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Abstract 

Peripheral arterial disease (PAD) affects more than 200 million people worldwide and is 

caused by occlusions resulting from atherosclerosis in arteries supplying blood to the lower 

limbs. Treatments for limb ischaemia in PAD is an unmet medical need. Novel treatments 

are sought to improve limb blood supply and function in PAD patients unlikely to benefit 

from existing treatments such as surgical revascularisation, structured exercise programs and 

cilostozol. Currently, the main pre-clinical experimental model employed in PAD research 

is based on induction of acute hind limb ischemia (HLI) which results in rapid natural 

recovery of blood supply to ischaemic tissues. There are concerns regarding the ability to 

translate findings from this mouse model to PAD patients and a clinically relevant mouse 

model of HLI is lacking. Evidence suggests metformin may be a potential treatment for PAD 

and angiotensin converting enzyme 2 (ACE2) may play a role in limb ischaemia. This thesis 

aimed to develop a clinically relevant mouse model of PAD that involved a two-stage 

induction of HLI and examine the effect of exercise training, metformin and ACE2 

deficiency in the two-stage model of HLI.   

Two-stage HLI was induced in male Apolipoprotein E (ApoE-/-) deficient mice by slow onset 

of severe ischemia over 14 days. This 2-stage HLI model was compared to the acute HLI 

model and sham controls. Limb blood supply was assessed by Laser Doppler Perfusion 

Imaging (LDI). Ambulatory ability was assessed using a treadmill test and established 

scoring scales. Running wheel exercise training was examined in the two-stage mouse model 

and limb function was assessed by a treadmill exercise test and blood supply was assessed 

by LDI. Next, the effect of metformin on limb ischaemia was assessed by LDI in the two-

stage HLI mouse model. Lastly, the effect of ACE2 deficiency (ACE2-/y) on limb ischaemia 

was examined in the two-stage mouse model of HLI. 

HLI was significantly more severe in mice receiving the two-stage compared to the acute 

HLI induction procedure as assessed by LDI (p=0.013), and reflected a higher ischemic 

score (p=0.003) and lower average distance travelled on a treadmill exercise test (p=0.045). 

Mice with two-stage HLI receiving exercise training showed significantly greater 

improvement in their ambulatory ability on a treadmill test than the sedentary control group 



xiv 
 

(p=0.003). However, limb blood supply was comparable between mice receiving exercise 

compared to controls (p=0.700). Mice with two-stage HLI administered metformin had 

greater blood supply than mice with two-stage HLI receiving vehicle control (p<0.001). The 

two-stage HLI mice receiving metformin had increased adenosine monophosphate kinase 

alpha (AMPKα) activity (p=0.041), endothelial nitric oxide synthase (e-NOS) activity 

(p=0.031), nitric oxide (NO) bioavailability (p=0.024), peroxisome proliferator activated 

receptor 1 alpha (PGC1-α) expression (p=0.026) and decreased thioredoxin interacting 

protein (TXNIP) expression (p=0.038) compared to mice with two-stage HLI receiving 

vehicle. ACE2-/y in mice with two-stage HLI had comparable limb ischaemia to ACE2 

unmodified control mice with two-stage HLI (p=0.263).  

In conclusion, this thesis showed that the novel two-stage mouse model of HLI had severe 

ongoing HLI and functional impairment. Exercise training augmented treadmill walking 

capacity in the new mouse model which was independent of changes to limb blood supply 

and mirroring patient response to exercise therapy. Metformin administration improved limb 

blood supply in the two-stage mouse model of ongoing HLI. Improvement in blood supply 

was associated with the upregulation of AMPKα activity, increased activation of e-NOS in 

the ischaemic muscles, increased bioavailability of circulating NO, increased expression of 

PGC1α and reduced expression of TXNIP. This suggests metformin may have potential to 

be used as a treatment to improve limb blood supply in PAD patients. ACE2-/ did not worsen 

limb blood supply after two-stage HLI induction suggesting ACE2 may not play an 

important role in limb ischemia. The results do not encourage the pursuit of ACE2 for 

pharmacological management of PAD in clinical trials and ACE2 is unlikely to be an 

important target for improving limb blood supply or function in patients with PAD. 
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1.1 Peripheral artery disease, prevalence, risk factors and diagnosis 

Peripheral arterial disease (PAD) is an atherosclerotic disease characterised by stenosis and 

occlusion of the arteries supplying blood to the lower limbs (Golledge 1997, Meneses, Nam et 

al. 2018). PAD is estimated to affect more than 200 million adults worldwide (Fowkes, Rudan 

et al. 2013, Shu and Santulli 2018). The prevalence of PAD is 10% in people aged >55 years, 

nearly 20% in individuals >70 years old and 40% in people aged >80 years (Vavra and Kibbe 

2009, Hiramoto, Katz et al. 2014, Krishna, Moxon et al. 2015, Burton, Ademi et al. 2016, 

Krishna, Omer et al. 2016, Fowkes, Aboyans et al. 2017).  

PAD shares similar risk factors to cerebrovascular disease and coronary heart disease including 

old age, tobacco smoking, hypertension, dyslipidaemia and diabetes mellitus (Norgren, Hiatt 

et al. 2007, Gerhard-Herman, Gornik et al. 2016). PAD is a marker of systemic atherosclerosis, 

and PAD patients often have concomitant coronary artery disease or cerebrovascular disease 

and are at high risk of events such as myocardial infarction (MI), stroke, amputations and death 

(Askew, Green et al. 2005, Olin, White et al. 2016). 

Diagnosis of PAD includes a thorough medical history, physical examination including pulse 

palpation, ankle brachial pressure index (ABPI) measurement and radiological imaging 

(Askew, Parmenter et al. 2014). The most common test used to establish the diagnosis of PAD 

is usually the resting ABPI. The resting ABPI is a simple, non-invasive test involving 

measuring systolic blood pressures at the arms (brachial arteries) and ankles (dorsalis pedis and 

posterior tibial arteries) in the supine position by using a Doppler device. The ABPI of each 

leg is calculated by dividing the higher of the dorsalis pedis pressure or posterior tibial pressure 

by the higher of the right or left arm blood pressure. Traditionally, ABPI values of 1.00 to 1.30 

are considered normal. An ABPI value ≤0.90 is the recognised cut-off for diagnosis of PAD. 

ABPI values between 0.00 and 0.40 indicate severe PAD, values of 0.41 to 0.90 indicate mild 

to moderate PAD, values of 0.91 to 0.99 are considered borderline, and values greater than 

1.30 indicate non-compressible arteries (Aboyans, Criqui et al. 2012, Gerhard-Herman, Gornik 

et al. 2016, Olin, White et al. 2016, Kithcart and Beckman 2018). Other non-invasive tools 

used to diagnose PAD include the post-exercise ABPI, toe-brachial index and duplex 

ultrasound (Norgren, Hiatt et al. , Gerhard-Herman, Gornik et al. 2016). 
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1.2 Symptoms of PAD 

PAD patients present with a spectrum of symptoms ranging from asymptomatic to limb 

threatening critical limb ischaemia (CLI) requiring amputation. Asymptomatic PAD patients 

have faster functional decline, and increased rates of mobility loss compared to people without 

PAD (McDermott, Greenland et al. 2001, McDermott, Guralnik et al. 2008, McDermott 

2015). The two most common presenting symptoms of PAD are intermittent claudication (IC) 

and CLI. IC presents as debilitating pain of the muscles of the lower extremities that is 

consistently induced by exercise and consistently relieved by rest. CLI is often preceded by IC 

and presents as an advanced limb threatening condition of PAD characterised by chronic (> 2 

weeks) ischaemic rest pain, non-healing wounds, ulcers or gangrene (Gerhard-Herman, Gornik 

et al. 2016, Kithcart and Beckman 2018).  

1.3 Treatments for cardiovascular risk in PAD patients 

PAD impairs quality of life in patients and is associated with a greatly increased risk of 

major cardiovascular (CV) events, amputation and death. Maintaining the independence and 

physical functions of the elderly preserves their lifestyle and dignity and considerably reduces 

direct and indirect healthcare costs associated with disability (Norgren, Hiatt et al. 2007, 

McDermott 2015, Gerhard-Herman, Gornik et al. 2016).  

Treatments for PAD patients are centred on reducing the risk of CV and cerebrovascular 

morbidity and mortality and improving limb haemodynamics and limb function in order to 

improve mobility, quality of life and prevent amputation (Kithcart and Beckman 2018). Current 

guidelines recommended for reducing the incidence of CV and cerebrovascular events in PAD 

patients include smoking cessation, antiplatelet therapy, lowering low-density lipoprotein 

cholesterol (LDL-C) using statins, blood pressure control and glycaemic control. This is 

attempted through aggressive lifestyle modifications and medications (Gerhard-Herman, 

Gornik et al. 2016, Kithcart and Beckman 2018).  

 

1.3.1 Smoking Cessation  

Smoking is one of the strongest independent risk factors for PAD and may result in a 7-fold 

increased risk to develop PAD (Luo, Li et al. 2010). All types of smoking including cannabis, 

cigar, pipe, smokeless tobacco, and cigarettes predispose to PAD. In addition, passive smoking 
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is associated with increased risk of developing PAD (T Lu and A Creager 2004, Atturu, Homer-

Vanniasinkam et al. 2014, Lu, Mackay et al. 2018).  

Smoking is associated with adverse CV events and limb related outcomes including MI, stroke 

and amputation (Hisamatsu, Miura et al. 2016). Smoking cessation is recommended for all 

PAD patients. Compared to non-smokers, smokers with PAD have shorter life spans and 

progress more frequently to CLI and amputation (Uccioli, Meloni et al. 2018). Patients who 

quit smoking have lower risk of MI and CV mortality and improved amputation-free survival 

compared with patients who continue smoking (Aronow 2007, Armstrong, Wu et al. 2014, 

Aboyans, Ricco et al. 2018, Kithcart and Beckman 2018). Strategies to assist patients to quit 

smoking include active interventions such as behavioural therapy, nicotine receptor partial 

agonists, antidepressants, and nicotine replacement therapy (NRT). Varenicline, bupropion, 

and NRT are first line medications, which achieve high-smoking cessation rates and have good 

safety profiles (Atturu, Homer-Vanniasinkam et al. 2014, Aubin, Luquiens et al. 2014, 

McDonough 2015).  

1.3.2 Antiplatelet/Anticoagulation treatments 

Antithrombotic strategies are considered a cornerstone therapy for preventing CV events in 

patients with PAD (Gutierrez, Mulder et al. 2018). Antiplatelet and anticoagulant agents reduce 

the risk of thrombus formation, leading to a reduction in serious vascular events in PAD 

patients (Atturu, Homer-Vanniasinkam et al. 2014). The commonly used antithrombotic 

medications are cyclooxygenase inhibitors (aspirin), and inhibitors of various platelet surface 

receptors including P2Y12 (clopidogrel, prasugrel, and ticagrelor), GPIIb/IIIa receptor 

antagonists (abciximab, tirofiban, and eptifibatide), dipyridamole, phosphodiesterase 3 (PDE3) 

inhibitor (cilostazol), warfarin, direct thrombin inhibitors (dabigatran and bivalirudin), factor 

Xa inhibitors (rivaroxaban and apixaban), and heparin (unfractionated, low-molecular-weight 

heparin) (Atturu, Homer-Vanniasinkam et al. 2014, Gerhard-Herman, Gornik et al. 2016). 

Aspirin is the most widely used antiplatelet agent and leads to a 25% relative risk reduction of 

ischaemic stroke, MI, and vascular death (Wong, Chong et al. 2011, Atturu, Homer-

Vanniasinkam et al. 2014).  

However, studies of aspirin in PAD patients with diabetes mellitus have been entirely negative 

(Belch, MacCuish et al. 2008, Fowkes, Price et al. 2010). In a meta-analysis of 18 prospective 

randomised trials comprising 5269 subjects with PAD, aspirin resulted in a 12% reduction of 

the combined end point of non-fatal MI, non-fatal stroke, and CV death that failed to reach 
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statistical significance (Berger, Krantz et al. 2009). Clopidogrel has been shown to be more 

effective than aspirin in reducing adverse CV events (Berger Jeffrey and Hiatt William 2012). 

Aspirin and clopidogrel resistance are a growing concern with increased risk of CV events 

(Guirgis, Thompson et al. 2017). Both metabolic and genetic factors are implicated in drug 

resistance (Laine, Armero et al. 2013). Prasugrel and ticagrelor have shown to be more efficient 

with less incidence of resistance (Kastrati 2012). Individualised therapy with platelet function 

testing has been suggested as a strategy to determine specific anti-thrombotics to reduce CV 

events in PAD patients (Hess and Hiatt 2018). 

 

1.3.3 Lipid Control 

Elevated LDL-C levels are strongly associated with PAD (Murabito, D'Agostino et al. 1997, 

Gerhard-Herman, Gornik et al. 2016, Aboyans, Ricco et al. 2018, Kithcart and Beckman 

2018). Achieving a serum LDL-C of <1.8 mmol/L (<70 mg/dL) or decreasing by 

approximately 50% if the initial LDL-C level is between 1.8 and 3.5 mmol/L (70 and 135 

mg/dL) is recommended for all PAD patients (Piepoli, Hoes et al. 2016). An aggressive 

reduction in LDL-C with statins reduces all-cause mortality, cardiac death, and increases 

amputation-free survival in patients with PAD (Aung, Maxwell et al. 2007, Pollak and Kramer 

2012, Antoniou, Fisher et al. 2014, Kumbhani, Steg et al. 2014). Even in the most advanced 

stages of disease, statin therapy is associated with lower 1-year rates of mortality and major 

CV adverse events (Westin, Armstrong et al. 2014). In patients with coronary artery disease, 

statins reduce stroke risk (Amarenco, Labreuche et al. 2004, Huang, Li et al. 2013). Ezetimibe 

is used as an alternative in patients who have contraindications, intolerance or do not respond 

to statins (Atturu, Homer-Vanniasinkam et al. 2014). Ezetimibe has been shown to significantly 

reduce levels of LDL-C and has been demonstrated to reduce the rate of CV in high-risk 

patients (Cannon, Blazing et al. 2015, Hammersley and Signy 2017). 

Recently it has been demonstrated that evolocumab, a monoclonal antibody inhibiting the 

proprotein convertase subtilisin/kexin type 9, reduces LDL-C and the risk of CV events in 

patients with atherosclerotic disease over statins alone (Sabatine, Giugliano et al. 2017, 

Bonaca, Nault et al. 2018, Wasserman, Sabatine et al. 2018).  
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1.3.4 Hypertension 

Hypertension is an independent risk factor for PAD and lowering systolic blood pressure (SBP) 

reduces CV events (Aboyans, Ricco et al. 2018). According to the current guidelines, a target 

blood pressure <140/90 mmHg is recommended except in patients with diabetes, for whom a 

diastolic blood pressure (DBP) <85 mmHg is considered safe (Gerhard-Herman, Gornik et al. 

2016, Aboyans, Ricco et al. 2018, Kithcart and Beckman 2018). In patients with PAD, an 

appropriate lifestyle and salt intake (<6 g/day) are recommended (Aboyans, Ricco et al. 2018). 

Diuretics, beta-blockers, calcium antagonists, angiotensin-converting enzyme (ACE) inhibitors 

and angiotensin receptor blockers are all used as antihypertensive treatment, as monotherapy 

or in different combinations according to comorbidities (Atturu, Homer-Vanniasinkam et al. 

2014, Aboyans, Ricco et al. 2018). Caution should be taken to avoid an SBP decrease below 

110-120 mmHg and lowering DBP below 70mm Hg in patients with CV risk factors may 

increase the risk of CV events and mortality in older patients, described as a “U” or “J-curve” 

association (Bavry, Anderson et al. 2010, Gerhard-Herman, Gornik et al. 2016, Aboyans, Ricco 

et al. 2018, Itoga, Tawfik et al. 2018). 

A main concern of lowering SBP is that it could theoretically decrease blood supply to the 

distal extremities and exacerbate PAD symptoms such as IC and rest pain (Gerhard-Herman, 

Gornik et al. 2016, Thomas Manapurathe, Krishna et al. 2017). However, a recent meta-

analysis has suggested that anti-hypertensive treatment does not worsen but may improve leg 

ischemia in PAD patients (Thomas Manapurathe, Krishna et al. 2017). Randomised clinical 

trials of BP targets focused specifically on lower extremity PAD events as the primary outcome 

of interest are lacking and optimal BP targets for PAD events are unknown (Itoga, Tawfik et 

al. 2018). Future studies are needed to clarify BP targets for prevention of lower extremity 

PAD events (Thomas Manapurathe, Krishna et al. 2017, Itoga, Tawfik et al. 2018). 

 
 
1.3d Glycaemic Control 

Diabetes mellitus (DM) increases the risk of developing PAD by 4-fold and leads to increased 

CV and cerebrovascular event rates, both fatal and non-fatal, in patients with PAD and DM 

relative to non-diabetic patients with PAD (Thiruvoipati, Kielhorn et al. 2015) (Olin and 

Sealove 2010). PAD patients with DM are more likely to experience aggressive manifestations 

of disease, such as worsening lower extremity function and ischaemic ulceration, compared 

with those with PAD alone (Parvar, Fitridge et al. 2018). The global burden of DM is rising 
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rapidly and it is predicted that the prevalence of DM in Australia could triple over the next 40 

years and the challenge of treating PAD patients with DM will be far greater (Deed, Barlow et 

al. 2012). 

Tight glycaemic control through monitoring of blood glucose and glycated hemoglobin 

A1c (HbA1c) levels may reduce the incidence of MI, stroke, and vascular death (Norgren, Hiatt 

et al. 2007). Maintaining HbA1c levels below 7% while avoiding hypoglycaemic episodes is 

currently recommended (Atturu, Homer-Vanniasinkam et al. 2014, Parvar, Fitridge et al. 

2018). Metformin, insulin and sulphonylureas are the most widely used medication to manage 

hyperglycaemia in DM patients. Other medications include dipeptidyl peptidase-4 inhibitors, 

glucagon-like peptide-2 analogues and sodium-glucose co-transporter 2 (SGLT-2) inhibitors.  

In a recent study, it has been shown that the SGLT-2 inhibitor empaglifozin lowered the risk 

of CV death by 43% and all-cause mortality by 38% in PAD patients with DM (Verma, Mazer 

et al. 2018). However, lower limb amputation rates were similar to the placebo group. The 

SGLT-2 inhibitor canaglifozin has been previously shown to reduce MI, stroke and CV 

mortality, however canagliflozin was associated with a higher risk of lower limb amputation 

(Neal, Perkovic et al. 2017). It is unclear whether lower limb amputation risk is higher for 

specifically canaglifozin treatment or for SGLT-2 inhibitors given that treatment with 

empaglifozin showed similar lower limb amputation to the placebo group. Therefore, caution 

is advised for DM patients with PAD for the use of SGLT-2 inhibitors due to the potentially 

increased risk of lower limb amputation (Everett Brendan and Hiatt William 2016, Parvar, 

Fitridge et al. 2018). 

 

1.4 Pathophysiology of PAD and treatment of limb symptoms 

1.4.1 PAD pathophysiology 

The pathophysiological mechanisms underlying the functional impairment and progressive 

functional decline observed in PAD are complex and incompletely understood (Treat-

Jacobson, McDermott et al. 2019). Patients with PAD demonstrate a marked reduction in peak 

exercise performance and daily ambulatory activity (McDermott, Greenland et al. 2001, 

Hamburg and Balady 2011, McDermott 2013). 

The main underlying cause responsible for the functional limitations in PAD are atherosclerotic 

obstructions, which affect the supply of oxygen and substrates to metabolically active skeletal 
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muscle and tissues (Hiatt, Armstrong et al. 2015, Treat-Jacobson, McDermott et al. 2019) 

(McDermott, Greenland et al. 2001, Hamburg and Balady 2011, McDermott 2013).  

In response to arterial occlusions, adaptive revascularisation processes are naturally 

stimulated to a variable extent in PAD patients (Silvestre, Smadja et al. 2013, Iyer and Annex 

2017). This involves a network of specialised endogenous vessels known as collaterals which 

attempt to restore blood supply (Faber, Zhang et al. 2011). The main adaptive revascularisation 

processes include arteriogenesis and angiogenesis.  

Arteriogenesis involves the rapid transformation of pre-existing collateral vessels and 

arterioles into functional collateral arteries so that they can deliver more blood to the limb 

(Dragneva, Korpisalo et al. 2013, Krishna, Omer et al. 2016). Three major mechanisms are 

recognised to participate in arteriogenesis: shear stress, inflammation and recruitment of bone 

marrow-derived vascular progenitor cells to areas of ischemia (Helisch and Schaper 2003, 

Voskuil, van Royen et al. 2003, Urbich and Dimmeler 2004, Park, Hoffman et al. 2010). Nitric 

oxide (NO) is a critical mediator of each of these mechanisms. Stenosis or occlusions of lower 

limb arteries promote changes in shear stress in pre-existing small arteries and arterioles. 

Increased shear stress within collateral arteries leads to NO induced vasodilation that results in 

an increase in flow through the collaterals. Elevated shear stress promotes inflammation, 

recruitment of monocytes and release of various growth factors such as platelet-derived 

growth factors (PDGFs) and monocyte chemoattractant protein (MCP)-1, which promote 

remodelling of arteries (Helisch and Schaper 2003, Voskuil, van Royen et al. 2003). The 

remodelled arteries have enhanced pericyte coverage and increased diameter. Furthermore, 

vascular progenitor cells participate in collateral artery remodelling, wherein net conductance 

across the collateral vessels is increased compensating to some extent for the occluded arteries 

(Helisch and Schaper 2003, Dragneva, Korpisalo et al. 2013, Krishna, Omer et al. 2016). 

 

In PAD, neo-vascularisation in ischaemic tissues located distal to the occlusion commonly 

occurs through a process referred to as angiogenesis (Niiyama, Huang et al. 2009). 

Angiogenesis is the expansion of the microvasculature because of sprouting of endothelial 

cells from pre-existing capillaries. The sprouting of a new capillary network is mediated 

through the activation, proliferation and migration of endothelial cells, extracellular proteolysis 

and vascular wall remodelling. A number of growth factors, such as hypoxia-inducible growth 

factors (HIF-1) and vascular endothelial growth factor (VEGF), as well as cytokines play a 
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major role in this process. This eventually results in the formation of new capillaries (Dragneva, 

Korpisalo et al. 2013, Krishna, Omer et al. 2016).  

In PAD, the efficiency of arteriogenesis and angiogenesis to restore blood supply is 

dramatically decreased in the presence of co-morbidities such as old age and risk factors 

(Dragneva, Korpisalo et al. 2013, Heuslein, Murrell et al. 2016, Krishna, Omer et al. 2016, 

Mohamed Omer, Krishna et al. 2016). Collateral blood flow after major artery occlusion 

promoted by arteriogenesis and angiogenesis may be sufficient in some patients to meet 

ischaemic skeletal muscle needs at rest. However, collateral circulation is generally not 

sufficient to meet oxygen consumption during exercise, which profoundly limits patient’s 

physiological activity and quality of life (Sanada, Kanbara et al. 2016).  

In addition, to atherosclerotic occlusions, blood supply to ischaemic tissues is further hampered 

by endothelial and microcirculatory dysfunction. Episodes of ischaemia-reperfusion caused by 

atherosclerotic occlusions leads to inflammation, and oxidant stress within the lower limb 

muscles (Schellong, Boger et al. 1997, Bragadeesh, Sari et al. 2005, Brevetti, Giugliano et al. 

2010, Brass 2013, Hiatt, Armstrong et al. 2015). Inflammatory mediators can aggravate 

endothelial dysfunction and markers, such as interleukin-6, are inversely correlated with 

maximum treadmill performance (Nylaende, Kroese et al. 2006, Hiatt, Armstrong et al. 2015). 

During ischemia, skeletal muscle mitochondria release free radicals, including superoxide and 

other reactive oxygen species (ROS), that are derived from the oxidation–reduction cascade 

(Nylaende, Kroese et al. 2006). Reperfusion of ischaemic muscle after exercise leads to 

increase in oxidant stress (Hickman, Harrison et al. 1994).  These ROS trigger numerous 

pathophysiologic pathways, including endothelial dysfunction (Nylaende, Kroese et al. 2006, 

Hiatt, Armstrong et al. 2015). 

 

Impaired endothelial function and impaired microvascular perfusion as assessed by flow-

mediated dilation and cuff occlusion has been correlated with the clinical severity of PAD 

(Coutinho, Rooke et al. 2011, Grenon, Chong et al. 2014, Meneses, Nam et al. 2018). 

Endothelial dysfunction is associated with walking impairment independent of the severity of 

impaired limb blood flow (as assessed by ABPI), suggesting that endothelial dysfunction may 

contribute to the exercise impairment in PAD (Hamburg and Balady 2011, Grenon, Chong et 

al. 2014). In a large cohort of patients from the Edinburgh Artery Study, blood viscosity and 

plasma fibrinogen were independently associated with the hemodynamic severity of PAD, 
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suggesting that increased blood viscosity also contributes to the symptoms of PAD (Fowkes, 

Housley et al. 1991, Coutinho, Rooke et al. 2011, Hiatt, Armstrong et al. 2015).  

Evidence suggests that in addition to impaired vasculature, skeletal muscle pathophysiologic 

changes contribute to the lower extremity functional impairment and functional decline that is 

present in PAD (Hiatt, Armstrong et al. 2015, McDermott 2015, Treat-Jacobson, McDermott 

et al. 2019). Numerous pathological changes have been identified in the skeletal muscle of 

patients with PAD, including muscle apoptosis and atrophy, increased fibre type switching, 

altered myosin heavy-chain expression, and muscle fibre denervation (McGuigan, Bronks et 

al. 2001, Askew, Green et al. 2005, McDermott, Hoff et al. 2007, Mitchell, Duscha et al. 2007). 

These structural changes may be mediated, partly, by higher levels of inflammatory mediators 

in PAD (McDermott, Ferrucci et al. 2007). In the WALCS II cohort, including 380 PAD 

participants who were followed prospectively after baseline measurement of calf muscle 

characteristics, PAD participants with greater CT-measured calf muscle percent fat and lower 

CT-measured calf muscle density at baseline each had an increased incidence of mobility loss 

at 2-year follow-up (McDermott, Ferrucci et al. 2009). PAD participants in the lowest tertile 

of calf muscle density had a 3.50-fold increased hazard of mobility loss at two-year follow-up, 

compared to PAD participants in the highest tertile of calf muscle density at baseline. These 

associations were independent of age, sex, race, comorbidities, smoking, BMI, and ABPI 

(McDermott, Ferrucci et al. 2009). This demonstrates that ischemia related pathophysiologic 

changes in lower extremity calf skeletal muscle predicts increased rates of mobility loss 

(McDermott 2015). 
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Figure I1. Pathophysiology of walking impairment in PAD. Figure shows adaptive 

mechanisms inadequate to compensate for the limited blood supply.  

 

1.4.2 Treatments for limb ischaemia in PAD patients 

1.4.2a Goal of treatment and outcome measures 

PAD affects functional performance, independence in daily living and thus quality of life 

(Gerhard-Herman, Gornik et al. 2016). The quality of life of PAD patients centres on their 

walking impairment and patients with CLI are concerned with rest pain and the risk of limb 

amputation (Kinlay 2013, McDermott 2018). For patients with IC, improving walking 

performance and preventing progression to adverse limb related events is a major goal of 

treatment (McDermott 2018). In CLI patients, resolution of rest pain, complete ulcer healing, 

and avoidance of amputation are major treatment aims (Kinlay 2013).  

Treatment efficacy in PAD patients is objectively measured by functional tests (treadmill 

walking test and six-minute walking tests) and haemodynamic tests. In the treatment of CLI, 

guidelines support primary end points of complete resolution of rest pain, complete ulcer 

healing, and avoidance of major amputation (Labs, Dormandy et al. 1999, Kinlay 2013). 
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The American Heart Association/American College of Cardiology clinical practice guidelines 

for PAD recommend both treadmill exercise testing (Class I recommendation, Level of 

Evidence-B) and six-minute walk testing (Class IIb recommendation, Level of Evidence-B) for 

objective assessment of changes in walking performance in patients with PAD (Hirsch, Haskal 

et al. 2006, McDermott 2015). Treadmill exercise testing is the most commonly used objective 

outcome measure in randomised clinical trials studying interventions to improve walking 

performance in people with PAD (Treat-Jacobson, McDermott et al. 2019).  

Constant load treadmill protocols where the patient is required to walk as far as possible at a 

set speed and grade are most commonly used in the clinical setting and enable the response to 

an absolute workload to be established and then reassessed after treatment (Kinlay 2013, 

Askew, Parmenter et al. 2014). The six-minute walk test has been well validated in patients 

with PAD (McDermott, Liu et al. 2013, McDermott, Guralnik et al. 2014, McDermott 2015). 

The six-minute walk is usually performed on a 100-foot corridor in which the distance covered 

by walking back and forth over 6 minutes is measured (Kinlay 2013, McDermott 2015).  

1.4.2b Surgery 

Indications for surgical revascularisation in patients with PAD are ischaemic rest pain, 

ischaemic ulcers or gangrene, and severe functional disability that interferes with the patient's 

lifestyle (Gerhard-Herman, Gornik et al. 2016, Aboyans, Ricco et al. 2018, Golledge, Moxon 

et al. 2018). Endovascular or surgical revascularisation of the limb to improve limb circulation 

and for limb salvage plays a key role in the management of PAD (Conte and Pomposelli 2015, 

Gerhard-Herman, Gornik et al. 2016, Meneses, Ritti-Dias et al. 2017). Surgical approaches to 

restoring the arterial blood supply to the legs involves using temporary balloons, permanent 

stents or open surgical bypasses (Russell, Homer-Vanniasinkam et al. 2012). Stents and other 

peripheral revascularisation procedures have a risk of serious complications (such as major 

amputation and death) and poor long-term durability (Golledge, Moxon et al. 2018). Hence, 

revascularisation interventions that ensure stable, viable and durable vasculature for patients 

with advanced PAD are sought (Bonaca and Creager 2015, Gerhard-Herman, Gornik et al. 

2016).   

1.4.2c Exercise treatment 

Exercise therapy is currently recommended as part of the initial treatment for all patients with 

IC. Exercise is the most effective non-invasive therapy to improve pain symptoms and 

ambulation in IC. A considerable body of evidence and clinical guidelines support the 
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management of patients by supervised treadmill exercise and home-based exercise that 

incorporate behavioural change techniques significantly improve pain-free and maximal 

walking distance in people with PAD (McDermott, Ades et al. 2009, Gardner, Parker et al. 

2011, Hamburg and Balady 2011, Fakhry, van de Luijtgaarden et al. 2012, McDermott, Liu et 

al. 2013, Askew, Parmenter et al. 2014, Gardner, Parker et al. 2014, McDermott, Ferrucci et 

al. 2017, McDermott 2018, Golledge, Singh et al. 2019). The European Society of Cardiology, 

American Heart Association and Trans-Atlantic Inter-Society Consensus Document on 

Management of Peripheral Arterial Disease have all declared that the evidence supporting 

supervised exercise therapy in the treatment of IC is sufficiently robust to merit a Level I 

recommendation (Norgren, Hiatt et al. 2007, European Stroke, Tendera et al. 2011, Brass 2013, 

Gerhard-Herman, Gornik et al. 2016).  

Supervised exercise programmes usually consist of three or four supervised exercise sessions 

per week at a central facility (Golledge, Singh et al. 2019). These programmes are, however, 

frequently not taken up when offered to patients with PAD, in part owing to the impracticality 

of attending a central facility (Makris, Lattimer et al. 2012, Askew, Parmenter et al. 2014, 

Harwood, Smith et al. 2016, Golledge, Singh et al. 2019). Lack of reimbursement is an 

additional barrier to utilisation of this treatment (Berger Jeffrey and Hiatt William 2012). 

Furthermore, supervised exercise programmes are not available in most parts of the world 

possibly because of limited evidence on long‐term effects (Regensteiner 2004, Morris, 

Rodriguez et al. 2014) 

There is increasing attention to alternative structured exercise programs that avoid frequent 

traveling to a medical centre. Structured community or home-based exercise programs using 

clinician-supported and instruction-based techniques have been shown to be effective at 

improving walking performance (McDermott, Spring et al. 2018, Pymer, Tew et al. 2018, 

Golledge, Singh et al. 2019). Other walking exercise programs such as Nordic walking uses 

poles and a core-focused walking technique to reduce the load on the legs. Walking 

improvements have been suggested to be similar for patients treated by Nordic and standard 

walking programmes (Oakley, Spafford et al. 2017, Golledge, Maarij et al. 2018, Golledge, 

Moxon et al. 2018). Other non-walking based, modalities have also been studied, including 

cycling, strength training, and arm cranking. These could be useful when walking exercise is 

not considered viable. More evidence is needed to clarify differences in training methods 

(Parvar, Fitridge et al. 2018). 
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The mechanisms that lead to improvement in walking ability after exercise training are poorly 

understood (Hamburg and Balady 2011, McDermott 2018, Treat-Jacobson, McDermott et al. 

2019). A combination of adaptive mechanisms account for the benefits after training. These 

act by reversing some of the pathophysiological processes underlying the condition (Hamburg 

and Balady 2011, Treat-Jacobson, McDermott et al. 2019). The majority of studies in patients 

that have IC have shown little or no increase in blood flow assessed by ABPI following an 

exercise programme, even when significant improvements in walking ability have been 

reported (Stewart , Hiatt  et al. 2002, Duscha, Robbins et al. 2011, Meneses, Nam et al. 2018). 

Studies have consistently shown a poor correlation between leg blood flow assessed by ABPI 

and walking ability (Parmenter, Raymond et al. 2010, Duscha, Robbins et al. 2011, Askew, 

Parmenter et al. 2014, Meneses, Ritti-Dias et al. 2017, Meneses, Nam et al. 2018). As there is 

currently little evidence to support an increase in blood flow as a major factor in the increase 

in walking ability after training, other mechanisms may account for the improvements seen 

such as improvements in endothelial function and skeletal muscle metabolism and function 

(Menard, Smith et al. 2004, Hiatt, Armstrong et al. 2015, McDermott 2018).  

1.4.2d Pharmacotherapy for limb ischaemia 

Cilostazol is the only Federal Drug Administration approved medication for PAD related 

ischaemic symptoms that is recommended by clinical practice guidelines (Sanada, Kanbara et 

al. 2016, McDermott 2018). Cilostozol is a phosphodiesterase inhibitor, which improves blood 

supply to ischaemic muscles and provides approximately 25 to 40% improvement in treadmill 

walking performance in patients with PAD (Gresele, Momi et al. 2011). Despite this, cilostozol 

is not publicly funded in Australia as the benefit was deemed to be too modest (Bedenis, 

Stewart et al. 2014, Golledge, Moxon et al. 2018). More effective medications are sought to 

improve blood supply and limb symptoms. 

The mechanisms by which cilostozol causes improvement in walking ability in patients with 

PAD is unclear. Antiplatelet and vasodilatory effects have been suggested to be the most likely 

causes of cilostozol’s mechanism of action. Cilostazol inhibits both cyclic nucleotide 

phosphodiesterase type 3 (PDE3) and adenosine uptake (Liu, Shakur et al. 2001). PDE3 

inhibition elevates intracellular cyclic adenosine monophosphate (cAMP) and the inhibition of 

adenosine uptake elevates interstitial and circulatory adenosine concentration (Sanada, 

Kanbara et al. 2016). In platelets and vascular smooth muscle cells, adenosine increases 

intracellular cAMP by activating adenosine A2 receptors. Simultaneous inhibition of PDE3 
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and elevation of extracellular adenosine causes a synergistic increase in the concentration of 

cAMP within platelets and vascular smooth muscle cells, resulting in potent antiplatelet and 

vasodilatory effect (Liu, Shakur et al. 2001). Despite the benefits of cilostazol in improving 

quality of life in patients, it is contraindicated in patients with severe renal impairment, 

moderate or severe hepatic impairment, and known predisposition to bleeding and in patients 

with history of ventricular tachycardia, ventricular fibrillation or multifocal ventricular ectopic 

beats, or prolongation of the QTc interval (Real, Serna et al. 2018). Cilostazol has been 

associated with a number of spontaneous reports of MI, angina, arrhythmias and serious 

bleeding (EMA 2013, Real, Serna et al. 2018). Haemorrhagic events in elderly patients co-

treated with antiplatelets have also been reported (EMA 2013). Alternative effective 

pharmacological options are sought for PAD patients due to the concerns of safety with 

cilostozol. 

Interestingly, in pre-clinical studies, cilostozol has been shown to promote neo-vascularisation 

in response to HLI via an e-NOS-dependent mechanism (Hori, Shibata et al. 2012). It has been 

suggested cilostozol promotes NO production by e-NOS activation via cAMP/PKA- and 

PI3K/Akt-dependent mechanisms (Hashimoto, Miyakoda et al. 2006, Biscetti, Ferraccioli et 

al. 2015). 

1.4.2e A potential target for future drug therapy in limb ischaemia 

Current PAD therapies are associated with significant limitations. Cilostozol may not achieve 

an ideal response rate, and supervised exercise efficacy may be limited by co-morbidities and 

lack of access to facilities (Yoshida, Horimoto et al. 2003). Furthermore, primary endovascular 

or open surgical revascularisation may not be feasible, durable or cost-effective. Urgent 

medical options are an unmet need for limb ischaemia in PAD patients and targets for effective 

medical therapy are required. NO is a potential target for revascularisation in limb ischaemia. 

Patients with PAD lack the ability to endogenously increase vascular NO bioavailability, 

leading to significant dysfunctions within the vasculature and ischaemic muscles (Woessner, 

VanBruggen et al. 2017). NO is a critical vasoactive substance which regulates the tissue 

response to ischaemia by mediating arteriogenesis and angiogenesis. Three isoforms of nitric 

oxide synthases (NOS) generate NO. NO is derived primarily from the activity of endothelial 

NOS (e-NOS). The two other isoforms of NOS from which NO is derived are neuronal NOS 

and inducible NOS. The oxidoreductase e-NOS catalyses the formation of NO from L-arginine 

and oxygen in a reaction requiring calcium/calmodulin, flavin mononucleotide, flavin adenine 
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dinucleotide, nicotinamide adenine dinucleotide phosphate (NADPH) and regulatory co-

factors such as tetrahydrobiopterin (BH4) or heat shock protein-90 (HSP90) (Griffith and 

Stuehr 1995, Xia, Tsai et al. 1998, Lin, Lin et al. 2004, Sessa 2004).  

Dimerisation promoted by regulatory proteins is required for e-NOS to produce NO. 

Monomerisation alters function of e-NOS resulting in the production of superoxide instead of 

NO. This alteration is referred to as “e-NOS uncoupling” and is a major cause of endothelial 

dysfunction (Vasquez-Vivar, Kalyanaraman et al. 1998, Chen, Druhan et al. 2008).  

Phosphorylation of e-NOS at Ser 1177 enhances e-NOS enzyme activity to increase NO 

bioavailability (Dimmeler, Fleming et al. 1999, Fulton, Gratton et al. 1999). Phosphorylation 

of serine 1177 is catalysed by a number of distinct kinases including Akt, protein kinase A 

(Chen, Mitchelhill et al. 1999, Bauer, Fulton et al. 2003), 5' adenosine monophosphate-

activated protein kinase, calcium-calmodulin kinase and checkpoint kinase-l (Butt, Bernhardt 

et al. 2000, Boo, Sorescu et al. 2002, Chen, Druhan et al. 2008, Heiss and Dirsch 2014). NO 

signalling is classically characterised to occur by its interaction with the iron heme in soluble 

guanylate cyclase, causing its activation as the enzyme to produce guanosine 3’-5’-

monophosphate (cGMP) from guanosine 5’-triphosphate (GTP). cGMP activates several 

protein kinases subsequently leading to arteriogenesis and angiogenesis (Allen, Giordano et al. 

2012). Treatments that modulate e-NOS activity to increase NO bioavailability could have 

major therapeutic benefits for patients with PAD (Falconer, Papageorgiou et al. 2018). 

Furthermore, revascularisation after induction of acute HLI is severely impaired in e-NOS 

deficient mice resulting in poor blood flow recovery and severe limb ischemia (Yu, deMuinck 

et al. 2005, Kondo, Shibata et al. 2009, Takahashi, Shibata et al. 2015) suggesting that e-NOS 

plays a key role in promoting revascularisation in limb ischaemia. Therefore, drugs which 

modulate e-NOS activity and endogenous modulators of e-NOS have potential to play key 

therapeutic roles in limb ischaemia. 
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1.5 Novel treatments tested for PAD 

Numerous pre-clinical studies have shown promising efficacy of a several therapeutic agents 

in restoring blood supply to limb ischaemia (Table 1). However, translation of these studies 

have been disappointing in clinical trials (Table 1). Clinical trials have not shown 

improvements in primary outcome measures such as improved exercise performance, 

decreased rates of amputation, or decreased mortality (Lederman, Mendelsohn et al. 2002, 

Rajagopalan, Mohler et al. 2003, Kusumanto, van Weel et al. 2006, Powell, Simons et al. 2008, 

Tongers, Roncalli et al. 2008, Belch, Hiatt et al. 2011, Dragneva, Korpisalo et al. 2013, 

Krishna, Omer et al. 2016).  

Pre-clinical studies have suggested that novel cellular and molecular therapies stimulate the 

development of new blood vessels in the models tested (Dragneva, Korpisalo et al. 2013, 

Krishna, Omer et al. 2016). Several interventions, such as of bone marrow mononuclear cells  

(BM-MNC), bone marrow-derived aldehyde dehydrogenase bright cells (ALDH br),  

granulocyte-macrophage colony-stimulating factor (GM-CSF),  gene transfer of fibroblast 

growth factor (FGF) using plasmid based delivery system (NV1FGF), VEGF, HGF and 

development-regulated endothelial locus-1 (Del-1) have been successful in animal models 

(Takeshita, Zheng et al. 1994, Tabata, Silver et al. 1997, Morishita, Nakamura et al. 1999, 

Ojalvo, Seralena et al. 2003, Yoshida, Horimoto et al. 2003, Zhong, Eliceiri et al. 2003, Fujii, 

Yonemitsu et al. 2006, Capoccia, Robson et al. 2009, Yonemitsu, Matsumoto et al. 2013, 

Kuwahara, Nishinakamura et al. 2014).  

In the phase II placebo-compared randomised-controlled trial PACE (Patients with Intermittent 

Claudication Injected with ALDH Bright Cells), patients with claudication and infra-inguinal 

PAD received autologous ALDHbr cells (n=38) or placebo (n=40). All patients received ten 

injections of placebo or ALDHBr cells into the thigh and calf of the index leg.  Follow up in 

the PACE trial after six months, showed no improvement in peak walking time, collateral 

count, peak hyperaemic popliteal flow, and capillary blood supply in patients treated by 

autologous bone marrow-derived ALDHBr cells (Perin, Murphy et al. 2017).  

The phase II randomised-controlled trial PROVASA (Intra-arterial Progenitor Cell 

Transplantation of Bone Marrow Mononuclear Cells for Induction of Neovascularisation in 

Patients with Peripheral Arterial Occlusive Disease), 40 patients with CLI received either intra-

arterial BM-MNC (n=19) or placebo (n=21), and after 3 months, both groups were treated with 

BM-MNC. There was no difference in ABPI or limb salvage at 3 or 6 months (Walter, 
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Krankenberg et al. 2011). In the phase II randomised-controlled trial JUVENTAS 

(Rejuvenation of endothelial progenitor cells via transcutaneous intra-arterial 

supplementation), 160 patients with CLI received 3 separate intra-arterial infusions of BM-

MNC (n=81) versus placebo (n=79), at 3-week intervals, into the common FA of the ischaemic 

limb. There were no significant differences in the primary endpoint of 6-month major 

amputation rate or the secondary endpoints of quality of life, rest pain, ABPI, or TcPO2 (Teraa, 

Sprengers et al. 2015). 

The PROPEL (Progenitor Cell Release Plus Exercise to Improve Functional Performance in 

PAD) randomised trial examined whether GM-CSF combined with supervised treadmill 

walking exercise improves six-minute walk distance more than GM-CSF alone, more than 

supervised treadmill exercise alone, and more than placebo in participants with PAD. 

Combining GM-CSF with supervised treadmill exercise did not significantly improve six-

minute walk distance more than supervised exercise alone or more than GM-CSF alone. GM-

CSF alone did not significantly improve six-minute walk distance more than placebo 

(McDermott, Ferrucci et al. 2017).  

Intra-arterial administration of recombinant fibroblast growth factor (FGF) has been reported to 

be beneficial in patients with PAD in the Therapeutic Angiogenesis with FGF-2 for intermittent 

claudication (TRAFFIC) study (Lederman, Mendelsohn et al. 2002). However, the phase III 

Therapeutic Angiogenesis for the Management of Arteriopathy in a Randomised International 

Study (TAMARIS) involving patients from 30 different countries, suggested that non-viral-FGF 

gene therapy was not effective in reducing major amputation or death in PAD patients (Belch, 

Hiatt et al. 2011).  

The double-blinded randomised placebo-controlled phase II study named Regional 

Angiogenesis with VEGF in PAD (RAVE) showed no improvement in the primary efficacy 

end-point of walking time (Rajagopalan, Mohler et al. 2003).   

Trials with plasmid-encoding human HGF in CLI patients have demonstrated no difference in 

ABPI, toe-brachial index, pain relief, wound healing, or major amputation (Powell, Simons et 

al. 2008, Shigematsu, Yasuda et al. 2010).  

A double-blinded placebo-controlled study assessing the effect of plasmid-encoded 

angiomatrix protein Del-1 for the treatment of IC [Del-1 for Therapeutic Angiogenesis Trial 

(DELTA-1)] also did not find any benefit in the main outcomes assessed such as peak walking 

time (Grossman, Mendelsohn et al. 2007). 
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Several explanations have been provided to account for the lack of efficacy in clinical trials. 

These include inadequate therapeutic doses, insufficient duration of exposure, compromised 

delivery and poor vector transduction efficiency (Gupta, Tongers et al. 2009, Dragneva, 

Korpisalo et al. 2013, Krishna, Omer et al. 2016). Methodological flaws in clinical studies 

include small sample size, lack of reproducible assessments and short duration of testing. In 

addition, potential patient-related issues proposed to underlie inefficacy include defects in the 

response to angiogenic stimuli due to existing comorbidities, the use of other medications, 

circulating angiogenic inhibitors, lack of target receptor expression in target tissues, lack of 

viable muscle tissue required for a therapeutic response, and growth factor resistance in a 

chronically ischemic environment (Dragneva, Korpisalo et al. 2013).  

A major area of concern which accounts for the lack of efficacy in clinical trials is the 

overoptimistic conclusions derived from interventions examined in pre-clinical studies 

(Dragneva, Korpisalo et al. 2013, Krishna, Omer et al. 2016, Mohamed Omer, Krishna et al. 

2016). Animal models that appropriately recapitulate key features of the human disease and 

improved pre-clinical study outcome measures and study designs could be essential 

prerequisites to progress in developing treatments for PAD (Krishna, Omer et al. 2016, 

Mohamed Omer, Krishna et al. 2016) 
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Table I1: Examples of cellular and molecular interventions tested in unilateral HLI animal models and clinical trials  
Cell-type tested Pre-clinical 

Unilateral HLI 
model used 

Animal used for HLI 
induction 

Sample sizes/Groups Main outcome 
assessed in 
animal models 

Results of animal 
studies/end-points 
assessed 

Clinical Outcomes of 
clinical trials 

       
BM-MNC Excision of the 

FA (Yoshida, 
Horimoto et al. 
2003) 

Lewis rats BM-MNCs (5x106 
cells; n=6) or PBS 
(n=7) BM-MNCs 
(3x107 cells; n 6) or 
PBS (n=7)  

Angiography/ 
IHC 

Significant 
development of 
collateral vessels in 
both BM-MNC-
transplanted groups 
compared to 
controls. 
Capillary 
endothelial cells 
were increased in 
both BM-MNC-
transplanted groups. 

Phase II randomised-
controlled PROVOSA 
trial: CLI patients 
treated with either 
intra-arterial BM-
MNC (n=19) or 
placebo (n=21) 3 
months, and after 3 
months, both groups 
were treated with BM-
MNC. There was no 
difference in ABPI or 
limb salvage at 3 or 6 
months difference in 
ABPI, amputation or 
death (Walter, 
Krankenberg et al. 
2011). 
Phase II randomised-
controlled 
JUVENTAS trial in 
CLI patients treated 
with BM-MNC (n=81) 
versus placebo (n=79):  
showed no difference 
in amputation, death, 
ABPI, ulcer size, 
quality of life, rest 
pain, TcPO2 (Teraa, 
Sprengers et al. 2015). 

BM-derived aldehyde 
dehydrogenase bright cells 

Ligation and 
excision of FA 
(Capoccia, 

NOD/SCID β2M null 
or NOD/SCID/MPSVII 
mice 

Tail vein injection of 
PBS (n = 8), 50 × 
106 BM MNCs  

LDI and IHC BM-MNC 
administration 
improved blood 

Phase II placebo-
compared randomised-
controlled trial PACE 
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Robson et al. 
2009) 

(n = 6), 5×105 
ALDHlo (n = 8), or 1 
to 2×105   
ALDHhi cells (n = 8)  

supply and capillary 
density in mice 
treated with ALDH 
Br cells  
 

on IC patients treated 
with ALDHbr cells 
(n=38) compared to 
placebo controls 
(n=40) did not 
improve PWT or 
magnetic resonance 
outcomes, and the 
changes in PWT were 
not associated with the 
anatomic or 
physiological 
magnetic resonance 
imaging end 
points. (Perin, Murphy 
et al. 2017) 
 

GM-CSF Excision of the 
FA and vein 
(Kuwahara, 
Nishinakamura et 
al. 2014) 

C57BL/6N mice GM-CSF (n = 5–7) 
and PBS (n = 5–7)   

LDI Blood flow 
recovery was 
significantly 
improved in mice 
treated with GM-
CSF-dependent 
BMCs (Kuwahara, 
Nishinakamura et 
al. 2014) 

GM-CSF did not 
significantly improve 
six-minute walk 
distance more than 
placebo. Combining 
GM-CSF with 
supervised treadmill 
exercise did not 
significantly improve 
six-minute walk 
distance more than 
supervised exercise 
alone or more than 
GM-CSF alone.  
(McDermott, Ferrucci 
et al. 2017) 

HGF Ligation and 
excision of FA 
(Morishita, 
Nakamura et al. 
1999, Taniyama, 

NZW rabbits Control (n=7–8), 100 
μg of hHGF vector 
transfection (n=7–8), 
250 μg 
of hHGF vector 
transfection (n = 

Quantitative 
angiography, 
intra-arterial 
guided wire 
measurement of 

Increased blood 
supply, CBP ratio 
and collateral vessel 
development from 
the origin stem 
artery to the distal 

Phase I/II study of 
HGF plasmid-treated 
CLI patients (n = 78) 
compared with 
placebo-treated CLI 
patients (n = 26) 
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Morishita et al. 
2001) 

7–8), 500 μg of 
hHGF vector 
transfected HGF 
group (n=7–8) 

blood flow and 
CBP ratio 

point of the 
reconstituted parent 
vessel was 
observed in rabbits 
receiving IM 
injection of hHGF 
plasmid once, 10 
days after surgery 

showed no 
differences were 
observed in the toe-
brachial index, ABPI, 
pain relief, wound 
healing or major 
amputation (Powell, 
Simons et al. 2008)  
Phase II/III of HGF 
plasmid-treated CLI 
patients (n=27) with 
placebo treated CLI 
patients (n=13) 
showed no difference 
in rest pain, ABPI or 
amputation 
(Shigematsu, Yasuda 
et al. 2010) 
 

  Sprague–Dawley rats Control (n=5–8), 
100 μg of hHGF 
vector transfection 
(n=5–8), 250 μg 
of hHGF vector 
transfection (n = 
5–8) and 500 μg of 
hHGF vector 
transfected (n= 
5–8) 

LDI and 
capillary density 
by IHC with 
alkaline 
phosphatase 
staining of ECs 

A dose-dependent 
increase in blood 
supply was 
observed in both 
HGF and hHGF 
transfection 

FGF (1 and2) Ligation and 
excision of FA 
and femoral vein 
(Masaki, 
Yonemitsu et 
al. 2002)  

C57BL/6 and BALB/c 
nu/nu mice 

PBS control (n=10), 
SeV luciferase 
control (n=10), 
SeV–FGF2 (n =10) 
and SeV–VEGF165 
(n= 
10) 

LDI, limb 
salvage score 
and IHC 

Increased blood 
supply, increased 
capillary densities 
and limb salvage 
with IM injection 
of SeV–FGF-2 
compared with 
control vector, PBS 
and SeV–VEGF165 
accelerated 
amputation,  
massive muscular 
oedema, necrosis 
and disturbed 
regeneration with 
IM injection of 
VEGF165 ; 
increased number 
of capillaries with 

Phase I/IIa clinical 
trial showed that 
DVC1-0101, a new 
vector-based human 
FGF-2 gene transfer 
(rSeV/dF–hFGF2), in 
PAD patients (n = 12) 
with rest pain was 
safe and well tolerated 
and resulted in 
improvement of limb 
function (Yonemitsu, 
Matsumoto et al. 
2013)  
Phase II trial 
(TRAFFIC) in 
recombinant FGF-2 
treated PAD patients 
(n=127) resulted in 
improved PWT and 
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no improvement in 
blood supply 

ABPI compared with 
placebo-treated group 
(n=63) (Lederman, 
Mendelsohn et al. 
2002)  
Phase III TAMARIS 
trial in CLI patients 
treated with non-viral-
FGF gene (n=259) 
compared to placebo 
(n=256) showed no 
difference in 
amputation or death  

 Ligation and 
excision of FA 
and femoral vein 
and their branches 
up to and 
including the SA 
and PA 
bifurcation (Fujii, 
Yonemitsu et al. 
2006) 

CCR deficient and 
BALB/c nu/nu mice 

Luciferase control 
(n=10), SeV 
luciferase (n = 
30), SeV mFGF-
2(30), mFGF-2 
luciferase (n=10), 
mFGF-2 7ND MCP-1 
(n=10) and 
luciferase7ND MCP-
1 (n=10) 

LDI and IHC Dominant negative 
mutant-MCP-1 
gene transfer 
diminished both 
adaptive and FGF-
2-mediated 
recovery of blood 
flow; CCR2-
deficient mice lost 
approximately40 % 
of their limbs 
compared with 
controls; SeV-
mediated FGF2 
gene transfer 
significantly but 
partially restored 
the limb survival of 
CCR2-deficient 
mice 

 

 Ligation and 
excision of FA 
(Tabata, Silver et 
al. 1997) 

NZW rabbits pGSVLacZ control 
(n=10) non-secreted 
aFGF (p267, n=10), 
secreted aFGF 
(pMJ35, n=10) 

CBP ratio, 
internal iliac 
arteriography, 
capillary density 
and regional 

pMJ35 transfectants 
had increased 
angiographically 
visible collaterals, 
CBP ratio and 
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blood flow using 
coloured 
microspheres 

capillary density 
and lower vascular 
resistance than 
either p267 or LacZ 
control 

VEGF Ligation and 
excision of FA 
(Pu, Sniderman et 
al. 1993, Takeshita, 
Zheng et al. 1994)  

NZW rabbits Saline control (n 
=11) and EC growth 
factor (n=11) 

CBP ratio, 
99mTC macro-
aggregate calf 
radioisotopic 
perfusion scan, 
angiography 

Increased blood 
supply, CBP ratio 
and increased 
revascularisation in 
growth factor-
treated animals 

Phase II clinical trial 
(RAVE) showed that 
treatment with 
AdVEGF121  in PAD 
patients (n=72) did 
not improve PWT, 
quality of life and 
claudication onset 
time (Rajagopalan, 
Mohler et al. 2003) 

 Ligation of CIA 
(Makinen, 
Manninen et al. 
2002) 

Sprague–Dawley rats PBS control (n=8), 
naive control (n=8), 
AdVEGF treated 
(n=8) and AdNull (n 
=8) 

Blood flow 
imaging by 
Colour 
microsphere and 
99mTC-labelled 
sestamib 
radionucleotide, 
angiography and 
Histology 

Increased blood 
supply and greater 
vascularity in the 
Ad-VEGF-treated 
group 

 Ligation and 
excision of FA 
(Mack, Magovern 
et al. 1998, 
Gowdak, Poliakova 
et al. 2000) 

Wistar rats PBS control (n=3), 
AdCMV–
VEGF121(n=6) and 
AdCMV.null (n=5) 

Bioenergetic 
reserve by NMR 
spectroscopy 
and IHC 

AdCMV–VEGF121 
-treated animals 
showed markedly 
improved 
bioenergetic 
reserve, capillary 
density, tissue 
blood supply and 
spontaneous  
collateral vessel 
development 

 Ligation and 
excision of FA 
(Ojalvo, Seralena 
et al. 2003) 

Beagle dogs Saline control (n=6) 
and VEGF121 
plasmid treated (n= 
6) 

CBP ratio, 
angiography, 
vasomotor 
reserve and 
haematological 
assays 

Increased collateral 
artery development, 
CBP ratio and 
blood supply in 
pVEGF121 -treated 
groups. No 
significant 
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modification in 
haematological 
variables 

Del-1 Ligation and 
excision of FA 
(Zhong, Eliceiri et 
al. 2003) 

NZW rabbits Non-coding plasmids 
control (n=3), 
hVEGF165 plasmid 
(n = 6) and hDel-1 
plasmid (n=4) 

Angiography, 
gene expression 
by RT-PCR and 
CD31 
expression by 
IHC 

hVEGF and hDel-1 
plasmid induced the 
formation of 3-fold 
more new blood 
vessels 

Phase II clinical trial 
showed no 
improvements in 
PWT, claudication 
onset time, ABPI in 
Del-1 plasmid-treated 
IC patients (n=52) 
and placebo-treated 
IC patients (n=53) 
There were no 
significant differences 
between groups 
(Grossman, 
Mendelsohn et al. 
2007) 

 Ligation and 
excision of FA 
(Zhong, Eliceiri et 
al. 2003) 

NZW rabbits Non-coding plasmids 
control (n=3), 
hVEGF165 plasmid 
(n=6) and hDel-1 
plasmid (n=4) 

Angiography, 
gene expression 
by RT-PCR and 
CD31 
expression by 
IHC 

hVEGF and hDel-1 
plasmid induced the 
formation of 3-fold 
more new blood 
vessels 

 Ligation of FA 
(Zhong, Eliceiri et 
al. 2003) 

CD1 mice Non-coding plasmid 
control (n=7–8), 
hVEGF165plasmid(n 
= 7–8) and hDel-1 
plasmid (n=7–8) 

Treadmill run 
time, capillary 
myofibre ratio 
determination 
by IHC with 
CD31, Del-1 
and VEGF165 

hVEGF and Del-1 
were equally 
effective in 
inducing neovessel 
formation and 
restoring hind-limb 
function 

Abbreviations: BM-MNC, bone marrow-derived mononuclear cells; CBP, calf blood pressure ratio; CCR, CC chemokine receptor; CD, cluster 
of differentiation; CIA, common iliac artery; FA,  femo ra l  a r te ry,  DFA, deep FA; hADSC, human adipose-derived stem cells; HGF, 
hepatocyte growth factor; FGF, fibroblast growth factor; IHC, immunohistochemistry; IM, intramuscular; NZW, New Zealand white; PWT, peak 
walking time; SVF, stromal vascular fraction; VEC; vascular EC; TcPO2, transcutaneous blood pressure index; SeV, Sendai virus; 99mTC, 
technetium; AdCMV, adenoviral cytomegalovirus vector; Del-1, delta-1  . 
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1.6 Animal models of HLI 

Pre-clinical animal models are indispensable research tools for the development of novel 

therapies, the assessment of medical interventions and the study of molecular pathways 

involved in disease development. A suitable animal model is potentially important to improve 

translation of pre-clinical findings. Large and small animals have been used as research tools 

to model PAD in pre-clinical experiments (Waters, Terjung et al. 2004). Large animal models 

benefit from the ease of accurate identification of the lower extremity inflow vessels and their 

branches, as well as a multitude of blood flow measures that can be used throughout the course 

of a study. Usually small animal models, mainly genetically modified mice strains, are 

preferred due to the availability of transgenic strains enabling assessment of the effects of 

genetic deficiency or overexpression (Hoefer, van Royen et al. 2004). The availability of large 

numbers of knockout and transgenic strains, a well characterised genome, ease of maintenance 

and handling and the ability to multiply the breeding stock in limited time, makes it less 

challenging to plan and conduct experiments in mice (Field 1993, Dragneva, Korpisalo et al. 

2013, Krishna, Omer et al. 2016).  

Several mouse models have been developed to mimic limb ischaemia of PAD patients. 

(Couffinhal, Silver et al. 1998, Nowak-Sliwinska, Alitalo et al. 2018). Several different aspects 

that have varied including mouse strain, method of ischaemic induction, risk factors and 

monitoring.  

1.7 Common mouse models of HLI 

Unilateral mouse HLI induction has been usually used as a model to study PAD. This model 

permits the use of the contra-lateral extremity as a control within the same mouse. To generate 

models of HLI, several surgical techniques are used, which include the ligation of iliac artery, 

femoral artery (FA), FA and vein ligation, or a combination with multiple ligation sites. The 

surgical procedures are performed under continuous infusion of anaesthetics such as isoflurane 

and the animals generally recover within minutes (Krishna, Omer et al. 2016). The degree of 

ischaemia obtained using the various surgical procedures depends on the type of surgery, 

occlusion site and the extent of lower limb artery involved. Typically, HLI is induced by 

various manipulations on the FA with or without the accompanying side branches as illustrated 

in Figure I1 (Pu, Sniderman et al. 1993, Couffinhal, Silver et al. 1998, Waters, Terjung et al. 

2004, Madeddu, Emanueli et al. 2006, Dragneva, Korpisalo et al. 2013, Krishna, Omer et al. 

2016, Nowak-Sliwinska, Alitalo et al. 2018). It is reported that marked differences are observed 
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in the degree of ischaemia induced by each approach (Shireman and Quinones 2005, Goto, 

Fukuyama et al. 2006).  

 

 

Figure I1. A simplified diagram showing various surgical techniques co m mo n l y  employed involving 
the FA to induce unilateral HLI, the consequence and their relation to the presentation of lower extremity 
ischaemia. (i) Ligation of the FA proximally and distally using silk sutures, (ii) ligation of the FA proximally 
and distally plus excision of the intervening segment, (iii) ligation and excision of complete FA and its side 
branches, (iv) ligation of proximal FA and the distal saphenous artery and excision of the intervening segment, 
(iv) ligation and excision of both the FA and the femoral vein (Adapted from (Krishna, Omer et al. 2016) 

 

1.7.1 Ligation model 

The ligation of the FA results in milder ischaemia and blood flow is rapidly restored through 

collateral flow resulting with no or limited ischaemia or functional impairment observed  

(Figure I1Bi) (Couffinhal, Silver et al. 1999, Emanueli, Graiani et al. 2004, Goto, Fukuyama 

et al. 2006, Krishna, Omer et al. 2016).  

1.7.2 Ligation and excision models 

The ligation and excision of the complete FA and its side branches results in distal limb 

ischaemia with toe necrosis suggesting the length of occlusion is crucial for the degree of 

ischaemia (Figure I1Biii) (Couffinhal, Silver et al. 1998, Goto, Fukuyama et al. 2006, Krishna, 

Omer et al. 2016, Nowak-Sliwinska, Alitalo et al. 2018). Severe necrosis of the foot and/or 

limb paralysis is reported after ligation of the proximal FA and the distal saphenous artery in 

rodents (Madeddu, Emanueli et al. 2006) (Figure I1Biv). The excision of both the FA and 

femoral vein is reported to result in acute onset of severe ischaemia, necrosis of the toes, foot 

and knee and auto amputation. This approach does not reflect the pathophysiology and clinical 

presentations of CLI, since in patients, the symptoms are due to arterial obstruction and related 
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complications rather the venous involvement (Figure I1Bv) (Masaki, Yonemitsu et al. 2002, 

Goto, Fukuyama et al. 2006, Yu and Dardik 2018).  

The most commonly reported method of ischaemia induction is ligation at the proximal and 

distal end of the FA followed by excision of the intervening segment (Figure I1Biii) 

(Couffinhal, Silver et al. 1998, Morishita, Nakamura et al. 1999, Madeddu, Emanueli et al. 

2006, Krishna, Omer et al. 2016, Nowak-Sliwinska, Alitalo et al. 2018). This results in a 

moderate to severe limb ischaemia with variable muscle or toe necrosis (Brenes, Jadlowiec et 

al. 2012, Krishna, Omer et al. 2016). Additionally, acute ligation and excision usually results 

in natural rapid recovery of blood supply in the lower limb and does not reflect chronic ongoing 

limb ischaemia which is the most common presentation in patients (Chalothorn and Faber 

2010, Nowak-Sliwinska, Alitalo et al. 2018).  

 

1.7.3 Limitation of current models 

The major drawback of currently used mouse models of HLI is the rapid recovery of blood 

supply in the ischaemic limb. Acute vessel occlusion in animal models result in recruitment of 

pre-existing collaterals to bypass the occlusion. The occlusion generates a pressure gradient 

between the proximal and distal ends of the occluded vessel, resulting in a redirection of blood 

flow towards the collaterals. Subsequently, the increased flow triggers a rise in collateral artery 

wall shear stress, alters endothelial gene expression and promotes rapid arteriogenesis (Pipp, 

Boehm et al. 2004, Heil, Eitenmuller et al. 2006, Dragneva, Korpisalo et al. 2013). Evidence 

in the literature illustrates the remarkably fast recovery of blood supply after sudden occlusion 

of a major artery in animal models of experimental ischemia, suggesting the existence of a 

strong endogenous compensatory collateral response (Tang, Chang et al. 2005, Yang, Tang et 

al. 2008, Dragneva, Korpisalo et al. 2013, Mohamed Omer, Krishna et al. 2016). 

Furthermore, an acute arterial occlusion activates inflammatory responses within ischaemic 

tissues which may partially promote angiogenesis and muscle regeneration (Silvestre, Bergaya 

et al. 2001). The response involves: the recruitment and activation of inflammatory cells; 

VEGF-induced activation, proliferation and migration of endothelial cells; and activation of 

satellite cells within ischemia ischaemic muscles (Dragneva, Korpisalo et al. 2013). These 

events promote angiogenesis and regeneration of the ischaemic muscle. Thus, adaptive 

arteriogenesis and angiogenesis contribute to the recovery of blood flow and muscle function 

in animal models with acutely ischemia. In contrast, these endogenous recovery mechanisms 
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do not function sufficiently in patients with chronic ischaemic symptoms and co-morbidities 

(Dragneva, Korpisalo et al. 2013). The severity of experimental ischaemia induced also 

depends on the location and length of artery occlusion and also on the capacity for 

arteriogenesis and angiogenesis in the species used (Hellingman, Bastiaansen et al. 2010, Lotfi, 

Patel et al. 2013, Krishna, Omer et al. 2016, Thomas, Thirumaran et al. 2016, Nowak-

Sliwinska, Alitalo et al. 2018).  

 

1.7.4 Gradual constriction model of HLI 

The major limitations of the currently used HLI models is the acute nature of generating 

ischemia and the rapid recovery of blood supply, whereas in the patients with PAD ischemia 

develops over several years and collaterals are inefficient in compensating ischaemic tissues 

(Aranguren, Verfaillie et al. 2009, Dragneva, Korpisalo et al. 2013, Lotfi, Patel et al. 2013, 

Krishna, Omer et al. 2016, Mohamed Omer, Krishna et al. 2016). The acute induction of HLI 

in current models result in sudden changes in fluid shear stress within collateral arteries to alter 

gene expression patterns through shear responsive elements. This subsequently promotes 

arteriogenesis and angiogenesis to restore blood supply to the ischaemic tissues (Topper and 

Gimbrone Jr 1999, Garcia-Cardena, Comander et al. 2001, Tang, Chang et al. 2005).  

Ameroid constrictors have been used to model gradual stenosis of the FA. This approach has 

been used in rabbits, rats and mice (Baffour, Garb et al. 2000, Tang, Chang et al. 2005, Yang, 

Tang et al. 2008). An ameroid constrictor is an inner ring of casein that is surrounded by a 

stainless steel sheath. Casein is a hygroscopic substance that swells as it slowly absorbs body 

fluid. The stainless steel sheath forces the casein to swell inwardly. When placed on the FA in 

vivo, the inner diameter of the ameroid constrictor narrows gradually constricting the artery 

(Baffour, Garb et al. 2000, Tang, Chang et al. 2005, Yang, Tang et al. 2008). The nadir in blood 

supply within this model is gradually reached in 14 days after placing ameroids (Yang, Tang 

et al. 2008). The rate of blood flow recovery is poor with ameroids compared to the HLI model 

of FA ligation and excision (Yang, Tang et al. 2008). The expression levels of several genes 

crucial for the response to ischaemia (including HIF-1α, and VEGF) within the gastrocnemius 

muscle was different in this model than seen within acute HLI models. The extensive muscle 

necrosis seen within acute models was not reported. The pressure gradients across the collateral 

arterial beds were low and e-NOS and early growth response-1 genes were not significantly 

activated to induce collateral artery enlargement (Tang, Chang et al. 2005, Yang, Tang et al. 

2008). Gradual constriction through ameroids are thought to better recapitulate the 
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pathophysiology and atherosclerotic stenosis than acute occlusion (Baffour, Garb et al. 2000, 

Tang, Chang et al. 2005, Yang, Tang et al. 2008, Dragneva, Korpisalo et al. 2013, Krishna, 

Omer et al. 2016). However, ameroid based occlusions do not cause severe ischemia 

(Dragneva, Korpisalo et al. 2013, Nowak-Sliwinska, Alitalo et al. 2018). Instead, ameroid 

occlusion results in mild ischaemia to which the muscles adapt effectively compared to acute 

arterial occlusion (Dragneva, Korpisalo et al. 2013). This suggests that ameroid constriction 

alone may be inadequate to overcome efficient collateral compensation of blood supply. 

Ligating and excising the FA after slow onset of ischaemia by ameroids may mitigate 

compensation of blood supply by collaterals arising from the FA. 

 

1.8 Risk factors in models of HLI 

Patients with PAD usually have a number of risk factors including smoking, diabetes, 

hypertension, older age and dyslipidaemia (Gottsäter 2006, Krishna, Omer et al. 2016, 

Mohamed Omer, Krishna et al. 2016). Few pre-clinical studies have incorporated such risk 

factors within the animal model employed (Mohamed Omer, Krishna et al. 2016). 

Atherosclerosis is the leading cause of PAD. Most HLI studies use non-atherosclerotic mice 

which may exhibit faster recovery to angiogenic therapy during ischaemia. Apolipoprotein E-

knockout (ApoE−/−) and low density lipoprotein receptor knockout mice are commonly used to 

simulate the effects of atherosclerosis and dyslipidaemia (Seo, Lombardi et al. 1997, Lotfi, 

Patel et al. 2013). Notably, ApoE−/− C57BL/6 mice develop significant atherosclerotic lesions, 

exhibit delayed recovery from ischaemia and respond poorly to angiogenic therapy (Balestrieri, 

Lu et al. 2010, Dragneva, Korpisalo et al. 2013). Another drawback of using healthy young 

animals for FA ligation models is that collateral formation occurs rapidly in younger animals 

in contrast with PAD patients (Madeddu, Emanueli et al. 2006, Mohamed Omer, Krishna et al. 

2016). Smoking, diabetes mellitus and hypertension are also major risk factors for PAD and 

important determinants of recovery from ischaemia in both animals and patients (Waters, 

Terjung et al. 2004, Dragneva, Korpisalo et al. 2013, Mohamed Omer, Krishna et al. 2016). 

Angiogenesis, arteriogenesis and recovery of blood supply are diminished in the presence of 

these risk factors (Waters, Terjung et al. 2004, Dragneva, Korpisalo et al. 2013, Lotfi, Patel et 

al. 2013, Krishna, Omer et al. 2016, Mohamed Omer, Krishna et al. 2016). These limitations 

can potentially be overcome by performing studies within pre-clinical models that incorporate 

some or all of the risk factors common in patients. 
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1.9 Differences in mouse strains of HLI  

The most common mouse strain used for HLI studies is the C57BL/6 background mouse. Many 

studies have shown strain-based differences between immunocompetent C57BL/6 and Balb/C 

background mice, owing to genetic heterogeneity (Dragneva, Korpisalo et al. 2013, Krishna, 

Omer et al. 2016). For example, BALB/c mice showed significantly reduced recovery of blood 

flow after FA ligation compared with C57BL/6 (Scholz, Ziegelhoeffer et al. 2002, Fukino, Sata 

et al. 2003). The arterial tree structure also differs between the two species, with BALB/c 

having fewer pre-existing collaterals (Helisch, Wagner et al. 2006, Chalothorn, Clayton et al. 

2007, Thomas, Thirumaran et al. 2016). Dokun et al. identified that the quantitative trait loci 

LSq-1 (loss of tissue after ischaemia) on chromosome 7 of the C57BL/6 mouse strain 

contributes a protective allele to prevent limb necrosis after induction of HLI (Dokun, Keum 

et al. 2008). Recently, Sealock et al. carried out congenic mapping to refine the loci on 

chromosome 7 (Candq1) and its candidate genes to create an isogenic strain set with extreme 

difference in collateral extent to assess their role in ischaemic injury (Sealock, Zhang et al. 

2014). The candidate gene identified in the refined loci is now designated as determinant of 

collateral extent-1 (Dce-1). This study further demonstrated that genetic background-

dependent variation in collaterals variation is a major factor underlying differences in 

ischaemic tissue injury (Sealock, Zhang et al. 2014). In short, among the various strains of 

common laboratory mice, BALB/c is most susceptible to the development of ischaemia as it is 

reported to have slower recovery after induction of HLI and is more susceptible to tissue 

necrosis and limb loss after FA ligation (Helisch, Wagner et al. 2006). This strain may therefore 

be most appropriate to use in studies of CLI (Krishna, Omer et al. 2016). On the other hand, 

C57BL/6 mice might be more appropriate as a model of IC (Lotfi, Patel et al. 2013) due to the 

presence of extensive pre-existing collateral circulation (Limbourg, Korff et al. 2009, 

Hellingman, Bastiaansen et al. 2010). The severity of tissue necrosis resulting from HLI is 

reported to vary among mouse strains due to genetic variability. For example, DBA/1J mice 

have a higher incidence (50%) of necrosis following HLI than C57Bl/6J (20%) or BALB/c 

(17%) mice (Goto, Fukuyama et al. 2006, Krishna, Omer et al. 2016).  
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Table I2. Characteristics of pre-clinical studies of HLI using mice which may underlie 

poor translatability to clinical trials. 

 

 

 

 

 

 

 

 

 

 

 

Characteristic Use in pre-clinical studies Disadvantages 

Mouse models Commonly used models 
include ligation of FA and 
ligation and excision model of 
FA. 

Variable ischaemia develops from mild 
to severe. Most widely used FA ligation 
and excision model results in natural 
rapid recovery of blood supply in the 
ischaemic limb (Tang, Chang et al. 2005, 
Yang, Tang et al. 2008, Dragneva, 
Korpisalo et al. 2013, Krishna, Omer et 
al. 2016, Mohamed Omer, Krishna et al. 
2016). 

Outcome measures 
(functional) 

Functional endpoints 
assessments uncommon (when 
used subjective scoring of 
limb function usually 
performed) (Krishna, Omer et 
al. 2016) 

Do not mirror functional end-points in 
clinical trials which include treadmill 
testing and six-minute walk test.  

Co-morbidities (age, 
atherosclerosis) 

Risk factors and co-
morbidities not usually 
present, young healthy mice 
are commonly used. 

The absence of co-morbidities causes 
rapid recovery from ischaemia naturally 
and mice respond effectively to 
revascularisation therapy (Krishna, Omer 
et al. 2016). 

Strains  Commonly used C57BL/6 C57BL/6 shows rapid recovery from 
ischaemia due to greater collateral 
density. 
BALB/c mice demonstrate significantly 
less recovery of blood flow after FA 
ligation compared with C57BL/6 
(Krishna, Omer et al. 2016).  

Abbreviations: FA; femoral artery 
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1.10 Common outcome assessments in HLI studies 

1.10.1 Measurement of limb ischaemia 

In addition to the type of model employed, a major determinant of the future success of pre-

clinical models, in terms of both experimental efficacy and translational value, is the evaluation 

of outcomes (Leonardo, Robbins et al. 2012). 

Most studies of the unilateral HLI model report blood supply within the operated limb in 

comparison with the un-operated contralateral limb. The most common method used in HLI 

studies to assess blood flow is laser Doppler perfusion imaging (Greco, Ragucci et al. 2013, 

Matsui, Watanabe et al. 2017) (LDI). This non-invasive technique is used widely to monitor 

the effect of various surgical induction methods, drugs or cell therapies on limb blood supply. 

LDI has been widely used to monitor revascularisation responses after therapeutic interventions 

within HLI models in mice (Couffinhal, Silver et al. 1998, Lloyd, Yang et al. 2001, Taniyama, 

Morishita et al. 2001, Dragneva, Korpisalo et al. 2013, Krishna, Omer et al. 2016, Mohamed 

Omer, Krishna et al. 2016). LDI enables real-time assessment of microcirculation throughout 

the time frame imaged. LDI technique causes minimal distress to mice and allows non-terminal 

assessment of physiological superficial blood supply of the limbs. Laser Doppler measures the 

total local microcirculatory blood supply including the blood supply in capillaries, arterioles, 

venules and shunting vessels. Laser Doppler detects shifts in the frequency of laser light after 

it interacts with moving components of tissues such as red blood cells (Humeau, Steenbergen 

et al. 2007, Limbourg, Korff et al. 2009, Greco, Ragucci et al. 2013, Krishna, Omer et al. 2016). 

LDI is a non-invasive system that measures flux within tissues. A moving mirror directs 

reflected laser light from moving red blood cells to a photodetector. Subsequent processing 

results in a two-dimensional colour-coded image of flux (Limbourg, Korff et al. 2009, Greco, 

Ragucci et al. 2013). Measurements are expressed in arbitrary Perfusion Units (PU). The 

unilateral HLI model permits the use of the contra-lateral extremity as a control (Krishna, Omer 

et al. 2016).  

  

1.10.2 Examination of gross tissue necrosis and limb function  

Limb appearance and function after ischaemia induction are assessed in reported studies by 

observer relative grading methods. Clinical signs manifested due to poor or occluded blood 

flow to the limb are usually semi-quantitatively assessed by gross examination of the degree 

of necrosis on the ischaemic limb. A ‘clinical score’ grading based on the number of necrotic 

toes is suggested to be useful in assessing the recovery from ischaemia achieved by different 
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therapies and is reported to have low inter-observer variability (Madeddu, Emanueli et al. 

2006). The severity of tissue necrosis in the ischaemic limb has been previously assessed using 

the following scale: 

Score Description 
0 No necrosis 
1 One toe 
2 2 or more toes 
3 Foot necrosis 
4 Leg necrosis 
5 Auto amputation of the leg 

(Shireman and Quinones 2005).  

A more elaborate scoring system developed by Chalothorn et al. called ‘index of ischaemia’ or 

‘foot appearance’ ranged from 0 to 11 [0=normal, 1–5=cyanosis or loss of the nail(s), the score 

representing the number of affected nails; 6–10=partial or complete atrophy of the digit(s), the 

score reflecting the number of affected digits; 11=partial atrophy of the fore foot (Chalothorn, 

Clayton et al. 2007).  

In a subsequent study, the same authors presented a more simplified ‘index of ischaemia’ as: 

Score Description 
0 Normal  
1 cyanosis or loss of the nail(s) 
2 partial or complete atrophy of the digit(s) 
3 dry necrosis beyond the digits into the front part of 

foot 
(Chalothorn and Faber 2010, Krishna, Omer et al. 2016) 

 

 

 

A commonly used functional scoring system for the usage of the hind limb represents an index 

of muscle function, represented as:  

Score Description 
0 Normal  
1 No toe flexion 
2 No plantar flexion 
3 Dragging of the foot 

(Chalothorn and Faber 2010). 
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Chalothorn and Faber, developed another scoring system for muscle function, named ‘clinical 

use score’, which grades the ischaemic hind limb usage as:  

Score Description 
0 Normal toe and plantar flexion 
1 No toe but plantar flexion 
2 No toe or plantar flexion 
3 Dragging of the foot 

(Chalothorn and Faber 2010). 

The use of these scoring systems varies in different studies and in many cases the inter-observer 

variation in assessment is not reported. Furthermore, even though the assessment of the gross 

appearance of tissue necrosis and functional defects are considered in these types of scoring 

systems, the scores are subjective and not reported to be conducted by personnel blinded to any 

intervention being assessed (Krishna, Omer et al. 2016).  
 

1.10.3 Assessment of functional outcomes in HLI models 

The quality of life in PAD patients is mainly affected due to exercise related functional 

limitation (Krishna, Omer et al. 2016). In clinical trials, patients with IC are primarily assessed 

for improvement in pain-free walking capacity on treadmills or in corridor walking tests 

(Regensteiner, Gardner et al. 1997, Garg, Tian et al. 2006, Gardner and Afaq 2008), whereas 

patients with CLI are assessed in terms of limb pain and salvage (Krishna, Omer et al. 2016). 

Hence, it would be appropriate that PAD pre-clinical animal models incorporate similar 

outcome measures (Krishna, Omer et al. 2016). Clinically relevant outcome measures in pre-

clinical studies may help to better determine interventions for translation to patients. 

Treadmill walk testing and six-minute walk testing are used for objective assessment of 

changes in walking performance in patients with PAD (Hirsch, Haskal et al. 2006, McDermott, 

Liu et al. 2013, McDermott, Guralnik et al. 2014, McDermott 2015). Functional tests are very 

rarely performed to assess walking impairment in pre-clinical experiments. It would be 

appropriate to have similar objective outcome measure to better extrapolate pre-clinical 

findings of HLI before testing potential interventions in patients (Krishna, Omer et al. 2016). 

In this regard, treadmill endurance exercise tests have been used in a few pre-clinical studies 

(Baltgalvis, White et al. 2014, Marcinko, Bujak et al. 2015). It has been suggested that open 

field tests in mice mirror the six-minute walk test in patients (Tatem, Quinn et al. 2014). In 

animal models of neuromuscular disease, the open field (OF) test is widely used for assessing 
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locomotive impairment and could have potential in assessing ambulatory ability in HLI models 

(Ijomone, Olaibi et al. 2014, Tatem, Quinn et al. 2014). 

1.10.4 Response to exercise training in current animal models of HLI 

Exercise therapy is an effective non-invasive modality to improve walking in IC patients. The 

majority of studies in patients that have IC have shown little or no increase in blood flow 

assessed by ABPI following an exercise programme, even when significant improvements in 

walking ability have been reported (Stewart , Hiatt  et al. 2002, Duscha, Robbins et al. 2011, 

Meneses, Nam et al. 2018). However, in experimental models of acute HLI, exercise training 

has been shown to augment recovery of blood supply to ischaemic muscles (Yang, Dinn et al. 

1990, Yang, Prior et al. 2008, Cheng, Kuzuya et al. 2010, Rokutanda, Izumiya et al. 2011). 

Experimental models of HLI mimicking patient response to exercise training would be valuable 

in better understanding the underlying mechanisms associated with functional improvements 

to exercise. 

Recommendations which have been suggested to develop a clinically relevant mouse model of 

HLI (Krishna, Omer et al. 2016) are as following:   

1) A mouse model of HLI should simulate the pathophysiology of PAD through slow 

onset of ischaemia that ultimately leads to substantial and ongoing limb ischaemia 

evidenced by functional impairment; 

2) Consideration should be given to incorporation of common risk factors present in 

patients, such as older age, diabetes or smoking in the mouse model of HLI; 

3)  Outcome assessments common in human trials which include functional measures 

should be used for characterising HLI in the mouse model; 

4) A mouse model of HLI should demonstrate clinically relevant response to established 

treatment of PAD such as exercise training. 

 

1.11 Employing a clinically relevant mouse model for assessing a potential treatment 

The establishment of a clinically relevant mouse model of HLI with features of PAD facilitates 

the assessment of potential drugs and the identification of endogenous drug targets for limb 

ischaemia. Modulating e-NOS activity to improve NO bioavailability has been suggested to be 
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a potential target for medical therapy. NO is an important modulator of the adaptive response 

to limb ischaemia in PAD. NO and e-NOS modulating drugs are of great interest for therapeutic 

revascularisation for limb ischaemia. Evidence suggests that the biguanide drug metformin 

may have potential for revascularisation in limb ischaemia (Sirtori, Franceschini et al. 1984, 

Montanari, Bondioli et al. 1992, Takahashi, Shibata et al. 2015). Metformin is the first line 

pharmacological therapy used to manage hyperglycaemia in patients with type 2 DM (Saisho 

2015). As a generic, low-cost drug, metformin could have an impact in both high and low 

resource health systems. Metformin has gained popularity recently as a drug with potential to 

be repurposed for treatment of numerous diseases (NIH 2018). Repurposing of approved drugs 

for new clinical indications is an area of significant interest (Corsello, Bittker et al. 2017). Drug 

repurposing is the identification of new therapeutic indications for known drugs. These drugs 

can either be approved and marketed compounds used daily in a clinical setting, or they can be 

drugs that have not succeeded in clinical trials and discontinued (Barratt and Frail, 2012). A 

major advantage of repurposing compounds is that a wealth of pharmacokinetic, 

pharmacodynamic and toxicological effects have already been determined (Nosengo 2016). 

Metformin is well tolerated, and ongoing trials evaluating its use in men without diabetes report 

low discontinuation rates of approximately 4% (Gillessen, Gilson et al. 2016). Lactic acidosis, 

the most serious side effect of metformin use in diabetic patients, is very rare and rates are 

comparable between untreated diabetic patients and those treated with metformin (Salpeter, 

Greyber et al. 2003). Lactic acidosis is also suggested to be caused by underlying diabetes 

rather than metformin treatment (Salpeter, Greyber et al. 2003, Gillessen, Gilson et al. 2016).  

Metformin has a mild and transient inhibitory effect on the mitochondrial complex 1 of the 

electron transport chain (Rena, Pearson et al. 2013, Saisho 2015). This induces a drop in 

cellular energy charge resulting in a fall of the cellular ATP concentration and an increase in 

both ADP/ATP and AMP/ATP ratios (Rena, Pearson et al. 2013). This activates adenosine 

monophosphate kinase (AMPKα), a critical energy sensor of cellular energy homeostasis that 

integrates multiple signalling networks to coordinate a wide array of compensatory, protective, 

and energy-sparing responses (Viollet, Guigas et al. 2012). Metformin has been demonstrated 

to lead to phosphorylation of e-NOS resulting in increased NO bioavailability (Takahashi, 

Shibata et al. 2015). Therefore it is interesting to explore metformin for therapeutic 

revascularisation in limb ischaemia (Rena, Pearson et al. 2013, Takahashi, Shibata et al. 2015). 

Small uncontrolled clinical studies have suggested that metformin can improve blood supply 

in patients with PAD (Sirtori, Franceschini et al. 1984, Montanari, Bondioli et al. 1992). 
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Metformin has also been recently reported to improve hind limb blood supply within the acute 

HLI model by increasing AMPKα and e-NOS activity within ischaemic muscles in order to 

promote angiogenesis (Takahashi, Shibata et al. 2015). 

Activation of AMPKα by metformin has been demonstrated to lead to phosphorylation of e-

NOS resulting in increased NO bioavailability, which could subsequently promote 

revascularisation (Rena, Pearson et al. 2013, Takahashi, Shibata et al. 2015). It has been 

previously reported that metformin does not promote recovery of blood supply in e-NOS 

deficient mice in which acute HLI is induced (Takahashi et al., 2015). These findings strongly 

suggests e-NOS is a key mediator of the action of metformin on limb reperfusion (Takahashi, 

Shibata et al. 2015).  

Additional proposed mechanisms which could improve microcirculatory function by 

metformin include limiting oxidative stress and favouring mitochondrial biogenesis  (Hamburg 

and Balady 2011) (Steven, Daiber et al. 2017). Endothelial cell migration and proliferation are 

key processes in revascularisation (Goveia, Stapor et al. 2014). The endothelial-driven 

proliferative response requires upregulation of mitochondrial mass and function (Tang, Luo et 

al. 2014). Such mitochondrial biogenesis requires the coordinated replication and expression 

of mitochondrial DNA with the parallel expression of nuclear-encoded mitochondrial genes 

(Uittenbogaard and Chiaramello 2014). A key regulator of this process is PGC-1α 

(Uittenbogaard and Chiaramello 2014). PGC-1α promotes acceleration of angiogenesis by ECs 

through mitochondrial biogenesis which meets EC metabolic demands during proliferation 

(Rowe, Jiang et al. 2010). Metformin has been previously reported to upregulate PGC1α in 

skeletal muscles through AMPKα stimulation (Jager, Handschin et al. 2007, Fernandez-Marcos 

and Auwerx 2011). 

Oxidative stress impairs endothelial function and is associated with impairment of 

revascularisation in PAD (McDermott 2015). Thioredoxin is an antioxidant protein which 

regulates the redox response to oxidative stress by maintain the reducing environment of tissues 

(Nishiyama, Matsui et al. 1999). Metformin has also been reported to attenuate oxidative stress 

by, for example, downregulating expression of thioredoxin interacting protein (TXNIP) which 

has been suggested to be a critical protein in promoting severe limb ischemia in diabetes 

(Chong, Chan et al. 2014, Zhang, Pang et al. 2015). Oxidative stress and mitochondrial 

biogenesis have been previously shown to be associated with muscle changes relevant for 

functional improvements resulting from limb ischaemia. TXNIP is a negative regulator of TRX 



39 | P a g e  
 

and has been shown to have adverse effects on ischemia and oxidative stress (Dunn, Buckle et 

al. 2010). TXNIP knockdown has been shown to rescue blood-flow impairment and improve 

functional recovery in ischaemic hindlimbs (Dunn, Simpson et al. 2014). Normalisation of 

hyperglycemia-induced TXNIP expression to non-diabetic levels has been reported to rescue 

diabetes-related impairment of ischemia-mediated angiogenesis (Dunn, Simpson et al. 2014). 

In addition, TXNIP has been shown to enhance ischemia-reperfusion injury in response to 

acute hyperglycemia (Yoshioka, Chutkow et al. 2012). TXNIP knockdown is associated with 

increased e-NOS expression and NO production (Wu, Zheng et al. 2013, Dunn, Simpson et al. 

2014). In ischemia/reperfusion injury, TXNIP is associated with harmful consequences by 

promoting oxidative damage in tissues via its pro-oxidative effects (Lane, Flam et al. 2013). 

Metformin has been reported to reduce the expression of TXNIP through AMPKα activation 

in aortic ECs (Li, Kover et al. 2015).  

  

1.12 Employing a clinically relevant mouse model of HLI for assessing a potential target 

Endogenous compounds which modulate e-NOS activity could play important roles for 

improving revascularisation in limb ischaemia (Forte, Conti et al. 2016). Activity of e-NOS 

could be enhanced through phosphorylation at serine 1177 or e-NOS dimerisation by 

regulatory proteins (Forte, Conti et al. 2016). In this regard evidence suggests angiotensin 

converting enzyme 2 (ACE2) could be an important modulator of e-NOS activity (Zhang, 

Wang et al. 2014). ACE2, a zinc metalloprotease, is an important component of the renin 

angiotensin system (Santos, Sampaio et al. 2018). ACE2 catalyses the conversion of 

angiotensin II (Ang II) to angiotensin-(1–7) (Ang-(1–7) (Rabelo, Todiras et al. 2016, Santos, 

Sampaio et al. 2018). Ang-(1-7) is an endogenous ligand for the G protein-coupled Mas 

receptor, which is a cell surface receptor that is highly expressed within the vascular system 

(Rabelo, Alenina et al. 2011). Ang-(1-7) signalling promotes phosphorylation of e-NOS and 

release of NO via phosphatidylinositol 3-kinase-protein kinase B (PI3K-protein kinase B) and 

Akt (Sampaio, Souza dos Santos et al. 2007, Dias-Peixoto, Santos et al. 2008). Ang 1–7 

promotes angiogenesis and neo-vessel maturation in vivo through the Mas1 receptor (Lovren, 

Pan et al. 2008, Forte, Conti et al. 2016).  

Ang II has been reported to promote the uncoupling of e-NOS by depleting regulatory co-

factors (HSP-90 and BH4) required for e-NOS dimerisation, thereby increasing superoxide 

generation and limiting NO bioavailability (Lin, Lin et al. 2004). Ang II mediates 
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effects via complex intracellular signalling pathways that are stimulated after binding to its 

main G-protein-coupled cell-surface receptor receptor Ang II type 1 (AT1R). Ang II, via AT1R, 

induces phosphorylation of multiple tyrosine kinases, including c-Src, Janus family kinases 

(JAK), focal adhesion kinase, protein tyrosine kinase 2, p130Cas, and PI3K (Nguyen Dinh Cat, 

Montezano et al. 2013). Ang II signalling promotes nicotinamide adenine dinucleotide 

phosphate oxidase (NOX) activity, a major source of ROS in the vasculature (Montezano, 

Nguyen Dinh Cat et al. 2014) (Santillo, Colantuoni et al. 2015). NOX activation increases ROS 

which oxidise and depletes regulatory co-factors such as H4B to induce H4B deficiency 

(Nguyen Dinh Cat, Montezano et al. 2013, Li, Youn et al. 2015). Depletion of regulatory co-

factor availability results in uncoupling of e-NOS, increase in superoxide production and 

reduction of NO bioavailability (Santillo, Colantuoni et al. 2015). 

Blocking Ang II signalling through Ang II receptor type 1 blockers (candesartan) or ACE 

inhibitor captopril markedly attenuated e-NOS derived superoxide  production while 

augmenting NO bioavailability, implicating coupling of e-NOS (Oak and Cai 2007). The action 

of ACE2 in degrading Ang II can limit uncoupling of e-NOS and promote NO bioavailability 

and limit superoxide generation (Patel and Schultz 2013).  

Genetic deficiency of ACE2 (ACE2-/y) results in reduced tissue and circulating levels of Ang 

1–7 and reduced capacity to degrade Ang II (Thomas, Pickering et al. 2010, Bernardi, Burns 

et al. 2012, Tikellis, Pickering et al. 2012). ACE2-/y mice have also been reported to 

demonstrate drastic reduction in e-NOS expression at both protein and mRNA levels, and a 

decrease in NO concentrations (Yamamoto, Ohishi et al. 2006, Rabelo, Todiras et al. 2016). By 

promoting Ang 1-7 synthesis and attenuation of Ang II signalling, ACE2 could modulate e-

NOS through augmenting e-NOS phosphorylation and limiting e-NOS uncoupling in order to 

improve NO bioavailability (Sampaio, Souza dos Santos et al. 2007, Patel and Schultz 2013). 

Thus, ACE2 can promote e-NOS activity to play an important role in limb ischaemia. Despite 

evidence suggesting potential of ACE2 to play an important role in modulating e-NOS and NO 

levels, the role of ACE2 in limb ischaemia is unknown. ACE2 locates on the X chromosome 

in human genome (Zhang, Cong et al. 2018). ACE2 activity have been suggested to be 

differentially regulated in males and females (Soler, Riera et al. 2012, Soro-Paavonen, Gordin 

et al. 2012) with serum ACE2 activity higher in males than females (Úri, Fagyas et al. 2016). 

This suggests that ACE2 might differentially modulate e-NOS in males and females and the 

role of ACE2 in limb ischaemia may be sex dependent.  
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1.13 General summary and thesis aims 

PAD is an atherosclerotic disease of the lower limb arteries which results in impaired blood 

supply to the lower limbs. Effective pharmacological treatments to restore blood supply and 

treat the leg symptoms of PAD are an unmet medical need (Vemulapalli, Dolor et al. 2015). 

There is urgent need for novel treatments to improve limb blood supply and function in PAD 

patients unlikely to benefit from existing treatments such as surgical revascularisation, 

structured exercise programs and cilostozol. Novel experimental treatments which have shown 

promising efficacy in promoting blood flow in pre-clinical animal models have not translated 

to effective treatments in clinical trials (Lederman, Mendelsohn et al. 2002, Rajagopalan, 

Mohler et al. 2003, Olea, Vera Janavel et al. 2009, Belch, Hiatt et al. 2011, Annex 2013, 

Dragneva, Korpisalo et al. 2013, Lotfi, Patel et al. 2013, Krishna, Moxon et al. 2015, Mohamed 

Omer, Krishna et al. 2016, McDermott, Ferrucci et al. 2017). This is likely attributable to pre-

clinical study characteristics including the reliability of animal model used, study design and 

endpoints assessed. Recommendations for a mouse model to be clinically relevant in order to 

better translate findings include: 1) simulating the pathophysiology of PAD through chronic 

occlusions causing severe ischaemia and functional impairment; 2) incorporating more 

representative pathology, such as concurrent atherosclerosis; 3) incorporating common risk 

factors present in patients, such as older age, diabetes or smoking; 4) using outcome 

assessments common in human trials such as treadmill testing; and 5) demonstrating clinically 

relevant response to established treatments of PAD such as exercise training (Krishna, Omer 

et al. 2016). 

The development of a clinically relevant mouse model facilitates relevant interpretation and 

translation of potential interventions and identification of endogenous therapeutic targets. NO 

mainly synthesised by e-NOS plays an important role in modulating adaptive revascularisation 

to ischaemic tissues. Repurposing existing treatments for modulating e-NOS to improve 

revascularisation in PAD and identifying potential endogenous modulators of e-NOS activity 

in limb ischaemia may be important for the development of effective treatments for PAD.  NO 

is an important promoter of angiogenesis and arteriogenesis for post-ischaemic recovery and 

NO is primarily derived from e-NOS activity (Yu, deMuinck et al. 2005). Endogenous 

compounds which modulate e-NOS activity could play important roles in the recovery of blood 

supply to limb ischaemia and e-NOS could be a potential target for drug development in PAD 

(Forte, Conti et al. 2016). Activity of e-NOS to enhance NO bioavailability could be promoted 
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through phosphorylation at serine 1177 and by limiting e-NOS uncoupling (Forte, Conti et al. 

2016). 

Evidence suggests the drug metformin may have potential to be repurposed to improve blood 

supply to limb ischaemia (Sirtori, Franceschini et al. 1984, Montanari, Bondioli et al. 1992) by 

modulating e-NOS activity (Krishna, Omer et al. 2016).  

Evidence suggests angiotensin converting enzyme 2 (ACE2) could be an important 

endogenous modulator of e-NOS activity (Zhang, Wang et al. 2014) and may play an important 

role in limb ischaemia. 

This thesis is comprised of 3 main experimental sections (chapters 3-5). The general goal of 

each section was: 

1) To develop a novel clinically relevant mouse model of HLI  

2) To examine the effect of metformin on HLI in the new mouse model  

3) To examine ACE2 deficiency on HLI in the new mouse model. 
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Chapter 2  
General materials and 

methods 
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2.1 Ethics and mouse husbandry  

The studies in this thesis were performed following ARRIVE guidelines (Kilkenny, Browne et 

al. 2010) and institutional ethics approvals were obtained for all animal experiments from 

James Cook University before the commencement of studies. All animal protocols conformed 

to the Guide for the care and use of Laboratory Animals by the United States National Institutes 

of Health and the Australian code of Practice for the Care and Use of Animals for Scientific 

Purpose (7th Edition, 2004). (Ethics approvals are attached in the Appendix) 

Mice were sourced from different rodent resource facilities as specified in methods of each 

chapter. All the Apolipoprotein E null (ApoE-/-) mice (C57BL/6J background) were obtained 

from the Animal Resource Centre, Canning Vale, Western Australia. All mice were housed in 

individual cages and were acclimatised to the Animal Facility at the College of Medicine, 

James Cook University for one week prior to the experiments. All experimental animals were 

individually housed in Techniplast cages under a 12:12 hr light-dark cycle (relative humidity: 

55-60%; temperature:22±1°C) and provided with standard rodent chow and water ad libitum 

throughout the experiment period. 

 

2.2 Two-stage induction of HLI 

Blood supply in the most commonly used model of HLI (the acute ligation and excision of the 

FA) naturally recovers as a result of shear stress promoting angiogenesis and arteriogenesis 

(Aranguren, Verfaillie et al. 2009, Lotfi, Patel et al. 2013, Mohamed Omer, Krishna et al. 

2016). The slow onset of ischaemia has been attempted with ameroid constrictors and ameroids 

have been suggested to be fully constricted within 14 days (Baffour, Garb et al. 2000, Tang, 

Chang et al. 2005, Yang, Tang et al. 2008). However, only mild ischaemia is achieved with 

ameroid contriction alone (Yang, Tang et al. 2008). This suggests that ameroid constriction 

alone may be inadequate to overcome efficient collateral compensation of blood supply. 

Ligating and excising the FA after slow onset of ischaemia by ameroids, may be a strategy to 

mitigate collateral blood supply compensation arising from the FA. This may result in severe 

ongoing ischaemia. Therefore, in this novel two-stage method of HLI induction, a slow onset 

of ischaemia achieved by ameroid constriction, followed by ligation and excision of the FA to 

induce onset of severe ischaemia was proposed.   
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HLI was induced in the left hindlimb of each mouse (Figure C2.1). Mice were placed under 

general anaesthesia using isoflurane (2.0% induction dose and 1.8% maintenance dose plus 

oxygen at 1 L/s). Surgery was performed at 20x magnification under a stereotactic microscope. 

The first operation involved exposing the left femoral bundle through a vertical 0.5–1 cm skin 

incision above the inguinal ligament. The femoral vein and nerve were carefully dissected free 

from the artery. Two custom made ameroid constrictors of 0.25mm internal diameter (Research 

Instruments SW, Escondido, California, US) were placed on the FA, one immediately distal to 

the inguinal ligament and one proximal to the sapheno-popliteal bifurcation (Figure C2.1B). 

The incision was closed using absorbable polygalactin sutures (Ethicon) and the mouse was 

monitored until recovery. Ameroids have been suggested to be fully constricted within 14 days 

(Tang, Chang et al. 2005, Yang, Tang et al. 2008). However, only mild ischaemia is achieved 

with ameroids alone compared to the severity of ischaemia achieved with FA excision (Yang, 

Tang et al. 2008). Therefore, in this novel 2 stage method of HLI induction, 14 days after 

ameroid constriction, a second surgery was performed by making a longitudinal incision above 

the inguinal ligament to expose the FA which was ligated with 6-0 silk sutures (Ethicon) 

external to the location of the ameroid constrictors and the intervening segment was excised 

with the ameroids (Figure C2.1C). The incision was closed using 6-0 absorbable polygalactin 

sutures (Ethicon) and the animals were monitored until recovery. 

 

Figure C2.1 The two-stage surgical HLI model. A, shows the region where the surgical 
manipulations of FA were performed. B, ameroids placed on proximal and distal ends of FA 
and C, ligated and excised FA.  
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2.3 Laser Doppler imaging 

LDI was performed to non-invasively monitor blood supply of hind limbs in mice. LDI 

measurements were carried out at different time points stated in specific chapters. LDI was 

carried out with a high-resolution laser Doppler perfusion imager (LDPI; Moor Instruments, 

UK). Hair was removed from the limbs using depilating cream on the day before LDPI 

measurements. The mouse was placed under general anaesthesia with isoflurane (2.0% 

induction dose and 1.8% maintenance dose plus oxygen at 1 L/s) and maintained at 37ºC using 

a heated pad. During imaging, ambient light and temperature was carefully controlled to avoid 

background variations in LDI measurements. The LDI source was mounted 26 cm above the 

mouse limbs. The scanning produced a color-coded image and the image analysis software 

(Laser Doppler Perfusion Measure, V3.08, Moor Instruments, UK) was used to calculate the 

limb mean flux units, which represents a quantitative analysis of tissue perfusion on a scale of 

0 to 1000. Pixels in the acquired image reflected the blood flow value, referred to as a perfusion 

unit (flux unit). To account for variations in ambient light, temperature, and other conditions, 

perfusion units were presented as the ratio of ischaemic (left) to non-ischaemic (right) 

measurements in the same mouse (flux ratio). 

2.3.1 LDI repeatability  

The repeatability of LDI image measurements were assessed using 12 ApoE-/- mice aged 12 

weeks without HLI. LDI imaging was carried out as described above. Hind limbs were selected 

manually as the region of interest for LDI image analysis and the ratio of left to right mean flux 

values was obtained for each mouse. Measurements were carried out independently by two 

investigators to determine inter-observer repeatability. Intra-observer repeatability was 

performed by one investigator who carried out 3 measurements on the same image to determine 

intra-observer repeatability. Acceptable repeatability measures were suggested for the inter-

observer repeatability of LDI measurement (coefficient of variance=4.49%) and the intra-

observer repeatability of LDI measurement (coefficient of variation=4.17%) (shown in the 

tables below).    

Table C2.1. Inter-observer repeatability results of LDI measurements 

Mouse 
ID Observer 1              Observer 2    Mean 

          Standard     
          deviation 

1 0.81  0.78  
               

0.79 0.016  
2 1.52  1.46  1.49             0.04  
3 1.05  0.97  1.01 0.05  
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4 1.24  1.33  1.29 0.06  
5 1.01  0.96  0.99 0.03  
6 0.82  0.86  0.84 0.02  
7 0.97  1.07                1.02 0.07  
8 0.94  0.95  0.94 0.006  
9 0.94  0.91  0.92 0.02  

10 0.89                     0.92  0.90 0.01  
11 0.97  0.97  0.97 0.003  
12 0.92  1.17  1.05 0.18  

        
   Mean  1.023032 0.04603  
   CoV %  4.49936   
   ICC  0.942   
   95% CI  0.79;0.98   
   95% LOA  -20.75;15.85   

Abbreviations: CoV; coefficient of variation, ICC; inter-class coefficient of variation, CI; 
confidence interval, LOA; limits of agreement  

   

Table C2.2: Intra-observer repeatability results of LDI measurements 

Abbreviations: CoV; coefficient of variation, ICC; inter-class coefficient of variation, CI; 
confidence interval, LOA; limits of agreement 

Mouse 
ID     Reading 1  Reading2   

 
Reading 3           Mean 

Standard 
deviation 

1  0.78 
 

0.78  0.75 0.78 0.023 
 

2  1.46 
 

    1.54  1.40 1.48 0.064 
 

3  0.97 
 

0.96  0.95 0.98 0.045 
 

4  1.33 
 

1.24  1.24 1.26 0.046 
 

5  0.96 
 

1.03  1.06 1.02 0.041 
 

6  0.86 
 

0.82  0.84 0.83 0.020 
 

7  1.07 
 

0.94  0.95 0.98 0.062 
 

8  0.95 
 

0.91  0.92 0.93 0.016 
 

9  0.91 
 

0.86  0.85 0.89 0.040 
 

10  0.92 
 

0.92  0.92 0.91 0.012 
 

11  0.97 
 

0.93  0.94 0.95 0.020 
 

12  1.17 
 

1.13  1.07 1.07 0.111 
 

Mean         1.01       0.042 

  CoV % 4.17  
ICC  0.987  

  
                      
95% CI  0.965;0.996  

  
                    
95% LOA  -0.09;0.14  
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2.4 Treadmill exercise performance test 

Mice were fasted for 2 hours prior to being placed on the treadmill. The mice were acclimatised 

to the treadmill (Columbus Exeter 3/6, Columbus instruments; Columbus, OH) before 

experiments commenced (prior to baseline measurements). This was done over 3 consecutive 

days by placing them on the treadmill for 15 minutes each day at a speed of 10m/minute. If the 

mice tried to rest during the acclimatisation period they were gently pushed onto the treadmill 

belt. The treadmill outcome assessments were carried out by placing mice on the treadmill at 

an initial speed of 10m/min for 5 min to warm up. Speed was maintained at 10m/min and shock 

grids of 3Hz was kept on until the mouse exhausted. Exhaustion of the mouse was defined if 

the mouse returns to the shock grid 10 times despite a 3Hz electrical stimulus to encourage 

walking on the belt and the treadmill software recorded the total distance walked by a mouse 

until exhaustion. Treadmill testing was carried out at time-points stated in specific chapters. 

 
2.5 Observational assessment of limb function and ischemia 
 
Assessment of limb function and gross limb ischemia were performed according to the 

descriptors used in previous studies (He, Luo et al. 2006, Westvik, Fitzgerald et al. 2009).  

Tarlov functional scoring is shown in table C2.3 and ischaemia score and representative figures 

of descriptors are shown in table C2.4 and figure C2.2. 

 

Table C2.3 Descriptors of Tarlov functional scoring  
 

Score Description 
0 No movement 
1 Barely perceptible movement, no weight bearing 
2 Frequent and vigorous movement, no weight bearing 
3 Supports weight, may take 1 or 2 steps 
4 Walks with only mild deficit 
5 Normal but slow walking 
6 Full and fast walking 
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Figure C2.2. Descriptors for scoring the appearance of the ischaemic versus non-ischaemic 
contralateral limb.  
 
 
 

Table C2.4 Descriptors of ischemia scoring  
 

Score Description 
0 Auto-amputation of leg 
1 Leg necrosis 
2 Foot necrosis 
3 Two or more toe discoloration 
4 One toe discoloration 
5 Two or more nail discolorations 
6 One nail discoloration 
7 No necrosis 

 
 
 

2.6 Euthanasia and tissue collection 

Mice were euthanised by carbon dioxide asphyxiation at the experimental endpoint. Blood 

samples were collected from the right ventricles by cardiac puncture with a 1ml syringe fitted 

to a 20-22G needle. Samples were transferred into heparin coated tubes and placed on ice.  

Blood samples were centrifuged for 10 min at 5000g and 5 minutes and 2000g for 10 minutes 

at 4 °C to separate platelet poor plasma. The separated plasma samples were aliquoted into 1.5 

ml microfuge tubes, flash frozen in liquid nitrogen and stored at -80 °C.  

Gastrocnemius and gracialis muscles of ischaemic and non-ischaemic limbs of mice were 

harvested. A portion of each muscle was stored in optimum cutting temperature compound 

(Tissue-Tek, Australia), flash frozen in liquid nitrogen and stored at -80° C. A portion of the 
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gastrocnemius muscle and gracialis muscle was stored in RNA later and placed on ice and 

stored at -20 °C. 

 

2.7 Statistical analysis  
 

Graphpad Prism V6.0 (GraphPad Software, San Diego, CA) and R studio software programs 

were used to analyse data. Graphpad was used to construct graphs. Sample sizes for each study 

were estimated as described in the methods of each chapter using G*power software. Data were 

tested for normality using D’Agostino-Pearson normality test. Data with normal distribution 

were expressed as mean ± standard error of mean (SEM) and analysed using parametric tests. 

Non-normally distributed data were expressed as median and interquartile ranges (IQR) and 

analysed using non-parametric tests. Linear mixed effects (LME) model analysis or 2-way 

repeated measures ANOVA were used to compare LDI data between groups. For LME 

analyses variation between individual mice were treated as random effects. LDI data and time 

were treated as fixed effects. Model fit was assessed by examination of the spread of 

standardised residuals and qq-normal plots. Where necessary data was log transformed or 

square root transformed to fit model assumptions. Interaction between time and groups were 

assessed by LME. Comparison of clinical scores were performed by 2-way repeated measures 

ANOVA. LME model analysis was used to compare treadmill data between groups. For LME 

analyses variation between individual mice were treated as random effects. Treadmill data and 

time were treated as fixed effects. Model fit was assessed by examination of the spread of 

standardised residuals and qq-normal plots. Where necessary data was log transformed or 

square root transformed to fit model assumptions. Interaction between time and groups were 

assessed by LME.  In all cases a p value of <0.05 was considered to be statistically significant.
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Chapter 3 
Development of a new 

experimental mouse model of 
lower limb ischaemia
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3.1 Introduction 

PAD is an atherosclerotic disease of the lower limb arteries which results in impaired blood 

supply to the lower limbs (Golledge 1997, Norman, Eikelboom et al. 2004, Shu and Santulli 

2018). Patients with PAD experience debilitating lower limb symptoms including excruciating 

leg pain during walking (IC), rest pain, ischaemic ulceration and gangrene of the limb (CLI) 

which severely limit their physical activity and increase the risk of amputation (McDermott, 

Greenland et al. 2001, Morris, Rodriguez et al. 2014).  

Current treatments aimed at improving limb haemodynamics, improving walking performance 

and preventing mobility loss in PAD patients include surgical revascularisation, supervised 

exercise and cilostozol (Thukkani and Kinlay 2015, Meneses, Ritti-Dias et al. 2017, Kithcart 

and Beckman 2018, Morcos, Louka et al. 2018). These treatments are associated with 

significant limitations and a growing number of patients are not suitable for current PAD 

treatments (Lawall, Bramlage et al. 2011). Endovascular or open surgical revascularisation are 

associated with serious risk of complications and poor long-term effectiveness (Piazza, 

Squizzato et al. 2015, Rosenfield, Jaff et al. 2015, Tepe, Laird et al. 2015, Wiseman, Fernandes-

Taylor et al. 2017). Supervised exercise treatment may not be feasible with the presence of co-

morbidities such as old age and are not widely available, possibly because of limited evidence 

on long‐term effects (Regensteiner 2004, Morris, Rodriguez et al. 2014). Cilostozol is the only 

drug currently approved for treating limb symptoms of PAD, however it may be associated 

with adverse side effects and cilostozol is not publicly funded in many countries including 

Australia as the benefit was deemed to be too modest (Bedenis, Stewart et al. 2014, Golledge, 

Moxon et al. 2018). 

 

Numerous new molecular and cellular therapies have been tested for patients unlikely to benefit 

from current treatment options. However, treatments tested to be effective in pre-clinical 

studies to promote revascularisation, restore function and prevent amputation have not 

successfully translated in clinical trials (Lederman, Mendelsohn et al. 2002, Rajagopalan, 

Mohler et al. 2003, Olea, Vera Janavel et al. 2009, Belch, Hiatt et al. 2011, Annex 2013, 

Dragneva, Korpisalo et al. 2013, Lotfi, Patel et al. 2013, Krishna, Moxon et al. 2015, Mohamed 

Omer, Krishna et al. 2016, McDermott, Ferrucci et al. 2017). Key reasons include the inability 

of currently used pre-clinical animal models and outcome measures to successfully predict 

clinical effectiveness (Dragneva, Korpisalo et al. 2013, Krishna, Omer et al. 2016, Mohamed 

Omer, Krishna et al. 2016, Rigato, Monami et al. 2017).  
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A major disadvantage of currently used pre-clinical animal models to simulate PAD is the rapid 

natural recovery of blood supply to ischaemic tissues which occur after HLI induction 

(Aranguren, Verfaillie et al. 2009, Lotfi, Patel et al. 2013, Mohamed Omer, Krishna et al. 

2016). Interventions are assessed for augmenting the speed of natural recovery of blood supply 

rather than improving ischaemia from a state of ongoing HLI (Mohamed Omer, Krishna et al. 

2016). The most commonly used mouse model of HLI is developed through the acute ligation 

and excision of the FA (Dragneva, Korpisalo et al. 2013, Krishna, Omer et al. 2016). This 

results in sudden changes in fluid shear stress (FSS) within collateral arteries to alter gene 

expression patterns through shear responsive elements subsequently promoting arteriogenesis 

and angiogenesis to restore blood supply to the ischaemic tissues (Topper and Gimbrone Jr 

1999, Garcia-Cardena, Comander et al. 2001, Tang, Chang et al. 2005). Typical patient 

presentation of PAD involves ongoing state of ischemia arising from chronic ischaemic insult 

to the limb in the presence of co-morbidities such as old age and atherosclerosis (Dragneva, 

Korpisalo et al. 2013, Krishna, Omer et al. 2016, Mohamed Omer, Krishna et al. 2016). 

Ameroid constrictors have been used to develop gradual onset of ischaemia in animal models 

of HLI (Baffour, Garb et al. 2000, Tang, Chang et al. 2005, Yang, Tang et al. 2008). However, 

ischaemia achieved within the model of ameroids alone was significantly less compared to 

ischaemia achieved through a ligation and excision of the FA (Tang, Chang et al. 2005). This 

suggests that ameroid constriction alone may be inadequate to overcome efficient collateral 

compensation of blood supply. In order develop the onset of severe ischaemia, excising the FA 

may limit blood supply through collaterals arising from the FA after slow onset of mild 

ischaemia by the ameroids. 

PAD patients typically present with a history of acute exacerbation of chronic symptoms of leg 

pain on walking and have ongoing ischaemic symptoms (Bonaca, Gutierrez et al. 2016). In 

addition to the method of occlusion, risk factors of PAD such as aging and atherosclerosis are 

associated with diminished post-ischaemic recovery and are not commonly incorporated into 

pre-clinical models of HLI (Faber, Zhang et al. 2011, Dragneva, Korpisalo et al. 2013, Krishna, 

Moxon et al. 2015). Therefore, a clinically relevant mouse model of HLI is needed 

incorporating chronic occlusion and risk factors to better mimic the pathophysiology of 

occlusion and ongoing ischaemia.  
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Differences in outcome measures used in pre-clinical studies in relation to clinical trials may 

also be associated with poor translatability of pre-clinical findings. The American Heart 

Association/American College of Cardiology clinical practice guidelines for PAD recommend 

both treadmill exercise testing (Class I recommendation, Level of Evidence-B) and six-minute 

walk testing (Class IIb recommendation, Level of Evidence-B) for objective assessment of 

changes in walking performance in patients with PAD (Hirsch, Haskal et al. 2006, McDermott 

2015). Treadmill exercise testing is the most commonly used objective outcome measure in 

randomised clinical trials studying interventions to improve walking performance in people 

with PAD. The six-minute walk test has been well validated in patients with PAD (McDermott, 

Liu et al. 2013, McDermott, Guralnik et al. 2014, McDermott 2015). Functional tests mirroring 

clinical trial outcome measures of limb function are lacking in pre-clinical studies and objective 

functional tests are very rarely performed to assess walking impairment in pre-clinical 

experiments (Zhong, Eliceiri et al. 2003, Baltgalvis, White et al. 2014). Treadmill endurance 

exercise tests have been used in a few pre-clinical studies (Zhong, Eliceiri et al. 2003, 

Baltgalvis, White et al. 2014, Marcinko, Bujak et al. 2015, Deng, Yang et al. 2016, Krishna, 

Omer et al. 2016). It has been suggested that open field tests in mice mirror the six-minute walk 

test in patients (Tatem, Quinn et al. 2014). It would be appropriate to have similar objective 

outcome measures to better extrapolate pre-clinical findings of HLI before testing potential 

interventions in patients. The treadmill test and open field test need to be explored for 

examining functional impairment during HLI.    

The response to exercise training in current pre-clinical HLI models differs from the response 

in PAD patients. Management of patients by supervised treadmill exercise and home-based 

exercise that incorporate behavioural change techniques significantly improve pain-free and 

maximal walking distance in people with PAD (McDermott, Ades et al. 2009, Gardner, Parker 

et al. 2011, Hamburg and Balady 2011, Fakhry, van de Luijtgaarden et al. 2012, McDermott, 

Liu et al. 2013, Gardner, Parker et al. 2014, McDermott, Ferrucci et al. 2017, McDermott 

2018). Studies in PAD patients, however indicate that the functional benefits of exercise are 

not a result of increased gross blood supply to ischaemic limbs (Stewart , Hiatt  et al. 2002, 

Parmenter, Raymond et al. 2010, Meneses, Ritti-Dias et al. 2017). In experimental models of 

acute HLI, exercise training has been shown to augment recovery of blood supply to ischaemic 

muscles (Yang, Dinn et al. 1990, Yang, Prior et al. 2008, Cheng, Kuzuya et al. 2010, 

Rokutanda, Izumiya et al. 2011). This suggests that findings of functional changes observed in 

current HLI models may not be reliable for translation. Models of HLI require validation of 
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response to established interventions in PAD patients such as exercise training to be reliable in 

predicting clinical outcomes.   

The hypotheses in this chapter were:  

Primary: A novel two-stage induction of HLI through slow onset of mild ischaemia induction 

by ameroids on the FA followed by induction of severe ischaemia by excision of the FA would 

produce more severe ongoing HLI over the experimental period of 4 weeks.  

Secondary:  

1) Functional impairment as a result of ongoing ischaemia will be greater in mice with 

two-stage HLI than mice with acute HLI.  

2) Exercise training will improve treadmill exercise performance in mice with two-stage 

HLI independent of changes to limb blood supply.  

 

The aims in this chapter were: 

Primary: To develop a new mouse model of ongoing severe HLI through a slow onset two-
stage method of HLI induction.  

Secondary: 

1) To examine functional impairment in the two-stage model and acute HLI model by 

treadmill test and open field test.  

2)  To examine the effect of exercise training on functional capacity and limb blood supply 

in the two-stage model of HLI. 
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3.2 Methods 

3.2.1 Ethics approvals and mouse husbandry 

Institutional ethics was obtained for the studies presented in this Chapter (Appendix) and mice 

were maintained in individually housed Techniplast cages under a 12:12 hr light-dark cycle 

(relative humidity: 55-60%; temperature:22±1°C) and provided with standard rodent chow and 

water ad libitum throughout the experiment period as described in Chapter 2.1. 

 

3.2.2 Study design 1: To establish a new mouse model of two-stage HLI  

Four groups of male ApoE-/- mice aged 12 months were used in this study as follows, Group 

1= acute HLI model (n=10), Group 2= acute sham (n=8), Group 3= two-stage HLI model 

(n=10) and Group 4= two-stage HLI sham (n=8). Respective surgeries were performed for each 

group as described below and blood supply was assessed by LDI as the primary outcome at 

different time-points as illustrated in Fig M3.0. 

3.2.2a Sample size 

The sample size was estimated for study design 1 using the primary outcome measure of LDI. 

The expected LDI outcome for the two-stage HLI model was calculated using LDI data from 

a previous study which used the acute PAD model (Yang, Tang et al. 2008). In that study, 14 

mice were imaged 28 days after acute ischaemia induction and mean (SD) flux ratio was 0.76 

(0.15). It was assumed that the expected LDI outcome in the two-stage model group will be 

30% less than the acute HLI group over 4 weeks after ischaemia induction. This is because a 

previous study has suggested blood supply decrease by 30% leads to functional impairment 

(Brenes, Jadlowiec et al. 2012). Based on these assumptions and aiming to achieve an 80% 

power with an alpha of 0.05 it was estimated that 9 mice per HLI group were needed.  

3.2.2b HLI induction 

3.2.2b1: Induction of two-stage HLI model  

Unilateral two-stage HLI was induced in the left hindlimbs of male ApoE-/- mice (n=10) mice 

by the 2 step method as described in Chapter 2. The respective shams received similar surgeries 

in which the FA was dissected free but not occluded. The acute HLI was induced in the left 

hindlimbs of mice as described below.  

3.2.2b2: Induction of acute HLI 
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Male ApoE-/- mice (n=10) were subject to the induction of ischaemia through the acute HLI 

method. Mice were anaesthetised with isoflurane and maintained under isoflurane anaesthesia 

at a flow rate of 1L/s during the surgery. The left FA was exposed through an approximately 

0.5–1 cm vertical skin incision adjacent to the inguinal ligament. The femoral artery was 

separated from the femoral nerve and vein and ligated with 6-0 silk sutures (Ethicon, Johnson 

and Johnson, Melbourne Australia) distal to the inguinal ligament and proximal to the popliteal 

bifurcation site. The FA between the ligatures was excised, the surgical site was closed using 

4-0 vicryl sutures (Ethicon) and disinfected with Betadine (BETADINE, Australia). A similar 

surgery without manipulation was performed on sham controls in which the FA was dissected 

free but not ligated. Following the surgery, mice were removed from isoflurane anaesthesia 

and monitored carefully until conscious and subsequently returned to cages. 

3.2.2c: Laser Doppler Imaging:  

LDI was performed as described in Chapter 2 at several time-points (Figure M3.1) within the 

experimental period at baseline and weekly after ischaemia induction. 

3.2.2d Observational functional scoring and assessment of ischaemia 

Observational assessment of limb function (Tarlov score) and ischaemia (Ischaemia score) 

were carried out at the same time-points as LDI assessments. Scoring was performed as detailed 

in Chapter 2.  
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Figure M3.1: Study design to examine the effect of two-stage HLI induction on limb blood 
supply. Male ApoE-/- mice were subjected to two-stage HLI or acute HLI with their respective 
shams. LDI was performed at baseline and 1 week after ameroid placement in the two-stage 
HLI and respective sham groups. Acute HLI and the respective sham group were monitored 
with LDI at baseline and all groups were monitored immediately after ischaemia induction and 
at weekly intervals over 4 weeks after ischaemia induction.  

 

3.2.3 Study design 2: To assess limb function in HLI models by treadmill and open field 

tests 

Evaluation of the treadmill test and open field test for the assessment of functional impairment 

of hindlimbs were performed on male ApoE-/- mice (n=23) aged 12 months. Mice were 

separated into four groups; the two-stage HLI (n=6), acute (n=6), acute sham (n=5) and two-

stage sham (n-=6). HLI was induced in respective groups as in Study 1.   
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3.2.3a Treadmill test 

The treadmill test was performed on the mice as described in Chapter 2. The treadmill tests 

were performed at several time-points within the experiment as shown in Figures M3.2 and 

M3.3. 

3.2.3b Open field test 

Mice were acclimatised to a sound-attenuated testing room 2 hours prior to the test. The mice 

were fasted during the acclimatisation period with ad libitum access to water under normal 

lighting. The open field (OF) was a square box (42 cm×42 cm×42 cm) made of opaque plastic. 

For assessment, each mouse was placed in the centre of the arena and video recorded using a 

camera (Logitech) supported with acquisition software (Capture Star Ver. 1; CleverSys Inc) 

for 20 minutes. At the end of each test, the surfaces of the OF box were cleaned with 70% 

ethanol and dried. This was in order to prevent behavioural influence in the subsequent mouse, 

which may result from cues (such as body odour, urine, faeces, hair and sweat) from the 

previously tested mouse. All experimental procedures were conducted during the light phase 

of the cycle, between 8:00 a.m. and 3:00 p.m. Behavioural test room lighting, temperature, and 

noise levels were kept consistent for all subjects. The acquired recordings were analysed by 

the TopScan Lite (High throughput version 2.0; CleverSys Inc).  
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Figure M3.2: Study design to assess limb function in HLI models by the treadmill test 
and open field test. Treadmill tests were performed at baseline, 2 days after ischaemia 
induction and at days 23 and 37 of the experimental period in all groups. The open field test 
was conducted on day 38 of the experimental period.  

 

3.2.4 Study design 3: To examine the effect of exercise training on the two-stage model of 

HLI 

Male ApoE-/- mice aged 6 months (n=30) were used for this study. HLI was established via the 

two-stage HLI induction method described in Chapter 2.2. After 5 days from HLI induction, 

mice were separated to two groups, one group of mice (n=15) received exercise training on a 

running wheel and the control group had no access to the running wheel.  Mice in the exercise 

group received 180 to 200m (between 30-45 minutes of wheel access) of exercise each day in 

a running wheel (8 Station Home Cage Running Wheel System, Columbus Instruments) over 

4 weeks. Each mouse was placed on a running wheel within a small chamber which prevented 

the mouse from escaping the running wheel during the exercise period and left to run on the 

wheel. The wheel counts were monitored on the running wheel software until they reached 600 

counts and the mice was removed from the wheel and returned to its cage. The control mice 
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did not receive access to the running wheel at any point of the experiment. Primary outcome 

measures were LDI to assess blood supply and treadmill exercise test to assess function. These 

were performed as described in Chapter 2.3 and Chapter 2.4, respectively within the 

experimental period (Fig M3.3). During the assessment and analysis of the outcome measures 

of LDI and treadmill performance, the group to which each mouse belonged was blinded to the 

investigator. This was done by allocating a random label against each cage and keeping a strict 

record of the allocation during each assessment time-point. After the assessment mice were 

allocated their original number. 

 

 

3.2.5 Statistical analysis 

Graphpad Prism V6.0 (GraphPad Software, San Diego, CA) and R studio software programs 

were used to analyse data. Graphpad was used to construct graphs. Data were tested for 

normality using D’Agostino-Pearson normality test. Data with normal distribution were 

expressed as mean ± standard error of mean (SEM) and analysed using parametric tests. Non-

normally distributed data were expressed as median, interquartile ranges (IQR) and analysed 

using non-parametric tests. In study 1 and study 2, comparisons between groups for the LDI 

data, modified ischaemia score data, Tarlov score data and treadmill walking distance data 

were carried out using 2-way ANOVA analysis. In study 2, data were compared between 

groups with Mann Whitney U test for the endpoint treadmill walking distance data and open 

field test walking distance data. In study 3, LME was used to compare LDI data between 

groups.  For LME analyses variation between individual mice were treated as random effects. 

LDI data and time were treated as fixed effects. Model fit was assessed by examination of the 

spread of standardised residuals and qq-normal plots. Interaction between time and groups were 

assessed by LME. LME model analysis was also used to compare treadmill data between 

groups. For LME analyses variation between individual mice were treated as random effects. 

Treadmill data and time were treated as fixed effects. Model fit was assessed by examination 

of the spread of standardised residuals and qq-normal plots. Data were square root transformed 

to fit model assumptions. Interaction between time and groups were assessed by LME. In all 

cases a p value of <0.05 was considered to be statistically significant. 
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Figure M3.3: Study design to examine the effect of exercise training in the two-stage model of HLI. Mice subject to two-stage HLI were 
randomised and started on exercise training on a running wheel 5 days after ischaemia induction. LDI was performed at baseline and days 7, 16, 
21, 28, 35,42 and 49. The treadmill tests were performed at baseline, days 16 and 35 and 48. 
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3.3 Results 

3.3.1: Mice with two-stage HLI showed more severe and prolonged ischemia than mice with 

acute HLI induction  

Blood supply in the hindlimbs of mice were similar among all experimental groups before surgery 

(Figure R3,1). Ameroid constriction for 2 weeks in the two-stage HLI group before excising the FA 

did not significantly decrease blood supply to the limbs compared to blood supply before placing 

ameroids (p=0.481; Figure R3.1C). Immediately after excision of the FA in the 2 stage HLI group, the 

blood supply was significantly lower (p<0.001) compared to blood supply before excision and after 2 

weeks of ameroid constriction producing a severe state of ischaemia (Figure R3.1C).  

The excision of the FA in the acute HLI group resulted in a comparable level of HLI to the 2 stage HLI 

group immediately after HLI induction (Figure R3.1). In the 4 weeks after surgery, HLI was 

significantly more severe (p=0.036) in the two-stage HLI model compared to the acute HLI model 

(Figure R3.1B).   

The respective shams of each group, the acute HLI shams and the two-stage HLI shams, did not show 

differences in limb blood supply between baseline () and experiment endpoint (Figure R3.1B). Limb 

ischaemia was significantly greater in the HLI groups compared to their respective sham groups 

throughout the experiment (p<0.001; Figure R3.1B).  

Gross examination of the severity of tissue damage in the ischaemic limb assessed by ischaemia 

scoring showed at the start of the experiment ischaemia scores were similar in all mice. The ischaemia 

scoring system showed that the two-stage HLI group had significantly greater limb ischaemia than 

mice in the acute HLI group (p=0.012=, Figure R3.2A) after ischaemia induction until the 

experimental endpoint.  

3.3.2: Functional impairment assessed by scoring was greater in the two-stage HLI mice than 

mice with the acute HLI  

Hindlimb function assessed by Tarlov scoring showed that at the start of the experiment all mice had 

no functional impairment (score=7). After ischaemia induction by FA excision, two-stage HLI mice 

had significantly greater functional impairment than mice in the acute HLI group (p<0.001, Figure 

R3.2B).   
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Figure R3.1: Comparison of limb blood supply in the two mouse models of HLI and their 
respective shams. A: Representative LDI images of the different groups monitored at several 
timepoints. B: LDI perfusion measurements between the acute and two-stage HLI models and their 
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respective sham controls. All data expressed as mean±SEM. Comparisons between groups were 
performed by 2-way ANOVA and significant differences p<0.05 indicated by *, p<0.001 ***. 
 
 
 
 
 
 

 
 
Figure 3.1C. Changes in limb blood supply during the two-stage HLI procedure in mice (n=10). 
LDI measurements at baseline (without ameroids), 2 weeks after ameroid placement and immediately 
after excision. Data expressed as mean and SEM. Comparisons of LDI ratios between time-points were 
performed by Mann Whitney U test. P<0.05 indicated by * and ns indicates not significant. 
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Figure R3.2: Comparison of the severity of limb ischemia and function in the two mouse models using scoring systems. A: Observational 
assessment of ischaemia in the acute and two-stage HLI models. B: Observational assessment of function in the acute and two-stage HLI models. 
All data expressed as mean±SEM. Comparisons between groups were performed by 2-way ANOVA and significant difference (p<0.05) indicated 
by *. 
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3.3.3 Mice with two-stage HLI travelled less distance than mice with acute HLI on the treadmill 

exercise test 

At baseline, similar treadmill distances were travelled by the acute HLI group and the two-stage HLI 

group (Figure 3.3A). After 4 weeks from ischaemia induction, the two-stage HLI group had 

significantly greater impairment in treadmill distance travelled than the acute HLI group (p=0.028, 

Figure R3.3A). Comparable treadmill distances were travelled by the acute HLI sham and the two-

stage HLI sham groups at baseline and 4 weeks after ischaemia induction (Figure R3.3A).   

Mice with acute HLI travelled similar treadmill distance to respective shams on the treadmill test 4 

weeks after ischaemia induction (p=0.818; Figure R3.3B). The two-stage HLI group travelled less 

distance in the treadmill exercise test than their respective shams, however the difference was not 

statistically significant (p=0.052; Figure R3.3B). Mice with two-stage HLI travelled significantly less 

distance on the treadmill test than mice with acute HLI 4 weeks after HLI induction (p=0.009; Figure 

3.3B).  

 

3.3.4: Mice with two-stage HLI had similar physical activity impairment to mice with acute HLI 

as assessed by the open field test 

Significantly less (p=0.004) total distance was travelled in the OF arena by mice with two-stage HLI 

compared to their respective shams (Figures R3.3C). Mice with two-stage HLI travelled less than the 

acute HLI group within the arena, however the difference was not statistically significant (p=0.156; 

Figure R3.3C). 

 

 

3.3.5: Running wheel exercise training had no effect on limb perfusion in mice with two-stage 

HLI     

Limb blood supply in mice with two-stage HLI receiving running wheel exercise training was 

comparable to control mice with two-stage HLI without access to running wheel exercise throughout 

the experimental period (p=0.700; Figure R3.4).    

 

3.3.6: Running wheel exercise training increased treadmill walking distance in mice with two-

stage HLI  

Distance travelled on the treadmill exercise performance test was significantly greater in mice with 

two-stage HLI receiving running wheel exercise training than control mice with two-stage HLI without 

access to running wheel exercise (p=0.003; Figure R3.5).
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Figure R3.3. Treadmill and open field assessment of limb function in HLI models. A: Treadmill walking distance in the acute HLI and two-stage 
HLI groups and their respective sham controls. B: Total distance travelled in the open field test in the acute HLI and two-stage HLI groups and 
their respective sham controls. Data expressed as mean±SEM. Data compared between groups by two-way ANOVA (A) or Mann Whitney U test 
(B). P value of less than 0.05 considered significant and indicated as *. 
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Figure R3.4: The effect of running wheel exercise training on limb blood supply in the 
two-stage HLI model. A: Representative laser Doppler images at ischaemia induction and 4 
weeks after exercise intervention. B: Laser Doppler imaging limb perfusion ratios in mice 
receiving exercise and control. Data expressed as mean ±SEM. LME analysis was performed 
to compare differences between groups and p<0.05 was considered significant. 
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Figure R3.5 The effect of running wheel exercise training on treadmill walking distance 
in the two-stage model of HLI.  Treadmill walking distance in mice receiving exercise 
intervention and control. Data expressed as mean ±SEM. LME analysis was performed to 
compare data between groups through the interaction of time and groups over the experimental 
period, p<0.05 was considered significant indicated by * . 
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3.4 Discussion  

The main findings of the studies in this chapter were:  

1) The new mouse model of two-stage HLI demonstrated more severe and prolonged ischemia 

than the acute model of HLI. 

2) The two-stage HLI model showed greater ambulatory impairment than the acute HLI model 

evidenced by the functional scoring assessment and the treadmill test.  

3) Exercise intervention after ischaemia induction in the two-stage HLI model promoted 

treadmill performance independent of a change in limb blood supply.  

Previous studies have suggested that ameroid constrictors gradually narrow the FA within 2 

weeks resulting in the development of mild ischemia (Tang, Chang et al. 2005, Yang, Tang et 

al. 2008). Due to the mild degree of ischaemia achieved through ameroids, in the present study 

a two-stage method was employed combining slow FA constriction with ameroids for 2 weeks 

followed by excision of the FA. The slow ameroid constriction was used to minimise shear 

stress which would otherwise result in rapid recovery of blood flow. This was followed by the 

excision of the FA to mitigate blood supply through collaterals arising from FA in order to 

achieve severe ongoing ischaemia. In the two-stage model developed in the current study, 

ameroid constriction alone for 2 weeks did not significantly decrease perfusion compared to 

blood supply in the hindlimb before surgery. However, the second stage of the FA excision 

resulted in severe ischaemia to the hind limbs compared to ameroids alone. The results showed 

that this two-stage method of establishing ischaemia caused ongoing severe ischaemia 

compared to the currently used FA ligation and excision model.  Previous studies report that 

the ligation and excision of the FA in the acute HLI model leads to increased fluid shear stress 

within the limb collateral arteries resulting in altered gene expression patterns through shear 

stress responsive elements which promote arteriogenesis and angiogenesis (Topper and 

Gimbrone 1999, Garcia-Cardena, Comander et al. 2001, Tang, Chang et al. 2005). 

Subsequently blood flow is restored rapidly within acute HLI models. Simulating the chronic 

onset of ischaemia using ameroid constrictors reduces shear stress related promotion of blood 

flow recovery (Tang, Chang et al. 2005, Yang, Tang et al. 2008). In comparison to the acute 

model of HLI, the two-stage model of HLI showed minor blood flow recovery immediately 

following ischaemia induction and after 1 week the severity of HLI persisted. In line with the 

finding of severe and prolonged ischaemia assessed by LDI in the new mouse model, clinical 

signs manifested as a result of ischaemia induction was greater in the two-stage HLI model as 
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assessed by clinical scoring. Ischaemia induction in the two-stage HLI model group resulted in 

inflammation and toe necrosis which persisted until the experiment endpoint. Together with 

the main technique of ischaemia induction, the new experimental model which was developed 

incorporated additional characteristics of PAD patients including atherosclerosis and old age. 

Atherosclerosis is the leading cause of PAD and atherosclerosis simulating mouse models such 

as ApoE-/- mice and low-density lipoprotein receptor knockout mice have been rarely employed 

in previous studies in the acute HLI model (Dragneva, Korpisalo et al. 2013, Krishna, Omer et 

al. 2016, Mohamed Omer, Krishna et al. 2016). ApoE-/- mice develop significant atherosclerotic 

lesions spontaneously and exhibit delayed recovery from ischaemia (Kang, Albadawi et al. 

2008, Lotfi, Patel et al. 2013, Krishna, Omer et al. 2016, Mohamed Omer, Krishna et al. 2016).   

 

Greater functional impairment was observed in the two-stage HLI model than the acute HLI 

model through the clinical scoring method. It is not common for pre-clinical studies to 

quantitatively assess functional impairment in animal models of HLI and functional 

assessments mirroring the clinical trial assessments are lacking in pre-clinical studies of HLI. 

The treadmill test and six-minute walk test are used in clinical trials to assess walking 

impairment in PAD patients. A few studies have employed treadmill tests for assessing 

function in mouse models of HLI (Zhong, Eliceiri et al. 2003, Baltgalvis, White et al. 2014, 

Marcinko, Bujak et al. 2015, Deng, Yang et al. 2016, Krishna, Omer et al. 2016). In the current 

study assessment of treadmill performance demonstrated the two-stage model of HLI had 

greater treadmill walking impairment than the acute model of HLI. This suggests that the 

treadmill test is a potential method of assessment for functional impairment and could be used 

to test interventions aimed at improving function in mouse models of HLI. The OF has been 

suggested to mirror the six-minute walk test in clinical trials. Exploring functional impairment 

in the two-stage HLI model with the open field test did not identify significant impairment in 

the two-stage HLI model compared to the acute HLI model. The six-minute walk test in patients 

is influenced by musculoskeletal, volitional factors and cardiovascular capacity (Lancaster 

2018). In animal models of neuromuscular disease, the OF test is widely used for assessing 

locomotive impairment (Ijomone, Olaibi et al. 2014) (Tatem, Quinn et al. 2014). The test is 

behavioural and can be quite variable as it is influenced by a multitude of external factors. For 

example, this behaviour can be influenced by exploratory drive, anxiety, circadian rhythm, 

environmental factors, genetic background, in addition to motor output (Prut and Belzung 

2003). As a result, it can be difficult to distinguish if changes in locomotive or behavioural 

activity levels are related to changes in muscle function (Tatem, Quinn et al. 2014). The finding 
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in the current study does not support the use of the OF test to distinguish functional impairment 

in mouse models of HLI.  

 

The demonstration of functional impairment and similar responses to known interventions in 

humans are important characteristics of an ideal mouse model for PAD (Krishna, Omer et al. 2016). 

Patients with PAD have markedly reduced health-related quality of life largely related to 

impaired walking ability (Hamburg and Balady 2011, Brostow, Petrik et al. 2017). A 

considerable body of evidence supports the clinical benefits of a supervised exercise program 

in improving pain free walking performance, physical capacity and quality of life (Brass 2013, 

Hiatt, Armstrong et al. 2015). The Trans-Atlantic Inter-Society Consensus Document on 

Management of Peripheral Arterial Disease (TASC II) have declared that the evidence 

supporting supervised exercise therapy in the treatment of claudication is sufficiently robust to 

merit a Level I recommendation (Norgren, Hiatt et al. , Brass 2013). The mechanisms 

associated with improvements in limb symptoms as a result of an exercise intervention are not 

clearly understood. The majority of studies in patients have shown little or no increase in blood 

flow assessed by ABPI following an exercise programme, even when significant improvements 

in walking ability have been reported (Stewart , Hiatt  et al. 2002). Studies have consistently 

shown a poor correlation between leg blood flow assessed by ABPI and walking ability 

(Parmenter, Raymond et al. 2010). As there is currently little evidence to support an increase 

in blood flow as a major factor in the increase in walking ability after training, other 

mechanisms may account for the improvements seen (Hiatt, Armstrong et al. 2015). In 

experimental models of acute HLI, exercise training augments blood supply to ischaemic 

muscles (Yang, Dinn et al. 1990, Yang, Prior et al. 2008, Cheng, Kuzuya et al. 2010, 

Rokutanda, Izumiya et al. 2011). In acute HLI, blood flow recovery to exercise in ischaemic 

tissues involves multiple complex processes. Angiogenesis and arteriogenesis are stimulated 

in ischaemic tissues in the acute HLI model by upregulated growth factor activity and increased 

NO bioavailability stimulating gains in collateral blood flow  (Hamburg and Balady 2011). In 

the present study, exercise training in the two-stage HLI model improved treadmill walking 

distance without improving limb blood supply. This is a finding similar to that described in 

PAD patients (Watson, Ellis et al. 2008, Parmenter, Raymond et al. 2010, Malgor, Alahdab et 

al. 2015). Therefore, validates the two-stage HLI model for assessing interventions for 

improving functional impairment. Exercise intervention in this study commenced 5 days after 

ischaemia induction. One of the major limitations of pre-clinical HLI studies currently is study 

design in which the administration of the interventions is usually started prior to HLI induction 



75 
 

(Takahashi, Shibata et al. 2015, Mohamed Omer, Krishna et al. 2016). This prophylactic 

approach does not reflect the intervention in patients who seek treatment after established 

ischaemia. To reflect this, in the current study exercise training was started after established 

ischaemia which was seen to be prolonged over 5 weeks after induction. 

 
Strengths of the studies reported in this chapter include the establishment of a new mouse 

model through two-stage induction of ischaemia with severe prolonged ischaemia and 

functional impairment; testing mice prone to atherosclerosis and mice with advanced age in 

the newly developed mouse model; the use of a clinically relevant treadmill test to assess 

functional impairment, the characterisation of the effect exercise training in the newly 

developed model by commencing exercise training after achieving ischaemia; and the finding 

that exercise promotes function unrelated to improvement in blood supply similar to patients’ 

response.   

 

The current study utilised older mice to better simulate the characteristics of PAD patients. A 

limitation in this study was that 12 month old mice were used in the development of the 2 stage 

model but 6 month old mice were used in examining the effect of an exercise intervention. 

However, all mice used were relatively older than typically used in experimental work . Future 

work examining different ages of mice could determine the effect of age on ischaemia in the 

two stage mouse model of HLI. Although this study used ApoE-/- mice prone to atherosclerosis 

a comparison was lacking with non-atherosclerotic C57.Bl6 to determine blood flow recovery 

in the two stage model of HLI. A future study examining this is suggested. The new two stage 

model attempts to mimic the slow onset of ischaemic in patients, however the ameroids occlude 

the artery within 2 weeks. In patients it may take numerous years for atherosclerotic occlusions 

to occlude the arteries resulting in symptoms. Therefore, new methods to mimic chronic 

occlusions need to be explored in future studies. This study also did not compare the new two 

stage model to a single stage ameroid model over the experimental period.  

It is also known, that other factors including diabetes and smoking affect blood flow recovery 

to limb ischaemia in patients, although an exhaustive examination of all of these risk factors 

was beyond the scope of the current study. In addition, it is known that angiogenic capability 

of some other mouse strains (e.g. BalbC) is lower than that of C57.Bl6 employed here. It is 

possible that the surgical procedures proposed in this study may be more effective when 

combining multiple co-morbidities in other strains, and future research investigating this is 
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warranted. Furthermore, future studies are needed to characterise the underlying cellular and 

molecular mechanisms related to severe prolonged ischaemia in the two-stage model and the 

characterisation of the cellular and molecular mechanisms leading to improved treadmill 

walking with exercise in the two-stage HLI model. 

Current animal models to assess treatments for PAD have many limitations (Dragneva, 

Korpisalo et al. 2013, Krishna, Omer et al. 2016, Mohamed Omer, Krishna et al. 2016). 

Although a single approach in animals cannot fully recapitulate the human condition, an 

experimental model which can recapitulate the salient features of the disease will aid in the 

relevant interpretation and translation to clinical insights of potential treatments. In this study, 

a new mouse model of slow onset severe HLI was developed.  

In conclusion, the two-stage HLI model achieves similar degree of hind limb ischaemia as the 

one stage model. The two stage model showed severe and prolonged ischaemia and ambulatory 

impairments compared to the one stage model of recovery from ischaemia and ambulatory 

impairment. Furthermore, the new two-stage HLI mouse model showed a clinically relevant 

response to exercise training in that exercise training improved treadmill walking distance 

independent to a change in limb blood supply assessed by LDI.  
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Chapter 4 
Characterisation of the 
effect of metformin on 

established experimental 
limb ischaemia 
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4.1 Introduction 

There is currently a lack of effective drugs for leg ischemia and no effective drug development 

pipeline (Gerhard-Herman, Gornik et al. 2016). Pharmacological interventions that have been 

successful in the acute HLI model have not proved to be effective in large clinical trials (Annex 

2013, Dragneva, Korpisalo et al. 2013, Lotfi, Patel et al. 2013, Krishna, Moxon et al. 2015, 

Mohamed Omer, Krishna et al. 2016). The inability to translate findings from previous pre-

clinical studies to patients could be due to the lack of relevant experimental limb ischaemia 

models and appropriate study design. Current HLI models do not simulate a more typical 

patient presentation of PAD, such as an ongoing state of ischemia arising from chronic 

ischaemic insult to the limb, old age and atherosclerosis (Dragneva, Korpisalo et al. 2013, 

Krishna, Omer et al. 2016, Mohamed Omer, Krishna et al. 2016). In contrast to human PAD, 

most previous pre-clinical trials are designed to assess potential interventions within model 

rodents in which ischaemia is not established (Takahashi, Shibata et al. 2015). This 

prophylactic approach does not represent the clinical situation where treatment usually occurs 

following the presentation and diagnosis of established chronic ischemia. In addition, many 

previous studies are not designed to include appropriate measures to limit potential observer 

bias such as blinding the investigators who are conducting outcome assessments, and lack of 

allocation randomisation (Mohamed Omer, Krishna et al. 2016).  

In Chapter 3 of this thesis, a new mouse model of persistent limb ischaemia was established 

and validated in order to better assess interventions. Repurposing drugs which may have 

angiogenic potential could provide a rapid approach for implementing successful interventions 

to manage limb ischaemia due to the benefits of approval status, established dose and safety 

profile and availability. The biguanide metformin is used to manage hyperglycaemia in type 2 

diabetes and has recently gained significant attention for being repurposed for several 

metabolic diseases (NIH 2018).  

Small uncontrolled clinical studies have suggested that metformin can improve blood supply 

in patients with PAD (Sirtori, Franceschini et al. 1984, Montanari, Bondioli et al. 1992). 

Suggested mechanisms for the proposed beneficial effects of metformin include promoting 

arteriogenesis, stimulating angiogenesis, improving microcirculatory function, limiting 

oxidative stress and favouring mitochondrial biogenesis (Hamburg and Balady 2011, Steven, 

Daiber et al. 2017). Metformin has been recently reported to improve hind limb blood supply 

within the acute HLI model by increasing AMPKα and e-NOS activity within ischaemic 
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muscles in order to promote angiogenesis (Takahashi, Shibata et al. 2015). Further data also 

suggest that metformin may attenuate oxidative stress by, for example, downregulating 

expression of thioredoxin interacting protein (TXNIP) which has been suggested to be a critical 

protein in promoting severe limb ischemia in diabetes (Chong, Chan et al. 2014, Zhang, Pang 

et al. 2015). Oxidative stress and mitochondrial biogenesis have been previously shown to be 

associated with muscle changes relevant for functional improvements resulting from limb 

ischaemia. 

 

4.1.1 Hypothesis and aims of study 

The specific hypothesis and aims of this Chapter were: 

4.1.1a Hypothesis 

Primary: Metformin would improve blood supply in the two-stage mouse model of limb 

ischaemia  

Secondary 

1) AMPKα activity and e-NOS activity would be increased in mice receiving metformin  

 

2) Oxidative stress marker TXNIP would be decreased and mitochondrial biogenesis 

marker PGC1α would be upregulated in mice receiving metformin  

 
 

Tertiary: The improvement in blood supply caused by metformin would improve treadmill 

walking distance after established ischaemia 

 

 

4.1.1b Aims 

The aims of this chapter were: 

Primary: To examine the effect of metformin administration on blood supply in the 

experimental model of ongoing limb ischaemia. 
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Secondary: To assess the effect of metformin on AMPKα activity, e-NOS activity and the 

differential protein and gene expressions of TXNIP and PGC1α in the experimental model of 

ongoing limb ischaemia. 

Tertiary: To examine the effect of metformin administration on treadmill exercise performance 

in the experimental model of ongoing limb ischaemia. 

 

4.2 Methods 

4.2.0 Ethics and mouse husbandry 

Institutional ethics was obtained for the studies presented in this Chapter (Appendix) and mice 

were maintained as described in Chapter 2.1. 

4.2.1 Study design, group allocation and protocol 

This was a placebo-controlled trial utilising the two-stage mouse model. Unilateral left HLI 

was induced in 31 male ApoE-/- mice (n=31) through the two-stage HLI induction method. Five 

days after HLI induction, mice commenced receiving metformin (n=16; 300mg/kg/day) or 

vehicle control (n=15; distilled water). The dose of metformin was chosen since it is estimated 

to equate to a daily dose of approximately 1500mg in humans which is the most common dose 

used (Christiansen, Ehrenstein et al. 2015).  The mouse equivalent dose was estimated by 

normalisation to the body surface area using the United States Food and Drug Administration 

recommended conversion factor of 12.3 (Rockville 2005). Previous studies have suggested that 

using this conversion factor, murine plasma levels of metformin are achieved which correlate 

well with ranges achieved within human plasma (Foretz, Guigas et al. 2014). Drug or vehicle 

control administration by oral gavage was commenced 5 days after completing ischemia 

induction (Figure M4.1), since a preliminary experiment demonstrated that the severity of HLI 

was stable at this stage. An independent research assistant (Ms Anne Kraueter) performed 

blinded administration of metformin or vehicle but played no further part in the study. Two 

separate vials of metformin or vehicle was freshly prepared by the main investigator before 

each administration and labelled in a way the person administering did not know what was 

administered or how many interventions were tested. Drug administration was continued for 4 

weeks and then mice were euthanised by CO2 asphyxiation and lower limb muscle tissue 

samples were harvested in OCT for Western blot assays or RNA later for qPCR. OCT 
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embedded samples were snap frozen in liquid nitrogen and stored in -80°C and RNA later 

samples were stored at -20°C for later analysis. 

The primary outcome measure was blood supply measured by LDI. During the assessment and 

analysis of LDI, the group allocation was blinded to the investigator. Secondary outcome 

measures were treadmill exercise performance test, protein expression analysis of AMPKα. 

phospho-AMPKα, e-NOS, phospho-eNOS, TXNIP and PGC1α by Western blotting; NO 

assay, and blood glucose assay and gene expression assays of AMPKα, e-NOS, TXNIP and 

PGC1α by qRT-PCR.  Similar to the primary outcome of LDI, treadmill exercise performance 

was performed with the group allocation blinded to the investigator. 

 

4.2.2 Sample sizes 

Sample size for this study was estimated for the primary aim using the outcome measure of 

LDI. For calculating the expected outcome for the metformin administered group and vehicle 

control group, the LDI results of a previous group of mice in which the acute HLI model was 

employed were used (Takahashi, Shibata et al. 2015). In that study, 10 mice were imaged for 

28 days after ischemia induction and mean (SD) flux ratio of the control group was 0.51 (0.20). 

It was assumed that in the metformin administered mice, ischaemic hind limb blood supply 

would be increased by 30% which is suggested to improve ischaemic limb impairment and 

tissue injury (Takahashi, Shibata et al. 2015). Based on these assumptions and aiming to 

achieve 80% power with an alpha of 0.05, it was estimated that 12 mice were required in each 

group (estimated with G* power). Sample sizes were adjusted by adding approximately 30% 

to this estimate, in order to account for exclusions of animals during the experiment due to 

technical difficulties or unexpected mortality or morbidity which might be experienced.  

 

4.2.3 HLI induction 

Unilateral left HLI was induced in all experimental mice (n=31) through the two-stage HLI 

induction method as described in chapter 2. 

 

4.2.4 Laser Doppler imaging 

LDI was performed as described in chapter 2. LDI measurements were carried out at baseline, 

7 days after ameroid placement, after ischaemia induction and weekly after starting metformin 
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or vehicle administration for 4 weeks (Figure M4.1). The groups were blinded during 

assessment and analysis.  

4.2.5 Functional assessment with a treadmill test  

The treadmill test was performed with mice as described in chapter 2. Treadmill testing was 

carried out at baseline (before first surgery), 2 days after ischaemia induction and, 3 and 5 

weeks after commencing metformin or vehicle administration. The groups were blinded during 

assessment and analysis. 
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Figure M4.1: Study design for examining the effect of metformin on HLI. Mice were randomised 5 days after ischaemia induction and started on 
daily intervention with metformin or vehicle. LDI assessments were carried out at baseline, days 7, 16, 28, 35, 42 and 49. Treadmill walking 
distance tests were performed at baseline, days 16, 35, and 45.  
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4.2.6 Western blotting 

Western blotting was performed to examine the protein expression of AMPKα. phospho-

AMPKα, e-NOS, phospho-eNOS, TXNIP and PGC1α in mice receiving metformin and vehicle 

control. Antibodies and dilutions used are shown in Appendix (Table A1). 

4.2.6a Sample preparation 

The ischaemic gastrocnemius muscles which were harvested at euthanasiaand stored in OCT 

compound (ProSciTech) at -800C were used for Western blotting. Each tissue sample was 

thawed on ice, rinsed in PBS, transferred to a clean microfuge tube and snap frozen in liquid 

nitrogen. The tissue was then minced manually with a pestle, 500µl of ice-cold radio-

immunoprecipitation assay (RIPA) buffer (Cell Signalling Technology) containing protease 

inhibitors (Roche) and phosphatase inhibitors (PhoSTOP) was added to the minced tissue and 

homogenised with the pestle attached to a handheld drill. The homogenised samples were 

centrifuged for 5 minutes at 80000xg at 4°C. The supernatant was collected and protein 

concentration was quantitated by the BioRad protein assay (BioRad, USA).   

4.2.6b Protein estimation by BioRad protein assay 

IgG standards (range 0-8µg) were prepared by diluting IgG (1mg/ml) with milli-Q water to 

construct a standard curve. A small volume of each sample (2µl) was diluted to 1:1000 in milli-

Q water and used for the assay to determine the protein concentration. Each sample (160µl) or 

standard (160µl) was mixed with 40µl Bradford reagent in a flat bottom 96-well plate. The 

solutions were mixed, followed by 30 minutes of incubation in the dark. The optical density 

(OD) of the wells were read at 595nm in the Omega plate reader. GraphPad prism software 

was used to interpolate unknown concentrations of the diluted samples using the standard 

curve. The interpolated values were multiplied by the dilution factor (x1000) for the protein 

concentrations of the extracted proteins of the samples.  

4.2.6c Electrophoresis separation of proteins 

Protein samples (20μg) were mixed with Laemmli buffer containing dithiothreitol (DTT; 

0.39mg per 1ml of Laemmli buffer; Bio-Rad, USA) and boiled at 95°C for 5 minutes. Samples 

(15µl) were loaded into the wells of 4-15% SDS-polyacrylamide electrophoresis pre-cast gels 

(BioRad), along with Precision Plus Protein™ WesternC™ Protein Standard (BioRad). The 
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gel was run in 1xTris/glycine/SDS electrophoresis buffer (BioRad) at 80V for 10 (until the 

proteins begin to enter the resolving gel) minutes and until fully resolved (until the dye front 

disappeared) at 100V.  

4.2.6d Transfer of proteins from gel to membrane 

The wet transfer technique was employed to tranfer the proteins from gel to membrane. 

Following the separation of the proteins, the gel was placed in transfer buffer containing 10% 

methanol. Polyvinylidene fluoride (PVDF) (Biorad) or PVDF FL (Immobilin FL, Licor) 

membranes were activated in 100% methanol, and filter paper and fibres pads were moistened 

in transfer buffer. The transfer sandwich was assembled as shown in figure M4.2 with the blot 

on the cathode and the gel on the anode and ensured no air bubbles are trapped in the sandwich. 

The cassette was placed in the transfer tank containing Transfer buffer, an ice block was placed 

in the tank and the transfer was carried out at 100V for 60 minutes. After transfer, PVDF 

membranes were Ponceau stained to confirm successful transfer. Membranes were cut between 

bands to separate the different regions of membrane of the protein to be investigated according 

to molecular size using the markers. PVDF FL membranes were stained with Revert protein 

stain (Licor) and visualised for total protein by the Odyssey imaging system. 

 

Figure M4.2 Western blot wet transfer sandwich assembly (Bio-Rad 2016) 

 

4.2.6e Protein detection and visualisation: chemiluminescent method 

PVDF membranes were recharged in 100% methanol and placed in TBS-T (0.1% tween) in a 

low speed shaker. Non-specific sites were blocked with 5% ECL prime blocking agent for 60 

min at room temperature. The blots were then incubated with the primary antibody overnight 

at 4°C on a low speed shaker. Membranes were washed 3 times, 10 minutes each time in TBS-

T and incubated with the HRP conjugated secondary antibody (goat anti-rabbit; 1:1000) 

(DakoCytomation, Denmark) in room temperature on the low speed shaker for 2 hours. This 
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was followed by 3 washes with TBS-T for 10 minutes each. After which the membrane was 

placed in TBS. The membrane was imaged using a LiCor Odyssey scanner and band intensities 

were quantified using the Odyssey software.  

4.2.6f Protein detection and visualisation: fluorescent method 

PVDF FL membranes were recharged in methanol and incubated with Odyssey blocking buffer 

(Li-Cor)for 1 hour  prior to incubation with rabbit polyclonal antibodies directed against 

TXNIP (anti mouse TXNIP) and PGC1α (anti-mouse PGC1α) overnight at 4°C. After washing, 

blots were incubated with donkey anti-rabbit secondary antibodies conjugated with IRDye 

800CW (Licor) for 1 hour in room temperature. Membranes were washed in TBS-T and imaged 

using a LiCor Odyssey scanner and analysed using the Odyssey software.  

 

4.2.7 Plasma nitric oxide assay 

At euthanasia, blood was collected by cardiac puncture into heparin coated tubes (BD 

Microtainer). Platelet poor plasma was separated by centrifugation of blood at 4000 × g at 40C 

for 10 minutes followed by a further 10 minutes centrifugation at 10,000 × g at 40C. NO levels 

in plasma was determined indirectly by measuring the concentration of the stable end products 

nitrate and nitrite using a commercial kit (Cayman) based on the Griess reaction. The protocol 

provided by the manufacturer was followed. Nitrate standards (range 0-35 µl) were prepared 

by diluting 200 µM reconstituted nitrate standards with assay buffer to construct a standard 

curve.  Samples or standards (40 µl) were assayed in triplicate in a flat bottom 96 well plate 

(Cayman) and each was mixed with 40 µl assay buffer solution. Enzyme co-factor mixture (10 

µl) and nitrate reductase mixture (10 µl) were subsequently added to the wells. The plate was 

then incubated at room temperature for 3 hours in the dark. After incubation, Griess reagent 

R1 (50 µl) was added to each of the wells followed immediately with Griess reagent R2 (50 

µl) and colour was allowed to develop for 10 minutes at room temperature. The absorbance 

was measured at 540 nm using an Omega plate reader. 

4.2.8 Plasma glucose measurement 

Glucose measurements were performed on plasma samples prepared at euthanasia. Samples 

were vortexed and glucose concentrations were measured with an Accu-Chek Performa 

glucometer and test strips. Briefly, 1µl of sample was placed on a fresh test strip, inserted into 
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the glucometer and displayed reading was recorded. Each sample was tested with a new test 

strip. 

4.2.9 Quantitative real-time polymerase chain reaction assays  

Qiagen QuantiTect Primer Assays (Qiagen) were used to assess AMPKα1, PGC1α, TXNIP, e-

NOS and GAPDH gene expression (Appendix Table A5). 

4.2.9a RNA extraction 

Total RNA was isolated from ischaemic gastrocnemius muscles using a RNeasy Mini kit 

(Qiagen) according to manufacturer’s instructions. The tissue was cut into 5mmx5mm piece in 

a petri dish and placed in an Eppendorf tube. The sample was homogenised in 500µl Qiazol 

reagent using a sterile pestle and drill and an additional 500µl of Qiazol reagent was added. 

The samples were left in for 5 minutes at room temperature and 200µl of chloroform (Sigma-

Aldrich) was added. The samples were shaken for 20 seconds, left for 3 minutes in a shaker at 

room temperature. The samples were centrifuged for 15 minutes at 10,000xg at 4°C treating 

the samples with care not to disturb the phase. The top aqueous phase was removed and the 

sample was treated with 500 µl of 2-isopropanol for 10 minutes at room temperature. RNA was 

purified with spin columns in the RNeasy kit (Qiagen, Germany). Briefly, an equal volume of 

70% ethanol was added, mixed and transferred to spin columns, then centrifuged at 10,000g 

for 30 seconds and washed with RW1 buffer twice. The column was washed again with 100% 

ethanol and the DNAse digestion was carried out for 30 minutes at 37°C, the columns were 

washed again with RW1 and RPE buffer. The RNA was eluted into ultra clean RNA tubes, in 

20µl of RNAse free water. The RNA was quantified using the Nanodrop spectrophometer 

(Thermoscientific, Australia) at 260/280 nm to assess purity. RNA with an OD of 1.8-2.0 at 

260/280 were used for qRT-PCR experiments.  

4.2.9b Reaction preparation 

The qRT-PCR reactions were performed using QuantiTect SYBR Green one-step RT-PCR 

assay (Qiagen). Each reaction was performed with 10ng of RNA set up in a reaction volume 

of 10 μL containing 5 μL SYBR Premix, 0.5 μL primer mix and 0.1 µL reverse transcriptase.  

4.2.9c q-RT-PCR cycling conditions 

A three step melt thermal cycling program was used: 50°C for 30 minutes for cDNA synthesis, 

95°C for 15 minutes (enzyme activation), 40 cycles of 94°C, 15s (denaturation), 55°C for 30s 
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(annealing), 72°C for 30s (extension). For each gene of interest, the relative expression in each 

sample was determined by using the concentration-Ct-standard curve method and normalised 

to the expression of GAPDH. All samples were tested in duplicate. 

 

 

4.2.10 Statistical analysis  

Graphpad Prism V6.0 (GraphPad Software, San Diego, CA) and R studio software programs 

were used to analyse data. Graphpad was used to construct graphs. Data were tested for 

normality using D’Agostino-Pearson normality test. Data with normal distribution were 

expressed as mean ± standard error of mean (SEM) and analysed using parametric tests. Non-

normally distributed data were expressed as median and interquartile ranges (IQR) and 

analysed using non-parametric tests. LME model analysis was used to compare LDI data 

between groups. For LME analyses variation between individual mice were treated as random 

effects. LDI data and time were treated as fixed effects. Model fit was assessed by examination 

of the spread of standardised residuals and qq-normal plots. Interaction between time and 

treatments were assessed by LME. LME model analysis was used to compare treadmill data 

between groups. For LME analyses variation between individual mice were treated as random 

effects. Treadmill data and time were treated as fixed effects. Model fit was assessed by 

examination of the spread of standardised residuals and qq-normal plots. Data were square root 

transformed to fit model assumptions. Interaction between time and treatments were assessed 

by LME. Western blot data, NO assay data, glucose concentration data and qRT-PCR data 

were compared between groups using a Mann-Whitney U test and expressed as median and 

IQR. In all cases a p value of <0.05 was considered to be statistically significant. 
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4.3 Results 

4.3.1 Metformin administration improved limb blood supply 

Blood supply to the hind limbs at baseline was similar between experimental groups before 

surgery (Figure R4.1). Mice in both groups experienced a significant reduction in hind limb 

blood supply following ameroid placement and ischaemia induction, and exhibited a 

comparable level of HLI at the commencement of metformin or vehicle administration (Figure 

R4.1). Subsequently mice receiving metformin exhibited improved limb blood supply 

compared to the vehicle control group (p<0.001; Figure R4.1. B). Four weeks after receiving 

interventions, mice receiving metformin had 16.17% greater blood supply to the ischaemic 

limbs compared to control mice receiving vehicle.  

4.3.2 Metformin administration did not significantly affect treadmill performance  

Mice receiving metformin and mice receiving vehicle control had comparable distances 

travelled on the treadmill exercise test throughout the experimental period (Figure R4.2, 

p=0.241).  

 

4.3.3 Phospho-AMPKα/total AMPKα and phospho-eNOS/e-NOS were increased in mice 

receiving metformin 

In mice receiving metformin, AMPKα protein expression levels were similar to controls 

(p=0.818, figure R4.3Ai). Mice receiving metformin had higher levels of phospho-AMPKα 

compared to vehicle administered mice (p=0.041, Figure R4.3Aii). The phospho-AMPKα 

level relative to total AMPKα expression was significantly greater in mice receiving metformin 

compared to controls (p=0.009, Figure R4.3Aiii). Higher levels of phospho-eNOS expression 

relative to total e-NOS expression was observed in mice receiving metformin (p=0.031, Figure 

R4.3Biii). Total e-NOS expression within the ischaemic gastrocnemius muscles was similar in 

mice receiving metformin and vehicle (p=0.821, Figure R4.3Bi). However, mice receiving 

metformin had significantly higher levels of phospho-eNOS (p=0.047, Figure R4.3Bii) than 

controls. The mRNA levels of AMPKα and NOS3 were similar in mice receiving metformin 

and vehicle (p=0.378, Figure R4.6A; p=0.442, Figure R4.6B). 
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Figure R4.1. Effect of metformin administration on hindlimb blood supply in the two-
stage mouse model of PAD. A:  Representative laser Doppler images at the assessment times 
of the intervention groups. B: Laser Doppler imaging limb perfusion ratios in mice receiving 
metformin (n=15) and vehicle control (n=16). Values are normalised to the means of the 
baseline for each group and data is expressed as mean ±SEM. LME analysis suggested a 
significant difference (p<0.001) between groups over the experimental period.  
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Figure R4.2. The effect of metformin on treadmill exercise performance in the two-stage 
mouse model of PAD. Treadmill distance travelled by metformin administered (n=15) and 
vehicle administered groups (n=16). Administration commenced 5 days post ischaemia. Data 
expressed as mean ±SEM. Data were analysed by LME and square root transformed to fit 
model assumptions. The treadmill distance travelled showed no significant difference over time 
(p=0.241) in mice receiving metformin and vehicle. 
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Figure R4.3. The effect of metformin on protein expression detected by chemiluminescent Western blotting. A: Representative immunoblots 
of AMPKα, phospho-AMPKα, total e-NOS, phospho-eNOS (Ser1177) and GAPDH expression. A: i) Results of relative densitometry analysis of 
AMPKα protein expression in the spleen relative to GAPDH expression, ii) Results of relative densitometry analysis of phospho-AMPKα protein 
expression in the spleen relative to GAPDH expression, iii) Results of relative densitometry analysis of phospho-AMPKα protein expression 
relative to total AMPK expression in the spleen. B: i) Results of relative densitometry analysis of e-NOS protein expression relative to GAPDH 
expression in the in the ischaemic gastrocnemius muscle, ii) Results of relative densitometry analysis of phospho-eNOS protein expression relative 
to GAPDH expression in the ischaemic gastrocnemius muscle, iii) Results of relative densitometry analysis of phospho-eNOS protein expression 
relative to total e-NOS expression in the ischaemic gastrocnemius muscle. Original blots presented below. Data expressed as median and 
interquartile range with maximum and minimum data points (whiskers). Data were compared between groups with Mann Whitney U test, * 
indicates p<0.05, ns indicates p>0.05. 
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Figure R4.3C. Western blot images of AMPKα and phospho-AMPKα expression with their respective GAPDH blots for the effect of 
metformin on limb ischaemia. Unlabelled lanes contained ladders. 
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Figure R4.3D. Western blot images of e-NOS expression with their respective GAPDH blots. Unlabelled lanes contained ladders. 
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Figure R4.3E. Western blot images of phospho-eNOS expression with their respective GAPDH blots. Red arrows indicate samples 
excluded due to signal intensity being not quantifiable. Unlabelled lanes are contained ladders. 
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4.3.4 Circulating nitric oxide was increased in mice receiving metformin  

Plasma nitrate was measured using a colourimetric assay (Cayman Chemicals) 4 weeks after 

administering metformin or vehicle. Plasma NO levels were greater in mice receiving 

metformin than controls (8.44±2.02 µM and 3.77±0.50 µM respectively, p=0.024; Figure 

R4.4B). Furthermore, non-fasting plasma glucose concentrations after 4 weeks of interventions 

were similar (p=0.119) in mice receiving metformin (14.25± 2.524 mmol/l) and vehicle 

(15.79± 3.25 mmol/l) (Figure R4.4B).   

 

4.3.5 TXNIP was downregulated and PGC1α was upregulated in ischaemic muscle of 

mice receiving metformin 

Relative protein and gene expression of the oxidative stress augmenting protein TXNIP was 

significantly downregulated (p=0.038, Figure R4.5B and p=0.017 respectively, Figure R4.6C) 

in mice receiving metformin compared to mice receiving vehicle control. Relative protein and 

gene expression of the mitochondrial biogenesis marker PGC1α, was significantly upregulated 

(p=0.026, Figure R4.5C and p=0.028, Figure R4.6D respectively) in the ischaemic 

gastrocnemius muscles of mice receiving metformin compared with controls.   

 

 

 

 

 

    

 

 

 

 

 



98 
 

 

 

Figure R4.4. Effect of metformin on circulating plasma glucose and plasma nitrate levels. Plasma levels of glucose (A) and nitrate (B) 4 
weeks after vehicle or metformin administration. Nitrate levels were determined using a colourimetric assay (Cayman Chemicals) and nitrate 
levels were considered as the index of NO levels. Data expressed as mean and SD and were compared between the groups using Mann Whitney 
U test, p<0.05 indicated by * and p>0.05 indicated as ns.  
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Figure R4.5. The effect of metformin on protein expression in the ischaemic gastrocnemius muscles detected by infrared fluorescent 
Western blotting. A: Results of relative densitometry analysis of PGC1α protein relative to total protein expression. B: Results of relative 
densitometry analysis of TXNIP protein relative to total protein expression. Data expressed as median and interquartile range with maximum and 
minimum data points (whiskers). Data were compared between groups with Mann Whitney U test, * indicates p<0.05, ns indicates p>0.05. 
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Figure R4.5C. Western blot images of TXNIP expression with their respective total protein expression blots. Red labels indicate samples 
excluded due to artefacts in lane interfering with quantitation of signal intensity. 

 



102 
 

 



103 
 

Figure R4.5D Western blot images of PGC1α expression with their respective total protein expression blots. Red labels indicate samples 
excluded due to artefacts in lane interfering with quantitation of signal intensity. 
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Figure R4.6. Effect of metformin on mRNA expression in the ischaemic gastrocnemius 
muscles determined by qRT-PCR. A: Results of AMPKα1 mRNA expression relative to 
GAPDH, B: Results of Nos3 mRNA expression relative to GAPDH, C: Results of TXNIP 
mRNA expression relative to GAPDH and D: Results of PGC1α mRNA expression relative to 
GAPDH. Data expressed as median and interquartile range with maximum and minimum data 
points (whiskers). Data were compared between groups with Mann Whitney U test, * indicates 
p<0.05, ns indicates p>0.05.  
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4.4 Discussion 

The main outcomes of this study were:  

1. Metformin administration promoted recovery of hindlimb blood supply in the novel mouse 

model of ongoing ischemia. 

2. Metformin intervention resulted in upregulation of AMPKα activity and e-NOS activity with 

increased circulating NO levels. Additionally, decreased gene and protein expression of 

oxidative stress marker TXNIP and increased gene and protein expression of the mitochondrial 

biogenesis marker PGC1α were indicated in the ischaemic tissues of mice receiving metformin.  

3. Metformin intervention did not promote hindlimb function assessed by treadmill walking 

distance in the two-stage model of HLI.   

HLI was achieved in this study using a sequential two step surgical procedure reported in 

Chapter 3. The improvement in blood supply in mice receiving metformin is supportive of 

previous similar findings in the one stage HLI model and two uncontrolled studies in PAD 

patients (Sirtori, Franceschini et al. 1984, Montanari, Bondioli et al. 1992, Takahashi, Shibata 

et al. 2015). In the present study, the improvement in blood supply to the ischaemic limbs by 

metformin was mild within a period of 4 weeks. 

Indirect activation of AMPKα is intimately associated with the pleiotropic actions of metformin 

(Foretz, Guigas et al. 2014, Langone, Cannata et al. 2014, Kinaan, Ding et al. 2015). This 

activation is a result of a mild and transient inhibitory effect by metformin on the mitochondrial 

complex 1 of the electron transport chain (Foretz, Guigas et al. 2014). AMPKα activity was 

upregulated in mice receiving metformin suggested by the increased protein expression of 

phospho-AMPKα to total-AMPKα, suggesting that recovery of blood supply from an 

established steady state of ischaemia was improved via AMPKα dependent mechanisms. 

AMPKα gene expression was similar in mice receiving metformin compared to mice receiving 

vehicle control indicating AMPKα protein activity rather than gene expression is modulated 

by metformin. Among possible downstream signals implicated in the improvement in blood 

supply by metformin through AMPKα, this study investigated e-NOS, PGC1α, and TXNIP 

which are associated in the modulation of angiogenesis/arteriogenesis, oxidative stress and 

mitochondrial biogenesis respectively. Activation of AMPKα by metformin has been 

demonstrated to lead to phosphorylation of e-NOS resulting in increased NO bioavailability, 

which could subsequently promote revascularisation (Rena, Pearson et al. 2013, Takahashi, 
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Shibata et al. 2015). It has been previously reported that metformin does not promote recovery 

of blood supply in e-NOS deficient mice in which HLI is induced with the one-stage approach 

(Takahashi et al., 2015). These findings strongly suggest that e-NOS is a key mediator of the 

action of metformin on limb reperfusion (Takahashi, Shibata et al. 2015). In the current study, 

we found that the protein levels of phospho-eNOS to total e-NOS were upregulated within the 

ischaemic gastrocnemius muscles and plasma nitrate levels were increased in mice receiving 

metformin but not the gene expression of Nos3. As a result, plasma NO levels were higher in 

mice receiving metformin. This suggests metformin promoted increased e-NOS activity as in 

the previous acute HLI study (Takahashi, Shibata et al. 2015).  

Endothelial cell migration and proliferation are key processes in revascularisation (Goveia, 

Stapor et al. 2014). The endothelial-driven proliferative response requires upregulation of 

mitochondrial mass and function (Tang, Luo et al. 2014). Such mitochondrial biogenesis 

requires the coordinated replication and expression of mitochondrial DNA with the parallel 

expression of nuclear-encoded mitochondrial genes (Uittenbogaard and Chiaramello 2014). A 

key regulator of this process is PGC-1α (Uittenbogaard and Chiaramello 2014). PGC-1α 

promotes acceleration of angiogenesis by endothelial cells through mitochondrial biogenesis 

which meets endothelial cell metabolic demands during proliferation (Rowe, Jiang et al. 2010). 

Metformin has been previously reported to upregulate PGC1α in skeletal muscles through 

AMPKα stimulation (Jager, Handschin et al. 2007, Fernandez-Marcos and Auwerx 2011). The 

results of the present study indicate that PGC1α protein and gene expression were upregulated 

in the ischaemic gastrocnemius muscles of mice receiving metformin leading to improved 

blood supply.  

Oxidative stress is known to impair endothelial function and is associated with impairment of 

revascularisation (McDermott 2015). Thioredoxin is an antioxidant protein which regulates the 

redox response to oxidative stress by maintain the reducing environment of tissues (Nishiyama, 

Matsui et al. 1999). TXNIP is a negative regulator of thioredoxin and has been shown to have 

adverse effects on ischemia and oxidative stress (Dunn, Buckle et al. 2010). TXNIP 

knockdown has been shown to rescue blood-flow impairment and improve functional recovery 

in ischaemic hindlimbs (Dunn, Simpson et al. 2014). Normalisation of hyperglycemia-induced 

TXNIP expression to non-diabetic levels has been reported to rescue diabetes-related 

impairment of ischemia-mediated angiogenesis (Dunn, Simpson et al. 2014). In addition, 

TXNIP has been shown to enhance ischemia-reperfusion injury in response to acute 

hyperglycemia (Yoshioka, Chutkow et al. 2012). TXNIP knockdown is associated with 



108 
 

increased e-NOS expression and NO production (Wu, Zheng et al. 2013, Dunn, Simpson et al. 

2014). In ischemia/reperfusion injury, TXNIP is associated with harmful consequences by 

promoting oxidative damage in tissues via its pro-oxidative effects (Lane, Flam et al. 2013). 

Metformin has been reported to reduce the expression of TXNIP through AMPKα activation 

in aortic endothelial cells (Li, Kover et al. 2015). In the current study, it was found that TXNIP 

protein and gene expression was downregulated in the ischaemic gastrocnemius muscles of 

mice receiving metformin. 

Furthermore, in this study a non-fasting impairment of blood glucose concentrations was not 

observed in mice receiving metformin for 4 weeks at the daily human equivalent dosage of 

2.0g/80 kg person. This suggests that metformin could be tolerated by non-diabetic subjects 

without experiencing adverse hypoglycaemic episodes.    

In this study, the effect of metformin intervention on treadmill walking performance to defined 

pain was examined. Unlike the improvement in blood supply, there was no improvement in 

walking capacity in mice receiving metformin within the experimental period. It was assumed 

in this study that the frequency of visits to the rest zone by mice on the treadmill belt is 

reflective of lower limb discomfort, such as that experienced during claudication in patients 

with PAD. Therefore, fatigue was defined in this study as 10 visits to the rest zone despite 

electrical stimulus for encouraging the mice to walk on the treadmill. A confounding variable 

of this method is that mice exhibit different running styles with some styles which cause 

premature stopping before discomfort by pain is achieved (Marcinko, Bujak et al. 2015). In 

addition, no tissue injury or tissue loss was evident in the experimental mice suggesting the 

symptomatic severity of ischaemia in the experimental model was mild and may be 

representative of intermittent claudication patients’ symptoms. Additional possible limitations 

could be the length of time on intervention to derive functional benefits, dose and sample size. 

The mice were only assessed for 4 weeks of metformin intervention which may be short for 

functional benefits to appear. Length of time for improvement to be apparent is a feature of 

current management strategies for PAD such as with supervised walking exercise interventions 

which typically require months before substantial improvement in walking performance is 

realised (McDermott 2013). The dose used in this study was the currently prescribed human 

dose for managing hyperglycaemia in diabetes patients. In this study the improvement in blood 

supply by metformin was only observed 2 weeks after commencing the intervention. This 

suggests that examining a higher dose at the start of intervention may be relevant for faster 

improvement of blood supply by metformin intervention. Another limitation of the present 
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study for determining the treadmill walking performance of the ischaemic mice receiving 

metformin or vehicle is the sample size.  Sample size for this study was estimated for the 

outcome measure of LDI. The present study is limited in sample size to derive a clear 

conclusion of the effect of metformin intervention on treadmill walking capacity in the 

experimental model of established ongoing unilateral limb ischaemia.  

Inhibition of complex 1 of the mitochondrial respiratory chain resulting in AMPKα activation 

causing downstream signals is reported to be the main mechanism of action of metformin in 

order to have its effects. A recently described AMPK activator, R419, activates AMPK by 

inhibiting the mitochondrial complex 1 similar to metformin (Marcinko, Bujak et al. 2015). 

R419, has been shown to improve treadmill running capacity by over 30% in obese mice fed a 

high-fat diet (Marcinko, Bujak et al. 2015). Metformin’s ability to inhibit complex 1 has been 

reported to be mild and transient (Foretz, Guigas et al. 2014).  Therefore, a strong inhibitor of 

complex 1 resulting in AMPK activation may generate more favourable blood supply 

improvements and functional improvements in HLI.  

In summary, the findings of this study suggest that metformin intervention at the currently 

prescribed human relevant dose improves blood supply to a state of established ongoing 

experimental limb ischaemia. The improvement in blood supply was characterised to be a result 

of the upregulation of AMPKα activity, associated with increased activation of e-NOS in the 

ischaemic muscles, increased bioavailability of circulating NO, increased expression of PGC1α 

and reduced expression of TXNIP. Based on previous reports these changes would be expected 

to improve endothelial function by enhancing mitochondrial biogenesis (Jager, Handschin et 

al. 2007, Fernandez-Marcos and Auwerx 2011),  lowering oxidative stress and improving NO 

bioavailability through upregulated activity of e-NOS (Wu et al., 2013), consequently 

improving blood supply to ischaemic muscles. Limb impairment was not suggested to be 

improved by metformin intervention at the currently prescribed human dose within the 

experimental period and the limited sample size examined.  

This study has numerous strengths and weakness. Strengths include the use of a pre-clinical 

model with relevant pathophysiological features of human limb ischemia and use of relevant 

drug dose and prospective study design with pre-established sample size calculations. The 

relevance of pre-clinical animal models to assess therapies for PAD is controversial (Dragneva, 

Korpisalo et al. 2013, Krishna, Omer et al. 2016, Mohamed Omer, Krishna et al. 2016). 

Although a single approach in animals cannot fully recapitulate the human condition, an in vivo 
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model which may recapitulate the salient features of the disease will potentially aid in drug 

discovery. Limitations for the current study include the lack of a comprehensive investigation 

to explore the underlying mechanisms by which metformin improves limb blood supply 

including measure angiogenesis, oxidative stress or mitochondrial biogenesis as possible 

mechanisms of benefit for metformin and the relatively short monitoring of the outcome, 

although 4 weeks is typical of studies within mouse models. Only one dose of metformin was 

examined in this study, although relevant to the currently prescribed human daily dose for 

managing hyperglycaemia, higher doses may need to be explored for improving blood supply 

faster. The experimental model used in the current study also has mild tissue injury and degree 

of functional impairment is mild. Additional relevant models with increased severity of tissue 

injury and ambulatory impairment may need to be developed and explored for the potential of 

metformin for translation.  

In conclusion, the findings of this pre-clinical study highlight the therapeutic potential of 

metformin for improving limb blood supply from an established ongoing state of ischemia. 

Cautious optimism should be exercised when translating these findings as longer treatment 

times may be needed in clinical trials before observing any improvements to realise potential 

of metformin for managing PAD symptoms. In this pre-clinical study 3-4 weeks of metformin 

administration was necessary before improvement in blood supply was initially observed. 
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5.1 Introduction  

In Chapter 3 of this thesis, a new mouse model was developed in which HLI was induced 

through a two-stage procedure in order to better simulate limb ischemia in PAD patients. This 

approach led to a sustained state of severe ischemia that was prolonged over 4 weeks in adult 

ApoE-/- mice. This novel mouse model was used in the current study. 

Effective pharmacological treatments to restore blood supply and treat the leg symptoms of 

PAD are an unmet medical need (Vemulapalli, Dolor et al. 2015). NO is an important promoter 

of angiogenesis and arteriogenesis for post-ischaemic recovery and NO is primarily derived 

from e-NOS activity (Yu, deMuinck et al. 2005). Endogenous compounds which modulate e-

NOS activity could play important roles in recovery of blood supply to limb ischaemia and e-

NOS could be a potential target for drug development in PAD (Forte, Conti et al. 2016). 

Activity of e-NOS to enhance NO bioavailability could be promoted through phosphorylation 

at serine 1177 and by limiting e-NOS uncoupling (Forte, Conti et al. 2016). Evidence suggests 

angiotensin converting enzyme 2 (ACE2) could be an important modulator of e-NOS activity 

(Zhang, Wang et al. 2014). ACE2 catalyses the conversion of angiotensin II (Ang II) to 

angiotensin-(1–7) (Ang-(1–7)) (Crackower, Sarao et al. 2002, Rabelo, Todiras et al. 2016, 

Santos, Sampaio et al. 2018). Ang 1-7 signalling promotes e-NOS activity through 

phosphorylation via Akt (Sampaio, Souza dos Santos et al. 2007, Patel and Schultz 2013). In 

addition, Ang II is known to promote e-NOS uncoupling to produce superoxide than NO. 

Degradation of Ang II by ACE2 limits uncoupling of e-NOS promoting NO bioavailability and 

e-NOS activity (Yamamoto, Ohishi et al. 2006, Alghamri, Weir et al. 2013, Moritani, Iwai et 

al. 2013).  

Genetic deficiency of ACE2 (ACE2-/y) in mice results in low tissue and circulating levels of 

Ang 1–7 and higher Ang II levels (Thomas, Pickering et al. 2010, Bernardi, Burns et al. 2012, 

Tikellis, Pickering et al. 2012, Wysocki, Ortiz-Melo et al. 2014). ACE2-/y mice have also been 

reported to demonstrate drastic reduction in e-NOS expression at both protein and mRNA 

levels, and a decrease in NO concentrations (Yamamoto, Ohishi et al. 2006, Rabelo, Todiras 

et al. 2016). Despite evidence suggesting potential of ACE2 to play an important role in 

modulating Ang1-7 and NO levels, the role of ACE2 in limb ischaemia is unknown. 

Furthermore, ACE2 activity has been suggested to be differentially regulated in males and 

females (Soler, Riera et al. 2012, Soro-Paavonen, Gordin et al. 2012), with serum ACE2 
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activity higher in males than females (Úri, Fagyas et al. 2016). Thus, this study investigated 

the effect of ACE2-/y on experimental two-stage HLI in both male and female ApoE-/- groups.  

The hypothesis and aim of this study were:  

Hypothesis: 

ACE2-/y mice would have more severe limb ischaemia than sex and age matched ACE2 present 

control mice 4 weeks after HLI induction. 

Aim:  

To examine the effect of ACE2-/y on two-stage HLI induction in adult mice. 

 

 

5.2 Methods 

5.2.1 Ethics approval and mouse husbandry 

Institutional ethics was obtained for the studies presented in this Chapter (Appendix) and mice 

were maintained as described in General Methods (Chapter 2.1). Male and female 

apolipoprotein E null (ApoE-/-) mice (C57BL/6J background) aged 6 months were obtained 

from the Animal Resource Centre, Canning Vale, Western Australia. Genotyped male and 

female ACE2-/yApoE-/- mice were provided by Associate Professor Chris Tikellis at Baker IDI, 

Melbourne, Australia. Mice were housed and maintained as detailed in Chapter 2. 

5.2.2 Study design 

This study was designed to compare the effect of ACE2-/y on the severity of HLI in male and 

female ApoE-/- mice. Six-month-old male ApoE-/- (n=8), 6-month-old male ACE2-/yApoE-/-y 

mice (n=8) 6-month-old female ApoE-/- (n=11), and 6-month-old female ACE2-/yApoE/-y mice 

(n=10) were employed in this study. HLI was induced by the two-stage method and the limb 

blood supply was assessed as the primary outcome measure by LDI. Secondary outcome 

measures were ambulatory function by Tarlov scoring and tissue injury assessed by ischaemia 

scoring (Figure M5.1).   

5.2.3 Sample size 

The sample size for this study was estimated for the primary outcome measure of LDI.  The 

expected LDI outcome for the ACE2-/yApoE-/- mice was calculated using LDI data from the 
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two-stage HLI group of mice developed in chapter 3. In the previous study 10 ApoE-/- mice 

were imaged 28 days after ischaemia induction and mean (SD) flux ratio was 0.54 (0.093). It 

was assumed that in the ACE2-/yApoE-/- mice ischaemic hind limb blood supply would be 

decreased by 25%, which is suggested to cause limb impairment and tissue injury (Silvestre, 

Bergaya et al. 2001, Zhu, Zhang et al. 2016). Based on these assumptions and aiming to achieve 

an 80% power with an alpha of 0.05 an estimated minimum of 8 mice were needed per group. 

Eight to 11 mice were used per group based on availability to account for any exclusions which 

may have arisen from technical difficulties. 

  

5.2.4 Hindlimb ischaemia induction 

Unilateral HLI was induced in the left hindlimb of each mouse through the two-step surgical 

procedure described in Chapter 2. 
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Figure M5.1. Study design: The effect of ACE2-/y on the severity of HLI in male and female 

ApoE-/- mice. Limb blood supply was assessed by LDI, ambulatory function and tissue injury 
were assessed by the Tarlov score and ischaemia score, respectively. Ischaemia was established 
by the two-stage HLI induction method, initial ameroid placement on the FA on day 0 and 
ligation and excision of FA on day 14.  

 

5.2.5 Laser Doppler imaging 

LDI measurements were carried out pre-operatively (baseline) and on days 7, 15, 21, 28, 35 

and 41 after ameroid placement. (Fig M5.1).  LDI measurements were performed as detailed 

in Chapter 2.  

 

5.2.6 Observational functional scoring and assessment of ischaemia 

Observational assessment of limb function (Tarlov score) and ischaemia (Ischaemia score) 

were carried out and recorded pre-operatively (baseline), and on days 21 and 35 after 

commencing the experiments. Scoring was performed as detailed in Chapter 2. 

 

5.2.7A Tail cuff plethysmography 

Blood pressure (BP) was measured using a computerised, non-invasive, tail-cuff system (Kent 

Scientific, USA). Mice were restrained on clear acrylic restrainer with a nose cone and placed 

on a thermal pad at 37°C. The measurements were performed in a quiet environment and each 

mouse was acclimatised to the restrainer. The occlusion cuff was placed on the base of the tail 

and the volume pressure recorder cuff on the remaining end of the tail. The measurement device 

was turned on to commence continuous cycles of BP measurements until consistent readings 

were obtained. Displayed measurements were recorded and the average of three consecutive 

consistent readings were used for each mouse. 

 
5.2.7B Repeatability of tail cuff plethysmography recordings 

The intra-observer repeatability of the systolic blood pressure (SBP) measurement was 

performed on 10 separate male ApoE-/- mice without limb ischaemia. SBP was measured as 

described above and measurements were repeated again the next day. The intra-observer 

repeatability of the SBP measurement was CoV%=5.64% on 9 ApoE-/- mice assessed on 2 

separate measurements (Appendix Table A).  
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5.2.8 Statistical analysis 

Graphpad Prism V6.0 (GraphPad Software, San Diego, CA) and R studio software programs 

were used to analyse data. Graphpad was used to construct graphs. Data were tested for 

normality using D’Agostino-Pearson normality test. LDI data are expressed as mean±SEM. 

LME model analysis was used to compare LDI data between groups. For LME analyses 

variation between individual mice were treated as random effects. LDI data and time were 

treated as fixed effects. Model fit was assessed by examination of the spread of standardised 

residuals and qq-normal plots. Data were square root transformed to fit model assumptions. 

Interaction between time and groups were assessed by LME. Tarlov scores and ischaemia 

scores were expressed as mean and SEM and compared between groups by Mann-Whitney U 

test. SBP data were expressed as median and interquartile ranges and compared between groups 

by Mann-Whitney U test. All comparisons were considered significant at p<0.05. 

 

5.3 Results 

5.3.1 ACE2-/yApoE-/- mice with two-stage HLI had comparable limb ischaemia and 

functional impairment to ApoE-/- mice with two-stage HLI 

Female ACE2-/yApoE-/- mice and female ApoE-/- mice had similar levels of hindlimb blood 

supply before ischaemia induction (Figure R5.1). Two-stage HLI induction in both groups 

resulted in a similar level of ischaemia (Figure R5.1 Female ACE2-/yApoE-/- and ApoE-/- mice 

had comparable limb blood supply over the experimental period (p=0.212; Figure R5.1). 

Functional impairment assessed by Tarlov scores between female ACE2-/yApoE-/- and female 

ApoE-/- mice indicated that the similar impairment in limb function in ACE2-/yApoE-/- and 

female ApoE-/- groups over the course of the experiment (Figure R5.3A). Ischaemia scores in 

female ACE2-/yApoE-/- and female ApoE-/- mice were similar over the course of the experiment 

(Figure R5.4B)    

Blood supply was similar between male ACE2-/yApoE-/- mice and male ApoE-/- mice at baseline 

(Figure R5.2) and the LDI ratio was similar in the ACE2-/yApoE-/- and ApoE-/- groups over 28 

days after HLI induction (Figure R5.2).  Blood supply over the experimental period was similar 

between male ACE2-/yApoE-/- and ApoE-/- mice (p=0.263; Figure R5.2).   
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Tarlov scores were similar between male ACE2-/yApoE-/- and male ApoE-/- mice over the course 

of the experiment (Figure 5.3B). Ischaemia scores were similar ischaemia scores between male 

ACE2-/yApoE-/- and male ApoE-/- mice (Figure 5.4A).      

 

5.3.2 Systolic blood pressure were similar in ACE2-/yApoE-/- and ApoE-/- mice  

SBP in female ACE2-/yApoE-/- and female ApoE-/- mice was similar throughout the experiment 

(Figure R5.5A). SBP was similar in male ACE2-/yApoE-/- and male ApoE-/- mice throughout the 

experiment (Figure 5.5 B). 
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Figure R5.1: Effect of ACE2-/ y on limb 

blood supply in female mice with two 

stage HLI. A: Representative laser 

Doppler images of female ACE2-y-ApoE-/- 

and ApoE-/- mice. B: Laser Doppler 

imaging limb perfusion ratios of female 

ACE2/y-ApoE-/- and ApoE-/- mice. LME 

analysis of post ischaemia period 

suggested no significant difference 

between the groups (p=0.212). Data 

expressed as mean ±SEM and the graph 

represented as LDI ratio relative to 

baseline values for each group. 
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Figure R5.2. Effect of ACE2-/ y on limb 

blood supply on male mice with two 

stage HLI. A: Representative laser 

Doppler images of male ACE2-/yApoE-/- 

and ApoE-/- mice. B: Laser Doppler 

imaging limb perfusion ratios of male 

ACE2-/yApoE-/- and ApoE-/- mice. LME 

analysis of post ischaemia period 

suggested no significant difference 

between the groups (p=0.263). Data 

expressed as mean ±SEM and graph 

represented as LDI ratio relative to 

baseline values for each group. 
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Figure R5.3. Effect of ACE2-/y on functional use score of the hindlimb (Tarlov) in the hindlimbs of mice with two stage HLI induction. A: Tarlov 

score of female ACE2-/yApoE-/- vs female ApoE-/- mice B: Tarlov score of male ACE2-y-ApoE-/- vs male ApoE-/- mice. All results expressed are mean and 

SEM and all comparisons between groups were carried out by Mann Whitney U test. 
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Figure R5.4 Effect of ACE2-/y on ischaemic score in the hindlimbs of mice with two stage HLI. A: Ischemia score of male ACE2-/yApoE-/- vs male 

ApoE-/- mice and B: Ischaemia score of female ACE2-/yApoE-/- vs male ApoE-/- mice. All results expressed are mean and SEM and all comparisons between 

groups were carried out by Mann Whitney U test. 

          

 

 

 

 

0 1 3 2 1 3 5

4

5

6

7

8

E x p e r i m e n t a l  t im e  ( d a y s )

Is
c

h
a

e
m

ia
 s

c
o

r
e

A C E 2
- / y

A p o E
- / -

 m a l e s  ( n = 8 )

A p o E
- / -

 m a l e s  ( n = 8 )

p > 0 . 9 9 9 p = 0 . 2 0 0
p > 0 . 9 9 9

p > 0 . 9 9 9

0 1 3 2 1 3 5

0

2

4

6

8

E x p e r i m e n t a l  t im e  ( d a y s )

Is
c

h
a

e
m

ia
 s

c
o

r
e

A p o E
- / -

f e m a l e s  ( n = 1 0 )

A C E 2
- / y

A p o E
- / -

 f e m a l e s  ( n = 1 1 )

p = 0 . 5 8 7 p = 0 . 5 8 7p > 0 . 9 9 9 p > 0 . 9 9 9

A B



123 
 

 

 

 

      

Figure R5.5: Effect of ACE2-/y in systolic blood pressure of ApoE-/- mice. A:  SBP of female ACE2-/yApoE-/- vs male ApoE-/- mice. B: SBP of female 

ACE2-/yApoE-/- vs female ApoE-/- mice. Data expressed as median and interquartile ranges. Statistical comparisons between groups were carried out with a 

Mann-Whitney U test. 
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5.4 Discussion 

The key finding of the study presented in this chapter was that ACE2-/yApoE-/- mice did not 

have greater severity of ischaemia and functional impairment compared to age and sex matched 

ApoE-/- control mice over 4 weeks after HLI induction. This is also the first study in which two-

stage HLI was induced in female mice. The result showed that an ongoing ischaemia was 

present in the females and suggests that sex may not affect severity of ongoing ischaemia in 

the two-stage HLI model.  

In the present study, ACE2-/yApoE-/- mice did not demonstrate an elevated SBP compared to 

age and sex matched ApoE-/- mice. The role of ACE2-/y in BP regulation in rodent studies is 

controversial with some studies showing increase in BP (Gurley, Allred et al. 2006, Thomas, 

Pickering et al. 2010, Rabelo, Todiras et al. 2016), with other studies demonstrating no 

differences compared to their respective control (Crackower, Sarao et al. 2002, Moritani, Iwai 

et al. 2013). In the present study adult mice were assessed compared to the relatively young 

mice used in previous studies (Silvestre, Bergaya et al. 2001). Mixed genetic backgrounds, 

high variability of BP data and a lack of statistical power has been suggested to result in these 

observations (Rabelo, Todiras et al. 2016). A protective role of the C57BL/6 background in BP 

regulation has also been suggested by previous studies (Oudit, Kassiri et al. 2009).  The 

presence of compensatory mechanisms preventing higher Ang II levels in the ACE2-/y mice is 

also suggested by the lack SBP elevation. Ang II promotes e-NOS uncoupling for increased 

superoxide production and NO downregulation (Yamamoto, Ohishi et al. 2006, Alghamri, 

Weir et al. 2013, Moritani, Iwai et al. 2013). Lack of increase in Ang II levels in the ACE2-

/yApoE-/- mice would not have promoted Ang II dependent decrease in NO bioavailability for 

greater ischaemia.  

Lower Ang 1-7 levels leading to decreased phosphorylation of e-NOS subsequently lowering 

NO bioavailability in ACE2-/y was proposed to be one of the key mechanisms for greater 

ischaemia in ACE2-/y mice in the current study. Compensatory mechanisms may have 

prevented these effects to demonstrate comparable ischaemia in ACE2-/yApoE-/- mice and the 

ApoE-/- controls over the course of the experiment. Ang1-7 in circulation has a very short half- 

life (3-15 minutes) because of its physiological hydrolysation by ACE, neprilysin (NEP), and 

aminopeptidases (Yamada, Iyer et al. 1998, Breitling, Krauszman et al. 2015). In addition to 

being able to hydrolyse Ang1-7, NEP is able to generate Ang 1-7 and may have played a 

compensatory role in ACE2-/y mice. NEP is an endothelial cell surface zinc metallopeptidase 
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and kinetic studies of peptide cleavage has shown that NEP more efficiently hydrolyzed Ang I  

to Ang 1–7 compared with ACE2 (Rice, Thomas et al. 2004). Ang 1–7 is further cleaved by 

NEP to several smaller peptides (Stephenson and Kenny 1987, Rice, Thomas et al. 2004, Brar, 

Barrow et al. 2017). Mass spectrometry analysis has demonstrated that Ang 1-7 could be 

further cleaved by NEP to generate the dipeptide Ang 1–2 (Brar, Barrow et al. 2017).  Very 

recently it has been reported that Ang 1-7 activity is critically dependent on its NEP mediated 

degradation to the bioactive Ang 1–2 dipeptide in relation to evoking an insulin secretory 

response (Brar, Barrow et al. 2017).  It is interesting to explore whether modulation of NEP or 

Ang 1-2 may be beneficial for therapeutic revascularisation for limb ischaemia (Brar, Barrow 

et al. 2017).  

Several potential metabolites are considered to play compensatory roles in ACE2-/y mice 

including vasoactive bradykinin (1-8), des-Arg-kallidin, dynorphin A, casomorphin, 

neurotensin 1 to 13, pyroglomulated-apelin 13 (pyr-apelin 13), apelin 17, and kinetensin 

(Donoghue, Hsieh et al. 2000, Thomas, Pickering et al. 2010, Wang, McKinnie et al. 2016). In 

relation to ischaemia, apelins (pyr-apelin 13 and apelin 17) may have had important 

compensatory roles preventing greater ischaemia in the ACE2-/y mice. Pyr-apelin 13 and apelin 

17 are the dominant apelin peptides found in vivo. ACE2 metabolises and partially inactivates 

pyr-apelin and apelin 17 (Wang, McKinnie et al. 2016). The half-lives of apelins are 

extremely short and this has been reported to be prolonged in ACE2-/y plasma (Wang, 

McKinnie et al. 2016). interesting compensatory peptides highly likely preventing greater 

ischaemia in the ACE2-/y mice. Pyr-apelin 13 and apelin 17 has been shown to stimulate a 

robust increase in NO production concordant with increased phosphorylation of Akt and e-

NOS in human umbilical vascular endothelial cells (Donoghue, Hsieh et al. 2000, Wang, 

McKinnie et al. 2016). Studies on apelin in the acute model of HLI have demonstrated that 

apelin deficiency reduces the rate of blood flow recovery and worsens necrosis (Kidoya, 

Naito et al. 2010, Andersen, Hilberg et al. 2011). Furthermore, apelin administration was able 

to increase the number of larger vessels and decrease necrosis in a model of HLI in mice 

(Kidoya, Naito et al. 2010). Apelins have been described to stimulate functional and 

morphological maturation of neo-vessels after cell transplantation in ischaemic tissues. 

Immature vessel formation is a major problem that hinders use of effective therapeutic 

angiogenesis agents such as VEGF and stem cells. Apelin is an agent that has been seen as a 

promising combinatorial peptide for therapeutic angiogenesis with stem cells and gene therapy 

(Kidoya, Naito et al. 2010, Samura, Morikage et al. 2016). It would be interesting to 
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investigate whether newly developed ACE2 resistant apelin analogues have potential for 

therapeutic angiogenesis in limb ischaemia. 

In a recent study, it has been reported that resveratrol upregulates ACE2 expression within the 

aorta of a mouse model (Moran, Biros et al. 2017). Furthermore, resveratrol has also been 

reported to upregulate adipose expression of ACE2 in hyperlipidaemic mice (Oliveira Andrade, 

Paraiso et al. 2014). Interestingly, a recent randomised trial in patients with intermittent 

claudication due to PAD reported that resveratrol does not improve maximum walking distance 

(McDermott, Leeuwenburgh et al. 2017). These findings suggest that ACE2 upregulation may 

not have any therapeutic value for PAD in line with the findings from the current study.  

Strengths of this study include the use of a novel mouse model with persistent HLI, 

investigation of ACE2-/y in both sex and the use of adult mice on an atherosclerosis (ApoE-/-) 

background. Further work to address weakness of this study include the measurement of Ang 

II levels or activity, measurement of circulating NO and Ang 1-7. Future work may also be 

focused on measuring levels or activity of ACE2 metabolites or compensatory proteins such as 

apelins, NEP and Ang 1-2 in ACE2-/yApoE-/- mice. Additional limitations include the lack of a 

chronic model of slow onset of ischaemia in which slow onset of ischaemia takes longer than 

two weeks. Further evidence is needed to understand the role of ACE2 in modulating shear 

stress so that a clear conclusion may be determined regarding the role of ACE2 in PAD. 

In conclusion this study demonstrates that ACE2-/yApoE-/- mice do not have increased severity 

of HLI compared to ApoE-/- controls 4 weeks after two-stage HLI induction. The findings 

suggest that ACE2 may not play an important role in improving blood supply in an 

experimental model HLI. While ACE2 upregulation remains an exciting strategy for a variety 

of diseases, the results of this study from the two stage mouse model of HLI does not encourage 

the pursuit of this strategy for the pharmacological management of PAD in clinical trials and 

ACE2 is unlikely to be an important target for improving limb blood supply or function in 

patients with PAD.  
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Chapter 6 
Concluding discussions and 

future directions
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6.1 Discussion: Development of a two-stage mouse model of lower limb ischaemia 

Treatments for limb ischaemia in PAD is an unmet medical need (Vemulapalli, Dolor et al. 

2015). Advancements in treatments have been limited by the inability of currently used pre-

clinical animal models and outcome measures to successfully predict clinical effectiveness 

(Lederman, Mendelsohn et al. 2002, Rajagopalan, Mohler et al. 2003, Olea, Vera Janavel et al. 

2009, Belch, Hiatt et al. 2011, Annex 2013, Dragneva, Korpisalo et al. 2013, Lotfi, Patel et al. 

2013, Krishna, Moxon et al. 2015, Krishna, Omer et al. 2016, Mohamed Omer, Krishna et al. 

2016, McDermott, Ferrucci et al. 2017, Rigato, Monami et al. 2017). This is likely attributable 

to pre-clinical study characteristics including the reliability of animal model used, study design 

and endpoints assessed (Dragneva, Korpisalo et al. 2013, Krishna, Omer et al. 2016, Mohamed 

Omer, Krishna et al. 2016). Recommendations for a mouse model of HLI to be clinically 

relevant in order to better translate findings include: simulating the pathophysiology of PAD 

through slow onset of severe ischaemia and functional impairment; incorporating more 

representative pathology, such as concurrent atherosclerosis; incorporating common risk 

factors present in patients, such as older age, diabetes or smoking; using outcome assessments 

common in human trials such as treadmill testing; and demonstrating clinically relevant 

response to established treatments of PAD such as exercise training (Dragneva, Korpisalo et 

al. 2013, Krishna, Omer et al. 2016, Mohamed Omer, Krishna et al. 2016). 

A major disadvantage of currently used pre-clinical animal models to simulate PAD is the rapid 

natural recovery of blood supply to ischaemic tissues which occurs after HLI induction 

(Aranguren, Verfaillie et al. 2009, Lotfi, Patel et al. 2013, Mohamed Omer, Krishna et al. 

2016). Evidence suggests that in the most commonly used mouse model of HLI which is 

developed through the acute ligation and excision of the FA (Dragneva, Korpisalo et al. 2013, 

Krishna, Omer et al. 2016) sudden changes in fluid shear stress within collateral arteries 

promote arteriogenesis and angiogenesis to restore blood supply to the ischaemic tissues 

(Topper and Gimbrone Jr 1999, Garcia-Cardena, Comander et al. 2001, Tang, Chang et al. 

2005). Ameroid constrictors placed at the ends of the FA have been suggested to modulate 

rapid shear stress changes in previous studies (Tang, Chang et al. 2005, Yang, Tang et al. 2008).  

However, only mild ischaemia is achieved by ameroid constriction (Tang, Chang et al. 2005). 

This suggests that ameroid constriction alone may be inadequate to overcome efficient 

collateral compensation of blood supply. In order to develop the slow onset of severe 

ischaemia, excising the FA after slow onset of mild ischaemia by the ameroids may mitigate 

blood supply through collaterals arising from the FA. 
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In the first experimental work of this thesis (chapter 1, study 1) a new mouse model of HLI 

was developed through a two-stage method which involved slow FA constriction using 

ameroids at the ends of the FA for 2 weeks, followed by excision of the FA to achieve total 

occlusion and severe ischaemia. Assessment of limb blood supply in the two-stage model by 

LDI showed that ameroid placement alone did not achieve significant ischaemia after 2 weeks. 

The second surgery of excision of the FA resulted in significantly severe ischaemia than the 

ameroids alone. In comparison to the acute model of HLI, the two-stage model of HLI 

developed in this thesis showed minor blood flow recovery immediately following ischaemia 

induction and after 1 week from HLI induction the severity of HLI persisted. In line with the 

finding of severe prolonged ischaemia assessed by LDI in the new mouse model, clinical signs 

manifested as a result of ischaemia induction were greater in the two-stage HLI model as 

assessed by clinical scoring. Together with the main technique of ischaemia induction, the new 

experimental model which was developed incorporated additional characteristics of PAD 

patients including atherosclerosis (through ApoE-/-) and old age. Atherosclerosis is the leading 

cause of PAD and atherosclerosis simulating mouse models such as ApoE-/- mice develop 

significant atherosclerotic lesions spontaneously and exhibit delayed recovery from ischaemia 

(Kang, Albadawi et al. 2008, Dragneva, Korpisalo et al. 2013, Lotfi, Patel et al. 2013, Krishna, 

Omer et al. 2016, Mohamed Omer, Krishna et al. 2016). 

In the main study of chapter 3 in this thesis, greater functional impairment was observed in the 

two-stage HLI model than the acute HLI model through the clinical scoring method. It is not 

common for pre-clinical studies to quantitatively assess functional impairment in animal 

models of HLI and functional assessments mirroring the clinical trial assessments are lacking 

in pre-clinical studies of HLI. Using outcome assessments common in human trials such as 

treadmill testing is a suggested recommendation for improving translatability of pre-clinical 

findings (Krishna, Omer et al. 2016). Treadmill exercise testing is the most commonly used 

objective outcome measure in randomised clinical trials studying interventions to improve 

walking performance in people with PAD.. In the current study assessment of treadmill 

performance demonstrated the two-stage model of HLI had greater treadmill walking 

impairment than the acute model of HLI.  

The demonstration of functional impairment and similar responses to known interventions in 

humans are important characteristics of an ideal mouse model for PAD (Krishna, Omer et al. 

2016). Current guidelines and a considerable body of evidence support the clinical benefits of 

a supervised exercise program in improving pain free walking performance, physical capacity 
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and quality of life in PAD patients (Norgren, Hiatt et al., Norgren, Hiatt et al. 2007, European 

Stroke, Tendera et al. 2011, Brass 2013, Hiatt, Armstrong et al. 2015, Gerhard-Herman, Gornik 

et al. 2016, Golledge, Singh et al. 2019). The mechanisms associated with improvements in 

limb symptoms as a result of exercise intervention in patients are not clearly understood. The 

majority of studies in patients have consistently shown a poor correlation between leg blood 

flow and walking ability with no increase in blood flow assessed by ABPI following an exercise 

programme, even when significant improvements in walking ability have been reported 

(Stewart , Hiatt  et al. 2002, Askew, Green et al. 2005, Parmenter, Raymond et al. 2010, 

Duscha, Robbins et al. 2011, Meneses, Nam et al. 2018). However, in the experimental model 

of acute HLI, exercise training augments recovery of blood supply to ischaemic muscles (Yang, 

Dinn et al. 1990, Yang, Prior et al. 2008, Cheng, Kuzuya et al. 2010, Rokutanda, Izumiya et al. 

2011).   

Exercise intervention after ischaemia induction in the two-stage HLI model promoted treadmill 

walking distance independent of a change in limb blood supply. This is a finding similar to that 

described in PAD patients (Watson, Ellis et al. 2008, Parmenter, Raymond et al. 2010, Malgor, 

Alahdab et al. 2015) and validates the two-stage HLI model for assessing interventions for 

improving functional impairment.  

 

 
6.2 Future directions: Part 1  

 
A number of potential future directions have arisen from the findings of the studies in the first 

Chapter. The main finding showed that the new two-stage model of HLI had severe ongoing 

ischaemia. Suggested future studies for this finding includes characterisation of mechanisms 

associated with ongoing severe ischaemia. This includes histological characterisation of the 

micro-vasculature to determine changes in arteriogenesis and angiogenesis and molecular 

characterisation of shear stress modulators such as the mechano-transducer transient receptor 

potential vanilloid 4. 

 
The primary study in this chapter utilised older ApoE-/- mice to better simulate the 

characteristics of PAD patients. It is known however, that other co-morbidities such as diabetes 

affects blood flow recovery to limb ischaemia in patients. DM is a strong risk factor for PAD 

(Fowkes, Rudan et al. 2013) and patients with DM-associated PAD are more likely to progress 

to CLI (Thiruvoipati, Kielhorn et al. 2015). The amputation rate for patients with DM is five 
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times higher than those without DM and PAD in the presence of DM is a leading current 

clinical problem (Mellière, Berrahal et al. 1999). Establishing a mouse model of two-stage HLI 

in the presence of DM may aid in developing effective treatments for translation for PAD 

patients with DM. In addition, angiogenic capability of some other mouse strains (e.g. BALB/c) 

is lower than that of C57BL/6 employed in this thesis (Scholz, Ziegelhoeffer et al. 2002, 

Fukino, Sata et al. 2003, Helisch, Wagner et al. 2006, Chalothorn, Clayton et al. 2007, Thomas, 

Thirumaran et al. 2016). It is possible that the surgical procedures proposed in this study may 

produce greater severity of ongoing ischaemia in BALB/c mice and future research 

investigating this is warranted. 

The new two-stage slow onset HLI mouse model demonstrated a clinically relevant response 

to exercise training in that exercise training improved treadmill walking distance independent 

to changes in limb blood supply assessed by LDI. Future mechanistic studies are needed to 

characterise the underlying cellular and molecular mechanisms related to improvements in limb 

function independent of changes to limb blood supply. Suggestions include characterising 

ischaemic muscle metabolism, oxidative stress, inflammation, mitochondrial function, 

endothelial function and the microvasculature. 

 
6.3 Part 2 Discussion: The effect of metformin in two-stage HLI  
 
Repurposing existing treatments for modulating e-NOS to improve revascularisation in limb 

ischaemia may be a suitable strategy for recognising effective treatments urgently needed for 

PAD patients. Evidence suggests the drug metformin may have potential to be repurposed to 

improve blood supply to limb ischaemia (Sirtori, Franceschini et al. 1984, Montanari, Bondioli 

et al. 1992) by modulating e-NOS activity through AMPKα activity (Takahashi, Shibata et al. 

2015). Additional suggested mechanisms through which metformin may modulate 

improvement in blood supply include AMPKα dependent attenuation of oxidative stress by 

downregulating expression of TXNIP and improving mitochondrial biogenesis via PGC1α 

upregulation (Jager, Handschin et al. 2007, Fernandez-Marcos and Auwerx 2011, Chong, Chan 

et al. 2014, Zhang, Pang et al. 2015). 

In the second experimental chapter presented in this thesis (Chapter 4), the biguanide 

metformin was investigated for improving blood supply in the newly developed two-stage 

model of HLI.  Metformin administration promoted recovery of hindlimb blood supply in the 

novel mouse model of ongoing ischemia. AMPKα activity was upregulated in mice receiving 
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metformin suggested by the increased protein expression of phospho-AMPKα to total-

AMPKα, suggesting that recovery of blood supply from an established steady state was 

improved via AMPKα dependent mechanisms. Metformin intervention resulted in 

upregulation of AMPKα activity and e-NOS activity with increased circulating NO levels. 

Additionally decreased gene and protein expression of oxidative stress marker TXNIP and 

increased gene and protein expression of the mitochondrial biogenesis marker PGC1α were 

indicated in the ischaemic tissues of mice receiving metformin.  

In this study, the effect of metformin intervention on treadmill walking performance was also 

examined. Unlike the improvement in blood supply, metformin intervention did not promote 

hindlimb function assessed by treadmill walking distance in the two-stage model of HLI within 

the experimental period. A limitation of this study for determining the treadmill walking 

performance in the mice was the sample size.  Sample size for this study was estimated for the 

outcome measure of LDI. This study was limited in sample size to derive a clear conclusion of 

the effect of metformin intervention on treadmill walking capacity in the two-stage 

experimental model of HLI.  

Additional possible limitations could be the length of time on intervention to derive functional 

benefits and the dose used. The effect of metformin was examined for only 4 weeks in mice 

with two-stage HLI at the currently prescribed daily human equivalent dosage of 2.0g/80kg 

person. Length of time for improvement to be apparent is a feature of current management 

strategies for PAD such as with supervised walking exercise interventions which typically 

require months  before substantial improvement in walking performance is realised 

(McDermott 2013). The dose used in this study was the currently prescribed human dose for 

managing hyperglycaemia in diabetes patients. In this study the improvement in blood supply 

by metformin was only observed 2 weeks after commencing the intervention. This suggests 

that examining a higher dose at the start of intervention may be relevant for faster improvement 

of blood supply by metformin intervention.  

 

 

6.4 Future directions: Part 2 
 
The findings of this chapter presents opportunities to undertake a number of future studies. 

Future studies are required with larger sample sizes and longer duration to determine the effect 
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of metformin on treadmill walking performance. Further investigations are also needed with 

different doses to determine the best dose for optimum efficacy of metformin for improving 

revascularisation and limb function. 

 

In this study the underlying changes were characterised to be associated with the metabolic 

mechanisms for improving blood supply. Future studies are recommended to gather 

histological evidence of revascularisation and studies need to explore additional mechanisms. 

An example of potential mechanisms is suggested by a recent report on AMPKα1 related 

mechanism involving the regulation of the amount and function of monocytes and 

macrophages in ischaemic tissues (Zhu, Zhang et al. 2016). It has been shown that deletion of 

AMPKα1 decreases the accumulation of macrophages in the muscle from ischaemic hind limbs 

in vivo and impairs arteriogenesis by regulating the amount and function of monocytes and 

macrophages in ischaemic tissues (Zhu, Zhang et al. 2016) Macrophage AMPKα1 plays an 

essential role in arteriogenesis through its regulation of growth factor generation (Zhu, Zhang 

et al. 2016). AMPKα is one of the major signalling pathways which govern macrophage 

behaviour which exhibit marked phenotype heterogeneity. Phenotypically polarised 

macrophages are generally termed pro-inflammatory M1 and anti-inflammatory M2 (Parisi, 

Gini et al. 2018). In addition, based on expression levels of Ly6C, an inflammatory monocyte 

marker, monocytes subsets are grouped as Ly6C+ monocytes and Ly6C− monocytes (Thomas, 

Tacke et al. 2015). During vascular inflammation, Ly6C− monocytes are recruited to tissues 

and differentiate into M2 macrophages, which secrete anti-inflammatory cytokines and 

contribute to tissue repair (Wynn and Vannella 2016). Accordingly, how metformin can 

modulate the differentiation of Ly6C− monocytes into M2 macrophages remains the subject of 

ongoing interesting studies. Upregulation of AMPKα1 by metformin in Ly6C- monocytes may 

enhance their recruitment to ischaemic tissues and facilitate terminal differentiation into M2 

macrophages which may promote vascular regeneration and tissue repair. The modulation of 

immune response on revascularisation of limb ischaemia, specifically macrophage modulation 

of revascularisation by metformin or AMPK activators would be interesting future studies.  

Inhibition of complex 1 of the mitochondrial respiratory chain resulting in AMPKα activation 

causing downstream signals is reported to be the main mechanism of action of metformin in 

order to have its effects. A recently described AMPK activator, R419, activates AMPK by 

inhibiting the mitochondrial complex 1 similar to metformin (Marcinko, Bujak et al. 2015). 

R419, has been shown to improve treadmill running capacity by over 30% in obese mice fed a 
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high-fat diet (Marcinko, Bujak et al. 2015). Metformin’s ability to inhibit complex 1 has been 

reported to be mild and transient (Foretz, Guigas et al. 2014). Therefore, a strong inhibitor of 

complex 1 resulting in AMPK activation may generate more favourable improvements in blood 

supply and functional outcomes in HLI. Future studies investigation novel AMPK activators 

are recommended. 

In addition, the model in which metformin was tested lacked DM. Although hyperglycaemia 

in PAD patients with DM is likely to be managed with metformin, the development of a two-

stage mouse model of HLI with DM may offer potential to characterise beneficial mechanisms 

of metformin in the pathophysiology of PAD in the presence of DM. Furthermore, future 

studies with AMPK activators in the two-stage mouse model of HLI with DM may offer new 

translational therapeutic opportunities for PAD patients with DM.  

 
6.5 Part 3 Discussion: The effect of Angiotensin converting enzyme 2 deficiency in 
experimental limb ischaemia  
 
Endogenous compounds which modulate e-NOS activity have been suggested to play 

important roles in recovery of blood supply to limb ischaemia (Forte, Conti et al. 2016). 

Evidence suggests ACE2 could be an important modulator of e-NOS activity (Zhang, Wang et 

al. 2014) by promoting e-NOS phosphorylation through Ang 1-7 synthesis and limiting e-NOS 

uncoupling by AngII degradation.  

In the last experimental chapter of this thesis, ACE2-/y was investigated for its role in limb 

ischaemia employing the two-stage mouse model of HLI. ACE2-/yApoE-/- mice did not have 

greater severity of ischaemia compared to age and sex matched ApoE-/- control mice over 4 

weeks after HLI induction. The findings also showed that, ACE2-/yApoE-/- mice did not 

demonstrate an elevated BP compared to age and sex matched ApoE-/- mice. This suggests the 

presence of compensatory mechanisms in the ACE2-/yApoE-/- mice (Crackower, Sarao et al. 

2002, Gurley, Allred et al. 2006, Thomas, Pickering et al. 2010, Moritani, Iwai et al. 2013, 

Rabelo, Todiras et al. 2016). The presence of compensatory mechanisms also suggests the 

possibility that NO and e-NOS activity may not have been significantly affected by ACE2-/y to 

severely impair blood flow in the two-stage HLI model. Suggestions of compensatory 

mechanisms in ACE2-/y mice which may have prevented an important role of ACE2 in limb 

ischaemia include Ang 1-7 and Ang 1-2 generation by NEP and increased apelin signaling 

(Stephenson and Kenny 1987, Rice, Thomas et al. 2004, Kidoya, Naito et al. 2010, 

Andersen, Hilberg et al. 2011, Brar, Barrow et al. 2017). 
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6.6 Future directions: Part 3    

Future studies suggested for the findings from this thesis chapter includes the measurement of 

NO levels between ACE2-/y and ApoE-/- controls. Furthermore, apelins could be investigated 

for a role in limb ischaemia employing the two-stage mouse model of HLI. 

 

 
 
 
6.7 Thesis conclusions 

The main conclusion of this thesis are: 

1) The novel two-stage mouse model of HLI demonstrated severe ongoing HLI and 

functional impairment. Exercise training augmented treadmill walking distance in the 

new mouse model which was independent of changes to limb blood supply and mirrors 

patient response to exercise therapy.  

2) Metformin improved limb blood supply in the two-stage mouse model of ongoing HLI. 

Improvement in blood supply was associated with the upregulation of AMPKα activity, 

increased activation of e-NOS in the ischaemic muscles, increased bioavailability of 

circulating NO, increased expression of PGC1α and reduced expression of TXNIP. The 

study suggests metformin may have potential in improving limb blood supply in PAD 

patients. 

3) ACE2-/ did not worsen limb blood supply after two-stage HLI induction in the new 

mouse model suggesting ACE2 may not play an important role in limb ischemia. The 

results of this study from the two stage mouse model does not encourage the pursuit of 

ACE2 for pharmacological management of PAD in clinical trials and suggests ACE2 

is unlikely to be an important target for improving limb blood supply or function in 

patients with PAD. However, further evidence is needed with improved mouse models 

of HLI to confirm the role of ACE2 in PAD. 
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A2: Linear mixed effects results 

A2.1 LME model analysis comparing treadmill data between exercise intervention and 
control groups 
Linear mixed-effects model fit by REML 
 Data: Exercise.treadmill.data  
       AIC      BIC    logLik 
  600.0009 619.4474 -292.0004 
 
Random effects: 
 Formula: ~1 | Mouse.ID 
        (Intercept) Residual 
StdDev:     2.75153 6.626358 
 
Fixed effects:   Sqrt.Treadmill.dist ~ Treatment * TIME  
                     Value  Std.Error DF  t-value p-value 
(Intercept)       18.135090  1.852557 56 9.789219  0.0000 
Treatment1        3.541022   2.619912 28 1.351581  0.1873 
TIME5             7.292634   2.419604 56 3.013978  0.0039 
TIME7             7.975062   2.419604 56 3.296020  0.0017 
Exercise:TIME5    6.184013   3.421837 56 1.807220  0.0761 
Exercise:TIME7    7.183232   3.421837 56 2.099233  0.0403 
Exercise:TIME5    6.184013   3.421837 56 1.807220  0.0761 
Exercise:TIME7    7.183232   3.421837 56 2.099233  0.0403 
 Correlation:  
                 (Intr) Trtmn1 TIME5  TIME7  T1:TIME5 
Exercise         -0.707                               
TIME5            -0.653  0.462        Correlation:  
                 (Intr) Trtmn1 TIME5  TIME7  T1:TIME5 
Exercise         -0.707                               
TIME5            -0.653  0.462                        
TIME7            -0.653  0.462  0.500                 
Exercise:TIME5    0.462 -0.653 -0.707 -0.354          
Exercise:TIME7    0.462 -0.653 -0.354 -0.707  0.500   
 
Standardized Within-Group Residuals: 
       Min         Q1        Med         Q3        Max  
                 
TIME7            -0.653  0.462  0.500                 
Exercise:TIME5    0.462 -0.653 -0.707 -0.354          
Exercise:TIME7  0.462 -0.653 -0.354 -0.707  0.500   
 
Standardized Within-Group Residuals: 
       Min         Q1        Med         Q3        Max  
-2.6046838 -0.4259500  0.1060574  0.4542599  2.4401130  
 
Number of Observations: 90 
Number of Groups: 30  
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A2.2 LME model analysis comparing LDI data between exercise intervention and 
control groups 
Linear mixed-effects model fit by REML 
 Data: Exercise.LDI.data  
        AIC       BIC   logLik 
  -216.6022 -198.7005 114.3011 
 
Random effects: 
 Formula: ~1 | Mouse.ID 
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        (Intercept)   Residual 
StdDev:   0.0455824Linear mixed-effects model fit by REML 
 Data: Exercise.LDI.data  
        AIC       BIC   logLik 
  -216.6022 -198.7005 114.3011 
 
Random effects: 
 Formula: ~1 | Mouse.ID 
        (Intercept)   Residual 
StdDev:   0.0455824 0.09362099 
 
Fixed effects: LDI.ratio ~ Treatment * Time  
                     Value  Std.Error  DF   t-value p-value 
(Intercept)      0.5318895 0.03620481 118 14.691128  0.0000 
Treatment2      -0.0295530 0.05120133  28 -0.577192  0.5684 
Time             0.0003047 0.00100269 118  0.303871  0.7618 
Exercise:Time    0.0012437 0.00141801 118  0.877043  0.3822 
 Correlation:  
                (Intr) Trtmn2 Time   
Treatment2      -0.707                0.303871  0.7618 
Treatment2:Time  0.0012437 0.00141801 118  0.877043  0.3822 
 Correlation:  
                (Intr) Trtmn2 Time   
Exercise        -0.707               
Time            -0.897  0.634        
Exercise:Time    0.634 -0.897 -0.707 
 
Standardized Within-Group Residuals: 
        Min          Q1         Med          Q3         Max  
-2.75349317 -0.71719604 -0.08217634  0.67238675  2.27405272  
 
Number of Observations: 150 
Number of Groups: 30  
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A2.3 LME model analysis comparing LDI data between metformin administered and 
vehicle administered groups 

Linear mixed-effects model fit by REML 
 Data: Metform.LDI.data  
        AIC      BIC   logLik 
  -221.8056 -203.702 116.9028 
 
Random effects: 
 Formula: ~1 | Mouse.ID 
        (Intercept)  Residual 
StdDev:  0.06836679 0.0895167 
 
Fixed effects: LDI.ratio ~ Treatment * Time  
                     Value  Std.Error  DF   t-value p-value 
(Intercept)      0.3834909 0.03601226 122 10.648898  0.0000 
Treatment1       0.1306407 0.05177089  29  2.523439  0.0174 
Time             0.0061892 0.00092828 122  6.667362  0.0000 
Treatment1:Time -0.0057637 0.00133449 122 -4.318995  0.0000 
 Correlation:  
                (Intr) Trtmn1 Time   
Treatment1      -0.696               
Time            -0.835  0.581        
Treatment1:Time  0.581 -0.835 -0.696 
 
Standardized Within-Group Residuals: 
        Min          Q1         Med          Q3         Max  
-3.03007014 -0.54552927 -0.06467682  0.51112205  2.41198193  
 
Number of Observations: 155 
Number of Groups: 31  
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A3.4 LME model analysis comparing treadmill walking distance data between 
metformin administered and vehicle administered groups 

Linear mixed-effects model fit by REML 
 Data: Metform.treadmill.data  
       AIC      BIC    logLik 
  1275.699 1295.427 -629.8497 
 
Random effects: 
 Formula: ~1 | Mouse.ID 
        (Intercept) Residual 
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StdDev:    166.1586 270.4254 
 
Fixed effects: Treadmill.distance ~ Treatment * TIME  
                   Value Std.Error DF   t-value p-value 
(Intercept)     347.4133  81.95063 58  4.239300  0.0001 
Treatment        43.0804 114.07045 29  0.377665  0.7084 
TIME5           333.0200  98.74541 58  3.372511  0.0013 
TIME7           382.1733  98.74541 58  3.870290  0.0003 
Treatment:TIME5 -31.4512 137.44779 58 -0.228823  0.8198 
Treatment:TIME7 185.6829 137.44779 58  1.350934  0.1820 
 Correlation:  
                (Intr) Trtmnt TIME5  TIME7  T:TIME5 
Treatment       -0.718                              
TIME5           -0.602  0.433                       
TIME7           -0.602  0.433  0.500                
Treatment:TIME5  0.433 -0.602 -0.718 -0.359       
Random effects: 
 Formula: ~1 | Mouse.ID 
        (Intercept) Residual 
StdDev:    3.287717 5.333549 
 
Fixed effects: Sqrt.Treadmill.dist ~ Treatment * TIME  
                    Value Std.Error DF   t-value p-value 
(Intercept)     18.135090  1.617732 58 11.210198  0.0000 
Treatment        0.757278  2.251787 29  0.336301  0.7391 
TIME5            7.292634  1.947537 58  3.744542  0.0004 
TIME7            7.975062  1.947537 58  4.094948  0.0001 
Treatment:TIME5 -0.499741  2.710856 58 -0.184348  0.8544 
Treatment:TIME7  3.212063  2.710856 58  1.184889  0.2409 
 Correlation:  
                (Intr) Trtmnt TIME5  TIME7  T:TIME5 
Treatment       -0.718                              
TIME5           -0.602  0.432                       
TIME7           -0.602  0.432  0.500                
Treatment:TIME5  0.432 -0.602 -0.718 -0.359         
Treatment:TIME7  0.432 -0.602 -0.359 -0.718  0.500  
 
Standardized Within-Group Residuals: 
       Min         Q1        Med         Q3        Max  
-2.0948786 -0.6015180  0.0147499  0.6206117  2.1711432  
 
Number of Observations: 93 
Number of Groups: 31  
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A2.5 LME model analysis comparing LDI data between female ACE2-/yApoE-/- and 
ApoE-/-  groups.  

Linear mixed-effects model fit by REML 
 Data: ACE2fem.LDI.data  
        AIC      BIC   logLik 
  -108.5965 -91.7724 60.29826 
 
Random effects: 
 Formula: ~1 | Mouse.ID 
        (Intercept)  Residual 
StdDev:  0.03371165 0.1286595 
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Fixed effects: Sqrt.LDI.ratio ~ Group * Timepoint  
                     Value  Std.Error  DF   t-value p-value 
(Intercept)      0.9051229 0.03488354 103 25.946989  0.0000 
Group           -0.0085216 0.04819854  19 -0.176802  0.8615 
Timepoint       -0.0053759 0.00123271 103 -4.361041  0.0000 
Group:Timepoint  0.0021373 0.00170324 103  1.254856  0.2124 
 Correlation:  
                (Intr) Group  Timpnt 
Group           -0.724               
Timepoint       -0.825  0.597        
Group:Timepoint  0.597 -0.825 -0.724 
 
Standardized Within-Group Residuals: 
        Min          Q1         Med          Q3         Max  
-2.48823366 -0.67523694  0.01713875  0.67139896  2.14353107  
 
Number of Observations: 126 
Number of Groups: 21  
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A2.6 LME model analysis comparing LDI data between male ACE2-/yApoE-/- and ApoE-/- 
groups 

Linear mixed-effects model fit by REML 
 Data: ACE2mal.LDI.data  
        AIC       BIC   logLik 
  -79.06461 -63.93388 45.53231 
Random effects: 
 Formula: ~1 | Mouse.ID 
         (Intercept)  Residual 
StdDev: 1.436911e-06 0.1281505 
 
Fixed effects: Sqrt.LDI.ratio ~ Group * Timepoint  
                     Value  Std.Error DF   t-value p-value 
(Intercept)      0.9131619 0.03698819 78 24.687929  0.0000 
Group           -0.1631579 0.05230920 14 -3.119105  0.0075 
Timepoint       -0.0041629 0.00137276 78 -3.032475  0.0033 
Group:Timepoint  0.0021892 0.00194138 78  1.127665  0.2629 
 Correlation:  
                (Intr) Group  Timpnt 
Group           -0.707               
Timepoint       -0.866  0.612        
Group:Timepoint  0.612 -0.866 -0.707 
 
Standardized Within-Group Residuals: 
        Min          Q1         Med          Q3         Max  
-3.03608617 -0.48888019  0.08230023  0.56239483  2.33320691  
 
Number of Observations: 96 
Number of Groups: 16  
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Fixed effects: LDI.ratio ~ Group * Timepoint  
                     Value  Std.Error DF   t-value p-value 
(Intercept)      0.8573152 0.05406692 78 15.856556  0.0000 
Group           -0.2466602 0.07646218 14 -3.225911  0.0061 
Timepoint       -0.0076644 0.00200661 78 -3.819593  0.0003 
Group:Timepoint  0.0037065 0.00283778 78  1.306127  0.1953 
 Correlation:  
                (Intr) Group  Timpnt 
Group           -0.707               
Timepoint       -0.866  0.612        
Group:Timepoint  0.612 -0.866 -0.707 
 
Standardized Within-Group Residuals: 
        Min          Q1         Med          Q3         Max  
-2.40665763 -0.51661917  0.02387281  0.56663882  2.60947298  
 
Number of Observations: 96 
Number of Groups: 16  
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A3. Supplementary Western blot information 

Table A1. Table listing antibodies used for protein expression assays by Western blotting 

 
Antibody 

 
Species 

 
Size of 
band 
detected 
(kDa) 

Dilution in 
(TBS 
+0.05% 
tween)  

Supplier and 
Catalogue # 

Primary GAPDH Rabbit 37 1:10,000 Cell signalling 
Technology #5174 

TXNIP 
 

Rabbit 60 1:1000 Cell signalling 
Technology #14715 

PGC1α  Rabbit 92 1:1000 Abcam #ab54481 
AMPKα Rabbit 62 1:1000 Cell signalling 

Technology #5832 
Phospho- 
AMPKα 
(Thr 172) 

Rabbit 62 1:1000 Cell signalling 
Technology #2535 

e-NOS Rabbit 140 1:1000 Cell signalling 
Technology #9572 

Phospho-
eNOS 
(Ser1177) 
 

Rabbit 140 1:1000 Cell signalling 
Technology #9571 

Secondary Anti- rabbit 
IgG HRP 
conjugated 

Goat  1:1000 abcam #ab6721 

Fluorophore 
conjugated 
anti-rabbit 
IgG (IRDye 
800CW 
anti-rabbit 
IgG) 

Donkey  1:15,000 Li-Cor #925-32213  
(Millenium Sciences) 

 

 

Table A2. Table listing primers used for mRNA expression assays by qRT-PCR 

Gene Species Quantitect 
primer assay 
# 

Supplier  

AMPK Mouse QT00286923 Qiagen  
TXNIP Mouse QT00296513 Qiagen 
PGC1 Mouse QT02524242 Qiagen 
NOS3 Mouse QT00152754 Qiagen 
Gapdh Mouse QT01658692 Qiagen 
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A4. Repeatability results of SBP measurements 

Table A3: Intra-observer repeatability results of SBP measurements 

Mouse 

ID  Reading 1              Reading 2    Mean 

          Standard     

          deviation 

1  111.90  116.70  114.30 3.39  
2  90.40  99.30  94.85         6.29  
3  122.90  107.30  115.10 11.03  
4  113.20  119.40  116.30 4.38  
5  84.10  90.30  87.20 4.38  
6  97.60  91.00  94.30 4.67  
7  88.50                      101.60  95.05 9.26  
8  95.30  103.20  99.25 5.59  
9  98.30  95.00  96.65 2.33  

         

    Mean  
101.44 

5.70  
    CoV %  5.62   
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Figure A1. Amplification plots of RNA from ischaemic gastrocnemius muscles of mice receiving metformin and vehicle control. A: 
Ampα1; B: Nos3; C: Txnip; D: Pgc1α; and E: Gapdh  
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