
RESEARCH ARTICLE

Salinity can change the lipid composition of

adult Chinese mitten crab after long-term

salinity adaptation

Xiaowen Long1,2, Xugan WuID
1,3,4*, Shaicheng Zhu1, Haihui Ye2, Yongxu Cheng1,3,4,

Chaoshu Zeng2,5*

1 Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural

Affairs, Shanghai Ocean University, Shanghai, China, 2 College of Ocean and Earth Sciences, Xiamen

University, Xiamen, China, 3 Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean

University, Shanghai, China, 4 National Demonstration Centre for Experimental Fisheries Science Education,

Shanghai Ocean University, Shanghai, China, 5 College of Science & Engineering, James Cook University,

Townsville, Queensland, Australia

* xgwu@shou.edu.cn (XGW); chaoshu.zeng@jcu.edu.cu (CSZ)

Abstract

The Chinese mitten crab (Eriocheir sinensis) is an euryhaline crustacean, whose adults

migrate downstream to estuaries for reproduction. Lipids are believed to be involved in salin-

ity adaptation during migration. This study investigated the effects of different salinities (0, 6,

12, and 18‰) on the total lipids, neutral lipids, and polar lipids contents, and fatty acid pro-

files in the gonads, hepatopancreas, and muscles of adult E. sinensis after 40 days of salin-

ity adaptation. The results showed that the males and females from 12‰ treatment had the

highest contents of total lipids and neutral lipids in their hepatopancreas and total lipids in

the muscles. Notably, salinity had a greater effect on the fatty acid profiles in the hepatopan-

creas compared to that in the gonads and muscles. The male hepatopancreas treated with

18‰ salinity had the highest percentage of total n-6 polyunsaturated fatty acid (∑n-6PUFA)

in both neutral lipids and polar lipids, while the percentage of total n-3 polyunsaturated fatty

acid (∑n-3PUFA) in neutral lipids and polar lipids decreased significantly with increasing

salinity in males. In females, the 0‰ treatment had the highest percentages of total satu-

rated fatty acids in neutral lipids and polar lipids in the hepatopancreas, while the highest

∑n-3PUFA and ∑n-6PUFA in neutral lipids and polar lipids were detected in the 12‰ treat-

ment group. In conclusion, brackish water could promote the accumulations of total lipids

and neutral lipids in the hepatopancreas and change the fatty acid profiles of adult E. sinen-

sis, particularly in the hepatopancreas after long-term salinity adaptation.

Introduction

The Chinese mitten crab (Eriocheir sinensis) is an euryhaline crustacean that is mainly distrib-

uted along the Eastern coast of Asia to the Korean Peninsula [1, 2]. In addition, the crab has

spread to the coastal ecosystems of Europe and America; thus, it is considered an invasive spe-

cies [3, 4]. Under natural conditions, the juvenile E. sinensis inhabit fresh water environment,
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where they complete puberty molt from August to September. Then, the adult crabs after the

puberty molt generally start the reproduction migration from the end of September to early

October, and spend 1–3 months to reach the estuaries for reproduction. After completed

copulation, the female crabs carrying the fertilized eggs gradually migrate further downstream

for spawning and hatching in full marine environment. Subsequently, the hatched larvae

develop through five zoeal stages to become megalops, and then the megalops develop into

juvenile crabs and migrate upstream towards freshwater ecosystems, such as rivers and lakes

[5, 6]. During the reproduction migration, the salinity increases from freshwater to brackish

conditions; with the salinity in estuaries fluctuating substantially, as affected by tides and fresh-

water runoff from the rivers. For example, salinity of the Yangtze estuary reportedly ranges

from 3.4‰ to 17‰ [7, 8], hence the osmoregulation and physiological status of E. sinensis will

be impacted by the fluctuant salinity [9, 10]. Thus, the whole life history of the E. sinensis is

modulated by fluctuating water salinity, making E. sinensis an ideal model organism to study

the salinity adaptation mechanism in crustaceans.

Fluctuating salinity directly affects the osmolality of aquatic animals, which results in the meta-

bolic changes. Energetic reorganization is one of the strategies used by aquatic animals to cope

with environmental salinity changes [10–12]. Lipids are important nutrients in aquatic animals,

which play important roles during salinity adaptation, being a primary energy source [13, 14] and

structural components of membrane, determining membrane fluidity and its permeability regula-

tion [15–17]. In addition, lipids are also the precursors for the biosynthesis of steroid hormones

that regulate the reproductive endocrine system in aquatic animals [18–20]. Therefore, the adap-

tation of aquatic animals to different salinities may be understood by measuring the lipid compo-

sitions of the organs such as the gills, hepatopancreas, and muscle [21, 22]. Previous studies have

investigated the effects of short-term salinity acclimation or abrupt salinity changes on the lipid

composition of E. sinensis, and mainly focused on the lipid composition and phospholipid metab-

olism in the gills [23–26]. Recent studies reported the effects of long-term salinity adaptation on

the fatty acid composition in the gills of adult E. sinensis [9, 10]; however, it is unclear whether

salinity could affect the lipid compositions of other tissues after long-term salinity adaptation.

Previous studies have shown that the gonads of adult E. sinensis post puberty molt develop

rapidly, and there are marked differences in the reproductive system and gonadal development

pattern between male and female crabs [27, 28]. During gonadal development, the nutrients in

the hepatopancreas of E. sinensis, especially lipids, are transported to the developing ovaries;

however, this does not happen in male crabs [29, 30]. In addition, brackish water (6–18‰)

could promote the gonadal development of E. sinensis during long-term salinity adaptation [9,

10]. It is likely that there might be gender differences in the lipid compositions of tissues after

long-term salinity adaptation, and therefore, the effects of salinity on males and female crabs

should be studied separately. According to the above summary, adult E. sinensis post puberty

molt in early October were collected and subjected to four salinities (0, 6, 12 and 18‰) for forty

days, to investigate the effects of long-term salinity adaptation on the total lipids, neutral lipids,

polar lipids, and fatty acid profiles in the gonads, hepatopancreas, and muscle of adult E. sinen-
sis. These results are envisaged to provide some useful information to understand the long-term

salinity adaptation mechanism of E. sinensis during reproduction migration, and shed new

lights on salinity adaptation mechanism for the studies in other euryhaline crustaceans.

Materials and methods

Experimental design

The adult E. sinensis post puberty molt was purchased from a crab farm in Yangchenghu Lake,

Jiangsu province, China in early October. The adult crabs that completed puberty molt were
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determined based on the external characteristics: 1) > 70% area of the chelipeds is covered

with hairs for adult male crabs; and 2) the petasma of adult males become hard and raised

compared to immature males. For the females, the mature crabs were characterized by a

yellowish green color on the carapace, and an abdominal flap that was semicircular in shape

that was covered by short hair; in contrast, immature females had a khaki colored carapace,

and the abdomen was more triangular [31]. The initial body weight of males and females ran-

ged from 150 to 160 g and 100 to 120 g, respectively. The crabs were transported to Fengxian

aquaculture research center, Shanghai Fisheries Research Institute, Shanghai, China. Two hun-

dred and forty female and 240 male active and appendage-intact crabs were selected for experi-

ment. Four salinity treatments, i.e. 0, 6, 12, and 18‰, were set up, and each treatment had two

replicate tanks with 30 males or females stocked in each tank. Males and females were cultured

separately, because in brackish water they could mate and cause spawning for female crabs

[32], which may affect the normal physiological status of the crabs. The experiment was con-

ducted in 16 indoor polyethylene tanks (length × width × depth = 2.5 m × 3.75 m × 1.0 m).

Approximately 40% of the bottom area of the tanks was covered with 10–20 cm fine sand and

pieces of polyvinyl chloride (PVC) tubes (diameter: 15 cm) were provided as shelters for the

crabs. During the experiment, the water depth of each tank was maintained at 70 cm. The ini-

tial salinity in all tanks was 0‰, and following stocking of the crabs, the salinity in the tanks

allocated for higher salinity treatments was gradually increased to the designated levels, at a

rate of 3‰ day -1 by adding brine.

During the experiment, all the rearing tanks were provided with continuous aeration and

maintained under a photoperiod cycle of 12 h light: 12 h dark. Fluorescent lamps (40 W) were

used as the light source. The crabs were fed daily at 18:00 with trash fish and the food residue

was removed the next morning. The feeding amount was adjusted according to the water tem-

perature and food residues. The feeding amount was around 3–5% of the total biomass when

the water temperature was above 20˚C, while the feeding amount was approximately 1–3% of

total biomass when the temperature was between 15 and 20˚C. The water temperature in each

tank was measured daily at 12:00 and 22:00, and ammonia-N, nitrite, dissolved oxygen (DO),

and pH were measured every 3 days. The water in each tank was exchanged based on the water

quality. During the experiment, water quality parameters were maintained as follows: ammo-

nia-N < 0.5 mg L-1; nitrite < 0.15 mg L-1; DO> 4 mg L-1 and pH 7.0–8.5.

Sample collection

At day 40 of the experiment, the crabs were fasted for 24 h before sampling. Four crabs were

randomly sampled from each tank; therefore, eight females and eight males were sampled

from each salinity treatment. The body weights of crabs were measured using a digital balance

(precision = 0.01 g). Subsequently, all the crabs were treated with the cold shock method to

minimize suffering. The gonads and hepatopancreas of each crab were dissected out and

weighted. Meanwhile, the muscle of each crab was carefully picked by hand. All the samples

were stored at −40˚C for later analysis.

Total lipid extraction, separation, and fatty acid analysis

The gonads, hepatopancreas, and muscle samples of each crab was freeze-dried and pulver-

ized. The total lipid content in the muscle and male gonads was relatively limited; therefore, to

meet the requirements of total lipid content and fatty acid composition analysis, the muscle

sample and male gonads of two crabs from the same tank were randomly pooled into one sam-

ple, respectively. Total lipids in the crab samples were extracted with chloroform-methanol

(2:1, v/v) according to the method of Folch et al. (1957) [33]. Neutral lipids and polar lipids in

Salinity can change lipid composition of adult Chinese mitten crab

PLOS ONE | https://doi.org/10.1371/journal.pone.0219260 July 3, 2019 3 / 19

https://doi.org/10.1371/journal.pone.0219260


the total lipids were separated by the solvent method using petroleum ether as the basal phase

and 95% methanol as the recovery phase [29, 34].

The method of Shen (1992) [35] was used for the esterification of the above collected neu-

tral and polar lipids samples. Briefly, 30–100 mg of the neutral lipids or polar lipids was solved

with 2 mL petroleum ether: benzene (1:1, v/v), and an equal volume of 0.4 mol L-1 KOH-meth-

anol solution was added, mixed, and left to stand for 10 min. Then, 10 mL distilled water was

added, mixed, and left to stand for 30 min. The supernatant was then collected for fatty acid

methyl esters (FAMEs) analysis. The FAMEs were analyzed on an Agilent 7890B-5977A gas

chromatograph-mass spectrometer (GC-MS) with an Omegawax 320 fused silica capillary col-

umn (30 m × 0.32 mm ID × 0.25 um; Supelco, Billefonte, PA, USA). Helium was used as the

carrier gas with a flow rate of 1.0 mL min-1. Aliquots (1.0 μL) were injected and the split ratio

of the injector was 1:30. The temperature of the injector was kept at 240˚C, while the column

temperature was initially held at 40˚C. It was then increased, at 10˚C min-1, to 170˚C and held

for 1 min, followed by an increase at 2˚C min-1 to 220˚C and held for 1 min. It was then further

increased at 3˚C min-1 to the final temperature of 230˚C and held for 5 min until all FAMEs

had been eluted. The temperature of transfer line was maintained at 245˚C. The ion-trap mass

spectrometer was operated in electron impact (EI) mode and full scan monitoring mode (m/z

30–450). The MS source temperature was set at 230˚C and the electron energy was set at 70

eV. The peaks were identified by comparing their retention times with known standards

(Sigma-Aldrich Co., St. Louis, MO, USA). The fatty acid profile was expressed as the percent-

age of each fatty acid to the total fatty acids (% total fatty acids) based on the area percentage.

Statistical analysis

Data are presented as mean ± standard error (SE). Homogeneity of variance was tested using

Levene’s test. When necessary, arcsine-square root or logarithmic transformation was per-

formed before analysis. Statistical analyses were conducted using ANOVA and Duncan’s mul-

tiple range tests were used as the means separation procedure in this study. P< 0.05 was

regarded as statistically significant for any two treatments while Bonferroni correction was

used to correct the P value of multiple tests for statistical significance [36]. All statistical analy-

ses were performed using the SPSS statistics package software (version 16.0). Principal compo-

nent analysis (PCA) was performed on fatty acid data using a statistical analysis module in the

MetaboAnalyst 4.0 online software, which is freely available at http://metaboanalyst.ca.

Results

The contents of total lipids, neutral lipids, and polar lipids

There were no significant differences in the contents of total lipids, neutral lipids, and polar lipids,

as well as the neutral lipids-polar lipids ratio (NL:PL), in the gonads of males among all treatments

(P> 0.05, Table 1). In addition, no significant differences were found for the total lipids and neu-

tral lipids contents and the NL:PL in the ovaries of females among all treatments (P> 0.05), while

the polar lipids contents in the ovaries showed an overall decreasing trend with increasing salinity

(P< 0.05). The highest contents of total lipids and neutral lipids in the hepatopancreas of male

crabs were detected in the 12‰ treatment group (P< 0.05), while no significant differences were

found for the contents of polar lipids and NL:PL among all treatments (P> 0.05). The total lipids,

neutral lipids, and NL:PL in the hepatopancreas of females showed a pattern of ‘low-high-low’,

with the highest levels detected in the 12‰ treatment group, while the highest and the lowest

polar lipids contents were detected in the 0 ‰ and 12‰ treatment groups, respectively

(P< 0.05). The male crabs from the 12‰ treatment group had the highest contents of total lipids

and polar lipids in the muscles (P< 0.05), while no significant differences were found for the
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Table 1. The contents of total lipids, neutral lipids and polar lipids (% wet tissue) and ratio of neutral lipids and polar lipids in the tissues of adult E. sinensis.

Items Males Females

0 ‰ 6 ‰ 12 ‰ 18 ‰ 0 ‰ 6 ‰ 12 ‰ 18 ‰

Gonads

Total lipids 1.083 ± 0.117 1.075 ± 0.185 0.857 ± 0.115 0.882 ± 0.038 15.561 ± 0.311 14.62 ± 0.206 15.68 ± 0.695 14.56 ± 0.127

Neutral lipids 0.055 ± 0.007 0.057 ± 0.013 0.034 ± 0.003 0.035 ± 0.010 8.117 ± 0.585 7.503 ± 0.554 8.415 ± 0.213 8.332 ± 0.224

Polar lipids 1.031 ± 0.110 1.018 ± 0.172 0.824 ± 0.111 0.860 ± 0.035 7.444 ± 0.165a 7.116 ± 0.786ab 7.261 ± 0.482ab 6.228 ± 0.031b

NL:PL 0.054 ± 0.008 0.055 ± 0.002 0.041 ± 0.003 0.041 ± 0.004 1.103 ± 0.097 1.080 ± 0.198 1.176 ± 0.052 1.340 ± 0.045

Hepatopancreas

Total lipids 31.927 ± 0.262B 37.942 ± 2.141AB 40.822 ± 0.188A 36.637 ± 0.253AB 30.445 ± 1.700b 39.323 ± 1.622a 42.220 ± 2.19a 39.558 ± 1.988a

Neutral lipids 29.907 ± 1.465B 36.136 ± 2.257AB 38.646 ± 2.461A 34.694 ± 1.295AB 28.306 ± 1.965b 37.83 ± 1.438a 41.086 ± 1.995a 38.334 ± 1.346a

Polar lipids 2.020 ± 0.147 1.774 ± 0.126 2.004 ± 0.134 1.930 ± 0.133 2.013 ± 0.208a 1.410 ± 0.154b 1.080 ± 0.125b 1.170 ± 0.063b

NL:PL 15.604 ± 1.118 19.199 ± 1.254 17.978 ± 1.173 16.298 ± 1.027 14.241 ± 0.955c 29.270 ± 3.212b 40.580 ± 1.721a 33.121 ± 1.656b

Muscles

Total lipids 0.926 ± 0.014B 0.966 ± 0.002AB 1.053 ± 0.061A 1.012 ± 0.048AB 1.051 ± 0.003 1.075 ± 0.034 1.101 ± 0.041 1.122 ± 0.064

Neutral lipids 0.027 ± 0.006 0.030 ± 0.005 0.027 ± 0.002 0.024 ± 0.002 0.029 ± 0.001a 0.024 ± 0.001ab 0.015 ± 0.002c 0.020 ± 0.001bc

Polar lipids 0.870 ± 0.013A 0.935 ± 0.020AB 1.028 ± 0.018A 0.989 ± 0.025A 1.024 ± 0.025 1.051 ± 0.014 1.085 ± 0.019 1.100 ± 0.028

NL:PL 0.031 ± 0.006 0.032 ± 0.005 0.026 ± 0.003 0.024 ± 0.002 0.028 ± 0.001a 0.023 ± 0.001b 0.014 ± 0.001c 0.018 ± 0.001bc

Data are presented as mean ± SE (n = 2). Within the male and female groups, values within the same row with different supesrcipt letters (capital letter for males and

lower case letter for females) indicate significant difference; NL: neutral lipids; PL: polar lipids ratio.

https://doi.org/10.1371/journal.pone.0219260.t001

Fig 1. Principal component analysis (PCA) scores plot of fatty acids profiles in the gonads of adult male E.

sinensis.

https://doi.org/10.1371/journal.pone.0219260.g001
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neutral lipids and NL:PL (P> 0.05). The neutral lipid contents and NL:PL in the muscles of

females showed a pattern of ‘high-low-high’, with the highest and the lowest levels detected in the

0‰ and 12‰ treatment groups, respectively (P< 0.05).

Fatty acid profiles of the gonads

Principal component analysis (PCA) showed that the fatty acid profiles in the gonads of male

crabs from the four salinity treatments were similar (Fig 1). For the fatty acid composition in

the neutral lipids, there were no significant differences in the percentages of total saturated fatty

acids (∑SFA) and total monounsaturated fatty acids (∑MUFA) in the male gonads among all

treatments (P> 0.05, Table 2), while the highest percentages of C20: 5n3 (EPA) and total n-3

polyunsaturated fatty acid (∑n-3 PUFA) were detected in the 0‰ treatment group (P< 0.05).

For the polar lipids, C18:0 showed a pattern of ‘high-low-high’, with the highest and the lowest

levels being detected in the 18‰ and 6‰ treatment groups, respectively (Table 2).

The results of PCA showed that the fatty acid profile in the ovaries of female crabs in the

0‰ treatment group was similar to those of the 6‰ and 12‰ treatment groups; however,

they were slightly different from that in the 18‰ treatment group (Fig 2). For the fatty acid

composition of the neutral lipids, the female crabs in the 18‰ treatment group had the highest

percentage of C18:1n9, while the highest percentage of C22:6n3 (DHA) was detected in the

0‰ treatment group (P< 0.05, Table 3). For the polar lipids, the percentage of C18:1n9

Table 2. The principal fatty acid profiles (% total fatty acids) of the neutral lipids and polar lipids in the gonads of adult male E. sinensis.

Fatty acids Neutral lipids Polar lipids

0 ‰ 6 ‰ 12 ‰ 18 ‰ 0 ‰ 6 ‰ 12 ‰ 18 ‰

C16:0 13.17 ± 0.28 13.22 ± 1.07 14.55 ± 0.30 13.77 ± 0.68 9.51 ± 0.06 10.34 ± 0.95 10.41 ± 0.87 9.00 ± 1.14

C18:0 8.17 ± 0.20 8.04 ± 0.14 7.97 ± 0.14 8.37 ± 0.13 7.37 ± 0.34ab 6.87 ± 0.36b 7.06 ± 0.17b 8.22 ± 0.22a

∑SFA 22.96 ± 0.49 22.91 ± 1.27 24.34 ± 0.22 23.85 ± 0.82 19.55 ± 0.27 19.91 ± 0.24 20.75 ± 0.66 20.32 ± 0.72

C16:1 3.76 ± 0.08 4.13 ± 0.58 3.78 ± 0.11 4.02 ± 0.47 3.44 ± 0.27 3.92 ± 0.76 3.73 ± 0.91 2.83 ± 0.82

C18:1n9 21.59 ± 0.10 20.98 ± 1.09 21.89 ± 0.31 22.04 ± 0.35 16.05 ± 0.54 17.06 ± 1.23 16.91 ± 0.71 16.76 ± 1.16

C18:1n7 5.24 ± 0.13 5.10 ± 0.25 5.44 ± 0.11 5.42 ± 0.39 3.72 ± 0.02 3.72 ± 0.15 3.74 ± 0.09 3.86 ± 0.37

C20:1n9 1.03 ± 0.01 1.13 ± 0.09 0.79 ± 0.04 0.89 ± 0.12 1.55 ± 0.05 1.26 ± 0.09 1.40 ± 0.18 1.40 ± 0.05

∑MUFA 32.25 ± 0.06 31.94 ± 1.86 32.60 ± 0.34 33.00 ± 1.12 25.74 ± 0.79 26.98 ± 2.05 26.95 ± 1.37 25.81 ± 2.33

C18:2n6 7.56 ± 0.30 7.26 ± 0.79 7.93 ± 0.29 8.79 ± 0.74 7.25 ± 0.64 7.45 ± 0.78 6.58 ± 0.32 7.03 ± 0.95

C18:3n3 0.83 ± 0.02 0.98 ± 0.05 0.89 ± 0.04 1.00 ± 0.05 0.77 ± 0.06 0.85 ± 0.12 0.72 ± 0.06 0.75 ± 0.08

C20:2n6 1.48 ± 0.02 1.47 ± 0.19 1.38 ± 0.02 1.52 ± 0.11 3.03 ± 0.01 2.79 ± 0.29 3.04 ± 0.08 3.03 ± 0.21

C20:4n6 11.47 ± 0.17 12.52 ± 0.98 11.57 ± 0.45 11.62 ± 1.74 13.54 ± 0.63 13.82 ± 1.43 14.39 ± 1.32 16.10 ± 2.08

C20:5n3 13.52 ± 0.03a 11.94 ± 1.08ab 10.57 ± 0.84b 10.89 ± 0.50b 12.10 ± 0.45 10.99 ± 1.33 10.21 ± 1.02 11.78 ± 0.59

C22:5n3 0.18 ± 0.01 0.19 ± 0.01 0.18 ± 0.01 0.18 ± 0.01 0.99 ± 0.23 1.07 ± 0.12 1.03 ± 0.40 1.09 ± 0.14

C22:6n3 3.05 ± 0.06 2.72 ± 0.06 2.70 ± 0.29 2.78 ± 0.12 5.74 ± 0.03 5.20 ± 0.20 4.96 ± 0.57 4.85 ± 0.06

∑PUFA 38.26 ± 0.19 37.25 ± 1.49 35.38 ± 1.28 36.95 ± 1.71 45.04 ± 0.37 43.92 ± 2.26 42.87 ± 2.66 46.24 ± 2.60

∑n-3PUFA 17.76 ± 0.05a 16.00 ± 1.11ab 14.50 ± 1.10b 15.02 ± 0.59ab 20.07 ± 0.17 18.60 ± 1.56 17.23 ± 1.98 19.06 ± 0.41

∑n-6PUFA 20.51 ± 0.14 21.24 ± 0.38 20.88 ± 0.17 21.93 ± 1.12 24.97 ± 0.21 25.32 ± 0.70 25.64 ± 0.68 27.18 ± 2.19

n-3/n-6 0.87 ± 0.01a 0.76 ± 0.07ab 0.69 ± 0.05b 0.69 ± 0.02b 0.80 ± 0.01 0.74 ± 0.05 0.67 ± 0.06 0.70 ± 0.04

∑LC-PUFA 28.39 ± 0.14 27.54 ± 2.13 25.19 ± 1.60 25.64 ± 2.38 33.87 ± 1.08 32.71 ± 2.85 32.41 ± 2.97 35.32 ± 3.43

Unknown 6.53 ± 0.24 7.91 ± 1.63 6.64 ± 0.33 6.20 ± 0.24 9.54 ± 1.26 9.19 ± 0.54 9.03 ± 0.88 7.60 ± 1.15

Data are presented as mean ± SE (n = 2). Values within the same row with different letters mean significant difference. Fatty acids contents < 0.5% are not listed in this

table. ∑SFA: total saturated fatty acids; ∑MUFA: total monounsaturated fatty acids; ∑PUFA: total polyunsaturated fatty acids; ∑LC-PUFA: total long chain

polyunsaturated fatty acids.

https://doi.org/10.1371/journal.pone.0219260.t002
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showed an increasing trend with increasing salinity (P< 0.05), while no significant differences

were found for the other fatty acids among four salinity treatments (P> 0.05).

Fatty acid profiles of the hepatopancreas

The results of PCA showed that the fatty acid profile in the hepatopancreas of male crabs from

the 0‰ treatment group was significantly different from that in the 12‰ and 18‰ treatment

groups (Fig 3). For the fatty acid composition of the neutral lipids, there were no significant dif-

ferences in the percentages of ∑SFA and most monounsaturated fatty acids among all treatments

(P> 0.05, Table 4). The percentage of ∑MUFA in the neutral lipids increased significantly with

increasing salinity (P< 0.05). The percentages of EPA, DHA, ∑n-3PUFA, and ∑LC-PUFA as

well as n-3/n-6 PUFA ratio decreased significantly with increasing salinity (P< 0.05). For the

polar lipids, the percentage of C20:2n6 increased significantly with increasing salinity, while the

levels of DHA and ∑n-3PUFA showed a decreasing trend with increasing salinity (P< 0.05).

The results of PCA showed that the fatty acid profile in the hepatopancreas of female crabs

from the 0‰ treatment group was similar to those of the 6‰ and 18‰ treatment groups, but

different from that of the 12‰ treatment group (Fig 4). The fatty acid composition in the neu-

tral lipids and polar lipids of the hepatopancreas are shown in Table 5. For the neutral lipids,

the highest percentages of C18:0 and ∑SFA were detected in the 0‰ treatment group, while

the highest percentages of EPA, ∑n-3PUFA, ∑n-6PUFA, ∑PUFA, and ∑LC-PUFA were

detected in the 12‰ treatment group (P< 0.05). For the polar lipids, the 0‰ salinity group

had the highest percentages of most saturated fatty acids and monounsaturated fatty acids,

while the highest levels of C18:2n6, C18:3n3, C20:4n6, EPA, DHA, ∑PUFA, ∑n-3PUFA, ∑n-

6PUFA and ∑LC-PUFA were detected in the 12‰ treatment group (P< 0.05).

Fig 2. PCA scores plot of fatty acids profiles in the gonads of adult female E. sinensis.

https://doi.org/10.1371/journal.pone.0219260.g002
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Fatty acid profiles of muscles

The Fig 5 shows that the fatty acids profiles in the muscles of male crabs were similar among

all treatments. The fatty acid composition of male muscles is shown in Table 6. For the neutral

lipids, the percentages of C16:0 and ∑SFA showed an overall decreasing trend with increasing

salinity (P< 0.05), while no significant differences were found for the percentages of most

monounsaturated fatty acids and polyunsaturated fatty acids. For the polar lipids, the highest

C18:0 was detected in the 18‰ treatment group (P< 0.05). The males from the 12‰ treat-

ment group had the highest percentage of C18:1n7 in the polar lipids (P< 0.05), while no sig-

nificant differences were found for the other monounsaturated fatty acids among all

treatments. The highest percentage of C22:6n3 showed an overall decreasing trend with

increasing salinity (P< 0.05), while no significant differences were found for the other polyun-

saturated fatty acids among four salinity treatments.

The fatty acids profiles in the muscles of female crabs from the four treatment groups were

similar (Fig 6). For the fatty acid composition in neutral lipids, there were no significant differ-

ences in the percentages of most saturated fatty acids, monounsaturated fatty acids, or polyunsat-

urated fatty acids among all treatments (P> 0.05, Table 7). For the polar lipids, the percentage of

C18:1n9 increased with increasing salinity, while no significant differences were found for the

Table 3. The principal fatty acid profiles (% total fatty acids) of the neutral lipids and polar lipids in the ovaries of adult female E. sinensis.

Fatty acids Neutral lipids Polar lipids

0 ‰ 6 ‰ 12 ‰ 18 ‰ 0 ‰ 6 ‰ 12 ‰ 18 ‰

C14:0 1.08 ± 0.02 1.05 ± 0.06 1.07 ± 0.07 0.94 ± 0.01 0.34 ± 0.01 0.33 ± 0.02 0.32 ± 0.02 0.29 ± 0.01

C16:0 14.90 ± 0.03 14.60 ± 0.14 14.41 ± 0.26 14.76 ± 0.21 8.83 ± 0.14 8.89 ± 0.01 8.44 ± 0.24 9.28 ± 0.27

C18:0 3.21 ± 0.01 3.29 ± 0.17 3.25 ± 0.05 3.28 ± 0.04 5.76 ± 0.16 6.03 ± 0.48 5.90 ± 0.10 5.72 ± 0.22

∑SFA 19.00 ± 0.01 18.75 ± 0.34 18.58 ± 0.28 18.91 ± 0.24 15.24 ± 0.31 15.57 ± 0.49 15.01 ± 0.30 15.64 ± 0.48

C16:1 11.72 ± 0.49 11.44 ± 0.85 10.61 ± 0.49 12.08 ± 0.07 7.69 ± 0.28 7.24 ± 0.69 6.59 ± 0.13 7.81 ± 0.28

C17:1n7 0.76 ± 0.01 0.71 ± 0.01 0.77 ± 0.01 0.75 ± 0.05 0.57 ± 0.03 0.57 ± 0.03 0.62 ± 0.03 0.62 ± 0.01

C18:1n9 22.82 ± 0.07b 23.32 ± 0.34ab 23.68 ± 0.11ab 24.27 ± 0.17a 20.55 ± 0.20b 20.99 ± 0.23ab 21.27 ± 0.32ab 22.40 ± 0.47a

C18:1n7 5.29 ± 0.15 5.20 ± 0.34 5.12 ± 0.27 5.32 ± 0.01 6.35 ± 0.39 6.33 ± 0.42 6.21 ± 0.45 6.59 ± 0.03

C20:1n9 0.56 ± 0.01 0.52 ± 0.02 0.59 ± 0.05 0.55 ± 0.01 0.86 ± 0.03 0.88 ± 0.06 1.02 ± 0.06 0.87 ± 0.04

∑MUFA 41.14 ± 0.43 41.18 ± 0.88 40.75 ± 0.71 42.97 ± 0.28 36.02 ± 0.14 35.99 ± 1.40 35.69 ± 0.99 38.28 ± 0.82

C18:2n6 9.74 ± 0.58 12.26 ± 1.40 11.20 ± 0.51 10.35 ± 0.50 9.21 ± 0.78 11.02 ± 1.05 10.17 ± 0.29 9.78 ± 0.31

C18:3n3 1.82 ± 0.09 2.15 ± 0.01 2.11 ± 0.21 2.03 ± 0.19 1.52 ± 0.02 1.90 ± 0.03 1.91 ± 0.20 1.86 ± 0.16

C20:2n6 1.06 ± 0.01 1.17 ± 0.06 1.19 ± 0.03 1.15 ± 0.01 1.22 ± 0.01 1.31 ± 0.03 1.36 ± 0.02 1.36 ± 0.03

C20:4n6 3.52 ± 0.09 3.49 ± 0.18 3.58 ± 0.40 3.46 ± 0.05 5.63 ± 0.13 5.48 ± 0.03 5.53 ± 0.65 5.16 ± 0.22

C20:5n3 6.82 ± 0.25 6.08 ± 0.16 6.63 ± 0.02 6.18 ± 0.07 10.78 ± 0.22 10.38 ± 0.16 10.72 ± 0.06 10.05 ± 0.22

C22:5n3 0.74 ± 0.03 0.67 ± 0.01 0.70 ± 0.03 0.69 ± 0.04 1.62 ± 0.12 1.62 ± 0.05 1.54 ± 0.09 1.57 ± 0.13

C22:6n3 7.55 ± 0.17a 5.88 ± 0.21b 6.78 ± 0.28ab 5.77 ± 0.12b 10.57 ± 0.05 9.52 ± 0.01 10.34 ± 0.09 9.21 ± 0.65

∑PUFA 31.55 ± 0.64 32.01 ± 0.89 32.53 ± 0.95 29.98 ± 0.57 40.88 ± 0.69 41.59 ± 1.20 41.90 ± 0.84 39.37 ± 1.37

∑n-3PUFA 17.23 ± 0.16a 15.10 ± 0.38b 16.56 ± 0.02a 15.01 ± 0.02b 24.82 ± 0.04 23.79 ± 0.15 24.85 ± 0.11 23.07 ± 0.82

∑n-6PUFA 14.32 ± 0.48 16.91 ± 1.27 15.97 ± 0.94 14.97 ± 0.56 16.06 ± 0.65 17.80 ± 1.04 17.06 ± 0.95 16.30 ± 0.56

n-3/n-6 1.21 ± 0.07 0.90 ± 0.05 1.04 ± 0.04 1.04 ± 0.13 1.55 ± 0.06 1.34 ± 0.05 1.46 ± 0.06 1.45 ± 0.16

∑LC-PUFA 18.93 ± 0.03 16.44 ± 0.55 18.02 ± 0.62 16.44 ± 0.25 28.93 ± 0.06 27.37 ± 0.12 28.47 ± 0.65 26.38 ± 1.06

Unknown 8.31 ± 0.19 8.05 ± 0.36 8.15 ± 0.03 8.16 ± 0.05 7.87 ± 0.24 6.85 ± 0.29 7.40 ± 0.46 6.71 ± 0.06

Data are presented as mean ± SE (n = 2). Values within the same row with different letters mean significant difference. Fatty acids contents < 0.5% are not listed in this

table. ∑SFA: total saturated fatty acids; ∑MUFA: total monounsaturated fatty acids; ∑PUFA: total polyunsaturated fatty acids; ∑LC-PUFA: total long chain

polyunsaturated fatty acids.

https://doi.org/10.1371/journal.pone.0219260.t003
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percentages of most other monounsaturated fatty acids and ∑MUFA (P> 0.05). The 6‰ treat-

ment group had the highest percentages of C18:3n3, and ∑n-6PUFA, while the highest levels of

DHA, ∑n-3PUFA and ∑LC-PUFA were detected in the 0‰ treatment group (P< 0.05).

Discussion

Effects of long-term salinity adaptation on lipid contents

Neutral lipids (mainly triglycerides) are important energy sources in crustaceans [13, 29],

while polar lipids (mainly phospholipids) are the main structural components of membranes,

which play important roles in maintaining membrane fluidity and permeability [15]. In this

study, there was no significant difference in the contents of total lipids, neutral lipids, and

polar lipids in the gonads of male crabs among the four salinity treatments after 40 days of

salinity adaptation. Such results could be explained by the fact that the gonad is an important

reproductive organ for male crabs [28], and therefore, its lipid content is maintained at a rela-

tively stable level [37] to ensure normal reproductive and is thus not susceptible to fluctuating

salinity. For female crabs, significantly higher polar lipids contents in the ovaries were mea-

sured at 0‰ treatment compared to that in the 18‰ group. Possible explanations for such

results are: 1) The osmolality difference between the body of the female crabs and water in the

0‰ treatment was significantly greater than that of the other treatments [9, 10]; therefore,

increasing polar lipids may improve the fluidity and permeability of membranes, which will

promote ion transport, and maintain the osmotic and ionic balance [13, 38]. 2) The decrease

of the polar lipids contents in the ovaries of females from high salinity treatment may be due

to a direct effect of the increasing salinity, which is known to accelerate ovarian development

Fig 3. PCA scores plot of fatty acids profiles in the hepatopancreas of adult male E. sinensis.

https://doi.org/10.1371/journal.pone.0219260.g003
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and maturation [10], resulted in the lower contents of polar lipids in this treatment. Indeed,

our recent result showed that female E. sinensis generally decreased the ovarian polar lipids

contents and increased the contents of neutral lipids during ovarian maturation (our unpub-

lished data).

The hepatopancreas is an important organ for lipid storage in E. sinensis [39]. Our results

showed that the total lipids and neutral lipids contents in the hepatopancreas of males and

females from the 6‰, 12‰, and 18‰ treatment groups were significantly higher than those in

the 0‰ treatment group after 40 days of salinity adaptation. This could be because the osmo-

lality of brackish water is closer to that in the body of the E. sinensis, hence reduced energy

consumption is required for osmoregulation [9, 10], which is beneficial to the accumulation of

energetic lipids (mainly neutral lipids) in the hepatopancreas. This is not consistent with a pre-

vious report [24], in which short-term salinity adaptation had no significant effects on the con-

tents of total lipids and neutral lipids (mainly triglycerides) in the hepatopancreas of adult E.

sinensis. The difference might be because the study of Chapelle was conducted for a short-term

(3 or 14 days), and the energy consumption for osmoregulation was somewhat lower; there-

fore, there were no significant changes in the total lipid and neutral lipid contents in the hepa-

topancreas. In the present study, the polar lipids contents in the hepatopancreas of female

crabs decreased with increasing salinity. This might be because polar lipids are important

Table 4. The principal fatty acid profiles (% total fatty acids) of the neutral lipids and polar lipids in the hepatopancreas of adult male E. sinensis.

Fatty acids Neutral lipids Polar lipids

0 ‰ 6 ‰ 12 ‰ 18 ‰ 0 ‰ 6 ‰ 12 ‰ 18 ‰

C14:0 2.14 ± 0.02 1.95 ± 0.04 2.00 ± 0.19 1.81 ± 0.06 2.25 ± 0.08 2.07 ± 0.13 1.89 ± 0.12 1.91 ± 0.18

C16:0 17.85 ± 0.81 17.90 ± 0.27 18.36 ± 0.05 18.02 ± 0.41 19.72 ± 0.50 21.88 ± 0.91 20.63 ± 0.56 21.77 ± 1.27

C18:0 3.87 ± 0.10 3.60 ± 0.18 3.62 ± 0.09 3.64 ± 0.08 4.50 ± 0.47 4.86 ± 0.55 5.09 ± 0.32 4.57 ± 0.29

∑SFA 26.47 ± 0.95 25.99 ± 0.57 26.86 ± 0.20 26.08 ± 0.38 28.52 ± 1.51 30.89 ± 0.30 29.79 ± 0.04 30.47 ± 1.14

C16:1 8.88 ± 0.08 9.56 ± 0.07 9.21 ± 0.06 9.17 ± 0.07 9.72 ± 0.45 10.42 ± 0.25 9.69 ± 0.07 9.87 ± 0.10

C17:1n7 0.73 ± 0.02 0.70 ± 0.02 0.77 ± 0.01 0.73 ± 0.03 0.68 ± 0.02a 0.52 ± 0.01b 0.63 ± 0.05b 0.59 ± 0.03b

C18:1n9 25.20 ± 0.19 25.70 ± 0.38 25.71 ± 0.04 26.56 ± 0.08 17.12 ± 0.75 15.61 ± 0.42 17.26 ± 0.85 16.96 ± 0.69

C18:1n7 3.70 ± 0.09 3.67 ± 0.08 3.85 ± 0.06 3.90 ± 0.02 3.82 ± 0.02 3.92 ± 0.04 4.31 ± 0.04 3.89 ± 0.17

C20:1n9 1.51 ± 0.01a 1.23 ± 0.01b 1.48 ± 0.01a 1.49 ± 0.05a 0.89 ± 0.02a 0.65 ± 0.03b 0.81 ± 0.01a 0.80 ± 0.01a

∑MUFA 40.81 ± 0.33b 41.49 ± 0.38ab 41.73 ± 0.10ab 42.57 ± 0.07a 32.81 ± 1.26 31.57 ± 0.26 33.18 ± 0.81 32.62 ± 0.79

C18:2n6 11.06 ± 0.17 10.99 ± 0.25 9.83 ± 0.73 12.11 ± 0.01 8.43 ± 0.34 8.49 ± 0.61 8.05 ± 1.78 9.91 ± 0.23

C18:3n3 1.42 ± 0.01 1.53 ± 0.03 1.21 ± 0.15 1.53 ± 0.19 1.13 ± 0.02 1.22 ± 0.06 1.00 ± 0.16 1.27 ± 0.21

C20:2n6 1.27 ± 0.03c 1.44 ± 0.01b 1.56 ± 0.03a 1.63 ± 0.01a 0.89 ± 0.04b 0.97 ± 0.04ab 1.08 ± 0.02ab 1.12 ± 0.02a

C20:4n6 1.46 ± 0.05 1.70 ± 0.03 1.73 ± 0.18 1.46 ± 0.10 3.50 ± 0.03 4.24 ± 0.56 4.58 ± 0.15 4.07 ± 0.17

C20:5n3 2.33 ± 0.11a 2.16 ± 0.14ab 1.92 ± 0.22ab 1.65 ± 0.12b 5.87 ± 0.34 5.83 ± 0.34 5.46 ± 0.09 4.65 ± 0.39

C22:5n3 0.70 ± 0.02 0.66 ± 0.02 0.71 ± 0.09 0.57 ± 0.01 0.67 ± 0.03 0.70 ± 0.01 0.75 ± 0.05 0.65 ± 0.06

C22:6n3 4.87 ± 0.16a 4.19 ± 0.36ab 4.24 ± 0.58ab 3.36 ± 0.09b 6.90 ± 0.05a 6.44 ± 0.26ab 6.35 ± 0.26ab 5.73 ± 0.29b

∑PUFA 23.52 ± 0.23 23.12 ± 0.67 21.70 ± 0.76 22.77 ± 0.07 27.69 ± 0.18 28.20 ± 0.06 27.58 ± 1.43 27.72 ± 0.48

∑n-3PUFA 9.57 ± 0.30a 8.81 ± 0.48ab 8.39 ± 0.74ab 7.44 ± 0.01b 14.77 ± 0.23a 14.37 ± 0.02ab 13.75 ± 0.51ab 12.49 ± 0.54b

∑n-6PUFA 13.95 ± 0.07 14.31 ± 0.19 13.31 ± 0.50 15.33 ± 0.08 12.92 ± 0.41 13.82 ± 0.07 13.83 ± 1.67 15.23 ± 0.04

n-3/n-6 0.70 ± 0.03a 0.62 ± 0.03ab 0.65 ± 0.02ab 0.49 ± 0.01b 1.17 ± 0.06a 1.05 ± 0.01ab 1.02 ± 0.15ab 0.82 ± 0.03b

∑LC-PUFA 9.77 ± 0.37a 9.16 ± 0.46ab 9.09 ± 0.55ab 7.50 ± 0.28b 17.25 ± 0.22 17.51 ± 0.65 17.46 ± 0.54 15.42 ± 0.91

Unknown 9.20 ± 0.58 9.40 ± 0.35 9.72 ± 0.29 8.58 ± 0.46 10.71 ± 0.50 9.35 ± 0.48 9.45 ± 0.32 9.19 ± 0.44

Data are presented as mean ± SE (n = 2). Values within the same row with different letters mean significant difference. Fatty acids contents < 0.5% are not listed in this

table. ∑SFA: total saturated fatty acids; ∑MUFA: total monounsaturated fatty acids; ∑PUFA: total polyunsaturated fatty acids; ∑LC-PUFA: total long chain

polyunsaturated fatty acids.

https://doi.org/10.1371/journal.pone.0219260.t004
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structural components of membranes, and increased phospholipid contents can increase the

fluidity of membranes and maintain their integrity, which would facilitate ionic transport

under low salinity conditions [38, 40]. However, previous experiments indicated that short-

term salinity adaptation had no significant effects on the phospholipid content in the hepato-

pancreas of E. sinensis [24, 41] and the white Pacific shrimp Litopenaeus vannamei [42]. These

discrepancies might reflect the fact that in these previous studies, the salinity adaptation time

was too short to significantly change the phospholipid metabolism in the hepatopancreas.

The present study showed that the total lipids and polar lipids contents in the muscles of

male and female crabs increased with increasing salinity. A possible explanation for this result

was that increasing salinity promoted the gonadal development and maturation of E. sinensis
[9, 10], which will induce estrus and higher level of activity [32]. Indeed, the activity of adult E.

sinensis in the high-salinity treatment was greater compared to that in low salinity in this

study. Zhuang et al. (2012) [43] also found that the activity frequency of adult E. sinensis was

higher under high salinity conditions. Muscle is an important motor organ of E. sinensis, and

the increasing polar lipids contents in the muscles might serve to maintain the normal physio-

logical function of the membrane to ensure the normal movement for estrus chasing and mat-

ing during reproduction. Moreover, the content of neutral lipids in the muscles of female

crabs decreased with increasing salinity, which might be because of the increasing salinity

enhanced the movement frequency and increased energy consumption [10, 43]; therefore, the

content of energy lipids (neutral lipids) in the muscles decreased with increasing salinity.

Effects of long-term salinity adaptation on the fatty acid profiles

In this study, the fatty acid composition of neutral lipids and polar lipids in the gonads of male

crabs were only limitedly affected by salinity, which might be because the gonad is an

Fig 4. PCA scores plot of fatty acids profiles in the hepatopancreas of adult female E. sinensis.

https://doi.org/10.1371/journal.pone.0219260.g004
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important reproductive organ for male crabs [28, 44]. The relatively stable fatty acid composi-

tion in the gonad of males is likely to ensure normal reproduction, hence the fatty acid compo-

sitions was not significantly affected by salinity. For the female crabs, the results of principal

component analysis showed that the fatty acid composition in the ovaries from the 0‰ treat-

ment group was similar to that of the 6‰ and 12‰ treatment groups, while a greater differ-

ence was found between the 0‰ and 18‰ treatment groups. The highest percentages of

∑MUFA in the neutral lipids and polar lipids in ovaries, as well as the C16:0 in polar lipids,

were detected in the 18‰ treatment group, which indicated that saturated fatty acids and

monounsaturated fatty acids were preferentially utilized during long-term salinity adaptation.

Moreover, the osmolality of brackish water (6–18‰) is closer to that of the body of E. sinensis,
thus reduced energy consumption during osmoregulation would contribute to the accumula-

tion of nutrients and/or energy [9]. The percentages of EPA, DHA, and ∑LC-PUFA in ovarian

neutral lipids and polar lipids decreased with increasing salinity. This might be because

increased LC-PUFA, such as EPA and DHA, could improve membrane fluidity and perme-

ability, which would help maintain the intracellular and extracellular osmotic and ionic bal-

ance [15]. Previous studies have demonstrated that elevating salinity could promote ovarian

development and maturation of female E. sinensis [10]. In addition, our research found that

the contents of EPA, DHA, and ∑LC-PUFA in the ovaries of female E. sinensis decreased dur-

ing ovarian development and maturation (unpublished data). Therefore, the decrease of EPA,

Table 5. The principal fatty acid profiles (% total fatty acids) of the neutral lipids and polar lipids in the hepatopancreas of adult female E. sinensis.

Fatty acids Neutral lipids Polar lipids

0 ‰ 6 ‰ 12 ‰ 18 ‰ 0 ‰ 6 ‰ 12 ‰ 18 ‰

C14:0 1.91 ± 0.17 1.75 ± 0.04 1.71 ± 0.04 1.80 ± 0.21 1.86 ± 0.04 1.68 ± 0.01 1.58 ± 0.08 1.69 ± 0.03

C16:0 19.7 ± 0.84 18.55 ± 0.09 17.72 ± 0.22 18.08 ± 0.69 22.85 ± 0.25a 21.48 ± 0.15ab 19.85 ± 0.04b 20.33 ± 0.02ab

C18:0 3.82 ± 0.17a 3.44 ± 0.17ab 3.10 ± 0.06b 3.62 ± 0.07ab 3.73 ± 0.04 3.68 ± 0.05 3.87 ± 0.05 3.79 ± 0.03

∑SFA 28.32 ± 1.21a 26.40 ± 0.18ab 24.92 ± 0.12b 26.29 ± 0.72ab 30.76 ± 0.81a 28.86 ± 0.35ab 26.95 ± 0.09b 27.75 ± 0.22ab

C16:1n7 9.98 ± 0.57 9.85 ± 0.47 9.83 ± 0.28 9.87 ± 0.08 11.77 ± 0.03 11.37 ± 0.54 10.79 ± 0.02 11.32 ± 0.59

C17:1n7 0.71 ± 0.02 0.73 ± 0.01 0.71 ± 0.01 0.77 ± 0.05 0.64 ± 0.02a 0.57 ± 0.01ab 0.51 ± 0.02b 0.55 ± 0.03b

C18:1n9 26.67 ± 0.22 26.91 ± 0.43 25.81 ± 0.61 26.16 ± 1.07 24.42 ± 0.72 24.46 ± 0.50 22.43 ± 0.28 23.34 ± 0.57

C18:1n7 4.73 ± 0.04 4.51 ± 0.22 4.35 ± 0.17 4.57 ± 0.11 4.60 ± 0.04a 4.28 ± 0.02ab 4.07 ± 0.11b 4.38 ± 0.07ab

C20:1n9 1.48 ± 0.13 1.36 ± 0.03 1.19 ± 0.08 1.34 ± 0.14 0.79 ± 0.12a 0.72 ± 0.02a 0.56 ± 0.01b 0.68 ± 0.04ab

∑MUFA 44.23 ± 0.79 43.95 ± 0.19 42.44 ± 1.00 43.34 ± 2.20 42.70 ± 0.54a 41.93 ± 0.10ab 38.83 ± 0.30b 40.83 ± 0.05ab

C18:2n6 8.08 ± 1.31 10.67 ± 0.31 10.56 ± 0.18 9.36 ± 0.30 5.95 ± 0.64b 8.58 ± 0.10a 8.80 ± 0.10a 8.11 ± 0.16a

C18:3n3 0.88 ± 0.08 1.17 ± 0.12 1.31 ± 0.13 1.26 ± 0.09 0.54 ± 0.06b 0.79 ± 0.09a 0.90 ± 0.11a 0.76 ± 0.03a

C20:2n6 1.70 ± 0.06 1.75 ± 0.03 1.76 ± 0.02 1.66 ± 0.29 1.00 ± 0.03 0.99 ± 0.05 1.06 ± 0.01 0.96 ± 0.06

C20:4n6 1.21 ± 0.07 1.20 ± 0.07 1.60 ± 0.16 1.27 ± 0.13 1.53 ± 0.11b 1.83 ± 0.11b 2.66 ± 0.12a 1.88 ± 0.07b

C20:5n3 1.37 ± 0.17ab 1.15 ± 0.08b 1.86 ± 0.12a 1.35 ± 0.26ab 2.27 ± 0.01b 2.09 ± 0.19b 3.46 ± 0.19a 2.59 ± 0.27b

C22:6n3 2.71 ± 0.38 2.09 ± 0.13 3.86 ± 0.09 2.98 ± 0.46 2.70 ± 0.19b 2.52 ± 0.01b 4.29 ± 0.13a 3.17 ± 0.57b

∑PUFA 16.43 ± 1.07b 18.54 ± 0.56ab 21.48 ± 0.21a 18.37 ± 1.63ab 14.21 ± 0.98c 17.06 ± 0.44b 21.48 ± 0.19a 17.73 ± 0.74b

∑n-3PUFA 5.27 ± 0.63b 4.75 ± 0.37b 7.37 ± 0.19a 5.91 ± 0.49ab 5.67 ± 0.25b 5.57 ± 0.28b 8.87 ± 0.18a 6.69 ± 0.88b

∑n-6PUFA 11.16 ± 0.43b 13.79 ± 0.19ab 14.11 ± 0.02a 12.46 ± 0.14ab 8.54 ± 0.73b 11.50 ± 0.16a 12.62 ± 0.02a 11.04 ± 0.14a

n-3/n-6 0.48 ± 0.02ab 0.35 ± 0.03b 0.54 ± 0.06a 0.49 ± 0.07ab 0.67 ± 0.02ab 0.49 ± 0.01b 0.72 ± 0.01a 0.61 ± 0.08ab

∑LC-PUFA 5.77 ± 0.61ab 4.95 ± 0.17b 7.85 ± 0.24a 6.09 ± 0.52ab 6.73 ± 0.29b 6.71 ± 0.29b 10.72 ± 0.18a 7.90 ± 0.93b

Unknown 11.02 ± 0.36 11.12 ± 0.45 11.16 ± 0.28 12.00 ± 0.55 12.32 ± 0.43 12.15 ± 0.60 12.74 ± 0.52 12.22 ± 0.47

Data are presented as mean ± SE (n = 2). Values within the same row with different letters mean significant difference. Fatty acids contents < 0.5% are not listed in this

table. ∑SFA: total saturated fatty acids; ∑MUFA: total monounsaturated fatty acids; ∑PUFA: total polyunsaturated fatty acids; ∑LC-PUFA: total long chain

polyunsaturated fatty acids.

https://doi.org/10.1371/journal.pone.0219260.t005
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Fig 5. PCA scores plot of fatty acids profiles in the muscles of adult male E. sinensis.

https://doi.org/10.1371/journal.pone.0219260.g005

Table 6. The principal fatty acid profiles (% total fatty acids) of the neutral lipids and polar lipids in the muscles of adult male E. sinensis.

Fatty acids Neutral lipids Polar lipids

0 ‰ 6 ‰ 12 ‰ 18 ‰ 0 ‰ 6 ‰ 12 ‰ 18 ‰

C16:0 9.38 ± 0.28a 9.02 ± 0.09ab 8.82 ± 0.03ab 8.77 ± 0.06b 11.20 ± 0.10 10.82 ± 0.08 10.53 ± 0.53 11.05 ± 0.68

C18:0 11.11 ± 0.09 10.96 ± 0.08 10.72 ± 0.21 11.01 ± 0.05 6.03 ± 0.06b 6.50 ± 0.13ab 6.13 ± 0.05ab 6.76 ± 0.30a

∑SFA 21.42 ± 0.37a 20.80 ± 0.01ab 20.40 ± 0.21b 20.59 ± 0.03ab 18.31 ± 0.10 18.32 ± 0.23 17.71 ± 0.55 18.83 ± 1.02

C16:1 1.85 ± 0.13 2.21 ± 0.05 2.11 ± 0.14 1.91 ± 0.05 2.70 ± 0.02 2.68 ± 0.10 2.77 ± 0.21 2.62 ± 0.14

C18:1n9 15.69 ± 0.33 15.90 ± 0.44 16.03 ± 0.43 16.53 ± 0.23 20.37 ± 0.03 19.85 ± 0.11 20.19 ± 0.70 20.64 ± 0.52

C18:1n7 3.35 ± 0.02 3.65 ± 0.01 3.77 ± 0.21 3.68 ± 0.28 3.55 ± 0.11b 3.93 ± 0.09ab 4.27 ± 0.17a 4.09 ± 0.27ab

C20:1n9 0.89 ± 0.13 0.75 ± 0.03 0.85 ± 0.05 0.91 ± 0.11 0.62 ± 0.04 0.61 ± 0.03 0.72 ± 0.03 0.62 ± 0.06

∑MUFA 22.13 ± 0.37 22.85 ± 0.46 23.13 ± 0.52 23.37 ± 0.24 27.75 ± 0.25 27.54 ± 0.34 28.48 ± 0.64 28.48 ± 0.89

C18:2n6 11.95 ± 0.81 11.56 ± 0.70 10.72 ± 0.49 12.03 ± 0.38 9.77 ± 0.85 8.59 ± 0.21 8.65 ± 0.48 9.18 ± 0.02

C18:3n3 1.28 ± 0.05 1.47 ± 0.11 1.18 ± 0.04 1.47 ± 0.11 0.89 ± 0.05 0.94 ± 0.05 0.81 ± 0.02 0.99 ± 0.10

C20:2n6 2.99 ± 0.22 2.96 ± 0.21 3.25 ± 0.18 3.11 ± 0.06 1.39 ± 0.07 1.46 ± 0.03 1.48 ± 0.04 1.50 ± 0.17

C20:4n6 6.88 ± 0.12 8.01 ± 0.08 7.97 ± 0.16 7.28 ± 0.92 5.22 ± 0.07 6.60 ± 0.02 6.42 ± 0.38 5.93 ± 0.81

C20:5n3 16.84 ± 0.97 16.88 ± 0.24 16.61 ± 0.15 16.87 ± 0.02 17.78 ± 0.57 18.14 ± 0.26 17.36 ± 0.41 17.80 ± 0.02

C22:5n3 0.47 ± 0.01
b

0.52 ± 0.02
ab

0.58 ± 0.01
a

0.54 ± 0.04
ab

0.71 ± 0.04 0.80 ± 0.02 0.84 ± 0.04 0.75 ± 0.09

C22:6n3 12.74 ± 0.10 11.96 ± 0.53 12.63 ± 0.06 11.75 ± 0.62 13.66 ± 0.07a 13.33 ± 0.19ab 13.48 ± 0.28ab 12.65 ± 0.34b

∑PUFA 53.66 ± 0.14 53.92 ± 0.09 53.54 ± 0.42 53.67 ± 0.16 49.59 ± 0.11 50.06 ± 0.25 49.25 ± 0.68 49.01 ± 1.54

∑n-3PUFA 31.84 ± 0.77 31.39 ± 0.91 31.61 ± 0.10 31.26 ± 0.44 33.21 ± 0.61 33.42 ± 0.02 32.70 ± 0.74 32.40 ± 0.56

∑n-6PUFA 21.82 ± 0.90 22.53 ± 0.82 21.93 ± 0.51 22.41 ± 0.60 16.38 ± 0.71 16.65 ± 0.26 16.55 ± 0.06 16.61 ± 0.98

n-3/n-6 1.46 ± 0.05 1.40 ± 0.04 1.45 ± 0.03 1.40 ± 0.04 2.03 ± 0.05 2.01 ± 0.06 1.98 ± 0.04 1.96 ± 0.05

∑LC-PUFA 37.44 ± 0.93 37.93 ± 0.89 38.39 ± 0.29 37.07 ± 0.37 37.55 ± 0.63 39.07 ± 0.06 38.31 ± 1.10 37.35 ± 1.27

Unknown 2.80 ± 0.13 2.67 ± 0.33 2.94 ± 0.31 2.38 ± 0.11 4.36 ± 0.24 4.08 ± 0.13 4.57 ± 0.49 3.88 ± 0.36

Data are presented as mean ± SE (n = 2). Values within the same row with different letters mean significant difference. Fatty acids contents < 0.5% are not listed in this

table. ∑SFA: total saturated fatty acids; ∑MUFA: total monounsaturated fatty acids; ∑PUFA: total polyunsaturated fatty acids; ∑LC-PUFA: total long chain

polyunsaturated fatty acids.

https://doi.org/10.1371/journal.pone.0219260.t006
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DHA, and ∑LC-PUFA levels in the ovaries of female E. sinensis might also be related to the

enhanced ovarian development and maturation caused by brackish water; however, the under-

lying mechanism remains to be determined.

The hepatopancreas is the major organ of lipid storage and metabolism in crustaceans,

and its fatty acid composition can reflect the adaptation of crustaceans to salinity to a cer-

tain extent [14, 22]. In this study, the results of PCA showed that the fatty acid composition

of the hepatopancreas of male crabs in the 0‰ treatment group was significantly different

from that in the 12‰ and 18‰ treatment groups, which indicated that brackish water

could affect the fatty acid composition of the hepatopancreas of male crabs. The percent-

ages of ∑MUFA in neutral lipids in the hepatopancreas of male crabs increased significantly

with increasing salinity. This might be because of the osmolality of brackish water is closer

to that of the body of male E. sinensis; therefore, reduced energy consumption is required

for osmoregulation [4, 9], resulting in more energetic lipids accumulating in the hepato-

pancreas. The percentages of EPA, DHA, ∑n-3PUFA, and ∑LC-PUFA in neutral lipids and

polar lipids in the hepatopancreas of males showed an overall decreasing trend with

increasing salinity, which is consistent with the results observed in the mud crab Scylla ser-
rata [22]. For female crabs, the results of PCA analysis showed that the fatty acid profile in

their hepatopancreas in the 0‰ treatment group was similar to that in the 6‰ and 18‰

treatment groups; however, there was a significant difference between the 0‰ and 12‰

treatment groups. The highest percentages of ∑SFA and ∑MUFA in the neutral lipids and

polar lipids of the hepatopancreas female crabs were detected in the 0‰ treatment group,

which is in contrast to the results for the male crabs. This may be because the gonadal

Fig 6. PCA scores plot of fatty acids profiles in the muscles of adult female E. sinensis.

https://doi.org/10.1371/journal.pone.0219260.g006
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development of female crabs is generally more dependent on hepatopancreatic lipids than

that of males [29, 30]). Additionally, elevated salinity could promote ovarian development

of female E. sinensis [10]; hence the SFA and MUFA in the hepatopancreas might be trans-

ported to the ovaries for storage, providing energy for late embryo development, which is

consistent with the increased ∑MUFA percentage in the ovaries of the 18‰ treatment

group.

In this study, a significantly higher percentage of ∑SFA in neutral lipids of male crabs

muscle was detected in the 0‰ treatment group compared with that in the 12‰ and

18‰ treatment groups. Such a result could be explained by the fact that the increasing

salinity enhanced the activity frequency of E. sinensis [10, 43]. The muscle is an impor-

tant motor organ, and excessive activity frequency might decrease the percentage of SFA

in muscle neutral lipids (energetic lipids). However, there was no significant difference

in the percentages of ∑SFA, ∑MUFA, and ∑PUFA in the polar lipids of male muscles

among all salinity treatments, which is consistent with observation of E. sinensis during

short-term salinity adaptation [24]. For the female crabs, the percentages of EPA, DHA,

∑n-3PUFA, and ∑LC-PUFA in polar lipids were highest in the 0‰ treatment group,

which was consistent with a previous study on S. serrata [22]. This might be because the

osmolality difference between the body of female crabs and the ambient solution is higher

in the high salinity treatment [4, 10]. Therefore, it is necessary to improve membrane

permeability to enhance the absorption of ions and maintain the intracellular ionic bal-

ance. It is worth noting that the EPA and DHA in polar lipids are important fatty acids

Table 7. The principal fatty acid profiles (% total fatty acids) of the neutral lipids and polar lipids in the muscles of adult female E. sinensis.

Fatty acids Neutral lipids Polar lipids

0 ‰ 6 ‰ 12 ‰ 18 ‰ 0 ‰ 6 ‰ 12 ‰ 18 ‰

C16:0 9.51 ± 0.34 9.65 ± 0.08 9.51 ± 0.44 9.06 ± 0.02 10.96 ± 0.04 11.10 ± 0.03 11.09 ± 0.14 10.80 ± 0.02

C18:0 10.04 ± 0.27 10.04 ± 0.09 9.67 ± 0.17 10.12 ± 0.13 5.65 ± 0.11 5.38 ± 0.28 5.65 ± 0.08 5.48 ± 0.05

∑SFA 20.51 ± 0.65 20.56 ± 0.20 20.05 ± 0.26 19.99 ± 0.17 17.71 ± 0.10 17.53 ± 0.27 17.89 ± 0.30 17.30 ± 0.08

C16:1 2.70 ± 0.02 2.69 ± 0.13 2.48 ± 0.32 2.83 ± 0.06 3.46 ± 0.17 3.47 ± 0.34 3.22 ± 0.02 3.43 ± 0.07

C18:1n9 16.99 ± 0.27 17.28 ± 0.04 17.18 ± 0.89 18.04 ± 0.22 19.93 ± 0.23 20.25 ± 0.02 20.62 ± 0.06 20.91 ± 0.37

C18:1n7 3.61 ± 0.16 3.81 ± 0.29 3.60 ± 0.29 3.84 ± 0.06 4.08 ± 0.09 4.19 ± 0.20 4.15 ± 0.05 4.16 ± 0.10

C20:1n9 0.84 ± 0.02 0.86 ± 0.01 0.79 ± 0.05 0.94 ± 0.05 0.75 ± 0.01 0.74 ± 0.01 0.76 ± 0.05 0.79 ± 0.07

∑MUFA 24.49 ± 0.45 24.95 ± 0.43 24.40 ± 1.60 26.02 ± 0.39 28.75 ± 0.32 29.16 ± 0.57 29.32 ± 0.13 29.82 ± 0.60

C18:2n6 9.49 ± 0.33 10.78 ± 0.81 10.44 ± 0.34 9.69 ± 0.71 7.74 ± 0.53 10.29 ± 1.00 9.48 ± 0.67 8.10 ± 0.26

C18:3n3 0.95 ± 0.03 1.09 ± 0.03 1.09 ± 0.12 1.06 ± 0.01 0.83 ± 0.03b 1.13 ± 0.02a 1.06 ± 0.04a 0.94 ± 0.04ab

C20:2n6 2.52 ± 0.07 2.52 ± 0.12 2.56 ± 0.13 2.69 ± 0.08 1.64 ± 0.01 1.69 ± 0.02 1.73 ± 0.07 1.75 ± 0.03

C20:4n6 7.36 ± 0.16 7.64 ± 0.18 7.20 ± 0.61 8.09 ± 0.17 5.75 ± 0.36 5.76 ± 0.02 5.40 ± 0.25 6.09 ± 0.20

C20:5n3 15.82 ± 0.64 14.72 ± 0.27 14.70 ± 0.22 15.39 ± 0.03 16.82 ± 0.21a 15.43 ± 0.02b 15.52 ± 0.53b 16.10 ± 0.20ab

C22:5n3 0.66 ± 0.03b 0.83 ± 0.05ab 1.02 ± 0.13a 0.89 ± 0.10ab 1.07 ± 0.07 1.14 ± 0.03 1.12 ± 0.02 1.21 ± 0.05

C22:6n3 12.12 ± 0.37 10.92 ± 0.75 11.76 ± 0.13 11.39 ± 0.17 14.25 ± 0.03a 12.58 ± 0.56b 13.21 ± 0.33ab 13.07 ± 0.10ab

∑PUFA 49.42 ± 1.31 48.99 ± 0.56 49.27 ± 0.91 49.73 ± 0.69 48.37 ± 0.39 48.29 ± 0.42 47.80 ± 0.04 47.53 ± 0.70

∑n-3PUFA 30.06 ± 1.08 28.05 ± 1.07 29.07 ± 0.17 29.28 ± 0.27 33.23 ± 0.22a 30.55 ± 0.58b 31.19 ± 0.95ab 31.60 ± 0.27ab

∑n-6PUFA 19.37 ± 0.23 20.93 ± 0.52 20.20 ± 1.07 20.45 ± 0.95 15.14 ± 0.17 17.74 ± 1.00 16.61 ± 0.99 15.93 ± 0.43

n-3/n-6 1.56 ± 0.08 1.35 ± 0.10 1.45 ± 0.06 1.45 ± 0.13 2.21 ± 0.12a 1.74 ± 0.10b 1.89 ± 0.09ab 2.00 ± 0.12ab

∑LC-PUFA 36.47 ± 0.89 34.59 ± 1.21 35.18 ± 0.55 36.30 ± 0.11 38.15 ± 0.17a 35.18 ± 0.59b 35.53 ± 0.67b 36.75 ± 0.52ab

Unknown 4.50 ± 1.32 5.51 ± 0.78 5.31 ± 0.03 4.27 ± 0.13 5.17 ± 0.17 5.03 ± 0.12 5.00 ± 0.22 5.36 ± 0.03

Data are presented as mean ± SE (n = 2). Values within the same row with different letters mean significant difference. Fatty acids contents < 0.5% are not listed in this

table. ∑SFA: total saturated fatty acids; ∑MUFA: total monounsaturated fatty acids; ∑PUFA: total polyunsaturated fatty acids; ∑LC-PUFA: total long chain

polyunsaturated fatty acids.

https://doi.org/10.1371/journal.pone.0219260.t007
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that regulate and maintain membrane integrity and permeability [15]; hence the increas-

ing EPA and DHA levels might be beneficial to the intracellular and extracellular osmotic

and ionic balance.

Conclusion

This study showed that increasing the ambient salinity could promote the accumulation of

total lipids and neutral lipids in the hepatopancreas, as well as the polar lipids in the muscles of

E. sinensis after 40 days of salinity adaptation. The fatty acid profiles in the gonads and muscles

of adult E. sinensis were relatively conserved, indicating that they are not susceptible to fluctu-

ating salinity; however, the fatty acid profile in the hepatopancreas was markedly affected by

changes in salinity.
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