particular, we expect that model-derived estimates of bPAR may be improved when 
applied to data collected by sensors with contiguous spectral bands such as the upcoming 
NASA’s Plankton, Aerosol, Cloud, and ocean Ecosystem (PACE) mission which is scheduled 
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to launch ca. 2022. In addition, the bPAR model should also be extendable to other coastal 
waters for which high resolution bathymetry data exists and where spectral IOPs can be 
obtained accurately. 

Overall, the validation exercise using four optically diverse test sites proved that our 
model was able to estimate both bPARi and bPARd values from MODISA remote sensing data 
with good skill as indicated by small bias and low MAE (within ~25%) compared to the 
observed “true” bPAR values. This suggests that our benthic irradiance model is robust to 
variation in optical water types found in the optically complex and shallow GBR lagoon. We 
do note that during extreme seasonal events, such as sediment-laden flood plumes, where 
acute optical stratification is present (i.e. buoyant turbid freshwater lens) the model’s 
assumption of an optically homogenous water column is violated. Indeed, the validation 
results revealed that season retrievals of bPAR for the Yongala site, which is adjacent to the 
Burdekin River mouth, deviated from in situ observations. 

We also acknowledge that the baseline bPAR model presented here has some limitations 
that if addressed, may further improve the model in the future. Firstly, our model assumed 
clear skies and that our validation data were generally obtained during cloud-free days, yet 
cloud cover variability modulates Es(λ) [25]. This assumption proved to be satisfactory for 
instantaneous bPARi estimates but may have significant consequences for deriving daily 
integrated bPARd values; particularly in locations where temporal variation in cloud cover 
may be high. We concede that cloud variability should be considered when computing 
bPARd, however, it is challenging to generate a cloud climatology dataset to correct our 
bPARd data. Future enhancement may include statistically quantifying the effect that clouds 
have upon bPARd by using in situ surface and sub-surface PAR datasets to empirically tune 
the model, both regionally and seasonally (e.g., as a cloud cover climatology). We note that 
parallel efforts are underway to include this as a future enhancement of our benthic irradiance 
model. Secondly, the atmospheric model used to obtain Es(λ) did not include diffuse sky 
irradiance. Future work to improve the bPAR model may include using a two component 
“clear sky” and “cloud layer” model similar to Frouin and McPherson [16]. Thirdly, 
contributions of a wind-roughened sea surface to reflectance/transmittance across the 
interface may also be accounted for following Haltrin, et al. [62,63], provided appropriate 
ancillary wind data that matches our model input datasets can be obtained. Lastly, the 
applicability of our model may also be limited in areas where tidal fluctuations are much 
higher than what our DSA has tried to address. The bottom topography and physical 
processes that drive the oceanography of the entire GBR are complex and therefore cannot be 
easily generalized. Fine tuning the water column depth in shallow locations or in regions 
where tides vary significantly (e.g., Broad Sound located at the southern GBR) may also 
improve benthic irradiance estimates for these locations. 

Despite the above limitations, the model results we have presented are very promising and 
can be implemented to the entire GBR region using near-daily MODISA data collected over 
the last 16+ years. This will allow for a spatiotemporally rich benthic PAR dataset to be 
generated for the first time at this scale. Given the importance of light availability for the 
health of benthic ecosystems, our model results can now be used to explore the spatial and 
temporal variability of benthic light in the GBR region (see Fig. 9). The resulting benthic 
light datasets will provide information needed to assess habitat quality for corals and 
seagrasses. Specifically, GBR-wide maps of light thresholds (i.e., minimum light 
requirements for optimal system function) for these organisms can be developed from the 
benthic PAR values derived using this model and form the basis of a new GBR water quality 
index based on light. 
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Fig. 9. Map of 2016 annual mean of daily integrated benthic PAR (bPARd) for the Great 
Barrier Reef region. Color gradient indicates values in mol photons m−2 d−1. 

Whilst we have outlined some limitations of the bPAR model, it is important to recognize 
that we do not necessarily anticipate that the satellite-derived benthic irradiance data 
presented here will become a standalone solution for monitoring water quality and ecosystem 
health in the GBR. Instead, we expect the bPAR model will complement existing monitoring 
tools such as the eReefs hydrodynamic model [64], the Q-IMOS mooring array, and the 
routine in situ water quality sampling programs. There is great potential for the uptake of the 
bPAR model in developing additional management criteria for monitoring water quality in the 
GBR based on light availability, as well as exploring effects of long-term patterns of benthic 
light availability on corals and/or seagrasses which has not been possible before now. 
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