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1.  INTRODUCTION

Nearshore areas support a wealth of marine bio -
diversity due to their high productivity and offer a va-
riety of unique habitats that can be used by individu-
als and/or populations (Beck et al. 2001, Spalding et
al. 2007, Knip et al. 2010). Due to the abundance of
potential prey items and a diversity of habitat types,
nearshore areas are often inhabited by numerous
shark species, providing them with potential foraging
and/or nursery grounds (Beck et al. 2001, Heupel et
al. 2007, Adkins et al. 2016). The use of near shore ar-

eas as a nursery for juvenile sharks has been sug-
gested to improve their chances of survival through
access to prey and increased protection from preda-
tors (Bran stetter 1990, Heithaus 2007). Research on
shark  nursery areas has identified nurseries for indi-
vidual (Cartamil et al. 2010, Froeschke et al. 2010)
and multiple species (Simpfendorfer & Milward 1993,
Parsons & Hoff mayer 2007), described resource parti-
tioning within communal nurseries (Kinney et al.
2011, Heu pel et al. 2019) and has helped to better un-
derstand the ecology of juveniles within these areas,
especially for members of the families Carcha rhin -
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idae and Sphyr nidae (e.g. Simpfendorfer & Milward
1993, Rechisky & Wetherbee 2003, Knip et al. 2010).

The high productivity of nearshore areas is largely
due to the fact that they are highly dynamic environ-
ments with constantly changing environmental (abio -
 tic and biotic) conditions that occur at different tem-
poral scales (Knip et al. 2010). This high variability
makes living in such environments challenging. Stud-
ies have shown that a number of abiotic factors such
as temperature (Cartamil et al. 2010, Matich & Hei-
thaus 2012), salinity (Heupel & Simpfendorfer 2008,
Ubeda et al. 2009), tidal movement (Ackerman et al.
2000, Conrath & Musick 2010) and depth (Wether bee
et al. 2007, Guttridge et al. 2012) influence the be -
haviour of juvenile sharks in nearshore waters. Biotic
factors such as the presence of prey (Curtis et al. 2013)
and predators (Heupel & Hueter 2002, Wetherbee et
al. 2007) are also documented as drivers of juvenile
shark movements within nursery areas. To access the
benefits of nursery areas in nearshore environments,
inhabitants must deal with the dynamic nature and
challenges presented by these areas.

Understanding how sharks respond to environmen-
tal changes has largely been achieved by monitoring
their movements with the use of passive acoustic
telemetry (Schlaff et al. 2014). Although this method
has enabled researchers to track the movements of
many different shark species and assist in the process
of determining the drivers responsible for their move-
ments, passive acoustic telemetry has its limitations
(Heupel et al. 2006), especially in nearshore nursery
areas which, in some cases, present unique chal-
lenges. To understand how some environmental
 factors influence the movement and habitat use of
sharks, de tailed information is required at a much
finer scale (on the scale of metres) than can be
achieved using passive acoustic telemetry, due to the
physical attributes (e.g. very shallow water, complex
habitats) of the environment (Heupel et al. 2006).
Consequently, limited information is available on
fine-scale movements of juvenile sharks in very
 shallow (<1 m) nearshore nursery areas and how
they deal with the dynamic nature of nearshore
 environments.

The blacktip reef shark Carcharhinus melano -
pterus (Quoy & Gaimard, 1824) is a widely distrib-
uted whaler shark occurring throughout the tropics;
from the Red Sea and western Indian Ocean to the
western and central Pacific (Last & Stevens 2009).
This species is commonly observed in clear shallow
waters on and around coral reefs (Heupel 2005, Last
& Stevens 2009). However, it has also been found to
inhabit turbid nearshore environments that lack coral

reef habitat and are predominantly comprised of
mangroves, seagrass beds and mudflats (Lyle 1987,
Chin et al. 2012). Studies have since shown that this
species regularly occurs within non-reef areas which
may be important for reproduction and early life
stages, with juveniles sometimes using these habitats
as a nursery, before undergoing ontogenetic shifts in
habitat use (Chin et al. 2013a). Although long-term
studies investigating the space use and movements
of juvenile blacktip reef sharks in nearshore environ-
ments have been conducted (Stevens 1984, Papasta-
matiou et al. 2009, Chin et al. 2013a, Schlaff et al.
2017), fine-scale space use and factors that influence
their movement and habitat use, other than those
investigated by Schlaff et al. (2017), in shallow (<1 m)
environments have not previously been examined.

The principal objective of this study was to exam-
ine the movements and habitat use of juvenile black-
tip reef sharks within a nearshore intertidal nursery
area. In this study, we (1) quantified fine-scale move-
ments, (2) examined tidal fluctuation as a driver of
movement and (3) investigated patterns of habitat
use. Knowledge on fine-scale movements will im -
prove our understanding of the spatial ecology and
importance of habitat types to this species and will
advance our knowledge on the use of coastal nurs-
eries and the ecology and behaviour of juvenile
sharks within these areas. Understanding space and
habitat use can contribute to successful manage-
ment, as the identification of important areas (i.e. for-
aging or nursery) and key habitats can inform con-
servation practices where necessary (Simpfendorfer
& Heupel 2012). This is important for nearshore areas
which are increasingly exposed to high levels of
anthro pogenic impacts such as fishing pressure
(Jackson et al. 2001, Knip et al. 2010, Dulvy et al.
2014), coastal development and habitat loss (Lotze et
al. 2006), all of which can negatively affect the sur-
vival rate and essential habitats important to juvenile
sharks in nursery areas (Jennings et al. 2008).

2.  MATERIALS AND METHODS

2.1.  Study site

Research was conducted at Orpheus Island on the
central Great Barrier Reef (Fig. 1a), specifically in
Pioneer Bay (Fig. 1b). The bay has an area of approx-
imately 0.80 km2. The shoreline of Pioneer Bay is
dominated by non-estuarine mangrove stands, pre-
dominantly Rhizophora spp., although a number of
other species such as Avicennia marina and Osbornia
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octodonta are also present (S. Cannici pers. comm.).
The bay is characterised by a sandy flat extending
from the shoreline transitioning into a reef flat com-
prised of dead microatolls and sand which is bor-
dered by a fringing reef that falls to a sandy substrate
in deeper water of approximately 10 m. Tidal varia-
tion within Pioneer Bay is large (~4 m range); during
high tide, the intertidal reef flat and mangrove stands
are flooded, whilst during low tide they are generally
void of water.

2.2.  Field methods

Field work was carried out between April and
August 2017. Sharks were caught using 3 different
methods: rod and reel, seine and gillnet. Sharks
caught on rod and reel were captured using size 8/0
Mustad hooks and pilchards (Sardinops sp.) as bait.
Seine netting (20 m long, 1 cm mesh size and 2 mm
line) was used in shallow waters when sharks were

swimming along the shoreline or amongst man-
groves. The gillnet used was 60 m long and 2.5 m
deep with a mesh size of 10 cm and 0.18 mm line.
Soaking times varied between 1 and 2 h, with the net
checked constantly and generally set during incom-
ing and outgoing tides. Once caught, sharks were
sexed, measured to the nearest mm (total length, TL)
with a measuring tape and tagged with a small Dalton
Rototag on the first dorsal fin. A Vemco V9 (9 × 29 mm)
acoustic transmitter was attached to the Rototag using
small cable ties. Each transmitter was coded with a
unique frequency ranging between 75 and 84 kHz
and pinged continuously. Handling time for each
shark was <10 min, and sharks were released at the
site of capture.

Sharks were tracked on foot or from a small dinghy
using a VR100 ultrasonic acoustic receiver and hand-
held directional hydrophone (Vemco). At 5 min inter-
vals, a GPS point was recorded by the tracking team
using a handheld GPS, with this location assumed to
be the location of the shark (Rechisky & Wetherbee
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Fig. 1. Study site. (a) Orpheus Island located in the Palm Island group in the Great Barrier Reef World Heritage Area (insert
shows the location of the study site within Queensland, Australia). Light grey stippling represents reef flat habitat. (b) Pioneer 

Bay at Orpheus Island
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2003). GPS points were recorded when the shark was
visibly sighted or when the strongest signal was
recorded at the lowest gain setting on the receiver.
The activity, habitat and substrate type, depth and
important surroundings (e.g. potential predators,
prey, feeding attempts) were also recorded. When
tracking on foot, the tracking team consisted of 2
people, one recording GPS points and taking notes,
the other manoeuvring the hydrophone and towing
the VR100 on a small surf ski. As with any study that
requires an observer to be present, such as during
active tracking, there is the possibility of altering the
animal’s behaviour. Therefore, to minimise distur-
bance that may have influenced the animal’s behav-
iour, tracking was conducted in a quiet and calm
manner and all movements were ceased when the
animal was in sight or approaching the tracking
team. When tracking from a boat, the engine was
immobilised once the general location of the animal
was established (Curtis et al. 2013). Only 1 shark was
tracked at a time. Individuals were tracked for as
long as possible during daylight hours, with tracks
only ceasing due to limited light or loss of signal.
When a track was suspended, the animal was relo-
cated the following day if possible and tracked again,
resulting in multiple tracks for the same individual.
Upon completion of the study, Rototags and acoustic
tags re mained on the sharks. If recaptured, the
acoustic tag was removed from the Rototag if it had
expired; however Rototags were left in place as
they are a useful tool to identify individuals in the
future.

2.3.  Data analysis

Tracks were analysed in the statistical software R
(Version 3.5.0) (R Development Core Team 2016)
using the package ‘adehabitatLT’ (Calenge 2015).
Latitude and longitude were converted to Universal
Transverse Mercator (UTM) so that distance meas-
ures were in metres. If tracks contained missing val-
ues due to issues such as signal loss, the data were
formatted so that observations were regular (Ca -
lenge 2015). If the signal was lost for more than
60 min and then re-acquired, it was considered a
new track in the analysis.

2.3.1.  Segmenting movements

Movement paths were segmented into intervals of
homogenous behaviour using the Lavielle method

(Calenge 2015), a function within the ‘adehabitatLT’
package to determine the frequency at which the
juvenile sharks changed their movement behaviour
during a track. The Lavielle method selected the seg-
mentation of a time series, using speed and residence
time as parameters, searching for the best path from
the first to last observation in a contrast matrix. It
used an algorithm that finds the most appropriate
path through the matrix (Calenge 2015). Segments
were then chosen from a graphical illustration. To
understand how behaviour may have been influ-
enced by tide height, the mean tide height of a seg-
ment was calculated (using local tide charts) and
plotted against segment length to determine if a cor-
relation was present.

2.3.2.  Linearity

Tortuosity of a movement path can be described as
the degree of convolution or straightness of a path
(Bascompte & Vilà 1997). One method of estimating
the tortuosity of a movement track is to use an index
of linearity (Benhamou 2004). The linearity index (L)
is given by the equation:

L = (Fn − F1) / D (1)

where Fn − F1 is the distance from the first point to
the last point, and D is the summed distance
between all points (Bell & Kramer 1979). Linearity
values range from 0 to 1, with values near 0 indica-
ting random movement and values of 1 represent-
ing linear movement (Bell & Kramer 1979). Linearity
was calculated as a moving 5-point value, whereby
the first 5 points of a track were used to calculate
the first value of linearity for the track. The first
value in the sequence of 5 was then removed and
the next position added to the remaining values
and linearity calculated again. This process was re -
peated until all locations in the track were included
in the analysis. The effect of tidal height on
linearity was examined using a gen eralised linear
mixed effects model with the ‘glmmTMB’ package
in R (Magnusson et al. 2017), with individual as a
random factor. A third-order polynomial natural
spline (df = 3) was then applied to model the effect
of tide height. A third-order natural spline was cho-
sen, as it was found to be the best fit for tide
height. Using the ‘expand.grid’ function within R, a
new data frame containing all possible combina-
tions of variables was created to predict over the
mixed effects model to show the effect of tide
height on linearity.
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2.3.3.  Rate of movement

Rate of movement (ROM) was determined for each
5 min period as distance travelled per minute (m
min−1). To investigate if ROM varied with tide height,
a polynomial function was fitted to the data using the
same procedures as were used for linearity. Data
were not normally distributed and natural log trans-
formed prior to statistical testing.

2.3.4.  Habitat use

To understand the importance of habitat and to
help infer how drivers influence juvenile movements,
particularly tide height, habitat use was also exam-
ined. As Pioneer Bay is tidally influenced, many
habi tats were not always accessible to the juvenile
sharks. During periods of high tide, the bay is
flooded, submerging the fringing mangroves. How-
ever, during low tide, water recedes from the bay,
leaving the mangrove stands and much of the reef
flat dry. Consequently, mangrove habitat could only
be used by juveniles during certain tidal heights.
Using tracking data and observational notes re -
corded during tracking, we estimated that juveniles
could only access mangrove habitat when the tide
height was ≥185 cm (±34 cm, SD). To determine if

there was a correlation between tide height and the
use of mangrove habitat, observational notes were
used to calculate the time juveniles spent within the
mangrove stands, as well as the time they occurred
outside of the mangrove habitat when it was accessi-
ble (i.e. tide height ≥185 cm) and compared to the
corresponding average tide height for that period.

3.  RESULTS

Six juvenile blacktip reef sharks were actively
tracked in Pioneer Bay during the study, with 3 indi-
viduals tracked in April−May, 1 in July and 2 in
August. Two females and 4 males were tracked
(Table 1). Size ranged from 618 to 770 mm (TL), with
all individuals considered juveniles based on their
size (Chin et al. 2013b). The 6 individuals generated
18 tracks which varied in duration from 1 h to 7 h
35 min. All tracks of all individuals were retained for
analysis as we found no obvious effect of tagging on
shark ROM between tracks immediately after release
and later tracks (ANOVA with Tukey post hoc test,
p > 0.05). Variation in track duration was predomi-
nantly a result of signal loss due to being obscured by
complex habitats such as mangrove roots and coral,
accessibility to habitat due to tidal stage and day-
light. Individual R07869 was tracked longer than all

other individuals (8 d) to investi-
gate inter-day variability in move-
ment and habitat-use patterns.

Sharks were tracked either im -
mediately after capture and tagging
or located the following day, de-
pending on the time of capture. In-
dividuals were generally found close
to the site of capture or at least on
the same side of the bay if tracking
was initiated the following day or
within the same area where a pre-
vious track was terminated. Track-
ing revealed that most juveniles re-
mained on the same side of the bay
on which they were originally
caught during any one tidal cycle,
making occasional expeditions into
the centre of the bay but never
crossing to the other side. However,
the individual tracked for 8 d used
both sides of the bay over the
period of tracking (Fig. 2). Some ju-
veniles repeated their movement
paths from the previous day, mov-
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Tag ID    Sex     Size        Date   Track   Date of   Duration of        Total time 
                      (mm TL)   caught                track    track (h:min)   tracked (h:min)

R07854     F       710      24/04/17    1     24/04/17       01:50                 04:40
                                                         2     25/04/17       02:50                      

R07858     M      620      27/04/17    1     27/04/17       01:00                 10:05
                                                         2     28/04/17       04:15                      
                                                         3     29/04/17       04:50                      

R07856     M      618      30/04/17    1     02/05/17       03:25                 06:20
                                                         2     03/05/17       01:45                      
                                                         3     05/05/17       01:10                      

R07870     M      680      08/07/17    1     09/07/17       04:35                 04:35

R07869     F       700      17/08/17    1     17/08/17       01:35                 31:10
                                                         2     18/08/17       03:50                      
                                                         3     19/08/17       03:35                      
                                                         4     20/08/17       02:45                      
                                                         5     23/08/17       03:10                      
                                                         6     24/08/17       03:30                      
                                                         7     25/08/17       07:35                      
                                                         8     26/08/17       05:10                      

R07868     M      770      21/08/17    1     22/08/17       05:20                 05:20

Table 1. Details of 6 actively tracked juvenile blacktip reef sharks in Pioneer
Bay, Orpheus Island, Australia. If possible, sharks were tracked for more than
1 d, resulting in multiple tracks for individuals. A total of 18 tracking sessions 

were carried out. TL: total length
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ing along a near-identical path. Other
sharks also occasionally mirrored pre-
vious tracks from other juveniles
when occupying the same side of the
bay.

Tracking occurred over a range of
tidal heights, during neap and spring
tides, with juveniles predominantly
restricting their movements to fring-
ing mangroves (swimming amongst
the complex root system) inside the
bay during high tide before moving
out onto the reef flat as the tide
dropped and eventually moving to
the edge of the fringing reef. During
neap high tides, sufficient water re-
mained in the bay submerging man-
grove roots and allowing juvenile
sharks to enter the root system. All
sharks remained inside Pioneer Bay,
with none tracked further than the
fringing reef (Fig. 2). During low tide,
sharks were tracked on the fringing
reef but were never observed to leave
the reef crest and enter deeper water,
with spring low tides exposing the
reef flat and forcing  individuals fur-
ther onto the reef crest, closer to
deeper, open  water. Juveniles repeat-
edly swam in depths of approximately
40 to 60 cm during outgoing or incom-
ing tides and were rarely observed
moving into water >1 m. When ob-
served attempting to catch prey, juve-
niles were occasionally sighted mov-
ing into water <10 cm deep.

3.1.  Segmented movements

Segments of consistent behaviour defined by the
Lavielle method ranged in length from 5 to 220 min
(Fig. 3). More than 80% of segment lengths were
<50 min, with 5 and 10 min segments occurring most
frequently (17.8%), followed by 15 min segments
(12.8%). Only 7 segments were >100 min, with the
longest being 220 min. The high number of small seg-
ments suggests that during a track, juveniles rarely
maintained a constant behaviour for long periods of
time. A weak, but significant, correlation was found
be tween segment length and mean tide height (r2 =
0.03,p=0.04),withsegment length increasingasmean
tide height in creased (Fig. 4). The majority of long

 segment lengths (>100 min) occurred when juveniles
were tracked in mangrove habitat during high tide.

3.2.  Linearity

Linearity of tracks ranged from 0.28 to 0.79, with
mean linearity of each track being 0.50 (±0.13, SD).
Linearity differed significantly with tide height
(Table S1 in the Supplement at www. int-res. com/
articles/ suppl/  m623 p085_ supp. pdf), with juveniles
showing more linear movements during lower tide
heights while displaying more random movements
during higher tide heights (Fig. 5a). Highest average
linearity values were recorded during tide heights
be tween 100 and 150 cm, and the lowest average val-
ues were recorded during tide heights >300 cm.
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Fig. 3. Frequency of segment lengths (intervals of homogenous behaviour) cal-
culated by the Lavielle method (see Section 2.3.1) for actively tracked juvenile 

blacktip reef sharks

Fig. 4. Segment length calculated by the Lavielle method as a function of
mean tide height. Line represents a regression line, where y is segment length 

and x is mean tide height

https://www.int-res.com/articles/suppl/m623p085_supp.pdf
https://www.int-res.com/articles/suppl/m623p085_supp.pdf
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3.3.  ROM

Mean ROM for tracked sharks was (mean ± SD)
7.23 ± 3.59 m min−1 (range = 1.82−16.77 m min−1). Tide
height had a significant effect on ROM (Table S2).
ROM was highest during lower tide heights (Fig. 5b).
The highest average ROM occurred between tide
heights of 100 and 150 cm, whereas the lowest aver-
age ROM was recorded between tide heights of 225
and 275 cm.

3.4.  Habitat use

Juvenile sharks spent 15 min to >3 h in man-
grove habitat during tracking (Fig. S1). Although
there were no apparent trends in the amount of

time spent in mangrove habitat, it is clear that in
some cases juveniles spent a considerable amount
of time within this habitat. On 3 occasions, juve-
niles were tracked in mangrove habitat for periods
between 121 and 125 min, and the 2 longest re -
corded times a juvenile spent in mangrove habitat
were 170 and 185 min. When accessible (i.e. tide
height ≥185 cm), juveniles spent 70% of the re -
corded time in the mangroves, with limited time
spent outside during this period (Fig. 6). The
greatest length of time spent outside of the man-
groves when they were accessible was 230 min.
This instance was during the track of individual
R07869 which was nearly 8 h in length and in -
cluded numerous observations of circling and
feeding on bait fish that were schooling outside of
the mangroves at high tide.
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Fig. 5. Predicted trends in (a) linearity and (b) rate of movement (ROM) of actively tracked juvenile blacktip reef sharks in re-
lation to tide height. Grey shading represents 95% confidence intervals and points represent raw data. ROM data were not 

normal and therefore natural-log transformed
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4.  DISCUSSION

Active tracking data from this study revealed that
small juvenile blacktip reef sharks in Pioneer Bay
were strongly influenced by tidal cycles. Daily tide
fluctuations were found to regulate juvenile move-
ments and habitat use, suggesting that tide height is
one of the main environmental drivers of movement
for these individuals. Juveniles moved in synchrony
with tidal cycles, remaining within very shallow wa-
ters during outgoing, low and incoming tides, while
using submerged mangrove habitat during high
tides. Other juvenile sharks have also been re corded
moving with the tide, including lemon Nega prion
brevirostris (Wetherbee et al. 2007, Guttridge et al.
2012), sandbar Carcharhinus plumbeus (Med ved &
Marshall 1983, Rechisky & Wetherbee 2003) and pig-
eye C. amboinensis sharks (Knip et al. 2011). In all
cases, movements allowed juvenile sharks to remain
in the shallowest possible water. Therefore, tidal
variation and access to key habitats appear to be in-
tegral components of the movement strategy of many
juvenile sharks inhabiting very shallow regions.

The movements exhibited by juvenile blacktip reef
sharks in the current study were very similar to those
of juvenile mangrove whiprays Urogymnus granula-
tus studied in the same location by Davy et al. (2015).
Rays were observed to occupy mangrove habitat dur-
ing high tide, before exiting with the outgoing tide,
following the shallow edge of the water and return-
ing to the mangroves with the incoming tide.
Simpfen dorfer et al. (2010) also re ported similar
movement patterns in juvenile smalltooth sawfish
Pristis pec tinata, whereby individuals moved with
the ebb and flow of the tide, continuously tracking
the shallow edges of the water. Davy et al. (2015)

concluded that the behaviour demonstrated by the
rays was most likely due to predator avoidance. This
cyclic movement by the juvenile blacktip reef sharks
may also be a predator-avoidance strategy based on
use of the reef flat by larger sharks at high tide (L.
George pers. obs.).

The use of shallow-water environments by juvenile
blacktip reef sharks may be a common survival strat-
egy, since this behaviour has also been documented
at Aldabra Atoll (Stevens 1984), Palmyra Atoll (Papa -
stamatiou et al. 2009) and Ningaloo, Western Aus-
tralia (Speed et al. 2011, Oh et al. 2017). Juveniles in
the present study were never tracked further than
the reef crest or observed entering deep water be -
yond the fringing reef. This provides evidence of
selection for shallow waters and suggests that these
areas provide the necessary resources for small juve-
nile blacktip reef sharks since they do not appear to
use deeper-water areas, despite the potential for
increased prey availability. Avoiding deep-water
environments has been observed in other juvenile
shark populations inhabiting tidally influenced envi-
ronments. For example, Wetherbee et al. (2007)
found that juvenile lemon sharks at Atol das Rocas in
Brazil restricted their movements to shallow tidal
pools during low tide, avoiding deeper areas. It is
also possible that this behaviour may be beneficial to
juveniles for locating prey. As fish move within the
shallows during the incoming and outgoing tide, they
may be easier for juvenile sharks to prey upon due to
the lack of escape routes. Juveniles may therefore be
moving within the shallows of the fluctuating tides
not only to avoid predators, but also to follow and
potentially consume prey (Papastamatiou et al. 2009,
Knip et al. 2011). During high tide, juveniles were
frequently tracked within mangroves, with some
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Fig.6.Useofmangrovehabitatby
juvenile blacktip reef sharks in
Pioneer Bay when mangroves
were accessible. Points represent
thedurationof timeduringatrack
that a juvenile shark spent either
using or not using the mangrove
habitat. Dashed line represents
tide height at which mangrove
habitat was  accessible to juvenile
sharks (185 ± 34 cm, mean ± SD)
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individuals spending extended periods of time within
this habitat before exiting with the outgoing tide. A
similar pattern was observed in actively tracked
juvenile lemon sharks where juveniles often pene-
trated dense mangrove habitat (Morrissey & Gruber
1993a). Likewise, Guttridge et al. (2012) reported
that juvenile lemon sharks used a shallow mangrove
inlet during high tide to avoid sub-adult conspecifics.
Therefore, heavy use of mangrove habitats appears
to be similar among juveniles of species that occur
near these habitats.

Sharks tracked for consecutive days often showed
consistent patterns within their movements, restrict-
ing their activity to a particular side of the bay.
Although movement paths were different between
individuals in relation to the side of the bay they
were tracked in and their exact path of movement,
individuals generally repeated the same or similar
movement path from the previous day and some car-
ried out very similar movements to other individuals
that were tracked in the same location. Similar move-
ments between tracks have been observed in
Hawaii, where juvenile scalloped hammerheads
Sphyrna lewini schooled during the daytime before
dispersing to forage at night and then returning to
the same core area the following day (Holland et al.
1992, 1993). The authors attributed this behaviour to
predator avoidance. Morrissey & Gruber (1993b) also
reported repeated lap-like movements of juvenile
lemon sharks in the shallows along the shoreline in
Bimini, Bahamas, while Simpfendorfer et al. (2010)
documented repeated use of a mangrove drainage
creek by a juvenile smalltooth sawfish, with the indi-
vidual returning to the same location during each
high-tide period. Like the juvenile lemon sharks
monitored by Guttridge et al. (2012), the juveniles in
our study may have used repeated movements based
on success in avoiding predation or capturing prey.
Interestingly, the blacktip reef shark that was
tracked for a period of 8 d used both sides of the bay
and generally did not repeat movement paths the fol-
lowing day, something that may have been observed
in the other juveniles had they been tracked longer.
This difference in pattern suggests that further study
is required to more fully understand movement pat-
terns within the broader population.

When transitioning between mangrove habitat and
the fringing reef during outgoing and incoming tides,
juveniles moved with direction and at higher speeds
than other times. Davy et al. (2015) also documented
this trend in actively tracked juvenile mangrove
whiprays. This behaviour suggests that the juvenile
sharks were moving with a purpose. Although mov-

ing with direction, segment lengths were very short
during this tidal period, indicating that individuals
were changing their behaviour frequently. During
outgoing and low tides when the juveniles are mov-
ing into shallower water, they may be susceptible to
stranding as the water recedes, explaining their more
directed and higher rates of movement as well as
regular changes in behaviour. A need to move with
the pace of the dropping tide may explain the
observed direct and high ROM, whereas the constant
change in behaviour may be a result of the sharks
trying to avoid becoming trapped in tidal pools or
feeding. During large tide fluctuations, Pioneer Bay
is generally devoid of water. The shallow, consistent
nature of the sand flats precludes the creation of tide
pools that individuals could use; they must therefore
move to the reef crest to avoid stranding. In some
instances, juveniles were observed to chase prey
during lower tides (L. George pers. obs.), which may
also explain some of the changes in behaviour.

During high tide, random movements at low speed
were more typical and segment length was longer,
indicating that the behaviour of the juveniles re -
mained unchanged for extended periods. Juveniles
often entered mangrove habitats during higher tides
and therefore the need to move with direction and
speed to avoid becoming stranded was no longer an
issue due to the large volume of water and the pro-
tection offered by the mangrove roots. The juvenile
sharks in this study appeared to be carrying out
repeated lap-like movements while in the mangrove
habitat waiting for the tide to recede.

Movement within and direct use of mangrove habi-
tats by juvenile blacktip reef sharks has not previously
been investigated. Earlier studies in nearshore areas
have documented the presence of juveniles near
mangrove habitats (Chin et al. 2013a), suggesting
they may play a role in the early life stages of this spe-
cies, but have not documented use. A number of habi-
tats are available in Pioneer Bay during high tide;
however, juveniles regularly used mangroves lining
the shore, penetrating their complex root system and
only spending a small proportion of time outside of
this habitat when it was accessible. The use of man-
grove habitat by juvenile elasmobranchs has previ-
ously been documented in a number of nearshore
 environments (Morrissey & Gruber 1993a, Simpfen -
dorfer et al. 2010, Davy et al. 2015, Escalle et al. 2015),
with studies suggesting that the mangrove habitat
was used by juveniles as a means of predator avoid-
ance. Potential predators of juvenile blacktip reef
sharks include any larger shark. Adult blacktip reef
and sub-adult sharptooth lemon sharks N. acutidens
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were regularly observed entering Pioneer Bay and
patrolling mangrove edges during high tide (L.
George pers. obs.), while other large sharks present
within the area may also enter the bay, but are ob-
served less often. Due to the density of the mangrove
prop roots in the bay, potential predators and also
competitors (e.g. large fish) would have difficulty pen-
etrating the mangrove habitat system, which therefore
acts as a refuge for small juvenile blacktip reef sharks.

Other studies have suggested that the use of man-
grove habitat by juvenile elasmobranchs may in -
crease their access to prey (e.g. Morrissey & Gruber
1993a, Simpfendorfer et al. 2010). Mangrove habitats
are also commonly used by teleost fish as refuges
from predators (Verweij et al. 2006) and to forage for
prey (Chittaro et al. 2005), and in some cases, they
act as nurseries (Nagelkerken et al. 2000, Mumby et
al. 2004). Barnes et al. (2012) examined the use of
mangrove habitat by coral reef fish in Pioneer Bay
and found that 38 species occurred within the man-
groves. The high abundance of fish within this habi-
tat may also be drawing juvenile blacktip reef sharks
into the mangroves. Dietary analysis of blacktip reef
sharks has found that teleost fish are the predomi-
nant prey (Stevens 1984, Lyle 1987). It is therefore
possible that juveniles are entering the mangroves
during high tide and spending the majority of their
time within them not only to avoid predators, but also
to access the high abundance of potential prey. Fur-
ther research into the use of mangrove habitat by
small juvenile blacktip reef sharks will provide
greater understanding of their use and importance.
These future studies should aim for larger sample
sizes to provide more conclusive generalisations in
regards to movement patterns and incorporate night
time tracks to help understand if the juveniles exhibit
diel changes in behaviour. However, it appears that
protecting mangrove habitat in coastal areas will be
beneficial to juvenile blacktip reef sharks, as it plays
an important role in their predator-avoidance strat-
egy within nursery areas.
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