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Abstract  
Coral reefs have the greatest biodiversity of any ecosystem on the planet and support ecosystem goods 

and services to million people who depend directly on them for food, economic income, coastal 

protection and cultural values. There is a clear consensus that accessibility through road networks and 

infrastructure expansion is a main driver of ecosystem conditions, with the most accessible resources 

being most at risk. Yet to date measuring the extent to which coral reefs are accessible to humans is 

strictly limited to examining the linear distance between fishing grounds and markets or ports. 

However, linear distance ignores ragged coastlines, road networks and other features that can affect 

the time required to reach fishing grounds from a human settlement. This thesis presents a double 

challenge: (i) developing new metrics of accessibility that account for seascape heterogeneity to better 

assess human impacts on coral reefs; and (ii) evaluating the importance of coral reef accessibility, in 

interactions with their management, to explain variations of fish biomass. First, I estimated the travel 

time between any given coral reef and human populations and markets based on the friction distance 

which is related to transport surfaces (paved road, dirt road, water) influencing transportation costs 

and the effective reach from human settlements. I found that travel time is a strong predictor of fish 

biomass. Second, using a downscaling of the travel time approach I illustrated how market proximity 

can affect the behavior of fishermen and, ultimately, trigger changes in marine resource exploitation 

in North-Western Madagascar. Market access appears as a critical step toward a long-term 

management of coral reef fisheries. Third, travel time was used to build a human gravity index, defined 

as human population divided by the squared travel time, to better assess the level of human pressure 

on any reef of the world. Then, gravity was used to assess the effectiveness of marine reserves given 

the level of human pressure. The results highlighted critical ecological trade-offs in conservation since 

reserves with moderate-to-high human impacts provide substantial gains for fish biomass while only 

reserves located where human impacts are low can support populations of top predators like sharks 

which are otherwise absent from coral reefs. Fourth, I developed a new Community-Wide Scan (CWS) 

approach to identify fish species that significantly contribute, beyond the socio-environmental and 

species richness effects, to fish biomass and coral cover on Indo-Pacific reefs. Among about 400 fishes, 

I identified only a limited set of species (51), belonging to various functional groups and evolutionary 

lineages, which promote biomass and coral cover; such key species making tractable conservation 

targets. Within the context of global changes and biodiversity loss, the thesis challenges the 

sustainable and efficient management of coral reef socio-ecological systems with accessibility being 

the cornerstone but also the main danger in a near future where roads will expand and coastal human 

populations will grow. 

 

Key words: fish community, fish biomass, ecosystem functioning, ecosystem services, human pressure, 

accessibility, gravity, Marine Protected Areas, coral reefs, socio-ecological systems, conservation.  
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 General introduction 

 

Coral reefs are among the richest ecosystems on Earth. While covering less than 1 per cent of 

the ocean floor (Spalding et al. 2001), coral reefs support the world’s greatest biodiversity of 

marine organisms (Roberts et al. 2002) with almost 1,000,000 (95% credible limits: 550,000– 

1,330,000) of multi-cellular species worldwide (Fisher et al. 2015). Millions of people in coastal 

areas depend directly on the ecosystem goods and services provided by coral reefs which 

sustain from artisanal subsistence fisheries, commercial fisheries, aquaculture, live reef-fish 

for food industry, recreational fishing and aesthetic and spiritual values (Teh et al. 2013; 

Cinner 2014). Coral reefs do not support only livelihood of people but they also offer coastal 

protection, jobs, medicines, recreational and touristic opportunities (Ferrario et al. 2014).  

Coral reefs are among the richest ecosystems on earth (Fisher et al. 2015) and provide 

valuable and vital ecosystem services estimated on average at $350,000/ha/year (de Groot et 

al. 2012). Coral-dominated reefs have higher productivity and when well-managed, coral reefs 

can yield between 0.2 and 40 tons of fish and seafood per square kilometer per year (Dalzell 

1996; Newton et al. 2007) These estimates lead to an annual yield of 0.056 - 11.36 million tons 

of fish and seafood per year (for the 284,000 km2 of reefs) while total global landing was 

estimated at 1.4 - 4.2 million tons per year (Pauly et al. 2002). Thus, fish are socially and 

ecologically important and the challenge of maintaining both food supply and fish biodiversity 

is one of the most challenging but also one of the most urgent challenge that scientists and 

managers are facing today. 

 

 Research context 

 Importance of fish biodiversity on coral reefs 

1.1.1.1. Linking biodiversity and ecosystem functioning 

The functioning of ecosystems is based on (i) physical, chemical and biological processes which 

insure an efficient circulation of matter and energy through various levels of biological 

organizations (primary, secondary producers and decomposers), (ii) energy and matter 

storage and (iii) the stability of energy and matter storage over time (Boero & Bonsdorff 2007). 

In the face of worldwide declines in biodiversity in early 1990s, many studies have been 

interested in quantifying the importance of biodiversity on ecosystem functioning and 
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consequences in the supply of ecosystem goods and services to human populations (Chapin 

et al. 2000; Cardinale et al. 2012). A recent study used empirical measurements of biodiversity 

and functioning of natural ecosystems to highlight that increase in biomass production with 

biodiversity is much higher in nature than has previously been documented in experiments 

and at least comparable or higher than climate and nutrient availability (Duffy et al. 2017). 

 

However, if many experimental studies have showed a saturating (concave-down) 

relationship (Figure 1.1 A) between ecosystem functioning (standing stock and productivity) 

and biodiversity (species and functional richness) (Cardinale et al. 2006); more recent studies 

have yielded non-saturating (concave-up, Figure 1.1 B) patterns (Danovaro et al. 2008; Mora 

et al. 2011). Mora et al. (2014) have developed theoretical framework to support concave-up 

biodiversity-ecosystem functioning relationships in natural ecosystems and thus, proved that 

consequences of biodiversity loss could be substantially more dramatic than previously 

predicted.   

 

Figure 1.1 I Experimental (A) and natural (B) ecosystems relationships between biodiversity 

and ecosystem functioning (Mora et al. 2014). 

 

1.1.1.2. Understanding the multiple facets of fish biodiversity 

Scientists estimate that coral reef biodiversity could reach around 1,000,000 (550,000-

1,330,000) species of multi-cellular plants and animals while only 8% of them are currently 

named (Fisher et al. 2015). From the 1980s, scientific community has been interested in better 
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understanding the role of biodiversity and more specifically of the number of species on 

ecosystem functioning (Cardinale et al. 2012). First studies have mainly been conducted in 

controlled terrestrial ecosystems and have showed a positive but rather weak (r2 < 0.5, 

p<0.001) relationship between plant species richness and their biomass or nutrient recycling 

(Naeem et al. 1994; Tilman & Downing 1994; Tilman et al. 1996; Loreau & Hector 2001). The 

relative weak explanatory power of species richness to ecosystem functioning comes from 

simplistic assumption that each species would have the same contribution to ecosystem 

functioning. However, natural selection and speciation processes confer various 

morphological, biological (life history traits) and ecological traits to species, which enable 

them to perform various functions, most being similar or redundant (Rosenfeld, 2002) while 

some are unique (Petchey et al. 2008). Redundancy or unicity of functions realized by species 

are strongly linked to life history traits which motivates the use of functional diversity instead 

of the mere species richness to explain ecosystem functioning (Mora et al. 2011).  

 

Functional diversity is a powerful, important component of biodiversity, but also rather 

complex to measure and define (Petchey & Gaston 2006). Functional diversity can be defined 

as “the value and the range of those species and organismal traits that influence ecosystem 

functioning” (Tilman 2001) meaning that functional diversity focuses on understanding 

communities and ecosystems based on what organisms do, rather than on their evolutionary 

diversification (Petchey & Gaston 2006). Beyond the mere loss of species, the loss of particular 

functions insured by species is the main threat that jeopardize functioning (Bellwood et al. 

2012; Naeem et al. 2012). Especially in complex systems such as coral reefs, functional 

redundancy (e.g. several species can support similar functions) may preserve ecosystem 

functioning even under species decline (Yachi & Loreau 1999; Fonseca & Ganade 2001). 

However, Mouillot et al. (2014) have showed that in coral reefs, levels of redundancy are high 

as functions are packed in a few functional entities while 38% of the functions are represented 

by only one species and thus, are highly vulnerable. Therefore, some species performing 

unique roles, appear to be irreplaceable (Bellwood et al. 2006) and imperil ecosystem 

functioning if extinct.  

 

Evaluating functional diversity relies on biological traits (called functional traits) that embodies 

various life history traits and processes. For example, body size reflects the metabolism but 
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also informs about the trophic level and the mobility of the specie. Size, mobility, period of 

activity, schooling, vertical position in the water column and diet are functional traits 

commonly used to describe coral reef fishes (Mouillot et al. 2014). If the species description 

using functional traits intends to simplify our vision of the functions performed by the whole 

fish community, the critical step remain the traits choice which can influence the measure of 

functional diversity (Petchey & Gaston 2006). In richer ecosystems such as coral reefs, 

functional traits may capture only a restricted number of functions supported by species 

because of the wide range of traits observed (Petchey & Gaston 2006). 

 

Given these limitations, phylogenetic diversity e.g. the sum of phylogenetic branch lengths 

(measured on phylogeny) connecting species together, has been proposed as alternative. 

Phylogenetic diversity may capture the whole range of functions even those not measured by 

functional traits (Flynn et al. 2011) and may be able to predict biomass production often better 

than specific richness or functional diversity (Cadotte et al. 2008; Cadotte et al. 2009; Harmon 

et al. 2009; Cadotte et al. 2012; Cadotte 2013; Milcu et al. 2013). 

 

 Coral reefs in the Anthropocene  

1.1.2.1. Socioeconomic benefits from coral reefs 

The world population is expected to increase from the current 7.2 billion to 9.6 billion in 2050 

and 10.9 billion people in 2100 with the highest growth in Africa (Gerland et al. 2014). More 

than 40% of the world's population live within 150 kilometers of the coast (UN 2002; Neumann 

et al. 2015) and a disproportionate number lives in the biodiversity hotspots and tropical 

remote areas (Williams 2013). Those millions of people in coastal areas depend directly on the 

ecosystem goods and services provided by coral reefs which sustain from food and economic 

income through artisanal subsistence fisheries, commercial fisheries, aquaculture, and live 

reef-fish for the ornamental industry (Kittinger et al. 2012; Teh et al. 2013; Cinner 2014). Coral 

reef fisheries supply more than half of the animal protein consumed by human populations in 

coastal regions or small islands (Moffitt & Cajas-Cano 2014) (Kawarazuka & Béné 2011; Teh et 

al. 2013; Charlton et al. 2016) and also provide critical nutrients essential to human nutrition 

(Béné et al. 2016; Golden et al. 2016; Thilsted et al. 2016). Coral reefs do not support only 

livelihood of people they also offer coastal protection, medicines, recreational and touristic 
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opportunities (Ferrario et al. 2014; Harris et al. 2018). Additionally, coral reefs contribute to 

aesthetic, cultural and spiritual values of coastal societies (Kittinger et al. 2012; Cinner 2014).  

 

1.1.2.2. Anthropogenic direct impacts 

Anthropogenic changes have become the dominant force shaping all ecosystems on Earth, a 

new era termed the Anthropocene (Steffen et al. 2011). Social and ecological processes are 

closely intertwined (Halpern et al. 2008; Rockström et al. 2009; Österblom et al. 2017) 

particularly on coral reefs ecosystems where humans have historically depleted marine 

resources (Jackson et al. 2001; Pandolfi et al. 2003; Bellwood et al. 2004; Norström et al. 

2016). For instance, a high-resolution 3,000-year record of reef accretion rate and herbivore 

(parrotfish and urchin) abundance (Cramer et al. 2017) shows that historical fishing may have 

been significantly affecting Caribbean reefs for over two centuries, initiating ecosystem 

declines from which they have never recovered. Declines in fish and coral abundance become 

detectable in the Caribbean since the mid-18th century with the increasing exploitation of 

coastal marine resources from indigenous inhabitants, European traders, and pirates engaging 

in intensive harvesting and land clearing for industrial-scale banana agriculture (Cramer et al. 

2017). 

 

Scientific understanding of human impacts on reef systems has mainly demonstrated negative 

relationships between local human populations and the condition of coral reefs (Mora et al. 

2011; Bellwood et al. 2012), the term ‘condition’ referring to many aspects from the quality 

of habitat to fish biomass and biodiversity. More specifically, fishing activities impact trophic 

pyramids at all levels and the famous ‘fishing down the food web’ tenet implies that fishing 

starts at the highest-valued species at the top of the pyramid and then moves down the 

pyramids as predators collapse with exploitation (Pauly et al. 1998). For coral reefs, fishing 

through entire trophic pyramids (Branch et al. 2010) may be a common practice since all 

trophic levels have market value. Previous studies have showed that reef fish biomass is 

constrained by the density of local human populations (Mora et al. 2011) but the linear 

distance to the nearest market is also a strong explanatory variable for the condition of reef 

fisheries (Cinner et al. 2013). One major point is that even low human settlement or 

population densities can deplete resources on close reefs and have great impacts on fish 

abundance. Indeed, Bellwood and colleagues (2012) show that 16 people per square 
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kilometre is enough to make bigger parrotfishes (Bolbometopon muricatum, Chlorurus sp.) 

locally extinct (Figure 1.2).  

 

 Figure 1.2 I Relationships between human density (inhabitants per km2) and the abundance 

of Green humphead parrotfishes (Bolbometopon) and large Chlorurus parrotfishes 

(Bellwood et al. 2012). 

 

Parrotfishes sustain bioerosion and coral predation which are key functions for coral reef 

resilience, thus abrupt ecosystem shift can be observed as soon as fishing reduces parrotfish 

size and abundance (Bellwood et al. 2012; Bozec et al. 2016). Coral reefs integrity can be 

disrupted by human activities and over-exploitation, leading to social-ecological traps (Cinner 

2011) where fish extraction reduces the wide diversity of functions provided to the ecosystem 

and induces coral habitat degradation. This results in heavier human pressure on remaining 

fishes and ultimately, coral reef systems are not able to support services that people depend 

on anymore. Ever increasing coastal population growth, with associated demands on natural 

resources may compromise the capacity of coral reefs to keep providing human societies with 

fisheries and other socioeconomic benefits. 

 

1.1.2.3. Complex population-environment dynamics in small-scale fisheries 

Relationships between population growth and the environment are intensively debated in 

social science with two main opposing views from Thomas Malthus and Ester Boserup. 

Thomas Malthus promoted the idea that population grows exponentially and will always 

exceed food production that grows linearly, leading to increasing poverty and inducing 
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inevitable collapse of human societies (Malthus 1798). Ester Boserup published her theory 

known as the ‘necessity is the mother of invention’ in the year 1965 and thus, challenged the 

Malthusian theory. Her theory admits that the combination of population growth and natural 

resource scarcity will inspire innovation to increase food production (Boserup 1965).  

Applied to fisheries, Malthus’s theory predicts that the causes of overfishing are driven by 

“too many fishers chasing too few fish” (Pauly 1990) with fishing effort growing 

proportionately to human population growth. Regions in the world characterized by positive 

population growth, high level of poverty and strong dependence on marine resources fall 

within the context of ‘Malthusian overfishing’.  

 

The relationships between population dynamics and fishery resources are more complex than 

the concept of Malthusian overfishing implies and while there is compelling evidence that 

human population growth can impact natural resources around the world (Vitousek et al. 

1997; McKee et al. 2004; Johnson et al. 2017), it is not accurate to consider that global or local 

population growth is the only driver affecting natural resources (Allison 2001; Robbins 2011). 

Indeed there is still little empirical evidence that global or local population growth has more 

impacts on coral reefs than other socio-economic aspects (de Sherbinin et al. 2007). Also, 

many coral reef studies revealed that other drivers such as technology, market access and 

development often provide better explanation of the conditions of coral reefs fisheries than 

human population size or density (Cinner & McClanahan 2006; Cinner et al. 2009a; Brewer et 

al. 2012; Cinner et al. 2013; Finkbeiner et al. 2017).  

 

From a management perspective, the Malthusian theory postulates that policy interventions 

that reduce fisher access, the number of fishers, or the human population may be needed 

(Pauly 1990; Roberts 1995) while the Boserupian theory predicts that environmental scarcity 

leads to creativity, innovation and policy that conserves natural resources (Boserup 1965). 

Fisheries management relies on a better understanding of all the factors affecting the coral 

reef socio-ecological systems to provide effective and equitable actions without blaming local 

fishermen (Finkbeiner et al. 2017).  
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1.1.2.4. Importance of markets: the location theory 

Earth’s ecosystems are under increasing pressure as globalization connects the world (Liu et 

al. 2013). Markets create links between local activities and economic centers through trade 

and have become one of the most important factors driving human activities which in turn, 

profoundly shape the exploitation of both terrestrial and marine natural resources (Laurance 

et al. 2009; Dobson et al. 2010; Mora et al. 2011; Ahmed et al. 2014; Barber et al. 2014; 

Alamgir et al. 2017). Von Thunen's Theory of Agricultural Location describes the influence of 

the 'transport rate' on the location of agricultural activities in a region. His theory has long 

been one of basic concerns in economic geography and states that agricultural goods are 

produced at increasing distances from the market based on how expensive they are to 

transport (Von Thünen 1966). Goods that are cheap to transport will be produced relatively 

farther from the market than goods that are expensive to transport. His theory also points out 

that it exists a distance beyond which no agricultural production takes place.  

 

This theory might hold true for small-scale fisheries with transportation costs to reach both 

fishing grounds and markets being critical. As many reefs are located in developing countries 

(Mora et al. 2011), these costs are particularly relevant since scarce road network and poor 

conditions roads will limit transportation. Thus, coral reefs might show great variability in their 

degree of accessibility since (i) reefs are located on varied coastal and oceanic places with 

different levels of infrastructure development (roads, markets); and (ii) fishing communities 

can be located far from markets and thus face even greater transportation costs. This theory 

has never been applied to coral reef socio-ecological systems while it seems promising to 

better explain how human activities affect reefs.  

 

1.1.2.5. Management actions to counteract human impacts 

Numerous approaches can be used to sustain marine resources (Costello et al. 2008; Gelcich 

et al. 2008; Worm et al. 2009; Cinner et al. 2012). Since the 1960s, Marine Protected Areas 

(MPAs) and Marine Reserves (MRs), the latter being defined as no-take MPAs where fishing 

activities are prohibited (Costello & Ballantine 2015), have become popular tools for 

conserving biodiversity and managing marine resources (Gaines et al. 2010; Veitch et al. 2012; 

Watson et al. 2014; MacNeil et al. 2015). MPAs are more and more popular across the oceans 

to preserve biodiversity but also to reduce poverty, build food security, create employment 



 22 

and protect sustain fisheries (Van Beukering & Lea 2013; Ferrario et al. 2014; Brander et al. 

2015). There is now a large body of evidence supporting positive effects of MRs within their 

boundaries and in their vicinity. MRs unambiguously increase fish abundance (Lester et al. 

2009) and biomass (Costello 2014) and host larger, and thus more fertile, fish individuals 

(Abesamis & Russ 2005; Evans et al. 2008). These benefits typically appear after 2 to 5 years 

of protection (Claudet et al. 2008) and continue to grow even after 40 years for some fish 

groups like predators (MacNeil et al. 2015). 

 

Rapid degradation of the world’s coral reefs (Hughes et al. 2003; Pandolfi et al. 2003; Bellwood 

et al. 2004; Hughes et al. 2017a) jeopardizes their ecological functioning and ultimately 

imperils the wellbeing of the millions of people with reef-dependent livelihoods (Teh et al. 

2013). If the social, institutional, and environmental conditions that support the success of 

management to achieve ecological benefits are well studied (Dulvy et al. 2004; Mora et al. 

2011; Williams et al. 2015b; Bozec et al. 2016b; Cinner et al. 2016), it remains to be explored 

how conservation benefits of the different management actions (fishing restriction or marine 

reserve) can be maximized (Devillers et al. 2015; Pressey et al. 2015). To date, the intensity of 

human impacts in the surrounding seascape might influence the effectiveness of management 

to achieve conservation gains (Devillers et al. 2015; Pressey et al. 2015), while these effects 

have never been quantified. 

 

Securing a future for coral reefs under these multiple Anthropogenic forcing factors (Hughes 

et al. 2017a) requires urgent alternatives to sustain coral reef socio-ecological systems. We 

thus need to (i) better understand, quantify and map the level of interactions between reefs 

and humans and (ii) define how the intensity of human impacts affects the ability of MPAs to 

achieve conservation objectives. 

 

 Better understanding the variations of fish biomass on coral reefs 

 The importance of fish biomass 

Coral reefs host no less than 6,000 fish species which represent the major group of vertebrates 

(Kulbicki et al. 2013). Fish play key roles in marine ecosystems functioning and ensure key 

ecological processes. They maintain coral reef in a state of coral dominance with herbivorous 

fish playing a key role in exerting a top-down control of algae and regulating coral-algae 
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competition (Mumby et al. 2006; Hughes et al. 2007). They also regulate trophic structure and 

thus influence the stability, resilience, and food web dynamics of aquatic ecosystems but also 

participate to nutrients cycling and control algae and macrophytes growth (Holmlund & 

Hammer 1999; Bascompte et al. 2005). Numerous studies have shown that fish biomass is a 

strong predictor of species richness and their ecological functions. One effective way to 

maintain fish species and their ecological roles is to prevent fish biomass from falling below a 

critical threshold (McClanahan & Jadot 2017). 

 

Preserving the biodiversity of healthy reefs is the key to maintaining sustainable reef fisheries 

that provide an important, almost irreplaceable, source of animal protein to the populations 

of many developing countries (FAO 2000; Kawarazuka & Béné 2011; Teh et al. 2013; Charlton 

et al. 2016). Beyond protein supply, fish also provide critical nutrients essential to human 

nutrition, including iron, zinc, vitamin A, vitamin B12, omega-3 and omega-6 fatty acids, and 

others (Béné et al. 2016; Golden et al. 2016; Thilsted et al. 2016) and is associated with a wide 

range of health benefits (Mozaffarian & Rimm 2006; Black et al. 2013; Lund 2013).  

 

Fish biomass is a primary driver of coral reef ecosystem services and has high importance 

for the ecological processes and food and nutrition security. However, two questions remain 

unresolved to better explain variations of fish biomass on coral reefs: 

(i) Are many complementary species or only a subset of ‘key species’ are necessary? 

(ii) How can we improve our understanding of how people affect reefs by accounting 

for the degree of accessibility to reefs by human populations? 

 

 Identifying key fish species for coral reef functioning 

Coral reefs have the greatest biodiversity of any ecosystem on the planet, even more than a 

tropical rainforest (Wilkinson 2000) and contain the most diverse fish assemblages to be found 

anywhere across the oceans, with at least 6000-8000 species (Lieske & Myers 2002) spread in 

more than 200 families, yet coral reefs cover less than one percent of the ocean floor (Spalding 

et al. 2001). Over 25% of the world's fish biodiversity, and between 9 and 12% of the world's 

total fisheries, are associated to coral reefs (Spalding et al. 2001). Fisheries management must 

thus preserve balance between fish harvesting and ecosystem functioning so need a 

reconciliation between exploitation and conservation. Tackling this issue can be challenging 
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in complex ecosystems, particularly if the target species by fisheries also support key roles in 

ecosystem functioning. 

 

It is now clear that biodiversity promotes higher productivity of fish biomass and higher 

resilience of that ecosystem service in the face of climate change (Duffy et al. 2016). 

Identifying functionally important or key species is particularly challenging in biodiverse 

ecosystems, due largely to the complexity of interactions between species and with their 

environment including human disturbances. For example, despite the large body of research 

on coral reefs, the identification of fish species that disproportionally drive ecosystem 

functioning is still in its infancy (Hoey & Bellwood 2009; Bellwood et al. 2012). The functional 

importance of most coral reef fishes is still poorly understood, and no study has scanned entire 

fish communities to detect potential links with ecosystem functioning and services at large 

scale. The critical issue is whether the extraordinary species diversity on coral reefs matters 

for ecosystem functioning or whether a smaller proportion of species is enough to perform 

most of the key functions (Mouillot et al. 2013).  

 

The integrity of coral reef ecosystems thus critically depends on fish communities with fish 

biodiversity being the cornerstone. In the last few decades, the concept of biodiversity has 

become multifaceted starting with taxonomic richness and then integrating functional and 

phylogenetic relatedness between species. Biodiversity is a major determinant of 

ecosystem productivity, stability, invasibility, and nutrient dynamics (Tilman et al. 1996; 

Tilman 1997; McCann 2000; Loreau et al. 2001; Tilman et al. 2001). Concerns about the 

ongoing loss of biodiversity and degradation of coral reefs have motivated scientists to (i) 

better understand how anthropogenic threats imperil coral reef ecosystems and their 

associated biodiversity and (ii) to identify which fish species, functional groups and 

phylogenetic lineages disproportionally sustain coral reef functioning and services.  

 

 Accessibility as a key driver of the conditions of ecosystems 

Natural resources, such as forests and fisheries, are becoming severely depleted; especially 

those that are more accessible to people (Mora et al. 2011; Cinner et al. 2013; Barber et al. 

2014). For example, numerous studies have linked increased accessibility through road 

building to deforestation (Laurance et al. 2009) and avian biodiversity erosion (Ahmed et al. 
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2014). Accessibility is also shown to be a main driver of ecosystem recovery. Distance to 

primary roads enhances recovery of secondary forests after abandonment of agriculture in 

Puerto Rico (Crk et al. 2009). In terrestrial systems, there is thus considerable attention on 

accessibility management, mainly via road networks at both local (Dobson et al. 2010) and 

global scales (Laurance et al. 2014).  

 

In contrast, considerably less research has focused on accessibility in marine ecosystems, 

though it has been shown to strongly determine their conditions (e.g. fish biomass and 

biodiversity) and functioning (Morato et al. 2006; Cinner et al. 2013). For example, in 

Nicaragua, the development of a road to reach a former remote fishing area altered both price 

and price variability of fish, which led to more intensive overexploitation (Schmitt & Kramer 

2009). Likewise, several studies have demonstrated that proximity to market, measured as a 

linear distance, is the strongest predictor of overfishing on coral reefs (Cinner & McClanahan 

2006; Cinner et al. 2012; Cinner et al. 2013).  

 

Measuring the extent to which global marine resources are accessible to humans has been 

generally limited to examining the linear distance between fishing grounds and markets, 

villages or ports (Watson et al. 2015). However, for most coastal ecosystems and artisanal 

fisheries, this linear distance ignores ragged coastlines, road networks and other features 

that can affect the time required to reach fishing grounds. The availability of new analytical 

tools and high-resolution geo-referenced landscape data now allows for estimating reef 

accessibility, through travel time, by taking account the heterogeneity of the seascape. Yet, 

such calculation routines remain to be built and optimized to obtain large scale assessment. 

 

 Scaling down the link between coral reef accessibility and resource exploitation 

Earth’s ecosystems have come under increasing pressure as globalization connects the world 

(Liu et al. 2013). Expanding trade, transportation, migration, and technology are altering 

intertwined dynamics between human and natural ecosystems across space and time 

(Rockström et al. 2009; Liu et al. 2015). Global trade through interconnected markets or new 

access to markets heavily shape the exploitation of natural resources and has raised serious 

ecological and management issues (Berkes et al. 2006; Rockström et al. 2009; Steffen et al. 

2011). Accessibility is an important determinant of people’s ability to use natural resources. 
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In particular, in both terrestrial and marine biomes, accessibility through road networks and 

infrastructure expansion has been shown to be a main driver of the conditions of the 

ecosystems, with the most accessible resources being most at risk (Laurance et al. 2009; 

Dobson et al. 2010; Mora et al. 2011; Ahmed et al. 2014; Barber et al. 2014; Alamgir et al. 

2017). Previously remote regions of the world have become more accessible and thus, more 

integrated with the global economy which may profoundly affect previously remote or even 

pristine ecosystems (McCauley et al. 2013; Mora et al. 2016). Yet the mechanisms through 

which the level accessibility influences social and ecological conditions are still unknown and 

certainly not so straightforward. 

 

To date, research on market accessibility has mainly examined how increased market access 

affects resources users through trade and price changes (Delgado 2003; Schmitt & Kramer 

2009; Thyresson et al. 2011; Thyresson et al. 2013), and changes in livelihood diversification 

(Cinner & Bodin 2010; Chaves et al. 2017; Kramer et al. 2017) (composition effect) as well as 

technology introductions or changes (Brewer 2013; Stevens et al. 2014) (technique effect). 

Lack of knowledge on how market access shapes local human communities remains largely 

under-estimated and could hide crucial dynamics at local scale.  

 

Understanding how accessibility from human societies affects the exploitation of natural 

resources is a critical step toward a long-term management of the ecosystems where actions 

are needed to enhance their ecological and economic sustainability. Given that the human-

environmental interrelations are dependent on the social context, a scaling-down of reef 

accessibility to highlight the drivers of resource use and governance at fine scale is needed. 

 

 

 Aims and thesis outline 

The present thesis has two main objectives: (i) developing new metrics of accessibility to 

better account for human impacts on coral reefs in a heterogeneous seascape; and (ii) 

evaluating the importance of these new metrics, in interaction with management, to explain 

variations of fish biomass on coral reefs. 
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These aims are addressed in four separate studies focusing on distinct research questions (RQ) 

that remain unsolved (Figure 1.3): 

RQ 1. Is travel time from human settlements a good predictor of reef fish biomass at the global 

scale? 

RQ 2.  How does the intensity of human impacts affect the effectiveness of marine reserves in 

the context of coral reefs? 

RQ 3. How does travel time from market affect resource use at local scale? 

RQ 4. Which and how many species are necessary to maintain fish biomass on coral reefs 

beyond environmental and anthropogenic conditions? 

Figure 1.3 | Key aims of the thesis through 4 distinct research questions (RQ 1-4). 

 

The research questions are addressed in the four studies briefly described below and fully 

developed in introduction of each corresponding chapter.  

 

In this general introduction (Chapter 1), I first provide the methodological and theoretical 

basis of my PhD. Chapter 2 explains the framework I developed to assess travel time between 
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any reef and human settlements through land (road and vegetation) and water (navigable 

river, lake and ocean) at global scale. It also shows that travel time is a major driver of reef 

fish biomass. Chapter 3 explores how travel time from market can affect resource use at local 

scale through a study case in Northwest Madagascar, where I participated in the collection of 

social and ecological data. Chapter 4 describes how to combine travel time and human 

population into an integrative metric of human impacts called ‘gravity’. It also explores how 

the intensity of human gravity affects the effectiveness of management in tropical reefs. 

Chapter 5 exposes the framework I developed to define which species are necessary to 

maintain fish communities and their associated services beyond environmental and 

anthropogenic conditions.  

Lastly, Chapter 6 consists on a synthetic analysis presenting the main conclusions and 

limitations of the thesis. It also provides perspectives and future applications.  
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 Redefine accessibility of coral reefs to better predict their 

biomass1 

 

                                                       
1 Published as Maire, E., Cinner, J., Velez, L., Huchery, C., Mora, C., Dagata, S., Vigliola, L., Wantiez, L., 

Kulbicki, M., & Mouillot, D. (2016). How accessible are coral reefs to people? A global assessment based 

on travel time. Ecology Letters. 19, 351:360, doi: 10.1111/ele.12577. 
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 Travel time to reach a reef from human settlements 

 

“The journey not the arrival matters […] Only those who will risk going too far can possibly find 

out how far one can go” – Thomas S. Eliot, 20th century English author.  

 

 Theory on accessibility 

Accessibility refers to transport geography which aims to quantify and qualify “the mobility of 

people, freight and information and its spatial organization considering attributes and 

constraints related to the origin, destination, extent, nature and purpose of movements” 

(Rodrigue et al. 2016). Our ability to move or transport goods is refereed as ‘transportation’ 

in geography and is shaped by a wide range of human and physical constraints such as 

distance, time, administrative boundaries and topography. Under these constraints, a friction 

of distance is conferred to any movement. In other words, any movement can be converted 

in time or in money (Rodrigue et al. 2016). Transportation is vital for economic and social 

activities and thus is an important component of human societies (Edwards 1992). Also, 

transportation relies on four essential components which are modes (vehicles), 

infrastructures (routes), networks (organization) and flows (movement) (Rodrigue et al. 2016). 

 

In my thesis, I have focused on the accessibility of coral reefs defined as the time for human 

populations to reach the reefs. Since reefs are located on varied coastal and oceanic places 

with different levels of infrastructure development (road networks, markets), I have 

investigated how infrastructures can affect accessibility. The goal of this first chapter was to 

determine how far coral reefs were from human populations.  

 

 Travel time calculation  

2.1.2.1. Generalities on travel time 

Accessibility of a given location is defined as the travel time for humans to reach this location 

using land (road and land cover) or/and water (navigable river, lake and ocean) based travel. 

Then, the ‘cost’ of travelling to reach a location of interest can be computed on a regular grid 

using a cost-distance algorithm. The cost of travelling is expressed in units of time per unit of 

distance (e.g. 10 min.km-1) and represents the cost required to travel across a specific surface 

(road, land, water) hence this grid is often termed a friction-surface. Thus, each cell on the 
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cost grid contains a unique value depending of land use and infrastructures. More precisely, 

the friction-surface grid integrates information on the transport network, environmental and 

political factors that affect travel time between locations. Transport networks include road 

and rail networks, navigable rivers and shipping lanes. Environmental factors such as land 

cover and slope can also affect travel speeds off the transport network. Political factors such 

as national or international boundaries and border crossings can alter transportation and 

provide travel delays. 

 

In the present study, accessibility is defined as the potential time it takes to travel between 

two locations of interest, here, between a given reef and either its nearest human 

settlement or its nearest market.  

  

2.1.2.2. Creating a global friction-surface grid  

The friction-surface grid is simply a 'raster' Geographic Information System (GIS) data layer 

where each cell contains a unique cost value.  

 

The friction-surface grid computation requires combining spatial datasets i) on roads (2 data 

layers), and ii) land cover. These data include: 

- The Global Roads Open Access Data Set, Version 1 (gROADSv1) provided by the Centre for 

International Earth Science Information Network (CIESIN), Columbia University, and 

Information Technology Outreach Services (ITOS). This dataset combines the best available 

data by country into a global road network using the UN Spatial Data Infrastructure Transport 

(UNSDI-T) version 2: 

 

- The Vector Map Level 0 (VMap0) which is an updated, improved and free version of the 

National Imagery and Mapping Agency's (NIMA) Digital Chart of the World (DCW®). VMap0 

provides worldwide coverage of vector-based geospatial data of major roads and tracks. 

- Land cover data extracted from the Global Land Cover 2000 (GLC 2000). GLC 2000 is a global 

land cover for the year 2000 produced by an international partnership of 30 research groups 

coordinated by the European Commission’s Joint Research Centre 

(http://forobs.jrc.ec.europa.eu/products/gam/). 

 



 34 

Suitable resolution and projection systems are therefore required. So I defined the spatial 

resolution at 1km and used the Behrmann projection which is an equal area projection (e.g. 

no area distortion across latitude). Confronting land cover data from GLC 2000 and road 

networks showed a mismatch near coastlines. Nevertheless, accurate calculation of travel 

time based on land-water differential is grounded on a high-resolution shoreline dataset. I 

used the GSHHS (Global Self-consistent, Hierarchical, High-resolution Shoreline) database 

version 2.2.2, a high-resolution shoreline dataset, to adjust land-water boundaries (Wessel & 

Smith, 1996) to finally obtain a global grid at 1km-resolution.  

 

I then assigned a travel speed or crossing time to each class of friction surface considered so 

to each 1km grid cell. I based these values on Travel Time to Major Cities: A global map of 

Accessibility. This map was produced by the cooperation between the European Commission’s 

Joint Research Centre and highlights the connectivity and the concentration of economic 

activities around the world (Nelson 2008). For simplification I considered only road networks, 

land cover, and water bodies while slope and elevation were considered as negligible factors 

in coastal areas. Land cover from GLC2000 has some missing values that need to be filled to 

avoid errors in cost-distance assessment. Missing values were set to a mean value of travel 

time across the various surfaces of vegetation (1.6 km.h-1, see details in Table II). 

 

2.1.2.3. Graph theory in geography 

Distances and routes are closely related concepts in geography. The most commonly used 

geographic distance measure is the great-circle distance, which represents the shortest line 

between two points, taking into account the curvature of the earth. The great-circle distance 

could be conceived of as the distance measured along a route of a very efficient traveler who 

knows where to go and has no obstacles to deal with. In common language, this is referred to 

as a distance ‘as the crow flies'. 

 

When travel is less goal-directed and is affected by the environment but also land use or 

political constraints, grid-based distances and routes become relevant. The least-cost distance 

is implemented in most GIS softwares taking into account obstacles and the local `friction' of 

the landscape (roads, land cover, water, slope etc.). So, calculations of distances and routes 

rely on raster data. In geospatial analyses, rasters are rectangular, regular grids that represent 
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continuous data over geographical space. Cells are arranged in rows and columns and each 

has a value. A raster is accompanied by metadata that indicate the resolution, extent and 

other properties. 

 

Distance and route calculations on rasters rely on graph theory. So as a first step, rasters are 

converted into graphs by connecting cell centers to each other, which become the nodes in 

the graph. This can be done in various ways (Figure 2.1). 

 

 

Figure 2.1 | The three ways to describe connectivity between cells within grids. Cells can be 

connected (i) orthogonally to their four immediate neighbors, which is called the von Neumann 

neighborhood (left panel), (ii) with their eight orthogonal and diagonal nearest neighbors, the 

Moore neighborhood. The resulting graph is called the 'king's graph’ because it reflects all the 

legal movements of the king in chess. This is the most common and often only way to connect 

grids in GIS softwares. (middle panel) or (iii) in 16 directions combines king's and knight's 

moves and may increase the accuracy of the calculations but increase calculation time (right 

panel) (Van Etten 2012). 

 

The cost to travel between one node to another is dependent on the spatial orientation of the 

nodes. How the cells are connected also impacts the travel cost. Here, I describe how the cost 

to travel between two adjacent nodes is calculated in two different cases: a perpendicular or 

a diagonal move. 
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Cost calculation with horizontal and vertical moves only 

Moving from a cell to one of its four directly connected neighbors (a1 distance represented as 

the red line) is equivalent to travel between the two nodes e.g. cross half of the cell 1 and half 

of the cell 2 (Figure 2.2). If we consider cell with a length of 1, which means the cost between 

2 adjacent cells in perpendicular travel is the mean of the costs of the cells 1 and 2. 

 

Figure 2.2 | The accumulative perpendicular cost between 2 cells with a length of 1 

represents the mean of the costs of the two cells (source: ArcGIS Resources). 

 

In the usual case, cost in perpendicular travel between two adjacent cells with a length of r is: 

 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑟𝑟. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 1+𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 2
2

  

 

Cost calculation with diagonal moves allowed 

If the movement can be diagonal, the cost to travel over the distance a1 (Figure 2.3) depends 

on the square root of two times the square cells length and the mean of the costs of the cells 

1 and 2. 
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Figure 2.3 | The accumulative diagonal cost between 2 cells with a length of 1 represents the 

mean of the costs of the two cells multiplied by the square root of 2 or approximately 1.4 

(source: ArcGIS Resources).  

 

In the usual case, cost in diagonal travel between two adjacent cells with a length of r is: 

 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = �2𝑟𝑟2.
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 2

2
 

 

Cumulative cost is therefore, calculated from the origin cell passing by one adjacent cell to 

another to the destination cell using diagonal or vertical movement as described above. 

 

2.1.2.4. Estimating the least-cost distance 

The objective of the present study is to calculate travel time, or say, accumulated cost (in time) 

from strategic human settlements (major markets and the nearest human settlement) to reef 

sites taking into account obstacles and the local `friction' of the landscape (roads, land cover, 

water, etc.). I used the accCost function of the ‘gdistance’ package in the R environment (R 

Development Core Team 2014) to automate calculation for any reef location. This function 

requires the origin and destination points as inputs and a transition matrix describing the 8 

connections between cells across the friction-surface grid (Van Etten 2012). The function uses 

the Dijkstra’s algorithm which is the most commonly used algorithm to calculate least-cost 

distance (Dijkstra 1959). 
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2.1.2.5. Assessment of human accessibility for any coral reef globally 

World database on Coral Reefs 

The Global Distribution of Coral Reefs (UNEP 2010) is the most comprehensive global dataset 

showing the global distribution of coral reefs in tropical and subtropical regions. I overlapped 

a global 10 km x 10 km resolution grid across the oceans with the Global Distribution of Coral 

Reefs (UNEP-WCMC 2010). Then I checked the presence of coral reefs within each cell (1) or 

the absence (0). Globally, 27,212 coral reef cells were found. A finer resolution grid would 

have required higher computational capacity not available for this project. Each of the 27,212 

reef cells has been considered as a potential origin point in travel time calculation. 

 

Defining markets and the nearest human settlement 

Markets have become one of the most important factors driving human activities which in 

turn, profoundly shape the exploitation of both terrestrial and marine natural resources 

(Laurance et al. 2009; Dobson et al. 2010; Mora et al. 2011; Ahmed et al. 2014; Barber et al. 

2014; Alamgir et al. 2017) while it has been shown that even low human settlement or 

population densities can deplete resources on close reefs and have great impacts on fish 

abundance (Bellwood et al. 2012). For these reasons, two human settlements were 

considered as having strong influence on coral reefs thus, the nearest major market and the 

nearest human settlement were defined as destination points.  

Following standard convention in agricultural economics (Von Thünen 1966), the nearest city 

was defined as the market. I built the list of major markets using the World Cities map layer 

given by EsriTM (sources: ESRI, CIA World Factbook, GMI, NIMA, Times Atlas 10th) which 

includes national capitals, provincial capitals, major population centers, and landmark cities. 

To define the nearest human settlement, I also assessed human density per unit of surface 

using the LandScanTM 2011 database developed by the Oak Ridge National Laboratory (ORNL). 

This is the finest resolution for global population distribution. It integrates daytime 

movements and collective travel habits into a single measure to produce a better 

representation of where people are located during an average day at approximately 1km 

resolution. I considered any populated cell as a human settlement. 
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2.1.2.6. Calculation of travel time between humans and coral reefs 

I developed a script in R 3.0.3 (R-Development-Core-Team 2014) to automate the calculation 

of travel time to reach the nearest major market and the nearest populated pixel within a 

500km-buffer from any coral reef cell. A 500 km-buffer surrounding the coral reef pixel was 

chosen as it encompasses the majority of coral reefs. The rationale for 500 km was a 

compromise between balancing the intensive computational requirements and coverage of 

coral reef cells. When coral reef cells were further than 500 km from any population 

settlement, travel time calculation would have been extremely time consuming so linear path 

from human settlements was considered, assuming that most of the distance travelled is on 

water. The amount of time was obtained by dividing the total linear distance by the speed on 

water bodies. For cells which are in the same pixel as human settlements (major market or 

populated pixel), the calculation of potential travel time was not possible, so I set a minimum 

value of 1 minute. 
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Box 1. Overview of the methodological procedure developed to assess travel 

time between any coral reef and its nearest human settlement  

 

 

Step 1. Combination of GIS data to create a friction-distance grid 

Road network and land cover were combined to create a global regular grid (raster layer) at 

1km-resolution called a friction grid where each cell had a unique value corresponding to the 

time required to cross the given surface (paved road, track, forest, water body, etc.) 

 

Step 2. Processing the least-cost distance algorithm to assess potential travel time 

The Dijkstra’s algorithm was used to calculate least-cost distance (Dijkstra 1959) between the 

origin (each reef) and the destination points (the nearest market and the nearest human 

settlement) across the friction-surface grid (Van Etten 2012) to obtain the potential travel time 

from each human population settlement. This procedure has been automated in R 3.0 (R 

Development Core Team 2014) for every coral reef in tropical and subtropical regions (27,712 

cells).  
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 Potential travel time as a new measure of accessibility – more than linear distance 

Linear distance between coral reefs and human settlements can fail to capture landscape and 

seascape heterogeneity that create differences in accessibility depending on road networks 

and coastline tortuosity among others. The existence of a road along the coast, for instance, 

facilitates faster access to a given reef than the direct travel by boat (Figure 2.4). To account 

for all these drivers of differential accessibility, the geographical concept of ‘friction of 

distance’ was adapted to develop a metric referred as ‘potential travel time’. This metric 

integrates speeds required to cross 24 different types of land cover for each cell of the global 

1km-resolution grid and represents the minimum travel time required to cross each type of 

surface, assuming that road and maritime travels are made by motorized vehicles. Road speed 

depends on road type while off road travel is foot based. Since these values can vary 

depending on available technology, infrastructures and vehicles this new metric can be called 

‘potential travel time’. As an average scenario, I considered 60 km.h-1 on a road, 30 km.h-1 on 

a track and 20 km.h-1 on the ocean (see details in Table II). 

 

Here, I determined the minimum cumulative cost in time between every coral reef in the 

world (27,212 coral reef cells) and (i) the nearest human settlement of any size (any populated 

pixel given by the finest resolution global human distribution grid, see Figure I), and (ii) the 

nearest major market (considered as a national capital, a provincial capital, a major population 

center, or landmark city) since both have been shown to impact reef resources, conditions 

and functioning (Cinner et al. 2013; Advani et al. 2015). 
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Figure 2.4 | Potential travel time as a measure of accessibility. Accessibility is defined as the 

travel time to a location using land (road and land cover) or water (navigable river, lake and 

ocean) based travels and represents the ‘cost’ of travelling in time across a specific surface 

(e.g. land, sea, forest, etc.). As an illustration, the major market in Papua New Guinea, Kimbe 

(yellow asterisk), and two reef sites (red points) were considered (a). I calculated the linear 

distance and the travel time from the nearest market for 23,940 cells of coral reefs globally 

(b). Linear distance and travel time are highly correlated (R² = 0.9) but a small range of linear 

distance values (10 kilometers) may correspond to a wide range of potential travel time values 

(c). Travel time is a combination of road (red line), off road (green line) and maritime (blue line) 

travels 

 

The linear geographic distance and potential travel time from the nearest major market can 

be related (Figure 2.4B). Not surprisingly, linear distance and travel time are correlated 

globally (R² = 0.9); a reef far from people cannot be reached with limited travel time while a 

reef close to people (<10km) is always accessible with less than 4h travel time. However, a 

given linear distance value may correspond to a wide range of potential travel times (Figure 

2.4C). For any 10km-window along a whole linear distance gradient from 0 to 500 kilometers 

between a given reef and the nearest market, the range of travel time is highly variable. For 

example, a range of linear distance to market between 105 and 115 kilometers (represented 

as red bar in Figure 2.4C) corresponds to potential travel time ranging from 2 to 13 hours. This 

result highlights the importance of integrating the landscape heterogeneity in accessibility 

assessments since considering travel on a unique surface may produce a coarse and unrealistic 

estimation of time required to reach reefs. Travelling only off-road, i.e. through the 

vegetation, only on road or only on the ocean provide over-simplified scenarios that are 

almost never met (Figure 2.4 B). Most of the pathways to reach the reefs combine road and 

maritime travel, preventing any simplification. Even if linear distance may appear to be a good 

surrogate for estimating potential travel time to reach the reefs globally (Figure 1B), a map of 

residuals from predicted values shows that, relative to potential travel time, linear distance 

tends to underestimate accessibility in populated areas where roads are present and 

overestimates accessibility in more remote places (Figure II). This likely has to do with the 

potential travel time metric’s recognition of reduced travel time on roads. 
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 Travel time as a predictor of fish biomass on coral reefs 

2.1.4.1. The New Caledonian case study 

There is considerable effort to better understand the multi-scale drivers of change in coral 

reef ecosystems through predictive modelling from local to global scales. For instance, 

patterns of fish biomass and biodiversity across coral reefs have been explained by several 

non-mutually exclusive processes that involve the roles of energy (Tittensor et al. 2010), 

climate (Pellissier et al. 2014), habitat (Rogers et al. 2014), biogeography (Parravicini et al. 

2013), humans (Mora et al. 2011), and environmental stochasticity (Dornelas et al. 2006). A 

key goal of this body of research is to identify drivers of change that can be used as policy 

levers to positively influence the future conditions of coral reefs (Cinner & Kittinger 2015). The 

availability of travel time estimation to reach the reefs from markets or populations may help 

to decipher the many dimensions of human influence on ecosystem conditions when 

integrated to models in combination with other commonly used predictors (e.g., environment 

and habitat). Coral reef conditions (biomass or biodiversity) and functioning (e.g. herbivory) 

are classically related to the density of local human populations (Bellwood et al. 2012; 

Williams et al. 2015b) and more recently to the linear distance to humans (Advani et al. 2015) 

or markets (Brewer et al. 2012; Cinner et al. 2013). To assess if travel time is a better predictor 

of reef fish biomass than local human density and linear distance to market, I used data from 

New Caledonia which is located in the South Pacific, approximately 1200 km off eastern 

Australia. This archipelago comprises a main high island and several smaller islands. One third 

of the human population lives in Noumea the main city (~ 98,000 people) considered as the 

regional capital hosting the main market. 

 

I used 1,357 Distance Sampling Underwater Visual Census (UVC) surveys of fish communities 

(Figure 2.5 A) to quantify the relative influences of environment, habitat, and human impact 

on fish biomass (Table III, Figure III). 

 

2.1.4.2. Fish sampling 

Reef fishes and the associated coral reef habitats were surveyed from 1986-2013 across New 

Caledonia. Description of the sampling campaigns can be found in (Kulbicki 1997; Kulbicki 

2006; Andréfouët & Wantiez 2010; Wantiez 2010; D'Agata et al. 2014). Data were collected 

along 1,357 Distance Sampling Underwater Visual Census (UVC) transects collected along a 
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gradient of human pressures (e.g. highly populated (2,135 people.km-²) to isolated and 

uninhabited sites).  

 

The main reef types (biotope) included: (i) sheltered coastal reef, (ii) lagoon reef, (iii) inner 

barrier reef, and (iv) outer reef. Transects were performed on both the reef flat and slope for 

each reef, when feasible. To decrease the bias due to diver attraction and repulsion, UVC 

datasets were truncated at a distance of 7 m on each side of transects. This incorporated 

approximately 95% of sighted commercially important species and all apex predators, and 

allowed for the calculation of fish biomass over a 700 m² area (2 sides x 7 m width x 50 m 

long). Chondrichthyes (rays and sharks) were excluded from the main species list because 

their abundance is poorly assessed with UVC. The dataset comprises 352 species belonging to 

33 different families. 

The biomass of individual fishes was estimated using the allometric length-weight 

relationship: W = aTLb, where parameters a and b are species-specific constants, TL is the 

individual total fork length in cm, and W is the weight in grams. Biomass was log-transformed 

for statistical analyses. 

 

2.1.4.3. Human impact variables 

I combined data on three human impact variables (Table III). These were: 1) the human 

population occurring within a 20 km radius of each UVC for the sampling year (already 

calculated in previous studies); 2) the linear distance between each UVC and the market 

Noumea; 3) the travel time between each UVC and Noumea. 

 

2.1.4.4. Habitat and environmental variables 

Several habitat and environmental variables were also collected (Table III). The Medium Scale 

Approach (MSA) was used to record substrate characteristics along transects where finfish 

were counted by UVC. MSA has been developed by (Clua et al. 2006) to specifically 

complement UVC surveys. The method consists in recording depth, habitat complexity, and 

23 substrate parameters (% coral cover, % macro algae, etc.) within ten 5x5 m quadrats on 

each side of 50-m transects, for a total of 20 quadrats per transect. Habitat characteristics of 

each transect are then calculated by averaging over the 20 quadrats each habitat parameter 

potentially relevant to explain the structure of finfish communities. 
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Island type was included and is characterized by three categories: high island (island without 

lagoon, which include tectonically uplifted reefs), low island (island with a large lagoon) and 

atoll (no island except reef islands which are islands created by the accumulation of reef 

sediments). Weekly average Sea Surface Temperature (SST) (1998-2008 in a 5 km pixel) was 

available from AVHRR (Advanced Very High Resolution Radiometer; 

http://oceanwatch.pifsc.noaa.gov/). For each UVC transect, the temperature within that pixel 

was calculated. 

 

2.1.4.5. Models and importance of variables 

I first ran a series of Generalized Linear Models (GLM) models that predict fish biomass using 

different sets of predictor variables (human, habitat and environment, Table III). Fish biomass 

was log-transformed to obtain a normal distribution. Travel time, linear distance, and depth 

were log-transformed prior analyses, because theses variable showed a power relationship 

with log-biomass of fish. I first built a base model without any human impact variables (only 

habitat and environment variables). Then I added to this model only one human variable to 

provide three new models each corresponding to one aspect of human impact. I compared 

the performance of each of these three models to the base model using the likelihood-ratio 

(LR) test. Then, using a backward selection procedure, I identified the most parsimonious 

model using the Akaike Information Criterion (AIC), a model coined as “best” model.  

 

To determine the importance of each variable in explaining variations in fish biomass I built 

all sub-models (containing a subset of variables) from the full model (all variables) using the 

dredge function from package ‘MuMin’ in R 3.0.3 (R Development Core Team 2014). Then for 

each sub-model, I calculated the Akaike weight (AICw) that can be interpreted as the 

probability that a specific model is the best. The relative importance of each predictor variable 

at explaining variation of fish biomass was estimated by summing Akaike weight values across 

all models that include this predictor variable. These summed Akaike weights (AICw) range 

from 0 (useless variable) to 1 (essential variable), hence providing a means for ranking the 

predictor variables in terms of information content. 

 

As a complementary analysis I ran a Boosted Regression Tree (BRT) model to predict fish 

biomass using all predictor variables. BRT have the advantage, over GLM models, to cope with 
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interacting factors and non-linear relationships (Elith et al. 2008). In BRTs, contributions of 

each explanatory variable (%) is calculated as the proportion of each variable which was 

selected to split the data among all the trees, weighted by the squared improvement to the 

model as a result of each split, and finally averaged over all trees. Highest contributions are 

attributed to the most important variables contributing to the model. 

 

 Travel time from market as the key driver of coral reef conditions  

Humans shape the level of reef fish biomass since each proxy of human impact has a 

significant effect beyond that of habitat and environment (Table 2.1).  

 

Table 2.1 | Comparison of candidate models predicting reef fish biomass as a function of 

environmental, habitat, and human impact variables across the coral reefs of New 

Caledonia. The Aikaike Information Criterion (AIC) and the total adjusted R-squared (R2) for 

each model and sub-model were calculated. A likelihood ratio test (LR-test and F-value) 

between the “Environment+Habitat” model and each enriched model with one aspect of 

human influence (population, linear distance, or travel time) shows the significance of adding 

human impact variables. The “Best” model is the most parsimonious according to the AIC 

criterion containing only travel time and some selected environmental variables (mean depth, 

surface cover of live coral, surface cover of macroalgae, the reef type, and island type). 
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However, potential travel time from the market is the strongest predictor of fish biomass since 

its AICw is 1 (essential variable in all best GLM sub-models) and its relative contribution to the 

BRT model is 28% surpassing that of all other competing variables (Figure 2.5 B). By contrast, 

human density and linear distance to market have lower AICw values (0.33 and 0.44 

respectively) and contribute to BRT models at, respectively, the fourth (11%) and third rank 

(13%) suggesting their marginal influence on fish biomass compared to travel time. Finally, 

the most parsimonious model (‘best’ in Table 2.1), based on variable selection using the AIC 

criterion, only retains potential travel time from the market as the sole human driver of fish 

biomass on New Caledonian reefs. This GLM model explains 45% of variation in fish biomass 

across reefs. However, the BRT model, which takes into account variable interactions and 

thresholds effects, explains up to 70% of this variation highlighting potential interplay 

between human, environmental, and habitat drivers. When extracting the ‘pure’ effect of 

travel time from the market on fish biomass using a partial plot from the GLM a saturating 

relationship was observed (Figure 2.5 C). Low biomass values (<100 kg.ha-1) are mostly found 

when travel time is lower than 10h (Figure 3.5C). All remote reefs (Figure 2.5 A) have a fish 

biomass higher than 500 kg.ha-1, which has been suggested as a potential threshold to 

maintain healthy and functioning coral reefs (McClanahan et al. 2011a; MacNeil et al. 2015). 
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Figure 2.5 | Potential travel time as the main driver of fish biomass. Fish biomass estimates 

from 1,357 Underwater Visual Census (UVC) surveys performed across coral reefs of New 

Caledonia (a). The relative influences of predictor variables (environment, habitat and human 

impact) are assessed using the weighted Akaike Information Criterion (AICw) from generalized 

linear models and the relative contribution from boosted regression tree models (b). The 
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partial plot (c) shows the ‘pure’ relationship between potential travel time and reef fish 

biomass, i.e. while considering the other predictor variables.  

 

 High but variable accessibility of coral reefs around the world   

The global assessment of coral reefs accessibility shows that 58% of coral reefs (15,609 out of 

27,212 coral reef cells) are located at less than 30 minutes travelling time from the nearest 

human settlement (Figure 2.6). On average, each reef can be reached within 1h50 (SD = 4h15). 

The bulk of reefs are highly accessible in the Caribbean, the Coral Triangle, the Western Indian 

Ocean, and the Pacific Islands. However, some areas like the Chagos Archipelago, the Spratly 

Islands, the Chesterfield Islands, the northwest Hawaiian Islands, and the Coral Sea have reefs 

at more than 12h travel time from the nearest human settlement. None of Caribbean coral 

reefs are more than 13 hours from people (Figure 2.6 A1 & B1).  

 

Accessibility of coral reefs from major markets is high relative to the nearest human 

settlement (mean = 10h) but is highly variable around the world (SD = 9h). This analysis shows 

that 25% (6,790 pixels) of reefs are located at less than 4 hours from the nearest major market 

while 31% (8,428 pixels) of reefs are more than 12 hours from the nearest market. Caribbean 

coral reefs appear much more accessible from markets than their Indo-Pacific counterparts 

(Figure 2.6 A2 & B2).  

 

To take into account the variability of available boat technology, I re-assessed global 

accessibility using slow (10 km.h-1) and fast (40 km.h-1) boat speeds. Accessibility of coral reefs 

from the nearest population ranges between 3h40 (SD = 8h30) and 1h10 (SD = 3h), and from 

the nearest market between 17h (SD = 17h30) and 6h10 (SD = 4h40) using slow vs. fast boats, 

respectively (Figures IV & V). Future applications should consider variable travel speeds 

according to per capita Gross Domestic Product in order to reflect different levels of 

infrastructure and technology in developed versus developing countries. Yet this country-

scale assessment was beyond the scope of the initial exploration of travel time.  
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Figure 2.6 | Accessibility of any coral reef from people (nearest market and nearest human 

settlement) around the world. Global coral reefs are extremely close to people (A1 & B1); 58% 

of reefs located at < 30 min travelling from the nearest human settlement while 25% of reefs 

are located at < 4 h from the nearest major market (A2 & B2). Only few areas appear as remote 

reefs (further away than 12 h travelling from human settlements) like the Chagos Archipelago, 

the Spratly Islands, the Chesterfield Islands and the Hawaiian Islands. 
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 Conclusion and perspectives 

Better understanding the dynamics of coral reef social-ecological systems is one of the most 

critical challenges that scientists and managers are facing today (Cinner 2014). To sustain coral 

reef ecosystems, there is an urgent need to model the complex interactions between people 

and reefs. The development of a global measure of potential travel time is an important step 

toward this objective. Indeed, the New Caledonian study case showed that travel time from 

market is the strongest predictor of fish biomass and outperforms linear distance and human 

population density that were commonly used. The global assessment of coral reefs 

accessibility revealed which coral reefs are particularly at risk as more accessible to people. 

Travel time calculations may help to develop news solutions that could preserve coral reefs 

while meeting socioeconomic development goals. 

Nonetheless, my global assessment of coral reefs accessibility presents two major limitations:  

 

(i) The travel time framework as previously described assumes that road and 

maritime travels are made by motorized vehicles while many reefs are located in 

developing countries where wooden canoes are commonly used. Indeed, travel 

time can be influenced by local considerations, such as infrastructure quality (road 

network) and the variability of available boat technology. This limitation will be 

discussed in Chapter 3 which considers a study case in Northwest Madagascar and 

where travel time calculation integrates the local levels of infrastructure and 

technology. 

 

(ii) Travel time from a given human settlement does not accurately reflect human 

impacts on reefs since two locations, one densely and one sparsely populated can 

have the same travel time from a specific reef but potential human pressure may 

be different. Thus, population size of human settlements also needs to be taken 

into account. One further step consists on assessing human impact on reefs as a 

function of how large and far away the surrounding human population is. The 

Chapter 4 will propose one alternative to the first limitation by describing how to 

combine travel time and human population density into an integrative metric of 

human impact. 
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 Market vs coastal communities: disentangling complex 

interactions in small-scale reef fisheries in Northwest 

Madagascar2 

 

 
 
 
“Like the chameleon, one eye on the future, one eye on the past” - Malagasy proverb   

                                                       
2  Maire, E., D’agata, S., Cinner, J., Aliaume, C., Darling, E. & Mouillot, D. Ecology and Society 

(in prep) 
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 Introduction 

Earth’s ecosystems are under increasing pressure as globalization connects the world (Liu et 

al. 2013). Expanding trade, transportation, migration, and technology are altering intertwined 

dynamics between human and natural ecosystems across space and time (Rockström et al. 

2009; Liu et al. 2015). Global trade through interconnected markets or new access to markets 

can increase accessibility through road networks and infrastructure expansion, which in turn, 

profoundly shape the exploitation of both terrestrial and marine natural resources (Laurance 

et al. 2009; Dobson et al. 2010; Mora et al. 2011; Ahmed et al. 2014; Barber et al. 2014; 

Alamgir et al. 2017). There are growing concerns about the risk of unsustainable resources 

use do to unregulated trade in those previously isolated areas, with obvious ecological and 

management implications for those key ecosystems (Berkes et al. 2006; Rockström et al. 2009; 

Steffen et al. 2011; McCauley et al. 2013; Mora et al. 2016).  

 

However, the mechanisms through which increasing accessibility influences ecological 

conditions are still unclear. A parallel literature on the role of economic development and its 

impacts on the environment highlights three main mechanisms, which may also be relevant 

to changing market accessibility: (i) a scale effect, whereby human societies displace their local 

environmental footprint by harnessing resources from further afield (typically the scale effect 

indicates an increase in environmental stresses related to higher use of natural resources in 

poorer, less regulated or remote areas); (ii) a technique effect, whereby technologies used by 

humans change as societies become more developed, leading to differing levels of impact on 

the environment; and (iii) a composition effect, which suggests that the structure of the local 

economy changes with economic development to transition, for example from a natural-

resource based economy (subsistence fishing) to a service-based economy (fishing trade) 

(Grossman & Krueger 1995). To date, research on market accessibility has mainly examined 

how increased market access affects resources users through trade and price changes 

(Delgado 2003; Schmitt & Kramer 2009; Thyresson et al. 2011; Thyresson et al. 2013) and how 

levels of development influence livelihoods diversification (Cinner & Bodin 2010; Chaves et al. 

2017; Kramer et al. 2017) (composition effect) and technology introductions or changes 

(Brewer 2013; Stevens et al. 2014) (technique effect). Knowledge on how market access 

influences local human communities and surrounding ecological conditions through those 
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three main effects together remains overlooked and could hide important social and 

economic dynamics at local scale, with significant consequences on ecosystem states. 

Indeed, understanding how accessibility from human societies affects natural resources is a 

critical step toward long-term management of the ecosystems for which actions are needed 

to insure ecological and economic sustainability. As both market and nearest communities 

shape coastal resources at global scale (Cinner et al. 2016) this study aims to unravel the 

respective influences of the local fish market (hereafter “market”) and coastal communities 

in the exploitation of natural resources and investigate how communities’ socioeconomic and 

resource use characteristics change with increasing proximity to markets.  

 

Small-scale fisheries remain an essential source of food, employment and revenue for people 

around the world (Béné et al. 2007; Bell et al. 2009; Teh et al. 2013). Specifically, I focused on 

small-scale artisanal coral reef fisheries in Northwest Madagascar. I hypothesize that coral 

reefs resource conditions improve with decreasing accessibility to both markets and coastal 

communities, but this rate will depend on the type of fisheries management (see Methods). I 

also hypothesize that community-level characteristics of socioeconomic conditions or 

resource use (ex. primary occupation, livelihoods diversity, technology used etc.) may change 

with access to markets. Here, I investigated: (i) the relative effects of market access, fisheries 

management and key environmental variables on reef fish biomass in the northwest of 

Madagascar; and (ii) the influence of markets on socioeconomic characteristics on coastal 

communities through the scale, the composition, and the technique effects. I address these 

questions using ecological data collected in 31 reefs and social drivers collected at household-

level in 10 coastal communities in Northwest Madagascar.  

 

Context and study area 

Despite its biological and cultural richness, Madagascar is one of the world's poorest 

developing countries, and local communities depend heavily on the exploitation of natural 

resources for subsistence  and livelihoods (World Bank 2010; Conservation International 

2015). The artisanal fishery is a significant economic sector comprised of multi-gear and multi-

species fishing activities, where fishers access is from the shore or using wooden pirogue 

canoes (McKenna & Allen 2003; Doukakis et al. 2008; Davies et al. 2009). Artisanal fisheries in 

Madagascar are vital to food security and livelihoods for coastal communities and support the 
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majority of the Malagasy coastal population (Barnes-Mauthe et al. 2013). This is particularly 

true along the west coast where agricultural production is mostly infeasible (climate change 

and extreme weather events threaten agricultural productivity) and employment options are 

limited (Laroche & Ramananarivo 1995; Le Manach et al. 2012).  

 

Reefs in this area have been recognized for their exceptional biodiversity and their resilience 

to climate change in the Western Indian Ocean (WIO) (McKenna & Allen 2003; McClanahan et 

al. 2011a; Obura 2012). The west coast of Madagascar is now considered as a high priority for 

increased management efforts as a potential ‘climate refugia’ in the Western Indian Ocean 

(McClanahan et al. 2011b; Beyer et al. 2018). Coral reef management actions implemented in 

Madagascar have mainly focused on empowering local communities to take greater 

responsibility for marine natural resources management while securing local populations’ 

interests (Jadot et al. 2015). In northwest Madagascar, there are currently two forms of 

marine resources management: (i) formal Marine Protected Areas (MPAs) mainly of IUCN 

categories V and VI managed by national or international associations or NGOs but with strong 

involvement of local communities and (ii) Locally Managed Marine Areas (LMMAs) managed 

by local communities based on social conventions known as “dinas” (Rakotoson & Tanner 

2006) and aiming at increasing fish stocks and biodiversity, protecting cultural heritage, and 

promoting sustainable socio-economic development to contribute to poverty reduction 

(Govan et al. 2009; Jupiter et al. 2014; Rocliffe et al. 2014). Most of the MPAs and LMMAs 

contain (i) temporary fishing closure for octopus (particularly in the southwest and northeast), 

(ii) areas in which fishing is allowed using certain types of gears and for fishermen with fishing 

access only (restricted zones) and (iii) permanent reserves (no-take zones where fishing 

activities are prohibited). Beach seining, considered as a destructive fishing practice, has been 

historically prohibited along most coastal areas through dinas and is now nationally prohibited 

in Madagascar since 2018. Shark fishing and sea cucumber harvesting are regulated in the 

northwest while some pelagic fish are under seasonal closures (such as the Indian mackerel 

Rastrelliger kanagurta). Yet despite regulations, those practices, particularly beach seining are 

still happening in Madagascar particularly where no management structures are in place. 
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 Methods 

 Study area 

The study includes reefs along ~150 km of coastline from Nosy Iranja to Nosy Mitsio (Figure 

3.1). The area is characterized by many islands off the coast where coastal human settlements 

are relatively sparse, consisting of widely scattered small villages. Most of the fishing vessels 

are sailing wooden pirogue canoes and the most commonly employed gears are the spear 

guns, gillnets, lines, and beach seines (despite legal regulations) (Doukakis et al. 2008; Davies 

et al. 2009; Jadot et al. 2015).  

 

Figure 3.1 I Map of the Northwest Madagascar reefs. Surveyed reefs (black asterisks) and 

coastal communities (yellow diamonds), local markets (orange stars), MPAs boundaries (green 

lines) with no-take zones (green polygons) and cartography of reefs (blue polygons) are 

represented. 

 

This area includes two MPAs (Ankarea and Ankivonjy) that are co-managed between local 

communities and the Wildlife Conservation Society (WCS) and officially established in April 
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2015. The two MPAs have designated access restriction strategies in which local fishermen 

within the MPA boundaries have exclusive access rights to fishing areas inside each MPA. The 

management plans for each MPA are based on the existing dinas in both areas, complemented 

by national policies on gear restrictions, including: (i) beach seines, (ii) nets with mesh size 

under 25mm, (iii) nets over 500m long and (iv) any fishing gear directly entering in contact 

with the bottom to avoid coral reefs destruction. Outside the MPAs, these rules do not apply.  

Because reefs in MPAs under restrictions still experience fishing activities, I only considered 

two different management categories as following: fished reefs (open access and restricted 

reefs) or unfished (low to high compliance reserves). 

 

 Ecological surveys 

Data used in this analysis were collected on social and ecological study sites. Social sites 

consisted of 10 Malagasy coastal communities (Figure 3.1) where questionnaires were 

performed to collect information on socioeconomics, fishing and farming activities, resource 

use, and management. Coral reefs surrounding these 10 coastal communities were sampled 

while covering fished (open access and restricted reefs) and unfished (low to high compliance 

reserves) reefs to collect ecological data. In total, 31 ecological sites (hereafter “reefs”) were 

surveyed between April and November 2016 with 16 fished reefs and 15 located in low to high 

compliance reserves where fishing activities were prohibited (Figure 3.1). 

 

Reef fish survey methodology  

Distance-sampling underwater visual census (D-UVC) technique was used to survey finfishes 

along 50-m-long transects. Briefly, this method involved two divers, where each diver 

recorded the species, abundance, body length and distance perpendicular to the transect line 

of each fish or group of fish, while swimming slowly down the line (Labrosse et al. 2002). 

The main reef types (biotope) in the area were included, mainly (i) fringing reefs of continental 

islands and (ii) complex patch reefs. For each reef, transects were performed on the slope. 

Transects were oriented parallel to the depth contour between 3 and 14 m.  

 

I included 25 fish families which represent the main reef fish families in the study region 

(Acanthuridae, Balistidae, Caesionidae, Carangidae, Chaetodontidae, Ephippidae, 

Fistularidae, Haemulidae, Holocentridae, Kyphosidae, Labridae, Lethrinidae, Lutjanidae, 



 60 

Mullidae, Nemipteridae, Pempheridae, Pomacanthidae, Pomacentridae, Scaridae, 

Scombridae, Scorpaenidae, Serranidae, Siganidae, Sphyraenidae and Zanclidae). Transects 

width were truncated at 5 meters on each side allowing for species density estimation on a 

500m2 transect (50x10m). 

The biomass of individual fishes was estimated using the allometric length-weight conversion: 

W=aTLb, where parameters a and b are species-specific constants, TL is the individual total 

fork length in centimetres and W is the weight in grams (Kulbicki et al. 2005). Biomass of each 

transect (hereafter ‘reef’) was further converted to kilograms per hectare of reef area.  

 

Coral habitat and environmental variables 

Point Intercept Transect 25cm (PIT25) (Hill & Wilkinson 2004) were performed at each reef to 

assess benthic conditions. This method consists of recording the benthic substrate at 25cm 

interval along a 50m transect among the list of substrate categories. Coral was identified at 

the genus level when possible. The percent cover of each genus was then obtained by dividing 

the number of points for which the category of interest is recorded (n) by the total number of 

points (N, here 200 for 50 meters transect). In this study, I considered only the percent cover 

of live hard coral and macroalgae. 

Structural complexity was estimated multiple times (e.g., every 5 to 10 meters) along each 

transect to provide an average structural complexity score per transect. Scores ranged from 0 

(no vertical relief, flat or rubbly areas) to 5 (exceptionally complex relief with numerous caves 

and over hangs) along the 50 meters transect (method adapted from (Wilson et al. 2007). 

Depth was also recorded during habitat characterization.  

To evaluate environmental conditions on each reef, weekly average Sea Surface Temperature 

(SST) and chlorophyll-a concentration which provides proxy information on the amount of 

primary production occurring in the ocean (Huot et al. 2007) were extracted during a 5-years 

period (2012-2016) at a 4km resolution from the GOES-POES dataset (Geostationary 

Operational Environmental Satellites and the Polar-orbiting Operational Environmental 

Satellites) and the MODIS (Moderate Resolution Imaging Spectro-radiometer; 

http://oceanwatch.pifsc.noaa.gov/). For each reef, I calculated the average of monthly 

temperature and ocean primary productivity over the 5-years period. 

Since these environmental and habitat conditions may have confounding effects, I performed 

a Principal Coordinates Analysis (PCoA using Gower’s distance) using the common 
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environmental predictors which describe similarities between the ecological sites including: 

depth, weekly average SST and net primary productivity, reef complexity, percent cover of 

macroalgae and live hard coral (Cinner et al. 2013; Maire et al. 2016; McClanahan et al. 2016), 

and kept only the two first principal components (representing 74% of the total variance) as 

environmental covariates for further analysis. 

 

 Socioeconomic surveys 

Socioeconomic variables 

I considered two human settlements for each reef: (i) the nearest coastal community; and (ii) 

the nearest market. Travel time was estimated as the shortest time of travelling between each 

reef and its nearest market and community respectively considering: 

• Sea travel using wooden pirogues canoes:  speed of 7 km.h−1 

• Primary roads using motorized vehicles: speed of 50 km.h−1 

• Track/secondary roads using motorized vehicles: speed of 20 km.h−1 

Road network data was extracted from the OpenStreetMap (OSM) project and was completed 

by GPS tracks obtained during field campaigns in March-April 2016.  

I also assessed the human population occurring within a 4km radius of each reef using the 

WorldPop dataset version 2.0 (Tatem 2017)  which estimates human population with national 

adjustments at a 100m resolution for the year 2015 (the year closest to 2016, year in which 

the ecological and social surveys were conducted). I set the cut-off at 4 km to reduce spatial 

overlap between reefs.   

 

Social characteristics 

Socio-economic surveys were conducted in 10 Malagasy coastal communities across three 

districts in Northwest Madagascar from November to December 2016 by trained and 

experienced Malagasy interviewers in local language (Figure 3.1; Table IV). For communities 

with less than 50 households, all households were surveyed. In larger communities, 50 

households were randomly chosen when possible (Table IV).  In total, 353 household surveys 

across the 10 communities. All survey activities were approved by the Wildlife Conservation 

Society (WCS) Institutional Review Board (IRB) and were part of the WCS global social-

ecological systems approach (MACMON) for the monitoring of fisheries and the impact of 

conservation management interventions. Semi-structured surveys were conducted with 
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heads of households, which were defined as those who made household decisions. A 

household was defined as a group of people who regularly shared meals, and household 

surveys lasted from 45 to 60 minutes. Additionally, key informant interviews were conducted 

with community leaders or particularly knowledgeable fishermen to better understand the 

characteristics of resource management and market connections for each community. All 

interviews were conducted by trained and experienced Malagasy interviewers in local 

languages. 

 

I first identified the MACMON social indicators describing the actors involved in small-scale 

fisheries (number, socioeconomic attributes, norms, importance of resource, technology 

used) that could support the three mechanisms through which increasing market accessibility 

influences ecological conditions. I only considered those reported for all communities 

surveyed. Thus, I considered nine social indicators that I related to market proximity, by 

estimating for each community the mean value of these nine social indicators: 

1. the proportion of households who ranked fishing as primary activity, 

2. the proportion of households who ranked farming as primary activity, 

3. the livelihoods diversity: the mean number of livelihood activities that 

households are involved in, 

4. the mean number of community groups people are involved in, 

5. the proportion of households consuming fish at least once a day, 

6. the proportion of selective gears (hand line, hand spear and spear gun), 

7. the proportion of nets (mosquito and gill nets), 

8. the proportion of fish sold, 

9. when fish sold, the preferred buyer: own community, middlemen from other 

community, local market. 

 

A full description of those indicators is provided in Table 3.1. Fishers represented households 

who participated in some fishing activity and targeted mainly coral reef fishes (excluding 

households who targeted only sharks). Finally, I was only able to consider social indicator 

describing whether coastal communities might be affected by market proximity through the 

technique and the composition effect (Table 3.1).  
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Table 3.1 I Description of the 9 social indicators estimated from household surveys for each 

community. 

 

 

 Data analysis 

I performed two Principal Component Analysis (PCA) to explore correlations of (i) social 

characteristics of all households with travel time from the nearest market and (ii) social 

characteristics of fishing households only with travel time from the nearest market. As 

remoteness of coastal communities from markets presented confounding effect with 

management actions in the study area (the most remote communities are located in MPAs), 

management was included as a supplemental variable in the PCA. I checked the loadings of 

variables to identify which variables have the largest effect on each component and the score 

of each coastal community to quantify how communities are described by components. 

 

The human and environmental variables considered in the model are described in Table 3.2. 

To explore how proximity to markets and communities affects the reef conditions beyond 

ecological and human population size effects, I built generalized additive models (GAMs) 

considering the two environmental covariates provided by PCoA (see Coral habitat and 

environmental variables section), human population size, accessibility from human 

settlements and management. GAMs have the property of exploring non-linear relationships 

using smooth functions thus, there is no need to make any a priori assumption on the shape 

of the relationship (Hastie & Tibshirani 1990). All terms used a reasonable spline smoothed 
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function (k = 3) given the number of data. I considered all the possible sub-models (i.e. all the 

possible combination of variables) including travel time from the nearest market and the 

nearest community, and management type (fished or unfished). I also considered interactions 

between management and market or community. As all these models are nested, I performed 

a Likelihood Ratio Test (LRT) to determine which human variables significantly improved 

model fit (Wood 2006). I also assessed model fitting and parsimony by using AICc, Akaike 

Information Criterion corrected for small data samples (Hurvich & Tsai 1989).  

 

Table 3.2 I Description and references for each human, environmental and habitat variable 

considered in the fish biomass model. 

 

I first checked for collinearity among the covariates using bivariate correlations (all coefficients 

were < 0.7) and variance inflation factor (VIF) estimates (VIF < 5) indicating that 

multicollinearity is non-significant. I then performed control procedure to check whether 

smoothness selection criterion (k = 3) were adequately defined and detect outliers 

(penalization procedure described by (Wood 2006). I lastly examined homoscedasticity and 

normality of residuals. 
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 Results 

 Influence of travel time and management on fish biomass  

Among all the models tested, the best-fit model (LRT’s pvalue = 0.03 and lowest AICc = 18.6) 

explained up to 80% (adjusted R2) of the variability observed in fish biomass (Tables 3.3 & 3.4).  

 

Table 3.3 I Comparison of all the nested models to determine the best combination of human 

variables to explain fish biomass. The two first components (Env1 and Env2) of the Principal 

Coordinates Analysis (PCoA) performed with habitat and environmental variables, human 

population size provided initial model M0. AICc and Likelihood Ratio (LR) test performed 

against nested reference (ref) model determined the best combination of human variables. The 

best-fit model (M3C) combined management, travel time from market and travel time from 

community in interaction with management. 

 

This best-fit model integrated travel time from community in interaction with management, 

besides the effect of travel time from the nearest market (Table 3.4). Accessibility from human 

settlements (nearest market pvalue < 0.001 and community pvalue < 0.06), local human 

population size (pvalue < 0.007 and management (pvalue < 0.006) were the most important 

predictors (Table 4). I found that population had a significant negative influence on fish 

biomass meaning that fish biomass decreases non-linearly as human population size 

increases, both on unfished and fished reefs at the same rate (Figure 3.2c) while biomass 

increases further away from market until reaching a maximum at approximately 6-7h from a 

market (Figure 3.2b, Table 3.4). In the same vein, fish biomass in fished reefs increased non-

linearly with increasing travel time from the nearest community, with a sharp increase at 
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approximately 1.5 hours (Figure 3.2 a). Conversely, fish biomass in unfished reefs showed no 

relationship with travel time from community (Figure 3.2 a, Table 3.4). 

 

Table 3.4 I Significance table for all covariates included in the best-fit model of fish biomass 

(R2adj = 0.8). The two first components (Env1 and Env2) of the Principal Coordinates Analysis 

(PCoA) performed with habitat and environmental variables, human population size, travel 

time from the nearest market and travel time from community in interaction with 

management (fished vs unfished reefs) provided the best-fit model. Estimates and standard 

errors (SE) of estimates of fixed terms while estimated degree of freedom (edf) of smooth terms 

are provided with corresponding significance test. 

 

Overall, fished reefs at proximity of a market or communities presented lower levels of reef 

fish biomass than unfished reefs (Figure 3.2 b, c, d), demonstrating higher biomass in marine 

reserves that reached levels of reef fish biomass considered as resident biomass in the 

absence of fishing (median 1,235 kg.ha-1) (Figure 3.2d). Fish biomass in fished reefs increased 

beyond 1 hour to reach comparable level of biomass than unfished reefs from 2.5 hours and 

outreached those same levels beyond 3 hours from the community (Figure 3.2 a).  
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Figure 3.2 I Marginal effects of each socioeconomic covariate included in the fish biomass 

model while considering the other predictor variables are held constant. Relationships 

between fish biomass and travel time from the nearest community (a), travel time from the 

nearest market (b), human population size (c) and management (d) for fished (green) and 

unfished reefs (orange). 

 

 Effect of market proximity on local communities 

I found that on average 46% (range: 24 - 67%) of households ranked fishing as their first 

activity while only 14% (range: 3 - 44%) ranked farming as first activity in the 10 coastal 

communities (Table 3.5). In average, households had two activities (range at community level: 
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1.6 - 2.3; range of household responses: 1 - 4) and 51% of households consumed fish at least 

once a day (range at community level: 38 - 65%) (Table 3.5). Households were involved on 

average in only one community group (range at community level: 0.2 - 1.1; range of household 

responses: 0 - 4) (Table 3.5). 

 

Table 3.5 I Description of the four social characteristics measured for the 10 coastal 

communities. Travel time from the nearest market and the presence of management actions 

are also provided.  

 

I investigated whether proximity to market is related to communities’ socioeconomic and 

resource use characteristics. Communities further away from market consumed more fish (ex. 

Marimbe) and were relatively more engaged in fishing as primary activity (ex. Amparamilay) 

compared to communities closer to market for which farming was the primary activity (ex. 

Anjiabe) (Figure 3.3 a, Table 3.5). Overall, communities further away from market were also 

less involved in community organizations (Figure 3.3 a, Table 3.5). There was no relationship 

between the number of livelihoods and remoteness to market (Figure 3.3a). 
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 Effect of market proximity and management on fishing and selling practices 

I highlighted a high heterogeneity in fishing practices since 10 to 93% of households (mean: 

61%) used selective gears and 0 to 87% of households (mean: 28%) used nets as the main gear 

(Table 3.6). 

 

Table 3.6 I Description of four social characteristics assessed from households engaged in 

fishing activities within the 10 coastal communities. Travel time from the nearest market, the 

presence of management actions and the preferred sale to middlemen are also provided.  

 

Communities far from market were located in MPAs and used more selective gears while nets 

are more common in communities closer to markets and outside of the two MPAs (Figure 3.3 

b, Table 3.6). There was no clear relationship between the proportion of fish catch sold and 

accessibility to the market since overall, all communities sold a high proportion of their catch 

(median: 90%; range: 71 – 93%) (Table 3.6).  
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Figure 3.3 I Correlations between market access and social characteristics of local 

communities (a) and fishing households (b). Five social indicators were assessed for each of 

the 10 coastal communities: the proportion of households who ranked fishing as primary 

activity (Fishing), the proportion of households who ranked farming as primary activity 

(Farming), the livelihoods diversity: the mean number of livelihood activities that households 

are involved in (Nb. Livelihoods), the mean number of community groups people are involved 

in (Social connection), the proportion of households consuming fish at least once a day (Fish 

consumption) that were related to market access (Travel time from market). For fishing 

households, only households engaged in fishing activities were considered and for each 

community: the proportion of fishing households who used as main gear nets (Net) or selective 

gears (Select. gear) respectively and the proportion of fish catches sold (Prop. fish sold) that 

were related to market access (Travel time from market) were assessed. Social indicators were 

associated with the composition (dark blue) or the technique (green) effect. As market 

accessibility and management actions had confounding effects in the study area (marine 

reserves are disproportionally located far from markets) one supplementary variable 

(Management) was included to take into account this effect. The 10 coastal communities are 

represented as grey dots and are in bold when the community is well represented by the first 

two components (Cos2 > 0.4). All variables properly contributed to the two first components 

(PC1 & PC2) except the proportion of households who ranked fishing as primary activity 

(Fishing) (see Figures VI & VII). 
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However, selling strategies tended to be affected by market proximity (Figure 3.4). I found 

that fishing households from distant communities (up to two hours from market) did not go 

to the nearby market to sell fish catches but sold preferentially to their own community or to 

middlemen who occasionally collected sea food products in those remote communities 

(Figure 3.4). Similarly, a proportion of fishing households sold their catch directly to market 

only if their community was located at less than two hours (Figure 3.4). Overall, middlemen’s 

influence was widespread in the region since they collected seafood products from very close 

(at less than two hours) but also to more distant communities from markets (up to eight hours) 

(Figure 3.4, Table 3.6). 

 

Figure 3.4 I Access to types of markets in remote and accessible communities. When fish were 

sold, the preferred buyer was assessed for the 10 coastal communities surveyed included: own 

community, middlemen from another community or local market. At least part of fish catches 

was sold directly within the community, but fish was also sold to middlemen or at the local 

market. Middlemen were widespread in the region and seemed to buy seafood products from 
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very close (< 2 hours) to more distant communities from markets (up to 8 hours). Distributions 

are represented using 95% confidence intervals when possible. 

 

 Discussion 

This fine-scale assessment showed how the accessibility of both markets and local 

communities are related to reef fish biomass. To examine potential explanations for these 

relationships, I investigated how the socioeconomic and resource use characteristics of 

coastal communities change with proximity to markets through three strategies: (i) the change 

in techniques people used to harvest fish (called the technique effect); (ii) the composition of 

the economy (called the composition effect); and (iii) the scale at which people act (called the 

scale effect). Despite a large amount of variation between communities, the study highlighted 

that market proximity in Northwest Madagascar mainly affect coastal communities through 

the composition and the technique effects while we were not able to measure any change 

through the scale effect. This suggests that better quantifying effect of local market on 

household behaviors and practices could help our understanding of changes in natural 

resources exploitation, and ultimately support effective management of small-scale coral reef 

fisheries. 

 

Redefining market effect on fishing communities to sustain social-ecological systems 

Accessibility to markets can shape the composition and techniques of local communities and, 

ultimately, trigger changes in natural resources exploitation. First, communities further from 

market tended to present a higher proportion of households engaged in fishing activities as 

primary occupation and a higher consumption of fish (composition effect) (Figure 3.3 a). Given 

that small islands are less suitable for agricultural production and employment options are 

limited (Laroche & Ramananarivo 1995; Le Manach et al. 2012), this results in higher levels of 

dependence on seafood and exploitation of marine resources further away from markets 

while fishing was crucial for income generation in those remote communities. Decreased 

market accessibility has been found to be positively correlated with higher dependence on 

forest resources, where the most isolated households from the markets have the lowest 

incomes and higher dependence on non-timber forest products (Ghate et al. 2009). These 

results are consistent with previous studies in the terrestrial realm. It is thus essential to assess 
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how strong dependence of local communities to marine resources influences the ecological 

state of surrounding reefs. 

 

Second, market proximity can also influence the fishing techniques used by fishing 

households. Fishing practices are highly variable between households but I observed that gear 

selectivity increased as communities were located further away from markets (Figure 3.3 b). 

There is large amount of variation in how fishing gears differentially targeted the 

characteristic, proportion and number of species (Cinner et al. 2009b), some of them such as 

grazers and scrapers/excavators, identified as critical to the resilience of coral reefs (Bellwood 

et al. 2004; Mumby et al. 2006). Fishing gears can also provide detrimental damages on the 

environment (Link 2010). Gear restrictions are already implemented in MPAs and it has been 

found that perceived benefits of such restrictions by fishing communities were generally high 

and widespread in Madagascar (McClanahan et al. 2014). Thus, there is an urgent need to 

identify environmental impacts of fishing gears used in northwest Madagascar to adapt 

selectively banning or restricting fishing and thus, promote the sustainability and the 

resilience of these small-scale fisheries. 

 

Fishing communities in Madagascar and especially in remote areas, commonly use small 

dugout canoes fitting one to four persons that are unsafe for high sea fishing, de facto 

restricting fishing trips duration thus geographical influence on surrounding reefs. On the 

other hand, engine boats are seldom present and generally belong to rich owners hiring a 

team of fishermen having higher fishing efficacy. However, increased market demand and 

relatively higher economic development close to markets might lead fishermen to access 

more powerful and larger boats to expand their fishing grounds to more remote areas to 

maintain catch, as already demonstrated in Solomon Islands (Albert et al. 2015). Such changes 

are described through the scale effect and might explain that market influences fish biomass 

up to six hours (Figure 2) while I was not able to measure such changes in this study.  

 

Unravelling human influence in coral reef fisheries in northwest Madagascar 

Given that communities further away from markets had more households engaged in fishing 

and higher dependence on marine resources, I would expect lower biomass far from markets. 

Surprisingly, I found that fish biomass increased as reefs were further away from market in 
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both fished and unfished reefs (Figure 3.2). Thus, market proximity in Northwest Madagascar 

heavily affect the way coastal communities use marine resources but have an even greater 

effect on reef fish biomass even on managed reefs. Beyond market proximity, I also found that 

travel time from community is a key driver of fish biomass interacting with management 

(Figure 3.2, Table 3.3). Local communities mainly influenced fish biomass at less than an hour 

and a half from the landing sites, with a decreasing influenced up to three hours while market 

influenced fish biomass up to six hours. Yet this is the first time that thresholds of influence 

are highlighted for both market and local communities using accessibility assessment.  

 

Market proximity in Northwest Madagascar heavily affect the way coastal communities use 

marine resources and this finding is consistent with previous studies conducted at larger scales 

(i.e. national and global) highlighting that market integration is a major driver of decrease fish 

biomass through scales (Brewer et al. 2012; Cinner et al. 2013; D'Agata et al. 2016; Maire et 

al. 2016). However, it is not clear how increased economic growth and new markets can result 

in improved environmental conditions especially in coral reef fisheries (Cinner et al. 2009a). 

More specifically, innovation and access to more efficient technology can generate inequality 

and poverty (Pauly 2006) and can lead to “social-ecological traps” where the most 

impoverished fishers are spurred to use destructive techniques (Cinner 2011). Innovation and 

technology are both driven by resource demand and at the same time, regulated by 

governance and managers. This suggests that better quantifying links between markets and 

fishing communities through household-level surveys should be a priority. Factors that 

influence household behaviors and decision-making, especially in the sale of fish catches are 

not clearly identified. Such information is crucial to implement market-based actions that 

could help to regulate the effect of markets on fish stocks and fishing communities. Yet the 

influence of market on coastal resources in more remote reefs might jeopardized remote 

communities’ well-being that are highly dependent on those resources for nutrition security 

and income generation. This suggests that better assessing links between markets and fishing 

communities is crucial to implement market-based actions that could help to regulate the 

effect of markets on fish stocks and fishing communities. 
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The importance of management to support remote communities 

In addition, I thus tested the effect of management on the status of reef fish biomass in the 

northwest of Madagascar. The study highlighted that fish biomass was higher in permanent 

reserves (unfished reefs) despite the recent MPAs implementation (2015) with no effect of 

local communities on those unfished reefs. Previous studies in Madagascar have highlighted 

MPAs management effectiveness and positive impacts on fish stocks where higher fish density 

and biomass were found inside MPAs compared to fishing sites outside (Komeno & 

Randriamanantsoa 2013). Here it showed that MPAs in northwest Madagascar, through gear 

restrictions and higher compliance by local communities are effective tool to enhance fish 

biomass.  

 

MPA compliance is relatively low in Madagascar due to limited enforcement (Rakotoson & 

Tanner 2006; McClanahan et al. 2014) which might explain that unfished areas are influenced 

by surrounding human populations at the same rate as fished areas. This finding is in 

accordance with a global scale study demonstrating that even if fish biomass was higher in 

marine reserves, it decreased along the increasing human gradient, highlighting the inevitable 

impact of surroundings seascapes on local resources, even in high compliance reserves (Cinner 

et al. 2018) . MPAs have been advocated as a powerful tool to conserve marine resources 

(Edgar et al. 2014; Sala et al. 2018) but with equivocal impacts on communities wellbeing living 

in those MPAs (Gurney et al. 2015; Gill et al. 2017). In this study area, there is a strong 

confounding effect between management and market accessibility since the two MPAs under 

study are located away from markets. This is consistent with previous studies showing that 

protected coral reefs around the world are disproportionally farther from -main cities and 

markets (Maire et al. 2016; Cinner et al. 2018) suggesting that conservation efforts, 

particularly through large MPAs, are targeting low-conflicts reefs to rapidly meet international 

conservation targets (O’Leary et al. 2018). Yet this study demonstrated that MPAs in remote 

locations can actually have positive effects on local communities highly dependent on those 

reefs by (i) legally protecting their resources and (ii) providing local communities with 

increasing support from external agencies such as non-governmental organizations through 

building capacity interventions, thus increasing their connectedness and agency (Gill et al. 

2017). Yet I demonstrated that while bringing management and support to local communities 

is key to increase their resilience and protect their livelihoods, market influence is a severe 
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threat for their local resources. Assessing and managing external pressures is thus crucial for 

consistent management actions at the seascapes level. This has even more resonance since 

marine protected areas are highly threatened by climate stress (Bruno et al. 2018). 

 

Dealing with uncertainties in northwest Madagascar 

Surprisingly, remote communities did not have more or less livelihoods compared to 

communities closer to markets, meaning that even though households were more engaged in 

fishing activities, it does not prevent them to be engaged in others activities such as farming 

(when possible) or tourism related, but at a lower rate. Indeed, fishing households in less 

developed communities might feel the need to supplement fishing as an adaptation strategy 

to natural hazard and environmental shocks, thus decreasing their inherent resilience; while 

communities in more developed communities might feel secure enough to engage into 

livelihood specialization (Cinner & Bodin 2010). While communities further away from market 

were more engaged in fisheries, and communities closer to market were more engaged in 

farming, demonstrating some degrees of specialization, the number of livelihoods remained 

in average identical along the accessibility gradient. Madagascar is one of the most 

impoverished country in the world and experienced several environmental and political crisis 

in the last decades (World Bank 2010; Conservation International 2015). This level of 

instability might explain why most households are engaged in a diverse portfolio of livelihoods 

at various degrees independently of their proximity to market, so households are able to 

spread risk across each of their livelihood sources (Allison & Ellis 2001; Badjeck et al. 2010; 

Forster et al. 2014). This strategy might increase their resilience to environmental and political 

shocks as both risk anticipation and coping strategies to environmental and political 

uncertainties (Allison & Ellis 2001; Goulden et al. 2013). This is further confirmed by the high 

proportion of catch sold across all communities which suggest the importance of fisheries-

dependent cash-based economy for all communities. Fishers sold most of their catch 

independently of market accessibility whether to community members or middlemen when 

at more than two hours from a market, or directly to market for communities at proximity.  

 

Finally, middlemen are essential intermediaries in coral reef fisheries who collect sea products 

directly from fishermen and provide links to markets (Crona et al. 2010; Brewer 2011). I found 

that middlemen are widespread in the study region (as in other countries, (Dacks et al. 2018). 
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By providing access to market, middlemen contribute to fishing income generation in remote 

communities whereas fishing households sold their catch directly closer to markets (Figures 

3.3 & 3.4). Even if I observed that in some cases, fishers preferentially sell their catches to 

middlemen, it was not possible to measure whether demand from middlemen influence 

fishing practices or targeted fish species. Indeed, rights-based management actions are 

supposed to control harvesting pressure from ‘outsiders’ but this does not prevent rights 

holders from increasing fishing pressure. A better investigation of the role of middlemen 

involved in small-scale fisheries in Madagascar could improve the governance of fish stocks 

and coastal social-ecological systems (Crona et al. 2010; Thyresson et al. 2013; Wamukota et 

al. 2014). 

 

Limitations of the study 

While recent studies have suggested that higher catch in remote communities might be due 

to the presence of middlemen (Dacks et al. 2018), I could not unravel the direct effects of 

middlemen on coastal resources in this study. Also, there is a strong confounding effect 

between management actions and market accessibility since the two MPAs are located away 

from markets. While it was difficult to disentangle the relative effect of management and 

accessibility on communities’ characteristics, it doesn’t negate the importance of markets in 

shaping practices of local communities given management. Governance and rules highly 

influence fishing strategies in MPAs thanks to the management plans (which were preceded 

by the ‘dinas’, a set of social norms generally respected and agreed by the whole 

communities). Further work is therefore needed to assess fishing households’ strategies with 

decrease market accessibility, particularly in developing countries. 

 

 Conclusion 

Both local communities and market influenced fish biomass on fished and unfished reefs. 

Market proximity affects the composition and techniques of fishing communities and, 

ultimately, triggers changes in marine resources exploitation. Markets also shape reef fish 

biomass with an even more significant effect than fishing communities even in managed reefs 

(permanent reserves). Community-based management with gear restrictions, limited access, 

marine protected areas, and rights-based fishing seem to be useful approaches to sustain 
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fisheries resources and livelihoods of remote communities. Understanding the human-

environmental interrelations relies on a scaling-down to highlight the drivers of resource use 

and governance by considering households behaviors and decision-making. A better 

assessment of accessibility from human societies (market and community) is thus a critical 

step toward long-term management of the coral reef fisheries.  
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 The gravity of human settlements3 

 

 

 

“Gravity has long been one of the most successful empirical models in economics. 

Incorporating deeper theoretical foundations of gravity into recent practice has led to a richer 

and more accurate estimation and interpretation of the spatial relations described by gravity. 

Wider acceptance has followed. Recent developments are reviewed here, and suggestions are 

made for promising future research.” - James E. Anderson, Professor of Economics at Boston 

College.  

  

                                                       
3 Published as: 

Cinner, J.E., Huchery C., MacNeil, M.A., Graham, N.A.J., McClanahan, T.R., Maina, J., Maire E. 

et al. (2016). Bright spots among the world’s coral reefs. Nature, doi:10.1038/nature18607. 

Cinner, J. E., Maire, E., Huchery, C., MacNeil, M. A., Graham, N. A. J., Mora, C., McClanahan, T. 

R. et al. The gravity of human impacts mediates coral reef conservation gains. 2018. Proceedings of the 

National Academy of Sciences, 115 (27) E6116-E6125; doi:10.1073/pnas.1708001115. 
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 The gravity concept 

 Theory on gravity 

Sir Isaac Newton was a 17th-century astronomer who established the laws that govern the 

interactions of the Universe. One of the most famous, Newton’s Law of Universal Gravitation 

law predicts that any two objects exert a gravitational force on each other and that this force 

depends on their masses and distance (Newton 1999). In other words, the bigger and closer 

objects are, the more they will be impacted by each other's gravity.  

The gravity model uses the same law to describe relationships between places and instead of 

gravitational force, the degree of interaction between cities, or regions is considered. More 

specifically, the gravity predicts that interactions between two places (cities or regions) are 

positively related to their mass (i.e. people, information, commodities) and inversely related 

to the distance between them (Anderson 2011). Since (i) larger places attract people, ideas, 

and commodities more than smaller places and (ii) places closer together have a greater 

attraction, the gravity model combines these two key aspects in a single metric. The concept 

of gravity has been used in economics and geography to describe economic interactions, 

migration patterns, and trade flows (Ravenstein 1889; Dodd 1950; Bergstrand 1985). 

 

 The gravity concept applied to coral reefs 

Human pressure on coral reefs has been commonly expressed through the human population 

size within a spatial area around a given reef or the linear distance between a given reef and 

human settlements  (Mora et al. 2006; Mora et al. 2011; Bellwood et al. 2012; Williams et al. 

2015b). Very few variables combine these both aspects and the gravity concept can fill this 

gap. However, the initial law integrates the distance between places while travel time better 

represents the friction distance between places than linear distance (Chapter 2). Application 

of the gravity concept in a coral reef context posits that the strength or magnitude of human 

interactions with a reef is a function of the population size divided by the squared time it takes 

for this population to reach a given reef as: 

 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2
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Therefore, gravity is a balance between human population size and accessibility, it reflects 

potential human pressure and is expressed in inhabitants per square hour. For example, a 

gravity value of 10,000 inhab/ hour² can be reached in three different cases: 

-at small scale, a human settlement of 2,500 inhabitants 30 minutes away from the reef. 

-at medium scale, a market of 40,000 inhabitants located 2 hours travelling. 

-at large scale, a market of 1,000,000 inhabitants located 10 hours travelling. 

 

It is also possible to calculate aggregated gravity within a buffer by adding up gravity of each 

human settlement considered. For example, aggregated gravity of total population within a 

spatial buffer requires calculation of travel time from reef to each cell from LandScanTM 

dataset where population density is positive, then, gravity of each populated pixel is summed. 

 

 Reef fish biomass is primarily related to the gravity of human settlements 

4.1.3.1. Calculation of gravity metrics 

If gravity seems to be good candidate to disentangle complex relationships between human 

populations and the conditions of coral reefs, empirical evidence is still needed.  

My PhD is integrated into the Cinner Research Group led by Dr. Joshua E. Cinner that focuses 

on the interface between social science and ecology. The current centerpiece of the Cinner 

Research Group is the “Bright Spots” project, which seeks to identify and learn from outliers, 

which in this case are reefs with more fish than expected, given the socioeconomic and 

environmental conditions they are exposed to.  

The first paper developing the idea was published in Nature July 2016 and aimed to explore 

how standing stocks of reef fish biomass are related to 18 socioeconomic drivers (including 

gravity) and environmental conditions using data from more than 2,500 reefs worldwide and 

a Bayesian hierarchical model (Cinner et al. 2016). My contribution to this project was to 

calculate, for each reef, the gravity of the nearest market and the gravity of the nearest human 

settlement and then to integrate them in the model. 

 

To compute the gravity to the nearest market, I calculated the population of the nearest major 

market and divided that by the squared travel time between the market and the reef, I used 

the squared travel time (previously calculated). To determine the gravity of the nearest 
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settlement, I located the nearest populated pixel, determined the population of that pixel, 

and divided that by the squared travel time between that cell and the reef site.  

 

I also determined the cumulative human gravity of all populated places within a 500-km radius 

of a given reef, which aims to capture both market and subsistence pressures on reef fish 

biomass. While the squared ‘distance’ (here travel time) is relatively common in geography 

and economics, other exponents can be used (Black 1973). In the same vein, a 500-km radius 

from the reef was chosen as the maximum distance reef fishing activities are likely to occur 

(Cinner et al. 2016). Therefore, both aspects (exponent and radius) could influence the 

robustness of the gravity metric as previously described. Thus, a sensitivity analysis was 

performed to test the predictive power of a series of gravity metrics with varying radii (50 km, 

250 km, 500 km) and exponents of travel time (travel time, travel time2, travel time3) (Table 

4.1). This analysis showed that the cumulative gravity calculated within a 500km-buffer and 

from the squared travel time provided the most parsimonious model of targeted fish biomass 

while the models controlled for environmental and socioeconomic conditions (Cinner et al. 

2018).  

 

Table 4.1 I Targeted biomass model comparisons using AIC, ΔAIC and conditional R2 between 

different types of gravity considering 3 buffer sizes and 3 exponents. ΔAIC is calculated from 

the most parsimonious model (the lowest AIC) which is provided by the gravity within 500km-

buffer and using squared travel time (Cinner et al. 2018).  

 

4.1.3.2. Importance of gravity to explain variations in reef fish biomass 
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The study found that reef fish biomass decreased as the size and accessibility of markets 

increased (Figure 4.1). 

 

Figure 4.1 | Marginal relationships between reef fish biomass and gravity indices. 

Standardized effect size of the gravity of market (left panel) and the gravity of the nearest 

human settlement (right panel). Parameter estimates (β) are Bayesian posterior. (Cinner et al. 

2016) 

 

Specifically, the key finding from this global analysis is that the gravity of market more so than 

local or national population pressure, management, environmental conditions, or national 

socioeconomic context, had the strongest effect on reef fish biomass (Figure 4.2).  
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Figure 4.2 | Drivers of reef fish biomass. Standardized effect size of local scale social drivers, 

nation/state-scale social drivers, and environmental covariates, respectively. Parameter 

estimates are Bayesian posterior median values, 95% uncertainty intervals (UI; thin lines), and 

50% UI (thick lines). Black dots indicate that the 95% UI does not overlap 0; grey closed circles 

indicates that 75% of the posterior distribution lies to one side of 0; and grey open circles 

indicate that the 50% UI overlaps 0. (Cinner et al. 2016) 

 

The study also provided a sensitivity analysis to help justify the assumption that capital and 

landmark cities were a reasonable proxy for reef fish markets. This analysis consisted on a 

comparison of a series of candidate models that predicted biomass including different human 

variables such as (1) cumulative gravity of all cities within 500 km; (2) gravity of the nearest 

city; (3) travel time to the nearest city; (4) population of the nearest city; (5) gravity to the 

nearest human population above 40 people km-2 (assumed to be a small peri-urban area and 

potential local market); (6) the travel time between the reef and a small peri-urban area; (7) 

the population size of the small peri-urban population; (8) gravity to the nearest human 

population above 75 people km−2 (assumed to be a large peri-urban area and potential 

market); (9) the travel time between the reef and this large peri-urban population; (10) the 

population size of this large peri-urban population; and (11) the total population size within a 

500 km radius.  

AIC criterion revealed that two models were the best (delta AIC <3), those that included gravity 

of the nearest city and gravity of all cities within 500 km (Table 4.2). 
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Table 4.2 | Model selection of potential gravity and components (Cinner et al. 2016) 

 

 

Moreover, the best models are those including travel time components since all had a much 

lower AIC value than those including the population components, which is broadly consistent 

with previous systematic review studies highlighting importance of market access (Cinner et 

al. 2013). Similarly, travel time to the nearest city had a lower AIC score than any aspect of 

either the peri-urban or urban measures. This suggests that accessibility from capital and 

landmark cities (market) is likely to better capture exploitation drivers from markets rather 

than metrics simply based on population pressures related to human density. This may be 

because market dynamics are difficult to capture by population threshold estimates; for 

example, some small provincial capitals where fish markets are located have very low 

population densities, while some larger population centers may not have a market. At a global 

scale, the gravity of the nearest market was the best proxy to integrate market dynamics on 

fish biomass but downscaled regional or local analyses could attempt to use more detailed 

knowledge about fish markets. 
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 The global distribution of human gravity on coral reefs  

Beyond the case of sampled coral reefs, I calculated the gravity of humans (nearest market, 

nearest human population, cumulative gravity of every populated pixel within 500km) for 

every coral reef cell globally using a 10- × 10-km grid across the world. The global map of 

gravity of the nearest market is presented in Figure 4.3. 

 

Figure 4.3 | Magnitude of gravity of market on the world’s coral reefs. 

 

The magnitude of gravity varies substantially among regions, with the central Indo-Pacific 

demonstrating lower gravity values (green points in Figure 4.3). Even within a region, there 

can be substantial variability in gravity values. For example, the Central Indo-Pacific has highly 

contrasting gravity patterns, with Southeast Asian reefs generally showing extremely high 

gravity values while Australian and Melanesian reefs are dominated by relatively low-gravity 

values (Figure 4.3). Among the French overseas territories, coral reefs in the Scattered Islands, 

the Chesterfield Islands and the French Polynesia show experience relatively low-gravity 

values (Figure 4.3). 

 

 Conclusion 

The severity of human impacts on reef systems has been widely acknowledged while the 

causes and solutions of these impacts are still debated (Hughes et al. 2010; Rogers et al. 2015). 

However, there is compelling evidence that (i) human population size and density are major 

drivers of change on reefs (Mora et al. 2006; Mora et al. 2011; Bellwood et al. 2012; Williams 

et al. 2015b) and (ii) proximity to major centers of population (cities or markets), is the 
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strongest predictor of overfishing on coral reefs (Cinner & McClanahan 2006; Cinner et al. 

2012; Cinner et al. 2013). By combining both crucial aspects of the human influence 

(population and accessibility) on natural environment, the gravity holds much promise in 

assessing human impacts in a more integrative way. Moreover, it has been proved that the 

gravity of human populations is the strongest predictor of fish biomass at the global scale 

(Cinner et al. 2016). Application of the gravity concept in coral reef socio-ecological systems 

could be helpful in examining other aspects that are influenced by human impacts. One key 

question is to define whether the intensity of human impacts can affect the management 

actions (fishery restriction or marine reserve). This specific point is addressed in the following 

part of Chapter 4.  
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 Gravity of human impacts mediates coral reef conservation gains 

 Introduction 

The world’s coral reefs are rapidly degrading (Hughes et al. 2003; Pandolfi et al. 2003; Hughes 

et al. 2017a), which is diminishing ecological functioning and potentially affecting the 

wellbeing of the millions of people with reef-dependent livelihoods (Teh et al. 2013). Global 

climate change and local human impacts (such as fishing) are pervasive drivers of reef 

degradation (Mora et al. 2011; Hughes et al. 2017a). In response to this “coral reef crisis”, 

governments around the world have developed a number of reef conservation initiatives 

(Mora et al. 2003; Bellwood et al. 2004; Hughes et al. 2017a). The focus here is on the efficacy 

of management tools that limit or prohibit fishing. Management efforts that reduce fishing 

mortality should help to sustain reef ecosystems by increasing the abundance, mean body 

size, and diversity of fishes that perform critical ecological functions (MacNeil et al. 2015; Hopf 

et al. 2016; Krueck et al. 2017). In practice, however, outcomes from these reef management 

tools have been mixed (McClanahan et al. 2006; Mora et al. 2011; Edgar et al. 2014; Gill et al. 

2017).   

 

A number of studies have examined the social, institutional, and environmental conditions 

that enable reef management to achieve key ecological outcomes, such as sustaining fish 

biomass (Mora et al. 2011; Williams et al. 2015b; Cinner et al. 2016), coral cover (Bozec et al. 

2016), or the presence of top predators (Dulvy et al. 2004). These studies often emphasize the 

role of: 1) types of key management strategies in use such as marine reserves, where fishing 

is prohibited, or areas where fishing gears and/or effort are restricted to reduce fishing 

mortality (McClanahan et al. 2011a; MacNeil et al. 2015); 2) levels of compliance with 

management (McClanahan et al. 2006; Pollnac et al. 2010; Bergseth et al. 2015); 3) the design 

characteristics of these management initiatives for example the size and age of reserves, and 

whether they are placed in remote versus populated areas (Graham & McClanahan 2013; 

Edgar et al. 2014); and 4) the role of social drivers such as markets, socioeconomic 

development, and human demography that shape people’s relationship with nature (Cinner 

et al. 2009a; Cinner et al. 2016).  
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In addition to examining when key ecological conditions are sustained, it is also crucial to 

understand the context under which conservation gains can be maximized (Devillers et al. 

2015; Pressey et al. 2015). By conservation gains, it refers to the difference in a conservation 

outcome (e.g. fish biomass) when some form of management (i.e. a marine reserve or fishery 

restriction) is implemented relative to unmanaged areas. These conservation gains can be 

beneficial for both people and ecosystems. For example, increased fish biomass inside marine 

reserves is not only related to a range of ecosystem states and processes (McClanahan et al. 

2011a), but can also result in spillover of adults and larvae to surrounding areas, which can 

benefit fishers (Harrison et al. 2012; Januchowski-Hartley et al. 2012; Andrello et al. 2017). 

The potential to achieve conservation gains may depend on the intensity of human impacts in 

the surrounding seascape (Devillers et al. 2015; Pressey et al. 2015), yet, these effects have 

never been quantified. 

 

 Material and methods 

Data from 1798 tropical coral reef sites in 44 nations, states, or territories (hereafter 

‘nation/states’) in every major coral reef region of the world were used to quantify how 

expected conservation gains in two key ecological outcomes are mediated by the intensity of 

human impact (expressed as the cumulative gravity of every human settlement within a 500-

km buffer), namely: (i) targeted reef fish biomass (i.e. species generally caught in fisheries); 

and (ii) the presence of top predators (see details in Appendices and Table I). To quantify 

human impact at each site, we computed the cumulative gravity of every human settlement 

within a 500-km buffer which expressed potential human interactions with reefs as a function 

of how large and far away the surrounding human population is. At each site, the status of 

reef management was also determined and grouped into either: (i) openly fished, where sites 

are largely unmanaged and national or local regulations tend to be poorly complied with; (ii) 

restricted fishing, where there are actively enforced restrictions on the types of gears that can 

be used (e.g. bans on spear guns) or on access (e.g. marine tenure systems that restrict fishing 

by ‘outsiders’); or (iii) high-compliance marine reserves, where fishing is effectively prohibited 

(see details in Appendices). Size (median= 113.6km2, mean = 217516 km2, SD= 304417) and 

age (median= 9, mean = 15.5 years, SD= 14.5) of the no-take portion of each reserve were also 

calculated. It has been hypothesized that the ecological indicators considered (targeted fish 
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biomass and presence of top predators) would decline with increasing gravity in fished areas, 

but that marine reserves areas would be less sensitive to gravity.  

 

To quantify the relationships between gravity and target fish biomass, a general linear mixed 

model in R, using a log-normal distribution for biomass was developed. To quantify the 

relationships between gravity and presence/absence of top predators, a generalized linear 

mixed model with a binomial family and a logit link function was applied. For both models, 

reef cluster nested within nation/state was set as a random effect to account for the 

hierarchical nature of the data (i.e. reef sites nested in reef clusters, reef clusters nested in 

nations/states). Social and environmental drivers, the sampling method and total sampling 

area, and an interaction between gravity and reserve age were included as covariates in the 

model. 

 

Interactions between gravity and management were tested while AIC was used to select the 

most parsimonious model. For fish biomass, the interaction between gravity and reserve age 

had AIC values >2 lower than the interaction between gravity and management (and a 

combination of both interactions). For the top predator models, both interactions were within 

2 AIC values, so the interaction with reserve age was chosen for consistency. All continuous 

covariates were standardized for the analysis, and reserve age was then normalized such that 

non-reserves were 0 and the oldest reserves were 1.  

 

In summary, the models predicted target fish biomass or probability of top predators being 

observed at the reef site scale with an interaction between gravity and reserve age, while 

accounting within the random factors for two bigger scales at which the data were collected 

(reef cluster, and nation/state, see Annexes, ‘Global dataset on coral reefs used during the 

thesis’ section), and key social and environmental characteristics expected to influence the 

biomass of reef fish (Cinner et al. 2016) which are: local population growth, Human 

Development Index (HDI), population size, depth, habitat, ocean productivity, climate stress 

and the sampling method and total sampling area as covariates (see details in Appendices).  

 

To examine the expected conservation gains of different management strategies: (i) the 

difference between the response of openly fished areas (counterfactual) and high-compliance 
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marine reserves to gravity; and (ii) the difference between the response of openly fished areas 

and fisheries restricted areas to gravity were calculated. For ease of interpretation, 

conservation gains in kilograms per hectare (kg/ha; as opposed to log[kg/ha]) were plotted. A 

log-normal (linear) model was used to develop the slopes of the biomass (i) fished, (ii) marine 

reserve, and (iii) fisheries restricted areas, which results in the differences between (i) and (ii) 

and between (i) and (iii) being non-linear on an arithmetic scale. 

 

 Results 

4.2.3.1. Gravity impacts on targeted fish biomass 

This analysis reveals that human gravity was the strongest predictor of fish biomass (Figure 

4.4 B, VI). Fish biomass consistently declined along a human gravity gradient, a trend 

particularly evident at the nation/state scale (Figure 4.4 C-E). However, this relationship can 

vary by management type (Figure 4.4, Figure VIII). Specifically, biomass in reserves 

demonstrated a flatter (but still negative) relationship with gravity compared with openly 

fished and restricted areas (Figure 4.4 B). Interestingly, this differential slope between 

reserves and fished areas (Figure 4.4 B) was due to a strong interaction between gravity and 

reserve age such that older reserves contributed more to biomass in high gravity situations 

than in low-gravity ones (Figure VIII).  

 

Thus, given average reserve age in the sample considered (15.5 years), biomass in reserves 

did not decline as rapidly with gravity compared with fished and restricted areas (Figure 4.4 

B). In the highest-gravity locations, modelled fish biomass in marine reserves was 

approximately five times higher than in fished areas (270 kg/ha compared with 56 kg/ha) 

(Figure 4.4 B). At the reef site scale, there was considerable variability in reef fish biomass, 

particularly at low gravity (Figure 4.4 F-H). Critically, high-compliance marine reserves in the 

lowest gravity locations tended to support more than four times more fish biomass than the 

highest gravity reserves (1150 versus 270 kg/ha, respectively; Figure 4.4 F-H). Importantly, 

there was never extremely high biomass encountered in high gravity locations. The estimate 

of fish biomass included key target species, including top-predators. As a supplemental 

analysis, target fish biomass with the biomass of top predators excluded was also examined, 
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which displays a similar trend, but with lower fish biomass in reserves at low gravity compared 

to when top predators are included (Figure IX). 

Figure 4.4 | Model-predicted relationships between human gravity and reef fish biomass 

under different types of fisheries management. (A) Map of the study sites with color 

indicating the amount of fish biomass at each site. (B) Model-predicted relationships of how 

reef fish biomass declines as gravity increases by management type. Partial plots of the 

relationship between biomass and gravity under different types of management at the 

nation/state (C–E), and reef site (F–H) scale; openly fished (red), restricted (green), and high-
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compliance marine reserves (blue). Shaded areas represent 95% confidence intervals. Bubble 

size in C–E reflect the number of reef sites in each nation/state, scaled for each management 

type (such that the largest bubble in each panel represent the highest number of sites per 

nation/state for that type of management) (Table V). Nation/state name abbreviations for F-

H are in Table V. 

 

4.2.3.2. Gravity impacts on top predators 

A key finding from this study is that top predators were encountered on only 28% of the reef 

sites considered, but as gravity increases, the probability of encountering top predator on 

tropical coral reefs dropped to almost zero (<0.005), regardless of management (Figure 4.5). 

The probability of encountering top predators was strongly related to gravity and the type of 

management in place, as well as sampling methodology and area surveyed (Figure 4.5, Figure 

VIII). At low gravity, the probability of encountering a top predator was highest in marine 

reserves (0.59) and lowest in fished areas (0.14), when controlling for sampling and other 

environmental and social drivers (Figure 4.5, Figure VIII).  
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Figure 4.5 | Model-predicted relationships between human gravity and the probability of 

encountering top predators under different types of fisheries management. (A) Map of the 

study sites indicating the presence of top predators. (B) Model-predicted relationships of how 

the probability of encountering predators declines as gravity increases. Shaded areas 

represent 95% confidence intervals. The presence of top predators along a gravity gradient 

under different types of management at the nation/state (C–E) and site (F–H) scale; openly 

fished (red), restricted (green), and high-compliance marine reserves (blue). Bubble size in C–
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E reflect the number of reef sites in each nation/state, scaled for each management type (such 

that the largest bubble in each panel represent the highest number of sites per nation/state 

for that type of management) (Table V). Nation/state name abbreviations for F–H in Table V. 

 

4.2.3.3. Conservation benefits 

The results highlight how the expected differences between managed fished areas and marine 

reserves change along a gravity gradient, given a range of other social and environmental 

conditions that are controlled for within the model (Figure VIII). Although absolute fish 

biomass and probability of top predators under all management categories declined with 

increasing gravity (Figure 4.4 B & 4.5 B), the maximum expected conservation gains (i.e. the 

difference between openly fished and managed) differed by management type along the 

gravity gradient (Figure 4.6). 

 

For non-top predator reef fishes, substantial conservation gains can occur at even the highest 

gravity locations but that optimal gain are obtained at moderate gravity (Figure 4.6 A). For 

marine reserves, biomass conservation gains demonstrated a hump-shaped pattern that 

peaked at very low gravity when predators were included in the biomass estimates (solid blue 

line; Figure 4.6 A). When top predators were excluded from biomass estimates, conservation 

gains peaked at intermediate gravity levels, and were higher in high gravity compared to low 

gravity (dotted blue line; Figure 4.6 A). Interestingly, the conservation gains for restricted 

fishing is highest in low gravity situations, but rapidly declines as human gravity increase (solid 

green line; Figure 4.6 A). 

 

The results also show that low gravity marine reserves (and to a lesser extent low gravity 

fisheries restrictions) are critical to support the presence of top predators (Figure 4.5). Yet, 

the expected conservation gains for top predators declines rapidly with gravity in both marine 

reserves and restricted areas (Figure 4.6 B). 
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Figure 4.6 | The conservation gains (i.e. the difference between openly fished sites and 

managed areas) for high-compliance marine reserves (blue line) and restricted fishing 

(green line) for (A) target fish biomass, and (B) the probability of encountering top predators 

change along a gradient of gravity. 

 

 

 Discussion 

4.2.4.1. Why was there a decline of ecological conditions indicators observed within marine 

reserves along a gravity gradient? 

This study demonstrates the degree to which fish communities inside marine reserves can be 

affected by human impacts in the broader seascape (Figures 4.4 & 4.5). Critically, high-

compliance marine reserves in the lowest gravity locations tended to support more than four 

times more fish biomass than the highest gravity reserves (1150 versus 270 kg/ha, 

respectively; Figure 4.4). Likewise, the modelled probability of encountering a top predator 

decreased by more than 100-fold from 0.59 in low gravity reserves to 0.0046 in the highest 
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gravity reserves (Figure 4.5 B). The study design meant that it was not possible to uncover the 

mechanisms responsible for this decline of ecological conditions indicators within marine 

reserves along a gravity gradient, but this pattern of depletion is likely related to: (i) human 

impacts in the surrounding seascape (fishing, pollution, etc.) affecting ecological processes 

(recruitment, feeding behavior, etc.) within reserves (Januchowski-Hartley et al. 2015; Gil & 

Hein 2017); (ii) almost every marine reserve is likely to have some degree of poaching, even 

where compliance is considered high (Bergseth et al. 2015; Bergseth et al. 2017) and the 

cumulative impacts from occasional poaching events is probably higher in high gravity 

situations; (iii) the life history of top predators, such as old age of reproduction and small 

clutch size which makes then particularly susceptible to even mild levels of exploitation (Ward-

Paige et al. 2010);  and/or (iv) high-gravity marine reserves in the sample possibly being too 

young, or too small to provide substantial conservation gains (Edgar et al. 2014; Krueck Nils et 

al. 2017).  

 

A supplementary analysis was conducted to further examine this latter potential explanation. 

Because of collinearity, it was not possible to directly account for reserve size in the model, 

but a supplemental analysis was conducted where small (<28km2) and large reserves were 

separated (Figure X). It showed that the biomass and probability of encountering top 

predators was higher in large compared to small reserves, but surprisingly, a flatter slope for 

small compared to large reserves was found (Figure X). However, there were no large high 

compliance reserves in high gravity areas in the sample, likely due to the social and political 

difficulties in establishing large reserves near people (Christie et al. 2017). Since there is little 

overlap between large and small reserves along the gravity gradient in the sample, it was not 

possible to distinguish the effects of reserve size from those of gravity, but this is an important 

area for future research.  

 

Additionally, how the relationship between gravity and the ecological outcomes considered 

changed with reserve age was modelled, comparing outcomes using the average reserve age 

(15.5 years) to those from reserves nearly twice as old (29 years, which was the third quartile 

of the global distribution in reserve age). Older reserves were predicted to sustain an 

additional 180 kg/ha (+66%) of fish biomass at the highest levels of gravity compared to 

average age reserves. However, the effects of reserve age on the probability of encountering 
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a top predator was less marked: the modelled probability of encountering a top predator in 

older reserves (29 years) was only 0.01, compared to 0.005 for average age (~15 years) 

reserves, suggesting that small reserves common in high gravity situations can support high 

levels of biomass, but are unlikely to sustain top predators, even when they are mature.  

 

4.2.4.2. Successful conservation strategies  

Although absolute fish biomass under all management categories declined with increasing 

gravity (Figure 4.4 B), the maximum expected conservation gains (i.e. the difference between 

openly fished and managed) differed by management type along the gravity gradient (Figure 

4.6 A). Interestingly, the conservation gains for restricted fishing is highest in low gravity 

situations, but rapidly declines as human impacts increase (Campbell et al. 2018). 

 

For marine reserves, biomass conservation gains demonstrated a hump-shaped pattern that 

peaked at very low gravity when predators were included in the biomass estimates (solid blue 

line; Figure 4.6 A). When top predators were excluded from biomass estimates, conservation 

gains peaked at intermediate gravity levels, and were higher in high gravity compared to low 

gravity (dotted blue line; Figure 4.6 A). The results highlight how the expected differences 

between openly fished and marine reserves change along a gravity gradient, given a range of 

other social and environmental conditions that are controlled for within the model (Figure 

VIII, Table VI). Thus, differences in these trends are relative to average conditions, and 

individual reserves may demonstrate larger or smaller biomass build-up over time depending 

on fish groups and/or families (e.g. McClanahan et al. 2007).  

 

In an effort to minimize costs to users, many marine reserves, particularly the large ones, tend 

to be placed in remote locations that experience low human pressure  (Devillers et al. 2015; 

O’Leary et al. 2018). However, critics of marine reserves in remote locations suggest that 

limited resources could be better-spent protecting areas under higher threat that could 

potentially yield greater conservation gains (Devillers et al. 2015; Ferraro & Pressey 2015; 

Pressey et al. 2015). The results make explicit the types of benefits – and the limitations- to 

placing reserves in high versus low human impact locations. The results illustrate a critical 

ecological tradeoff inherent in the placement of marine reserves: high gravity reserves can 

have the substantial conservation gains for fish biomass (Figure 4.6 A), yet they are unlikely to 
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support key ecosystem functions like predation, even with high levels of compliance (Figure 

4.6 B). This highlights the importance of having clear objectives for conservation initiatives 

and recognizing the tradeoffs involved (Beger et al. 2015; Boon & Beger 2016).  

 

This analysis does not allow us to uncover the mechanisms behind why it might be observed 

the greatest differences in top predators between marine reserves and fished areas in low 

gravity locations. A plausible explanation is that top predators such as sharks are particularly 

vulnerable to fishing (Dulvy et al. 2004) and are exposed to some fishing even in the most 

remote fished areas because of the extremely high price for shark fins (shark fins can fetch 

US$960/kg in wholesale markets, (Clark 2014); compared to only $43/kg for parrotfish, 

(Thyresson et al. 2011). Thus, even small amounts of fishing in remote openly fished areas 

may be depleting top predators, which creates a large difference between fished areas and 

marine reserves. This difference may diminish along the gravity because top predators tend 

to have large home range (Krueck Nils et al. 2017), and there were only small reserves in high 

gravity locations (Figure X), which may mean that existing high gravity reserves are not likely 

big enough to support the large home ranges of many predators (Green et al. 2014; Krueck 

Nils et al. 2017).  

 

Successful conservation also depends on a range of social considerations (Bennett et al. 2017). 

For example, gear restrictions often have greater support from local fishers (McClanahan & 

Abunge 2016) and are usually implemented over greater reef areas than marine reserves. 

Conservation gains can be produced by gear restrictions, though they are low relative to 

marine reserves (Figure 4.6). Thus, in locations where a lack of support makes establishing 

marine reserves untenable, gear restrictions may still provide incremental gains towards 

achieving some conservation goals (MacNeil et al. 2015) particularly for specific fish groups 

and/or families . 

 

As a supplemental analysis, the conservation gains for biomass of non-target species were 

examined (Figure VIII D). This supplemental analysis addresses whether the effects of gravity 

on reef fish communities are from fishing or other impacts, such as sedimentation or pollution. 

Very different patterns for non-target species compared to target species were found, 
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suggesting the relationship between target fish biomass and gravity (Figure VIII) is primarily 

driven by fishing pressure.  

 

4.2.4.3. Securing the future of coral reefs 

Overall, the results demonstrate that the capacity to not only sustain reef fish biomass and 

the presence of top predators, but also the potential to achieve conservation gains, may be 

highly dependent on the level of human impact in the surrounding seascape. It is therefore 

essential to consider the global context of present and future human gravity in coral reef 

governance. 

 

The ways in which gravity will increase over time, and how the impacts of gravity on reef 

systems can be reduced is of substantial concern for coral reef governance. The potential 

benefits of protecting locations that are currently remote could increase over time as human 

populations and the accessibility of reefs change (Watson et al. 2015). Demographic 

projections of high migration and fertility rates in some countries suggest substantial increases 

in coastal human populations in developing countries, where the majority of coral reefs are 

located (Mora et al. 2011; Gerland et al. 2014; Mora 2014, 2015). Development projects that 

address high rates of fertility through improvements in women’s education, empowerment, 

and the expansion of family planning opportunities have successfully reduced fertility rates 

(Cottingham et al. 2012; Sen 2013). Such initiatives, when partnered with resource 

management, have the potential to be beneficial to both people and reefs. Demographic 

changes such as increased migration in coastal areas are also expected to be coupled with 

coastal development and road building that will increase the accessibility of reefs. For 

example, previously uninhabited areas have become more accessible, as evidenced by China’s 

recent Belt and Roads Initiative (BRI) and island building enterprise in the South China Sea 

(Mora et al. 2016; Alamgir et al. 2017; Laurance & Arrea 2017). Investments in sustainable 

planning of coastal development and road building could help to minimize unnecessary 

increases in reef accessibility. Importantly, stemming increases in gravity is only part of the 

potential solution space- it will also be important to dampen the mechanisms through which 

gravity operates, such that a given level of gravity can have a lesser impact on reef systems 

(Hughes et al. 2017a). People’s environmental behavior is fundamentally driven by their social 

norms, tastes, values, practices, and preferences (Hicks et al. 2016), all of which can be altered 



 101 

by policies, media, and other campaigns in ways that could change the local relationship 

between gravity and reef degradation.  

 

 Gravity future directions  

The gravity index makes several key assumptions that could potentially be refined in further 

applications. First, the application of gravity held friction constant across each specific type of 

surface (i.e. all paved roads had the same friction value). Future applications of more localized 

studies could vary travel time to reflect the quality of road networks, topographic barriers to 

access (such as cliffs), and the availability of technology. Likewise, future applications could 

also aim to incorporate local information about fishing fleet efficiency. Secondly, the 

adaptation of the gravity model (Anderson 2011) is unidirectional, assuming a constant level 

of attraction from any reef (i.e. gravity varies based on human population size, but not on the 

quality or quantity of fish on a specific reef). Reefs with more fish, or higher fish value, could 

be more attractive and exert a higher pull for exploitation (Berkes et al. 2006). Likewise, 

societal values and preferences can also make certain fish more or less attractive. The 

adaptation of gravity was designed to examine the observed conditions of reefs as a function 

of potential interactions with markets and local settlements, so the modification of the 

concept for this application was appropriate. However, future applications wishing to predict 

where reefs may be most vulnerable might wish to consider incorporating fish biomass or 

composition (i.e. potential market price of reef fish) in the gravity equation. Third, the 

database considered here was not designed to look at ecological changes in a single location 

over time. However, future applications could examine whether ecological recovery in 

reserves (MacNeil et al. 2015) depends on the level of gravity present. To this end, a global 

dataset of gravity for every reef pixel globally was provided. 

 

 

 Conclusion  

This study demonstrates that human impacts deplete reef fish stocks and how certain types 

of management can mediate, but not eliminate these pressures. In an era of increasing 

change, the global network of marine reserves may not safeguard reef fish communities from 

human impacts adequately enough to ensure key ecological functions such as predation are 

sustained. Efforts must be made to both reduce and dampen key drivers of change (Cinner & 
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Kittinger 2015; Hughes et al. 2017a), while maintaining or improving the wellbeing of reef 

dependent people. Importantly, the study finds evidence that both remote and human-

surrounded reserves can produce different types of conservation gains. Ultimately, multiple 

forms of management are needed across the seascape to sustain coral reef fishes and the 

people that depend on them. 
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 Community-wide scan flags fish species associated with coral reef 

services across the Indo-Pacific 4 

 

 

 

“We should preserve every scrap of biodiversity as priceless while we learn to use it and come 

to understand what it means to humanity” - Edward O. Wilson, American biologist, ‘the father 

of sociobiology’ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                       
4 Published as Maire, E., Villéger, S., Graham, N., Hoey, A., Cinner, J., Ferse, S., Aliaume, C., Booth, D., 

Feary, D., Kulbicki, M., Sandin, S., Vigliola, L., Mouillot, D. (2018). Community-wide scan flags fish 

species associated to coral reef services globally. Proc. R. Soc. B. 20181167, doi: 

10.1098/rspb.2018.1167 
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 Introduction 

Within the context of global changes and biodiversity loss, effective ecosystem management 

relies on a better understanding of the causal pathways between ecological communities and 

the myriad of services they sustain (Cardinale et al. 2012; Cheung et al. 2016; Ricketts et al. 

2016; Ratcliffe et al. 2017). Experiments that manipulate community compositions have 

unambiguously demonstrated the positive effect of species diversity on ecosystem 

functioning over short and long timescales (Cardinale et al. 2006; Isbell et al. 2011; Isbell et al. 

2015; Isbell et al. 2018). Recent studies have also convincingly shown that natural species-rich 

communities are more productive and can deliver higher rates of ecosystem services than 

impoverished communities (Grace et al. 2016; Duffy et al. 2017). Beyond the mere number of 

species, the diversity of species traits and evolutionary histories have been shown to promote 

ecosystem functioning in both controlled experiments and natural communities (Cadotte et 

al. 2009; Flynn et al. 2011; Mora et al. 2014; Gross et al. 2017). In parallel, another line of 

evidence suggests that particular species are key to ecosystem functioning as they contribute 

disproportionally to certain processes when present (Bellwood et al. 2012; Reich 2012; Bozec 

et al. 2016; Tobner et al. 2016; Meyer et al. 2018). However, identifying these key species 

remains highly challenging in diverse ecosystems, such as tropical reefs or rainforests, where 

many species co-occur and can have multiple or unique contributions to ecosystem functions 

and services (Bozec et al. 2016; Pigot et al. 2016).  

 

To tackle this challenge, ecologists can now use the increasing availability of extensive and 

standardized databases that have compiled environmental, social and ecological information 

across space and time (Cinner et al. 2016; Duffy et al. 2017). This emergence of large social-

ecological databases parallels what happened 20 years ago in genetics with advances in 

genome sequencing generating millions of genetic variants for individual loci. To identify 

genetic variants among this myriad of sequences that are more frequent in people with a 

particular disease or traits of biomedical significance, genome-wide scans or genome-wide 

association studies (GWAS) were developed (Bush & Moore 2012). Such an approach is 

powerful to relate a given biological feature or trait to its underlying genetics, based on the 

simple idea that if a genetic variant increases the frequency of a given trait it should be more 

frequent in individuals with this trait than expected by chance (Visscher et al. 2017). Although 

this approach does not attribute causality, it can uncover previously unsuspected, yet 
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important, potential biological mechanisms and pathways (McCarthy & Hirschhorn 2008). 

Although similar approaches have not been used in ecology, they hold much promise in 

empirical community ecology where only a few, among dozens or even hundreds of species 

(the ecological equivalents of genetic variants) can disproportionally drive ecosystem 

functioning and the delivery of services (the equivalents of diseases, traits or phenotypes) 

(Bellwood et al. 2006; Straub & Snyder 2006; Bozec et al. 2016; Meyer et al. 2018). This 

approach could also reveal the unknown level of ecological pleiotropy in communities, i.e. the 

propensity that a single species can be key to many ecological functions and services (Hooper 

et al. 2005; Gascon et al. 2015). This term was initially coined by Strauss & Irwin (2004) [48] 

by analogy to genetic pleiotropy, where one gene can influence two or more seemingly 

unrelated phenotypic traits. Under ecological pleiotropy a few species, so only a small fraction 

of biodiversity, may underpin many different ecosystem functions or services and would 

deserve particular conservation actions. 

 

Identifying functionally important or key species is particularly challenging in biodiverse 

ecosystems, due largely to the complexity of interactions between species and with their 

environment including human disturbances. For example, despite the large body of research 

on coral reefs, the identification of fish species that disproportionally drive ecosystem 

functioning is still in its infancy (Hoey & Bellwood 2009; Bellwood et al. 2012). The functional 

importance of most coral reef fishes is still poorly understood, and no study has scanned entire 

fish communities to detect potential links with ecosystem functioning and services at large 

scale. Here, I develop a new community-wide scan (CWS) approach, analogous to the GWAS 

approach, to identify key fish species that are linked to the delivery of services on coral reef 

ecosystems. Here ‘key’ has a different meaning than ‘keystone’ which corresponds to a 

“species whose effect is large, and disproportionately large relative to its abundance” (Paine 

1966; Power et al. 1996). Here, I define key species as those consistently and significantly 

associated, i.e. above a certain statistical threshold, to a certain level of ecosystem functioning 

or services. 

 

More precisely, I propose a statistical framework and use empirical data from 1,824 Indo-

Pacific coral reefs hosting ~400 fish species to determine species whose presence is 

disproportionately related to fish biomass and live coral cover which insure, for instance, 
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fisheries yield (McClanahan Timothy 2018) and coastal protection (Harris et al. 2018), 

respectively. I then place those key species on a reef fish phylogeny, and in a functional trait 

space (Villeger et al. 2008) to show the extent of species traits and evolutionary lineages that 

are necessary to sustain these two services on coral reefs. Identifying key species can provide 

new research priorities to elucidate ecological processes by which such candidate species 

positively affect coral reefs and to motivate a diversification of management options to 

maintain fish communities and their associated services in the face of a highly uncertain 

future. 

 

 

 Material and methods 

 General framework 

The Community-Wide Scan (CWS) framework to identify species that are associated with 

higher levels of ecosystem services involves three steps (Figure 5.1): (i) collecting 

environmental, socioeconomic, species presence and/or abundance, and indicators of 

ecosystem services data across many sites; (ii) modelling a given (or several) ecosystem 

service as a function of this large set of predictor variables (socioeconomic, environmental 

conditions, and species richness). The accuracy and parsimony of this comprehensive initial, 

or reference, model (M0) is validated according to its R2 and its Akaike Information Criterion 

(AICM0), respectively; (iii) testing the effect of each species separately on each ecosystem 

service beyond the effect of previous variables including species richness. For this, the 

presence of a given candidate species in a community (coded as a binary variable) is added as 

an explanatory variable to M0. The resulting model M1, so the importance of the candidate 

species to explain variations of a given ecosystem service, is evaluated according to its AIC 

(AICM1K). A species is declared as a potential key contributor to the ecosystem service if ∆AIC 

(AICM0-AICM1k) > 4 and if its partial effect is positive (Figure 5.1). 
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Figure 5.1 | Statistical framework to assess the significant potential contribution of species 

to ecosystem services beyond the effects of environmental and socioeconomic conditions 

and species richness. 

 

Step 1: Collecting datasets: for a (large) set of sites, variables describing a given ecosystem 

service (Y), Environmental (E) and Socio-Economic conditions (SE), and the occurrence of 

species. Species richness (R) is computed for each site from the Sites-Species matrix as well as 

the vector (Sk) with presence-absence of each species in sites.  

Step 2: The goal is to model a given ecosystem service (Y) according to Environmental (E) and 

Socio-Economic conditions (SE) and species richness (R); to check its relevance according to its 

explanatory power and to save its Akaike Information Criterion (AICM0) as a reference for the 

next step.  

Step 3: The goal is to identify species key for the studied ecosystem service (Y) adding each 

candidate species (presence-absence, Sk) as an additional explanatory variable to M0 to 

compute model M1 and its associated AIC (AICM1k). Finally, a species is declared as a key 

potential contributor to the ecosystem service if ∆AIC (AICM0-AICM1k) > 4 and if its partial effect 

is positive (positive coefficient in the model). 
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 Coral reef data 

Coral reef services. The proxies for coral reef services considered in the study are fish biomass 

and live coral cover which support, among many others, food security, shoreline protection 

and recreational value (Burke et al. 2011; Kittinger et al. 2012; Harris et al. 2018; McClanahan 

Timothy 2018). Fish biomass and coral cover are already monitored at the global scale using 

visual censuses as well as underwater video surveys (e.g. Reef Life Survey, Catlin Sea Survey) 

and are highly sensitive to local human activities (e.g. fishing, habitat destruction, pollution) 

and global climate change (Hughes et al. 2018) and thus, can be considered as key variables 

for the health and productivity of coral reefs (Bozec et al. 2016; Cinner et al. 2016; Hughes et al. 

2017b). I used data from 1,824 coral reefs in 26 nations/states located across the Indo-Pacific 

which include fish biomass (Figure S1) and live coral cover (Figure S2) estimates (details are 

provided in the Supplementary Material).  

 

Initial models and species candidates. For each of the 1,824 reefs located in the Indo-Pacific I 

collected and used 12 relevant social and environmental variables (listed below), together 

with the occurrence, abundance and size of 739 reef fish species (Cinner et al. 2016). To build 

the initial model (M0) and estimate the reference Akaike Information Criterion (AICM0) I 

modelled fish biomass and live coral cover using linear mixed models (LMM) with the 

complete set of socioeconomic and environmental conditions plus species richness as 

predictor variables. For each of the 739-fish species present in this dataset, I estimated the 

number of reefs where a given fish species was present. To avoid results only influenced by a 

few reefs I chose to remove rare species. Rarity can be seen as a relative (compared to other 

species) or absolute (compared to the number of sampled reefs) concept while cut-offs are 

always subjective (Gaston 1994; Leroy et al. 2012). Here I excluded species present on less 

than 1% of the reefs (i.e. 18 and 7 reefs for fish biomass and coral cover dataset, respectively), 

so I retained 381 species which corresponds to roughly half (51%) of the species pool, a 

conservative threshold to define rarity (Gaston 1994). These 381 fish species belonged to 116 

genera and 30 families were considered as potential candidate species. 

 

 Identifying potential key contributors to ecosystem services.  

Each of the 381 species was tested as candidate for improving prediction of reef fish biomass 

and live coral cover given the socioeconomic and environmental conditions at each study site. 
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More precisely, I tested presence of each candidate species as an additional explanatory 

binary variable to M0 to compute model M1 and its associated AIC (AICM1K). Finally, a species 

was identified as a potential key contributor to a given ecosystem service if, when included, 

∆AIC > 4 and if its partial effect was positive (positive coefficient in the model). The binary 

variable describing the presence/absence of a species was strictly related to its occurrence in 

this study (i.e. presence of at least 1 individual) but could be also determined using any relative 

abundance threshold (Figure 5.1 and Supplementary Material). 

 

 Environmental and socioeconomic variables.  

The variables included in the models were environmental: 1) oceanic productivity, 2) habitat 

type, 3) depth and socioeconomic: 4) management 5) local human population growth rate, 6) 

gravity of local population, 7) gravity of markets, 8) levels of human development (Human 

Development Index), 9) human population size, 10) levels of tourism, 11) degree of voice and 

accountability of citizens, and 12) reef fish landings (tons)/km2 of reef (definitions and details 

are provided in Chapter 2 and in the Supplementary Material). 

 

 Statistical analyses.  

I first built two linear mixed models (LMM), which predicted fish biomass and live coral cover 

respectively, while accounting for the different scales at which the data were collected as 

random effects (reef location, site, and nation/state, see Supplementary Material), with 12 

key environmental and socioeconomic variables expected to influence reef conditions (Cinner 

et al. 2016; Cinner et al. 2018) and fish species richness as fixed effects (Supplementary 

Material). To evaluate the fit of the two linear mixed models, I checked the relationship 

between observed and predicted values. Model validation and quality control procedures are 

described in the Supplementary Material.  

In order to quantify the potential net benefit of each identified key species, I extracted the net 

effect of each key species for biomass and live coral cover using a partial plot from linear mixed 

models while the other variables were held constant.  

I next investigated whether reefs with several key species show high levels of fish biomass and 

live coral cover. To control for the effects of species richness I compared modelled estimates 

of fish biomass and live coral between reefs while increasing the number of key species. I 

estimated the number of key species present on each reef and chose the richest quartile as a 
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threshold (i.e. 4 and 6 key species for biomass and live coral cover respectively). I next created 

3 categories of reefs: those with no key species, those with at least one key species but below 

the richness threshold (4 and 6 for biomass and live coral cover respectively) and those with 

more key species than the threshold. 

 

 Functional space and entities.  

The 381 candidate fish species were functionally described using six traits: (1) size, (2) 

mobility, (3) period of activity, (4) schooling, (5) vertical position in the water column, and (6) 

diet. Values for these six traits were taken from the global trait database on tropical reef fishes 

from Mouillot et al. (2014) (Mouillot et al. 2014) (Supplementary Material). Since all traits 

were categorical, species with identical traits were grouped into functional entities. The 381 

candidate species represented 240 functional entities and most functional entities comprise 

species from different genera (Mouillot et al. 2014).  

I assessed functional richness (FRic), i.e. the functional space occupied by the key fish species 

for biomass and coral cover respectively, using the convex hull volume index proposed by 

Cornwell et al. (2006) (Cornwell et al. 2006). This volume corresponds to the amount of 

multidimensional (four in this case) functional space filled by key species, where axes are 

defined by species traits. 

 

 Fish phylogeny.  

I used a time-calibrated phylogeny of Acanthomorph fishes (Near et al. 2013) which covers all 

30 reef fish families of the present study (Table S1). Some fish genera (e.g. Elagatis and 

Parupeneus for example) recorded on reefs were missing in this phylogeny.  

 

 Results 

 Predictability of fish biomass and coral cover 

The two initial (M0) models explained 79% and 61% of the variance in fish biomass and live 

coral cover, respectively (Figure S3; Supplementary Material). The residuals of the two models 

were normally distributed (Figure S3). In total, 8 and 6 variables had the highest importance 

(Akaike weight = 1) in predicting fish biomass and live coral cover, respectively (Tables S2 & 

S3). Fish species richness, oceanic productivity, population size, tourism and census method 

were the main predictors of both fish biomass and coral cover. Depth, management, and 
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sampling area were also important predictors of fish biomass while habitat type was 

important in predicting coral cover (Tables S2 & S3).  

 

 Key species associated with reef fish biomass  

Among the 381 fish species considered as candidates, only 26 species (7%) were significantly 

related to fish biomass beyond the initial set of variables (∆AIC > 4 and positive effect), after 

considering their presence (at least 1 individual) (Table S4). Those 26 key species covered a 

wide breadth of phylogenetic lineages (Figure 5.2), representing 16 out of 116 genera and 8 

out of 30 families (i.e. Acanthuridae, Carangidae, Labridae, Lethrinidae, Lutjanidae, Mullidae, 

Scombridae, Serranidae).  

 

When considering functional traits, I found that those 26 key species represented 24 different 

functional entities (Table S6) demonstrating a very low functional redundancy with 1.1 species 

per functional entity (median=1; range: 1-2). In addition, key species had contrasting 

functional traits with all body sizes (from 10cm to > 50cm) and all diets (7 trophic categories) 

represented (Table S6). Together these 26 key species filled 20% of the whole functional space 

defined by the 240 functional entities corresponding to the 381 candidate species (FRic = 0.20; 

Figure 5.3). 
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Figure 5.2 | Positions of key species for biomass (red), live coral cover (blue) or both of them 

(purple) represented as their corresponding fish genera in the Tree of Life of Coral Reef 

Fishes, adapted from Near et al. (2013). The 26 key species for biomass represent 16 genera 

while the 28 key species for coral cover represent 15 genera with 4 common genera. Elagatis 

and Parupeneus genera are missing. 
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 Key species associated with live coral cover  

I found that 28 reef fish species out of 381 (7%) were significantly and positively related to 

coral cover (∆AIC > 4), after considering their presence (Table S5). Those 28 key species also 

encompassed a wide breadth of phylogenetic lineages (Figure 5.2), representing 15 out of 116 

genera and 8 out of 30 families (i.e. Acanthuridae, Chaetodontidae, Cirrhitidae, Haemulidae, 

Labridae, Lutjanidae, Monacanthidae, Serranidae). 

When considering functional traits, the 28 key fish species were distributed among 17 

different functional entities (Table S6). Key fish species with regard to coral cover showed 

some degree of functional redundancy with, on average, 1.6 key species per functional entity 

(median=1; range: 1-6 species). This higher functional redundancy translated into a more 

restricted functional space filled by these key species (only 5% with FRic = 0.05; Figure 5.3). 

Species of all sizes (from 10cm to > 50cm) and almost all diets (6 diet categories out of 7) were 

significantly associated with live coral cover. However, large mobile predators and large 

herbivorous fishes were not considered as key for live coral cover (Table S6).  

  

 

Figure 5.3 | Functional attributes of key fish species. In total, 51 fish species which correspond 

to 35 out of 240 functional entities (15%) have been identified as strongly related to high 

biomass (18 red shapes), high live coral cover (11 blue shapes) or both of them (6 purple 

shapes). The positions of each of those 35 functional entities in the 4-dimensional functional 

space are defined according to species trait values. Fish shapes were chosen to illustrate the 
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main genus of the species comprised in each functional entity. Other functional entities are 

represented with grey dots. Colored areas represent the functional volume filled by the 

functional entities that have been identified as strongly related to high biomass (red, FRic = 

0.2), high live coral cover (blue, FRic = 0.05), both of them (purple, FRic = 0.01) or all functional 

entities (e.g. all species, white) present in the dataset.  

 

 Low overlap between species key with regard to fish biomass and coral cover 

The two sets of key fish species associated with total fish biomass and live coral cover (26 and 

28 key species, respectively) each represented less than 10% of the 381 fish species tested as 

candidates. Only three species (Acanthurus albipectoralis, Lutjanus bohar, Lutjanus gibbus) 

were common to both sets while four genera (Acanthurus, Chlorurus, Lutjanus, and Scarus) 

and four families (Acanthuridae, Labridae, Lutjanidae and Serranidae) presented key species 

significantly associated with the two reef services (Figure 5.2, Table S6). 

Only six functional entities were common and significantly associated with both biomass and 

live coral cover (Figure 5.3), namely small and medium herbivores, small planktivores, medium 

and large fishes targeting mobile invertebrates and meso-predators (Table S6).  

 

 The net benefit of key species for fish biomass and live coral cover 

When present, each key species belonged to a community with a median level of fish biomass 

higher (560 kg.ha-1, range: 439-773 kg.ha-1) than the median biomass observed when absent 

(370 kg.ha-1, range: 337-385 kg.ha-1). Similarly, live coral cover was estimated at a median 

value of 50% (range: 36-82%) when each key species was present against 34% (range: 26-38%) 

when absent (Figure 5.4). For clarity, I only presented the net effect of the four most significant 

key species (lowest AIC, Tables S4 & S5) associated with biomass and live coral cover (Figure 

5.4). It is important to note that these four most significant key species (lowest AIC) were not 

necessarily related to the highest level of biomass and coral cover (Figure S4). 
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Figure 5.4 | Net effect of the 4 most significant (lowest AIC) key fish species when present 

for fish biomass (top) and live coral cover (bottom) (among the 26 and 28 key species 

respectively) using a partial plot from the linear mixed models while the other variables are 

held constant. When present, each key species is linked to a median level of biomass and live 

coral cover significantly (p<0.05) higher than the level observed where absent.  

 

It is not only individual key species, but also the accumulation of key species that was linked 

to high levels of ecosystem services. For instance, reefs with more than four key species 

reached a median level of biomass of 1,150 kg.ha-1 (range: 362-3,715 kg.ha-1), i.e. three times 

the median biomass observed (370 kg.ha-1, range: 86-1,380 kg.ha-1) in reefs with an 

intermediate number of key species (from 1 to 3 key species) and more than seven times 

higher than the median level of fish biomass reached in reefs having no key species (156   

kg.ha-1, range: 12-812 kg.ha-1). Although less pronounced, reefs with at least 6 key fish species 

showed a median live coral cover of 40% (range: 20-68%) while reefs with no key species had 

a median level of 31% (range: 18-54%) live coral cover (Figure 5.5). 
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Figure 5.5 | The accumulation of key species co-occurring on coral reefs is positively related 

to fish biomass (left) and live coral cover (right). To control for positive effect of species 

richness on ecosystem functioning, I compared modelled estimates of fish biomass and live 

coral between reefs while increasing the number of co-occurring key species. 3 categories of 

reefs were considered based on the 3rd-quartile of the number of key species as threshold (≥4 

and ≥6 key species for biomass and coral cover, respectively). Reef with the highest number of 

co-occurring key species reached higher levels of biomass (1,150 kg.ha-1) and coral cover (40%) 

than their counterparts having no key species (156 kg.ha-1, 31% respectively). Distributions are 

represented using 95 percent confidence intervals.  

 

 

 Discussion 

 Sustaining healthy and productive coral reefs 

Even if the purpose of the present study was not to disentangle effects of anthropogenic, 

environmental and biodiversity drivers on fish biomass and coral cover, the  results (Tables S2 

& S3) were consistent with previous large-scale studies highlighting the primary importance 

of human density, species richness and ocean productivity on fish biomass and coral cover 

(Mora et al. 2011; Williams et al. 2015a; Duffy et al. 2016).  
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In the present study, many different fish species (~400 species candidates) were scanned and 

only 26 and 28 species were identified as significantly and positively related to fish biomass 

and live coral cover, respectively, with only three species being common to both. In total, 

these 51 species (i.e. ~13% of the species pool tested) represent 35 distinct functional entities 

(out of 240, i.e. 15%) that are widespread in the functional space. While large-bodied species 

may be expected to disproportionately contribute to fish biomass, the results indicate that 

only 25% (7 out of 26, Table S6) of key species for fish biomass were large-bodied (>50cm), 

which is directly comparable to the percentage of large-bodied species among the initial 

candidate species (24% or 91 fish species out of 381). In addition, 35% of key species for fish 

biomass were smaller than 30cm (9 out of 26, Table S6). The positive association with fish 

biomass is thus independent of body size. 

 

It comes as no surprise that some key fish species identified in this study have already 

attracted considerable interest in coral reef ecology. Herbivorous fish support coral reef 

resilience by controlling algal growth, influencing competitive interactions between corals and 

macroalgae, and preventing coral-algal phase shifts (Bellwood et al. 2004; Mumby et al. 2006; 

Hughes et al. 2007; Rasher et al. 2013; Graham et al. 2015; Bozec et al. 2016), and therefore 

may contribute to the maintenance of high coral cover and fish biomass. In particular, scarine 

parrotfishes (i.e., Bolbometopon, Chlorurus, Hipposcarus and Scarus, Tables S4, S5 & S6) play 

critical roles as grazers and bioeroders of the reef substratum (Bellwood et al. 2003; Mumby 

2006), and their abundances have strong positive effects on cover of corals and hence 

accretion rates of the reef (Cramer et al. 2017). Further, grazing and detritivorous acanthurids 

(i.e., Acanthurus and Ctenochaetus, Tables S4, S5 & S6) intensely graze epilithic algal turfs 

(Marshell & Mumby 2012; Rasher et al. 2013), while benthic-feeding unicornfishes (i.e., Naso, 

Tables S4 & S6) play a significant role in macroalgal removal (Fox & Bellwood 2008; Hoey & 

Bellwood 2009).  

 

By contrast, some key species identified in the present study have not previously been 

identified as playing significant roles. While predation is a key process shaping prey behavior 

and populations (Rasher et al. 2017), structuring ecological communities (Boaden & Kingsford 

2015), and promoting nutrient capacity (Allgeier et al. 2016; Allgeier et al. 2017), no individual 

predator species have been expressly identified as beneficial for total fish biomass and coral 
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cover. Here, the study shows that predatory species like Aprion, Caranx, Cephalopholis, 

Elagatis, Gymnosarda, Lethrinus, Lutjanus, Oxycheilinus, and Plectropomus (Figure 5.4, Tables 

S4 & S5, Figure S4) may play a critical role for fish biomass and live coral cover, although the 

exact pathways through which they act remain to be elucidated. 

 

 Low ecological pleiotropy on coral reefs  

The finding that a limited number of functionally and evolutionary different species are 

positively related to high levels of fish biomass and coral cover (Figures 5.2, 5.3 & S4) supports 

the idea that sustaining ecosystem services may require a large breadth of particular 

attributes beyond the number of species (Soliveres et al. 2016; Gross et al. 2017). The limited 

overlap between the two sets of species significantly associated with two reef services (3 

species, 4 genera and 6 functional entities) suggests a low level of ecological pleiotropy 

(Strauss & Irwin 2004), i.e. that a single species, genus or functional entity cannot be key to 

many independent ecosystem functions and services. Extended to the community level, the 

study shows that ecological pleiotropy, the opposite of functional redundancy, is not the norm 

on coral reefs. This finding may explain why the multi-functionality of ecosystems relies more 

strongly on biodiversity than do single functions (Isbell et al. 2011; Lefcheck et al. 2015; 

Soliveres et al. 2016; Gross et al. 2017), since some species play unique and thus irreplaceable 

roles in ecosystems (Bellwood et al. 2006; Petchey et al. 2008). However, it is important to 

keep in mind that the results may change depending on which traits and functions are 

considered in the analysis, and a number of yet unknown but relevant traits or functions not 

considered here could be included in future studies. It suggests that this ecological pleiotropy 

reconciles two opposing views in Biodiversity and Ecosystem Functioning (BEF) research since 

many complementary species groups and lineages, and hence a large amount of biodiversity, 

are necessary to sustain ecosystem multi-functionality and associated services. Rather than 

providing multiple functions individually, those key species appear to provide high benefits in 

terms of fish biomass and live coral cover once combined (Figure 5.5). Maintaining habitat 

heterogeneity and associated processes as well as high species diversity is thus a major 

component of management and conservation. These results call for more species-focused 

management strategies such as the banning of fishing species considered as key for the 

ecosystem (Bozec et al. 2016). Additionally, sustaining multi-functionality also requires a 
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broader portfolio approach which may reduce local extinction risk by securing the biodiversity 

level in an increasingly uncertain future (Webster et al. 2017).  

 

 CWS as a flexible framework to link biodiversity to ecosystem functioning and services 

The community-wide scan (CWS) approach can be adapted for a wide range of ecosystems, 

combinations of taxa or interactions and services. Here I only tested the presence of key 

species, while it would be possible to look for key species groups (pairs or more), key 

evolutionary lineages or even key biotic interactions. Since those interactions are potentially 

multiple in species-rich communities they cannot be experimentally tested but they can 

emerge from empirical data using the CWS approach. The way candidates are tested can be 

modified while respecting independence between predicted and explanatory variables. As 

positive effects of some species may only be revealed beyond particular thresholds, presence 

data can also be determined by any abundance threshold such as a minimum number of 

individuals, cover rate, biomass or level of interactions.  

 

On coral reefs, defining species presence based on distribution of its biomass across study 

area (using upper percentiles or deciles) can promote the inclusion of small-bodied species 

but can also discriminate against species that are not commonly encountered or have skewed 

biomass distributions (Supplementary Material and Table S7-10). Rather, defining species 

presence according to its relative biomass in communities can be applied independently of 

the species biomass distribution. However, I found consistent results between these two 

procedures since the majority of species detected as key species using the intracommunity 

approach are also significant using the intraspecific approach, reinforcing the robustness of 

these findings. Finally, the response of coral communities to disturbances and their recovery 

trajectories remain poorly understood (Holbrook et al. 2016). Application of the CWS 

framework to time-series of reef monitoring could help in defining fish species that may be 

associated with different stages (newly established, recovering, resilient) of coral 

communities.  

 

The CWS framework thus offers a new and flexible way to analyze empirical data relating 

biodiversity to ecosystem functioning and services. CWS studies can also be considered as 

initial forays into a better understanding of the complex relationships between particular 
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species, species groups or interactions and ecosystem functioning and associated services. A 

large number of false-positives, species being detected as key while they are not, may be 

revealed. Furthermore, no causality is determined in this approach; the main merit is to 

identify unsuspected and statistically significant positive associations. The logical progression 

would be to conduct experiments focusing on potential key species or interactions with the 

ultimate aim of highlighting the underlying ecological or biological processes and pathways 

that potentially sustain healthy and productive ecosystems.   

 

 Conclusion 

The community-wide scan (CWS) approach has the potential to reveal unsuspected 

contributions to ecosystem functioning and its associated services, especially in complex and 

biodiverse ecosystems where the detection of such contributions remains challenging. The 

CWS approach holds much promise in empirical BEF studies where only a few species, 

functional or phylogenetic groups, can disproportionally drive ecosystem functioning and the 

delivery of services. Ultimately, the key species identified form tractable conservation targets 

and encourage a diversification of management options to maintain fish species considered as 

key for the ecosystem. Given the growing interest in the assessment and consequences of the 

ongoing extinction crisis on ecosystem functioning, such a framework is extremely timely and 

widely applicable. The present framework offers a new and flexible way to analyze the 

ongoing massive empirical data relating biodiversity to ecosystem functioning and services 

with the potential to reconcile two opposing views: species identity vs. diversity. 
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 General discussion and perspectives 
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 Achievement of objectives and thesis contributions 

 Identifying key species for reef functioning and services 

Research Question 1. Which fish species contribute to maintain coral reef functioning and 

services? 

 

To address Research Question 1, I developed a statistical framework, the ‘Community-Wide 

Scan’ (CWS) analogous to the genome-wide scan, to determine which species are necessary 

to maintain ecosystem functioning beyond environmental and anthropogenic conditions. 

Within the context of global changes and biodiversity loss, restoring reefs to past 

configurations is no longer an option in the Anthropocene. Instead, we need a clearer 

understanding of multiple drivers and ecosystem responses to better anticipate the potential 

futures of coral reefs under various scenarios. Effective ecosystem management relies on a 

better understanding of the causal pathways between ecological communities and the myriad 

of services they sustain (Cardinale et al. 2012; Cheung et al. 2016; Ricketts et al. 2016; Ratcliffe 

et al. 2017).  

 

The CWS has the potential to reveal unsuspected species that overcontribute to ecosystem 

functioning and its associated services and appears particularly useful in complex and 

biodiverse ecosystems where many species co-occur and can have multiple or unique 

contributions to ecosystem functions and services (Bozec et al. 2016; Pigot et al. 2016). In 

Chapter 5, I applied this framework to identify key fish species that are significantly linked to 

the biomass and coral cover on Indo-Pacific reefs and I found that only a limited set of species 

(51 out of approx. 400, approx. 13%), belonging to various functional groups and evolutionary 

lineages, are strongly and positively associated with fish biomass and live coral cover. Many 

of these species have not previously been identified as functionally important, and thus may 

be involved in unknown, yet important, biological mechanisms that help sustain healthy and 

productive coral reefs.  

 

In some places the establishment of marine reserves is not practical and selectively banning 

or restricting fishing gears can be an effective tool to manage coral reefs (MacNeil et al. 2015; 

Campbell et al. 2018). Key species identified in Chapter 5 could represent conservation targets 

and thus, encourage species-focused management strategies to maintain fish species 
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considered as fish biomass and coral cover and provide higher level of ecosystem functioning. 

Such measures can be beneficial for both ecosystems and people. 

The CWS approach holds much promise in empirical BEF studies where only a few species, 

functional or phylogenetic groups, can disproportionally drive ecosystem functioning and the 

delivery of services. Moreover, the framework I developed is not only limited to coral reef 

systems and can examine the complex relationships between biodiversity and ecosystem 

functioning for a wide range of ecosystems. It offers a new and flexible way to analyze the 

ongoing massive empirical data relating biodiversity to ecosystem functioning and services 

with the potential to guide management strategies as well as new experiments to decipher 

underlying ecological processes.  

 

 Redefining human impacts on coral reef systems 

Research Question 2. How can we improve our understanding of how people affect reefs by 

accounting for the degree of accessibility to reefs by human populations? 

 

To address Research Question 2, one major objective of the thesis was to develop new metrics 

of human accessibility on coral reefs taking into account the heterogeneity of the seascape 

and taking advantage of the most up-to-date spatial information and optimization algorithms 

(Chapter 2). Accessibility is an important determinant of people’s ability to use natural 

resources and ultimately, has raised serious ecological and management issues (Berkes et al. 

2006; Rockström et al. 2009; Steffen et al. 2011). However, measuring the extent to which 

global marine resources are accessible to humans was strictly limited to examining the linear 

distance between fishing grounds and markets or ports (Watson et al. 2015). Nonetheless, for 

most coastal ecosystems and artisanal fisheries, this linear distance ignores ragged coastlines, 

road networks and other features that can affect the time required to reach fishing grounds 

and ultimately can produce biased conclusions. 

 

Specifically, even if only few studies have considered accessibility to characterise the condition 

of marine ecosystems, the thesis used local (Chapter 3), national (Chapter 2) and global 

studies (Chapters 4 and 5) and proved that accessibility is a key driver of resource exploitation 

on coral reefs. Accessibility through the travel time or the gravity metric provided a better 
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comprehension of the drivers of fish biomass and the thesis has contributed to the emergence 

of potential solutions to sustain coral reefs as social-ecological systems by: 

 

(i) Identifying ‘bright spots’ among coral reefs (Cinner et al. 2016) which are reefs with 

more fish than expected based on their exposure to pressures such as human 

population, poverty, and unfavourable environmental conditions. Bright spots are 

reefs that have more fish biomass than they should, given the pressures they face 

and are not necessarily pristine reefs. Thus, the bright spots offer a good 

opportunity to learn from their success and identify some conservations solutions 

that can be applied more broadly across the world’s coral reefs.  

 

(ii) Proposing opportunities for conservation benefits given human pressure (low, 

moderate, high gravity) and ecological outcomes (targeted biomass or top 

predators). Even if the success of conservation is highly variable and depend on a 

wide range of social considerations (Bennett et al. 2017), the potential 

conservation benefits found in Chapter 4 can help to guide the location and the 

type of future management actions according to the local human gravity and 

support to establish protection.  

 

Assessing the ability of management actions to be beneficial for both people and ecosystems 

first requires an accurate assessment of how human populations affect coral reefs and their 

resources. Thus, the implementation of travel time and gravity represents the first essential 

step and presents multiple applications.   

 

 Improving our ability to predict variations of fish biomass on coral reefs 

Coral reefs contain the most diverse fish assemblages worldwide and it is clear that 

biodiversity determines, at least partly, fish biomass in conjunction with sea surface 

temperature, productivity and human impacts (Mora et al. 2011; Williams et al. 2015b; Duffy 

et al. 2016; Maire et al. 2018a). More broadly, biodiversity would promote high productivity, 

resistance and resilience of ecosystems in the face of climate change (Isbell et al. 2015; Duffy 

et al. 2016; Isbell et al. 2018). However, the processes by which this positive biodiversity effect 
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is acting remains under scrutiny (McClain et al. 2016; Soliveres et al. 2016; Mori et al. 2018);  

and sometimes controversial (Mora et al. 2014). 

 

To disentangle the relationships between biodiversity, ecosystem functioning and human 

impacts, the thesis contributed to improve the explanation of variations in fish biomass on 

coral reefs through (i) a more accurate quantification of human impacts and (ii) a community-

wide scan approach to identify key species, functional groups and evolutionary lineages. I used 

the global dataset on coral reefs (see Annexes, ‘Global dataset on coral reefs used during the 

thesis’ section) and modelled fish biomass using socio-economic and environmental covariates 

expected to influence reef conditions (Cinner et al. 2016; Cinner et al. 2018) . This analysis 

then consisted on a comparison of a series of models that predicted fish biomass including 

different variables such as (0) linear distance from the nearest market, (1) travel time from 

the nearest market, (2) total gravity, (3) total gravity and species richness and (4) total gravity, 

species richness and the number of fish species defined as “key” for biomass (Chapter 5).  

 

At global scale, the model including travel time provides a better explanation of fish biomass 

than linear distance (4 units-lower AIC) and explains 58% of the variance observed (Figure 6.1), 

even if linear distance and travel time are highly correlated globally (Chapter 2). It means that 

locally or regionally (see Madagascar or New-Caledonia Chapters 2 & 3) this correlation is not 

so high owing to heterogenous seascape and accessibility patterns across land. Compared to 

travel time, total gravity provides the best predictive model (23 units-lower AIC) of fish 

biomass while the proportion of variance explained by the gravity model is slightly higher (60% 

see Figure 6.1). In short, new metrics of human impacts based on accessibility provide a better 

explanation of fish biomass compared to linear distance with a more likely model given the 

combination of covariates (lower AIC implies higher maximum likelihood as the number of 

parameters is hold constant). 

  

When considering total gravity and species richness, the model still provides a better 

explanation of fish biomass (>1000 units-lower AIC) and explains 0.77% of the variance 

observed. There is no surprise as it has already been shown that species richness is a major 

driver of fish biomass (Duffy et al. 2016). However, some species can have more influence on 

ecosystem functioning than others and can considered as key for a given process function or 
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service. So lastly, the best model is obtained when adding gravity, species richness and key 

species (50 units-lower AIC) and explains 78% of the variance explained (Figure 6.1). Once 

again, the best improvement is related to the maximization of log-likelihood and thus, optimal 

values of the estimated coefficients. 

 

 

Figure 6.1 | Comparison of a series of models that predicted fish biomass including different 

variables such as (0) linear distance from the nearest market, (1) travel time from the nearest 

market, (2) total gravity, (3) total gravity and species richness and (4) total gravity, species 

richness and the number of key fish species. The same pool of environmental and socio-

economic covariates expected to influence fish biomass is included in every model.  

 

 Open-source data 

To facilitate applications related to coral reefs accessibility, potential travel time estimates 

(Chapter 2) and gravity of human impacts (Chapter 4), global spatial layers at 10 km-resolution 

are freely available (Cinner & Maire 2018). 
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CWS framework offers a new and flexible way to analyze the ongoing massive empirical data 

relating biodiversity to ecosystem functioning and services, thus codes and data supporting 

the analysis are freely available in a public repository (Maire et al. 2018b). 

 

 

 Limits 

Refining travel time in accordance with local infrastructures and technology 

In the first assessment of travel time (Chapter 2), speed values required to cross the different 

types of land cover were adapted from a global assessment of travel time between major 

cities (Nelson, 2008). These assume that road and maritime travels are made by motorized 

vehicles while off road travel is foot based. This also supposes a single value or a single 

motorized vehicle for all the countries while many reefs are located in developing countries 

where wooden canoes are commonly used and motorized vehicles are not so common. Future 

applications should consider variable travel speeds according to per capita Gross Domestic 

Product or empirical values in order to reflect different levels of infrastructure and technology 

in developed versus developing countries.  

Also, only simple fishing trips to reach a given reef were considered while longer trips can be 

undertaken. In such cases, fish preservation and associated requirements are essential for the 

expansion of fisheries. When available, future studies should consider whether vessels are 

equipped with on board freezers, cold storage or any storage facility. 

 

 

Escaping the spatial resolution constraint to assess travel time 

The least-cost distance algorithm used to assess travel time, requires a friction-surface grid 

where each cell contains a unique cost value according to land cover. As regular spatial grids, 

the friction-surface uses a specified resolution (a 1km-resolution was used for the global 

assessment of travel time in Chapter 2) which determines the size of every cell. Consequently, 

landscape heterogeneity would be smoothed and road networks would have a minimum 

width constrained by the resolution of the grid. A more relevant alternative would be to 

implement a network-based spatial analysis which is a spatial tool commonly used in GPS 

devices to define the fastest path between two locations. Adapting such tools is very 

promising as it may provide more realistic travel time estimates while modulating speed 
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values according to local constraints (roadworks), facilities (infrastructures) or technology 

(engines). Nonetheless, its implementation has just begun and still needs more computing 

work. First trials were used in Chapter 3, where field campaigns in Madagascar have enabled 

to (i) validate spatial road networks available in OpenStreetMap©, (ii) complete missing roads 

using GPS tracks, and (iii) check road surface and associated speeds of the transport modes 

used by Malagasy people (bicycle, motorcycle, four-wheel drive etc.). These three steps are 

crucial for a more realistic implementation of network-based assessment of travel time.   

 

Re-thinking travel time and gravity 

Travel time computation assumes that each trip is unidirectional, so with a constant level of 

attraction from any reef. Reefs with more fish, or higher fish value (like trophy or particular 

commercial interest), could be more attractive and lead to even greater exploitation (Berkes 

et al. 2006). Indeed, gravity varies based on human population size, but not on the quality or 

quantity of fish on a specific reef, therefore incorporating fish biomass or composition through 

potential market price of reef fish could modulate the attraction from a given reef.  

In the same vein, the spatial allocation of fishing effort is not a random process since 

fishermen could favor specific reefs which are not necessarily the most productive. Thus, the 

‘potential’ travel can fail to capture the real fishing effort experienced by reefs.  

 

Human impact on fish communities 

Reef fish biomass can reflect a broad selection of reef fish functioning and benthic condition 

(McClanahan et al. 2011a; Mora et al. 2011; Edwards et al. 2014; MacNeil et al. 2015), and is 

a key metric of resource availability for reef fisheries. Nonetheless, coral reefs provide 

numerous ecosystems services and the delivery of these services relies on critical ecosystem 

functions performed by fishes (Bellwood et al. 2004; Bozec et al. 2016) which are not fully 

captured when considering only fish biomass. It has also been shown that fish size, rather than 

biomass, can be a better predictor of the resilience and the recovery of life-history 

characteristics of fish communities (Houk et al. 2014; McClanahan & Graham 2015). However, 

more work is needed to determine how human impacts affect the composition and the length 

distribution of fish communities.  
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 Future research directions 

Predicting the future human impacts on reefs.  

The global network of roads is rapidly expanding under multiple needs of accessibility to 

resources, industries, and infrastructures. Most of the 25 million kilometers of new roads 

anticipated by 2050 will be built in developing countries to sustain their social and economic 

development, but this could have profound impacts on biodiversity (Laurance et al. 2014). The 

spread of this road network in the last terrestrial wilderness areas (e.g. Amazon) and its 

ecological consequences have been widely documented particularly the accentuated 

depletion of natural resources (Barber et al. 2014). Comparatively the impact of road 

construction on marine ecosystems remains largely overlooked (Schmitt & Kramer 2010). 

Firstly, travel time provides a framework to assess scenarios of future road development on 

reef systems, highlighting potential ecological consequences and trade-offs associated with 

specific plans. Development of new and faster roads along the coasts will increase the 

accessibility of some reefs to humans (Chapter 2), likely resulting in overfishing and potential 

impacts on corals (Mumby et al. 2006; Hughes et al. 2007). Travel time calculations using 

future scenarios of road building may help to identify reefs that are particularly at risk and 

develop potential alternatives that could still meet socioeconomic goals with less 

environmental impact.  

Secondly, the ways in which gravity will increase over time may be crucial to sustaining coral 

reef social-ecological systems. Demographic projections of high migration and fertility rates in 

some countries predict substantial increases in coastal human populations in developing 

countries, where the majority of coral reefs are located (Gerland et al. 2014; Mora 2014, 

2015). More specifically, the highest population growth are expected in Africa (Gerland et al. 

2014) where millions of people are food insecure (Black et al. 2013; FAO 2016). Moreover, 

demographic changes such as increased migration in coastal areas are also expected to be 

coupled with coastal development and road building that will increase the accessibility of 

reefs. Predicting the future accessibility of reefs and ultimately the future gravity may become 

a matter of substantial concern for coral reef governance and still requires more 

consideration.  

More broadly, scenario analysis has long been identified as a strategic management tool to 

explore future changes and associated impacts for supporting adaptation decision-making 

under uncertainty. Better anticipating biodiversity and ecosystem trajectories requires diverse 
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information about the future including climate, socio-economic, and policy dimensions. A 

global scenario framework (RCP–SSP–SPA) including three components: (i) climate through 

Representative Concentration Pathways (RCP), (ii) society and economy through Shared Socio-

economic Pathways (SSP), and (iii) adaptation and mitigation through Shared climate Policy 

Assumptions (SPA), has been developed by the Intergovernmental Panel on Climate Change 

Fifth Assessment Report (IPCC-AR5) to better predict the future world development and its 

impact on ecosystems. Diverse initiatives have emerged to apply and couple these three 

components (RCP, SSP, SPA) at smaller scale, which have proven to be more effective (Boke-

Olén et al. 2017; Kebede et al. 2018; Kummu et al. 2018). In the same vein, some studies have 

already demonstrated how travel time from cities can be a robust predictive variable in 

diverse research domains including economy, education, health and food security (Bhatt et al. 

2015; Frelat et al. 2016; Weiss et al. 2018). Thus, accessing the future accessibility of both 

ecosystems and human populations may be essential for many applications such as socio-

economic assessments, environmental impact analyses and spatial planning.  

 

Fishing effort 

If travel time seems to be a good proxy of fishing pressure that reefs experience given their 

accessibility (Chapters 2 and 3), it does not translate how much fish is caught according to 

fishing technics and intensity. Sustaining fisheries requires accurate information about 

patterns of resource use and particularly fishing effort while in most coral reef fisheries, 

accurate information is not available or not assessed at very fine scale (Delaney et al. 2017). 

For small-scale and artisanal fisheries, information on fishing effort is often difficult to study 

because of the number of fishing units and the spatial and temporal dispersal of landing 

points. The past 10 years have seen remarkable advances in our ability to monitor ecosystems 

from space. High-resolution satellite imagery is increasingly available at the global scale and 

contains an abundance of information about landscape features that could be linked with 

fishing activity.  

A recent study has trained a convolutional neural network using satellite data from African 

countries to explain the variation in local-level economic outcomes (Jean et al. 2016). Such 

tools could be used to track fishing units, identify landing points and determine reefs which 

experience high fishing pressure.  
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Another study has provided the first map of global fishing activity using the automatic 

identification system (AIS) originally designed to help prevent ship collisions (Kroodsma et al. 

2018). Nonetheless, this tracking tool is mainly used by industrial fleets while small fishing 

units are not equipped by such devices. Information from GPS tracking system or high-

resolution satellite imagery would be essential to better map how local fishermen exploit the 

surrounding reefs and to propose effective and sustainable management of the coral reef 

fisheries.  

Recently, many initiatives such as Vulcan Inc. or the Leonardo DiCaprio Foundation have 

emerged and support projects around the world to help solve the most pressing 

environmental issues through grantmaking, public campaigns and media initiatives or by 

providing expertise in technology, aerospace, biodiversity, and maritime security. Both 

initiatives have, for example provided financial support and have contributed to deliver an 

unprecedented level of analysis and data that may help improve enforcement in the fight 

against illegal fishing. Current and future engagement of such initiatives could also be crucial 

for the future of coral reefs by increasing people’s awareness of the importance of 

conservation, promoting conservation actions and supporting scientific projects. 
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 Global dataset on coral reefs used during the thesis 

My PhD is integrated into the Cinner Research Group led by Prof Joshua E. Cinner that focuses 

on the interface between social science and ecology to develop solutions for a wide range of 

issues facing coral reefs and the millions of people who depend on them. The major part of 

my PhD (Chapters 4 and 5) has been conducted at large scale and uses one of the largest sets 

of reef data available that compiles coral reef conditions and socioeconomic drivers from 

more than 2,500 reefs worldwide. This part aims to describe the variables included in the 

dataset that I have used in my PhD.  

 

Nested scales of data 

The global dataset was organized at three spatial scales: reef site, reef cluster, and 

nation/state described below: 

 

(i) Reef site (hereafter 'reef') is the smallest scale and represents a pool of surveys (transects). 

 

(ii) Reef cluster have been obtained by clustering reefs together that were within 4km of each 

other and used the centroid to estimate reef cluster-level social and environmental covariates. 

To define reef clusters, the linear distance between all reef sites was first estimated, then a 

hierarchical analysis with the complete-linkage clustering technique based on the maximum 

distance between reefs was used. A cut-off at 4 km was set to select mutually exclusive sites 

where reefs cannot be more distant than 4 km. The choice of 4 km was informed by a 3-year 

study of the spatial movement patterns of artisanal coral reef fishers, corresponding to the 

highest density of fishing activities on reefs based on GPS-derived effort density maps of 

artisanal coral reef fishing activities (Daw et al. 2011). 

 

(iii) Nation/state (nation, state, or territory) which are jurisdictions that generally correspond 

to individual nations (but could also include states, territories, overseas regions). 

 

Reef Fish biomass 

Reef fish biomass can reflect a broad selection of reef fish functioning and benthic condition 

(McClanahan et al. 2011a; Mora et al. 2011; Edwards et al. 2014; MacNeil et al. 2015), and is 

a key metric of resource availability for reef fisheries. The initial dataset gathers more than 
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24,000 visual counts collected from 7,328 reefs between 1992 and 2013 in 63 nations, states 

or territories. All surveys used 3 census methods (standard belt-transects, distance sampling 

and point-counts). Where data from multiple years were available from a single reef site, only 

data from the year closest to 2010 were considered.  

For the purposes of the research questions, only parts of this dataset have been selected to 

extract targeted fish (Chapter 3), top predators presence (Chapter 3) and Indo-Pacific fish 

biomass (Chapter 5) described below: 

 

- Targeted Fish Biomass: 4,164 surveys collected from 1,798 tropical reef sites between 2004 

and 2013 were retained. Only 14 fish families were considered since were consistently 

studied, commonly targeted, and were above a minimum size cut-off even if targeting of reef 

fishes can vary by location due to gear, cultural preferences, and a range of other 

considerations. Thus, counts of >10cm diurnally-active, non-cryptic reef fish that are resident 

on the reef were retained, excluding sharks and semi-pelagic species (Table I).  

 

-Top Predators: 8 families of fish were considered as top predators (Table I). In Chapter 4, only 

presence/absence was used instead of biomass because biomass was heavily zero inflated. 

 

-Indo-Pacific Fish Biomass: 4,694 surveys collected from 1,824 reefs located in the Indo-Pacific 

were retained. Those surveys used only two census methods (belt-transects or distance 

sampling) and were conducted between 2004 and 2013. Then, all counts of non-cryptic reef 

fish species >10cm in total length, that are reef-associated (30 families, 748 species, see 

Appendices Chapter 5) were considered. Sharks were not included in the study as they were 

often excluded from visual surveys. 

 

Within each survey area, reef associated fishes were identified to species level, abundance 

counted, and total length (TL) estimated, with the exception of one data provider who 

measured biomass at the family level. Fish biomass on each selected reef has then been 

estimated using published species-level length-weight relationship parameters or those 

available on FishBase (Froese & Pauly 2012). When length-weight relationship parameters 

were not available for a species, the parameters for a closely related species or genus were 

used. To make estimates of biomass from these transect-level data comparable among 
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studies, differences among census methods were directly taken into account by including each 

census method (standard belt-transects, distance sampling, or point-counts) and sampling 

area for each reef (m2) as a covariate in the analysis.  

 

Socio-economic drivers 

Many social drivers that are thought to be related to the condition of reef fish biomass have 

been included in my thesis. Full description of each variable is described below.  

 

Local Population Growth: a 100 km buffer was created around each site and was used to 

calculate human population within the buffer in 2000 and 2010 based on the Socioeconomic 

Data and Application Centre (SEDAC) gridded population of the world database. Population 

growth was the proportional difference between the population in 2000 and 2010. A 100 km 

buffer was chosen as a reasonable range at which many key human impacts from population 

(e.g., land-use and nutrients) might affect reefs (MacNeil & Connolly 2015). 

 

Human Development Index (HDI): HDI is a summary measure of human development 

encompassing: a long and healthy life, being knowledgeable, and having a decent standard of 

living. In cases where HDI values were not available specific to the State (e.g. Florida and 

Hawaii), the national (e.g. USA) HDI value were used. 

 

Population Size: For each nation/state, the size of the human population was estimated. Data 

were derived mainly from national census reports the CIA fact book 

(https://www.cia.gov/library/publications/the-world-factbook/rankorder/2119rank.html), 

and Wikipedia (https://en.wikipedia.org). 

 

Tourism: Tourist arrivals relative to the nation/state population size (above) were examined. 

Tourism arrivals were gathered primarily from the World Tourism Organization’s 

Compendium of Tourism Statistics. 

 

Management: For each observation, the prevailing type of management was determined, 

including: (i) marine reserve- whether the site fell within the borders of a no-take marine 

reserve. Data providers were asked to further classify whether the reserve had high or low 
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levels of compliance; (ii) restricted fishing- whether there were active restrictions on gears 

(e.g. bans on the use of nets, spearguns, or traps) or fishing effort (which could have included 

areas inside marine protected areas that were not necessarily no take); or (iii) openly fished - 

regularly fished without effective restrictions. To determine these classifications, the expert 

opinion of the data providers was used, and validated with a global database of marine reserve 

boundaries (IUCN & UNEP-WCMC 2016). Size and age of each reserve were calculated. 

 

National reef fish landings: Catch data were obtained from the Sea Around Us Project (SAUP) 

catch database (http://www.seaaroundus.org), except for Florida, which was not reported 

separately in the database. In total, 200 reef fish species and taxon groups were identified in 

the SAUP catch database (Teh et al. 2013). Reef-associated pelagics such as scombrids and 

carangids normally form part of reef fish catches. However, these species were not included 

because they are also targeted and caught in large amounts by non-reef operations. 

 

Voice and accountability: This metric, from the World Bank survey on governance, reflects the 

perceptions of the extent to which a country’s citizens are able to participate in selecting their 

government, as well as freedom of expression, freedom of association, and a free media. In 

cases where governance values were not available specific to the nation/state (for example, 

Florida and Hawaii), national (for example, USA) values were used. 

 

Environmental Drivers 

Depth: The depth of reef surveys was grouped into the following categories: <4m, 4-10m, 

>10m to account for broad differences in reef fish community structure attributable to a 

number of inter-linked depth-related factors. Categories were necessary to standardize 

methods used by data providers and were determined by pre-existing categories used by 

several data providers. 

 

Habitat: The following habitat categories were included: (i) Slope: The reef slope habitat is 

typically on the ocean side of a reef, where the reef slopes down into deeper water; (ii) Crest: 

The reef crest habitat is the section that joins a reef slope to the reef flat. The zone is typified 

by high wave energy (i.e. where the waves break). It is also typified by a change in the angle 

of the reef from an inclined slope to a horizontal reef flat; (iii) Flat: The reef flat habitat is 
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typically horizontal and extends back from the reef crest for 10’s to 100’s of meters; (iv) 

Lagoon / back reef: Lagoonal reef habitats are where the continuous reef flat breaks up into 

more patchy reef environments sheltered from wave energy. These habitats can be behind 

barrier / fringing reefs or within atolls. Back reef habitats are similar broken habitats where 

the wave energy does not typically reach the reefs and thus forms a less continuous 'lagoon 

style' reef habitat. Due to minimal representation among our sample, other less prevalent 

habitat types were excluded, such as channels and banks. The Millennium Coral Reef Mapping 

Project (MCRMP) hierarchical data (Andréfouët et al. 2006), Google Earth, and site depth 

information were used to verify the sites’ habitat information. 

 

Productivity: Ocean net primary productivity for each of our sites in mgC / m2 / day 

(http://www.science.oregonstate.edu/ocean.productivity/) was examined. Using the 

monthly data for years 2005 to 2010 (in hdf format), those data were imported and converted 

into ArcGIS. Yearly average and finally an average for all these years was calculated. A 100 km 

buffer around each of our sites was chosen and the average productivity within that radius 

was examined. Note that ocean productivity estimates are less accurate for nearshore 

environments, but the best available data were used. 

 

Climate stress: An index of climate stress for corals was included, developed by (Maina et al. 

2011), which incorporated 11 different environmental conditions, such as the mean and 

variability of sea surface temperature. 

 

Overview of the data 

The next table summarizes the data used during the PhD. This includes ecological, social and 

environmental variables collected at different scales and from various sources. 
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Variable Description Scale Key data sources 
Habitat 
 

Whether the reef is a slop, crest, 
flat, or back reef/lagoon  

Reef 
Primary data  
 

Depth 
 

Depth of the ecological survey 
(<4m, 4-10m, >10m)  

Reef 
Primary data  
 

Protection status Whether the reef is openly 
fished, restricted (e.g. effective 
gear bans or effort restrictions), 
or unfished  

Reef 

Expert opinion, global map of marine protected areas.  
 

Local population growth 
 

Difference in local human 
population (i.e. 100km buffer 
around our sites) between 2000-
2010  

Site 

Socioeconomic Data and Application Centre (SEDAC) 
gridded population of the work database (CIESIN 2005) 
 

Climate stress 
 

A composite metric comprised of 
11 different environmental 
variables that are related to coral 
mortality from bleaching 

Site 

(Maina et al. 2011)  

Ocean productivity 
 

The average (2005-2010) ocean 
net primary productivity in mgC / 
m2 / day  

Site 
http://www.science.oregonstate.edu/ocean.productivity/  
 

Human Development 
Index (HDI) 
 

A summary measure of human 
development encompassing: a 
long and healthy life, being 
knowledgeable and have a 
decent standard of living 

Nation/state 

United Nations Development Programme  
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Population Size 
 

Total population size of the 
jurisdiction 

Nation/ state 
World Bank, census estimates, Wikipedia  
 

Tourism 
 

Proportion of tourist visitors to 
residents  

Nation/ state 
World Tourism Organization’s Compendium of Tourism 
Statistics, census estimates 

Voice and accountability 
 

Perceptions of the extent to 
which a country's citizens are 
able to participate in selecting 
their government.  

Nation/ state 

World Bank  
 

Fish landings 
 

Landings of reef fish (tons) per 
km2 of reef 

Nation/ state 
(Teh et al. 2013) 

National fisheries poaching 
 

Results from survey of national 
fisheries managers about levels 
of compliance with national 
fisheries regulations 

Nation/ state 

(Mora et al. 2009) 
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Variable selection 

A broad number of social, ecological and environmental variables were initially available in 

the dataset. For each study, the pool of variables retained as covariates was defined under 

the same procedure. Given the pool of reef sites and the response variable considered 

(targeted fish biomass and predators in Chapter 3 or total biomass in Chapter 4), collinearity 

among all the possible variables was checked using bivariate correlations and Variance 

Inflation Factor (VIF) estimates, and variables having correlation coefficients greater than 0.7 

and VIF scores greater than 5 were not considered in the study. 

This led to the systematic exclusion of several covariates (not described above): (i) 

Biogeographic Realm (Tropical Atlantic, western Indo-Pacific, Central Indo-Pacific, or eastern 

Indo-Pacific); (ii) Gross Domestic Product (purchasing power parity); (iii) Rule of Law (World 

Bank governance index); (iii) Control of Corruption (World Bank governance index); and (iv) 

Sedimentation. Other covariates had correlation coefficients and VIF scores indicating 

multicollinearity was not a serious concern.  

 

The same procedure was repeated for each study (Chapters 3 & 4) to determine the most 

appropriate pool of covariates given the reef sites and the response variable considered. The 

complete methodological procedures and the covariates used for each study will be fully 

developed in the “Methods” section of the corresponding chapter.



 173 

 
 Supplementary tables and figures (Roman numbering) for Chapters 2-4 

Table I | List of fish families recorded in the thesis, their common name, and whether they 

are commonly targeted in artisanal coral reef fisheries or considered at top predators. Due to 

varying tastes, values, and preferences, not all families listed as target species will necessarily 

be targeted in ever coral reef fishery.  X means not included in category.  
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Table II | Travel time estimates by land cover type. Adapted from Nelson (2008) 

 

Global Land Cover Class  Speed associated (km/h)  

Tree cover, broadleaved, deciduous & evergreen, closed; 

regularly flooded Tree Cover, Shrub, or Herbaceous Cover 

(fresh, saline, & brackish water)  

1  

Tree cover, broadleaved, deciduous, open  

(open= 15-40% tree cover)  

1.25  

Tree cover, needle-leaved, deciduous & evergreen, mixed 

leaf type; Shrub Cover, closed-open, deciduous & 

evergreen; Herbaceous Cover, closed-open; Cultivated and 

managed areas; Mosaic: Cropland / Tree Cover / Other 

natural vegetation, Cropland / Shrub or Grass Cover   

1.6  

Mosaic: Tree cover / Other natural vegetation; Tree Cover, 

burnt  

1.25  

Sparse Herbaceous or sparse Shrub Cover   2.5  

Water  20 

Roads  60  

Track 30 

Artificial surfaces and associated areas  30  

Missing values 1.4 
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Table III | Human, Environment and habitat variables used to predict reef fish biomass in 

the New Caledonian study case (Chapter 2). 
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Table IV | Description of households surveyed in Northwest Madagascar. Proportion of 

households surveyed and total estimated number of households in each community are 

provided. 

 

Village Estimated number of 
households 

Number of households 
interviewed 

Amparamilay 16 16  
Amparoha 30 30 

Andravorogna 23 23 
Anjiabe 188 50  

Antafiambotry 215 50 
Marimbe 25 25 

Marotogny 111 40 
Nosy Iranja 105 40 
Ratapenjke 33 30 

Sakatia 290 50 
 Total 1036 354 
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Table V | List of nation/states included in the study detailed in Chapter 4, and number of 

reef sites by management type. 
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Table VI | Model fit estimates for both targeted fish biomass and top predator are measured 

with the marginal R-squared, which describes the proportion of variance explained by the 

fixed factors alone, and conditional R-squared, which describes the proportion of variance 

explained by both the fixed and random factors. The relative importance of each variable is 

also presented for both targeted fish biomass and top predator models. To get those, all the 

possible models (i.e. all the possible combination of variables) are ranked using AICc, and all 

models within ΔAICc< 3 of the top ranked model are kept. The relative importance of each 

variable is based on the sum of Akaike weights of all the possible models (i.e. all the possible 

combination of variables) in which the variable is present. 

 

 

 

 

 

 

 



 179 

 

 

 

 

 

 

 

 

 

 

 

 

  



 180 

Figure I | Potential travel time from the nearest human population to reach reefs A and B 

near Kimbe in Papua New Guinea. The populated pixels (grey pixels) were identified using the 

human density layer provided by the LandScanTM 2011 database. Travel time from the nearest 

populated pixel using land (road and land cover) and water (navigable river, lake and ocean) 

was calculated to reach coral reefs A and B. 
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Figure II | Residuals between travel time from the nearest major market to reach 23,940 

cells of coral reefs globally and values estimated using linear distance. A linear model linking 

travel time and linear distance from the nearest major market to reach any reef cell is used to 

estimate travel time based on linear distance (estimated travel time) and the corresponding 

residual. Residual is calculated for each reef cell as follows: Residual = (travel time - estimated 

travel time) / estimated travel time.  
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Figure III | Pairwise Pearson correlations between variables used to predict reef fish biomass 

in New Caledonia. Pearson coefficient of correlations and confidence intervals between all 

pairs of variables (total reef fish biomass, human, habitat and environmental variables) are 

presented into the lower panel. The colored upper panel presents positive (blue) and negative 

(red) correlations.  
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Figure IV | Accessibility of any coral reef from people (nearest market and nearest human 

settlement) around the world with slow boats. Coral reef accessibility was also calculated 

considering slower boats (10 km.h-1) instead of 20 km.h-1). Mean accessibility of coral reefs 

from people increased from 1h50 (SD = 4h15) to 3h40 (SD = 8h30) and from markets increased 

from 10h (SD = 9h) to 17h (SD = 17h30) using slower boats. 
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Figure V | Accessibility of any coral reef from people (nearest market and nearest human 

settlement) around the world with fast boats. Coral reef accessibility was also calculated 

considering faster boats (40 km.h-1 instead of 20 km.h-1). Mean accessibility of coral reefs from 

people decreased from 1h50 (SD = 4h15) to 1h10 (SD = 3h) and from markets decreased from 

10h (SD = 9h) to 6h10 (SD = 4h40) using faster boats.   
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Figure VI | Contributions and scores (cos2) of each variable integrated in the PCA linking 

market access and social characteristics of local communities. Five social indicators were 

considered: the proportion of households who ranked fishing as primary activity (Fishing), the 

proportion of households who ranked farming as primary activity (Farming), the livelihoods 

diversity: the mean number of livelihood activities that households are involved in (Nb. 

Livelihoods), the mean number of community groups people are involved in (Social 

connection), the proportion of households consuming fish at least once a day (Fish 

consumption) and were related to market access (Travel time from market). The 

supplementary variable (Management) was also represented. All variables were properly 

represented (cos2 > 0.4) by the two first components (PC1 & PC2) except the proportion of 

households who ranked fishing as primary activity (Fishing).  
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Figure VII | Contributions and scores of each variable integrated in the PCA linking market 

access and fishing households. Only households engaged in fishing activities were considered 

and for each community were assessed: the proportion of fishing households who used as 

main gear nets (Net) or selective gears (Select. gear) respectively and the proportion of fish 

catches sold (Prop. fish sold) that were related to market access (Travel time from market). As 

market accessibility and management actions had confounding effects in the study area 

(marine reserves are disproportionally located far from markets), one supplementary variable 

(Management) was included to take into account this effect. The supplementary variable 

(Management) was also represented. All variables were properly represented (cos2 > 0.4) by 

the two first components (PC1 & PC2). 
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Figure VIII | Standardized effect size of social drivers and environmental covariates, 

including 95% uncertainty intervals (thin lines), and 50% (thick lines) for (A) the full biomass 

model (including top predators); (B) targeted fish biomass model (excluding top predators); 

(C) the top predators presence/absence model; and D) untargeted Biomass model. 
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Figure IX | Model-predicted relationships for targeted-only fish biomass excluding top 

predators. Blue = marine reserves, red=openly fished, green= restricted fishing. Shaded areas 

represent 95% confidence intervals. 
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Figure X | Model-predicted trends in fish biomass (left) and probability in encountering top 

predators (right) with reserves broken into small (<28km2, purple) and large (orange). 

Shaded areas represent 95% confidence intervals. 
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 Supplementary procedure and material for Chapter 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

Community-wide scan identifies fish species associated with coral reef services across the 

Indo-Pacific 
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Additional information 

 

Coral reef services 

We considered fish biomass and live coral cover as two proxies for coral reef services as 

support, among many others, food security, shoreline protection and recreational value 

(Burke et al. 2011; Kittinger et al. 2012; Harris et al. 2018; McClanahan Timothy 2018). Fish 

biomass and coral cover are already monitored at the global scale using visual censuses as 

well as underwater video surveys (e.g. Reef Life Survey, Catlin Sea Survey) and are highly 

sensitive to local human activities (e.g. fishing, habitat destruction, pollution) and global 

climate change (Hughes et al. 2018) and thus, can be considered as key variables for the health 

and productivity of coral reefs (Bozec et al. 2016; Cinner et al. 2016; Hughes et al. 2017b). 

 

Fish Biomass 

Reef fish biomass estimates were based on instantaneous visual counts from 4,694 surveys 

collected from 1,824 reefs (Fig. S1). Surveys were carried out using two census methods (belt-

transects or distance sampling) and were conducted between 2004 and 2013. On average 2.4 

transects (sd=1.32; range: 1-10) were performed on each reef. Within each surveyed area, 

reef associated fishes were identified to species level, abundance was counted, and total 

length (TL) estimated. 

To make estimates of biomass from these transect-level data comparable among studies, we: 

i) Considered only Indo-Pacific reefs and retained families that were consistently 

included in surveys and were above a minimum size cut-off. Thus, we only 

retained counts of non-cryptic reef fish species >10cm in total length, that are 

reef-associated (30 families, 748 species) (Table S1). We did not include sharks 

as they were often excluded from visual surveys. We calculated total biomass 

of fishes on each reef using published species-level length-weight relationship 

parameters or those available on FishBase [39]. When length-weight 

relationship parameters were not available for a species, we used the 

parameters for a closely related species or genus.  

 

ii) Depth and habitat were included as environmental variables in the model.  
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iii) Reef fish biomass estimates were based on instantaneous visual counts using 

belt-transects or distance sampling. Because several biases were associated 

with these two methods (Usseglio 2015) and the total area of transects 

changed between locations, we included census method and sampling area as 

covariates in the model.  

 

Biomass values were calculated at the reef scale and showed a high variability (mean=1,055 

kg.ha-1; range: 2-25,910 kg.ha-1). 

 

Live coral cover 

Percent cover of live coral was based on 1,715 point-intercept transects or quadrats collected 

from 741 reefs (Fig. S2). All surveys were conducted between 2008 and 2013. On average 2.3 

transects (sd=1.03; range: 1-4) were performed on each reef. To make estimates of coral cover 

from these transect-level data comparable among studies, we included depth, habitat and 

census method (which already different in the sampling area) as covariates in the model (see 

details in Supplementary Material).  

Coral cover values were calculated at the reef scale and showed a high variability (mean=27%; 

range: 3-94%). 

 

Socioeconomic and environmental variables 

The variables included in the models were environmental: 1) oceanic productivity, 2) habitat 

type, 3) depth and socioeconomic: 4) management 5) local human population growth rate, 6) 

gravity of local population, 7) gravity of markets, 8) levels of human development (Human 

Development Index), 9) human population size, 10) levels of tourism, 11) degree of voice and 

accountability of citizens, and 12) reef fish landings (tons)/km2 of reef. Full definitions and 

details are provided in Chapter 2. 

 

Analyses 

We used linear mixed models to analyze biomass and live coral cover after checking that both 

log-transformed variables were normally distributed. For both models, we set site, regional 

locations and nation/state as random effects to account for the hierarchical nature of the data 

(i.e. reefs nested in sites, sites nested in regional locations and in nations/states). All 



 193 

continuous covariates were standardized for the analysis and their corresponding Akaike 

weights were computed to assess their importance (Table S2 & S3).  

 

To check the fit of the linear mixed model, we checked for the representation of actual versus 

predicted values and we calculated the accuracy of the two models which came to 88% for 

biomass and 83% for coral cover. To examine homoscedasticity, we checked residuals against 

fitted values. We checked that the residuals were normally distributed. All analyses were 

undertaken using R (3.3) statistical packages. 

 

Functional traits to describe fish species. 

The 381 candidate fish species were functionally described using six traits extracted from 

(Mouillot et al. 2014): (1) size, coded using 3 ordered categories: 10-30cm, 30.1-50cm, >50cm; 

(2) mobility, coded using 3 ordered categories: sedentary, mobile within a reef and mobile 

between reefs; (3) period of activity, coded using 3 ordered categories: diurnal, both diurnal 

and nocturnal, and nocturnal; (4) schooling, coded using 5 ordered categories: solitary, 

pairing, or living in small (3-20 individuals), medium (20-50 individuals) or large groups (>50 

groups); (5) vertical position in the water column, coded using 3 ordered categories: benthic, 

bentho-pelagic and pelagic; (6) diet, coded using 7 trophic categories: herbivorous-

detritivorous, macro-algal browser, invertivorous targeting sessile invertebrates, 

invertivorous targeting mobile invertebrates, planktivorous, piscivorous, and omnivorous, i.e. 

fish for which both plant and animal material are important in their diet. Since all traits were 

categorical, species with identical traits were grouped into functional entities. 

 

Defining presence of species based on abundance threshold. 

The community-wide scan (CWS) approach can be adapted for a wide range of taxa from all 

the ecosystems. The way candidates are tested can be modulated while respecting 

independence between predicted and explanatory variables (binary variables are a 

convenient way to test the effect of candidates). More specifically, presence of terrestrial or 

marine taxa can be determined using any convenient abundance threshold such as a minimum 

number of individuals, cover rate or biomass.  

As an application, we tested two procedures to define presence of reef fish species based on 

a biomass threshold and compared key species found with those two procedures: 
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(i) the relative intraspecific biomass which defines presence of a species in a community as 

soon as its biomass reaches upper percentiles of the distribution of biomass of this species 

over all studied communities. We used the 99th and 95th percentiles (the top 1 and 5%) of the 

biomass distribution over reef sites as thresholds. This approach is particularly relevant for 

species widely distributed with normal distribution of biomass while it may not be used for 

species infrequently encountered or with a skewed biomass distribution. 

 

(ii) the relative community biomass which defines presence as soon as the focal species reach 

a defined minimum percentage of the total biomass of the fish community. Hence, this 

approach is not affected by biomass distribution among sites. As two thresholds, we tested a 

contribution of species to total biomass in excess of 1 and 5%, respectively. 
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Figures and Tables 

 

 

Figure S1 | Map of the reef fish biomass observed in 1,824 reefs located in the Indo-Pacific.  

 

 

 

Figure S2 | Map of the live coral cover observed in 741 reefs located in the Indo-Pacific. 

Information on coral cover was not available for all sites at which reef fish biomass was 

surveyed. 
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Figure S3 | Accuracy and residuals of the two initial models (fish biomass and coral cover). 

The accuracy of each model is assessed using the Pearson correlation between predicted and 

observed values which came to 88% for biomass (A) and 83% for coral cover (B). We checked 

that residuals of the initial model of fish biomass (C) and coral cover (D) were normally 

distributed. 

 

 

A B 

C D 

Reef Fish Biomass Coral cover 



 197 

 

 

Figure S4 | Net effect of the 4 key fish species linked to the highest levels of fish biomass 

(top) and live coral cover (bottom). We extracted the pure effects of all the key species and 

determined which were related to the highest levels of biomass and coral cover respectively, 

using a partial plot from each LMM while the other variables are held constant. 
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Table S1 | List of coral reef fish families included in the study and their common name. 

Families included are: Acanthuridae, Balistidae, Caesionidae, Carangidae, Chaetodontidae, 

Cirrhitidae, Diodontidae, Ephippidae, Haemulidae, Holocentridae, Kyphosidae, Labridae, 

Lethrinidae, Lutjanidae, Monacanthidae, Mullidae, Nemipteridae, Pempheridae, 

Pinguipedidae, Pomacanthidae, Priacanthidae, Pseudochromidae, Scombridae, Serranidae, 

Siganidae, Sparidae, Sphyraenidae, Synodontidae, Tetraodontidae, Zanclidae.  
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Table S2 | Relative importance of variables of the fish biomass initial model. The relative 

importance of each variable is based on the sum of Akaike weights of all the possible models 

(i.e. all the possible combination of variables) in which the variable is present.  

 

Table S3 | Relative importance of variables of the coral cover initial model. The relative 

importance of each variable is based on the sum of Akaike weights of all the possible models 

(i.e. all the possible combination of variables) in which the variable is present. 
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Table S4 | Details of key fish species for reef fish biomass. AIC of the initial model M0 

(environment, socio-economics and species richness) provides reference Akaike Information 

Criterion (AIC M0). Presence of each species has been added to M0 as binary variable using 

occurrence (i.e. presence of at least 1 individual). For each species, number of occurrences, 

coefficient in the model (Coeff.) and AIC of the model accounting for the species (AIC M1) are 

reported. Comparisons with reference AIC (AIC M0) are also provided (∆AIC). 
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Table S5 | Details of key fish species for live coral cover. AIC of the initial model M0 

(environment, socio-economics and species richness) provides reference Akaike Information 

Criterion (AIC M0). Presence of each species has been added to M0 as binary variable using 

occurrence (i.e. presence of at least 1 individual). For each species, number of occurrences, 

coefficient in the model (Coeff.) and AIC of the model accounting for the species (AIC M1) are 

reported. Comparisons with reference AIC (AIC M0) are also provided (∆AIC). 
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Table S6 | Functional traits of key fish species for reef fish biomass and live coral cover. 23, 

25 and 3 fish species are significantly related to biomass (BM), live coral cover (CC) or both 

(BOTH) of those proxies of coral reef services respectively. Each species is described using six 

traits: (1) size, coded using 3 ordered categories: 10-30cm, 30.1-50cm, >50cm; (2) mobility, 

coded using 3 ordered categories: sedentary, mobile within a reef and mobile between reefs; 

(3) period of activity, coded using 3 ordered categories: diurnal, both diurnal and nocturnal, 

and nocturnal; (4) schooling, coded using 5 ordered categories: solitary, pairing, or living in 

small (3-20 individuals), medium (20-50 individuals) or large groups (>50 groups); (5) vertical 

position in the water column, coded using 3 ordered categories: benthic, bentho-pelagic and 

pelagic; (6) diet, coded using 7 trophic categories: herbivorous-detritivorous (HD), macro-algal 

herbivorous (HM), invertivorous targeting sessile invertebrates (IS), invertivorous targeting 

mobile invertebrates (IM), planktivorous (PK), piscivorous (FC), and omnivorous (OM), i.e. fish 

for which both vegetal and animal material are important in their diet. Several species can 

have the same functional traits (trait combinations with the same Funct. Entity ID) and thus, 

represent the same functional entity. In total, 51 key fish species are described, which 

represent 35 different functional entities with 6 entities common to both fish biomass and 

coral cover (highlighted in grey). 
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Table S7 | Comparative results of potential key species for fish biomass using relative intra-

community (left) and intra-specific (right) biomass to define presence (threshold defined as 

1%). AIC of the initial model M0 provides reference Akaike Information Criterion (AIC M0). 

Presence of each species has been added to M0 as binary variable using 2 criteria: (i) 

contribution of species to total biomass higher than 1% and (ii) the 99th percentile of the 

biomass distribution of each species. For each species, number of raw occurrences, number 

of occurrences meeting the biomass threshold, and AIC of the model accounting for the 

species (AIC M1) are reported. For clarity, only key species are presented and those that are 

significantly related to fish biomass under the 2 approaches are highlighted in grey. One 

species had an AIC lower than M0 but did not exceed the performance criterion (∆AIC > 4) to 

be considered as key species (underlined). 
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Table S8 | Comparative results of potential key species for fish biomass using relative intra-

community (left) and intra-specific (right) biomass to define presence (threshold defined as 

5%). AIC of the initial model M0 provides reference Akaike Information Criterion (AIC M0). 

Presence of each species has been added to M0 as binary variable using 2 criteria: (i) 

contribution of species to total biomass higher than 5% and (ii) the 95th percentile of the 

biomass distribution of each species. For each species, number of raw occurrences, number 

of occurrences meeting the threshold, and AIC of the model accounting for the species (AIC 

M1) are reported. For clarity, only key species are presented and those that are significantly 

related to fish biomass under the 2 approaches are highlighted in grey. Some species did not 

reach the minimal occurrence required and thus could not be tested using the intra-specific 

approach (asterisk). 
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Table S9 | Comparative results of potential key species for coral cover using relative intra-

community (left) and intra-specific (right) biomass to define presence (threshold defined as 

1%). AIC of the initial model M0 provides reference Akaike Information Criterion (AIC M0). 

Presence of each species has been added to M0 as binary variable using 2 criteria: (i) 

contribution of species to total biomass higher than 1% and (ii) the 99th percentile of the 

biomass distribution of each species. For each species, number of raw occurrences, number 

of occurrences meeting the threshold, and AIC of the model accounting for the species (AIC 

M1) are reported. For clarity, only key species are presented and those that are significantly 

related to coral cover under the 2 approaches are highlighted in grey. Some species did not 

reach the minimal occurrence required and thus could not be tested using the intra-specific 

approach (asterisk), while some species had an AIC lower than M0 but did not exceed the 

performance criterion (∆AIC > 4) to be considered as key species (underlined). 

 

 

 

 

 

 

 

 

 

 



 207 

Table S10 | Comparative results of potential key species for coral cover using relative intra-

community (left) and intra-specific (right) biomass to define presence (threshold defined as 

5%). AIC of the initial model M0 provides reference Akaike Information Criterion (AIC M0). 

Presence of each species has been added to M0 as binary variable using 2 criteria: (i) 

contribution of species to total biomass higher than 5% and (ii) the 95th percentile of the 

biomass distribution of each species. For each species, number of raw occurrences, number 

of occurrences meeting the threshold, and AIC of the model accounting for the species (AIC 

M1) are reported. For clarity, only key species are presented and those that are significantly 

related to coral cover under the 2 approaches are highlighted in grey. Some species did not 

reach the minimum occurrence and thus could not be tested using the intra-specific approach 

(asterisk). 
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