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Abstract 
 

Discovery and characterisation of allergens in various food and inhalant 

sources is central to our understanding of the molecular mechanisms of 

allergic reactions. Allergen characterization is the most important underlying 

factor for better patient management with improved diagnostics, and the 

design and development of novel immunotherapeutics. Of the ‘Big eight’ 

allergen food groups, shellfish presents a unique challenge in terms of allergen 

discovery due to the large number and diversity of consumed species, leading 

to heterogeneity of allergen structure and cross-reactivity among various 

sources. The group of ‘shellfish’ comprises of two invertebrate phyla; 

arthropods and molluscs. Although all shellfish are invertebrate animals, these 

two groups are very distinct in evolutionary terms and subsequently contain 

different molecular repertoires of allergenic proteins. Co-sensitisation of 

patients with crustacean and mollusc allergy is often described, however, the 

current diagnostic approaches to manage patients is not based on sufficient 

molecular knowledge of these shellfish allergens. Consequently, mollusc 

allergy is clinically underreported and allergens are ill-defined. To date, only 

five mollusc allergens are listed in the WHO/International Union of 

Immunological Societies (IUIS) Allergen Nomenclature SubCommittee 

database, all of which are different tropomyosin’s 

(http://www.allergen.org/index.php). Additional mollusc allergens have been 

reported, but not yet fully characterised. A detailed review of the current status 

and the diagnosis of mollusc allergy is provided in Chapter 1.  

 

Current strategies for allergen identification are time- and resource-

consuming, which are highly prone to missing hidden allergens present in low 

concentrations. Allergenic proteins are traditionally identified based on their 

serum-specific IgE antibody recognition. Soluble proteins derived from whole 

protein preparations of a suspected allergen source are screened for IgE 

antibody binding proteins using sera from individuals with clinically confirmed 

allergy. Although this approach is the current standard for allergen 
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identification, there are three major drawbacks. Firstly, this approach often 

does not detect allergenic proteins present in low abundance. Secondly, cross-

reactive allergens are not easily identified due to their possible presence in 

unrelated allergen sources. Thirdly, the IgE recognition patterns are highly 

dependent on the demographics of the particular allergic patient cohort under 

investigation. This PhD thesis presents a comprehensive study on the 

improvement of allergen discovery from Pacific oyster, the most widely 

consumed mollusc species and immunological characterisation of the major 

allergen, tropomyosin, using a cohort of mollusc-sensitised patients in 

Australia. Furthermore, novel ways to diagnose cross-reactivity between 

crustacean and mollusc species were developed. 

 

Chapter 2 describes a comprehensive discovery pipeline, for allergenic 

proteins, that accounts for biological and molecular variability using 

allergenomics, high-throughput screening of genomic databases and high-

resolution mass spectrometry. This methodological approach was successful 

in identifying 24 previously unreported allergens from over 25,000 proteins 

from the Pacific oyster. This is the first study to demonstrate the presence of 

24 hidden allergens, also found in very different allergen sources from animals, 

including fish and mites, as well as plant allergens from pollen, latex and fungi. 

Importantly all of these allergenic proteins identified are reactive with shellfish 

allergic patients’ IgE antibodies.  

 

However, it was demonstrated in chapter 2 that not all allergens present in the 

genome and transcriptome of oyster are also detected in the extracted 

proteome. Allergens are often overlooked during the extraction process due to 

the use of inappropriate buffers which might affect the in vitro diagnostic 

methods that use whole proteins extracts. In Chapter 3 various buffer 

compositions covering a wide range of pH were evaluated to improve the 

detection of the unreported allergens described in chapter 2. The IgE-reactivity 

of protein extracts from each buffer was determined against a pool of serum 

from five shellfish allergic patients. In addition, the protein composition of the 
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Pacific oyster was analysed using high-resolution mass spectrometry. High 

concentrations of protein were recovered after extraction using high salt 

content or high pH buffers, subsequently revealing more IgE-reactive bands 

on the immunoblotting. Low pH buffers, however, resulted in poor protein 

recovery and affected negatively patient IgE-reactivity. Mass spectrometry 

analysis discovered that the novel IgE-reactive proteins, particularly of high 

molecular weight, emerged due to an increased abundance in the allergen 

extract. Overall, increasing the ionic strength and pH of the extraction buffers 

improves the solubility of allergenic proteins.  

 

In Chapter 4, a detailed analysis of immunological characteristics of the Pacific 

oyster extracts and the major allergen, tropomyosin were conducted. Twenty-

one oyster-sensitised patients were analysed to determine the prevalence of 

each allergen in the patient cohort. Eighteen out of 21 patients showed 

reactivity to tropomyosin although the binding intensity varied between 

patients. Patients who lacked IgE-binding to tropomyosin were shown to be 

sensitised to other oyster allergens. These allergenic proteins were preliminary 

abundant in the raw extract of the Pacific oyster. Further investigation was 

carried out with the Pacific oyster tropomyosin. The natural wild type and 

recombinant tropomyosin were successfully purified, and their structural 

properties observed. Both purified natural and recombinant tropomyosin had 

very similar structural and immunological properties. Cross-reactivity analysis 

using ELISA demonstrated patients who demonstrated IgE reactivity to the 

Pacific oyster tropomyosin were also reactive to other tropomyosin’s from 

Black tiger prawn as well as the House dust mite. The degree of cross-

reactivity correlated well with the tropomyosin amino acid sequence identity. 

Sequence alignment of tropomyosin from those three species revealed five 

protein regions containing predicted IgE-binding epitopes responsible for the 

strong cross-reactivity observed.  

 

Finally, in Chapter 5 to improve the prediction of clinical cross-reactivity 

between crustaceans and molluscs as well as other invertebrate species, 
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conservation analysis of IgE-binding epitopes of four shrimp allergens were 

carried out. The results demonstrated that within a large directory of shrimp 

IgE-binding epitopes there are a substantial fraction of epitopes that are highly 

conserved across various invertebrate species. Shrimp TM and AK shared a 

higher number of conserved epitopes compared to shrimp SCP and MLC; in 

fact, no conserved epitope could be found for SCP, while MLC only shared two 

epitopes in one region with cockroach MLC. These results suggest that TM 

and AK are the major contributing proteins in immunological and clinical cross-

reactivity between crustacean and other invertebrate groups. Furthermore, 

comparative evaluation of the number of conserved epitopes in TM and AK 

revealed a clear cross-reactive hierarchy where cockroach has the highest 

number followed by mite, and molluscs are on the bottom of this hierarchy. 

 

In conclusion, the outcomes of this thesis have demonstrated that many 

unreported allergens have been overlooked due to the limitations of the current 

allergen discovery methodology. The utilisation of transcriptome data and 

proteomic techniques in addition to the well-established allergenomic 

approach improves discovery of unreported allergens. While tropomyosin 

seems to be a clinically relevant cross-reactive major allergen, the presence 

of additional allergens that has never been reported in mollusc species, 

suggests mollusc species contain different molecular repertoires of allergens. 

Supported by the findings of the in-depth bioinformatics analysis of IgE-binding 

epitopes, component-resolved diagnostics for mollusc allergy could be 

developed, enabling precise identification of patients sensitised to a specific 

mollusc group and distinguish from patients with extensive cross-reactivity to 

ingested and inhaled allergens from other invertebrate sources. 
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1.1 Introduction 
Globally, seafood is considered healthy due to its high nutritional value; 

consumption has therefore increased considerably, from 15.8 kg/year in 2000 

to 19.2 kg/year in 2012 [1]. In the fisheries industry, the term ‘seafood’ 

comprises fish as well as shellfish. The phylum Mollusca is the second richest 

group in the animal kingdom, after arthropods, and is grouped with crustacean 

as shellfish (Figure 1-1). Molluscs comprise more than 100,000 species and 

are divided into seven classes, with the most common consumed species 

grouped within Gastropoda, Bivalvia, and Cephalopoda [2]. Abalone, snail, 

limpet, and whelk are the major food sources for humans from the gastropod 

group, while mussels and clams are bivalves, and squid, cuttlefish, and 

octopus are primary species of the cephalopods [3].  

The increasing production and consumption of seafood have been 

accompanied by increasing reports of adverse reactions to seafood. While 

some reactions are due to exposure to marine toxins [4, 5], hypersensitivity 

reactions to seafood allergens are mediated by the immune system and result 

in a lifelong inflammatory disease. In the last decade, food allergy has turned 

into a global burden, affecting more than 500 million people worldwide [6]. 

Furthermore, direct medical and economical loss caused by food allergy alone 

increased from a quarter billion in 2007 [7] to $4.3 billion in 2013 [8]. Food 

allergy impacts quality of life [9] but also increases the demand on food 

producers to detect and quantify relevant allergens [10, 11]. The current review 

focuses on mollusc allergy and characterisation of currently known mollusc 

allergens, as well as the effect of processing on the detection and 

quantification of allergens in food products. 
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Figure 1-1 Classification of seafood species including fish and shellfish, clarifying the group of mollusc
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1.2 Prevalence of Mollusc Allergy  
An increasing trend of food allergy prevalence has been reported by Prescott 

et al. [12] in a survey spanning 89 countries, with the highest incidence 

observed in children less than five years of age. A similar trend was also 

reported by the US Centres for Disease Control and Prevention [13], which 

described an approximate 50% increase in food allergy between 2007 and 

2011 among children under 17 years. Studies by Osterballe, Mortz [14] and 

Rancé, Grandmottet [15] have demonstrated that seafood is a common 

causative food for allergy symptoms. Although most of the surveys are based 

on self-reported data with some limitations, there is strong confidence of 

increasing food allergy prevalence worldwide with shellfish allergy emerging 

as life-long allergy [16].  

The prevalence of allergic reactions to shellfish varied from 0.1% to 24.5% 

based on self-reporting data [17]; however, this was found to be lower (0.1-

5.2%) when more convincing clinical data were included (Table 1-1). The 

frequency of shellfish allergy seems to be higher in adults as compared to 

children [18]. The prevalence of allergy specifically to molluscs is not exactly 

known. The term “shellfish” is used for both crustacean and mollusc, and the 

patient often fails to identify the offending group due to confusion regarding the 

different common names used to describe diverse shellfish. The lack of 

accurate clinical diagnostics to confirm specific food allergy to molluscs, 

including the double-blind placebo-controlled oral food challenge (DBPCFC), 

has also resulted in insufficient prevalence data. Previous studies on mollusc 

allergy were based only on questionnaire-based surveys or retrospective 

reviews of allergic patient clinical data, which are likely to generate an 

overestimated prevalence data set [19, 20]. Based on clinical history surveys 

it seems that the frequency of mollusc allergy ranges between 0.15% and 1.3% 

[14, 15, 21-23]. The variation in prevalence reports could be explained by two 

reasons: age of survey participants (children and/or adults) and geographical 

differences. For example, two reports with low prevalence focused their study 

on children aged 2.5 to 14 years and 3 to 7 years [15, 23]. Geographically, 

Asian populations seem to be more allergic to seafood, compared to the 



 

5 
 

Western population (1.3% vs. 0.4%, respectively). This geographical effect is 

clearly shown by Shek, Cabrera-Morales [24] where they evaluated the 

incidence of nuts and shellfish allergy in schoolchildren in Singapore and 

Philippines and differentiated between expatriate, local, and Western-born 

children as well as children born in Asia. Local schoolchildren have more 

allergies to shellfish, compared to nuts, which in contrast has been observed 

more commonly among expatriate schoolchildren. A similar pattern was also 

observed when they compared Asia-born and Western-born schoolchildren.  

 

Among allergic individuals, binding of the allergen to IgE antibody on effector 

cells, including basophils and mast cells, and the subsequent onset of any 

clinical manifestation is characteristic of an allergic reaction. Furthermore, any 

food protein has the potential to evoke allergic reactions when they share 

identical or very similar amino acids on certain protein regions with known 

allergens. These are known as IgE antibody binding epitopes [25]. Although 

molluscs are not grouped among the most allergenic foods according to the 

Codex list [26], most people with crustacean allergy are advised to avoid 

molluscs, possibly due to potential immunological cross-reactivity. In fact, 

allergy to crustacean and molluscs is often reported, concurrent [18, 27, 28].  

 

 

 

 

 

 

 

 

 

 

 

 



 

6 
 

Table 1-1 Prevalence of shellfish and mollusc allergy determined in different 

countries.  

Country Population Method of 
survey Prevalence Age 

Reference 
Year 

conducted 
Asia 

Philippines 11,158 Convincing 
history 

Shellfish 
5.12% 14-16 y 

[24] 
2007-2008 

Singapore 11,318 Convincing 
history 

Shellfish 
3.4% 4-16 y 

Taiwan 30,018 
Self-report 
and expert-
screened 

Mollusc 
1.3% All ages [22] 

2004 

Thailand 452 

Parent 
report, 

convincing 
history 

Mollusc 
0.2% 3-7 y [23] 

2010 

Europe, USA, Australia 

Australia 2,848 Skin Prick 
test 

Shellfish 
0.9% 

11-15 
months 

[29] 
2011 

Canada 9,667 Convincing 
history 

Shellfish 
1.42% All [30] 

2008-2009 

Denmark 843 Convincing 
history, SPT 

Shellfish 
2.4% 

Mollusc 
0.4% 

±22 y [14] 
2009 

France 2,524 Self-report Mollusc 
0.15% 

2.5 – 14 
y 

[15] 
2002 

United 
States 

 

14,948 Self-report Mollusc 
0.4% All [21] 

2002 

34,480 

Parent 
report, 

convincing 
history 

Shellfish 
1.3% 0-18 y [31] 

2009-2010 

40,104 

Parent 
report, 

convincing 
history 

Shellfish 
1.4% 0-18 y [32] 

2009-2010 

2,714,851 
Electronic 

Health 
Records 

Shellfish 
0.9% All ages [33] 

2000-2013 
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1.3 Routes of Exposure and Clinical Features of Mollusc Allergy 
Gastrointestinal uptake is believed to be one of the major routes of 

sensitisation to seafood allergens, including molluscs [18]. The clinical 

manifestations of mollusc allergy through this route are heterogeneous, 

including vomiting, diarrhoea, and life-threatening anaphylactic shock (Table 

1-2). Typically, when food proteins enter the digestive tract, gastric acids and 

digestive enzymes break the protein down into smaller peptides, which are 

absorbed and subsequently induce food tolerance. However, some proteins 

can withstand the digestion process and are often absorbed, whole or in larger 

fragments, through specialised epithelial cells called microfold (M) cells, 

intestinal epithelial cells, or dendritic cells [34]. Most of the identified allergenic 

food proteins are biochemically stable and known to resist gastric digestion 

and even heating. For example, tropomyosin, the major allergenic protein in 

crustaceans, and perhaps also molluscs, has been shown to retain its 

biochemical characteristics and bind the IgE antibody even after 60 min 

digestion in gastrointestinal fluid [35].  

 

Furthermore, this incomplete digestion of allergenic proteins could increase 

the risk of allergic sensitisation. This mechanism was demonstrated for codfish 

in humans [36] and mice [37]. Intake of antacids or food supplements that 

could elevate gastric pH increased the risk of sensitisation by obstructing 

protein breakdown. An increase of pH by only one unit significantly reduced 

the gastric capability to digest the protein and increased the biological activity 

of allergenic proteins. Moreover, histamine, a mediator of allergy reactions, 

was released within 10 minutes, demonstrating rapid absorption of pre-gastric 

codfish proteins. Thus, a person with a clinical history of food allergies should 

be aware of the biochemical stability of allergens before taking medications 

that reduce the acidity of the stomach. 
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Table 1-2. Routes of exposure and clinical features of mollusc allergy.  

Route of 
exposure Symptoms Species involved Reference 

Ingestion 
 

Face wheal, erythema 
and dyspnoea 

Freshwater clam 
(Corbicula japonica) [38] 

Dyspnea, urticaria, 
nausea, and 
stomachache 

Abalone (Haliotis sp) [39] 

Chronic bronchitis and 
high blood pressure 

King Broderip clam 
(Venus antiqua) [40] 

Urticaria and 
anaphylaxis Scallops (Pecten sp) [41] 

Pruritus and 
facial angioedema 

Razor clam (Ensis 
macha) [42] 

Anaphylaxis Limpet (Patella sp) [43] 
Angioedema and 

urticaria 
Octupus (Octopus 

vulgaris) [44] 

Urticaria and facial 
angioedema Limpet (Patella vulgata) [45] 

Edema, widespread 
wheals with pruritus, 
sneezes, rhinorrhea, 
nasal itching, cough, 
chest tightness, and 

dyspnea 

Razor clam (Ensis 
macha) [46] 

Anaphylaxis Snail (Helix sp) [47] 
Oral swelling and pain Scallop  (Pecten sp) [28] 

Occupational 
 

Asthma, rhinitis and 
conjunctivitis Squid (Loligo vulgaris) [48] 

Asthma Octopus (Octopus sp) [49] 

Asthma and urticaria 

Queen scallop (Chlamys 
opercularis) and king 

scallop (Pectin 
maximus) 

[50] 

Skin 

Dermatitis Baby squid (Loligo 
vulgaris) [51] 

Erythema, oedema, 
itchin and burning Squid (Loligo japonica) [52] 

Dermatitis Pearl oyster (Pinctada 
fucata martensii) [53] 

Eczema Squid (Loligo sp) [54] 
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Occupational sensitization has also been found to trigger allergic reactions 

against molluscs among seafood-processing workers [55]. Workers exposed 

to daily doses of particulate allergens in the industrial setting may be at a 

higher risk of developing respiratory or skin allergies. Occupational asthma 

particularly is a common adverse respiratory health effect, caused by seafood 

allergens. The prevalence of occupational asthma caused by mussels could 

be as high as 23% [56]. The allergenic proteins responsible for asthma have a 

molecular weight in the ranges of 19 kDa and 43 kDa, suggesting that 

tropomyosin and arginine kinase may implicate the sensitisation to the 

mollusc. It is understandable as a considerable amount of tropomyosin within 

respirable range is produced during shellfish processing. Using a validated 

immunoassay Kamath, Thomassen [57] quantified aerosolized tropomyosin in 

a worker- and activity-specific manner. Up to 138.8 ng/m3 of air-borne 

tropomyosin were detected in certain workplace, and the highest exposure to 

tropomyosin was demonstrated during heating and boiling processes.  

 

Contact urticaria and eczematous contact dermatitis are two major allergy 

manifestations of the skin. Protein contact dermatitis, characterised by 

itchiness within 10-30 minutes of food handling, was first mentioned by a 

Danish researcher [58], demonstrating type I (immediate) or type IV (delayed) 

hypersensitivity experienced by restaurant workers, following contact with 

certain foods including fish and shellfish. A recent study demonstrated that 

one-third of a cohort of chefs and culinary trainees in Germany developed an 

allergy to mussels. Most of these individuals showed symptoms of dermatitis 

very early in their career as chefs [59], confirmed by a study in Spain on the 

same profession [60]. It is thought that daily contact with water and seafood 

products which contain high quantity of protease disrupts the skin barriers and 

subsequently induces the release of inflammatory substances [61]. As the 

allergenic proteins from mollusc species are of high molecular weight, 

disruption of the skin barriers exposes the allergens to the antigen processing 

cells in the skin. Recurrent contact can prime the immune system to produce 
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more IgE antibodies and could cause systemic reactions as demonstrated in 

a murine model [62].  

   

1.4 Mollusc Allergens 
Eleven proteins have been implicated in different studies with sensitisation to 

molluscs, however only three proteins have been fully identified as elicitors of 

allergic reactions to mollusc species, including tropomyosin, arginine kinase, 

and paramyosin. Table 1-3 summarises the mollusc allergens known to date, 

including the mollusc species associated. 

 

1.4.1 Tropomyosin 
Tropomyosin is an actin binding protein involved in muscle contraction of 

vertebrate and invertebrates. This protein is present in muscle as well as non-

muscle tissue as an elongated dimeric α-helical coiled-coil structure ( 

 

Figure 1-2A). The stability of the coiled-coil structure of tropomyosin is 

generated from the interaction of repeated sequence patterns of seven-amino 

acids residues over the entire length of the protein and with hydrophobic amino 

acid in every first and fourth position. The protein has 284 amino acids among 

most invertebrates and is relatively highly conserved between all tropomyosin 

found in the eukaryotic organism [63]. Multiple tropomyosin isoforms are 

widely present in the muscle, demonstrating a tissue-specific distribution 

 

The first major allergen from a mollusc submitted to the International Union of 

Immunological Societies (IUIS) was in 1996 isolated from squid Todarodes 

pacificus and designated as Tod p 1. This heat-stable allergen with a molecular 

weight of 38 kDa was later identified as tropomyosin, after detailed amino acid 

sequencing and alignment with tropomyosins from other organisms [64]. 

Subsequently, other tropomyosins were identified in other mollusc groups 

including oyster [65] and snail [66]. Among different mollusc species, various 

isoforms have been discovered. Two scallops, Patinopecten yessoensis and 

Mimachlamys nobilis, express three different isoforms, while Meretrix lamarckii 
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(hard clam), Tresus keenae (horse clam), Mactra chinensis (surf clam), 

Scapharca broughtonii (ark shell), Mytilus galloprovincialis (mussel), Atrina 

pectinata (surf clam) and Crassostrea gigas (Pacific oyster) have two distinct 

isoforms each. Those isoforms can be classified into two patterns called TMa 

and TMb. TMa is the common tropomyosin and TMb is found specifically in 

the opaque portion of the adductor muscle, except in the surf clam (A. 

pectinate) where TMb was found as the common tropomyosin [67, 68]. If this 

different isoform present with different allergenicity is currently not known. 

 

Invertebrate tropomyosin is very allergenic and presents the second biggest 

group of animal-derived food allergens (http://www.meduniwien.ac.at/allfam/). 

Although this protein is a common component of muscle structure among 

eukaryotes and shares similar physiological function, there is a very sharp 

division between allergenic invertebrate tropomyosin and non-allergenic 

vertebrate tropomyosin. The non-allergenic tropomyosin shares greater than 

90% similarity with human tropomyosin, while in contrast, the allergenic 

tropomyosin shares only 54-56% similarity with the human tropomyosin. 

However, the identity of tropomyosin amino acid sequences among mollusc 

species is very diverse, ranging from 65-100%, and between mollusc and 

crustacean, from 56-68% (Figure 1-3). 
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Table 1-3. Allergenic proteins identified in different mollusc species. 

Species Protein IUIS 
Allergen 

Molecular 
Mass Ref 

Gastropod 

Abalone 
(Haliotis 
midae) 

Tropomyosin - 38 kDa 
[69] 

NI Hal m 1 49 kDa 

Abalone 
(Haliotis 

laevigata x 
Haliotis rubra) 

Tropomyosin Hal l 1 33.4 kDa  

Gastropod 
(Turbo 

cornutus) 
Tropomyosin Tur c 1 35 kDa [66] 

Abalone 
(Haliotis 

diversicolor) 
Tropomyosin - 38 kDa [70] 

Brown garden 
snail (Helix 
aspersa) 

Tropomyosin - 36 kDa [71] 

disc abalone 
(Haliotis discus 

discus) 
Paramyosin - 100 kDa [72] 

Common 
whelk 

(Buccinum 
undatum) 

NI - 
82 kDa 
71 kDa 
40 kDa 

[73] 

Disc abalone 
(Haliotis discus 

discus) 

Tropomyosin - 37 kDa [74] 

Turban shell 
(Turbo 

cornutus) 
Whelk 

(Neptunea 
polycostata) 
Middendorf’s 

whelk 
(Buccinum 

middendorffi) 
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Species Protein IUIS 
Allergen 

Molecular 
Mass Ref 

Bivalve 

Bloody cockle 
(Scapharca 
broughtonii) 

Tropomyosin - 37 kDa [74] 

Japanese 
oyster 

(Crassostrea 
gigas) 

Japanese 
cockle (Fulvia 

mutica) 
Surf clam 

(Pseudocardiu
m 

sachalinensis) 
Horse clam 

(Tresus 
keenae) 

Razor clam 
(Solen strictus) 

Shortneck 
clam 

(Ruditapes 
philippinarum) 

Oyster 
(Crassostrea  

gigas) 
Tropomyosin - 35 kDa 

[65, 
75, 
76] 

 
Mussle (Perna 

viridis) Tropomyosin - 38 kDa 

[70] Scallop 
(Chlamys 
nobilis) 

Tropomyosin - 38 kDa 

Cephalopod 

Squid 
(Todarodes 
pacificus) 

Tropomyosin Tod p 1 38 kDa [64] 

Golden 
cuttlefish 
(Sepia 

esculenta) 

Tropomyosin - 35-38 kDa [77] 
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Species Protein IUIS 
Allergen 

Molecular 
Mass Ref 

Big fin reef 
squid 

(Sepioteuthis 
lessoniana) 
Spear squid 

(Loligo 
bleekeri) 

Swordtip squid 
(Loligo edulis) 

Japanese 
flying squid (T. 

pacificus) 
Neon flying 

squid 
(Ommastrephe

s bartrami) 
Common 
octopus 

(Octopus 
vulgaris) 
Ocellated 
octopus 

(Octopus 
ocellatus) 

Pacific giant 
octopus 

(Paroctopus 
doflein) 

Octopus 
(Octopus 
fangsiao) 

Arginine 
kinase - 38 kDa [78] 

 
Triosephosp

hate 
isomerase 

- 28 kDa [79] 

 

.  
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A 

 
 

B 

 
 

C 
 

 
 

Figure 1-2. Structure modelling of the three identified allergens from molluscs 

species: (A) tropomyosin, (B) paramyosin, and (C) arginine kinase. The model 

of (A) and (B) were constructed from SWISS-MODEL [80], while the model (B) 

was predicted using protein modelling software Phyre [81] due to lack of a 

protein model.  

Tropomyosin
MW: 33-38 kDa
Heat stable

Paramyosin
MW: 100 kDa
Heat labile

Arginine kinase
MW: 40 kDa
Heat labile
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Figure 1-3 Protein identity matrix of the major allergen tropomyosin from different species as determined by MUSCLE multiple 

sequence alignment software [82]. The bootstrap consensus tree inferred from 1000 replicates taken to represent the 

evolutionary history of the taxa analyzed and constructed using the Neighbor-Joining method in MEGA6 [83]

Sakhalin surf clam 100

Horse clam 94.72 100

Goulds razor shell 92.96 92.25 100

Littleneck clam 92.61 92.25 90.49 100

Egg cockle 86.27 88.73 85.56 86.62 100

Noble scallop 67.61 67.96 68.66 68.66 66.9 100

Japanese scallop 67.96 68.66 69.01 68.31 67.25 90.49 100

Blood clam 73.24 73.59 73.24 73.94 72.89 72.54 71.48 100

Pacific oyster 73.24 74.3 72.89 74.3 72.54 73.94 73.94 79.23 100

Disk abalone 75 75.7 76.06 76.76 75.35 72.54 71.48 79.58 78.52 100

Horned turban 74.73 76.17 75.81 76.53 75.09 71.84 70.76 79.42 77.62 96.75 100

Limpet 73.59 74.3 74.3 76.06 73.59 72.18 70.42 78.17 76.76 84.86 83.75 100

Common octopus 72.44 72.44 73.14 73.14 71.02 71.73 71.38 73.14 75.97 82.69 80.8 79.86 100
Japanese flying 
squid 72.18 72.18 72.54 72.89 70.07 70.07 69.37 71.83 75.35 80.63 79.42 80.28 91.17 100

Golden cuttlefish 73.24 72.89 73.59 73.59 70.77 71.13 70.42 72.54 75.7 81.34 80.14 80.28 91.87 97.54 100

Red flying squid 73.24 72.54 73.24 73.24 70.42 70.77 70.07 71.83 75 81.34 80.14 79.93 91.52 96.13 98.59 100

Bigfin reef squid 73.24 72.89 73.24 73.24 70.77 70.77 70.07 71.83 75.35 81.69 80.51 80.28 91.52 96.48 98.24 99.65 100

Giant mud crab 56.34 57.04 57.75 58.45 58.1 58.45 58.1 59.51 61.62 62.68 61.37 63.03 63.96 63.03 64.44 63.73 63.38 100

Crayfish 55.63 56.69 57.39 58.45 57.39 58.1 56.69 58.8 61.62 63.03 61.73 63.03 63.25 63.03 63.38 62.68 62.68 91.9 100

Giant tiger prawns 55.99 57.04 57.75 58.45 58.1 57.75 57.04 59.51 61.62 63.38 62.09 63.03 63.6 63.03 63.38 62.68 62.68 92.61 96.83 100

House dust mite 57.04 57.39 57.39 59.15 59.15 59.15 58.1 59.51 60.56 63.38 62.09 62.68 63.6 63.38 64.44 63.73 63.73 82.04 79.93 80.28 100

Human 46.13 45.77 47.18 47.18 47.54 47.54 46.83 47.89 49.65 50.35 48.74 50 51.94 50.35 50.7 50.35 50.35 54.23 53.52 53.17 54.23 100

Bivalves Gastropods Cephalopods Arthropods Mammalia

40 10070

Colour gradient

Protein identity
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1.4.2 Paramyosin  
Paramyosin is a major structural component of the invertebrate muscle thick 

filament and was recently identified as an additional major allergen in abalone 

(Haliotis discus discus) [72, 84]. Western blot studies of the raw abalone 

extract have shown that 16 out of 18 patients sera tested reacted to a protein 

with 100 kDa in molecular weight. After purification, the protein was digested 

with lysylendopeptidase and the produced peptide amino acid sequence 

matched with corresponding regions of the Mediterranean mussel (Mytilus 

galloprovincialis) paramyosin. The discovery of allergenic paramyosin in 

mollusc species was not surprising since this protein has been confirmed as a 

major allergen in other invertebrates such as house dust-mite [85] and anisakis 

[86]. Furthermore, this protein also forms a significant component of the 

bivalve myofibril with 38-48% in the white adductor muscle and 15-30% in the 

red adductor muscle. Meanwhile, the mantle muscle of squid and the foot 

muscle of turban shell are reported to contain 9-14% of paramyosin in their 

myofibril [87]. 

 

The structure of paramyosin is similar to that of tropomyosin, and is sometimes 

referred as “water-insoluble tropomyosin” or “tropomyosin-A”. The molecule is 

composed of two α-helix coiled-coil protein with short non-helical extensions 

at both the N- and C- termini (Figure 1-2B) [87]. Although paramyosin and 

tropomyosin have structural similarity, the IgE of allergic patients did not react 

with paramyosin from abalone heated extract, and paramyosin was therefore 

also referred to as a heat-labile allergen [72]. This protein also seems to be 

pH-labile and aggregates during extraction if using extraction buffers 

containing low salt concentration. This aggregation of paramyosin during 

extraction indicates that this protein may have been overlooked in a previous 

study [74]. Interestingly, paramyosin showed cross-reactivity with tropomyosin 

as demonstrated by inhibition immunoblotting and inhibition ELISA [72]. Amino 

acid sequence analysis showed a region of paramyosin having up to 64% 

identity with a tropomyosin antibody binding epitope which could be 

responsible for the observed cross-reactivity.  
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1.4.3 Arginine kinase 
Arginine kinase is an enzyme that belongs to the phosphagen kinases family, 

and catalyses the reversible transfer of phosphoryl group ATP to arginine, 

yielding phosphoarginine and ADP. It is widely distributed throughout the 

invertebrate groups and found as a monomer, although some dimeric arginine 

kinases have been observed [88]. The structure of arginine kinase is mainly α-

helical and contains an N-terminal region with a specificity loop for specific 

substrate binding (Figure 1-2).  

 

Arginine kinase is the third mollusc allergen that has been characterised. It 

was identified from Octopus fangsiao in 2012 by Shen et al. [78]. The protein 

was purified and further identified using mass spectrometry. The 

immunological activity was characterised using immunoblotting, IgE inhibition 

immunoblotting assay, and inhibition ELISA. The allergen has a molecular 

weight of approximately 38 kDa, and the amino acid sequence is 54% similar 

to that of arginine kinase from crustaceans. Further investigation showed that 

octopus arginine kinase has a similar structure to that of crab, and cross-

reactivity occurred after immunoblotting analysis. However, unlike heat-stable 

tropomyosin, arginine kinase allergenicity was reduced after thermal and pH 

treatment. Vertebrate creatine kinase is a homologous protein to arginine 

kinase and possesses similar functions. Sequence analysis of those proteins 

concluded that they are derived from a common origin. Similar to tropomyosin, 

arginine kinase has high potential to be allergenic since the similarity with its 

human homolog is relatively low, with below 39%. 

 

1.4.4 Less characterised allergens  
While only tropomyosin, paramyosin and arginine kinase have been confirmed 

to be allergenic in molluscs, this does not mean that additional proteins cannot 

evoke an allergic reaction. Indeed, many unknown proteins have been 

reported to elicit hypersensitivity. The common whelk Buccinumun datum was 

found to have several IgE binding proteins with molecular weights of 40, 71, 

and 82 kDa. These proteins were heat-stable but demonstrated rapid 
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degradation in simulated intestinal fluid and moderate degradation in simulated 

gastric fluid. Similarly, various proteins from the brown garden snail Helix 

aspersa were found to bind IgE from allergic patient sera [71].  

 

Currently, the identification of allergens employs more sophisticated methods, 

owing to the growing number of allergen databases and low-cost DNA 

sequencing. The Codex Alimentarius has established a step-by-step guide for 

the identification of potentially allergenic proteins, and subsequent 

characterisation is to be registered with the IUIS (www.allergen.org.). A protein 

with 35% similarity within 80 amino acids sequences and 6-8 contiguous amino 

acids identity with known protein is considered as a potential allergen [89]. This 

approach has been used recently to identify putative allergens in chickpea [90] 

and Johnson grass pollen [91]. 

 

1.5 Effect of Food Processing on Mollusc Allergens 
Empirical studies demonstrate that mollusc allergen, raw or heat treated, can 

evoke immune responses in allergic individuals. Tropomyosin withstands 

extended heat processing [92, 93] and may retain its allergenicity up to 60 min 

in simulated gastric fluid [73]. However, little information is available on the 

effect of processing on allergenicity of mollusc. In a comparative study by 

Kamath, Abdel Rahman [93] raw and heated protein extracts of seven mollusc 

species (green mussel, blue mussel, scallop, oyster, sea snail, octopus and 

squid) were analysed by immunoblotting with a monoclonal anti-tropomyosin 

antibody. The antibody only binds to the heated proteins, but not to the 

unheated protein, indicating that some conformational changed occurred 

during heating, allowing the antibody to bind to this allergen. 

 

Another reason for this differential binding activity could be binding of reducing 

sugar moieties at a higher temperature to proteins, causing the phenomena 

called Maillard reaction. Mollusc tropomyosin is known to contain high 

amounts of lysine (9% of total amino acid) [66, 75], and this amino acid can 

easily react with reducing sugar moieties. The Maillard reaction enhances the 



 

20 
 

IgE- binding ability of tropomyosin from scallop by changing the structure of 

the protein [94]. However, conflicting results were found for squid [95]; when 

squid tropomyosin reacted with ribose, the antibody binding reactivity of 

tropomyosin was reduced. These results suggest that the effect of Maillard 

reaction on allergenicity of molluscs seems to be species-dependent. 

Furthermore, the amino acid homology of tropomyosin between squid and 

scallop is only 67%, and 21% of lysine residues are present at different 

positions. Since amino acid composition plays an important role in tropomyosin 

IgE-binding epitope, alteration of these amino acids could change the reactivity 

of IgE against tropomyosin. As for other mollusc allergens, arginine kinase and 

paramyosin, heat treatment diminished their allergenicity. Arginine kinase and 

paramyosin develop structural changes after heat treatment, and both 

allergens became insoluble [72, 78].  

 

The effect of processing on the structure of allergens was prominent in the 

study of Jin, Deng [96] where they used high hydrostatic pressure to induce 

structural modification of squid tropomyosin Tod p 1. The tropomyosin α-helix 

portion was greatly reduced, and up to 53% of α-helix was converted to β-

sheet and random coils, making tropomyosin ease digestibility. These 

structural changes seem to affect the recognition of IgE antibody against the 

protein, at least in the laboratory setting. Other processing technologies such 

as Gamma irradiation reduced the amount of tropomyosin in squid, octopuses, 

and cuttlefish [97]. 

 

1.6 Cross-Reactivity of Allergens 
Allergenic cross-reactivity is often described in medical reports. Cross-

reactivity occurs between allergens derived from different sources that share 

similar IgE-binding regions on the proteins [98]. Tropomyosin has been shown 

to be a major pan-allergen among crustacean [99], and conserved regions of 

the IgE-binding epitope of tropomyosin have been well characterised from 

prawns [100]. Some of these epitopes seem to be similar in mollusc 

tropomyosin. Tropomyosin has a linear conformation, meaning the primary 
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structure similarity, or amino acid sequence is of great importance in 

determining the degree of cross-reactivity between different shellfish species. 

This is quite different from other more complex proteins, where conformational 

IgE binding epitopes are more important [101].  

 

There are only three publications from one research group specifically 

reporting the IgE-binding epitope of mollusc tropomyosin [66, 75, 102]. The 

IgE epitope regions on mollusc tropomyosin were determined by using 

protease digestion followed by a competitive ELISA inhibition assay. Protease 

digestion methods, however, have limitations in terms of uncontrolled cutting 

site, the size of peptides and quantity of peptides generated [103]. Indeed, the 

results of these methods are not very convincing in regards that the single 

epitope determined in the mollusc ‘horned turban’ could not answer the 

occurrence of possible cross-reactivity with other shellfish species. 

Furthermore, to elicit cross-linking of IgE antibodies on mast cell and/or 

basophil-bound IgE, the allergenic proteins needs to have multiple IgE-binding 

sites to initiate degranulation and release of mediators [104]. Further studies 

need to explore the multiple IgE-binding epitopes on molluscan allergens 

utilising more sophisticated methodologies, including the use of overlapping 

peptides. Indeed, those techniques have been successfully applied for 

crustacean allergens, including arginine kinase, myosin light chain and 

sarcoplasmic calcium binding protein [105-108].  

 

1.6.1 Within the mollusc group 
Immunological cross-reactions within mollusc species are often observed in 

allergic individuals. Using serum of shellfish allergic patients, Motoyama, 

Ishizaki [77] determined IgE cross-reactivity between 10 species of 

cephalopod and established cross-reaction in all species tested. Similar results 

were also obtained for four species of gastropods (disc abalone, turban shell, 

whelk, and Middendorf’s buccinum) and seven species of bivalves (bloody 

cockle, Japanese oyster, Japanese cockle, surf clam, horse clam, razor clam, 

and short neck clam) using serum from 10 shellfish allergic patients [74]. In a 
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clinical study, 17 patients demonstrated positive RAST test to abalone, 

however ten of them had positive reactions to snail by RAST [69]. Moreover, 

the anti-abalone tropomyosin monoclonal antibody did not react with other 

mollusc species, including squid, oyster and octopus, yet reacted with 

crustaceans and chicken, confirming the epitope difference within the mollusc 

group. Carrillo, Castillo [109] reported seven patients with food allergy to squid 

and shrimp; however, the patients did not show allergic symptoms to octopus 

or other molluscs.  

 

Several survey-based prevalence studies demonstrated cross-reactivity or co-

sensitisation in allergic individuals. Among the individuals surveyed for mollusc 

allergy, 34 individuals reacted to just one species, 13 individuals to two 

species, 5 individuals to three species, and 15 individuals to all four mollusc 

species, including scallops, clams, oysters and mussels [21]. A retrospective 

analysis of three allergy clinics in the Texas Medical Center reported allergy to 

mollusc in 7 individuals, and 16.7% were allergic to more than one species 

[110]. Wu and Williams [111] calculated the probability of having a positive skin 

test to 5 mollusc species analysed, with 70 patients including 28 patients who 

reported severe anaphylaxis history. Cross-sensitization was demonstrated 

within the same group of mollusc, as limpet and abalone are gastropods and 

oyster, clam and scallop are bivalves. This cross-reactivity could apparently be 

related to the similarity of tropomyosin proteins within the group, however 

detailed molecular analysis of these proteins had not been conducted.  

 

This inconsistently reported cross-reactivity raises a question as to whether 

tropomyosin is the only major allergen in molluscs. Even though tropomyosin 

is a major mollusc allergen and structurally similar among different species, 

the overall amino acid sequence of mollusc tropomyosins can differ up to 35%. 

The identity varies between each mollusc group, with higher identities are 

noticed between species within the same groups. Cephalopods, including 

octopus, squid and cuttlefish, share relative high amino acid homology with 

91%-100% in their tropomyosin sequence, while gastropods, including snail, 
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abalone, and whelk, share only 77%-97% and bivalve share 67%-100% 

similarity. The molecular phylogenetic tree analysis gives a more obvious 

picture of how tropomyosin is more conserved among species within a related 

phylogenetic group (Figure 1-3). Nevertheless, patients identified to be allergic 

to one type of mollusc are often told to avoid other mollusc species. 

 

1.6.2 Between mollusc and crustacean 
Allergic cross-reactivity between mollusc and crustacean is not very well 

defined. Although it is believed that there is a high degree of cross-reactivity 

between mollusc and crustacean due to a similar major allergen, only few 

studies address this issue. In a retrospective review of seafood allergic patient 

data from three allergy clinics in the Texas Medical Centre, Khan, Orson [110] 

reported only 10.1% of 103 patients demonstrated hypersensitivity towards 

both, molluscs and crustaceans. This co-sensitisation is lower compared to 

hypersensitivity within the mollusc and crustacean groups, with 16.7% and 

37.5%, respectively. Similar data were also reported by Sicherer, Muñoz-

Furlong [21], based on a telephone-based survey conducted in the United 

States, where only 14.1% of shellfish allergic patients reported allergy to both 

molluscs and crustaceans. Conversely, the serological analysis demonstrates 

high cross-sensitisation between mollusc and crustacean. An early study 

showed significant RAST and skin prick test reactivity to oyster in shrimp-

allergic subjects [112]. In another study, Wu and Williams [111] found 27 out 

of 84 patients who underwent skin testing sensitive to both molluscs and 

crustaceans. Nonetheless, most of the studies are based on molecular and 

immunological findings and not necessarily on clinical reactivity. Furthermore, 

cross-reactivity occurs when the patients have high titre IgE against 

tropomyosin as demonstrated by a study of Vidal, Bartolomé [113]. Limited 

cross-reactivity between crustacean and mollusc is partly due to variation of 

the amino acid sequence in the IgE-binding regions (Figure 1-4). Shrimp 

tropomyosin has six IgE-binding regions which can be used as biomarkers for 

clinical shrimp allergy reaction [108, 114]. Alignment of the amino acid 
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sequences in these regions with mollusc tropomyosins showed only one 

identical sequence in the position of 248-260.  
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Figure 1-4 IgE-binding regions of tropomyosin from three species of molluscs: oyster, horned turban and octopus in 

comparison to crustaceans: brown shrimp and whiteleg shrimp. The IgE-binding regions in mollusc species are shaded in 

yellow and in crustacean are shaded in grey. The regions possibly responsible for cross-reactivity between those species are 

identified by solid boxes.  
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1.6.3 Cross-reactivity of mollusc with other invertebrates 
Cross-reactivity of mollusc and other invertebrates was firstly reported by 

Koshte et al. [115] in 1998, during the study of cross-reactions of inhalant 

insect allergen-IgE antibodies to cross-reacting carbohydrate determinants 

(CCD). They showed that sera from confirmed caddis fly allergic patients did 

not react with CCD-rich material but reacted with a protein in extracts of 

mussel, oyster, shrimp, crab as well as the honeybee and yellow jacket venom, 

similar to 13 kDa caddis fly allergen. Positive clinical cross-reactivity between 

molluscs and other invertebrates have been demonstrated in some 

populations. HDM-snail cross-reactivity was observed in patients receiving 

house dust mite (HDM) immunotherapy, although the identity of the problem 

is still unknown. A different study reported 76% of the patients were sensitised 

to snail ingestion at the start of HDM immunotherapy [116]. Skin prick testing 

of 169 children in France showed 31% of the children allergic to HDM were 

sensitised to snails [117]. The invertebrate pan-allergen tropomyosin seems 

only to be involved in a minority of the cases. In contrast, the HDM allergens 

responsible for the HDM-snail cross-reactivity may involve Der p 4, Der p 5, 

Der p 7, and hemocyanin [118].  

 

1.7 Diagnosis and Management of Mollusc Allergy 
Patients with mollusc allergy have often difficulty to identify the offending foods 

due to the high variety of mollusc species available. Furthermore, cross-

reactivity with crustacean species makes identification of the specific mollusc 

allergens more complicated. Moreover, clinical manifestations due to ingestion 

of toxin and parasite-contaminated mollusc foods are common and can 

resemble allergic reactions [119] make a diagnosis of mollusc allergy more 

challenging. Diagnosis of mollusc allergy is based on clinical history and is 

aided by a sensitisation-based assays such as skin tests and allergen-specific 

IgE tests. However, for many mollusc species, particularly outside Europe, 

there are no commercial assays preparations available. For example, for over 

250 edible molluscs, ImmunoCap specific IgE preparations are only available 

for 9 species. Moreover, the possibility of irrelevant in-vivo cross-sensitization 
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to other invertebrate species, e.g., house dust mites or crustaceans could 

affect the assays, resulting in false-positive results – especially in patients with 

poor clinical history. Unlike shrimp allergy, a convinced diagnostic tool for 

mollusc allergy that gives more than 95% probability of a positive oral food 

challenge is still lacking. Oral food challenges are the gold standard for food 

allergy diagnosis and are only performed in the case of the doubtful result 

between clinical history and blood diagnostics due to high risk of severe 

reactions.  

 

In a recent review, Lopata et al. [120] recommended seven steps to guide the 

diagnosis of shellfish allergy. Similar guidance in the form of a decision tree is 

suggested in this thesis for mollusc allergy, which includes non-immunological 

adverse reactions due to ingestion of a toxin or parasite-contaminated 

molluscs (Figure 1-5). Strict avoidance of mollusc containing food is currently 

the only recommended management of mollusc allergy, although the advice 

proposed should be based on proven clinical reactions. Patients are often 

advised to avoid all invertebrate species when they have a confirmed allergy 

to any shellfish. However, this advice may only be given if the patients are 

sensitised to the pan-allergen tropomyosin, as reported by Vidal et al. [113].  
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Figure 1-5 Diagnostic decision tree on how to proceed from the suspicion of mollusc-related allergic symptoms
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Currently, there is no immunotherapy available for mollusc allergy, however 

serological cross-reactivity of tropomyosin with crustacean provides the 

possibility of inducing tolerance to mollusc through desensitisation to shellfish 

tropomyosin. Two strategies are being developed for clinical management of 

shellfish allergy. The first strategy is to use hypoallergenic tropomyosin to 

induce and generate the production of blocking IgG antibodies. Hypoallergenic 

tropomyosins have recently been produced from Penaeus aztecus Pen a 1 

[121] and Metapenaeus ensis Met e 1 [122]. These hypoallergenic proteins 

were produced through either direct mutagenesis or deletion of IgE binding 

epitopes. However, unlike crustacean tropomyosin, where amino acid 

sequences are highly conserved, mollusc tropomyosin is quite variable, and 

their IgE-binding epitopes occur in different positions, thus development of a 

distinct hypoallergenic tropomyosin will be more challenging. Alternatively, 

peptide-based immunotherapy could be used as a safe and effective 

therapeutic strategy. Allergen-derived peptides would essentially be small in 

size, incapable of cross-linking IgE or activating effector cells, but contain the 

relevant CD4+ T cell epitopes. Allergen-specific T cells have been 

demonstrated to play an important role in allergic inflammation [123], and the 

conservation of T-cell epitope drives polysensitization of allergic patients to a 

broader range of allergen sources [124]. Given that specific tolerance could be 

established by induction of antigen-specific regulatory T cells or elimination of 

allergen-specific TH2 cells [125], the conserved T-cell epitopes of tropomyosin 

could be targeted to induce the desired tolerance.    

 

1.8 Conclusions 
With globalisation in the seafood-trading sector, many people have been 

introduced to and have consumed mollusc species that were previously 

unknown in the region. Cultural dietary habits and types of food processing 

can affect the prevalence of mollusc allergy in a specific region. For the latter, 

however, conflicting results are reported, and it seems that the effect of food 

processing on the allergenicity of mollusc allergens is species-specific. More 
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detailed biochemical and immunological studies are needed to fully 

understand the effect of processing on the allergenicity of mollusc allergens.  

The current diagnostic tools for mollusc allergy are based on few species 

distributed in the Northern Hemisphere and do not represent important species 

consumed in tropical and southern regions. Compared to crustacean allergy, 

mollusc allergy is far less studied, resulting in poor diagnosis and 

management. Current methods for the identification of mollusc allergens limit 

the discovery of new allergens, especially low-expressed proteins. The 

combination of advanced proteomic and genomic approaches in conjunction 

with bioinformatics will allow for the development of more sensitive and specific 

molecular tools for the quantification of mollusc allergens and development of 

improved diagnostics for better patient management.  
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2.1 Summary 
Shellfish allergy affects over 100 million people worldwide and unexpected 

clinical cross-reactivities are common; yet the underlying molecular cause is 

often unknown. Clinical reactions are due to the daily high exposure of 

individuals to molecular related inhalant allergens including dust-mites, 

cockroaches as well as stinging insects. Despite recent technological 

advances, novel allergen discovery is limited by the low abundance of 

particular allergenic proteins, the large diversity of allergen sources, and the 

high variability in patient IgE antibody reactivity due to study specific 

populations. Here we describe a comprehensive discovery pipeline for 

allergenic proteins from Pacific Oyster that accounts for biological and 

molecular variability using allergenomics, high-throughput screening of 

genomic databases and high-resolution mass spectrometry.  

 

Potential allergens were predicted from genome-derived proteome of Pacific 

oyster by enumerating homology searching based on protein family and 

sequential sequence alignment. The present of the potential allergens in the 

Pacific oyster extracts were detected using mass spectrometry and finally, to 

confirm allergenicity of the potential allergens, IgE immunoblotting using a pool 

serum of five shellfish allergic patient was applied.  

 

The comparative evaluation of the in silico bioinformatics analysis with the 

proteomic and allergenomic data generated, confirms that 24 proteins in the 

raw extract and 4 proteins in the heated extract were identified using all three 

methods. All proteins share high amino acid identity (>50%) with allergens 

from different organisms and with different routes of sensitisation. This rapid 

discovery of allergenic proteins will have significant impact on the current 

management of patients and the development of new strategies for 

immunotherapeutics. 
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2.2 Introduction 
Of the ‘Big eight’ allergen food groups, shellfish presents a unique challenge 

in terms of allergen discovery with the magnitude and diversity of consumed 

species, leading to heterogeneity of allergen structure and cross-reactivity 

among various sources. At present, 31 allergens in crustaceans have been 

officially registered in the WHO/IUIS Allergen Nomenclature Database as 

compared to 4 allergens in mollusk due to certain pitfalls in current allergy 

discovery approaches. Co-sensitisation of a patient with crustacean and 

mollusk allergy is often described, however, the current diagnostic approaches 

to managing these patients is not based on sufficient molecular knowledge of 

these shellfish allergens. 

 

Allergen characterization is the most important underlying factor for the design 

and development of novel hypoallergenic-based immunotherapy to induce 

tolerance in allergic individuals [1]. Current strategies for allergen identification 

are time- and resource-consuming, which are highly prone to missing hidden 

allergens present in low concentrations. Allergenic proteins are traditionally 

identified based on their IgE antibody recognition. Soluble proteins derived 

from whole protein preparations of a suspected allergen source are screened 

for IgE antibody binding proteins using sera from individuals with clinically 

confirmed allergy. The IgE binding proteins are then isolated and purified using 

chromatographic methods and identified using bio-analytical techniques 

including mass spectrometry. Recombinant forms of the target proteins are 

frequently generated and their IgE binding capacity confirmed using 

immunological assays. Although this approach is the current standard for 

allergen identification, there are three major drawbacks. Firstly, this approach 

often does not detect allergenic proteins present in low abundance. Secondly, 

cross-reactive allergens are not easily identified due to their possible presence 

in unrelated allergen sources. Thirdly, the IgE recognition patterns are highly 

dependent on the demographics of the particular allergic patient cohort under 

investigation. 
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Recent advances in the field of genomic, bioinformatics and proteomics have 

unlocked new opportunities for targeted high-throughput screening and 

identification of proteins in silico based on amino acid homologies, resulting in 

direct comparative analysis of similar allergens from comprehensive allergen 

databases [2-4]. Thus, the combinatorial approach using a specific organism’s 

genome data and comparison with a growing number of comprehensive 

allergen databases, immune-reactivity and high throughput protein sequence 

assessment can overcome the current limitations of allergen identification.  

 

In this chapter, an innovative strategy was employed for the identification of 

novel cross-reactive allergenic proteins in the Pacific Oyster, using a combined 

approach of transcriptomic, proteomic and allergenomic methodologies and 

high throughput screening of large databases for proteins in addition to specific 

allergens. The Pacific Oyster is frequently implicated in food-induced 

anaphylaxis [5], however, the offending allergenic proteins remain 

undiscovered. Currently, tropomyosin appears to be one allergen implicated in 

allergic reactions to the heated oyster, although clinical cross-reactivities with 

house dust mite indicate that other allergens might be involved in allergic 

reactions [6, 7]. 

 

 

 

 

 

2.3 Aims 
1. To develop an allergen identification pipeline by combining bioinformatics, 

proteomic and allergenomic approach.  

2. To discover potential allergenic proteins from the genome of Pacific oyster 

using bioinformatics approach. 

3. To identify the unreported allergens from Pacific oyster using the developed 

pipeline. 
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2.4 Material and Methods 
 
2.4.1 In silico identification of potential allergens from Pacific Oyster  
Bioinformatics approach was carried out to identify potential allergens of 

Pacific Oyster (Figure 2-1). For this purpose, two datasets were assembled. 

The first dataset contained a FASTA file of 25,982 genome-derived proteins of 

the Pacific Oyster [8] collected from the UniProt database (Proteome ID 

UP000005408, last modification October 9, 2016). The second dataset 

contained 2117 allergen sequences compiled from two main allergen 

databases:  the World Health Organization and International Union of 

Immunological Societies (WHO/IUIS) Allergen Nomenclature 

(http://www.allergen.org/) [9] and the Food Allergy Research and Resource 

Program (FARRP) (Version 16, http://www.allergenonline.org/ [10]). Genbank 

accession IDs of all allergenic proteins were collected from these databases, 

and the IDs uploaded in the Batch Entrez menu on the NCBI website to obtain 

the sequence of the protein and remove duplicate proteins. Prior to the 

sequence alignment, we filtered the oyster proteome by the Pfam domains 

containing allergens. The latest distribution of protein families from the allergen 

dataset was defined by running the hmmscan  program [11] against the Pfam 

database (version 29.0 [12]). The BLASTP program was employed to align the 

Pacific Oyster proteins and the repertoire of known allergens using a cut-off E-

value of 10-7 and sequence identity >50%.  
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Figure 2-1. Workflow for the identification of potential allergens from the 

Pacific oyster using bioinformatics analysis. In silico discovery of potential 

allergens based on protein sequence alignment, amino acid sequence identity 

≥ 50% with known allergens and E-values <10-7. 

 

 

2.4.2 Gene expression analysis of potential allergens in the Pacific 
Oyster  
The expression levels of potential allergen genes were analysed from the 

available RNA sequencing data from the oyster genome project [8]. The 

expression profiles were analysed from two developmental stages: spat and 

juvenile, and from ten adult organs, including the adductor muscle, the 

digestive gland, the female gonad, the male gonad, the gill, the hemocyte, the 

labial palp, the outer mantle, the inner mantle, and the remaining tissue. The 

expression levels were calculated by RPKM (Reads Per Kilobase of transcript 

per Million mapped reads). 
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2.4.3 Preparation of protein extracts 
Fresh oyster specimens were purchased from the local market and stored at -

20 °C prior to use. Protein extracts were prepared according to a method of 

Kamath et al. [13] with slight modification. The meat of the oyster was finely 

cut and homogenized in phosphate-buffered saline (PBS, pH 7.2) for 10 min, 

using an Ultra turrax homogenizer (IKA, Staufen, Germany). After gentle 

shaking at 4 °C for three h and centrifugation at 20,000 g for 20 min, 

supernatants were clarified through a glass fibre filter, followed by filtration 

through a 0.45 μm membrane filter (Sartorius AG, Goettingen, Germany) and 

stored at −80 °C until further use. To produce heated protein extracts, the meat 

was heated in PBS at 95-100 °C for 20 min instead of heating the raw extract, 

to mimic the way consumers are exposed to food allergens. The meat was 

removed after cooling, and the proteins were extracted using the same method 

as described above. The total protein content of the extracts was quantified 

using the bicinchoninic acid (BCA) assay (Thermo Scientific™, USA) following 

the manufacturer’s instructions. A pre-diluted set of bovine serum albumin was 

used as protein standards (Pierce™).  

 

2.4.4 Proteomic analysis of the Pacific oyster extracts 
Proteomic analysis of the Pacific Oyster raw and heated extracts was identified 

after trypsin in-gel digestion as described in Figure 2-2. Briefly, 20 µg of the 

extracts were loaded onto a 12% polyacrylamide gel and run at 170 V for 1 h. 

The gels were cut into pieces and washed with 25 mM ammonium bicarbonate 

(AMBIC). After being dried using a vacuum dryer, the gels were reduced by 20 

mM dithiothreitol (DTT) at 65°C for 1 h and alkylated with 50 mM 

iodoacetamide for 40 min at 37°C in the dark. Gel pieces were washed and 

dried using a SpeedVac. Dried gel pieces were rehydrated with 20 ng/µl of 

trypsin for 1 h at room temperature and subsequently incubated overnight at 

37°C. The digested proteins were acidified using 0.1% formic acid and the 

peptides were concentrated on a SpeedVac and subjected to Liquid 

chromatography tandem-mass spectrometry (LC-MS/MS) analysis.  
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Figure 2-2. Workflow for the identification of all proteins present in the extracts 

of Pacific oyster. The proteins were separated using 1D SDS-PAGE, tryptic-

digested and identified using mass spectrometry.  

 

 

2.4.5 Patient selection 
Five subjects with a convincing clinical history of allergic reactivity to shellfish 

(Table 2-1) and one non-atopic subject were recruited from The Alfred Hospital 

Allergy Clinic, Melbourne, Victoria, Australia. Skin prick testing and oral 

challenge with mollusc extracts were not conducted routinely in these patients, 

in keeping with the clinicians’ preference for safer serum specific allergen IgE 

testing in adult patients due to comorbidities, together with the clinical history 

of reactions on exposure. Ethics approval for this study was granted by James 

Cook University’s Ethics Committee (Project number H4313) in collaboration 

with The Alfred Hospital (Project number 192/07) and Monash University’s 

Ethics Committees (MUHREC CF08/0225). 
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Table 2-1 Demographics of patients recruited for this study. Note: NT=Not 

Tested. 

Subject Sex Age 
Total 
IgE 

Specific IgE 
(ImmunoCAP) 

kU/L 
Other 

Allergies 
Oyster Shrimp HDM 

1 M 50 976 2.04 9.03 13.60 Tuna, Cod 

2 F 28 461 0.11 0.36 54.8 NT 

3 M 43 194 NT 1.41 0.35 NT 

4 F 38 28 3.75 9.82 2.66 NT 

5 M 38 183 1.04 6.84 31.70 NT 

 

 

2.4.6 Allergenomic analysis of the Pacific oyster extracts 
Allergenomic analysis of the Pacific oyster extracts was described in the Error! 
Reference source not found.. Proteins were first lyophilized and 

resuspended in a 8 M urea, 2% CHAPS, 50 mM DTT and 0.2%(w/v) Biolyte 

3/10 ampholytes buffer. The extract was subjected to isoelectric focusing using 

a 3–10 NL pH range 12% ReadyStrip™ IPG Strips (Bio-Rad, USA), as per the 

manufacturer’s instructions. Briefly, 185 µl of rehydration buffer containing 200 

µg of raw extract or 100 µg of the heated extract was loaded on to the IPG 

tray, and a strip was gently placed side down on to the sample and left to 

incubate overnight at room temperature. Isoelectric focusing was conducted 

using a PROTEAN IEF cell (Bio-Rad, USA) with a maximum current of 50 

μA/strip. After focusing, the IPG strips were equilibrated with equilibration 

buffer (ES) 1 and ES 2. The ES 1 contained 6 M urea, 2% SDS, 20% glycerol, 

0.375 M Tris-HCl pH 8.8 and 2% (w/v) DTT, and the ES 2 contained the same 

solution as ES 1 except it contained 4% iodoacetamide instead of DTT. The 

strip was then washed with SDS-PAGE running buffer and laid on top of a 12% 

polyacrylamide gel. The gels were run at 170 V until bromophenol blue dye 

reached the bottom of each gel. Gels were either stained with Coomassie 

Brilliant Blue R-250, or the separated proteins were transferred to 
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polyvinylidene difluoride (PVDF) membrane.  Protein transfer was performed 

using the Semi-dry TransBlot Apparatus (BioRad, USA). After blocking with 

5% (w/v) skim milk powder in phosphate buffered saline with 0.05% Tween 

(PBS-T), the membrane was incubated with a serum pool from five shellfish-

allergic patients at a 1:20 dilution overnight at 4°C with shaking. The 

membrane was subsequently incubated with 1:10.000 dilution of rabbit anti-

human IgE (Dako, France) followed by 1:10.000 dilution of horseradish 

peroxidase-conjugated goat anti-rabbit antibodies (Promega, USA). Specific 

IgE binding was detected by chemiluminescence and exposed to photographic 

film (GE Healthcare Biosciences, USA) to visualize the antibody-binding 

protein spots. Serum from a non-atopic donor was used as a negative control. 

IgE reactive spots were annotated using the proteome map, and 

corresponding bands were cut, tryptic digested and analysed using mass 

spectrometry. 
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Figure 2-3. Workflow for the identification of IgE-reactive proteins from the 

extracts of Pacific oyster. IgE-reactive proteins were identified by 2D-

immunoblotting and subsequent LC-MS/MS. 
 

 

2.4.7 Mass Spectrometry Analysis  
The LC-MS/MS was carried out on an LTQ Orbitrap Elite (Thermo Scientific) 

with a nano ESI interface in conjunction with an Ultimate 3000 RSLC nano-

HPLC (Dionex Ultimate 3000) at the Bio21 Institute, Melbourne. The LC 

system was equipped with an Acclaim Pepmap nano-trap column (Dionex-

C18, 100 Å, 75 µm x 2 cm) and an Acclaim Pepmap RSLC analytical column 

(Dionex-C18, 100 Å, 75 µm x 50 cm). The tryptic peptides were injected into 

the enrichment column at an isocratic flow of 5 µL/min of 3% v/v CH3CN 

containing 0.1% v/v formic acid for 5 min before the enrichment column was 

switched in-line with the analytical column. The eluents were 0.1% v/v formic 

acid (solvent A) and 100% v/v CH3CN in 0.l% v/v formic acid (solvent B). The 
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flow gradient was (i) 0-5 min at 3% B, (ii) 5-25 min, 3-25% B (iii) 25-27 min, 25-

40% B (iv) 27-29 min, 40-80% B (v) 29-31 min at 80% B (vii) 31-32 min, 80-

3% B and (viii) 32-38 min at 3% B. The LTQ Orbitrap Elite spectrometer was 

operated in the data-dependent mode with nanoESI spray voltage of 1.8 kV, a 

capillary temperature of 250°C and S-lens RF value of 55%. All spectra were 

acquired in positive mode with full scan MS spectra from m/z 300-1650 in the 

FT mode at 240,000 resolution. Automated gain control was set to a target 

value of 1.0-6, and a lock mass of 445.120025 was used. The top 20 most 

intense precursors were subjected to rapid collision induced dissociation 

(rCID) with a normalized collision energy of 30 and activation q of 0.25. A 

dynamic exclusion of 30 seconds was applied for repeated precursors.  

 

2.4.8 Protein Identification 
All MS/MS files were analysed using Mascot v2.4 against the in-house 

database of the oyster proteome downloaded from the UniProt, supplemented 

with the common Repository of Adventitious Proteins sequences. Search 

parameters were as follows: precursor mass tolerance of 200 ppm, fragment 

mass tolerance of 0.6 Da (CID). Carbamidomethyl (C) was set as a fixed 

modification and oxidation (M) and deamidated (NQ) were set as variable 

modifications. Trypsin with a maximum of 3 missed cleavages was used as 

the cleavage enzyme. Scaffold (version Scaffold_4.7.3, Proteome Software 

Inc., Portland, OR) was used to validate MS/MS based peptide and protein 

identifications. Peptide identifications were accepted if they could be 

established at greater than 95.0% probability by the Peptide Prophet 

algorithm[14] with Scaffold delta-mass correction. Protein identifications were 

accepted if they could be established at greater than 99.0% probability and 

contained at least two identified peptides. Protein probabilities were assigned 

by the Protein Prophet algorithm[15]. Proteins that contained similar peptides 

and could not be differentiated based on MS/MS analysis alone were grouped 

to satisfy the principles of parsimony. Proteins sharing significant peptide 

evidence were grouped into clusters.  
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2.5 Results 
 
2.5.1 Potential allergens of the Pacific oyster  
Promising allergen candidates were selected by enumerating proteins in the 

first dataset that contain allergen protein domains. These domains were 

detected by interrogating Hidden Markov Models (HMM) profiles using 

HMMER3 [11]. The allergen protein domains were derived from the Pfam 

database version 29.0 [12] and accounted only 273 domains or merely 2% of 

total 16,295 protein domains specified in the Pfam database. The distribution 

of allergen family was highly biased toward a few protein families with ten most 

abundant families represented nearly 50% of all documented allergenic 

molecules. Among animal allergens, tropomyosin is the most dominant protein 

family followed by EF-hand protein family. Using HMMER3 2,504 Pacific 

Oyster proteins were associated to at least one of the allergen protein 

domains. These proteins were distributed into 186 families 

 

Subsequently, these candidates were submitted to BLASTP program [16] to 

identify proteins that were homologous to the allergens in the second dataset. 

A minimum of 50% shared identity [17] and an upper threshold of E = value of 

10-7 [18]  were used as display limits of alignment. Using these two criteria, 95 

proteins that have a significant identity with known allergenic proteins were 

identified. These 95 proteins were categorized two groups based on the 

percentage of the amino acid identity with known allergens. Twenty-two 

proteins were categorized as “very likely allergenic” and 73 proteins were 

“likely allergenic” (Figure 2-4).  

 

Very likely allergenic – Twenty-two proteins were grouped into this cluster due 

to their high identity (>70%) with known allergens. Eighteen out of 22 very likely 

allergenic proteins shared high identity with the allergens from related 

invertebrate species including mollusc, crustacean, mosquito, and mite. 

Meanwhile, the other four very likely allergenic proteins shared with allergens 

from fish and plant.  
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Likely allergenic – The seventy-three proteins in this cluster displayed amino 

acid identity between 50% and 70%. Unlike the first cluster, proteins in this 

likely allergenic group shared identity with known allergens from many 

mollusc-unrelated sources, including fungi, pollens, and plants. 

 

Functional annotations of the potential allergens were conducted using DAVID 

[19]. DAVID functional annotation clustering measures annotation terms by the 

degree of their co-association; highly similar annotations are clustered into 

functional annotation groups. Seventy five oyster potential allergens could be 

mapped to an internal DAVID ID and grouped into 4 clusters including the 

Gene Ontology terms “isomerase” (enrichment score 8.72, maximum count 9, 

p-value 9.4E-13), “heat-shock protein 70” (enrichment score 4.15, maximum 

count 5, p-value 1.5E-7), “Alpha-tubulin” (enrichment score 2.38, maximum 

count 3, p-value 2.1E-4) and “Redox-active center” (enrichment score 2.01, 

maximum count 3, p-value 5.1E-4).  

 

2.5.2 Expression profiles of potential allergens 
A comprehensive analysis of the expression of allergen genes across different 

developmental stages and in various tissues was conducted based on 

transcriptomic data from the oyster genome project [8]. As illustrated in Figure 

2-5, potential allergens were differentially expressed across developmental 

stages and various tissues of the Pacific Oyster. In general, as well as 

structural proteins being more highly expressed compared to enzymes, the 

expression of enzyme-encoding genes was also consistent between spat, 

juvenile and adult. The structural muscle proteins were generally more highly 

expressed in the spat, compared to juvenile, and have varying levels of 

expression in the different tissues of adults. Twenty-four out of 95 Pacific 

oyster potential allergens were expressed during spat stages and gradually 

down-regulated during further development. Similarly, fourteen proteins were 

expressed higher in juvenile than in the spat or adult tissues. Four proteins 

including two arginine kinases (CGI_10024056 & CGI_10021480), tubulin 
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alpha-3 chain (CGI_10018930) and heat shock protein 68 (CGI_10002823) 

and were male-specific proteins. 

 

 

 
Figure 2-4.. In silico analysis identified 22 proteins as “very likely allergenic” 

(aa identity ≥70%) and 73 proteins as “likely allergenic” (aa identity ≥ 50%,  and 

≤70%).   
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Figure 2-5. The expression levels of the “very likely allergenic” proteins were 

different across development stages and organs of the Pacific Oyster. 
 

 

2.5.3 Analysis of the Pacific oyster proteome  
Protein compositions of the Pacific oyster extracts were identified using a 

bottom-up mass spectrometry approach. The proteins were separated on an 

SDS-PAGE gel, cut into small pieces and tryptic digested (Figure 2-6). The 

peptide mixtures were then subjected to LC-MS/MS analysis, generating a 

total of 81831 spectra for the raw extract and 88130 spectra for the heated 

extract. Mascot searches were conducted against Pacific oyster proteomes, 

and the identified proteins were validated by Scaffold (version Scaffold_4.7.3) 
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using the criteria that at least two peptides were present with a 99.0% 

probability. In total Scaffold identified 1,086 proteins from raw extract and 130 

proteins from the heated extract, with 103 proteins being shared between both 

extracts. A quantitative measurement of protein abundance, based on the 

exponential modified protein abundance index (emPAI), showed that 

sarcoplasmic calcium binding protein, arginine kinase, and fatty acid binding 

protein were the three most abundant proteins in the raw extract, while 

sarcoplasmic calcium binding protein, tropomyosin and myosin light chain 

were the most abundant in the heated extract (Figure 2-7). Meanwhile, gene 

ontology analysis of the identified proteins showed the number of proteins 

involved in catalytic activity were greatly reduced after heat treatment while 

binding proteins became dominant (Figure 2-8).  

 

 

 
 

Figure 2-6. Identification of total proteins from the Pacific oyster extracts. (A). 
The gels were cut into pieces and digested using trypsin and total proteins 

were identified. (B). Venn diagram shows shared proteins between raw 

(N=1,086), heated (N= 130).  

 

 



 

60 
 

 

 
Figure 2-7. A quantitative measurement of protein abundance based on the 

exponential modified protein abundance index (emPAI).  

 

 

2.5.4 Identification of IgE-reactive proteins in the Pacific oyster 
The next step of the technique involved allergenomics where IgE-binding 

proteins were identified using a serum pool from five mollusk allergic patients. 

Protein extracts from raw and heated Pacific Oyster were separated by two-

dimensional electrophoresis, and either stained using Coomassie Blue or 

transferred to PVDF membranes for IgE antibody recognition by 

immunoblotting (Figure 2-9). Twenty-two IgE-reactive spots were excised from 

the resolved raw oyster extract and five spots from the heated extract, followed 

by in-gel tryptic digestion and analyzed using mass spectrometry. A total of 

332 and 26 proteins identified in the IgE-reactive spots of the raw and heated 

extracts, respectively. Due to the complexity of the proteins in the extract, 

multiple proteins were revealed in single spots, with one spot contained up to 
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104 proteins. Additionally heterogeneity of the proteins probably caused by 

gene polymorphisms, alternative splicing, or post-translational modifications 

[20] were discovered with 62 proteins were found in two spots. However, two 

proteins including retinal dehydrogenase I and filamin were identified in more 

than 16 spots. Meanwhile, in the heated extract, only retinal dehydrogenase I 

was identified in multiple spots. Nonetheless, many of these spots were 

dominated by one or two proteins (Figure 2-10). For example, spot number 1, 

4, 5 and 19 in the raw extract were dominated by a single protein called 

tropomyosin (80%), 60 kDa heat shock protein (55%), 78kDa glucose 

regulated protein (49%) and glyceraldehyde-3-phosphate dehydrogenase 

(74%), respectively, meanwhile spots in the heated extract were dominated by 

tropomyosin, except spot number 26 where myosin regulatory light chain A 

was the dominant protein (49%).
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Figure 2-8. Gene ontology analysis of total proteins identified in the raw and heated extracts. The bar plots show the top 5 

terms of molecular function, cellular component and biological processes. 
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Figure 2-9. Separation of proteins based on isoelectric point using 2D-PAGE. (A) Raw and heated extracts were separated 

by 2D-PAGE (pH 3 - pH 10, Non-Linear) and stained with Coomassie Brilliant Blue. (B) Separated proteins were transferred 

to PVDF membrane followed by incubation with serum of pool of five patients with mollusc allergy. Spot numbers indicated 

on the gel were subjected to mass spectrometry analysis.  
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2.5.5 Identification of unreported allergens of Pacific oyster 
Unreported allergens of the Pacific oyster was determined by comparative 

evaluation of the in silico bioinformatics analysis with the proteomic and 

allergenomic data. From 95 potential allergenic proteins identified by the in 

silico, 44 proteins were detected in the proteome analysis of the Pacific oyster 

extracts. We further analysis these proteins by comparing with the repertoire 

of proteins identified in the IgE-reactive spots and found 24 proteins were 

identified in the three methods used, with four of these only identified in the 

heated extract (Figure 2-11 and Table 2-2). These 24 proteins including 

tropomyosins, triosephosphate isomerases, enolases, glyceraldehyde-3-

phosphate dehydrogenase, 78kDa glucose regulated protein, fructose-

bisphosphate aldolases, heat shock protein HSP 90-alpha 1, retinal 

dehydrogenases 1, aldehyde dehydrogenases, transaldolase, arginine kinase, 

inorganic pyrophosphatase, stress-70 protein, endoplasmin, protein disulfide-

isomerases, peptidyl-prolyl cis-trans isomerase, malate dehydrogenase and 

paramyosin. The tropomyosins and retinal dehydrogenases 1 were also 

identified in the heated extract. All proteins share high amino acid identity 

(>50%, E-value < 10-10) with allergens from different organisms and with 

different routes of sensitisation.  
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Figure 2-10. Overview of protein abundance in each IgE-reactive spot. (A) the 

exponentially modified protein abundance index (emPAI) values (%) of the 

identified proteins within a 2-DE spot. (B) The bar plot shows the number of 

proteins contribute to over 50% of the total emPAI in each spot.  

A 

B 
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Figure 2-11. Venn diagram displaying proteins shared by the bioinformatics, 

the allergenomic and the proteomic approach. Numbers of proteins shared by 

the three methods are coloured in red. Twenty-four proteins in the raw extract 

and four proteins in the heated extract were identified across all three methods.



 

 

67 

Table 2-2. Proteins identified across all three methods with their matched allergens source and routes of sensitization. 

Proteins identified in both raw and heated extract are shaded. The proteins are sorted based on amino acid sequence identity 

with their homologous allergens in descending order.  

No Entry Protein name 

Homologous 
allergen in 

IUIS 
database* 

Amino 
Acid 

identity 
(%) 

Overlap 
(AA) 

E-value Organism 
Route of 

sensitisation 
Source 

1 B7XC66 Tropomyosin Hel as 1 75.7 284 4.00E-133 
Helix aspersa 

(Brown garden snail) 
Ingestion Animal 

2 K1PCV6 
Triosephosphate 
isomerase 

Cra c 8 74.03 77 2.00E-41 
Crangon crangon 

(North sea shrimp) 
Ingestion Animal 

3 K1PJ59 
Triosephosphate 
isomerase 

Der f 25 73.37 169 6.00E-92 

Dermatophagoides 

farinae  

(House dust mite) 

Inhalation Animal 

4 K1QX37 Enolase Thu a 2 72.83 357 0 
Thunnus albacares 

(Yellowfin tuna) 
Ingestion Animal 

5 K1Q350 
Glyceraldehyde-3-
phosphate 
dehydrogenase  

Tri a 34 71.21 330 7.00E-173 
Triticum aestivum 

(Wheat) 
Ingestion Plant 

6 Q75W49 
78kDa glucose 
regulated protein 

Cor a 10 71.04 618 0 
Corylus avellana 

(European hazelnut) 
Inhalation Plant 
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7 K1QTC1 Paramyosin‡ - 68.59 799 0 

Haliotis discus 

discus  

(Abalone) 

Ingestion Animal 

8 K1R8R6 
Fructose-
bisphosphate 
aldolase 

Sal s 3 67.31 364 4.00E-177 
Salmo salar (Atlantic 

salmon) 
Ingestion Animal 

9 K1RTQ6 
Fructose-
bisphosphate 
aldolase 

Sal s 3 66.67 363 1.00E-178 
Salmo salar (Atlantic 

salmon) 
Ingestion Animal 

10 K1PNQ5 
Heat shock 
protein HSP 90-
alpha 1 

Asp f 12 66.26 412 0 
Aspergillus 

fumigatus 
Inhalation Fungi 

11 K1QNV6 Tropomyosin Tod p 1 65.31 271 3.00E-84 
Todarodes pacificus  

(Squid) 
Ingestion Animal 

12 K1R266 
Retinal 
dehydrogenase 1 

Tyr p 35 61 472 1.00E-170 

Tyrophagus 

putrescentiae 

(Storage mite) 

Inhalation Animal 

13 K1QNT7 
Aldehyde 
dehydrogenase, 
mitochondrial 

Tyr p 35 60 482 1.00E-180 

Tyrophagus 

putrescentiae 

(Storage mite) 

Inhalation Animal 
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14 K1QVK0 Transaldolase Fus p 4 59.2 326 1.00E-125 
Fusarium 

proliferatum 
Inhalation Fungi 

15 K1QVG5 
Retinal 
dehydrogenase 1 

Tyr p 35 59 474 1.00E-169 

Tyrophagus 

putrescentiae 

(Storage mite) 

Inhalation Fungi 

16 K1PLF9 Arginine kinase Bomb m 1 59.13 345 3.00E-147 
Bombyx mori 

 (Slik moth) 
Ingestion Animal 

17 K1Q3F4 
Inorganic 
pyrophosphatase 

Der f 32 58.24 261 1.00E-113 

Dermatophagoides 

farinae  

(House dust mite) 

Inhalation Animal 

18 K1Q9Z4 
Aldehyde 
dehydrogenase 

Tyr p 35 56 195 8.00E-65 

Tyrophagus 

putrescentiae 

(Storage mite) 

Inhalation Animal 

19 K1P9D0 
Stress-70 protein, 
mitochondrial 

Pen c 19 55.22 431 3.00E-163 Penicillium citrinum Inhalation Fungi 

20 K1QX26 Endoplasmin Asp f 12 54.04 198 9.00E-61 
Aspergillus 

fumigatus 
Inhalation Fungi 

21 K1Q7T5 
Protein disulfide-
isomerase  

Alt a 4 52.27 44 3.00E-11 Alternaria alternata Inhalation Fungi 

22 K1Q5P7 
Peptidyl-prolyl 
cis-trans 
isomerase  

Cat r 1 52.17 161 5.00E-53 

Catharanthus roseus 

(Madagascar 

periwinkle) 

Inhalation Plant 
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23 K1R4Z3 
Malate 
dehydrogenase, 
mitochondrial 

Mala f 4 51.43 280 1.00E-91 Malassezia furfur Inhalation Fungi 

24 K1Q6X5 
Protein disulfide-
isomerase 

Alt a 4 50 68 1.00E-15 Alternaria alternata Inhalation Fungi 

 

* Only homologous allergen with the highest identity showed 
‡ No paramyosin currently registered in IUIS database. The alignment was determined against allergens from AllergenOnline 

database  
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2.6 Discussion 
Pacific oyster belongs to bivalve group in mollusc phylum and often referred 

as shellfish in general term. Shellfish allergy affects over 100 million people 

worldwide, and unexpected clinical cross-reactivities are common, yet the 

underlying molecular cause is often unknown. Clinical reactions are due to the 

daily high exposure of individuals to molecular related inhalant allergens 

including dust-mites, cockroaches as well as stinging insects. Shellfish 

allergens are often identified from heat-treated extract to mimic the way of 

people consume the shellfish. However, unlike other shellfish species, oysters 

are mainly consumed as raw food and in a whole form. This consumption style 

implies heat-labile and –stable allergenic proteins could induce allergy 

reactions without being affected by pre-processing of the oyster. This chapter 

demonstrates a comprehensive identification of the unreported allergens from 

Pacific oyster using a combinatorial approach of bioinformatics, proteomics 

and allergenomics.  

 

Identification of allergens has transformed into more sophisticated methods, 

thanks to the growth of the allergens database and cheaper next-generation 

sequencing. Combinations of bioinformatics, proteomic and allergenomic data 

can identify putative allergens which could be hidden when conventional 

methods are used. To date, many studies have used bioinformatics to 

predicted potential allergens from particular species. Recently, 38 and 31 

putative allergens were predicted present in Anisakis simplex and A. pegreffi, 

respectively [4]. Similar method has been done as well for chickpea [21], 

peanut [22], citrus [23] and other species. Nevertheless, these study did not 

further confirm the allergenicity of the putative allergens. Other studies on 

Johnson grass pollen [3] and ragweed pollen [24], although used patient 

serum, focused their prediction to identify genes of pollen related allergens.  

 

In silico identification is based on the knowledge that allergenic proteins are 

distributed only in restricted protein families, 2% of all sequence-based and 

5% of all structural protein families [25].  Restricted protein family distribution 
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of allergens was previously found for food allergens from plants [25] and 

animals [26] and pollen allergens [27] and is extended in this study to all 

allergens, irrespective of their source and route of exposure. Allergenic 

proteins can also be predicted based on sequential sequence similarity (i.e., 

identical and similar residues) as allergens have the potential to cross-react if 

two or more allergens share amino acid sequence to the degree that there is 

shared IgE antibody binding. Based on current studies the best method to 

identify proteins that are known to be allergens or so similar in the sequence 

is to use a local alignment method (BLASTP or FASTA) with identity scores of 

greater than 50% [10]. To increase sensitivity, E-value from BlastP was added 

as another criterion in selecting the potential allergens. In total, ninety-five 

proteins were identified as potential allergens after the in silico identification 

against the Pacific oyster proteome, with 22 proteins are categorized as “very 

likely allergenic” with an amino acid identity ≥70% with known allergens and 

73 proteins as “likely allergenic” with amino acid identities between 50% and 

70%.  

 

Proteomic data can be used to provide protein-level evidence of gene 

expression and protein abundance in the sample. According to our screened 

data, a total of 44 putative allergens is annotated in the raw and heated extract 

of Pacific oyster, of which 16 proteins are identified in both extracts. As would 

be expected, structural proteins still remain in the heated extract, while many 

enzymes could not be detected in that extract.  

 

The comparative evaluation of the in silico bioinformatics analysis with the 

allergenomic and proteomic data generated, confirms that 24 proteins in the 

raw extract and four proteins in the heated extract were identified using all 

three methods. All proteins share high amino acid identity (>50%) with 

allergens from different organisms and with different routes of sensitisation. 

These allergenic proteins have a high probability to elicit immunological cross-

reactivity in oyster allergic patients to other organisms containing the same or 

highly similar allergenic proteins. For example, triosephosphate isomerase and 
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78 kDa glucose regulated protein share 74% and 65% amino acid identity with 

dust-mite allergens, possibly responsible for the clinical mollusk-mite cross-

reactivity, previously reported during mite immunotherapy [7]. Oyster enolase 

shares 61-71% amino acid identity with latex, fish, grass pollen and fungi 

allergens, however, clinical reactivity due to enolase of oyster and these 

allergen sources has not yet been reported. The question may arise on how 

minor proteins could influence IgE binding of a spot in the immunoblotting. We 

know that many studies assumed dominant proteins based on Mascot score 

in an IgE-reactive spot were the actual allergens and that assumptions may 

lead to overlooking the true allergens and to assign non-allergenic protein as 

an allergen. Many proteins have similar molecular weight and isoelectric point, 

and some of the proteins are likely allergenic, and the other are non-allergenic. 

Moreover, a contamination of protein spot with 0.01% of true allergens may 

have a great impact on the IgE-binding as suggested by many studies  [28-31] 

 

The importance of early identification of unreported allergens is corroborated 

by clinical studies on confirmed cross-allergenicity of specific allergens 

between shrimp and dust-mite in orthodox Jews. This patient cohort was 

prohibited from consuming seafood due to strict dietary laws, and therefore the 

sensitization to the cross-reactive allergen tropomyosin must have occurred 

through inhalation of HDM [32, 33]. Indeed, in a recent study of serological 

investigation of patients with shrimp sensitization, 44% of 16 patients 

negatively challenged to shrimp are sensitized to tropomyosin [34]. 

Furthermore, using a combination of ten recombinant allergens, they were able 

to distinguish the severity of clinical reactivity of shrimp allergic patients and to 

predict cross-reactivity with other allergens sources. Clinical cross-allergenicity 

can also occur between completely unrelated allergen sources, such as the 

chicken-fish syndrome, where the offending allergens of this syndrome were 

only recently characterized [35]. Immunological cross-reactivity due to a high 

degree of amino acid sequence conservation is also observed in other 

diseases. Dengue virus-induced antibodies cross-react with Zika virus, both at 

a patient serum level as well as with monoclonal antibody producing 
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plasmablast, due to an amino acid sequence identity of >50% between Zika 

virus envelope (E) protein and dengue virus E protein [36, 37]. Thus, the 

utilization of cutting-edge technologies and large databases assists in 

identifying specific proteins, not only for allergens but immunogenic proteins in 

general. 

 

In summary, this methodological approach utilizing biochemical and 

computational tools in addition to antibody reactivity was successful in 

identifying 24 unreported allergens from over 25,000 proteins of the Pacific 

Oyster. This approach is the first study to demonstrate the presence of 24 

unreported allergens, also establish in very different allergen sources from 

animals, including fish and mites, as well as plant allergens from pollen, latex 

and fungi. Importantly all of these allergenic proteins identified are reactive to 

shellfish allergic patients’ IgE antibodies. 

 

This comprehensive discovery pipeline is a significant improvement over 

current approaches for the identification and characterization of allergenic 

proteins, providing a new tool for researchers developing better diagnostics 

and novel immunotherapeutics. The preferential discovery of hidden allergenic 

proteins fills a major gap in the current management of patients at high-risk of 

concurrent reactivity to diverse allergen sources. 
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3.1 Summary 
Over 2,000 allergens have currently been discovered, 907 of which have been 

assigned a unique nomenclature by the World Health Organization and 

International Union of Immunological Societies (WHO/IUIS) Allergen 

Nomenclature Sub-committee. Despite recent technological advances, novel 

allergenic protein discovery is limited by their low abundance, often due to 

particular physical characteristics restricting the recovery of the proteins during 

extraction process from the allergen source. In particular tissue from molluscs 

is known to be difficult to extract due to the combination of soft and stringy 

tissue. In chapter 2 it was ascertained that not all transcriptome derived 

allergens were actually identified in the proteome of oyster.   

 

In this study, eight different extraction buffers were compared for their ability 

to recover proteins from Pacific oyster (Crassostrea gigas). The IgE-reactivity 

of each extract was determined against a pool of serum from five shellfish 

allergic patients. In addition, the protein composition was identified using high 

resolution mass spectrometry.  

 

Most of the investigated buffers showed good capacity to extract proteins from 

the Pacific oyster. In general a higher concentration of proteins were recovered 

using high salt content or high pH buffers and subsequently revealing more 

IgE-reactive bands on the immunoblotting. In contrast, low pH buffers resulted 

in a poor protein recovery and negatively affected IgE-reactivity. Mass 

spectrometry analysis demonstrated that more additional IgE-reactive proteins 

were detected due to the higher abundance in the extract. In conclusion, 

increasing the ionic strength and pH of the buffers improves the solubility of 

allergenic proteins during the extraction process in oyster tissue, and could 

also apply for other difficult allergen sources..  
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3.2 Introduction 
Food allergy is an over reaction of the human immune system to particular 

proteins called allergens. Upon exposure to the human immune system, 

allergenic proteins trigger the production of allergen-specific IgE antibodies 

which bind to receptors on the surface of mast cells and basophils. Subsequent 

contact of these allergenic proteins with cell-bound antibodies results in 

activation of the cells leading to mediator release and clinical symptoms [1]. 

Currently, over 2,000 allergens have been identified, 907 are analysed in detail 

and have been assigned a unique nomenclature by the WHO/IUIS Allergen 

Nomenclature Sub-committee. Mollusc is a major group of shellfish and 

combine together with crustacean are leading cause of food allergy in adults. 

However, mollusc allergy is clinically underreported, and their allergens are ill-

defined. Despite recent technological advances, novel allergenic protein 

discovery is limited by their low abundance, often due to particular physical 

characteristics restricting the recovery of the proteins during the extraction 

process from the allergen source. In particular, various tissues from molluscs 

are known to be difficult to extract due to the combination of soft and stringy 

tissue. Consequently, current in-vitro diagnostic tools of mollusc allergy still 

rely on the preparations made of raw or cooked extracts [2]. 

 

In chapter 2, the bioinformatics analysis of the Pacific oyster genome identified 

95 potential allergens. These proteins belong to known protein families of 

various allergens, and the sequence similarity with their homologous allergens 

is very high. However, after proteomic analysis of protein extracts from the 

oyster it was observed that not all identified potential allergens were present 

in the extract using phosphate buffer. In fact only 44 from the 95 genome 

derived allergens could be identified in the protein extract. The shortcoming of 

extractability of commonly used buffers, such as phosphate-buffered saline 

(PBS) or tris-buffered saline (TBS) have been shown in several studies. Elvin 

Gomez Cardona, Heathcote [3] et al were unable to extract allergens from 

mango using TBS without additional treatments. Similarly, paramyosin was 

overlooked during IgE-binding analysis of abalone Haliotis discus discus 
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proteins extracted using PBS, but was observed after increasing the NaCl 

concentration in the buffer up to 0.9 M [4]. This highlights the importance of a 

correct extraction method for a specific allergen and implementation of 

appropriate buffering system for maximum recovery of allergenic proteins. 

 

Several studies compared different factors that are known to influence 

extractability of proteins to optimise the extraction of allergens from different 

food sources such as peanut [5, 6], and shrimp [7]. Most studies, however, 

focused on the extraction of the major allergens, and thus skipped the 

presence of other allergens that also contribute to the allergic reaction. Unlike 

shrimp or other shellfish species, the oyster is often consumed raw. It has been 

known that some of the shellfish allergens are heat sensititive [8-10], and that 

the presence of these heat labile allergens may depend on proper extraction 

procedure. It is therefore, of particular importance to investigate the effect of 

buffer composition on the protein and allergen content of both raw extracts and 

heated extracts.  

  

 

 

 

 

 

3.3 Aims 
 
The aims of this study were as follows; 

1. To compare the extractability of various extraction buffers for improving 

allergenic protein discovery from the Pacific oyster, and 

2. To analyse the difference in IgE-reactivity of extracts from various buffer 

induced by different allergen composition. 
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3.4 Materials and Methods 
 
3.4.1 Preparation of extraction buffers 
To determine the effects of extraction buffers on the composition of soluble 

proteins, eight different buffers were prepared for a comparison (Table 3-1). 

Phosphate-buffered saline (PBS) and Tris-buffered saline (TBS) buffers with 

low ionic strength, pH 7.4, were included as internal controls since they are the 

most frequently used buffers for the extraction of proteins. Sodium chloride 

was used as an additive for the PBS and TBS buffers to prepare high ionic 

strength buffers. Carbonate buffers with generally high pH are commonly used 

as coating or coupling buffers in enzyme-linked immunosorbent assay (ELISA) 

and lateral flow device (LFD) development. Therefore, they were included in 

this investigation to determine the effect of higher pH. Citrate buffers were 

chosen as a low-pH buffer of choice to cover a wider pH range for the 

investigation.  

 

3.4.2 Preparation of oyster soluble protein extracts 
Five grams of minced oysters were added to 25 mL of each extraction buffer 

and homogenised using T 10 basic ULTRA-TURRAX (IKA, Germany) and 

subsequently stirred overnight at 4 °C. The extracts were centrifuged at 

15,000xg for 15 min, and the clear supernatant was further filtered through 

0.45 µm membrane to attain the final extracts. These extracts were designated 

as raw extracts. Meanwhile, heated extracts were obtained by heating the 

aliquot of the raw extracts inside a water bath at 100°C for 15 min. These 

extracts were then centrifuged and processed as above. All extracts were 

stored at -20°C until further analysis.  

 

3.4.3 Quantification of protein content 
The concentration of protein in each extract was estimated using the 

bicinchoninic acid assay (BCA) kit (Pierce Biotechnology Inc., Rockford, USA) 

following the protocol as described in the Material and Method section in 

Chapter 2. 
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Table 3-1 Buffers and their composition used to extract proteins from Pacific 

oyster 

Buffer pH Chemical composition 

Citrate-3 3.0 
Citric acid 0.082 M 

Trisodium citrate 0.018 M 

Citrate-5 5.0 
Citric acid 0.065 M 

Trisodium citrate 0.035 M 

TBS 7.4 

Tris 25 mM 

Potassium Chloride 3.0 mM 

Sodium Chloride 140 mM  

TBSN 7.4 

Tris 25 mM 

Potassium Chloride 3.0 mM 

Sodium Chloride 1 M  

PBS 7.4 

Phosphate 10 mM 

Potassium Chloride 2.7 mM 

Sodium Chloride 137 mM 

PBSN 7.4 

Phosphate 10 mM 

Potassium Chloride 2.7 mM 

Sodium Chloride 1 M 

Carbonate-9 9.2 
Sodium Carbonate 0.01 M 

Sodium Bicarbonate 0.09 M 

Carbonate-10 10.3 
Sodium Carbonate 0.07 M 

Sodium Bicarbonate 0.03 M 

 

 

3.4.4 SDS–PAGE and IgE-reactive analysis of oyster extracts 
The protein components of extracts were profiled using sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS–PAGE) according to the 

method of Laemmli [11]. A solution of each extract containing 10 µg of protein 

was mixed with Laemmli buffer and heated at 95°C for 5 minutes. The solution 

was loaded onto each of the wells of SDS-acrylamide gel and the proteins 
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were separated at 170 V for 1 h. The resolved protein bands on the gel were 

stained with Coomassie Brilliant Blue and visualised using the Odyssey ® CLx 

Imaging System (LI-COR Biosciences).  

 

For IgE binding analysis, after the electrophoresis was run, the proteins were 

transferred to a nitrocellulose membrane using Trans-Blot® SD Semi-Dry 

Electrophoretic Transfer Cell (BioRad, Hercules, USA). Subsequently, the 

membrane was blocked using Casein blocking solution (Sigma, St. Louise, 

USA) for 1 h at room temperature. The blocked-nitrocellulose membrane was 

incubated overnight in a serum pooled from five shellfish-allergic patients 

diluted 1:20 in PBST added with casein. After the washing step, secondary 

anti-human IgE with (1: 10,000 dilution) was added and incubated for one hour. 

The membrane was subsequently incubated for 35 minutes with anti-rabbit IgG 

antibody conjugate with IR (1:10.000 dilution), and IgEantibody binding was 

visualised using the Odyssey ® CLx Imaging System (LI-COR Biosciences). 

IgE reactive spots were annotated to the protein profile on SDS-PAGE, and 

selected corresponding bands were cut, tryptic digested and analysed using 

mass spectrometry. 
 

3.4.5 Proteomic profiling of oyster extracts 
The protein composition of each extract was identified using the shotgun mass 

spectrometry analysis. Gel‐aided sample preparation (GASP) technique was 

used to prepare the samples following the procedure described by Fischer and 

Kessler [12]. Fifty microlitres solution containing 100 µg of proteins was 

denatured for 20 min in the presence of 50 mM of dithiothreitol (DTT) to reduce 

disulfide bridges. An equal volume of 40% acrylamide-bis solution (37.5:1) 

(Merck) was added, mixed gently and left at left at room temperature for 20 

min. Subsequently, 5 µLof tetramethylethylenediamine (TEMED) and 5 µL of 

10% ammonium persulfate (APS) were added and left at room temperature to 

initiate polymerisation. The gel plug was removed upon the completion of 

polymerisation and transferred to a minicolumn (Promega) in which the filter 

membrane had been removed previously by dissolving in acetone. A solution 
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containing methanol/acetic acid/water (50/40/10) was added to fix the gel 

pieces. The proteins were then digested following the protocol described in the 

Material and Method section in Chapter 2.  

 

3.4.6 Mass-spectrometry analysis 
The eluted peptides were analysed with an LTQ Orbitrap Elite (Thermo 

Scientific) with a nano ESI interface in conjunction with an Ultimate 3000 RSLC 

nano-HPLC (Dionex Ultimate 3000) at the Bio21 Institute, Melbourne, Australia 

following the procedure described in the Material and Method section in 

Chapter 2.  

 

3.4.7 Peptide search and protein identification 
The Thermo raw files were converted to mgf format using msconvert tools from 

Proteowizard v3.0.5047.  Database searches were conducted within 

SearchGUI v3.3.3 [13] using its XTandem! Vengenace (2015.12.15.2) search 

engine against the in-house database of the oyster proteome downloaded from 

the UniProt (https://www.uniprot.org/proteomes/UP000005408), 

supplemented with the common Repository of Adventitious Proteins 

sequences (https://www.thegpm.org/crap/) [14]. The SearchGUI results were 

further analysed and visualised using PeptideShaker v1.16.26 [15].  
 
3.4.8 Statistical analysis and experimental design 
The extraction processes were conducted in triplicates. Differences in protein 

content of each extract were examined by analysis of variance (ANOVA) using 

Prism (version 7.03, 2017, GraphPad Software Inc., La Jolla, CA, USA). The 

Tukey test was used for comparison of the means. The level of significance 

was set at p <0.05. 
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3.5 Results 
 
3.5.1 Effects of extraction buffers on soluble protein content 
The quantification of protein content on each extract clearly showed that the 

amount of soluble proteins varies very greatly (p <0.05, Table 3-2). High pH 

buffers were able to extract a significantly increased amount of proteins than 

low pH buffers. The carbonate-10 buffer demonstrated the best extraction 

properties resulting in 10.4 mg/mL of extracted proteins. The carbonate-9 

buffer, however, did not differ greatly to the control PBS in its ability to extract 

proteins (8.0 and 7.7 mg/mL proteins, respectively, p >0.05), while the control 

TBS resulted in slightly lower protein yield although not significantly different 

(7.0 mg/mL of protein, p >0.05). Both citrate buffers at low pH showed poor 

extraction properties, resulting in only 2.3 mg/mL and 3.0 mg/mL of proteins, 

respectively. Addition of salt up to 1 M to the PBS and TBS buffer significantly 

increased the ability of the buffers to recover soluble proteins (p <0.05). 

 

Interesting results were observed after extracted proteins underwent heat-

treatment in each of the corresponding buffers. The distribution of protein 

concentrations of the heated extracts was different to the raw extracts. Instead 

of higher-pH buffers yielding in the higher amounts of protein and vice versa, 

the amounts of proteins were almost consistent (and low) across all buffers. 

While most of the proteins heat-treated in TBS, PBS and carbonate buffers 

were either degraded or aggregated resulting in decreased protein content, 

the protein concentration for the citrate buffers remained the same, possibly 

indicating that there was no protein loss. Heat-treatment reduced up to 80% of 

the protein content in the TBS, PBS and carbonate-9 buffer and up to 60% in 

the carbonate-10 buffer. A higher ionic strength in buffers did result in an 

increased amount of recovered protein as seen in both PBSN and TBSN when 

compared to PBS and TBS, however, it was not significantly different (p >0.05). 
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Table 3-2. The yield of recovered proteins measured by BCA–protein 

quantification method. Protein concentration was statistically analysed by one-

way ANOVA (Tukey). Values with the same letter in the same column are not 

significantly different (p >0.05). 

Buffer 
Protein concentration (mg/mL) 

Raw Heated 

Citrate-3 2.26 ± 0.29a 2.35 ± 0.39ab 

Citrate-5 3.04 ± 0.14a 2.42 ± 0.09a 

TBS 6.99 ± 0.28b 1.61 ± 0.05c 

TBSN 9.08 ± 0.29c 1.86 ± 0.05cd 

PBS 7.69 ± 0.23bd 1.74 ± 0.04ce 

PBSN 9.70 ± 0.97be 2.07 ± 0.08bdef 

Carbonate-9 8.04 ± 0.16d 1.88 ± 0.14cf 

Carbonate-10 10.43 ± 0.52e 4.29 ± 0.13 

 
 
 
3.5.2 Protein Profiling by SDS-PAGE 
The protein composition of each buffer was profiled using 12% SDS-

acrylamide gels under denaturing condition (Figure 3-1). The raw protein 

profiles did not vary much between PBS, TBS and carbonate buffers, however, 

different intensities of the some bands particularly at 40 and 100 kDa were 

observed (Figure 3-1A). Meanwhile, the citrate buffers showed very distinct 

protein profiles particularly the citrate-5. Extracts from the citrate-3 buffer 

showed strong protein bands between 70–80 kDa, as well as a prominent 36 

kDa band. Although the citrate-5 contained a similar amount of protein with the 

citrate-3 buffer, the protein profile was different. All bands found in citrate-5 

buffer appeared diffused and smeared, particularly proteins above 35 kDa.  
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The protein profiles in the heated extract were less complex than that of raw 

extracts (Figure 3-1B). While most of the high molecular weight proteins 

disappeared after heat treatment in most buffers, some lower molecular weight 

proteins (15 and 18 kDa) emerged with more intense bands. The proteins at 

38 kDa, corresponding to the molecular weight range which tropomyosin is 

often found, also showed more intense bands. With the exception for citrate-3 

buffer, the protein profile of heated extract was quite similar with that of raw 

extracts from the same buffers. 
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Figure 3-1 SDS-PAGE analysis of the proteins from (A) raw and (B) heated 

extracts. Samples containing 10 µg of proteins were resolved in 12% SDS-

acrylamide gels and run at 170 V for 1 h. M = Marker, 1 = Citrate-3 extract, 2 

= Citrate-5 extract, 3 = TBS extract, 4 = TBSN extract, 5 = PBS extract, 6 = 

PBSN extract, 7 = Carbonate-9 extract and 8 = Carbonate-10 extract. The 

highlighted bands were cut for mass spectrometry analysis.  



 

91 
 

3.5.3 Effect of extraction buffers on IgE-binding  
To determine whether the buffers affect the immune-reactivity of the protein 

extracts, immunoblotting against a pool of serum from five shellfish-allergic 

patients were conducted. Figure 3-2 shows the different profiles of IgE-reactive 

bands observed for both raw and heated extracts. The raw extracts, both PBS 

and TBS extracts showed three prominent bands (at 39, 40 and 50 kDa). 

Additional strong IgE-reactive bands at high molecular weight regions (100, 

120, 150 and 250 kDa) were observed with the PBSN and TBSN extracts as 

well as carbonate-10 buffer extract. The citrate-3 buffer extract showed weak 

IgE-bands at 37 kDa and 48 kDa while no IgE-reactivity was detected for the 

extract of citrate-5 buffer.  

 

Similarly, different patterns of IgE reactivity were observed between the 

extracts. PBSN, TBSN and carbonate-10 buffer achieved more IgE-reactive 

bands compared to other buffers. Extracts from those buffers showed five IgE-

reactive bands including at 40 kDa, 41 kDa, 50 kDa, 120 kDa and >200 kDa. 

Meanwhile, the TBS, PBS and carbonate-8 extract lacked the IgE reactive 

bands at the high molecular weight. Citrate buffers clearly had negative effects 

on the extractability of allergenic proteins from the Pacific oyster as only one 

IgE-reactive band was observed in the citrate-3 extract and none in the citrate-

5 extract. 

 

To identify the proteins responsible to the IgE reactivity at those spots, selected 

SDS-PAGE band at each molecular weight were cut and tryptic digested. The 

top three protein families from Mascot search engine results were listed in 

Table 3-3. In total, eleven distinct proteins were identified in the raw extracts 

and six proteins were in the heated extracts. Tropomyosin was identified at the 

40 kDa in both the raw and heated extracts, except in the Citrate-3 extract 

where the protein was identified at 37 kDa. In addition, previously identified 

Pacific oyster allergens [9] including arginine kinase (40 kDa), retinal 

dehydrogenase I (50 kDa), aldehyde dehydrogenase (50 kDa) and paramyosin 

(75 and 100 kDa) were detected in the raw extracts. Interestingly, paramyosin 
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was also observed in the Carbonate-10 heated extracts. Furthermore, myosin 

heavy chain, previously identified allergen in other molluscs [8, 16], as well as 

filamin and troponin C, identified allergens in crustacean [17, 18], were also 

detected. The other proteins including tubulin alpha-1C chain, alpha-actinin, 

spectrin-alpha chain, clathrin heavy chain, non-neuronal cytoplasmic 

intermediate filament protein and adipophilin were identified in the Pacific 

oyster IgE-reactive spots for the first time. 
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Figure 3-2 IgE-immunoblotting analysis of the proteins from (A) raw and (B) 

heated extracts using a pool of serum from five shellfish-allergic patients. M = 

Marker, 1 = Citrate-3 extract, 2 = Citrate-5 extract, 3 = TBS extract, 4 = TBSN 

extract, 5 = PBS extract, 6 = PBSN extract, 7 = Carbonate-9 extract and 8 = 

Carbonate-10 extract. 
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Table 3-3 Proteins identified using LC-MS from the SDS-PAGE bands corresponding to the IgE-reactive spots. The top three 

proteins from Mascot search engine result in each spot are presented.  

Spot 
No 

Protein 
Accession 

ID 
Experimental 

MW 
Theoretical 

MW 
Mascot 
Score 

Coverage 
(%) 

Number of 
significant 
peptides 

emPAI 

Raw 

1 

Tropomyosin B7XC66 

37 

33 1566 62 19 22.48 

Myosin heavy chain K1RSS3 230 1463 20 33 1.42 

Filamin K1PW06 326 553 12 6 0.23 

2 

Filamin K1PW06 

40 

326 2533 32 65 1.17 

Arginine kinase K1PLF9 40 1749 72 23 34.84 

Tropomyosin B7XC66 33 1601 55 19 20.33 

3 

Retinal dehydrogenase I K1QVG5 

50 

53 1256 59 43 6.72 

Tubulin alpha-1C chain K1QII6 51 744 47 14 2.74 

Aldehyde dehydrogenase K1QNT7 58 648 42 17 3.01 

4 

Paramyosin K1QTC1 

100 

98 6288 74 69 61.54 

Filamin K1PW06 326 1711 28 50 1.00 

Alpha-actinin K1RH58 102 1480 56 38 4.44 

5 

Filamin K1PW06 

150 

326 7159 61 151 7.06 

Spectrin alpha chain K1R401 287 1905 45 77 1.69 

Clathrin heavy chain K1PNR3 193 1660 44 60 2.22 
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Heated 

6 

Myosin heavy chain K1RSS3 

37 

230 1988 27 44 1.56 

Tropomyosin B7XC66 33 1570 59 21 33.41 

Filamin K1PW06 326 635 16 23 0.32 

7 

Tropomyosin B7XC66 

40 

33 3535 57 21 60.09 

Troponin T K1QPC9 21 522 74 10 7.17 

Non-neuronal cytoplasmic 

intermediate filament 

protein 

K1PBC0 70 410 35 15 1.19 

8 

Non-neuronal cytoplasmic 

intermediate filament 

protein 

K1PBC0 

50 

69.6 1599 49 29 5.32 

Tropomyosin B7XC66 33.1 822 52 13 5.77 

Adipophilin K1PJC1 54.4 791 41 16 2.44 

9 

Myosin heavy chain K1R1B3 

120 

80 3998 58 36 11.60 

Filamin K1PW06 326.2 1796 23 53 0.73 

Paramyosin K1QTC1 98.1 1523 45 36 2.15 

10 

Paramyosin K1QTC1 

100 

98 7125 63 46 20.17 

Filamin K1PW06 326 5441 47 107 2.60 

Myosin heavy chain K1RSS3 230 4644 45 115 1.71 
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3.5.4 Proteomic analysis of the extracts 
To determine the causes of different profile of IgE-reactive proteins in the 

extracts, proteomics analysis of the whole extract was performed. The protein 

composition of each extract and their abundance was analysed using 

PeptideShaker [15]. The summary of protein composition and their 

physicochemical properties in each extract were presented in Table 3-4. As 

expected from the protein concentrations measured by BCA assay, citrate 

buffers contained a fewer number of proteins compared to other buffers. 

Strikingly, TBS and PBS extract contained more proteins compared to their 

respective high-salt buffer or carbonate buffers despite the lower concentration 

measured for the TBS and PBS extracts. Based on the mass spectrometry 

analysis, proteins extracted by citrate buffers seemed to possess significantly 

lower average isoelectric points and higher molecular weight. While these 

proteins in the citrate-3 and citrate-5 were found to be at an average pI of 6.13 

and 6.15, respectively, the pI of proteins from other buffers were found to be 

present between pI 6.5 and 6.6. In the heated extracts, the number of proteins 

in each extract had reduced, although there were some variabilities in the 

percentages of reduction. In general, heat treatment had seen a reduction of 

30-40% in the numbers of protein, except the proteins in the citrate-5 buffer in 

which the reduction was found to be only 2%.   
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Table 3-4. Summary of the results from mass spectrometry analysis. Total 

number of proteins was obtained from Peptideshaker and after removal of 

contaminations. The pI and MW were determined using Compute pI/Mw tool 

in ExPASy website (https://web.expasy.org/compute_pi/). The protein 

compositions were matched to the potential allergen identified in Chapter 2 to 

get the number of potential allergens extracted.  

Extraction 
buffer 

Raw Heated 

Number 
of 

proteins 

Ave-
rage 

pI 

Ave-
rage 
MW 

(kDa) 

Number 
of 

potential 
allergens 

Number 
of 

proteins 

Ave-
rage 

pI 

Ave-
rage 
MW 

Number 
of 

potential 
allergens 

Citrate-3 360 6.13 83.8 19 250 6.24 71.7 15 

Citrate-5 425 6.15 83.2 11 414 6.14 75.2 15 

TBS 742 6.53 59.3 34 356 6.25 65.2 15 

TBSN 594 6.62 58.6 31 352 6.52 60.4 14 

PBS 704 6.51 59.2 35 433 6.27 63.0 17 

PBSN 549 6.58 60.1 32 381 6.39 65.0 23 

Carbonate-
9 

663 6.56 59.5 33 472 6.25 62.6 28 

Carbonate-
10 

615 6.52 56.7 31 289 6.43 62.2 28 
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3.6 Discussion 
Tris-based (TBS) and phosphate-based (PBS) buffers prepared at neutral pH 

(7.4) are commonly used for extraction of allergens from various sources. 

However, it was demonstrated in chapter 2 that not all allergens identified in 

the genome and transcriptome of oyster are also detected in the extracted 

proteome. These finding are comparable to previous studies, showing that 

some allergens could not be recovered using those common buffers [14, 19-

21]. Thus, allergens are often overlooked during the discovery of novel and/or 

undiscovered allergens. In the current study, eight different buffers were 

evaluated for their capacity to extract a range of allergens from the Pacific 

oyster (Crassostrea gigas). The buffers were prepared to cover a wide pH 

range of pH 3 to 10. The effect of high concentrations of salt to the tris-based 

and phosphate-based buffers was also assessed. The protein recovery was 

compared as well as the soluble protein profile by SDS-PAGE, IgE-reactivity 

with patient serum was investigated as well as the protein compositions 

determined using mass spectrometric analysis. 

 

The analysis of the raw extracts demonstrated a significant increase in the 

protein content of total soluble using high pH buffers for the extraction as 

compared to the common buffers, TBS and PBS. In contrast, low pH buffers 

resulted in poor protein extractability, with protein contents 3-fold lower 

compared to that of TBS or PBS buffer. A similar impact of the pH on the 

variability of recovered proteins was also observed during extraction of raw 

samples from peanut [5, 6] and tree nuts [22]. Addition of salt to the TBS and 

PBS buffer improved the solubility of proteins and therefore, it significantly 

increased the protein content in the extract. It is known that protein solubility is 

affected by a complex interplay between the properties of proteins, 

electrostatic charges and the pH of the buffers. While high pH buffers change 

the charge of proteins to be more negative, thereby increasing water binding 

capacity and improving solubility of the proteins [23]. Salts are thought to play 

a role in improving the extractability of the buffers by associating with the 

opposite charge in the proteins [24].   
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Heat treatment of the raw extracts resulted in different effects on each extract. 

While a significant reduction in the protein concentration of extracts from 

neutral and high pH buffers was observed, heat treatment did not affect the 

solubility of proteins in the low pH buffers, particularly the citrate-5 buffer. A 

significant reduction in the protein content of extracts may be attributed to the 

denaturation and aggregation of some oyster proteins. Heat treatment unfolds 

the protein, exposing the hydrophobic residues from its structure and 

subsequently prompting the formation of insoluble aggregates [25]. Wet-based 

heat treatments can affect the solubility of proteins greatly as shown by 

Lasekan and Nayak [7]. While the effects of temperature on the solubility of 

proteins have been thoroughly studied, the ability of proteins to resist heat 

treatment at low pH solution is not well understood.  

 

The effect of buffers on the soluble proteins was evident after resolving the 

proteins in the polyacrylamide gels. Three distinct protein profiles were 

observed; while the neutral and high pH buffers showed a similar pattern of 

protein profiles, the low pH buffers exhibited distinct protein profiles. Some 

proteins were extracted better by the high salt buffers or high pH buffers 

compared to other buffers as shown by the increase of protein staining 

intensity in the SDS gels. The change in the abundance seems to affect the 

IgE reactivity of allergenic proteins, given that additional IgE-reactive bands 

were revealed in the TBSN, PBSN and carbonate-10 extract. This corresponds 

to the SDS-PAGE bands with their higher intensity as compared to the PBS or 

TBS extracts.  

 

The serum IgE analysis by immunoblotting demonstrated the superiority of the 

high salt or high pH carbonate buffers in solubilising less-abundant but highly 

immunoreactive proteins as compared to the common buffers. One of the very 

prominent IgE-reactive bands is paramyosin observed at 100 kDa. Paramyosin 

is a major structural component of the invertebrate muscle thick filament and 

was recently identified as an additional major allergen in abalone (Haliotis 

discus discus) [4, 26]. The discovery of allergenic paramyosin in mollusc 
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species was not surprising since this protein has been confirmed as a major 

allergen in other invertebrates such as house dust-mite [27] and anisakis [28]. 

Furthermore, this protein also forms a significant component of the bivalve 

myofibril with 38-48% in the white adductor muscle and 15-30% in the red 

adductor muscle [29]. However, paramyosin has a poor solubility in low ionic 

strength buffers, indicating that a high concentration of salt is required to 

adequately extract this protein.  

 

Four of eight IgE-reactive bands were heat stable proteins including bands at 

about 38, 50, 100 and >200 kDa. The 38 kDa IgE-reactive protein was 

identified as tropomyosin and has been previously identified as major allergen 

in various mollusc species including squid [30], oyster [31] and abalone [32]. 

Tropomyosin is a heat stable and water-soluble protein, and due to their 

abundance in the muscle tissue, the extraction process for this protein is 

relatively easy. Tropomyosin was also observed at the 50 kDa IgE-reactive 

spot with a high Mascot score and sequence coverage. The amount of 

tropomyosin in that spot as indicated by their emPAI value was high as well. 

This higher molecular weight tropomyosin was also observed in other species 

including Sydney rock oyster [8] and Black tiger prawn [10]. Strikingly, in 

contrast to the previous thought that paramyosin is a heat-labile protein, 

paramyosin was identified in the IgE-reactive spot of heated Carbonate-10 

extract at 100 kDa suggesting that paramyosin is structurally heat-stable and 

could not be identified in the heated extract of other buffers due to poor 

solubility.  

 

The protein composition was identified using high-resolution mass 

spectrometry enabling in-depth comparison of each extract. Mass 

spectrometry analysis showed the number of proteins identified were different 

in each extract. As expected from the protein content quantification, low pH 

extracts contained fewer proteins as compared to the neutral or high pH 

extract. Interestingly, although addition of high salt concentration or high pH 

increased the total protein content, the numbers of proteins identified in their 
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extracts were less as compared to the normal TBS or PBS. These findings 

suggest that an increase in protein content of high salt or high pH buffers was 

mostly due to the increase in the abundance of some proteins. Further analysis 

of each extract demonstrated that not only protein composition varied, but the 

composition of potential allergens was also different in each extract. In total 38 

potential allergens could be identified from the extracts. Interestingly, the 

common buffers, TBS and PBS, extracted more potential allergens than the 

other buffers. However, the abundance of these potential allergens in those 

buffers is low and affecting the IgE-reactivity as a result.  

 

In conclusion, buffer compositions affect considerably the protein recovery 

during the extraction from oyster tissue, resulting in variation of IgE-reactivity. 

Many allergens are often overlooked during allergen discovery analysis due to 

low abundance as the common buffers used for protein recovery are unable to 

sufficiently extract the proteins. This study is the first to investigate in detail the 

extractability of allergens of animal origin and demonstrated that increasing 

ionic strength or pH improves the extractability of the buffers, allowing much 

efficient discovery and identification of IgE binding proteins. 
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4.1 Summary 
Pacific oyster is an important shellfish species causing food allergy, but 

knowledge of their allergens and cross-reactivity is limited. In chapter 2 and 3, 

over 24 allergens where identified using allergen specific antibodies and 

advanced mass spectrometry. However, only one allergen from the Sydney 

Rock oyster (Saccostrea glomerata) has been recently characterised in detail 

by our group and registered with the IUSI as allergen and commercial 

diagnostics utilise only whole protein extracts. These limitations make an 

optimal diagnosis of oyster allergy difficult, in particular to the Pacific oyster 

(Crassostrea gigas), the most common oyster consumed worldwide. The 

current study aimed to characterise IgE sensitisation profiles of 21 oyster-

sensitised patients to raw and heated extract of the Pacific oyster using 

immunoblotting and advanced mass spectrometry. Subsequenlty the major 

allergen tropomosin was identified and characterised on molecular level and 

expressed as recombinant allergen. In addition the IgE cross-reactivity of 

these patients to purified tropomyosin from the Pacific oyster, Black tiger 

prawn and House dust mite was compared using enzyme-linked 

immunosorbent assay (ELISA).  

 

Tropomyosin was identified as the major allergen in the Pacific oyster in 18 of 

21 oyster-sensitised patients and registerd with the IUSI as Cra g 1, the first 

fully biochemically characterised allergen of the Pacific oyster. In addition 

immunoblotting demonstrated different IgE-reactivity profiles, with 5 allergens 

seem to be also of importance, confirming the findings in chapter 2 and 3. 

Eighteen of the 21 investigated oyster allergic subjects demonstrated IgE 

reactivity to tropomyosin from Pacific oyster as well as to Black tiger prawn 

and House dust mite, however, the degree of IgE binding varied between 

patients, indicating partical cross-reactivity and/or co-sensitisation. Amino acid 

sequence alignment of tropomyosin from these three species revealed five 

protein regions that contain predicted IgE-binding epitopes most likely 

responsible for this cross-reactivity. The major allergen characterised in this 

study and expressed as pure recombinant allergen will improve the component 
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resolved diagnosis of oyster allergy and general management of patients with 

mollusc allergy.  
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4.2 Introduction 
Consumption of shellfish has increased significantly in the last two decades 

due to the high nutrition content and their health benefits. Two large 

invertebrate groups named crustacean and mollusc are part of the shellfish 

group, as detaild in Chatper 1. These two groups have a great diversity of 

species, giving consumers a variety to choose from. Food and Agricultural 

Organization (FAO) listed over 60 species of crustaceans and 120 species of 

molluscs widely consumed. However, the increasing consumption of shellfish 

has been associated with the increasing incidence of shellfish allergy. Many 

studies have shown that dietary habits correlate with food allergy prevalence. 

For example, the Asian population have a higher prevalence of seafood allergy 

[1], while Australians seem to have a higher prevalence of allergy to nuts [2]. 

Furthermore, many people are introduced to new shellfish species due to 

better distribution and globalisation of shellfish-based product.  

 

The Pacific oyster (Crassostrea gigas) is one of the most important edible 

molluscs in the world, collected from the wild and grown in aquaculture. 

However, the knowledge of their allergens and possible immunological cross-

reactivity is limited [3-5]. In the previous two chapters, a serum pool from 

shellfish allergic patients demonstrated immunological reactivity to one protein 

band at about 38 kDa, and subsequent analysis using mass spectrometry 

identified tropomyosin (TM) as the major protein component. Tropomyosin was 

also demonstrated by our group to be a major allergen for the Sydney rock 

oyster (Saccostrea glomerata) [6]. Tropomyosin, a structural protein involved 

in muscle contraction, is the major allergen causing allergic reactions in up to 

80% of shellfish allergic patients and is found in most shellfish species that 

have been studied so far [7]. Due to high similarity in TM amino acid structure 

among shellfish and other invertebrate species, affected individuals often 

experience allergic reactions to multiple species. However, many clinical 

studies have demonstrated that the serum IgE antibody repertoire differs in 

allergic patients [7-9]. Various factors including routes of allergen exposure, 
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the source of sensitisation e.g. ingestion or inhalantion, could affect the IgE 

reactivity.  

 

Several studies have demonstrated that the use of purified allergen 

components can better predict clinical allergy reactivity compared to SPT 

and/or specific-IgE to whole protein extract [10-12]. Currently, however, no 

purified allergen components are available for the diagnosis of oyster allergy 

[13]. In addition, the species used for diagnostics are native to the Northern 

hemisphere, and several studies demonstrated that allergen components often 

differ between species of the Northern and Southern hemisphere [14, 15], 

posing a challenge for reliable diagnostics. Therefore, in this current study TM 

from the Pacific oyster (Crassostrea gigas) was purified and expressed as a 

recombinant protein, and its structural properties and IgE reactivity 

characterised. Cross-species IgE-reactivity with one commonly consumed 

species, the black tiger prawn (Penaeus monodon), and major inhalant 

allergen source, house dust mite, was sought.  

 

 

 

 

 

 

4.3 Aims 
The aims of this study were as follows: 

1. To determine the sensitisation pattern of oyster-sensitised patients to 

raw and heated extract of Pacific oyster using immunoblotting. 

2. To purify and characterise natural and recombinant TM from the Pacific 

oyster. 

3. To investigate IgE-reactivity of oyster-sensitised patients to TM of the 

Pacific oyster, Black tiger prawn and House dust mite.  
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4.4 Materials and Methods 
 
4.4.1 Patient selection 
Twenty-one subjects with a convincing clinical history of allergic reactivity to 

shellfish and positive oyster-specific IgE by ImmunoCAP (>0.35 kUA L–1; 

Phadia Pty Ltd, Uppsala, Sweden; Table 1) were recruited from The Alfred 

Hospital Allergy Clinic, Melbourne, Victoria, Australia. Oral challenge with 

mollusc extracts were not conducted routinely in these patients, in keeping with 

the clinicians’ preference for safer serum specific allergen IgE testing in adult 

patients due to comorbidities, together with the clinical history of reactions on 

exposure. Ethics approval for this study was granted by James Cook 

University’s Ethics Committee (Project number H4313) in collaboration with 

The Alfred Hospital (Project number 192/07) and Monash University’s Ethics 

Committees (MUHREC CF08/0225). 

 
4.4.2 Sample preparation and protein extraction 
Raw and heated Pacific oyster extract were prepared according to the method 

described in detail in Chapter 2. 

 

4.4.3 Quantification of total protein 
Total protein from each extract was estimated using the BCA Assay (Thermo 

Scientific, Waltham, USA) following the manufacturer’s instruction. A pre-

diluted set of bovine serum albumin (Pierce, Waltham, USA) was used as 

protein standards. 

 

4.4.4 Purification of natural TM from the Pacific oyster 
Natural TM from Pacific oyster was purified through ion-exchange 

chromatography using Biologic LP fast protein liquid chromatography system 

(BioRad, USA). About 20 mg of protein extract was diluted in starting buffer of 

5 mM NaPO4, 150 mM NaCl, pH 6.8 and loaded onto a Bio-scale Mini CHT 

Ceramic Hydroxyapatite Cartridges column (BioRad, Hercules, USA). 
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Increasing concentration of phosphate was used to elute the proteins. purified 

proteins were stored at -20°C until further use.  

 

4.4.5 Cloning, sequencing and expression of recombinant oyster TM 
Total RNA from C. gigas muscle was extracted using TriZol reagent (Life 

Technologies, Australia) following the manufacturer’s instruction. Single-

stranded cDNA were generated from RNA using cDNA cDNA Synthesis kit 

(Bioline, Australia) and used as a template to amplify TM coding region using 

forward (5' CGC AGA ATT CAT GAC AGC ATC AAG AAG AAG ATG 3') and 

reverse (5' CGA ACC TGC AGT TAA TAT CCT GCC AGC TCG G 3') primer. 

The PCR products were cloned into a sequencing vector, pCR 2.1 using the 

TOPO TA cloning kit (Invitrogen, Carlsbad, USA) and transformed into TOP10 

chemical competent E. coli. Positive colonies were confirmed by blue-white 

screening and colony PCR using the gene-specific oligonucleotide primers for 

the presence of inserts. The plasmid contained the TM open reading frame 

was sent to Macrogen Inc, South Korea for sequencing.  

For the expression of recombinant TM, the coding region of the protein was 

subcloned into pRSET-A bacterial expression vectors. The cloned vectors 

were transformed into BL21 (DE3) RIPL E. coli competent cells. The cells were 

grown overnight on LB agar plate agar with 100 µg/ml of ampicillin at 37 °C. A 

single colony was selected and further grown in 10 mL of LB media overnight. 

Tropomyosin was expressed by adding 1 mL of overnight LB media to the 

Novagen® Overnight Express™ Autoinduction Systems (Merck, Kenilworth, 

USA). After 24 hours, cells were harvested and lysed using a probe sonicator. 

Expressed TM was purified using HisPur™ Ni-NTA column (Thermo Scientific, 

Waltham, USA).  
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Table 4-1 Demographics of patients recruited for this study 

Patient 
ID 

Specific IgE (kUA L–1) 
Symptoms with Symptoms 

Oyster Prawn HDM 
1 0.93 10.10 8.73 Prawn As, R, U 

2 0.92 9.50 14.10 Flounder, prawn, crab R, A, An 

3 2.04 9.03 13.60 
Calamari, snapper, 

tuna 

R, An 

4 3.75 9.82 2.66 
Shellfish, scallops, 

oyster 

U, An, pO 

5 4.29 0.20 9.49 
Flake, sea perch, 

rockling 

pO, An 

6 1.04 6.84 31.70 Mussel, scallops An 

7 0.49 2.57 1.99 Calamari, octopus An 

8 5.99 32.40 6.47 Shellfish As, R, U, An 

9 2.41 8.98 2.36 Shellfish As, R, U, An 

10 1.11 3.63 5.03 Crustaceans/molluscs R, H, A 

11 1.19 4.30 57.5 
Prawn, crab meat and 

marinara mix 

As 

12 6.68 17.2 13.5 
Salmon, crab, lobster, 

shrimp 

An 

13 2.59 9.81 16.80 Prawns, calamari, fish An 

14 0.65 3.75 33.80 Oyster GI 

15 5.47 21.60 10.7 Calamari U, As 

16 1.35 5.42 40.20 Mollusc An, A, U 

17 1.08 6.73 6.90 Shellfish  U, A 

18 35.8 >100 22.00 Shellfish  U, As 

19 0.45 9.74 1.29 Shellfish  As 

20 1.08 5.05 1.97 Pipis, squid pO 

21 7.32 2.84 1.95 Oyster - 

As, asthma; R, rhinitis; U, urticaria; A, anaphylaxis; An, angioedema; pO, 

periorbital edema; H, hypotension; GI, Gastrointestinal. 
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4.4.6 SDS PAGE and Immunoblotting using patient IgE-antibody 
The Pacific oyster extracts and purified TM were resolved using AnykD™ 

Criterion™ TGX™ Precast Midi Protein Gel (BioRad, Hercules, USA). A 

solution of protein containing 10 µg of protein or 2 µg of purified TM was added 

to each well and separated on an electrophoresis apparatus at 170 V for 1 

hour. The gel was stained with Coomassie Brilliant Blue using the protocol 

described in Chapter 2.  

 

To analysis serum IgE binding, 100 µg of extracts or 20µg of purified proteins 

were resolved. After the electrophoresis, the separated proteins were 

transferred to a nitrocellulose membrane using Trans-Blot® SD Semi-Dry 

Electrophoretic Transfer Cell (BioRad, Hercules, USA). Subsequently, the 

membrane was blocked using Casein blocking solution (Sigma, St. Louis, 

USA) for 1 h at room temperature. The membrane was washed three times 

using PBS added with 0.05% Tween (PBST). The blocked-nitrocellulose 

membrane was incubated overnight in individual serum samples diluted 1:20 

in PBST added with casein. After the washing step, anti-human IgE (1: 10,000 

dilution) was added and incubated for one hour. The membrane was 

subsequently incubated for 35 minutes with anti-rabbit IgG antibody conjugate 

with IR (1:10,000 dilution), and IgE antibody binding was visualised using the 

Odyssey ® CLx Imaging System (LI-COR Biosciences, Lincoln, USA). 

 

4.4.7 Amino acid sequencing using mass Spectrometry 
To confirm the identity of the expressed and purified protein, mass 

spectrometry was performed using a method described previously [16]. The 

proteins were digested using a trypsin spin column (Sigma, St. Louis, USA), 

prepared according to the manufacturer's instructions. See Chapter 2, section 

xy for details. The eluted peptides were analyzed using an LTQ Orbitrap Elite 

(Thermo Scientific, Waltham, USA) with a nano ESI interface in conjunction 

with an Ultimate 3000 RSLC nano-HPLC (Dionex Ultimate 3000) at the Bio21 

Institute, Melbourne. The obtained spectra were identified using Mascot 

search engine (Matrix Science, Boston, USA) against the in-house database 
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of the oyster proteome downloaded from the UniProt, supplemented with the 

common Repository of Adventitious Proteins sequences. 

 

4.4.8 Analysis of secondary protein structure using CD spectrometry 
To determine the alpha-helical confirmation of natural and recombinant TM, 

CD spectrometry was performed [17]. Natural and recombinant TM samples 

were prepared in phosphate buffer, pH 7.2 and adjusted to a final 

concentration of 3 µM. CD spectroscopy was performed on a J715 

Spectropolarimeter (Jasco, USA) with continuous nitrogen flushing at 25◦C. All 

measurements were performed using a 10 mm quartz cuvette over a 

wavelength range of 190–260 nm. For wavelength analysis, the TM samples 

were scanned with a step width of 0.2 nm and bandwidth of 1 nm at 100 nm/min 

averaging over eight scans. Final data were expressed as mean residual 

ellipticity (θ) after subtracting the phosphate buffer blank spectrum. 

 

4.4.9 Evaluation of IgE-reactivity using ELISA 
100 µL of 10µg/mL TM in carbonate buffer pH 9.6 was added to each well of 

a 96-well EIA/RIA plate (Costar, St. Louis, MO) and incubated overnight at 4 

°C. The plate was washed four times using 0.05% Tween 20/PBS (PBS-T) and 

subsequently blocked using Casein Blocking Buffer 10x (Sigma-Aldrich) 

diluted in PBST. After one hour incubation, the plate was washed four times, 

and wells incubated with 100 µL of serum diluted 1:10 in 0.2× casein/PBST at 

room temperature for 3 hours with shaking (45 rpm). Rabbit anti-human IgE 

antibody (1:4000; Dako, Glostrup, Denmark) and goat anti-rabbit IgG-HRP 

(1:1000; Promega, Madison, WI) were added sequentially to wells and plates 

incubated at room temperature for 1 hour with gentle shaking. Plates were then 

washed five times in PBS-T, followed by three washes in PBS. IgE binding was 

detected using TMB (3,3’,5,5’-Tetramethylbenzidine) substrate (Invitrogen, 

Carlsbad, USA). After 5 minutes, the reaction was terminated using 1 M HCl 

and the absorbance (O.D.) at 450 nm measured by spectrophotometry (BMG 

LABTECH, Melbourne, Australia). 
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4.5 Results 
 

4.5.1 SDS-PAGE and IgE-antibody reactivity of Pacific oyster extracts 
The analysis of raw and cooked extracts of Pacific oyster using 1-dimensional 

SDS-PAGE stained with Coomassie Brilliant Blue showed various proteins 

with a molecular weight ranging from 10-200 kDa (Figure 1). Heat treatment 

reduced the number of proteins identified, particularly proteins with high 

molecular weight (Figure 1C), while heat-stable proteins were oberserved in 

the cooked extract. In contrast, several protein bands that appeared in cooked 

extract were absent in the raw extract, demonstrating heat-induced 

modification of high molecular weight proteins by fragmentation or dimerisation 

of certain proteins. Tropomyosin, a heat-stable protein, was prominent in the 

cooked extract at 38-40 kDa. These findings were consistent with the results 

of the previous study (Chapter 2) analysing the protein profile of raw and 

cooked extract using 2-dimensional SDS-PAGE and detaeild mass 

spectrometry to identify the proteins.  

 

IgE-reactivity of proteins in the oyster extracts were determined using 

immunoblotting against sera from 21 subjects with a positive IgE titre  to oyster 

by Immuno-CAP (Figure 1). The IgE-binding intensity was measured using 

Image Studio software and the results were summarized in allegrograms in 

Figure 2. IgE bands were marked as positive when their intensity was above 

the average of negative controls plus two standard deviations. In general, more 

IgE-reactive bands in the raw extract (Figure 1B) were observed than in 

cooked extract (Figure 1D), however, cooked extract demonstrated an 

increased IgE binding intensity, particularly at 37 kDa. Eighty five percent of 

the tested patients recognised proteins in the 38-40 kDa region in both 

extracts. Interestingly, those patients who elicited IgE binding to TM also 

showed IgE binding to proteins at 48-50 kDa, although with intensity lower than 

to that of TM. Figure 2 also shows several other bands recognised by the 

subjects. These IgE binding proteins are most likely paramyosin, myosin heavy 
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chain and retinal dehydrogenase I, determined already in Chapter 2. However, 

the subsequent analysis focuses on the major oyster allergen, TM. 
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Figure 4-1 IgE reactivity of oyster-sensitised patients to raw and heated Pacific 

oyster extract. The extracts were separated by SDS‐PAGE and stained with 

Coomassie Brilliant Blue (A and C). Immunoblots were performed with sera 

from 21 oyster-sensitised patients (1‐21, B and D) as well as from 3 atopic 

individuals (NC). 
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Figure 4-2 Allergogram analysis of IgE-binding patterns to proteins in the raw 

(A) and heated (B) extract of the Pacific oyster. IgE-binding intensities were 

measured using Image Studio software and graded as weak, medium, strong 

and very strong. Percentage patient reactivity for each IgE-binding intensity is 

shown. 
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4.5.2 Sequencing and characterisation of Pacific oyster TM 
To confirm the IgE-reactivity of TM, natural TM was purified from oyster extract 

using CHT™ Ceramic Hydroxyapatite ion-exchange chromatography (Figure 

3). Recombinant Pacific oyster TM was also expressed in an E. coli expression 

system and further purified using HisPur Ni-NTA Resin (Figure 4). The cDNA 

sequence of the TM was published in GenBank under the accession number 

KY549366.1. 

 

The structural properties of natural and recombinant TM were determined 

using CD-Spectroscopy (Figure 5) and LC-MS/MS mass spectrometry (Figure 

6). Figure 5 confirms the identical secondary structure between natural and 

recombinant TM, although recombinant TM possessed slightly higher minima 

of the Mean Residual Ellipticity (MRE) at λ = 209 and 222 nm (Figure 5A). 

Consistent with previous studies, the structure of TM is dominated by α-helical 

signal (81.67%) (Figure 5B) and confirmed by the 3D structure modelling of 

TM (Figure 5C). LC-MS/MS mass spectrometry was used to confirm that the 

aminoacid sequences of the purified natural and recombinant protein are 

indeed TM. Figure 6 displays two representatives of unique peptides belong to 

TM confirming that the purified proteins is TM. Moreover, the sequence 

coverage of TM is excellent, with the peptides identified by mass spectrometry 

covering 89% and 76% of natural and recombinant TM sequence, respectively.  
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Figure 4-3 Purification profile of protein extract of heated Pacific oyster using 

CHT™ Ceramic Hydroxyapatite. The increase in the absorbance is measured 

at 280 nm (blue line) and 220 nm (red line) and 31 eluted fractions were 

collected and analysed by SDS-PAGE. The 17th, 18th, and 19th peak contain 

pure tropomyosin, appearing as a strong band at 39 kDa in the Coomassie-

stained SDS-PAGE gel. 
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Figure 4-4 SDS-PAGE purification profile of recombinant Pacific oyster 

tropomyosin. Recombinant tropomyosin was purified using HisPur Ni-NTA with 

increasing concentration of imidazole. Purified tropomyosin was observed at 

40 kDa due to six-His-tag fused to its N-terminal. Note: CE= crude extract, FT 

= Flow through, W = Wash, E = Eluent. 
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Figure 4-5 Structural analysis of purified natural and recombinant 

tropomyosin. A) Circular dichroism (CD)  spectroscopy profile of natural (green 

line) and recombinant tropomyosin (blue line). B). The estimated structure of 

tropomyosin predicted using K2D3 web servers [1], with the majority of the 

structure consisting of an alpha-helix. 
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A 

 
 
B 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-6 Comparison of the mass spectrometry analysis of purified natural 

and recombinant TM. (A) Representative product spectra of unique peptides 

of tropomyosin generated from trypsin digestion (B) The amino acid sequence 

of TM. Peptide sequences identified by mass spectrometry are highlighted in 

red colour.  

1 MDSIKKKMIAMKMEKENAQDRAEQLEQQLRDTEEQKAKIEEDLTSLQKKH 
51  SNLENEFDTVNEKYQECQTKLEEAEKTASEAEQEIQSLNRRIQLLEEDME 
101 RSEERLQTATEKLEEASKAADESERNRKVLENLNNASEERTDVLEKQLTE 
151 AKLIAEEADKKYDEAARKLAITEVDLERAEARLEAAEAKVYELEEQLSVV 
201 ANNIKTLQVQNDQASQREDSYEETIRDLTQRLKDAENRATEAERTVSKLQ 
251 KEVDRLEDELLAEKERYKAISDELDQTFAELAGY 

nCra g 1 Sequence coverage 89% 

1 MDSIKKKMIAMKMEKENAQDRAEQLEQQLRDTEEQKAKIEEDLTSLQKKH 
51 SNLENEFDTVNEKYQECQTKLEEAEKTASEAEQEIQSLNRRIQLLEEDME 
101 RSEERLQTATEKLEEASKAADESERNRKVLENLNNASEERTDVLEKQLTE 
151 AKLIAEEADKKYDEAARKLAITEVDLERAEARLEAAEAKVYELEEQLSVV 
201 ANNIKTLQVQNDQASQREDSYEETIRDLTQRLKDAENRATEAERTVSKLQ 
251 KEVDRLEDELLAEKERYKAISDELDQTFAELAGY 

rCra g 1 sequence coverage 76% 
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4.5.3 IgE-recognition of oyster-sensitised subjects to natural and 
recombinant TM 
The comparative evaluation of IgE-binding patterns of the patients to natural 

and recombinant TM confirmed the major reactivity. 76% and 86% of the 21 

oyster-sensitised subjects elicited IgE binding to natural and recombinant TM, 

respectively (Figure 7). The intensity of IgE binding to natural and recombinant 

TM was comparable, except in subject 6 and 14 where those subjects showed 

weak IgE binding to recombinant TM, but no binding to natural TM.  

 

 

 
 
Figure 4-7 IgE reactivity analysis of natural and recombinant Pacific oyster 

tropomyosin using immunoblotting with 18 IgE reactive patients showed 

reactivity to protein at 38 kDa from raw and heated extract. rCra g 1 = purified 

recombinant Pacific oyster tropomyosin, nCra g 1 = purified natural Pacific 

oyster tropomyosin.  
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4.5.4 Immunological IgE-reactivity analysis using ELISA 
Immunological reactivity between mollusc, crustacean and house dust mite is 

often reported due to high aminoacid sequence identity of their allergens. 

Tropomyosin is known as invertebrate pan-allergen, responsible for major IgE 

reactivity in oyster and cockroach, while much lower immunological reactivity 

is seen to TM in mites. 

 

In this study, the immunological reactivity to purified Pacific oyster TM (Cra g 

1), black tiger prawn TM (Pen m 1) and house dust mite TM (Der p 10) in 18 

TM reactive subjects was analysed using ELISA (Figure 4-8). The IgE reacivity 

to Pen m 1 was markedly higher as compared to  Der p 10 and Cra g 1. The 

median O.D. value for Cra g 1, Pen m 1 and Der p 10 were 1.416, 2.079 and 

1.748, respectively. The majority of subjects were significantly more reactive 

to Pen m 1 than to Cra g 1 or to Der p 10 (p<0.001), with one exception for 

subject 14, where the reactive to Cra g 1 was much higher than to Pen m 1 or 

to Der p 10 (p<0.001).  

 

 
Figure 4-8 Patient serum IgE reactivity analysis by ELISA for three 

tropomyosins: Cra g 1 (Pacific oyster), Pen m 1 (Black tiger prawn) and Der p 

10 (House dust mite) (n = 18). 
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4.5.5 Tropomyosin amino acid sequence comparison and IgE-binding 
epitope prediction 
To understand the findings of the IgE-reactivity analysis of the Pacific oyster, 

Black tiger prawn and House dust mite TM using ELISA , a comparison of the 

amino acid sequence of TM from the three species was generated. The three 

TM sequences were aligned using MUSCLE (MUltiple Sequence Comparison 

by Log-Expectation) program in Mega 7 software with default parameter sets 

(Figure 9). Concurrent with the ELISA result of IgE reactivity where the majority 

of the subjects showed higher reactivity to Pen m 1 and Der p 10, the sequence 

alignment demonstrated that black tiger prawn is more closely related to house 

dust mite rather than to Pacific oyster. Seventy-two and 126 amino acid 

substitutions were observed in Der p 10 and Cra g 1, respectively, compared 

to Pen m 1. Sequence identity between Pen m 1 and Der p 10 is about 80.28%, 

while between Pen m 1 and Cra g 1 the identity is much less with about 

63.03%. Previously published study [19] showed that cross-reactivity occurs 

when the IgEs bind to proteins from other species having peptide with 

maximum two amino acid replacements as compared to the IgE-binding 

epitopes. Using this knowledge, five regions with two of these regions 

positioned in the C-terminal of the TM were predicted as the epitopes 

responsible for the cross-reactivity between Pacific oyster, Black tiger prawn 

and house dust mite (Figure 4-9).  
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Penaeus monodon M D A I K K K M Q A M K L E K D N A M D R A D T L E Q Q N K E A N N R A E K S E E E V H N L Q K R M Q Q L E N D L D Q V  [ 60]
Dermatophagoides pteronyssinus . E . . . N . . . . . . . . . . . . I . . . E I A . . K A R D . . L . . . . . . . . . R A . . . K I . . I . . E . . . .  [ 60]
Crassostrea gigas . . S . . . . . I . . . M . . E . . Q . . . E Q . . . . L R D T E E Q K A . I . . D L T S . . . K H S N . . . E F . T .  [ 60]

Penaeus monodon Q E S L L K A N I Q L V E K D K A L S N A E G E V A A L N R R I Q L L E E D L E R S E E R L N T A T T K L A E A S Q A A  [120]
Dermatophagoides pteronyssinus . . Q . S A . . T K . E . . E . . . Q T . . . D . . . . . . . . . . I . . . . . . . . . . . K I . . A . . E . . . . S .  [120]
Crassostrea gigas N . K Y Q E C Q T K M G . A E . T A . E . . Q . I Q S . . . . . . . . . . . M . . . . . . . Q . . . E . . E . . . K . .  [120]

Penaeus monodon D E S E R M R K V L E N R S L S D E E R M D A L E N Q L K E A R F L A E E A D R K Y D E V A R K L A M V E A D L E R A E  [180]
Dermatophagoides pteronyssinus . . . . . . . . M . . H . . I T . . . . . E G . . . . . . . . . M M . . D . . . . . . . . . . . . . . . . . . . . . . .  [180]
Crassostrea gigas . . . . . N . . . . . . L N N A S . . . T . V . . K . . T . . K L I . . . . . K . . . . A . . . . . I T . V . . . . . .  [180]

Penaeus monodon E R A E T G E S K I V E L E E E L R V V G N N L K S L E V S E E K A N Q R E E A Y K E Q I K T L T N K L K A A E A R A E  [240]
Dermatophagoides pteronyssinus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q . . . . . H E Q . . R I M . T . . . E . . . . . .  [240]
Crassostrea gigas A . L . A A . A . V L . . . . . . K . . . . . M . . . . I . . Q E . S . . . D S . E . T . R D . . Q R . . D . . N . . T  [240]

Penaeus monodon F A E R S V Q K L Q K E V D R L E D E L V N E K E K Y K S I T D E L D Q T F S E L S G Y  [284]
Dermatophagoides pteronyssinus . . . . . . . . . . . . . G . . . . . . . H . . . . . . . . S . . . . . . . A . . T . .  [284]
Crassostrea gigas E . . . T . S . . . . . . . . . . . . . L A . . . R . . A . S . . . . . . . A . . A . .  [284]

 
Figure 4-9 Amino acid sequence alignment of tropomyosin sequence from Black tiger prawn (Penaeus monodon), house 

dust mite (Dermatophagoides pteronyssinus) and Pacific oyster (Crassostrea gigas).  Variable amino acids are shaded in 

yellow. The predicted IgE-binding epitopes responsible for cross-reactivity in those three species are identified by solid boxes
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4.6 Discussion 
The development of accurate diagnostic tools for mollusc allergy is still facing 

some difficulties due to the large diversity of edible mollusc species as well as 

the lack of purified or recombinant clinically relevant allergens. Clinical history 

is often unreliable as the patients ofte can not recall the offending mollusc 

species. While food challenge is regarded as the gold standard of food allergy 

diagnosis, their application has been associated with risk of severe reaction in 

the case of shellfish challenge due to high allergen potency and adult patient 

co-morbidities [20]. Several mollusc IgE-reactive proteins have been identified 

in previous studies. However, they haven’t been fully characterised, limiting 

their application as diagnostic tools for mollusc allergy. In this present study, 

the major allergen of the Pacific oyster (Crassostrea gigas) was characterised, 

the IgE recognition in a large cohort of oyster allergic patients determining and 

the IgE reactivity to purified TM of Black tiger prawn (Pen m 1) and House dust 

mite (Der p 10) compared. Subsequently TM was registed with the IUSI as the 

first allergen from the Pacific oyster. Immunological studies of natural and 

recombinant TM from the Pacific oyster have been reported in previous studies 

[21-23]. However, these studies did not register this major allergen with the 

IUIS, used only a very limited number of patients, and the reactivity to other 

TM was determined using IgE derived from pooled serum.  

 

In this study, 21 patients were analysed for their IgE reactivity against the raw 

and cooked extract of the Pacific oyster. This was the first time screening of 

the Pacific oyster extracts conducted against a large number of patients. 

Similarly to the findings of previous chapters, more IgE-binding proteins were 

observed in the raw compared to the cooked extract. However, the cooked 

extract demonstrated higher IgE binding intensity than the raw extract for the 

same IgE reactive proteins. Pacific oyster is the most consumed species of 

mollusc. While most of the shellfish species are ingested in cooked form such 

as shrimps and crabs, oysters are mostly consumed raw, thereby potentially 

presenting both heat-labile and heat-stable allergens to the patient’s immune 
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system. The results presented in this chapter are concurrent with the previous 

findings in Chapter 2 using a pool of patient sera. 

 

Different IgE-binding patterns of the 21 patientrs were observed, suggesting 

that different sensitisation profiles are present in oyster-allergic patients. The 

assessment also demonstrated that not all subjects showed IgE reactivity to 

TM. Although the majority of the patients recognised TM (>70%), four patients 

showed no reactivity to TM. Instead these patients IgE recognised other 

proteins with molecular mass corresponding to those of known mollusc 

allergens in the previous chapter, Peptidyl-prolyl cis-trans isomerase and 

paramyosin [24]. Additionally, the fact that over 50% of patients reacted to 

proteins at molecular weight ~50kDa in the cooked extract is quite intriguing. 

Mass spectrometry analysis of the band at a similar position in the previous 

chapter (Chapter 2, spot no 23 at the 2D-PAGE of the cooked extract) revealed 

the band contained 15 different proteins with TM as the major component. 

Whether the IgE binding was due to TM isoforms, agregrates or other proteins 

in the mixture is not clear. However, our recent published study showed that 

TM from the Sydney rock oyster could be identified at 34, 39, 45 and 72 kDa 

in the heated extract, possibly due to degradation and aggregation during heat 

treatment [6]. Therefore, TM-specific IgE testing alone is insufficient for 

diagnosis of mollusc allergy. 

 

Production of recombinant allergen is essential for the diagnosis of allergy. 

Traditionally, the diagnosis of allergy is performed using the extracts obtained 

from different allergen sources. These extracts, however, contain a mixture of 

non-allergenic and allergenic proteins and is often difficult to standardise the 

allergen content in these tests. Nowadays, diagnosis of allergy is increasingly 

conducted at the molecular level collectively referred to as component-

resolved diagnosis (CRD) [13, 25]. Purification of the allergens is also an 

essential criterion for allergen acceptance by the World Health 

Organization/International Union of Immunological Societies (WHO/IUIS) 

Allergen Nomenclature Sub-Committee. This study reports for the first time the 
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cloning, full sequence analysis and recombinant expression of the Pacific 

oyster TM. The recombinant TM shares 97% amino acid sequence similarity 

with previous published Pacific oyster TM, BAH10152.1. Mass spectrometry 

and CD spectroscopy analysis of purified natural and recombinant TM 

demonstrated both TMs have very similar properties. The immunological 

characteristic of the recombinant TM is also identical to that of natural TM. 

Based on this study, the Pacific oyster TM has now been accepted and 

designated Cra g 1.01001 by the Sub-Committee 

(http://allergen.org/viewallergen.php?aid=902).  

 

Mollusc, together with crustacean, are termed as shellfish in fisheries 

terminology, although taxonomically those two groups are under different 

families. Due to this assumption, crustacean allergic patients are often advised 

to avoid mollusc as well. Although allergen cross-reactivity between 

crustaceans and mollusc has been documented clinically and experimentally 

[26], group-specific allergy has also been reported [27], suggesting that the 

clinical recommendation may not be completely accurate. In this study, IgE 

reactivity between Pacific oyster TM Cra g 1, Black tiger prawn Pen m 1 and 

house dust mite Der p 10 was evaluated using ELISA. The results showed that 

patients which recognised Pacific oyster TM also demonstrated IgE reactivity 

with Pen m 1 from shrimp and Der p 10 from dust mite. All patients, except 

patient 14, demonstrated higher IgE reactivity to Pen m 1 and Der p 10 than to 

Cra g 1, in agreement with the ImmunoCAP results. Tropomyosin is a pan-

allergen and has been shown responsible for clinical and immunological cross-

reactivity across different invertebrate species [28]. Their highly cross-reactive 

nature is due to the similarity in amino acid sequence. The IgE reactivity 

patterns seem to correlate with the degree of amino acid sequence identity. 

The identity between Pen m 1 and Der p 10 is considerably higher than 

between Pen m 1 and Cra g 1. Furthermore, the amino acid sequence identity 

of the predicted IgE-binding epitopes in Pen m 1 showed Cra g 1 has more 

sequence mismatches compared to that of Der p 10, particularly at the N-

terminal and middle part of the TM. Consequently, for patients who showed 
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high IgE binding to Pen m 1, their immunological reactivity to Cra g 1 is lower 

than to Der p 10. The number of mismatches on the IgE-binding epitopes have 

been shown to affect the reactivity to allergenic proteins [29, 30]. However, it 

is to be noted that cross-reactivity can be symmetrical or asymmetrical. In the 

symmetric cross-reactivity, two or more allergens can be the sensitising 

agents, while in asymmetrical only one allergen responsible for the 

sensitisation and the others are reactive due to similar sequence.  

 

In conclusion, this is the first study on the identification of allergens in the 

Pacific oyster using a large cohort of oyster-sensitised patients. Tropomyosin 

was confirmed as the major allergens, Crac g 1, reacting with 18 out of 21 

patients analysed. Other allergens were also observed, some corresponding 

to previously identified allergens from other mollusc species. Patients with 

reactivity to Pacific oyster TM demonstrated also IgE reactivity to Black tiger 

prawn and House dust mite TM, although the degree of reactivity varied among 

patients. In summary, the findings of this chapter provided novel recombinant 

oyster allergens for the development of reliable component-resolved 

diagnostic assays for mollusc allergy and enable accurate dietary advice. The 

following chapter will analyse the IgE binding eptiopes in more detail using 

advanced bioinformatic tools, to provide clinicians with allergome derived 

diagnostic decision trees for the prediction and management of patients with 

multiple allergic sensitisation to shellfish and indoor invertebrate allergens. 
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5.1 Summary 
 
Shellfish allergy affects up to 2% of the world population and persists for life in 

most patients. The diagnosis of shellfish allergy is however often challenging 

due to reported clinical cross-reactivity to other invertebrates including mites 

and cockroaches. Prediction of cross-reactivity can be achieved utilizing an in‐

depth analysis of a few selected IgE-antibody binding epitopes. In this chapter, 

available experimentally proven IgE-binding epitopes were combined with 

informatics-based cross-reactivity prediction modelling to assist in the 

identification clinical cross-reactivity biomarkers on shellfish allergens. An 

epitope conservation model using IgE binding epitopes available in the 

Immune Epitope Database and Analysis Resource (http://www.iedb.org/) was 

developed. The epitope conservation was applied to a set of four different 

shrimp allergens, and successfully identified several non-cross-reactive as 

well as cross-reactive epitopes, which have been experimentally established 

to cross-react. These findings suggest that this method can be used for 

advanced component-resolved-diagnosis to identify patients sensitised to a 

specific shellfish group and distinguish from patients with extensive cross-

reactivity to ingested and inhaled allergens from invertebrate sources. 
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5.2 Introduction 
 
Edible crustacean and mollusc are commonly discussed as ‘shellfish’. 

However, the group of ‘shellfish’ comprises the two invertebrate phyla 

arthropods and molluscs. Although all shellfish are invertebrate animals, these 

two groups are very distinct in evolutionary terms and subsequently contain 

different molecular repertoires of food allergens. In fact, crustacean are 

placed closer to insects and arachnids (spiders), and this seems to be the 

major factor for molecular sensitization and clinical reactivity between 

crustacean, dust-mite, insects and parasites [1]. Severe acute allergic 

reactions upon accidental ingestion of  different shellfish species, or insect 

contaminated food, have been observed in several studies [2, 3]. However, 

lack of specific diagnostic tools is the main problem for correct diagnosis of 

crustacean and/or mollusc allergy due to extensive immunological cross-

reactivity with other invertebrate allergen sources containing similar proteins. 

 

Cross-reactivity occurs when the IgE antibodies recognise identical or very 

similar protein patches (epitopes) from different proteins as compared to the 

primary sensitising protein [4]. IgE cross-reactivity to unrelated peanut 

allergens has recently been demonstrated by Bublin, Kostadinova [5], resulting 

from amino acid similarities of short peptides. Furthermore, it is known that 

phylogenetically related species often have similar proteins, and this similarity 

can implicate IgE cross-reactivity [6]. Allergens which share highly conserved 

protein sequences, but also structure and function, can be termed pan-

allergens if they are responsible for antibody binding cross-reactivity and 

subsequent clinical cross-reactivity [7]. 

 

Cross-reactivity of related proteins could be predicted computationally by 

comparing the identity of the amino acid sequence to the known allergen. 

Aalberse [8] reviewed potentially cross-reactive structures of known allergens 

and noted that proteins with greater than 50% identity throughout the length of 

the protein compared to an allergen are likely cross-reactive. In Chapter 2, 24 

unreported and potentially cross-reactive allergen were identified from Pacific 
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oyster. However, some recent studies [5, 9, 10] demonstrated that this 

predictive value is only useful to predict the allergenicity of new proteins but is 

not accurate to predict cross-reactivity. This is of particular importance for 

invertebrate tropomyosin which shares over 50% of amino acid identify with 

human tropomyosin. Moreover, the cross-reactivity is patient-specific as 

demonstrated in Chapter 4 and seem only to occur when the patient IgE 

antibodies bind to conserved epitopes. In the context of food allergy, 

sequential IgE binding epitopes seem to be much more relevant as 

conformational epitopes are easily degraded due to the digestion in the 

gastrointestinal tract [11]. 

 

Based on these observations a large-scale analysis of sequential IgE epitope 

conservation is of great importance for predicting clinical cross-reactivity 

between crustacean and mollusc, as well as mite and cockroach, in allergic 

patients. While there are eight allergenic proteins known among different 

shellfish [12], conclusive epitope data are only available for shrimp allergens 

including TM, AK, SCP and MLC. Positive IgE-binding epitopes of these 

shrimp allergens were collected from the Immune Epitope Database (IEDB). 

Subsequently, the conserved epitope sequences responsible for cross-

reactivity was determined using the Epitope Conservancy Analysis program 

[13]. Shrimp allergen epitopes were considered to be conserved if the 

sequence of the other invertebrate homologous peptide had only up to two 

amino acid mismatches [14-17]. These epitopes could be used to design better 

predictive diagnostic tools for shellfish allergic patients. 
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5.3 Aims 
1. To analyse the conservation of the IgE-binding epitopes of four shrimp 

allergens in crustaceans and mollusc species 

2. To determine the IgE-binding epitopes responsible for cross-reactivity 

between crustacean and mollusc.   

3. To develop a decision flow for predicting cross-reactivity between 

shrimp and molluscs based on the major allergens TM and AK 
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5.4 Materials and Methods 
 
5.4.1 Collection of shrimp allergens IgE-binding epitopes 
The dataset for the subsequent analysis was built from available IgE binding 

epitopes from four shrimp allergens: tropomyosin (TM), arginine kinase (AK), 

myosin light chain (MLC) and sarcoplasmic calcium-binding protein (SCBP). 

The data were assembled from the Immune Epitope Database and Analysis 

Resource (IEDB) [18]. The collected epitopes were restricted to peptides with 

positive serum IgE antibody binding from patients with confirmed shrimp 

allergy. 

 

5.4.2 Sequence retrieval and phylogenetic analysis 
Protein sequences were obtained from the UniProt database and aligned using 

MUSCLE v3.8.31 [19]. Different numbers of protein sequences could be 

retrieved for TM, AK, MLC and SCBP, with respectively 54, 30, 20 and 10 

protein sequences. The selected sequences represent 18 different crustacean 

and 30 mollusc species within the shellfish group. The subsequent 

phylogenetic analyses of relatedness of proteins were performed using 

MrBayes v3.2.6 [20] (50,000 generations) and RAxML v8.2.9 [21] (1000 

replicates) via the CIPRES Science Gateway [22]. 

 

5.4.3 Conservation analysis of shrimp allergens in invertebrate species 
The conservation of amino acid residues for each allergen among the different 

invertebrate species was estimated using the Rate4Site algorithm in Consurf 

[23] server by calculating position-specific evolutionary rates under an 

empirical Bayesian methodology. The rates were normalized and grouped into 

9 grades where high conserved residues receive a score of 9, and very 

variable residues receive a score of 1. The conservation rate of the amino 

acids was then mapped to the structure model of the allergens using Chimera 

[24]. 

 



 

141 
 

5.4.4 Conservation analysis of IgE-binding epitopes of shrimp allergens  
The degree of conservation of the epitopes within the sequences of the 

respective allergens was calculated using conservancy analysis tool [13] on 

the IEDB website. The degree of conservation of an epitope is calculated as 

the fraction of the protein sequence that matched the aligned epitope above a 

chosen identity level. An epitope was considered to be conserved if the 

homologous peptide had less than two amino acid mismatches. 

 

5.4.5 Data analysis 
Data analysis was performed using GraphPad Prism version 7. One-way 

ANOVA was applied to determine the statistically significant difference of the 

conserved epitopes between groups of invertebrate species. 
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5.5 Results 
 
5.5.1 Amino acid sequence analysis of shrimp allergens 
Phylogenetic analysis was performed to determine the relationships between 

shrimp allergen sequences in different invertebrate groups and to infer the 

evolutionary trends among the wide representation of the allergens. In this 

study, four shrimp allergens, TM, AK, SCP and MLC were selected based on 

the availability of the IgE-binding epitopes. A dataset of TM, AK, SCP and MLC 

protein sequences from crustaceans and molluscs species in UniProt 

database was assembled to construct a tree using the Maximum Likelihood 

and Bayesian approach. A consensus tree generated for all protein groups 

showed similar topologies with good branch support (>70%) for major 

branches for TM and AK (Figure 5-1). These trees, particularly for TM, is in 

good agreement with previously published TM trees [25, 26], demonstrating 

the expected distant phylogenetic relationship between crustacean and 

mollusc. Crustacean clustered closer with other allergy-causing arthropods, 

including mite and cockroach, while the mollusc forms a distinct cluster. 

 

The degree of evolutionary conservation at individual amino acid sites of TM 

and AK were determined using Consurf server by applying the Rate4Site 

algorithm. In ConSurf, the evolutionary rate is estimated based on the 

evolutionary relatedness between the protein and its homologues and 

considers the similarity between amino acids as reflected in the substitutions 

matrix. The conservation grades identified using ConSurf are mapped to the 

query sequence and/or structure using the ConSurf colour-code, with cyan-

through-purple corresponding to a variable (grade 1)-through-conserved 

(grade 9) positions (Figure 5-2). As the analysis can only be conducted if there 

are at least five homologous proteins, the conservation analysis could only be 

conducted for the two major allergens, TM and AK, but not for SCP and MLC. 

In general, TM had more conserved amino acids than AK. Most of the 

conserved amino acids in the TM were located at the N- and C-terminal 

regions. A total of 175 out of 284 TM residues had conservation grades >5, 
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while 86 residues (30%) had the full grade 9. For AK, 200 out of 356 residues 

had conservation grades >5, of which 96 residues (27%) had grade 9. 

 

 
Figure 5-1 Molecular evolutionary analysis of shellfish allergens. The 

phylogenetic tree was drawn using Bayesian and Maximum Likelihood 

approach for (I) Tropomyosin and (II) Arginine kinase. The tree is drawn to 

scale, with branch lengths in the same units as those of the evolutionary 

distances used to infer the phylogenetic tree. 
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Figure 5-2 Conservation analysis of individual amino acids in tropomyosin 

(TM) and arginine kinase (AK) determined using the Consurf server. The 

conservation grades were mapped onto the query sequence and structure 

using the ConSurf colour-code, with blue-through-red corresponding to a 

variable (grade 1)-through-conserved (grade 9) positions.  

 

 

5.5.2 Conservation of IgE binding epitopes of shrimp allergens 
To determine the likelihood of cross-reactivity between shrimp and other 

invertebrates, the conservation analysis of epitopes in those groups was 

conducted. A database of 176 epitopes was generated, containing 96 epitopes 

from TM, 39 epitopes from AK, 27 epitopes from MLC and 12 epitopes from 

SCBP. These epitopes were identified to be recognized by IgE antibodies from 

over 100 patients with shellfish allergy as determined in previous studies [15, 

27-31]. The epitope conservation was determined using epitope conservancy 

analysis tool within the IEDB webpage. Epitopes were conserved when they 

share less than two amino acid mismatches within the aligned sequence. The 

conservation analysis showed a similar trend for TM and AK. In Figure 5-3 the 

number of conserved epitopes for TM was found to be the highest within the 

crustacean followed by cockroach, mite and mollusc.  
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Figure 5-3 Heatmap representing number of mismatches in homologous 

peptide of shrimp TM IgE-binding epitopes in different invertebrate species. 

The heatmap was generated using Heatmapper [32] and clustered using 

Manhattan distance metric approach. The colours grading as indicated in the 

top left represents the number of amino acid mismatches found in the 

homologous peptides of epitopes. Green indicates no mismatches and red 

indicates maximum mismatches.  
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Approximately, 91% of IgE epitopes could be matched within 16 crustacean 

species, 56% of the three cockroach species and 48% within the nine mite 

species. All conserved peptides of crustacean, cockroach and mites epitopes 

where significantly higher than any of the three mollusc groups. In contrast to 

the crustacean and insects, within the 30 molluscs less than 20% of TM 

epitopes were conserved (Figure 5-4A) and even less in AK with 9% of all 

epitopes (Figure 5-4B). Nevertheless, these conservations were very high with 

the majority having only one or two amino acid mismatches. Within the 

molluscs, the cephalopods had the highest number of conserved epitopes, 

followed by gastropods and bivalves. The analysis of 20 MLC and 10 SCBP 

proteins resulted in no conserved epitopes to be identified within the mollusc 

group.  
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Figure 5-4 Percentage of conserved shrimp IgE-binding epitopes between 

invertebrate species. Ninety-Eight B-cell epitopes from tropomyosin (A) and 

thirty-nine B-cell epitopes from arginine kinase (B) were examined for their 

conservation within shellfish and between other allergenic invertebrate 

species. An epitope was considered conserved if the sequence matched to a 

homolog or a peptide variant with not more than 2 amino acid substitutions in 

another species. Significance differences (p<0.05) were calculated using One-

way ANOVA.  
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5.5.3 Invertebrate allergen pan-epitopes 
Species-specific conservation analysis of IgE binding epitopes was carried out 

to identify the allergen epitope sequences that could be termed ‘pan-epitope’. 

Of the 97 shrimp TM IgE-binding epitopes, 23 invertebrate pan-epitope were 

identified (Figure 5-5A). These epitopes were conserved and shared by 

crustacean, cockroach, mite as well as the mollusc. The epitope sequences 

are summarised in Error! Reference source not found.. The species 

belonging to the Arthropoda - crustacean, cockroach and mite, shared 19 IgE-

binding epitopes while crustacean-cockroach and crustacean-mite shared 11 

and 6 epitopes respectively. Thirty-three IgE-binding epitopes were specific to 

crustaceans and may be used to diagnose crustacean-specific IgE 

sensitisation. Error! Reference source not found. shows that most of the 

invertebrate TM pan-epitopes are located at the N- and C-terminals of the TM 

sequence. The epitopes at the amino acid position 241 to 264 were of 

importance for the cross-reactivity across the tested sequences due to high 

conservation in over 90% of the invertebrate species analysed. In contracts 

only 5 of the 39 shrimp AK IgE-binding epitopes were conserved across 

crustacean, cockroach, mite and mollusc (Figure 5-5B and Error! Reference 
source not found.) and unlike TM IgE-binding epitopes, only few AK IgE-

binding epitopes were specific to crustacean.  
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Figure 5-5 Venn diagram showing the similarities among the conserved 

shrimp IgE-binding epitopes across invertebrate species. In total 96 epitopes 

on TM and 39 on AK were analysed. 
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Table 5-1 Sequences of TM IgE-binding epitopes responsible for cross-

reactivity between crustacean, cockroach, mite and mollusc in prawn allergic 

patients and their presentation in each invertebrate group.   

Epitope sequence Position 
Presentation (%) 

Crust Cockroach Mite Mollusc 

MDAIKKKMQAMKLEK 1-15 100 100 100 77 

IKKKMQAMKLEKDNA 4-18 100 100 100 10 

VAALNRRIQLLEEDL 85-99 100 100 100 3 

LNRRIQLLEEDLERS 88-102 100 100 100 33 

NRRIQLLEEDLERSEER 89-105 100 100 100 33 

RIQLLEEDLER 91-101 100 100 100 43 

RIQLLEEDLERSEER 91-105 100 100 100 33 

EASQAADESERMRK 115-128 100 100 100 50 

EASQAADESERMRKV 115-129 100 100 78 50 

LENQLKEA 144-151 100 100 100 37 

LAEEADRKYDEVARK 154-168 100 100 100 10 

EADRKYDEVARKLAM 157-171 100 100 100 10 

ESKIVELEEELRVVG 187-201 100 100 100 17 

IVELEEELRVVGNNL 190-204 100 100 100 20 

LEEELRVVGNNLKSL 193-207 100 100 100 50 

KEVDRLEDELVNEKEKYKSI 241-260 100 100 100 60 

ERSVQKLQKEVDRLEDE 243-259 100 100 100 90 

QKLQKEVDRLEDELV 247-261 100 100 100 93 

LQKEVDRLEDELV 249-261 100 100 100 100 

QKEVDRLEDELVNEK 250-264 100 100 100 93 

KEVDRLEDE 251-259 100 100 100 100 

VDRLEDELVNEKEKY 253-267 100 100 100 63 
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Table 5-2 Sequences of AK IgE-binding epitopes responsible for cross-

reactivity between crustacean, cockroach, mite and mollusc in prawn allergic 

patients and their presentation in each invertebrate group. 

Epitope sequence Position 
Present in (%) 

Crustacean Cockroach Mite Mollusc 

SLLKKYLTKEVFDKL 25-39 57 100 33 9 

EGGIYDISNKRRMGL 319-333 100 100 67 36 

IYDISNKRRMGLTEF 322-336 100 100 67 55 

ISNKRRMGLTEFQAV 325-339 100 100 100 45 

KRRMGLTEFQAVKEM 328-342 100 50 100 27 

 

 

5.5.4 Shellfish allergen pan-epitopes 
Avoidance of other shellfish species including molluscs is one of the 

management strategies for shrimp-allergic patients. However, as Figure 5-1 

shows, the major allergenic proteins from shrimps and mollusc are distinctly 

different, supported by previous studies showing that cross-reactivity between 

shrimp and mollusc is species-specific [33] . Based on this rationale, further 

detailed analysis of shrimp IgE-binding epitope conservation across three 

edible mollusc classes, including bivalves, cephalopods and gastropods were 

carried out. In total, 26 shrimp TM and 5 AK IgE-binding epitope sequences 

were aligned with less than two amino acid mismatches with at least one 

mollusc species. 

 

Of the 26 conserved TM epitopes, only 23 epitopes were present in over 50% 

of each mollusc classes with three epitopes were conserved in all of the 

mollusc species (Fig 5). Detailed analysis of the conserved epitopes revealed 

that half of the amino acid residues in shrimp TM were responsible for cross-

reactivity to at least one species of mollusc and these amino acids were 

distributed across the entire protein sequence. Some of the epitopes showed 

group-specific conservation, such as Epitope 3, 14, 15, 17 and 18 in Fig 5. 

Unlike TM where the conserved epitopes were aligned with various species of 
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mollusc, the conserved epitopes of AK were mostly aligned with peptides of 

the cephalopod. Of the five conserved AK epitopes, only four epitopes were 

present in over 50% of mollusc species, with two of those were aligned to all 

species of cephalopods (Figure 5-6). While the complete amino acid sequence 

of the 4 analysed shrimp TMs are identical, the length and composition of the 

identified IgE epitopes differs. Nevertheless, the overall trend of high 

conservation to cephalopod peptides is similar, as well as the low conservation 

to bivalves. 

 

Combining the conserved epitopes divided the shrimp TM into three possible 

cross-reactivity scenarios, located on distinct areas on the TM allergen. Three 

regions with a total of 35 amino acids residues, or 12%, of the total 284 amino 

acids were conserved across all classes of the mollusc phyla (Figure 5-7, 

yellow boxes) and responsible for shellfish pan-allergy. Three regions (Figure 

5-7, green boxes) were conserved within the cephalopods and gastropods, 

and one region (Figure 5-7, grey box) was conserved within the bivalves and 

cephalopods.  
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Figure 5-6 Percentage representation of conserved epitopes in the three 

mollusc classes: bivalves (square), cephalopod (circle) and gastropod 

(triangle). Only epitopes which are present in over 50% of each mollusc 

classes are shown. The epitope allergen sources, their amino acid sequences 

and positions in the protein are indicated on the left. 
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A 

 
 

B 

 
 

Figure 5-7 Molecular modelling of the conserved IgE-binding epitopes of (A) 

tropomyosin (TM) and (B) arginine kinase (AK) that are presented in over 50% 

of each mollusc class. For tropomyosin, the epitopes were remapped to their 

consensus tropomyosin sequence and colour-coded based on mollusc classes 

in which the conserved epitopes are found: yellow (all mollusc classes), green 

(cephalopod and gastropod), and grey (bivalve and cephalopod). The protein 

structure of TM and AK were modelled using SWISS-MODEL based on 

reference proteins 1C1G and 4BG4, respectively. 
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5.5.5 Decision tree to identify potential crustacean-mollusc cross-
reactivity in shrimp-allergic patients 
A decision tree was developed to identify potential shrimp-mollusc cross-

reactivity in shrimp-allergic patients based on the conservation patterns of 

shrimp TM and AK IgE-binding epitopes in mollusc species (Figure 5-8). In the 

diagnosis of shrimp allergy, where clinical history does not give a clear 

conclusion, sensitisation tests against a whole shrimp extract and specific 

allergens are needed prior to oral food challenge. If TM-specific IgE results are 

positive, with quantitative IgE-levels to TM being similar than to the whole 

protein extract, immune-dominant sensitization to shellfish TM is likely, and 

broad (serological) cross-reactivity to other shellfish species is to be expected. 

Analysing IgE-binding to shrimp TM epitopes can further improve the diagnosis 

of cross-reactivity. Four reactivity patterns are suggested including; crustacean 

mono-reactivity, crustacean-mollusc cross-reactivity, crustacean-cephalopod-

gastropod cross-reactivity and crustacean-cephalopod-bivalve cross-

reactivity. However, if TM-specific IgE are not present (negative), then cross-

reactivity due to sensitisation to AK is still possible, however only Region 1 

would be responsible for crustacean-cephalopod cross-reactivity. 
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Figure 5-8 Decision tree to diagnose potential molecular cross-reactivity to 

invertebrate allergens in shrimp allergic patients based on the reactivity to 

specific IgE epitopes. The region numbers refer to the epitope mapping in 

Figure 5-7.  
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5.6 Discussion 
The development of safe and reliable diagnostic tools is crucial to diagnose 

acurately allergic sensitisation in patients and determine the primary allergen 

sources. Diagnosis of shellfish allergy, in particular, is a major challenge for 

the management of the allergic patients due to highly cross-reactive nature of 

some shellfish allergens. This problem is clearly evident in a recent study by 

Pascal, Grishina [31] where 44% of their negative controls positively reacted 

with tropomyosin, resulting in an overall in a false-negative rate of 17% in their 

diagnosis. A preceding study demonstrated that IgE recognition of allergic 

patients towards identical and/or similar homologous peptides to the allergen 

epitopes are the basis of the molecular cross-reactivity [17]. Thus, the present 

study was conducted to determine shrimp IgE-binding epitopes that could be 

used to predict cross-reactivity toward other invertebrate species in shrimp 

allergic individuals, through which better predictive diagnostic tools for shellfish 

allergic patients could be developed.  

 

The present study demonstrates that within a large directory of shrimp IgE-

binding epitopes there are a substantial fraction of epitopes that are highly 

conserved across invertebrate species. These conserved epitopes might play 

a key role in cross-reactivity between shrimp and other invertebrate species. 

Shrimp TM and AK shared a higher number of conserved epitopes compared 

to shrimp SCP and MLC; in fact, no conserved epitope could be found for SCP, 

while the MLC only shared two epitopes in one region with cockroach MLC. A 

recent study by Kamath et al, demonstrated the absence of IgE recognition to 

shrimp SCP and MLC in house dust mite allergic infants [34]. These results 

suggest that TM and AK are the major contributing proteins in immunological 

and clinical cross-reactivity between crustacean and other invertebrate groups. 

Furthermore, comparative evaluation of the number of conserved epitopes in 

TM and AK revealed a clear cross-reactive hierarchy where cockroach is on 

the top followed by mite, while molluscs are on the bottom of this hierarchy.  
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House dust mite and cockroach are the most common sources of indoor 

allergens worldwide with up to 85% and 60% of asthmatic patients eliciting 

sensitisation to at least one of the mite or cockroach allergens respectively. In 

a retrospective study of 95 shrimp-allergic patients in Canada, 90.5% of those 

patients had a positive test to HDM [35]. Similarly, a study on an Asian 

population found a majority of patients with shrimp allergy have positive skin 

tests to HDM and cockroach [36]. Vivid evidence of this cross-reactivity was 

demonstrated by a study on Orthodox Jews who positively tested against 

shrimp yet had no prior exposure to seafood due to strict religious laws 

prohibiting shellfish consumption [37]. TM and AK seem to be the allergens 

responsible for this cross-reactivity as supported by the current study. Shrimp 

TM shares about 82% and 81% amino acid identity with cockroach and house 

dust mite tropomyosin, respectively. Likewise, shrimp AK shares about 82% 

and 78% amino acid identity with cockroach and house dust mite AK, with 66% 

of shrimp TM IgE-binding epitopes and 80% of shrimp AK IgE-binding epitopes 

are also existing within TM and AK of cockroach and house dust mite. These 

identified IgE-binding epitopes could be used to diagnose shrimp sensitised in 

patients sensitsed to cockroach or house dust mite, without a previous history 

of allergic reactions to shrimp. Reciprocally, the non-conserved IgE-binding 

epitopes can be used to diagnose genuine shrimp sensitisation. These findings 

are of significant impact on the diagnosis of shrimp allergy as current 

diagnostic tools using tropomyosin are not specific. Although tropomyosin is a 

good predictor of allergy reaction to crustacean [38], the rate of false positive 

reaction is still high due IgE binding of antibodies developed in patients against 

tropomyosin from other invertebrate sources, in particular house dust mite and 

cockroach [1]. Furthermore, the identification of specific IgE binding epitopes 

allows the prediction of allergic reactions to ingested crustacen, in patients 

allergic to cockroach and house dust mite. As over 30% of the global 

population is sensitised to dust mite allergens, the developed predictive model 

in this study could be of major importance. 
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Crustaceans and molluscs are generally referred to as “shellfish” in the context 

of seafood consumption and avoidance to both groups are often advised for 

shellfish allergic patients [39]. Patients with allergy to shellfish may fail to 

identify the offending seafood species, often as a result of confusion regarding 

the different common names used to describe diverse seafood. Crustaceans 

are classified as arthropods together with spiders and insects, while the group 

of molluscs is a large and diverse group, subdivided into different classes such 

as bivalves, gastropods, and cephalopods. Precise diagnosis of allergy to 

crustacean or mollusc species is difficult as no species-specific allergens have 

been identified so far. Moreover, true sensitisation to shellfish-specific 

allergens can be hampered due to the highly cross-reactive nature of some 

allergenic proteins, including TM and AK [40, 41]. While crustacean TMs and 

AKs show very high amino acid sequence identity (up to 98% and 97% 

respectively) with demonstrated IgE cross-reactivity [42, 43], the reported 

sequence identity between crustacean and mollusc TMs and AKs is much 

lower with only up to 68% and 58% respectively. The gold standard to 

determine food allergy is a oral food challenge, however due to the risk of 

severe reactions to shellfish allergens, this test is not frequently performed. 

This present findings suggest that specific shrimp allergen IgE-binding 

epitopes could be used as a robust, alternative way to diagnose cross-

reactivity between crustacean and mollusc species among shellfish-allergic 

patients. Among the known 97 shrimp TM IgE-binding epitopes, 71 epitopes 

are only existing within crustacean TMs, while 26 epitopes are shared with 

mollusc TMs. Meanwhile, of the 39 shrimp AK IgE-binding epitopes, only five 

epitopes are shared with cephalopod AK. In contrast no shrimp SCBP and 

MLC IgE-binding epitopes are present in mollusc SCBP or MLC. These 

findings indicate that only shellfish-allergic patients sensitised to TM have a 

risk of reacting to both crustacean and mollusc species. This supports the 

conclusion of the previous study where crustacean-allergic patients with 

concurrent mollusc allergy reacted more frequently to tropomyosin than 

without it (93% vs 35%, respectively, P = 0.004), while recognition of the other 

allergens were not different in both patient cohorts [44].  
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This chapter findings also demonstrate different patterns of conserved IgE-

binding epitopes among the three mollusc classes, suggesting that some 

crustacean-allergic patients will cross-react to one but tolerate another class 

of molluscs. The cephalopods have a higher probability to cross-react with 

crustacean than the other mollusc classes. The cephalopod TM amino acid 

sequences have a higher identity with crustaceans than those of gastropod 

and bivalve (68% vs 63 vs 62.3%, respectively), and therefore contained more 

homologous peptides of shrimp TM and AK IgE-binding epitopes (Figure 5-7). 

From the study of Vidal, Bartolome [44], of the 14 crustacean-allergic patients 

with mollusc allergy that were examined by skin prick tests against different 

mollusc species, 11 patients were positive to cephalopods, and 6 patients were 

positive to bivalves. While no study identified IgE-cross-reactivity due to AK 

between crustacean and gastropods or bivalves, cross-reactivity between 

cephalopods and crustacean has been reported [45]. Nevertheless, 

immunological cross-reactivity between shrimp and other mollusc classes, the 

gastropods and bivalves, has been demonstrated in several studies [46-48].  

 

Gastropod and bivalve TMs share only 60% sequence identities with 

crustacean TMs, however, unlike cephalopod where the identity of TM amino 

acid sequence is very high among the group, the identity of TM amino acid 

sequence in the species among those two classes is very variable, particularly 

among bivalve species. The variability of bivalve TM is very apparent as 

demonstrated in Fig 5 where out of 23 conserved IgE-binding epitopes, only 

five epitopes were shared across all species of bivalve providing a molecular 

basis of selective cross-reactivity [33].  

 

Based on the abovementioned findings on the different pattern of IgE-binding 

epitope conservations in the three mollusc classes, a decision tree to predict 

immunological cross-reactivity between shrimp and mollusc classes based on 

TM and AK was developed. This decision tree could contribute significantly 

towards patient management particularly on the aspect of food avoidance and 
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diet. It has been well known that shrimp allergic patients are advised to avoid 

all shellfish species including mollusc due to the risk of cross-reactivity. The 

decision tree suggests that this advice should not be generalised as only 

patients sensitised to TM which account for 70-80% of total shrimp-allergic 

patients have a risk of cross-reacting with mollusc allergens. Moreover, the 

cohort of shrimp-allergic patients could be further divided into five groups 

based on their cross-reactivity patterns to specific IgE binding epitopes.  

 

In conclusion, prediction of immunological cross-reactivity between an allergen 

and close related proteins based on similarity of the IgE-binding epitopes has 

been confirmed to be more accurate than the prediction based on similarity of 

the complete amino acid sequence of the allergenic proteins. Food allergens 

including shellfish allergens tend to have sequential IgE-binding epitopes due 

to digestion in the gastrointestinal tract. Thus, epitope sequence comparison 

is more relevant and conceivable for assessing the potential cross-reactivity of 

allergenic proteins, then comparing the whole protein sequence. The shrimp 

allergen IgE-binding epitope conservation results outlined in this study 

illustrate that a clear hierarchy of cross-reactivity is discovered, with TM being 

the most cross-reactive allergen among allergenic invertebrate species. This 

is most likely the main reasons that TM is one, if not the major pan-allergen in 

inhalant and ingestion animal allergy. The IgE binding epitopes located at the 

N- and C-terminal regions of TM are highly conserved and could be used as 

biomarkers to predict allergic cross-reactivity of shrimp-allergic patients. 

Unexpectedly, more than half of the TM as well as the AK IgE epitopes were 

found to be conserved in cockroach and mite TM and AK respectively. In 

contrast, only few shrimp IgE-binding epitopes were conserved across the 

molluscs. This suggests a low risk of cross-reactivity of shrimp allergic patients 

to molluscs, while a high risk of cross-reactivity to cockroach or mite is 

predicted. We developed for the first time a decision tree to predict cross-

reactivity between shrimp and molluscs based on the major allergens TM and 

AK. These fundamental findings could simplify the diagnosis of cross-reactivity 
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among shellfish-allergic patients, thereby avoiding potential life-threatening 

food challenges.  
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CHAPTER 6. GENERAL DISCUSSION AND FUTURE 

DIRECTIONS 
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Shellfish are a healthy and nutritious food source and considered a sustainable 

source of proteins. However, the increased consumption of shellfish has been 

associated with an increase in adverse food reactions. Shellfish allergy is 

among the top eight food sources responsible for about 90% of food allergic 

reactions. Shellfish allergy persists into adulthood and currently there is no 

curative allergen-specific therapy is available. Shellfish is not a taxonomical 

order; it is a fisheries term for exoskeleton-bearing aquatic invertebrates used 

as food, including molluscs and crustaceans. Furthermore, unlike crustacean, 

mollusc allergy is clinically underreported and their allergens are ill-defined. To 

date, only five mollusc allergens are listed in the WHO/International Union of 

Immunological Societies (IUIS) Allergen Nomenclature SubCommittee 

database, all of which are only different tropomyosins 

(http://www.allergen.org/index.php). Additional mollusc allergens have been 

reported, but not yet fully characterised. 

 

The work outlined in this thesis was aimed to improve current approaches on 

the identification of novel allergens from Pacific oyster (Crassostrea gigas), to 

characterise the structural and immunological properties of the newly 

registered-major allergen, tropomyosin Cra g 1, and to evaluate the available 

shellfish allergen IgE-binding epitopes for their potential as a novel strategy to 

predict cross-reactivity between crustacean and mollusc species. 

 

A comprehensive methodology for the identification of unreported allergens 

was developed in Chapter 2. This methodology combines the technological 

advances of omics science with the traditional IgE-reactivity techniques and 

utilises advanced of bioinformatics and computational tools for the integration, 

analysis and interpretation of data sets produced. Using this approach, 24 

unreported allergens were identified from over 25,000 proteins of the Pacific 

oyster. Of those unreported allergens, only four allergens were discovered in 

the heated extracts suggesting that many allergens from oysters were 

overlooked in previous studies due to the omission of raw extract in the 

analysis. Not only is this is the first time that these IgE binding allergens were 
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identified in the Pacific oyster, but these allergens also showed high identity 

with known allergens from previously reported cross-reactive species. For 

example, triosephosphate isomerase and 78 kDa glucose regulated protein 

share 74% and 65% amino acid identity with dust-mite allergens, possibly 

responsible for the clinical mollusc-mite cross-reactivity, previously reported 

during mite immunotherapy. The application of omics science for the 

identification of unreported allergens can accelerate the process of knowledge 

gain on the offending allergens. From the transcriptomic data, the sequence 

and structure of the allergens will be easily elucidated helping further study on 

the production of recombinant proteins and the prediction of potential cross-

reactivity with other allergen sources. Furthermore, proteomics, in particular 

2D-electrophoresis coupled with mass-spectrometry provide high-resolution 

separation of proteins from the allergen sources and give better dynamic 

ranges as compared to the commonly used 1D electrophoresis, which can 

improve the detection of low abundance allergens.  

 

The abundance of particular proteins also can be improved by modifying the 

buffers used in the extraction procedures, often used for producing in vitro 

diagnostic tests for molluscs and crustacean species. In Chapter 3, eight 

buffers used to extract proteins from Pacific oyster and their extract efficiency 

were compared with the commonly used buffer, Phosphate-buffered saline 

(PBS) and Tris-buffered saline (TBS). Significant differences in the recovered 

proteins were observed between PBS and other buffers. While low pH buffers 

had a very poor extractability, high pH buffers showed better recovery of 

proteins. Alternatively, increasing the ionic strength of the PBS and TBS also 

significantly improved the protein content. This improvement resulted in the 

identification of IgE-reactive proteins previously undetected due to low 

concentration. 

 

After identifying several unreported Pacific oyster allergens, this project then 

focused on the development of better diagnostic tools for mollusc allergy. It 

has been known that mollusc allergy is underreported due to lack of specific 
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and sensitive diagnostic tools. Current diagnosis of mollusc allergy relies on 

the use of commercial preparations derived from whole protein extracts with 

unknown protein composition rather than allergen components. However, 

developing component-resolved diagnosis for mollusc allergy may require 

knowledge on the natural abundance of the allergens, its localisation in the 

organism, as well as its cross-reactive potential with other related allergen 

sources. This development of better diagnostic tools was dedicated in Chapter 

4 and Chapter 5. Tropomyosin is believed to be the major allergen of Pacific 

oyster; however, the studies only used a very limited number of patients to 

determine the IgE-reactivity of the protein, and the cross-reactive nature of 

tropomyosin was determined using pooled serum-IgE. Therefore, in Chapter 4 

a comprehensive evaluation of the structural and immunological properties of 

the Pacific oyster tropomyosin (Cra g 1) were carried out, using 21 patients 

with confirmed oyster allergy. The complete oyster tropomyosin was 

successfully cloned and recombinantly expressed.. The recombinant 

tropomyosin had identical structural and immunological properties with the 

natural counterpart. Screening of IgE-reactivity of this tropomyosin using 

immunoblotting against 21 oyster-sensitised patients showed more than 80% 

of the patients demonstrated IgE-reactivity to tropomyosin, confirming previous 

findings that tropomyosin is the major allergen. These tropomyosin-reactive 

patients also demonstrated IgE-reactivity to related invertebrate tropomyosins 

from Black tiger prawn and House dust mite although different degrees of 

reactivity were observed in each patient. Sequence alignment of these three 

tropomyosins revealed some region-specific similarities in the IgE-binding 

epitopes, however whether the patient multi-reactivity was due to cross-

reactivity or co-sensitisation need to be confirmed through further 

investigation.  

 

In Chapter 5, a decision tree was proposed to identify cross-reactivity between 

crustacean and mollusc species. This decision tree was developed based on 

the conservation analysis of the available IgE-binding epitopes of tropomyosin 

and arginine kinase. Conserved IgE-binding epitopes have been shown to be 
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responsible for the cross-reactivity between not only closely related allergens 

but also between very different allergens. Two peptide sequences are defined 

as conserved when they share similar amino acid sequences with maximum 

of two amino acid mismatches. Although IgE-binding epitope data are 

available for four shellfish allergens, conservation analysis demonstrated that 

only tropomyosin and arginine kinase shared considerable portion of 

conserved IgE-binding epitopes in crustacean and mollusc species. More 

interestingly, class-specific conservation was observed within mollusc species 

where cephalopods are most likely to cross-react with crustaceans as 

compared to gastropods or bivalves to predict cross-reactivity between shrimp 

and molluscs based on the major allergens, TM and AK. These fundamental 

findings could simplify the diagnosis of cross-reactivity among shellfish-allergic 

patients, thereby avoiding complete avoidance of all shellfish species, which 

may otherwise have an impact on their nutrition and diet. 

 

Future directions 
 
a. Evaluation of allergenicity of newly identified putative allergens - 

Bioinformatics analysis of the Pacific oyster genome predicted 95 potential 

allergens, however only 44 of those were present in the extracts and further 

analysis showed only 24 proteins were IgE-reactive. Expression of these 

proteins in the adult Pacific oyster as well as solubility issues are thought to 

contribute to the less IgE-reactive proteins detected as compared to the 

number of potential allergens predicted. Future studies involving production of 

recombinant proteins of those potential allergens and analysing their IgE-

binding against oyster allergic patients may provide an insight, confirming the 

allergenicity of these proteins. 

 

b. Investigation of clinical relevance of the unreported Pacific oyster 
allergens  
The work conducted in this thesis revealed several unreported allergens from 

Pacific oyster. The IgE-reactivity of these unreported allergens was confirmed 
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using a serum pool from five shellfish allergic patients. Utilisation of these 

allergens for component resolved diagnosis requires information on the clinical 

relevance of each allergen. Therefore, future research evaluating clinical 

reactivity of these allergens in individual patients are needed. Purification by 

physicochemical means or by affinity chromatography followed up by IgE-

reactivity assay to each allergen should be performed.  

 

c. Epitope mapping of Pacific oyster tropomyosin 
Prediction of immunological cross-reactivity between an allergen and closely 

related proteins based on similarity of the IgE-binding epitopes was 

demonstrated to be more accurate than the prediction based on similarity of 

the complete amino acid sequence of the allergenic proteins. Food allergens 

including shellfish allergens tend to have sequential IgE-binding epitopes due 

to digestion stability in the gastrointestinal tract. Thus, epitope sequence 

comparison is more relevant and conceivable for assessing the potential 

cross-reactivity of allergenic proteins, than comparing the whole protein 

sequence. Currently, only one epitope has been discovered from Pacific 

oyster, determined by using protease digestion followed by a competitive 

ELISA inhibition assay. Further studies utilising more sophisticated 

methodologies, including the use of overlapping synthetic peptides need to be 

carried out. 

 

d. Development of component-resolved diagnosis for shellfish 
allergy based on IgE-binding epitopes 
Diagnosis of allergy has gradually integrated the allergen components to 

support allergen extracts due to their high accuracy. Purified allergens from 

shellfish species, particularly shrimp, are quite well covered; however their 

sensitivity to correctly diagnose shrimp allergy is still below 95% due to highly 

cross-reactive nature of their major allergen tropomyosin. In Chapter 5, it was 

demonstrated that IgE-binding epitopes of shrimp tropomyosin and arginine 

kinase showed group-specific conservation, which could be used to resolve 

the questions about clinical cross-reactivity. Using advanced technologies for 
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peptide synthesis and microarray platform, hundreds of IgE-binding peptides 

could be attached to a single panel. These technologies could significantly 

improve the accuracy of current diagnosis for shellfish allergy.   

 

The experimental work and the findings generated in this study were intended 

to improve the diagnostics for mollusc allergy and provide a foundation for 

future peptide and protein-based immunotherapy for mollusc allergy. 
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APPENDIX A 
 

BUFFERS AND SOLUTIONS 
 

General buffer 
20 x Phosphate buffered saline (PBS) 

Na2HPO4 ------------------------------------ 28.8 g 

KH2PO4 --------------------------------------- 4.8 g 

NaCl ------------------------------------------ 160 g 

KCl ---------------------------------------------- 4 g 

Milli-Q H2O ------------------------------------ 1 l 

Mix to dissolve and adjust pH to 7.2. Autoclave or filter through 0.45μm 

membrane for long-time storage. Dilute 1:20 with Milli-Q water before use 

and adjust pH if necessary. 

 

ELISA buffers 

PBS/0.05% Tween 20 (wash buffer) 

Tween 20 ------------------------------------- 2.5 ml 

1 x PBS ------------------------------------------- 5 l 

1M HCl (stop buffer) 

38% HCl -------------------------------------- 8.3 ml 

Milli-Q H2O --------------------------- up to 100 ml 
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SDS-PAGE solutions 

Solution B 

Tris-HCl (2 M, pH 8.8) ---------------------- 75 ml 

10% SDS in Milli-Q H2O --------------------- 4 ml 

Milli-Q H2O ------------------------------------21 ml 

 

Solution C 

Tris-HCl (1 M, pH 6.8) ---------------------- 50 ml 

10% SDS in Milli-Q H2O --------------------- 4 ml 

Milli-Q H2O ------------------------------------46 ml 

 

5 x Protein sample loading buffer 

Tris-HCl (1 M, pH 6.8) ---------------------- 0.6 ml 

50% Glycerol ------------------------------------ 5ml 

10% SDS ---------------------------------------- 2 ml 

Dithiothreitol (1 M) ---------------------------- 1 ml 

1% Bromophenol blue ------------------------- 1 ml 

Milli-Q H2O ----------------------------- up to 10 ml 

 

 

 

 

 



 

177 
 

12% SDS-PAGE gel recipe 

Resolving gel  

40% 29:1 Acrylamide -------------------------- 6 ml 

Solution B ---------------------------------------- 5 ml 

Milli-Q H2O ------------------------------------ 8.9 ml 

10% Ammonium persulphate ---------------- 100 μl 

TEMED ------------------------------------------- 10 μl 

Stacking gel  

40% 29:1 Acrylamide ----------------------- 0.93 ml 

Solution C -------------------------------------- 2.5 ml 

Milli-Q H2O ------------------------------------ 6.5 ml 

10% Ammonium persulphate ---------------- 100 μl 

TEMED ------------------------------------------- 10 μl 

1 x Gel Electrophoresis running buffer 

Tris ------------------------------------------------ 3 g/l 

Glycine ---------------------------------------- 14.4 g/l 

SDS ------------------------------------------------ 1 g/l 

Milli-Q H2O ---------------------------------- up to 1 l 

SDS-PAGE gel destaining solution 

Methanol (AR grade) ------------------------- 500 ml 

Glacial acetic acid ----------------------------- 100 ml 

Milli-Q H2O ------------------------------------ 400 ml 

 



 

178 
 

Immunoblotting Buffers 

Transfer buffer 

Tris ------------------------------------------- 1.164 g 

Glycine ---------------------------------------- 0.58 g 

10% SDS -------------------------------------- 750 μl 

Methanol --------------------------------------- 40 ml 

Milli-Q H2O --------------------------- up to 200 ml 
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1.7 DNA clone buffers 

LB broth 

Tryptone -------------------------------------- 10 g/l  

NaCl ------------------------------------------- 10 g/l 

Yeast extract ----------------------------------- 5 g/l 

Milli-Q H2O ------------------------------- up to 1 l 

Mix to dissolve and autoclave before use for bacterial culture. 

LB plates 

Tryptone -------------------------------------- 10 g/l  

NaCl ------------------------------------------- 10 g/l 

Yeast extract ----------------------------------- 5 g/l 

Agar ------------------------------------------- 15 g/l 

Milli-Q H2O ------------------------------- up to 1 l 

Ampicillin stock 

Ampicillin ---------------------------------------- 1 g 

70% Ethanol ---------------------------------- 10 ml  

Filter sterilised before use. 

Glycerol stocks 

Fresh overnight culture --------------------- 700 μl 

50% sterile glycerol in Milli-Q H2O ------ 300 μl 
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Protein Purification Buffers 

Phosphate buffer 

Na2HPO4 ----------------------------------------- 1.44 g 

KH2PO4 ------------------------------------------- 0.24 g 

NaCl ----------------------------------------------- 17.5 g 

KCl -------------------------------------------------- 0.2 g 

Milli-Q H2O ------------------------------------------- 1 l 

Mix to dissolve and adjust pH to 7.4. 

Stock solution 

Imidazole --------------------------------------- 0.068 g 

Phosphate buffer --------------------------------- 50 ml 

Equilibration buffer 

Stock solution ------------------------------------- 1 ml 

Milli-Q H2O ------------------------------- up to 50 ml 

Wash buffer  

Stock solution ------------------------------------- 5 ml 

Milli-Q H2O ------------------------------- up to 50 ml 

Elution buffer  

Stock solution ------------------------------------ 30 ml 

Milli-Q H2O ------------------------------- up to 50 ml 
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Two dimensional SDS-PAGE buffers 
Sample Buffer  

Urea  8M 

CHAPS 2% 

Dithiothreitol (DTT) 50mM 

Bio-Lyte ® 2/10 ampholytes 0.2% 

Bromophenol Blue (trace) 

 

Equilibration Buffer I 

Urea 6M 

SDS 2% 

Tris-HCl (pH 8.8) 0.375 M 

Glycerol 20% 

DTT 2% 

 

Equilibration Buffer II 

Urea 6M 

SDS 2% 

Tris-HCl (pH 8.8) 0.375 M 

Glycerol 20% 

Iodoacetamide 2.5% 
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APPENDIX II 
 

SUPPLEMENTARY TABLES 
 

Supplementary Table 1 Identified potential allergens of Pacific Oyster from 

the in silico analysis. 
Protein Gene name Best matched allergen Amino 

acid 
identity 
(%) 

Very likely allergenic (amino acid identity ≥70%) 
Tropomyosin CGI_10013163  tropomyosin 

[Crassostrea gigas]  
92.94 

Tropomyosin CGI_10013164  tropomyosin, partial 
[Crassostrea virginica] 

86.67 

Tubulin alpha chain CGI_10002456  Der f 33 allergen [Mite] 85.71 
Tubulin alpha-1C chain CGI_10002455  Der f 33 allergen [Mite] 83.2 
Tubulin alpha-3 chain CGI_10018930  Der f 33 allergen [Mite] 82.43 
Tubulin alpha-1C chain CGI_10024998  Der f 33 allergen [Mite] 81.8 
Tubulin alpha-1C chain CGI_10007570  Der f 33 allergen [Mite] 81.53 
Tubulin alpha-1C chain CGI_10024999  Der f 33 allergen [Mite] 81.35 
78 kDa glucose-
regulated protein 

CGI_10015492 Aed a 8 [Mosquito] 81 

Tubulin alpha-1C chain 
(Fragment) 

CGI_10002454  Der f 33 allergen [Mite] 80 

Tubulin alpha-1C chain CGI_10008247  Der f 33 allergen [Mite] 77.7 
Tubulin alpha-1A chain CGI_10007571  Der f 33 allergen [Mite] 77.63 
Fructose-bisphosphate 
aldolase (EC 4.1.2.13) 

CGI_10019801 Thu a 3 [Tuna] 74.29 

Heat shock protein 70 
B2 

CGI_10010646  Der f 28 allergen [Mite] 74.27 

Heat shock protein 70 
B2 

CGI_10010647  Der f 28 allergen [Mite] 74.27 

Triosephosphate 
isomerase (EC 5.3.1.1) 

CGI_10003538  triosephosphate 
isomerase [shrimp] 

74.03 

Heat shock protein 68 CGI_10002594  Der f 28 allergen [Mite] 73.96 
Triosephosphate 
isomerase (EC 5.3.1.1) 

CGI_10003539  Der f 25 allergen [Mite] 73.37 

Heat shock protein 70 
B2 

CGI_10003417  Der f 28 allergen [Mite] 73.13 

Enolase CGI_10022154  enolase [Tunas] 72.83 
Fructose-bisphosphate 
aldolase (EC 4.1.2.13) 

CGI_10025556 Thu a 3 [Tuna] 72.22 
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Glyceraldehyde-3-
phosphate 
dehydrogenase (EC 
1.2.1.12) 

CGI_10010974 Glyceraldehyde-3-
phosphate 
dehydrogenase [Wheat] 

71.21 

Peptidyl-prolyl cis-trans 
isomerase E (PPIase E) 
(EC 5.2.1.8) 

CGI_10026365  Der f 6 [Mite] 70.19 

    

Likely allergenic (amino acid identity ≥50%, but <70% 
Ferritin (EC 1.16.3.1) CGI_10016317 Ferritin [Mite] 69.92 
Paramyosin CGI_10001653 Paramyosin [Abalone] 68.59 
Arginine kinase CGI_10021480 Arginine kinase 

[Octopus] 
66.96 

Arginine kinase CGI_10021483 Arginine kinase 
[Octopus] 

66.67 

Heat shock protein HSP 
90-alpha 1 

CGI_10017621  Asp f 12 [Fungus] 66.26 

Ferritin (EC 1.16.3.1) CGI_10021660 Ferritin [Mite] 66.06 
Cytochrome c CGI_10012574 Cur l 3 [Fungus] 66.02 
Superoxide dismutase 
[Cu-Zn] (EC 1.15.1.1) 

CGI_10017958 Ole e 3 [Olive tree] 66 

Peptidyl-prolyl cis-trans 
isomerase 6 

CGI_10022249  Cyclophilin [Carrot] 65.96 

Ferritin (EC 1.16.3.1) CGI_10027591 Ferritin [Mite] 65.58 
78 kDa glucose-
regulated protein 

CGI_10008834  Der f 28 [Mite] 65.3 

78 kDa glucose-
regulated protein 

CGI_10027395  Der f 28 [Mite] 65.25 

Arginine kinase CGI_10024056 Arginine kinase 
[Octopus] 

64.65 

Inorganic 
pyrophosphatase 

CGI_10027722  Der f 32 [Mite] 64.24 

Fructose-bisphosphate 
aldolase 

CGI_10000078 Sal s 3 [Salmon] 64.12 

60S ribosomal protein 
L3 (Fragment) 

CGI_10010529 Asp f 23 [Fungus] 63.96 

Arginine kinase CGI_10021482 Arginine kinase 
[Octopus] 

63.83 

Heat shock protein 68 CGI_10002823  Der f 28 [Mite] 63.34 
40 kDa peptidyl-prolyl 
cis-trans isomerase 

CGI_10015504  Cyclophilin [Carrot] 62.72 

Peptidyl-prolyl cis-trans 
isomerase (EC 5.2.1.8) 

CGI_10013880  Cyclophilin [Carrot] 61.76 

Plasma kallikrein CGI_10016607 Der f 3 [Mite] 61.7 
60S ribosomal protein 
L3 

CGI_10012282 Asp f 23 [Fungus] 60.76 

Arginine kinase CGI_10021481 Arginine kinase 
[Octopus] 

60.6 
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Tubulin alpha chain CGI_10018903  Der f 33 [Mite] 60.49 
78 kDa glucose-
regulated protein 

CGI_10018425  Der f 28 [Mite] 59.9 

Eukaryotic translation 
initiation factor 3 
subunit I (Fragment) 

CGI_10025943  For t 1 [Midges] 59.88 

Calcium-binding atopy-
related autoantigen 1 

CGI_10026057  Hom s 4 [Human] 59.3 

Transaldolase CGI_10002311 Fus p 4 [Fungus] 59.2 
Peptidyl-prolyl cis-trans 
isomerase B 

CGI_10023851  Cyclophilin [Carrot] 58.7 

Peptidyl-prolyl cis-trans 
isomerase (EC 5.2.1.8) 

CGI_10023850  Asp f 27 [Fungus] 58.33 

Aldehyde 
dehydrogenase, 
mitochondrial 

CGI_10012671  Cla h 10 [Fungus] 58.02 

Thioredoxin CGI_10021611 Mala s 13 [Yeast] 58 
Peptidyl-prolyl cis-trans 
isomerase (EC 5.2.1.8) 

CGI_10024975  Cyclophilin [Carrot] 57.63 

Thioredoxin domain-
containing protein 5 

CGI_10009327 Alt a 4 [Fungus] 57.45 

60S acidic ribosomal 
protein P1 

CGI_10009326 Alt a 12 [Fungus] 57.14 

NK-tumor recognition 
protein 

CGI_10007438  Asp f 27 [Fungus] 56.8 

Thaumatin-like protein 
1a 

CGI_10012508 Pathogenesis related 
protein 5 [Apple] 

55.62 

Superoxide dismutase 
(EC 1.15.1.1) 

CGI_10017307  Pis v 4 [Pistachio] 55.61 

Peptidyl-prolyl cis-trans 
isomerase (EC 5.2.1.8) 

CGI_10006179 Asp f 11 [Fungus] 55.56 

Peptidylprolyl 
isomerase domain and 
WD repeat-containing 
protein 1 

CGI_10011521 Mala s 6 [Yeast] 55.47 

Stress-70 protein, 
mitochondrial 

CGI_10016162 Pen c 19 [Fungus] 55.22 

Peptidyl-prolyl cis-trans 
isomerase-like 6 

CGI_10024382 Cat r 1 [Periwinkle] 55.22 

U4/U6.U5 tri-snRNP-
associated protein 1 

CGI_10021218  Hom s 1 [Human] 54.96 

Alpha-amylase (EC 
3.2.1.1) 

CGI_10022190 Bla g 11 [Cockroach] 54.37 

Alpha-amylase (EC 
3.2.1.1) 

CGI_10022189 Bla g 11 [Cockroach] 54.18 

Endoplasmin CGI_10025730  Asp f 12 [Fungus] 54.04 
Calmodulin CGI_10006247 Amb a 9 [Ragweed] 53.7 
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Calmodulin CGI_10014525  B1 protein allergen 
[Bermuda grass] 

53.57 

Aldehyde 
dehydrogenase 

CGI_10021688  Cla h 10 [Fungus] 52.82 

Retinal dehydrogenase 
1 

CGI_10026868  Cla h 10 [Fungus] 52.33 

Protein disulfide-
isomerase (EC 5.3.4.1) 

CGI_10011652 Alt a 4 [Fungus] 52.27 

Collagen alpha-3(VI) 
chain 

CGI_10015798  collagen alpha [Bovine] 52.27 

Peptidyl-prolyl cis-trans 
isomerase B 

CGI_10027458 Cat r 1 [Periwinkle] 52.17 

78 kDa glucose-
regulated protein 

CGI_10011272  Der f 28 [Mite] 52.1 

Thioredoxin CGI_10003765 Asp f 28 [Fungus] 51.85 
Uncharacterized protein CGI_10016401 Der f 3 [Mite] 51.85 
Transcription elongation 
factor 1-like protein 

CGI_10026699 Tri a 45 [Wheat] 51.81 

Alpha-amylase (EC 
3.2.1.1) 

CGI_10023778 Bla g 11 [Cockroach] 51.75 

Malate dehydrogenase, 
mitochondrial 

CGI_10015004 Mala f 4 [Yeast] 51.43 

Calmodulin CGI_10022491 Tyr p 24 [Mite] 51.32 
Retinal dehydrogenase 
1 

CGI_10026867  Cla h 10 [Fungus] 51.27 

Peptidyl-prolyl cis-trans 
isomerase (EC 5.2.1.8) 

CGI_10005876 Mala s 6 [Yeast] 51.16 

Calmodulin CGI_10011301 Par j 4 [Weed] 50.94 
Calmodulin CGI_10006481 Syr v 3 [Common lilac] 50.85 
Alpha-amylase (EC 
3.2.1.1) 

CGI_10023781 Bla g 11 [Cockroach] 50.51 

Elongation factor 1-beta CGI_10021397 Pen c 22 [Fungus] 50.44 
Calmodulin CGI_10002924  B1 protein allergen 

[Bermuda grass] 
50 

Calmodulin-like protein 
12 

CGI_10004114 putative Cup a 4 
allergen [Cypress] 

50 

Calmodulin CGI_10011293 polcalcin [Artemisia 
vulgaris] 

50 

Supervillin CGI_10014153 villin 2 [Tobacco] 50 
Calmodulin CGI_10017056  Bla g 6 [Cockroach] 50 
Protein disulfide-
isomerase (EC 5.3.4.1) 

CGI_10026048 Alt a 4 [Fungus] 50 
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Supplementary Table 2  Proteins identified in the IgE-reactive spots of the raw extract of Pacific Oyster. 

Spot 
No. Protein name 

Protein 
accession 
numbers 

Protein 
molecular 

weight 
(KDa) 

Exclusive 
unique 
peptide 
count 

Exclusive 
unique 

spectrum 
count 

Total 
spectrum 

count 

Percentage 
of total 
spectra 

Percentage 
sequence 
coverage 

Spot 1 Tropomyosin  B7XC66_CRAGI 33.02 2 5 103 1.41% 54.60% 
Spot 1 Tropomyosin (Fragment)   Q95WY0_CRAGI 26.87 0 0 66 0.91% 54.90% 
Spot 1 Filamin-C  K1PW06_CRAGI 323.73 25 32 34 0.47% 11.30% 
Spot 1 Tropomyosin  K1QNV6_CRAGI 39.01 0 0 34 0.47% 23.60% 
Spot 1 Uncharacterized protein  K1PV81_CRAGI 39.24 13 23 25 0.34% 32.90% 
Spot 1 Actin, cytoplasmic  K1RWD4_CRAGI 41.90 1 1 18 0.25% 33.80% 

Spot 1 
Protein disulfide-
isomerase  K1Q6X5_CRAGI 55.50 14 18 18 0.25% 30.30% 

Spot 1 Retinal dehydrogenase 1  K1R266_CRAGI 62.12 7 7 12 0.17% 19.80% 

Spot 1 

Muscle M-line assembly 
protein unc-89 
(Fragment)  K1QPH2_CRAGI 50.98 8 11 11 0.15% 24.30% 

Spot 1 Arginine kinase  K1PLF9_CRAGI 39.63 8 9 9 0.12% 22.90% 
Spot 1 Calumenin  K1PH89_CRAGI 47.66 9 9 9 0.12% 23.60% 
Spot 1 Uncharacterized protein  K1PU04_CRAGI 38.43 4 4 8 0.11% 29.80% 
Spot 1 Severin  K1PE57_CRAGI 37.21 5 7 7 0.10% 16.70% 

Spot 1 
Heat shock protein HSP 
90-alpha 1  K1PNQ5_CRAGI 83.32 0 0 7 0.10% 10.10% 

Spot 1 Vitellogenin-6  K1QNA2_CRAGI 273.31 0 0 7 0.10% 2.49% 

Spot 1 
Fructose-bisphosphate 
aldolase  K1R8R6_CRAGI 43.48 3 3 7 0.10% 21.60% 
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Spot 1 Uncharacterized protein  K1PKQ3_CRAGI 38.10 6 6 6 0.08% 17.40% 
Spot 1 Retinal dehydrogenase 1  K1QVG5_CRAGI 53.15 1 1 6 0.08% 11.80% 

Spot 1 
Collagen alpha-6(VI) 
chain  K1QEB9_CRAGI 46.30 2 2 6 0.08% 11.60% 

Spot 1 Calreticulin  A5LGG9_CRAGI 48.19 1 2 6 0.08% 15.00% 
Spot 1 Uncharacterized protein  K1Q0U6_CRAGI 27.04 6 6 6 0.08% 23.30% 

Spot 1 
S-adenosylmethionine 
synthase  K1QZB1_CRAGI 45.38 4 4 5 0.07% 13.60% 

Spot 1 Collagen alpha-2(I) chain  K1PT11_CRAGI 168.96 4 5 5 0.07% 2.53% 
Spot 1 Uncharacterized protein  K1QWT8_CRAGI 45.15 5 5 5 0.07% 15.20% 

Spot 1 
Fructose-bisphosphate 
aldolase  K1RTQ6_CRAGI 38.99 3 3 5 0.07% 14.00% 

Spot 1 14-3-3 protein epsilon  K1R5F2_CRAGI 29.07 5 5 5 0.07% 21.10% 

Spot 1 

Small glutamine-rich 
tetratricopeptide repeat-
containing protein beta  K1PRK2_CRAGI 29.25 4 5 5 0.07% 18.10% 

Spot 1 
78kDa glucose regulated 
protein  Q75W49_CRAGI 73.08 0 0 5 0.07% 7.11% 

Spot 1 Enolase  K1QX37_CRAGI 127.42 3 4 4 0.05% 2.80% 
Spot 1 Protein BCCIP homolog  K1R3C2_CRAGI 32.24 3 3 3 0.04% 10.20% 

Spot 1 
ATP synthase subunit 
alpha  K1R6Z7_CRAGI 59.87 2 3 3 0.04% 4.16% 

Spot 1 
Phosphotriesterase-
related protein  K1QFI9_CRAGI 38.54 2 3 3 0.04% 5.76% 

Spot 1 Actin CyI, cytoplasmic  K1PZQ5_CRAGI 12.90 1 1 3 0.04% 20.90% 
Spot 1 Alpha-actinin, sarcomeric  K1RH58_CRAGI 102.20 3 3 3 0.04% 3.41% 
Spot 1 40S ribosomal protein SA  K1R4D4_CRAGI 33.30 2 3 3 0.04% 7.57% 
Spot 1 Protocadherin Fat 4  K1QB61_CRAGI 723.24 3 3 3 0.04% 0.53% 
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Spot 1 
Glycerol-3-phosphate 
dehydrogenase [NAD(+)]  K1QMD3_CRAGI 38.40 3 3 3 0.04% 9.69% 

Spot 1 
Fructose-1,6-
bisphosphatase 1  K1QSB0_CRAGI 36.79 3 3 3 0.04% 10.40% 

Spot 1 
71kDa heat shock 
connate protein  Q9XZJ2_CRAGI 72.04 0 0 3 0.04% 4.70% 

Spot 1 

Na(+)/H(+) exchange 
regulatory cofactor NHE-
RF1  K1RDG2_CRAGI 45.34 3 3 3 0.04% 11.10% 

Spot 1 Uncharacterized protein  K1R7R5_CRAGI 21.43 3 3 3 0.04% 14.80% 

Spot 1 
Heterogeneous nuclear 
ribonucleoprotein A/B  K1PNI6_CRAGI 53.89 3 3 3 0.04% 6.11% 

Spot 1 Plectin-1  K1R091_CRAGI 100.61 2 2 2 0.03% 2.51% 

Spot 1 
Sulfotransferase family 
cytosolic 1B member 1  K1QLP7_CRAGI 69.89 2 2 2 0.03% 3.48% 

Spot 1 Spectrin alpha chain  K1R401_CRAGI 287.01 2 2 2 0.03% 0.93% 
Spot 1 Protein SET  K1PWR0_CRAGI 28.11 2 2 2 0.03% 9.76% 

Spot 1 
ATP synthase subunit 
beta  

K1RWW5_CRAG
I 44.93 2 2 2 0.03% 5.56% 

Spot 1 Uncharacterized protein  K1R3U2_CRAGI 35.42 2 2 2 0.03% 5.48% 
Spot 1 Adipophilin  K1PJC1_CRAGI 54.04 2 2 2 0.03% 5.71% 

Spot 1 
Nuclear autoantigenic 
sperm protein  K1RN77_CRAGI 72.95 2 2 2 0.03% 3.53% 

Spot 1 Hsc70-interacting protein  K1PZU1_CRAGI 31.95 2 2 2 0.03% 9.57% 
Spot 1 Uncharacterized protein  K1QFW9_CRAGI 94.86 1 1 2 0.03% 2.23% 
Spot 1 Uncharacterized protein  K1R5R9_CRAGI 111.24 2 2 2 0.03% 1.97% 
Spot 1 Titin  K1R2G8_CRAGI 1,228.82 2 2 2 0.03% 0.18% 
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Spot 1 
Ubiquitin-conjugating 
enzyme E2 Z  K1PJ71_CRAGI 36.60 2 2 2 0.03% 6.21% 

Spot 1 Protocadherin Fat 4  K1PTY5_CRAGI 1,111.10 2 2 2 0.03% 0.19% 
Spot 1 Uncharacterized protein  K1R7Q9_CRAGI 19.63 2 2 2 0.03% 13.10% 
Spot 1 Uncharacterized protein  K1PM19_CRAGI 22.11 2 2 2 0.03% 10.30% 
Spot 1 Uncharacterized protein  K1QMD2_CRAGI 55.68 2 2 2 0.03% 3.62% 

Spot 1 
Sarcoplasmic calcium-
binding protein  K1PY28_CRAGI 21.14 2 2 2 0.03% 11.70% 

Spot 1 
Low-density lipoprotein 
receptor-related protein 6  K1QY50_CRAGI 74.81 2 2 2 0.03% 3.81% 

Spot 1 Enolase-phosphatase E1  K1PQI4_CRAGI 34.67 2 2 2 0.03% 6.45% 
Spot 1 14-3-3 protein gamma  K1PPQ1_CRAGI 28.48 1 1 2 0.03% 8.76% 
Spot 2 Actin 2  Q8TA69_CRAGI 41.74 0 0 44 0.65% 32.70% 
Spot 2 Actin  K1R6J7_CRAGI 41.81 1 3 42 0.62% 34.80% 
Spot 2 Actin  C4NY64_CRAGI 41.81 2 2 36 0.53% 34.80% 
Spot 2 Filamin-C  K1PW06_CRAGI 323.73 20 26 27 0.40% 7.13% 
Spot 2 Retinal dehydrogenase 1  K1R266_CRAGI 62.12 8 10 19 0.28% 23.30% 
Spot 2 Actin  K1RA57_CRAGI 42.06 1 2 17 0.25% 18.00% 
Spot 2 Actin-1/3  K1RBG6_CRAGI 59.45 1 3 15 0.22% 8.87% 

Spot 2 

Glyceraldehyde-3-
phosphate 
dehydrogenase  K1Q350_CRAGI 36.08 9 13 13 0.19% 29.60% 

Spot 2 Regucalcin  K1P756_CRAGI 28.14 1 1 11 0.16% 29.50% 
Spot 2 Regucalcin  K1PMC8_CRAGI 35.78 1 1 11 0.16% 22.40% 

Spot 2 

Serine-threonine kinase 
receptor-associated 
protein  K1QAG0_CRAGI 139.75 3 3 10 0.15% 6.98% 
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Spot 2 
Heat shock protein HSP 
90-alpha 1  K1PNQ5_CRAGI 83.32 1 2 10 0.15% 14.70% 

Spot 2 Arginine kinase  K1PLF9_CRAGI 39.63 7 10 10 0.15% 19.40% 
Spot 2 Fascin  K1QEZ3_CRAGI 55.60 10 10 10 0.15% 21.40% 

Spot 2 
Malate dehydrogenase 
(Fragment)  K1PU26_CRAGI 36.27 8 9 9 0.13% 25.70% 

Spot 2 

Serine-threonine kinase 
receptor-associated 
protein  K1QTK2_CRAGI 22.24 2 3 9 0.13% 34.30% 

Spot 2 Uncharacterized protein  K1QFW9_CRAGI 94.86 8 8 9 0.13% 11.60% 

Spot 2 
Transitional endoplasmic 
reticulum ATPase  K1PVA1_CRAGI 88.70 6 7 8 0.12% 7.76% 

Spot 2 
Malate dehydrogenase, 
mitochondrial  K1R4Z3_CRAGI 29.84 6 7 8 0.12% 32.90% 

Spot 2 
Formin-binding protein 1-
like protein  K1PYZ6_CRAGI 42.89 6 8 8 0.12% 17.20% 

Spot 2 Enolase  K1QX37_CRAGI 127.42 7 8 8 0.12% 6.56% 
Spot 2 Retinal dehydrogenase 1  K1QVG5_CRAGI 53.15 1 1 8 0.12% 16.40% 

Spot 2 
Inorganic 
pyrophosphatase  K1Q3F4_CRAGI 48.34 6 6 8 0.12% 16.90% 

Spot 2 Tubulin beta chain  K1PN21_CRAGI 50.04 1 1 7 0.10% 17.80% 
Spot 2 Aldehyde dehydrogenase  K1Q9Z4_CRAGI 25.35 5 7 7 0.10% 24.50% 
Spot 2 Actin  K1RHJ4_CRAGI 42.31 1 1 7 0.10% 7.92% 

Spot 2 

Guanine nucleotide-
binding protein subunit 
beta  K1PWZ3_CRAGI 37.33 5 7 7 0.10% 18.80% 

Spot 2 Twinfilin-2  K1QHG0_CRAGI 32.09 5 6 6 0.09% 18.40% 



 

 

191 
 

Spot 2 
Apoptosis-inducing factor 
3  K1QFI3_CRAGI 97.02 6 6 6 0.09% 7.08% 

Spot 2 Citrate synthase  K1RM80_CRAGI 49.44 6 6 6 0.09% 15.00% 
Spot 2 Actin CyI, cytoplasmic  K1PZQ5_CRAGI 12.90 1 2 6 0.09% 20.90% 
Spot 2 Dynactin subunit 2  K1PZS6_CRAGI 44.63 6 6 6 0.09% 17.20% 

Spot 2 
Putative pyridoxine 
biosynthesis SNZERR  K1QMG8_CRAGI 32.94 6 6 6 0.09% 17.80% 

Spot 2 
3-hydroxyisobutyrate 
dehydrogenase  K1PR93_CRAGI 42.83 6 6 6 0.09% 19.00% 

Spot 2 Tropomyosin  B7XC66_CRAGI 33.02 1 1 6 0.09% 22.20% 

Spot 2 
Glyoxalase domain-
containing protein 4  K1P979_CRAGI 32.57 5 5 5 0.07% 19.40% 

Spot 2 
Betaine--homocysteine 
S-methyltransferase 2  K1QTS9_CRAGI 41.54 3 3 5 0.07% 13.80% 

Spot 2 
V-type proton ATPase 
catalytic subunit A  K1Q9V3_CRAGI 70.85 5 5 5 0.07% 8.81% 

Spot 2 Uncharacterized protein  K1QE98_CRAGI 38.17 4 5 5 0.07% 13.40% 
Spot 2 Vitellogenin  Q8IU34_CRAGI 179.21 1 2 5 0.07% 2.59% 

Spot 2 
Heterogeneous nuclear 
ribonucleoprotein Q  K1R7I9_CRAGI 69.23 4 4 4 0.06% 7.01% 

Spot 2 Phosphoglucomutase-1  K1PQD4_CRAGI 64.80 1 1 4 0.06% 6.58% 
Spot 2 Uncharacterized protein  K1PU04_CRAGI 38.43 2 2 4 0.06% 13.70% 

Spot 2 
Protein phosphatase 1 
regulatory subunit 7  K1RMV1_CRAGI 38.02 4 4 4 0.06% 10.80% 

Spot 2 Cathepsin Z  K1P5K4_CRAGI 76.00 4 4 4 0.06% 5.99% 
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Spot 2 

Aldehyde 
dehydrogenase, 
mitochondrial  K1QNT7_CRAGI 56.97 4 4 4 0.06% 7.32% 

Spot 2 

Leucine zipper 
transcription factor-like 
protein 1  

K1QMM4_CRAG
I 34.58 4 4 4 0.06% 12.80% 

Spot 2 Caspase-7  K1QSW8_CRAGI 34.52 2 2 4 0.06% 13.70% 

Spot 2 
Glycerol-3-phosphate 
dehydrogenase [NAD(+)]  K1QMD3_CRAGI 38.40 3 3 4 0.06% 12.00% 

Spot 2 
Ubiquitin-like modifier-
activating enzyme 1  K1R3M4_CRAGI 65.99 2 2 4 0.06% 6.60% 

Spot 2 
Fructose-bisphosphate 
aldolase  K1RTQ6_CRAGI 38.99 2 2 4 0.06% 11.80% 

Spot 2 

Alpha-aminoadipic 
semialdehyde 
dehydrogenase  K1RNB6_CRAGI 55.22 4 4 4 0.06% 9.78% 

Spot 2 
Heterogeneous nuclear 
ribonucleoprotein A/B  K1PNI6_CRAGI 53.89 4 4 4 0.06% 7.79% 

Spot 2 
3-demethylubiquinone-9 
3-methyltransferase  K1Q7I3_CRAGI 38.57 4 4 4 0.06% 14.80% 

Spot 2 
Aldo-keto reductase 
family 1 member B10  K1Q6D1_CRAGI 35.38 3 3 3 0.04% 8.04% 

Spot 2 

Dual specificity mitogen-
activated protein kinase 
kinase 3  K1Q3Q7_CRAGI 41.67 3 3 3 0.04% 8.15% 

Spot 2 
Sulfotransferase family 
cytosolic 1B member 1  K1QLP7_CRAGI 69.89 3 3 3 0.04% 4.81% 

Spot 2 Uncharacterized protein  K1QQI8_CRAGI 21.22 2 2 3 0.04% 17.40% 
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Spot 2 

Phytanoyl-CoA 
dioxygenase domain-
containing protein 1  K1PUP5_CRAGI 46.87 3 3 3 0.04% 7.28% 

Spot 2 
T-complex protein 1 
subunit gamma  K1R466_CRAGI 63.91 3 3 3 0.04% 4.66% 

Spot 2 
Isocitrate dehydrogenase 
[NADP]  K1RZE2_CRAGI 50.26 1 1 3 0.04% 8.11% 

Spot 2 
Uncharacterized protein 
yfeX  K1RBF6_CRAGI 39.59 3 3 3 0.04% 7.63% 

Spot 2 
Thymidine 
phosphorylase  K1R192_CRAGI 48.20 2 2 3 0.04% 8.44% 

Spot 2 Vitellogenin-6  K1QNA2_CRAGI 273.31 0 0 3 0.04% 1.12% 

Spot 2 
Splicing factor, proline-
and glutamine-rich  K1PNY5_CRAGI 62.32 3 3 3 0.04% 4.80% 

Spot 2 Uncharacterized protein  K1RLJ5_CRAGI 31.43 3 3 3 0.04% 6.81% 

Spot 2 
Protein-serine/threonine 
phosphatase  K1PXG6_CRAGI 37.32 3 3 3 0.04% 8.23% 

Spot 2 
26S protease regulatory 
subunit 6B  K1QSB2_CRAGI 47.46 3 3 3 0.04% 7.86% 

Spot 2 
Troponin T, skeletal 
muscle  K1QPC9_CRAGI 20.67 2 2 2 0.03% 10.70% 

Spot 2 
Lambda-crystallin-like 
protein  K1PK94_CRAGI 35.45 2 2 2 0.03% 6.33% 

Spot 2 Uncharacterized protein  K1QT31_CRAGI 49.72 2 2 2 0.03% 3.60% 

Spot 2 

Eukaryotic translation 
initiation factor 2 subunit 
1  K1Q435_CRAGI 29.39 2 2 2 0.03% 7.00% 

Spot 2 
Putative proline 
racemase  K1P4P6_CRAGI 35.90 2 2 2 0.03% 6.44% 
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Spot 2 

Succinate-semialdehyde 
dehydrogenase, 
mitochondrial  K1PV02_CRAGI 74.22 2 2 2 0.03% 3.28% 

Spot 2 

Putative methylmalonate-
semialdehyde 
dehydrogenase 
[acylating], mitochondrial  K1R252_CRAGI 57.24 2 2 2 0.03% 6.48% 

Spot 2 
Mannose-6-phosphate 
isomerase  K1QR42_CRAGI 53.64 2 2 2 0.03% 4.12% 

Spot 2 Alpha-actinin, sarcomeric  K1RH58_CRAGI 102.20 2 2 2 0.03% 2.16% 
Spot 2 Uncharacterized protein  K1R3U2_CRAGI 35.42 2 2 2 0.03% 5.48% 

Spot 2 

Serine/threonine-protein 
phosphatase 2A 65 kDa 
regulatory subunit A 
alpha isoform  K1S6V7_CRAGI 117.54 2 2 2 0.03% 2.41% 

Spot 2 Uncharacterized protein  K1QM61_CRAGI 40.41 2 2 2 0.03% 6.59% 

Spot 2 
Multifunctional protein 
ADE2  K1RJ97_CRAGI 46.77 2 2 2 0.03% 4.98% 

Spot 2 Uncharacterized protein  K1PKQ3_CRAGI 38.10 2 2 2 0.03% 5.23% 
Spot 2 Glutamine synthetase  K1R0H0_CRAGI 40.96 2 2 2 0.03% 4.71% 

Spot 2 
Glycerol-3-phosphate 
dehydrogenase [NAD(+)]  K1P8T5_CRAGI 38.81 1 1 2 0.03% 5.43% 

Spot 2 
Proteasome subunit 
alpha type-1  K1PCR9_CRAGI 27.74 2 2 2 0.03% 8.33% 

Spot 2 Fumarylacetoacetase  K1Q4C3_CRAGI 46.29 2 2 2 0.03% 5.49% 

Spot 2 Pyruvate kinase  
K1QRW8_CRAG
I 58.46 2 2 2 0.03% 3.58% 

Spot 2 Malate dehydrogenase  
K1PWW1_CRAG
I 70.65 2 2 2 0.03% 3.00% 

Spot 2 Xaa-Pro dipeptidase  K1PBR3_CRAGI 43.51 2 2 2 0.03% 5.26% 
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Spot 2 Nudix hydrolase 20  K1Q851_CRAGI 29.86 2 2 2 0.03% 8.20% 

Spot 2 
Sarcoplasmic calcium-
binding protein  K1PY28_CRAGI 21.14 2 2 2 0.03% 11.70% 

Spot 2 

UDP-N-
acetylhexosamine 
pyrophosphorylase  K1R4X9_CRAGI 57.26 2 2 2 0.03% 4.90% 

Spot 2 5'-nucleotidase  K1Q4F6_CRAGI 33.61 2 2 2 0.03% 8.90% 
Spot 2 Uncharacterized protein  K1RF40_CRAGI 38.45 2 2 2 0.03% 6.41% 
Spot 2 Uncharacterized protein  K1PYT9_CRAGI 42.80 2 2 2 0.03% 5.01% 
Spot 2 Uncharacterized protein  K1PTP3_CRAGI 34.46 2 2 2 0.03% 9.06% 
Spot 2 Uncharacterized protein  K1R6U0_CRAGI 27.18 1 1 2 0.03% 9.09% 
Spot 2 Eosinophil peroxidase  K1QHY1_CRAGI 78.24 2 2 2 0.03% 3.11% 

Spot 2 
Betaine--homocysteine 
S-methyltransferase 2  K1QFK7_CRAGI 40.57 2 2 2 0.03% 5.22% 

Spot 2 
Dehydrogenase/reductas
e SDR family member 13  K1QSX2_CRAGI 50.76 3 3 3 0.04% 6.91% 

Spot 2 Dihydropyrimidinase  K1PGY5_CRAGI 71.26 2 2 2 0.03% 3.55% 
Spot 2 Transaldolase  K1QVK0_CRAGI 62.89 9 9 11 0.16% 17.30% 
Spot 2 Uncharacterized protein  K1QZX9_CRAGI 50.75 7 7 7 0.10% 18.00% 

Spot 2 
Nitrile-specifier protein 5 
(Fragment)  K1S4K7_CRAGI 34.92 4 4 4 0.06% 13.80% 

Spot 3 Severin  K1PE57_CRAGI 37.21 4 6 6 0.09% 13.60% 

Spot 3 

Hypoxanthine-guanine 
phosphoribosyltransferas
e  K1RH42_CRAGI 25.33 3 3 3 0.05% 17.00% 

Spot 3 
Non-selenium glutathione 
peroxidase  A7M7T7_CRAGI 24.45 5 5 5 0.08% 24.00% 
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Spot 3 
Sarcoplasmic calcium-
binding protein  K1PY28_CRAGI 21.14 2 2 2 0.03% 12.30% 

Spot 3 Uncharacterized protein  K1PU04_CRAGI 38.43 1 1 2 0.03% 8.48% 

Spot 3 

Non-neuronal 
cytoplasmic intermediate 
filament protein  K1PBC0_CRAGI 69.29 4 4 4 0.06% 6.15% 

Spot 3 Tubulin beta chain  K1PN21_CRAGI 50.04 0 0 2 0.03% 6.07% 
Spot 3 Protein SET  K1PWR0_CRAGI 28.11 2 2 2 0.03% 8.54% 

Spot 3 
Eukaryotic peptide chain 
release factor subunit 1  K1PX23_CRAGI 49.52 4 4 5 0.08% 11.50% 

Spot 3 
T-complex protein 1 
subunit theta  K1R0S3_CRAGI 83.14 5 7 7 0.11% 8.38% 

Spot 3 Uncharacterized protein  K1PUI4_CRAGI 27.33 5 5 5 0.08% 21.40% 
Spot 3 14-3-3 protein zeta  K1PHM8_CRAGI 28.64 1 1 2 0.03% 7.63% 
Spot 3 Uncharacterized protein  K1RRY6_CRAGI 22.02 1 1 4 0.06% 20.30% 

Spot 3 

Complement component 
1 Q subcomponent-
binding protein, 
mitochondrial  K1PX73_CRAGI 33.67 3 5 5 0.08% 10.20% 

Spot 3 

Mammalian ependymin-
related protein 1 
(Fragment)  K1QAN0_CRAGI 20.58 2 2 2 0.03% 11.30% 

Spot 3 Filamin-C  K1PW06_CRAGI 323.73 8 8 9 0.14% 3.15% 

Spot 3 
Nuclear autoantigenic 
sperm protein  K1RN77_CRAGI 72.95 2 2 2 0.03% 3.53% 

Spot 3 Uncharacterized protein  K1QFW9_CRAGI 94.86 2 2 2 0.03% 2.23% 

Spot 3 
Ubiquitin-like modifier-
activating enzyme 1  K1R3M4_CRAGI 65.99 3 3 5 0.08% 6.60% 
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Spot 3 Retinal dehydrogenase 1  K1QVG5_CRAGI 53.15 0 0 3 0.05% 5.48% 
Spot 3 Uncharacterized protein  K1Q1K3_CRAGI 18.14 2 2 2 0.03% 10.30% 

Spot 3 
Metalloproteinase 
inhibitor 3  K1QDB0_CRAGI 20.63 3 5 6 0.09% 14.50% 

Spot 3 
Sarcoplasmic calcium-
binding protein  K1QVZ9_CRAGI 22.17 1 1 4 0.06% 20.20% 

Spot 3 Uncharacterized protein  K1R7B8_CRAGI 35.11 2 2 2 0.03% 5.92% 

Spot 3 
Triosephosphate 
isomerase  K1PJ59_CRAGI 18.67 2 2 2 0.03% 15.30% 

Spot 3 
Mammalian ependymin-
related protein 1  K1QJ28_CRAGI 40.53 2 2 2 0.03% 5.01% 

Spot 3 Arginine kinase  K1PLF9_CRAGI 39.63 3 5 5 0.08% 9.71% 
Spot 3 Uncharacterized protein  K1R7Q9_CRAGI 19.63 4 5 6 0.09% 19.40% 
Spot 3 Alpha-actinin, sarcomeric  K1RH58_CRAGI 102.20 5 6 7 0.11% 5.91% 

Spot 3 
Serine protease inhibitor 
dipetalogastin  K1PRF2_CRAGI 17.60 2 2 2 0.03% 14.50% 

Spot 3 
Glutathione S-
transferase A  K1QJ85_CRAGI 23.06 1 1 3 0.05% 13.50% 

Spot 3 
Tudor domain-containing 
protein 1  K1QBW6_CRAGI 278.65 2 2 2 0.03% 0.74% 

Spot 3 Uncharacterized protein  K1PV81_CRAGI 39.24 5 5 5 0.08% 13.30% 
Spot 3 Carbonic anhydrase 2  K1QSG0_CRAGI 36.53 2 2 2 0.03% 6.42% 
Spot 3 Tropomyosin  K1QNV6_CRAGI 39.01 0 0 12 0.18% 21.20% 
Spot 3 Enolase-phosphatase E1  K1PQI4_CRAGI 34.67 2 2 2 0.03% 6.45% 
Spot 3 14-3-3 protein epsilon  K1R5F2_CRAGI 29.07 3 5 5 0.08% 14.10% 
Spot 3 14-3-3 protein gamma  K1PPQ1_CRAGI 28.48 4 4 5 0.08% 19.50% 
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Spot 3 
Counting factor 
associated protein D  K1S185_CRAGI 38.87 2 3 4 0.06% 6.59% 

Spot 3 Retinal dehydrogenase 1  K1R266_CRAGI 62.12 5 5 8 0.12% 12.10% 

Spot 3 
Protein disulfide-
isomerase  K1Q6X5_CRAGI 55.50 2 2 2 0.03% 4.24% 

Spot 3 

Muscle M-line assembly 
protein unc-89 
(Fragment)  K1QPH2_CRAGI 50.98 2 2 2 0.03% 3.91% 

Spot 3 14-3-3 protein zeta  K1P9N7_CRAGI 35.15 4 4 5 0.08% 14.80% 

Spot 3 

Small glutamine-rich 
tetratricopeptide repeat-
containing protein beta  K1PRK2_CRAGI 29.25 3 3 3 0.05% 13.20% 

Spot 3 
Dihydropteridine 
reductase  K1PFL3_CRAGI 24.87 3 3 3 0.05% 12.70% 

Spot 3 Tropomyosin  B7XC66_CRAGI 33.02 1 2 24 0.37% 43.30% 

Spot 3 
Rho GDP-dissociation 
inhibitor 1  K1QCM0_CRAGI 23.57 6 7 7 0.11% 26.20% 

Spot 3 
Calcium-dependent 
protein kinase isoform 2  K1QQK6_CRAGI 27.31 10 12 13 0.20% 31.50% 

Spot 3 
Eukaryotic translation 
initiation factor 6  K1R7N6_CRAGI 51.33 1 2 3 0.05% 6.02% 

Spot 4 Tubulin alpha-1C chain  K1QII6_CRAGI 50.14 2 2 2 0.06% 7.76% 
Spot 4 Filamin-C  K1PW06_CRAGI 323.73 3 3 3 0.09% 1.46% 

Spot 4 
Putative aminopeptidase 
W07G4.4  K1PVV6_CRAGI 55.71 2 2 4 0.12% 10.00% 

Spot 4 Uncharacterized protein  K1Q9G9_CRAGI 42.96 2 2 3 0.09% 11.90% 
Spot 4 Plastin-3  K1R2D6_CRAGI 79.69 1 1 2 0.06% 3.26% 
Spot 4 Retinal dehydrogenase 1  K1R266_CRAGI 62.12 1 1 3 0.09% 7.17% 
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Spot 4 
60 kDa heat shock 
protein, mitochondrial  K1Q5G6_CRAGI 59.71 10 22 28 0.84% 24.60% 

Spot 4 Uncharacterized protein  K1QT31_CRAGI 49.72 2 2 2 0.06% 6.08% 

Spot 4 

Leucine-rich repeats and 
immunoglobulin-like 
domains protein 3  K1QHG2_CRAGI 52.21 2 2 2 0.06% 5.32% 

Spot 4 Actin 2  Q8TA69_CRAGI 41.74 0 0 4 0.12% 12.50% 

Spot 5 
Transitional endoplasmic 
reticulum ATPase  K1PVA1_CRAGI 88.70 4 4 4 0.06% 4.26% 

Spot 5 
Protocadherin Fat 1 
(Fragment)  K1RE12_CRAGI 32.50 2 2 2 0.03% 7.09% 

Spot 5 
Apoptosis-inducing factor 
3  K1QFI3_CRAGI 97.02 7 7 7 0.11% 8.43% 

Spot 5 Severin  K1PE57_CRAGI 37.21 2 3 3 0.05% 6.97% 
Spot 5 Uncharacterized protein  K1PU04_CRAGI 38.43 2 2 3 0.05% 10.50% 

Spot 5 
Sarcoplasmic calcium-
binding protein  K1PY28_CRAGI 21.14 2 2 2 0.03% 11.70% 

Spot 5 Spectrin beta chain  K1QFR9_CRAGI 280.21 11 11 12 0.19% 4.26% 

Spot 5 
Neural cell adhesion 
molecule 1  K1R7L4_CRAGI 96.79 6 7 8 0.12% 8.32% 

Spot 5 Plastin-3  K1R2D6_CRAGI 79.69 3 3 3 0.05% 4.67% 
Spot 5 Uncharacterized protein  K1QT31_CRAGI 49.72 4 4 4 0.06% 6.31% 
Spot 5 Radixin  K1PUJ1_CRAGI 69.54 2 2 2 0.03% 3.40% 

Spot 5 
Neural cell adhesion 
molecule L1  K1PQF1_CRAGI 75.37 2 2 6 0.09% 8.38% 

Spot 5 

Non-neuronal 
cytoplasmic intermediate 
filament protein  K1PBC0_CRAGI 69.29 8 8 8 0.12% 11.20% 
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Spot 5 Spectrin alpha chain  K1R401_CRAGI 287.01 15 15 15 0.23% 6.87% 

Spot 5 
Putative aminopeptidase 
W07G4.4  K1PVV6_CRAGI 55.71 2 2 6 0.09% 11.80% 

Spot 5 Tubulin beta chain  K1PN21_CRAGI 50.04 0 0 2 0.03% 4.49% 
Spot 5 Metalloendopeptidase  K1RGT5_CRAGI 118.98 2 2 2 0.03% 1.58% 

Spot 5 
ATP synthase subunit 
beta  

K1RWW5_CRAG
I 44.93 3 3 3 0.05% 7.97% 

Spot 5 Uncharacterized protein  K1R3U2_CRAGI 35.42 3 4 4 0.06% 8.39% 

Spot 5 
Ubiquitin-like modifier-
activating enzyme 1  K1R1M7_CRAGI 97.95 4 4 7 0.11% 8.54% 

Spot 5 
Fibrinolytic enzyme, 
isozyme C  K1PH66_CRAGI 74.60 2 2 2 0.03% 2.87% 

Spot 5 
Stress-70 protein, 
mitochondrial  K1P9D0_CRAGI 76.37 2 2 2 0.03% 2.70% 

Spot 5 Filamin-C  K1PW06_CRAGI 323.73 36 43 49 0.76% 15.00% 
Spot 5 Uncharacterized protein  K1R871_CRAGI 37.44 4 5 5 0.08% 14.10% 

Spot 5 
Heat shock protein HSP 
90-alpha 1  K1PNQ5_CRAGI 83.32 3 3 13 0.20% 19.50% 

Spot 5 
V-type proton ATPase 
catalytic subunit A  K1Q9V3_CRAGI 70.85 6 6 6 0.09% 9.12% 

Spot 5 
Ubiquitin-like modifier-
activating enzyme 1  K1R3M4_CRAGI 65.99 4 4 7 0.11% 11.30% 

Spot 5 
71kDa heat shock 
connate protein  Q9XZJ2_CRAGI 72.04 0 0 14 0.22% 17.00% 

Spot 5 Vitellogenin-6  K1QNA2_CRAGI 273.31 3 3 6 0.09% 2.20% 

Spot 5 
78 kDa glucose-
regulated protein  K1QIR8_CRAGI 73.03 0 0 61 0.94% 40.20% 

Spot 5 Uncharacterized protein  K1PYT9_CRAGI 42.80 2 2 2 0.03% 5.01% 
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Spot 5 
ATP-dependent DNA 
helicase II subunit 2  K1Q7H0_CRAGI 81.43 3 3 3 0.05% 4.53% 

Spot 5 Kyphoscoliosis peptidase  K1PV35_CRAGI 77.79 2 3 4 0.06% 4.79% 
Spot 5 Titin  K1RVK9_CRAGI 335.75 7 8 8 0.12% 2.99% 
Spot 5 Kyphoscoliosis peptidase  K1PEZ6_CRAGI 32.96 4 4 4 0.06% 15.80% 
Spot 5 14-3-3 protein gamma  K1PPQ1_CRAGI 28.48 1 1 2 0.03% 7.17% 
Spot 5 Alpha-actinin, sarcomeric  K1RH58_CRAGI 102.20 6 6 6 0.09% 7.50% 
Spot 5 Retinal dehydrogenase 1  K1R266_CRAGI 62.12 4 4 5 0.08% 8.22% 

Spot 5 
Protein disulfide-
isomerase  K1Q6X5_CRAGI 55.50 5 5 5 0.08% 11.50% 

Spot 5 
78kDa glucose regulated 
protein  Q75W49_CRAGI 73.08 2 7 69 1.06% 43.10% 

Spot 5 Paramyosin  K1QTC1_CRAGI 97.88 2 2 2 0.03% 2.59% 
Spot 5 Eosinophil peroxidase  K1QHY1_CRAGI 78.24 6 7 7 0.11% 10.60% 
Spot 5 Tropomyosin  B7XC66_CRAGI 33.02 0 0 3 0.05% 9.86% 

Spot 5 
Glucose-regulated 
protein 94  A5LGG7_CRAGI 91.63 1 1 9 0.14% 12.40% 

Spot 5 Dihydropyrimidinase  K1PGY5_CRAGI 71.26 3 3 3 0.05% 5.26% 
Spot 5 Endoplasmin  K1QX26_CRAGI 125.42 1 1 9 0.14% 9.52% 
Spot 6 Tubulin alpha-1C chain  K1QII6_CRAGI 50.14 2 2 4 0.12% 11.80% 
Spot 6 Major vault protein  K1QQR1_CRAGI 96.31 4 4 4 0.12% 5.48% 
Spot 6 Retinal dehydrogenase 1  K1R266_CRAGI 62.12 4 6 13 0.39% 25.20% 
Spot 6 Fascin  K1QEZ3_CRAGI 55.60 2 2 2 0.06% 5.01% 
Spot 6 Enolase  K1QX37_CRAGI 127.42 9 14 20 0.60% 12.50% 
Spot 6 Aldehyde dehydrogenase  K1Q9Z4_CRAGI 25.35 1 1 3 0.09% 10.90% 

Spot 6 
Heterogeneous nuclear 
ribonucleoprotein Q  K1R7I9_CRAGI 69.23 2 2 2 0.06% 3.50% 
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Spot 6 

Aldehyde 
dehydrogenase, 
mitochondrial  K1QNT7_CRAGI 56.97 3 3 3 0.09% 8.67% 

Spot 7 
Putative ATP-dependent 
RNA helicase DDX4  K1Q923_CRAGI 81.51 0 0 3 0.08% 5.78% 

Spot 7 Tubulin alpha-1C chain  K1QII6_CRAGI 50.14 3 3 5 0.14% 16.20% 
Spot 7 Major vault protein  K1QQR1_CRAGI 96.31 4 4 4 0.11% 6.53% 

Spot 7 

Alpha-aminoadipic 
semialdehyde 
dehydrogenase  K1RNB6_CRAGI 55.22 2 2 2 0.05% 6.26% 

Spot 7 
Cytosolic non-specific 
dipeptidase  K1RJ70_CRAGI 58.73 3 3 3 0.08% 9.85% 

Spot 7 Adenosylhomocysteinase  K1RW85_CRAGI 47.50 2 2 2 0.05% 4.62% 
Spot 7 Aldehyde dehydrogenase  K1Q9Z4_CRAGI 25.35 1 1 5 0.14% 10.90% 
Spot 7 Retinal dehydrogenase 1  K1R266_CRAGI 62.12 6 8 18 0.49% 28.70% 

Spot 7 
Tetratricopeptide repeat 
protein 38  K1QWZ0_CRAGI 50.50 2 2 2 0.05% 7.96% 

Spot 7 Enolase  K1QX37_CRAGI 127.42 9 16 36 0.98% 12.50% 

Spot 7 Coronin  
K1QRW4_CRAG
I 61.69 3 4 4 0.11% 10.00% 

Spot 7 
Heterogeneous nuclear 
ribonucleoprotein Q  K1R7I9_CRAGI 69.23 2 2 2 0.05% 3.66% 

Spot 7 
T-complex protein 1 
subunit beta  K1R294_CRAGI 57.49 3 3 3 0.08% 8.32% 

Spot 7 

Aldehyde 
dehydrogenase, 
mitochondrial  K1QNT7_CRAGI 56.97 3 3 3 0.08% 8.86% 

Spot 7 Protein hu-li tai shao  K1PEX5_CRAGI 85.92 2 2 2 0.05% 3.62% 
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Spot 7 
Selenium-binding protein 
1 (Fragment)  K1QI40_CRAGI 53.35 4 4 4 0.11% 9.19% 

Spot 8 

Propionyl-CoA 
carboxylase beta chain, 
mitochondrial  K1RNB5_CRAGI 59.11 5 5 5 0.07% 10.70% 

Spot 8 
Leucine aminopeptidase-
like protein  B6V956_CRAGI 57.40 0 0 2 0.03% 4.36% 

Spot 8 
Heterogeneous nuclear 
ribonucleoprotein Q  K1R7I9_CRAGI 69.23 4 4 4 0.06% 6.69% 

Spot 8 
ATP synthase subunit 
alpha  K1R6Z7_CRAGI 59.87 4 5 5 0.07% 8.32% 

Spot 8 
Protein disulfide-
isomerase  K1Q7T5_CRAGI 55.52 9 10 10 0.14% 18.90% 

Spot 8 
Non-selenium glutathione 
peroxidase  A7M7T7_CRAGI 24.45 3 3 3 0.04% 13.60% 

Spot 8 
S-adenosylmethionine 
synthase  K1QZB1_CRAGI 45.38 1 1 3 0.04% 9.73% 

Spot 8 
T-complex protein 1 
subunit beta  K1R294_CRAGI 57.49 2 2 2 0.03% 3.40% 

Spot 8 
N-acetylgalactosamine 
kinase  K1RY94_CRAGI 50.86 3 3 3 0.04% 6.64% 

Spot 8 Legumain  K1QB32_CRAGI 90.07 2 2 2 0.03% 2.57% 

Spot 8 
T-complex protein 1 
subunit zeta  K1PXN5_CRAGI 58.33 2 2 2 0.03% 3.39% 

Spot 8 
Plasma alpha-L-
fucosidase  K1QZW1_CRAGI 53.44 1 1 2 0.03% 4.81% 

Spot 8 Omega-crystallin  K1QUX5_CRAGI 19.69 4 7 14 0.20% 29.80% 

Spot 8 

Succinate-semialdehyde 
dehydrogenase, 
mitochondrial  K1PV02_CRAGI 74.22 6 7 7 0.10% 11.00% 
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Spot 8 
Putative ATP-dependent 
RNA helicase DDX4  K1Q923_CRAGI 81.51 0 0 8 0.11% 8.99% 

Spot 8 

Leucine-rich repeat-
containing G-protein 
coupled receptor 6  K1PGK1_CRAGI 46.64 3 3 3 0.04% 10.20% 

Spot 8 Alpha-actinin, sarcomeric  K1RH58_CRAGI 102.20 3 3 3 0.04% 3.98% 

Spot 8 
Plasma alpha-L-
fucosidase  K1QWY7_CRAGI 62.84 2 2 2 0.03% 4.39% 

Spot 8 Beta-lactamase  K1QVA0_CRAGI 27.70 2 2 2 0.03% 8.37% 
Spot 8 Retinal dehydrogenase 1  K1R266_CRAGI 62.12 15 26 121 1.72% 48.60% 

Spot 8 
Beta-hexosaminidase 
subunit beta  K1Q6V0_CRAGI 51.16 0 0 8 0.11% 13.70% 

Spot 8 

Aldehyde 
dehydrogenase, 
mitochondrial  K1QNT7_CRAGI 56.97 18 20 21 0.30% 36.60% 

Spot 8 
Dihydrolipoyl 
dehydrogenase  K1Q330_CRAGI 173.92 7 9 9 0.13% 5.87% 

Spot 8 Major vault protein  K1QQR1_CRAGI 96.31 2 2 2 0.03% 2.33% 

Spot 8 
Histidyl-tRNA synthetase, 
cytoplasmic  K1P8Z2_CRAGI 58.07 1 1 2 0.03% 3.69% 

Spot 8 
Plasma alpha-L-
fucosidase  K1QC19_CRAGI 53.81 1 1 2 0.03% 5.22% 

Spot 8 Filamin-C  K1PW06_CRAGI 323.73 27 34 34 0.49% 10.80% 

Spot 8 

Immunoglobulin 
superfamily containing 
leucine-rich repeat 
protein 2  K1RUQ7_CRAGI 16.56 2 2 2 0.03% 11.30% 

Spot 8 

4-aminobutyrate 
aminotransferase, 
mitochondrial  K1QXS3_CRAGI 50.07 3 3 3 0.04% 9.71% 
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Spot 8 
T-complex protein 1 
subunit eta  K1Q9W5_CRAGI 46.55 4 4 8 0.11% 17.00% 

Spot 8 Retinal dehydrogenase 1  K1QVG5_CRAGI 53.15 8 12 62 0.88% 54.60% 
Spot 8 Septin-7  K1PCA0_CRAGI 70.81 2 2 2 0.03% 3.04% 
Spot 8 Adenosylhomocysteinase  K1RW85_CRAGI 47.50 2 2 2 0.03% 4.16% 
Spot 8 Arginine kinase  K1PLF9_CRAGI 39.63 4 4 4 0.06% 12.60% 
Spot 8 Vitellogenin-6  K1QNA2_CRAGI 273.31 0 0 4 0.06% 1.82% 
Spot 8 Amidase  K1QX82_CRAGI 13.46 2 3 6 0.09% 37.00% 
Spot 8 Amidase  K1QFU8_CRAGI 75.36 1 1 5 0.07% 6.37% 
Spot 8 Aldehyde dehydrogenase  K1Q9Z4_CRAGI 25.35 9 15 21 0.30% 53.30% 

Spot 8 
Dipeptidyl-peptidase 1 
(Fragment)  K1QAY3_CRAGI 44.67 2 2 2 0.03% 5.87% 

Spot 8 
Aldehyde dehydrogenase 
family 8 member A1  K1QIL8_CRAGI 53.30 6 6 6 0.09% 12.00% 

Spot 8 Vitellogenin  Q8IU34_CRAGI 179.21 1 1 5 0.07% 3.66% 

Spot 8 
Selenium-binding protein 
1 (Fragment)  K1QI40_CRAGI 53.35 22 38 45 0.64% 54.90% 

Spot 8 

Alpha-aminoadipic 
semialdehyde 
dehydrogenase  K1RNB6_CRAGI 55.22 19 27 28 0.40% 46.40% 

Spot 8 

Putative methylmalonate-
semialdehyde 
dehydrogenase 
[acylating], mitochondrial  K1R252_CRAGI 57.24 14 22 22 0.31% 38.70% 

Spot 8 Guanine deaminase  K1QRG3_CRAGI 50.05 3 3 3 0.04% 5.39% 
Spot 8 Carboxypeptidase E  K1P9W2_CRAGI 57.11 2 2 2 0.03% 3.58% 
Spot 8 Fascin  K1QEZ3_CRAGI 55.60 16 22 23 0.33% 32.90% 
Spot 8 Amidase  K1Q2A1_CRAGI 59.11 7 7 13 0.19% 24.80% 
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Spot 8 

Serine/threonine-protein 
phosphatase 2A 55 kDa 
regulatory subunit B  K1QPJ9_CRAGI 51.51 4 4 4 0.06% 9.44% 

Spot 8 
Beta-hexosaminidase 
subunit beta  K1QHI3_CRAGI 47.22 1 1 9 0.13% 18.10% 

Spot 8 Enolase  K1QX37_CRAGI 127.42 7 7 7 0.10% 7.34% 
Spot 8 Glutathione synthetase  K1P746_CRAGI 62.49 2 2 2 0.03% 3.77% 
Spot 8 Dihydropyrimidinase  K1PGY5_CRAGI 71.26 10 13 16 0.23% 21.90% 
Spot 8 Filamin-A  K1RZ99_CRAGI 90.77 15 19 20 0.29% 27.30% 

Spot 9 

Propionyl-CoA 
carboxylase beta chain, 
mitochondrial  K1RNB5_CRAGI 59.11 4 4 4 0.05% 8.46% 

Spot 9 
Beta-hexosaminidase 
subunit beta  K1Q6V0_CRAGI 51.16 1 1 9 0.12% 15.50% 

Spot 9 
Protein disulfide-
isomerase  K1Q7T5_CRAGI 55.52 8 8 8 0.11% 17.50% 

Spot 9 
T-complex protein 1 
subunit eta  K1Q9W5_CRAGI 46.55 6 6 9 0.12% 23.40% 

Spot 9 
Non-selenium glutathione 
peroxidase  A7M7T7_CRAGI 24.45 6 6 6 0.08% 28.50% 

Spot 9 Legumain  K1QB32_CRAGI 90.07 3 3 3 0.04% 4.90% 

Spot 9 Coronin  
K1QRW4_CRAG
I 61.69 2 2 2 0.03% 4.12% 

Spot 9 
Plasma alpha-L-
fucosidase  K1QWY7_CRAGI 62.84 2 2 2 0.03% 3.84% 

Spot 9 
ATP synthase subunit 
alpha  K1R6Z7_CRAGI 59.87 4 5 5 0.07% 8.86% 

Spot 9 Omega-crystallin  K1QUX5_CRAGI 19.69 5 7 14 0.19% 33.10% 
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Spot 9 
Putative ATP-dependent 
RNA helicase DDX4  K1Q923_CRAGI 81.51 0 0 11 0.15% 12.60% 

Spot 9 Beta-lactamase  K1QVA0_CRAGI 27.70 2 2 3 0.04% 12.70% 
Spot 9 Amidase  K1QFU8_CRAGI 75.36 1 1 4 0.05% 6.37% 

Spot 9 
ATP synthase subunit 
beta  

K1RWW5_CRAG
I 44.93 2 2 2 0.03% 5.80% 

Spot 9 

Aldehyde 
dehydrogenase, 
mitochondrial  K1QNT7_CRAGI 56.97 9 11 11 0.15% 21.60% 

Spot 9 
Dihydrolipoyl 
dehydrogenase  K1Q330_CRAGI 173.92 6 7 7 0.10% 4.77% 

Spot 9 Filamin-C  K1PW06_CRAGI 323.73 24 30 31 0.42% 10.30% 

Spot 9 

4-aminobutyrate 
aminotransferase, 
mitochondrial  K1QXS3_CRAGI 50.07 2 2 2 0.03% 4.74% 

Spot 9 Retinal dehydrogenase 1  K1QVG5_CRAGI 53.15 8 11 60 0.82% 43.20% 

Spot 9 
T-complex protein 1 
subunit zeta  K1PXN5_CRAGI 58.33 2 2 2 0.03% 3.39% 

Spot 9 
T-complex protein 1 
subunit eta  K1QVN9_CRAGI 25.51 1 1 4 0.05% 18.20% 

Spot 9 
71kDa heat shock 
connate protein  Q9XZJ2_CRAGI 72.04 0 0 2 0.03% 3.79% 

Spot 9 Enolase  K1QX37_CRAGI 127.42 13 21 22 0.30% 15.50% 
Spot 9 Arginine kinase  K1PLF9_CRAGI 39.63 6 6 6 0.08% 20.90% 
Spot 9 Vitellogenin-6  K1QNA2_CRAGI 273.31 0 0 3 0.04% 1.29% 
Spot 9 Amidase  K1QX82_CRAGI 13.46 2 3 6 0.08% 37.00% 

Spot 9 
Plasma alpha-L-
fucosidase  K1QC19_CRAGI 53.81 1 1 2 0.03% 4.78% 
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Spot 9 
Echinoderm microtubule-
associated protein-like 1  K1PWP8_CRAGI 80.69 2 2 2 0.03% 5.59% 

Spot 9 Aldehyde dehydrogenase  K1Q9Z4_CRAGI 25.35 8 13 20 0.27% 53.30% 

Spot 9 
Dipeptidyl-peptidase 1 
(Fragment)  K1QAY3_CRAGI 44.67 2 2 2 0.03% 5.61% 

Spot 9 Alpha-actinin, sarcomeric  K1RH58_CRAGI 102.20 2 2 2 0.03% 2.50% 

Spot 9 
Aldehyde dehydrogenase 
family 8 member A1  K1QIL8_CRAGI 53.30 6 6 6 0.08% 12.00% 

Spot 9 
N-acetylgalactosamine 
kinase  K1RY94_CRAGI 50.86 5 5 5 0.07% 9.85% 

Spot 9 

Succinate-semialdehyde 
dehydrogenase, 
mitochondrial  K1PV02_CRAGI 74.22 4 4 4 0.05% 6.55% 

Spot 9 

Alpha-aminoadipic 
semialdehyde 
dehydrogenase  K1RNB6_CRAGI 55.22 18 23 23 0.31% 45.00% 

Spot 9 

Putative methylmalonate-
semialdehyde 
dehydrogenase 
[acylating], mitochondrial  K1R252_CRAGI 57.24 14 20 20 0.27% 37.00% 

Spot 9 Guanine deaminase  K1QRG3_CRAGI 50.05 6 6 6 0.08% 12.80% 
Spot 9 Fascin  K1QEZ3_CRAGI 55.60 14 25 29 0.39% 31.90% 
Spot 9 Protein henna  K1QHH0_CRAGI 52.07 1 1 3 0.04% 5.65% 

Spot 9 
Selenium-binding protein 
1 (Fragment)  K1QI40_CRAGI 53.35 23 43 51 0.69% 55.90% 

Spot 9 

Glutamate 
decarboxylase-like 
protein 1  K1P7P6_CRAGI 41.82 2 2 2 0.03% 6.52% 

Spot 9 Amidase  K1Q2A1_CRAGI 59.11 6 7 12 0.16% 23.50% 
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Spot 9 

Serine/threonine-protein 
phosphatase 2A 55 kDa 
regulatory subunit B  K1QPJ9_CRAGI 51.51 3 3 3 0.04% 7.42% 

Spot 9 Retinal dehydrogenase 1  K1R266_CRAGI 62.12 14 28 118 1.61% 43.90% 

Spot 9 

Leucine-rich repeat-
containing G-protein 
coupled receptor 6  K1PGK1_CRAGI 46.64 6 7 7 0.10% 21.40% 

Spot 9 
Beta-hexosaminidase 
subunit beta  K1QHI3_CRAGI 47.22 2 2 10 0.14% 21.00% 

Spot 9 
Alanine aminotransferase 
2  K1RGF4_CRAGI 51.34 2 2 2 0.03% 7.33% 

Spot 9 Glutathione synthetase  K1P746_CRAGI 62.49 6 6 6 0.08% 12.00% 
Spot 9 Dihydropyrimidinase  K1PGY5_CRAGI 71.26 13 14 16 0.22% 27.50% 
Spot 9 Filamin-A  K1RZ99_CRAGI 90.77 18 26 27 0.37% 32.90% 
Spot 9 Uncharacterized protein  K1QBB5_CRAGI 38.46 2 2 2 0.03% 5.64% 

Spot 10 

Propionyl-CoA 
carboxylase beta chain, 
mitochondrial  K1RNB5_CRAGI 59.11 2 2 2 0.03% 3.31% 

Spot 10 
Protein disulfide-
isomerase  K1Q7T5_CRAGI 55.52 4 4 4 0.06% 8.74% 

Spot 10 
Non-selenium glutathione 
peroxidase  A7M7T7_CRAGI 24.45 4 4 4 0.06% 19.50% 

Spot 10 
T-complex protein 1 
subunit beta  K1R294_CRAGI 57.49 3 3 3 0.04% 5.86% 

Spot 10 Uncharacterized protein  K1QBB5_CRAGI 38.46 2 2 2 0.03% 5.93% 
Spot 10 Legumain  K1QB32_CRAGI 90.07 4 4 4 0.06% 6.13% 

Spot 10 
T-complex protein 1 
subunit zeta  K1PXN5_CRAGI 58.33 3 3 3 0.04% 5.65% 
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Spot 10 
Plasma alpha-L-
fucosidase  K1QZW1_CRAGI 53.44 1 1 2 0.03% 4.81% 

Spot 10 
ATP synthase subunit 
alpha  K1R6Z7_CRAGI 59.87 5 6 6 0.09% 10.30% 

Spot 10 Omega-crystallin  K1QUX5_CRAGI 19.69 4 8 14 0.20% 29.80% 

Spot 10 
Putative ATP-dependent 
RNA helicase DDX4  K1Q923_CRAGI 81.51 0 0 7 0.10% 7.57% 

Spot 10 

Leucine-rich repeat-
containing G-protein 
coupled receptor 6  K1PGK1_CRAGI 46.64 6 7 7 0.10% 21.40% 

Spot 10 Beta-lactamase  K1QVA0_CRAGI 27.70 4 4 6 0.09% 27.50% 

Spot 10 
Beta-hexosaminidase 
subunit beta  K1Q6V0_CRAGI 51.16 0 0 9 0.13% 15.80% 

Spot 10 

Aldehyde 
dehydrogenase, 
mitochondrial  K1QNT7_CRAGI 56.97 4 4 4 0.06% 8.86% 

Spot 10 
Dihydrolipoyl 
dehydrogenase  K1Q330_CRAGI 173.92 7 7 7 0.10% 5.42% 

Spot 10 Filamin-C  K1PW06_CRAGI 323.73 14 16 16 0.23% 6.10% 

Spot 10 

4-aminobutyrate 
aminotransferase, 
mitochondrial  K1QXS3_CRAGI 50.07 4 4 4 0.06% 13.80% 

Spot 10 
T-complex protein 1 
subunit eta  K1Q9W5_CRAGI 46.55 1 1 3 0.04% 7.33% 

Spot 10 Uncharacterized protein  K1QFW9_CRAGI 94.86 1 1 2 0.03% 2.23% 
Spot 10 Uncharacterized protein  K1RCM9_CRAGI 52.17 2 3 3 0.04% 3.90% 
Spot 10 Retinal dehydrogenase 1  K1QVG5_CRAGI 53.15 6 9 60 0.85% 51.90% 

Spot 10 
Isocitrate dehydrogenase 
[NADP]  K1RZE2_CRAGI 50.26 0 0 2 0.03% 5.18% 



 

 

211 
 

Spot 10 
71kDa heat shock 
connate protein  Q9XZJ2_CRAGI 72.04 0 0 3 0.04% 5.31% 

Spot 10 Enolase  K1QX37_CRAGI 127.42 3 3 3 0.04% 2.97% 
Spot 10 Arginine kinase  K1PLF9_CRAGI 39.63 3 3 3 0.04% 9.71% 
Spot 10 Vitellogenin-6  K1QNA2_CRAGI 273.31 0 0 3 0.04% 1.29% 
Spot 10 Amidase  K1QX82_CRAGI 13.46 2 4 5 0.07% 26.10% 
Spot 10 Aldehyde dehydrogenase  K1Q9Z4_CRAGI 25.35 6 11 13 0.19% 43.70% 

Spot 10 
Aldehyde dehydrogenase 
family 8 member A1  K1QIL8_CRAGI 53.30 7 7 7 0.10% 14.10% 

Spot 10 

Succinate-semialdehyde 
dehydrogenase, 
mitochondrial  K1PV02_CRAGI 74.22 2 2 2 0.03% 3.28% 

Spot 10 

Alpha-aminoadipic 
semialdehyde 
dehydrogenase  K1RNB6_CRAGI 55.22 16 21 21 0.30% 37.20% 

Spot 10 

Putative methylmalonate-
semialdehyde 
dehydrogenase 
[acylating], mitochondrial  K1R252_CRAGI 57.24 3 3 3 0.04% 9.71% 

Spot 10 Guanine deaminase  K1QRG3_CRAGI 50.05 7 7 7 0.10% 13.50% 

Spot 10 
Plasma alpha-L-
fucosidase  K1QC19_CRAGI 53.81 1 1 2 0.03% 5.22% 

Spot 10 Fascin  K1QEZ3_CRAGI 55.60 14 18 20 0.28% 31.30% 

Spot 10 
Selenium-binding protein 
1 (Fragment)  K1QI40_CRAGI 53.35 22 36 41 0.58% 54.90% 

Spot 10 

Glutamate 
decarboxylase-like 
protein 1  K1P7P6_CRAGI 41.82 2 2 2 0.03% 4.89% 

Spot 10 Amidase  K1Q2A1_CRAGI 59.11 3 3 6 0.09% 12.90% 
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Spot 10 Retinal dehydrogenase 1  K1R266_CRAGI 62.12 16 29 124 1.76% 49.70% 

Spot 10 
Beta-hexosaminidase 
subunit beta  K1QHI3_CRAGI 47.22 1 1 10 0.14% 20.30% 

Spot 10 Glutathione synthetase  K1P746_CRAGI 62.49 5 5 5 0.07% 9.87% 
Spot 10 Protein hu-li tai shao  K1PEX5_CRAGI 85.92 2 2 2 0.03% 2.72% 
Spot 10 Dihydropyrimidinase  K1PGY5_CRAGI 71.26 11 12 14 0.20% 24.00% 
Spot 10 Filamin-A  K1RZ99_CRAGI 90.77 13 16 16 0.23% 22.90% 

Spot 11 
Isocitrate dehydrogenase 
[NADP]  K1R7T2_CRAGI 46.31 4 4 4 0.13% 13.20% 

Spot 11 Filamin-C  K1PW06_CRAGI 323.73 5 6 6 0.20% 3.05% 
Spot 11 Actin, cytoplasmic  K1RWD4_CRAGI 41.90 1 1 6 0.20% 15.20% 
Spot 11 Actin  C4NY64_CRAGI 41.81 1 1 6 0.20% 16.20% 
Spot 11 Retinal dehydrogenase 1  K1R266_CRAGI 62.12 1 1 4 0.13% 11.20% 

Spot 11 
71kDa heat shock 
connate protein  Q9XZJ2_CRAGI 72.04 0 0 2 0.07% 2.88% 

Spot 11 Actin  K1Q0U8_CRAGI 41.76 1 1 10 0.33% 24.20% 
Spot 11 Enolase  K1QX37_CRAGI 127.42 4 5 5 0.17% 6.21% 
Spot 11 Filamin-A  K1RZ99_CRAGI 90.77 2 2 2 0.07% 4.28% 

Spot 11 

Long-chain specific acyl-
CoA dehydrogenase, 
mitochondrial  K1RDF6_CRAGI 52.16 3 3 3 0.10% 11.00% 

Spot 11 Actin  K1R6J7_CRAGI 41.81 1 1 4 0.13% 10.40% 
Spot 11 Actin 2  Q8TA69_CRAGI 41.74 1 3 9 0.30% 16.00% 

Spot 11 
Phosphoenolpyruvate 
carboxykinase [GTP]  K1QEA6_CRAGI 71.59 2 2 2 0.07% 4.42% 

Spot 11 Aldose 1-epimerase  K1QL49_CRAGI 39.57 2 2 2 0.07% 7.10% 

Spot 11 
Isocitrate dehydrogenase 
[NADP]  K1RZE2_CRAGI 50.26 1 1 5 0.17% 14.90% 
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Spot 12 Enolase  K1QX37_CRAGI 127.42 2 2 2 0.07% 2.10% 
Spot 12 Actin, cytoplasmic  K1RWD4_CRAGI 41.90 0 0 4 0.14% 12.50% 

Spot 12 
Apoptosis-inducing factor 
3  K1QFI3_CRAGI 97.02 2 2 2 0.07% 2.36% 

Spot 12 Actin 2  Q8TA69_CRAGI 41.74 2 3 5 0.18% 12.80% 

Spot 12 
Isocitrate dehydrogenase 
[NADP]  K1R7T2_CRAGI 46.31 2 2 2 0.07% 5.61% 

Spot 12 
Lysosomal aspartic 
protease  K1P5Z3_CRAGI 47.64 4 4 4 0.14% 13.70% 

Spot 12 

Long-chain specific acyl-
CoA dehydrogenase, 
mitochondrial  K1RDF6_CRAGI 52.16 4 4 4 0.14% 13.80% 

Spot 12 Actin-1/3  K1RBG6_CRAGI 59.45 1 1 2 0.07% 6.42% 

Spot 13 
Isocitrate dehydrogenase 
[NADP]  K1RZE2_CRAGI 50.26 1 1 2 0.08% 5.86% 

Spot 13 
71kDa heat shock 
connate protein  Q9XZJ2_CRAGI 72.04 0 0 2 0.08% 3.19% 

Spot 13 
Multifunctional protein 
ADE2  K1RJ97_CRAGI 46.77 2 2 2 0.08% 4.74% 

Spot 13 Actin, cytoplasmic  K1RWD4_CRAGI 41.90 0 0 9 0.34% 20.20% 

Spot 13 
Apoptosis-inducing factor 
3  K1QFI3_CRAGI 97.02 2 2 2 0.08% 4.16% 

Spot 13 Actin 2  Q8TA69_CRAGI 41.74 1 1 6 0.23% 18.10% 

Spot 13 

Long-chain specific acyl-
CoA dehydrogenase, 
mitochondrial  K1RDF6_CRAGI 52.16 3 3 3 0.11% 8.41% 

Spot 13 
Isocitrate dehydrogenase 
[NADP]  K1R7T2_CRAGI 46.31 2 2 2 0.08% 7.07% 

Spot 14 Citrate synthase  K1RM80_CRAGI 49.44 3 3 3 0.11% 8.66% 
Spot 14 Phosphoglycerate kinase  K1QCC1_CRAGI 43.03 3 3 3 0.11% 12.80% 
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Spot 14 
Isocitrate dehydrogenase 
[NADP]  K1RZE2_CRAGI 50.26 3 4 8 0.30% 19.60% 

Spot 14 Obg-like ATPase 1  K1R8Y1_CRAGI 46.48 2 2 2 0.07% 4.87% 

Spot 14 
Multifunctional protein 
ADE2  K1RJ97_CRAGI 46.77 3 5 9 0.34% 8.77% 

Spot 14 Enolase  K1QX37_CRAGI 127.42 2 2 2 0.07% 2.53% 
Spot 14 Actin-1/3  K1RBG6_CRAGI 59.45 2 2 2 0.07% 7.74% 

Spot 14 
Phosphoenolpyruvate 
carboxykinase [GTP]  K1QEA6_CRAGI 71.59 3 3 3 0.11% 7.10% 

Spot 14 

Ornithine 
aminotransferase, 
mitochondrial  K1Q1I3_CRAGI 47.45 2 3 3 0.11% 5.09% 

Spot 15 
Malate dehydrogenase 
(Fragment)  K1PU26_CRAGI 36.27 4 4 4 0.07% 13.30% 

Spot 15 

26S proteasome non-
ATPase regulatory 
subunit 9  K1RB21_CRAGI 21.93 4 4 4 0.07% 23.10% 

Spot 15 
Transketolase-like 
protein 2  K1RBC9_CRAGI 74.87 2 2 2 0.03% 2.30% 

Spot 15 Adenosylhomocysteinase  K1RW85_CRAGI 47.50 6 6 6 0.10% 10.60% 

Spot 15 
ES1-like protein, 
mitochondrial  K1RPZ2_CRAGI 99.96 2 2 2 0.03% 2.55% 

Spot 15 
Malate dehydrogenase, 
mitochondrial  K1R4Z3_CRAGI 29.84 1 1 2 0.03% 8.57% 

Spot 15 
Non-selenium glutathione 
peroxidase  A7M7T7_CRAGI 24.45 13 15 15 0.25% 42.50% 

Spot 15 
Carbonyl reductase 
[NADPH] 1  K1RCR8_CRAGI 30.58 2 2 4 0.07% 16.50% 

Spot 15 Cathepsin B  K1QS40_CRAGI 37.69 3 4 4 0.07% 10.90% 
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Spot 15 Phosphoglucomutase-1  K1PQD4_CRAGI 64.80 0 0 3 0.05% 5.40% 
Spot 15 Calcyclin-binding protein  K1Q337_CRAGI 26.04 5 5 5 0.08% 17.90% 

Spot 15 
T-complex protein 1 
subunit theta  K1R0S3_CRAGI 83.14 2 2 2 0.03% 2.49% 

Spot 15 Alpha-actinin, sarcomeric  K1RH58_CRAGI 102.20 2 2 2 0.03% 2.50% 
Spot 15 D-erythrulose reductase  K1RLT0_CRAGI 25.95 5 5 5 0.08% 23.00% 

Spot 15 
Isocitrate dehydrogenase 
[NADP]  K1RZE2_CRAGI 50.26 0 0 6 0.10% 14.90% 

Spot 15 

Aldehyde 
dehydrogenase, 
mitochondrial  K1QNT7_CRAGI 56.97 2 2 2 0.03% 4.24% 

Spot 15 Translin  K1Q888_CRAGI 26.57 3 3 3 0.05% 11.70% 

Spot 15 
Dihydropteridine 
reductase  K1PFL3_CRAGI 24.87 3 3 3 0.05% 16.00% 

Spot 15 60S ribosomal protein L4  K1P8W6_CRAGI 43.11 3 3 3 0.05% 9.66% 
Spot 15 Filamin-C  K1PW06_CRAGI 323.73 7 7 7 0.12% 2.72% 

Spot 15 
Multifunctional protein 
ADE2  K1RJ97_CRAGI 46.77 2 2 2 0.03% 4.50% 

Spot 15 Natterin-3  K1QRB6_CRAGI 15.52 3 5 5 0.08% 19.60% 

Spot 15 
Methylmalonyl-CoA 
mutase, mitochondrial  K1QE55_CRAGI 81.73 2 2 2 0.03% 2.97% 

Spot 15 Uncharacterized protein  K1QFW9_CRAGI 94.86 3 4 4 0.07% 3.64% 
Spot 15 Retinal dehydrogenase 1  K1QVG5_CRAGI 53.15 1 1 5 0.08% 10.10% 

Spot 15 Periostin  
K1QVV5_CRAGI,
K1R2K2_CRAGI 30.39 2 2 2 0.03% 6.94% 

Spot 15 
Phosphoenolpyruvate 
carboxykinase [GTP]  K1QEA6_CRAGI 71.59 2 2 2 0.03% 2.52% 
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Spot 15 
Prolyl 4-hydroxylase 
subunit alpha-1  K1QQ59_CRAGI 71.18 3 3 3 0.05% 4.54% 

Spot 15 
Triosephosphate 
isomerase  K1PJ59_CRAGI 18.67 4 6 6 0.10% 29.40% 

Spot 15 Arginine kinase  K1PLF9_CRAGI 39.63 3 3 3 0.05% 7.43% 
Spot 15 Vitellogenin-6  K1QNA2_CRAGI 273.31 2 2 6 0.10% 2.20% 
Spot 15 60S ribosomal protein L6  K1QW36_CRAGI 25.95 3 3 3 0.05% 12.30% 
Spot 15 Peroxiredoxin-1  K1Q615_CRAGI 28.85 2 2 5 0.08% 12.00% 

Spot 15 
3-oxoacyl-[acyl-carrier-
protein] reductase  K1RIS2_CRAGI 28.00 3 3 3 0.05% 12.40% 

Spot 15 
Fibrinolytic enzyme, 
isozyme C  K1PH66_CRAGI 74.60 2 2 2 0.03% 3.02% 

Spot 15 
StAR-related lipid 
transfer protein 5  K1PIK9_CRAGI 28.21 2 2 2 0.03% 7.32% 

Spot 15 Transgelin  K1R1X5_CRAGI 43.38 2 2 2 0.03% 6.14% 

Spot 15 
Glutathione S-
transferase A  K1QJ85_CRAGI 23.06 1 1 4 0.07% 19.00% 

Spot 15 
Fructose-bisphosphate 
aldolase  K1R8R6_CRAGI 43.48 0 0 4 0.07% 9.55% 

Spot 15 
Uncharacterized protein 
C11D3.13  K1PH24_CRAGI 39.86 3 3 3 0.05% 9.89% 

Spot 15 
Triosephosphate 
isomerase  K1PCV6_CRAGI 11.53 2 2 2 0.03% 17.80% 

Spot 15 Kyphoscoliosis peptidase  K1RL06_CRAGI 24.03 3 3 3 0.05% 15.80% 

Spot 15 

Guanine nucleotide-
binding protein subunit 
beta-2-like 1  K1RV41_CRAGI 35.01 3 3 3 0.05% 9.15% 

Spot 15 Fascin  K1QEZ3_CRAGI 55.60 2 2 2 0.03% 5.81% 
Spot 15 Cathepsin F  K1QYP7_CRAGI 78.59 4 4 4 0.07% 6.43% 
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Spot 15 

Glyceraldehyde-3-
phosphate 
dehydrogenase  K1Q350_CRAGI 36.08 6 6 6 0.10% 17.60% 

Spot 15 Carbonic anhydrase 2  K1QSG0_CRAGI 36.53 5 7 11 0.19% 14.40% 

Spot 15 
Prostaglandin reductase 
1  K1RGE2_CRAGI 36.01 2 2 2 0.03% 7.01% 

Spot 15 Kyphoscoliosis peptidase  K1PEZ6_CRAGI 32.96 2 2 2 0.03% 7.88% 

Spot 15 

Putative 
phosphoglycerate 
mutase  K1QBL3_CRAGI 28.58 2 2 2 0.03% 8.40% 

Spot 15 Retinal dehydrogenase 1  K1R266_CRAGI 62.12 5 5 10 0.17% 13.10% 

Spot 15 

Eukaryotic peptide chain 
release factor GTP-
binding subunit ERF3B  K1RCY7_CRAGI 61.96 2 2 2 0.03% 3.24% 

Spot 15 
Protein-L-isoaspartate O-
methyltransferase  K1R7V8_CRAGI 27.27 2 3 3 0.05% 7.57% 

Spot 15 
Uncharacterized protein 
(Fragment)  K1QSS1_CRAGI 39.32 2 2 2 0.03% 5.03% 

Spot 15 Elongation factor 1-alpha  

K1QGS8_CRAGI
,Q75W48_CRAG
I 50.47 6 6 6 0.10% 13.20% 

Spot 15 
GTP-binding nuclear 
protein  K1R5V4_CRAGI 24.12 5 5 5 0.08% 20.20% 

Spot 15 
Proteasome subunit 
alpha type  K1R008_CRAGI 28.00 5 6 6 0.10% 17.30% 

Spot 15 
Deoxycytidylate 
deaminase  K1PIP9_CRAGI 18.86 5 5 5 0.08% 27.80% 

Spot 15 
Adenylyl cyclase-
associated protein  K1QI97_CRAGI 67.29 4 4 4 0.07% 6.63% 
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Spot 16 
Malate dehydrogenase 
(Fragment)  K1PU26_CRAGI 36.27 2 2 2 0.03% 5.44% 

Spot 16 
Transketolase-like 
protein 2  K1RBC9_CRAGI 74.87 2 2 2 0.03% 3.74% 

Spot 16 Cathepsin L  K1RCD5_CRAGI 36.55 1 1 7 0.11% 26.40% 

Spot 16 
Malate dehydrogenase, 
mitochondrial  K1R4Z3_CRAGI 29.84 3 3 3 0.05% 12.10% 

Spot 16 
Non-selenium glutathione 
peroxidase  A7M7T7_CRAGI 24.45 8 9 9 0.14% 37.60% 

Spot 16 
T-complex protein 1 
subunit beta  K1R294_CRAGI 57.49 2 2 2 0.03% 4.35% 

Spot 16 
Carbonyl reductase 
[NADPH] 1  K1RCR8_CRAGI 30.58 2 2 3 0.05% 13.30% 

Spot 16 

Acetyltransferase 
component of pyruvate 
dehydrogenase complex  K1R8I8_CRAGI 52.06 4 4 4 0.06% 10.30% 

Spot 16 Cathepsin B  K1QS40_CRAGI 37.69 4 5 5 0.08% 14.40% 
Spot 16 Calcyclin-binding protein  K1Q337_CRAGI 26.04 2 2 2 0.03% 10.30% 
Spot 16 Annexin  K1RAI3_CRAGI 36.30 1 1 2 0.03% 5.88% 
Spot 16 Omega-crystallin  K1QUX5_CRAGI 19.69 3 3 5 0.08% 21.90% 

Spot 16 
T-complex protein 1 
subunit alpha  K1RAJ1_CRAGI 75.32 2 2 2 0.03% 2.86% 

Spot 16 
Putative aminopeptidase 
W07G4.4  K1PVV6_CRAGI 55.71 0 0 4 0.06% 8.69% 

Spot 16 Carboxypeptidase B  K1RCT9_CRAGI 45.61 3 3 3 0.05% 8.27% 
Spot 16 Fascin  K1QEZ3_CRAGI 55.60 5 5 5 0.08% 12.80% 

Spot 16 
Peptidyl-prolyl cis-trans 
isomerase  K1Q5P7_CRAGI 23.74 4 5 5 0.08% 18.60% 

Spot 16 Translin  K1Q888_CRAGI 26.57 5 5 5 0.08% 23.00% 
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Spot 16 Uncharacterized protein  K1QKU3_CRAGI 24.60 2 2 2 0.03% 13.80% 
Spot 16 Dihydroorotase  K1RCK9_CRAGI 47.82 4 4 4 0.06% 11.80% 

Spot 16 
Dihydropteridine 
reductase  K1PFL3_CRAGI 24.87 2 2 2 0.03% 7.59% 

Spot 16 Uncharacterized protein  K1QHA4_CRAGI 35.38 3 4 4 0.06% 13.30% 

Spot 16 
T-complex protein 1 
subunit gamma  K1R466_CRAGI 63.91 2 2 2 0.03% 3.62% 

Spot 16 60S ribosomal protein L4  K1P8W6_CRAGI 43.11 3 3 3 0.05% 9.40% 
Spot 16 Filamin-C  K1PW06_CRAGI 323.73 6 6 6 0.09% 2.35% 

Spot 16 
Multifunctional protein 
ADE2  K1RJ97_CRAGI 46.77 3 3 3 0.05% 7.58% 

Spot 16 
Heat shock protein HSP 
90-alpha 1  K1PNQ5_CRAGI 83.32 1 1 2 0.03% 2.63% 

Spot 16 
ES1-like protein, 
mitochondrial  K1RPZ2_CRAGI 99.96 5 6 6 0.09% 6.64% 

Spot 16 
Aspartate 
aminotransferase  K1R2Q9_CRAGI 43.19 0 0 4 0.06% 11.20% 

Spot 16 Uncharacterized protein  K1QZX9_CRAGI 50.75 4 4 4 0.06% 9.23% 
Spot 16 Uncharacterized protein  K1QFW9_CRAGI 94.86 4 4 5 0.08% 5.88% 

Spot 16 

Peptide methionine 
sulfoxide reductase msrA 
2  K1RR10_CRAGI 24.82 1 2 3 0.05% 11.80% 

Spot 16 
3-hydroxyacyl-CoA 
dehydrogenase type-2  K1QDS1_CRAGI 27.90 4 4 4 0.06% 18.20% 

Spot 16 
Phosphoenolpyruvate 
carboxykinase [GTP]  K1QEA6_CRAGI 71.59 4 4 4 0.06% 5.36% 

Spot 16 Retinal dehydrogenase 1  K1QVG5_CRAGI 53.15 1 1 11 0.17% 19.10% 

Spot 16 
Isocitrate dehydrogenase 
[NADP]  K1RZE2_CRAGI 50.26 1 1 8 0.12% 19.40% 
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Spot 16 Periostin  
K1QVV5_CRAGI,
K1R2K2_CRAGI 30.39 5 5 5 0.08% 16.30% 

Spot 16 
4-hydroxyphenylpyruvate 
dioxygenase  K1QX22_CRAGI 211.58 2 2 2 0.03% 1.12% 

Spot 16 

Putative 
phosphoglycerate 
mutase  K1QBL3_CRAGI 28.58 7 10 10 0.15% 29.20% 

Spot 16 
Proteasome subunit 
alpha type-1  K1PCR9_CRAGI 27.74 2 2 2 0.03% 7.94% 

Spot 16 
Protein ETHE1, 
mitochondrial  K1PVX0_CRAGI 27.77 2 2 2 0.03% 10.50% 

Spot 16 Adenosylhomocysteinase  K1RW85_CRAGI 47.50 6 6 6 0.09% 10.60% 

Spot 16 
71kDa heat shock 
connate protein  Q9XZJ2_CRAGI 72.04 0 0 12 0.18% 16.10% 

Spot 16 

Guanine nucleotide-
binding protein subunit 
beta-2-like 1  K1RV41_CRAGI 35.01 4 4 4 0.06% 14.20% 

Spot 16 Vitellogenin-6  K1QNA2_CRAGI 273.31 1 1 4 0.06% 1.45% 
Spot 16 Peroxiredoxin-1  K1Q615_CRAGI 28.85 2 2 3 0.05% 12.00% 

Spot 16 
3-oxoacyl-[acyl-carrier-
protein] reductase  K1RIS2_CRAGI 28.00 11 13 13 0.20% 45.90% 

Spot 16 
StAR-related lipid 
transfer protein 5  K1PIK9_CRAGI 28.21 6 6 6 0.09% 18.70% 

Spot 16 
Fructose-bisphosphate 
aldolase  K1RTQ6_CRAGI 38.99 1 1 2 0.03% 4.41% 

Spot 16 
Methylmalonyl-CoA 
mutase, mitochondrial  K1QE55_CRAGI 81.73 2 2 2 0.03% 2.97% 

Spot 16 
15-hydroxyprostaglandin 
dehydrogenase [NAD+]  K1QLT1_CRAGI 27.71 2 2 2 0.03% 6.72% 
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Spot 16 Transgelin  K1R1X5_CRAGI 43.38 4 4 4 0.06% 12.50% 

Spot 16 
Glutathione S-
transferase A  K1QJ85_CRAGI 23.06 2 2 4 0.06% 19.00% 

Spot 16 
Dehydrogenase/reductas
e SDR family member 11  K1RIX4_CRAGI 31.01 6 8 8 0.12% 20.20% 

Spot 16 
Glutathione S-
transferase A  K1R6D4_CRAGI 26.51 1 1 3 0.05% 12.60% 

Spot 16 
Proteasome subunit 
alpha type-4  K1R7N8_CRAGI 21.25 4 7 7 0.11% 19.90% 

Spot 16 
Acyl-protein thioesterase 
2  K1QXF9_CRAGI 23.68 2 2 2 0.03% 8.76% 

Spot 16 

Aldehyde 
dehydrogenase, 
mitochondrial  K1QNT7_CRAGI 56.97 3 3 3 0.05% 5.78% 

Spot 16 
Triosephosphate 
isomerase  K1PCV6_CRAGI 11.53 3 6 7 0.11% 17.80% 

Spot 16 Kyphoscoliosis peptidase  K1RL06_CRAGI 24.03 2 2 2 0.03% 11.60% 
Spot 16 Cathepsin F  K1QYP7_CRAGI 78.59 2 2 2 0.03% 2.80% 
Spot 16 Carbonic anhydrase 2  K1QSG0_CRAGI 36.53 8 12 19 0.29% 29.40% 

Spot 16 

Glyceraldehyde-3-
phosphate 
dehydrogenase  K1Q350_CRAGI 36.08 5 5 5 0.08% 15.20% 

Spot 16 
Glutathione S-
transferase P 2  

K1PV52_CRAGI,
K1RQZ1_CRAGI 27.93 2 2 2 0.03% 9.58% 

Spot 16 
Selenium-binding protein 
1 (Fragment)  K1QI40_CRAGI 53.35 2 2 2 0.03% 4.59% 

Spot 16 Cathepsin L  K1Q7M2_CRAGI 36.53 1 1 7 0.11% 26.40% 
Spot 16 Kyphoscoliosis peptidase  K1PEZ6_CRAGI 32.96 2 2 2 0.03% 7.88% 
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Spot 16 

Cysteine-rich secretory 
protein LCCL domain-
containing 2  K1RAD3_CRAGI 38.17 2 2 2 0.03% 5.60% 

Spot 16 
Heterogeneous nuclear 
ribonucleoprotein L  K1QHI2_CRAGI 60.35 2 2 2 0.03% 4.54% 

Spot 16 Retinal dehydrogenase 1  K1R266_CRAGI 62.12 5 5 16 0.24% 20.80% 

Spot 16 Elongation factor 1-alpha  

K1QGS8_CRAGI
,Q75W48_CRAG
I 50.47 6 7 7 0.11% 13.20% 

Spot 16 
GTP-binding nuclear 
protein  K1R5V4_CRAGI 24.12 3 3 3 0.05% 16.00% 

Spot 16 
Proteasome subunit 
alpha type  K1R008_CRAGI 28.00 6 7 7 0.11% 24.30% 

Spot 16 
Calcium-dependent 
protein kinase isoform 2  K1QQK6_CRAGI 27.31 5 6 6 0.09% 20.20% 

Spot 16 
3-oxoacyl-[acyl-carrier-
protein] reductase  K1QNK4_CRAGI 27.39 2 2 3 0.05% 14.00% 

Spot 16 
Triosephosphate 
isomerase  K1PJ59_CRAGI 18.67 8 13 18 0.27% 49.40% 

Spot 16 Filamin-A  K1RZ99_CRAGI 90.77 3 3 3 0.05% 4.16% 

Spot 16 
Adenylyl cyclase-
associated protein  K1QI97_CRAGI 67.29 6 7 7 0.11% 9.71% 

Spot 17 
Malate dehydrogenase 
(Fragment)  K1PU26_CRAGI 36.27 5 5 5 0.10% 14.80% 

Spot 17 
Non-selenium glutathione 
peroxidase  A7M7T7_CRAGI 24.45 13 14 16 0.31% 42.10% 

Spot 17 Citrate synthase  K1RM80_CRAGI 49.44 2 2 2 0.04% 4.78% 
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Spot 17 

Glyceraldehyde-3-
phosphate 
dehydrogenase  K1Q350_CRAGI 36.08 5 5 6 0.11% 14.90% 

Spot 17 D-erythrulose reductase  K1RLT0_CRAGI 25.95 3 3 3 0.06% 11.50% 

Spot 17 
Isocitrate dehydrogenase 
[NADP]  K1RZE2_CRAGI 50.26 0 0 2 0.04% 5.18% 

Spot 17 Filamin-C  K1PW06_CRAGI 323.73 3 3 3 0.06% 1.26% 

Spot 17 

S-
(hydroxymethyl)glutathio
ne dehydrogenase  K1QKF8_CRAGI 39.73 2 2 2 0.04% 4.83% 

Spot 17 
Aspartate 
aminotransferase  K1R2Q9_CRAGI 43.19 0 0 3 0.06% 9.67% 

Spot 17 
Methylmalonyl-CoA 
mutase, mitochondrial  K1QE55_CRAGI 81.73 2 2 2 0.04% 2.97% 

Spot 17 Uncharacterized protein  K1QFW9_CRAGI 94.86 3 3 4 0.08% 4.82% 

Spot 17 

S-methyl-5'-
thioadenosine 
phosphorylase  K1R867_CRAGI 62.75 2 2 2 0.04% 3.35% 

Spot 17 Retinal dehydrogenase 1  K1QVG5_CRAGI 53.15 1 1 4 0.08% 7.51% 

Spot 17 
Electron transfer 
flavoprotein subunit beta  K1PB82_CRAGI 28.02 2 2 2 0.04% 7.06% 

Spot 17 
Uncharacterized protein 
(Fragment)  K1QSS1_CRAGI 39.32 3 4 4 0.08% 8.94% 

Spot 17 Adenosylhomocysteinase  K1RW85_CRAGI 47.50 2 2 2 0.04% 4.16% 

Spot 17 
Triosephosphate 
isomerase  K1PJ59_CRAGI 18.67 2 3 3 0.06% 14.10% 

Spot 17 Vitellogenin-6  K1QNA2_CRAGI 273.31 3 3 4 0.08% 1.66% 
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Spot 17 

Hydroxyacyl-coenzyme A 
dehydrogenase, 
mitochondrial  K1PLM3_CRAGI 33.67 2 2 2 0.04% 7.12% 

Spot 17 60S ribosomal protein L6  K1QW36_CRAGI 25.95 2 2 2 0.04% 7.89% 

Spot 17 
Fructose-bisphosphate 
aldolase  K1RTQ6_CRAGI 38.99 1 1 2 0.04% 4.41% 

Spot 17 

Ornithine 
aminotransferase, 
mitochondrial  K1Q1I3_CRAGI 47.45 2 2 2 0.04% 6.94% 

Spot 17 
Fructose-bisphosphate 
aldolase  K1R8R6_CRAGI 43.48 0 0 3 0.06% 6.28% 

Spot 17 
Acyl-protein thioesterase 
2  K1QXF9_CRAGI 23.68 2 2 2 0.04% 8.76% 

Spot 17 
Uncharacterized protein 
C11D3.13  K1PH24_CRAGI 39.86 3 3 3 0.06% 9.89% 

Spot 17 Carbonic anhydrase 2  K1QSG0_CRAGI 36.53 7 8 10 0.19% 21.70% 
Spot 17 Cathepsin F  K1QYP7_CRAGI 78.59 2 2 2 0.04% 2.80% 

Spot 17 
Cystathionine gamma-
lyase  K1R7F6_CRAGI 46.93 2 2 2 0.04% 4.24% 

Spot 17 Uncharacterized protein  K1QPJ5_CRAGI 21.68 2 2 2 0.04% 5.76% 

Spot 17 

Putative 
phosphoglycerate 
mutase  K1QBL3_CRAGI 28.58 2 2 2 0.04% 8.40% 

Spot 17 Retinal dehydrogenase 1  K1R266_CRAGI 62.12 5 5 8 0.15% 10.80% 

Spot 17 Elongation factor 1-alpha  

K1QGS8_CRAGI
,Q75W48_CRAG
I 50.47 3 3 3 0.06% 6.06% 

Spot 17 
GTP-binding nuclear 
protein  K1R5V4_CRAGI 24.12 4 4 5 0.10% 19.70% 
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Spot 17 
Proteasome subunit 
alpha type  K1R008_CRAGI 28.00 4 4 4 0.08% 12.50% 

Spot 17 
Deoxycytidylate 
deaminase  K1PIP9_CRAGI 18.86 2 2 2 0.04% 10.10% 

Spot 17 Kyphoscoliosis peptidase  K1RL06_CRAGI 24.03 3 3 3 0.06% 15.80% 

Spot 17 
Puromycin-sensitive 
aminopeptidase  K1R866_CRAGI 116.13 4 4 4 0.08% 2.91% 

Spot 17 
Adenylyl cyclase-
associated protein  K1QI97_CRAGI 67.29 4 4 4 0.08% 5.66% 

Spot 18 
Malate dehydrogenase 
(Fragment)  K1PU26_CRAGI 36.27 4 4 4 0.07% 13.30% 

Spot 18 Adenosylhomocysteinase  K1RW85_CRAGI 47.50 2 2 2 0.04% 4.16% 

Spot 18 
Malate dehydrogenase, 
mitochondrial  K1R4Z3_CRAGI 29.84 2 2 3 0.05% 11.80% 

Spot 18 
Non-selenium glutathione 
peroxidase  A7M7T7_CRAGI 24.45 9 10 10 0.18% 37.60% 

Spot 18 
Carbonyl reductase 
[NADPH] 1  K1RCR8_CRAGI 30.58 3 3 4 0.07% 17.60% 

Spot 18 Cathepsin B  K1QS40_CRAGI 37.69 3 4 4 0.07% 12.00% 

Spot 18 
PDZ and LIM domain 
protein 5  K1PQ23_CRAGI 55.25 3 3 3 0.05% 6.32% 

Spot 18 D-erythrulose reductase  K1RLT0_CRAGI 25.95 4 4 4 0.07% 18.00% 

Spot 18 
Isocitrate dehydrogenase 
[NADP]  K1RZE2_CRAGI 50.26 1 1 4 0.07% 9.68% 

Spot 18 
Dihydropteridine 
reductase  K1PFL3_CRAGI 24.87 2 2 2 0.04% 8.44% 

Spot 18 Filamin-C  K1PW06_CRAGI 323.73 3 3 3 0.05% 1.26% 
Spot 18 Uncharacterized protein  K1PF62_CRAGI 40.43 2 2 2 0.04% 7.28% 
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Spot 18 

S-
(hydroxymethyl)glutathio
ne dehydrogenase  K1QKF8_CRAGI 39.73 2 2 2 0.04% 4.83% 

Spot 18 Uncharacterized protein  K1QFW9_CRAGI 94.86 3 3 3 0.05% 3.64% 

Spot 18 
3-hydroxyacyl-CoA 
dehydrogenase type-2  K1QDS1_CRAGI 27.90 2 2 2 0.04% 9.30% 

Spot 18 

S-methyl-5'-
thioadenosine 
phosphorylase  K1R867_CRAGI 62.75 2 2 2 0.04% 3.35% 

Spot 18 Retinal dehydrogenase 1  K1QVG5_CRAGI 53.15 1 1 6 0.11% 11.80% 
Spot 18 Protein quaking-B  K1QD80_CRAGI 52.00 2 2 2 0.04% 3.63% 
Spot 18 Arginine kinase  K1PLF9_CRAGI 39.63 2 2 2 0.04% 4.57% 
Spot 18 Vitellogenin-6  K1QNA2_CRAGI 273.31 1 1 3 0.05% 1.16% 

Spot 18 
Fructose-bisphosphate 
aldolase  K1RTQ6_CRAGI 38.99 1 1 3 0.05% 7.44% 

Spot 18 
Fructose-bisphosphate 
aldolase  K1R8R6_CRAGI 43.48 0 0 4 0.07% 9.05% 

Spot 18 
Acyl-protein thioesterase 
2  K1QXF9_CRAGI 23.68 2 2 2 0.04% 8.76% 

Spot 18 Kyphoscoliosis peptidase  K1RL06_CRAGI 24.03 5 5 5 0.09% 27.90% 
Spot 18 Uncharacterized protein  K1QPJ5_CRAGI 21.68 2 2 2 0.04% 5.76% 

Spot 18 

Glyceraldehyde-3-
phosphate 
dehydrogenase  K1Q350_CRAGI 36.08 4 4 4 0.07% 12.50% 

Spot 18 Carbonic anhydrase 2  K1QSG0_CRAGI 36.53 5 6 10 0.18% 14.40% 

Spot 18 

Putative 
phosphoglycerate 
mutase  K1QBL3_CRAGI 28.58 2 2 2 0.04% 8.40% 
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Spot 18 
AP-3 complex subunit 
beta  K1QJN8_CRAGI 119.85 2 2 2 0.04% 1.76% 

Spot 18 Retinal dehydrogenase 1  K1R266_CRAGI 62.12 5 5 10 0.18% 14.50% 

Spot 18 
Uncharacterized protein 
(Fragment)  K1QSS1_CRAGI 39.32 4 5 5 0.09% 8.94% 

Spot 18 Elongation factor 1-alpha  

K1QGS8_CRAGI
,Q75W48_CRAG
I 50.47 5 5 5 0.09% 11.00% 

Spot 18 
GTP-binding nuclear 
protein  K1R5V4_CRAGI 24.12 3 3 3 0.05% 13.60% 

Spot 18 
Deoxycytidylate 
deaminase  K1PIP9_CRAGI 18.86 3 3 3 0.05% 15.40% 

Spot 18 
Triosephosphate 
isomerase  K1PJ59_CRAGI 18.67 3 4 4 0.07% 21.80% 

Spot 18 Filamin-A  K1RZ99_CRAGI 90.77 2 2 2 0.04% 2.73% 

Spot 18 
Adenylyl cyclase-
associated protein  K1QI97_CRAGI 67.29 5 5 5 0.09% 7.93% 

Spot 19 
Malate dehydrogenase 
(Fragment)  K1PU26_CRAGI 36.27 4 4 4 0.06% 13.00% 

Spot 19 
Transketolase-like 
protein 2  K1RBC9_CRAGI 74.87 2 2 2 0.03% 3.74% 

Spot 19 
Malate dehydrogenase, 
mitochondrial  K1R4Z3_CRAGI 29.84 6 10 13 0.19% 34.60% 

Spot 19 

Glyoxylate 
reductase/hydroxypyruva
te reductase  K1P6I1_CRAGI 35.02 3 3 3 0.04% 8.05% 

Spot 19 
Isocitrate dehydrogenase 
[NADP]  K1RZE2_CRAGI 50.26 0 0 3 0.04% 7.43% 

Spot 19 Filamin-C  K1PW06_CRAGI 323.73 6 6 6 0.09% 2.32% 
Spot 19 Arginine kinase  K1PLF9_CRAGI 39.63 4 4 4 0.06% 12.60% 
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Spot 19 Vitellogenin-6  K1QNA2_CRAGI 273.31 8 8 14 0.21% 5.72% 
Spot 19 Uncharacterized protein  K1R512_CRAGI 121.72 2 2 2 0.03% 2.13% 

Spot 19 
Fructose-bisphosphate 
aldolase  K1RTQ6_CRAGI 38.99 5 6 8 0.12% 24.20% 

Spot 19 

Ornithine 
aminotransferase, 
mitochondrial  K1Q1I3_CRAGI 47.45 2 2 2 0.03% 6.94% 

Spot 19 Vitellogenin  Q8IU34_CRAGI 179.21 1 2 8 0.12% 4.49% 

Spot 19 

Glyceraldehyde-3-
phosphate 
dehydrogenase  K1Q350_CRAGI 36.08 17 35 58 0.87% 62.40% 

Spot 19 
3-hydroxyisobutyrate 
dehydrogenase  K1PR93_CRAGI 42.83 6 7 7 0.10% 17.30% 

Spot 19 
Prostaglandin reductase 
1  K1RGE2_CRAGI 36.01 2 2 2 0.03% 7.01% 

Spot 19 Retinal dehydrogenase 1  K1R266_CRAGI 62.12 4 4 7 0.10% 12.60% 

Spot 19 Elongation factor 1-alpha  

K1QGS8_CRAGI
,Q75W48_CRAG
I 50.47 4 4 4 0.06% 8.87% 

Spot 19 
Fructose-bisphosphate 
aldolase  K1R8R6_CRAGI 43.48 4 4 8 0.12% 22.60% 

Spot 20 
Transketolase-like 
protein 2  K1RBC9_CRAGI 74.87 3 3 3 0.05% 4.89% 

Spot 20 
Malate dehydrogenase, 
mitochondrial  K1R4Z3_CRAGI 29.84 6 7 9 0.15% 31.40% 

Spot 20 

Glyoxylate 
reductase/hydroxypyruva
te reductase  K1P6I1_CRAGI 35.02 7 8 8 0.13% 19.50% 
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Spot 20 
Ribosomal protein L24 
(Fragment)  Q70MN8_CRAGI 18.10 2 2 2 0.03% 10.80% 

Spot 20 Uncharacterized protein  K1R512_CRAGI 121.72 2 2 2 0.03% 2.13% 

Spot 20 
Aspartate 
aminotransferase  K1R2Q9_CRAGI 43.19 2 2 4 0.06% 10.90% 

Spot 20 Filamin-C  K1PW06_CRAGI 323.73 8 8 8 0.13% 3.12% 
Spot 20 Retinal dehydrogenase 1  K1QVG5_CRAGI 53.15 1 1 3 0.05% 7.30% 

Spot 20 
Isocitrate dehydrogenase 
[NADP]  K1RZE2_CRAGI 50.26 0 0 2 0.03% 5.18% 

Spot 20 Vitellogenin-6  K1QNA2_CRAGI 273.31 7 7 19 0.31% 7.80% 

Spot 20 
Fructose-bisphosphate 
aldolase  K1RTQ6_CRAGI 38.99 4 4 7 0.11% 17.90% 

Spot 20 Vitellogenin  Q8IU34_CRAGI 179.21 2 2 14 0.23% 9.03% 

Spot 20 
Fructose-bisphosphate 
aldolase  K1R8R6_CRAGI 43.48 1 1 3 0.05% 8.04% 

Spot 20 

Glyceraldehyde-3-
phosphate 
dehydrogenase  K1Q350_CRAGI 36.08 12 22 35 0.56% 41.50% 

Spot 20 
3-hydroxyisobutyrate 
dehydrogenase  K1PR93_CRAGI 42.83 5 5 5 0.08% 13.70% 

Spot 20 Retinal dehydrogenase 1  K1R266_CRAGI 62.12 3 3 6 0.10% 9.27% 

Spot 20 Elongation factor 1-alpha  

K1QGS8_CRAGI
,Q75W48_CRAG
I 50.47 5 5 5 0.08% 11.50% 

Spot 21 
Transketolase-like 
protein 2  K1RBC9_CRAGI 74.87 3 4 4 0.06% 5.04% 

Spot 21 
71kDa heat shock 
connate protein  Q9XZJ2_CRAGI 72.04 0 0 9 0.14% 16.50% 

Spot 21 Transgelin  K1R1X5_CRAGI 43.38 2 2 2 0.03% 4.86% 
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Spot 21 

Aspartate 
aminotransferase, 
mitochondrial  K1R083_CRAGI 32.52 1 1 13 0.20% 24.90% 

Spot 21 
ATP synthase subunit 
alpha  K1R6Z7_CRAGI 59.87 5 5 5 0.07% 10.10% 

Spot 21 
Isocitrate dehydrogenase 
[NADP]  K1RZE2_CRAGI 50.26 1 1 3 0.04% 8.33% 

Spot 21 Filamin-C  K1PW06_CRAGI 323.73 7 7 7 0.11% 2.59% 

Spot 21 
Aspartate 
aminotransferase  K1R2Q9_CRAGI 43.19 4 4 16 0.24% 26.00% 

Spot 21 Retinal dehydrogenase 1  K1QVG5_CRAGI 53.15 1 1 4 0.06% 9.74% 
Spot 21 Protein unc-87  K1R832_CRAGI 56.98 2 2 2 0.03% 4.63% 
Spot 21 Arginine kinase  K1PLF9_CRAGI 39.63 3 3 3 0.04% 9.71% 
Spot 21 Vitellogenin-6  K1QNA2_CRAGI 273.31 14 17 41 0.61% 14.80% 
Spot 21 Protein RCC2  K1R5P6_CRAGI 54.84 2 2 2 0.03% 4.58% 

Spot 21 
Fructose-bisphosphate 
aldolase  K1RTQ6_CRAGI 38.99 9 11 13 0.20% 32.80% 

Spot 21 Vitellogenin  Q8IU34_CRAGI 179.21 1 2 26 0.39% 14.70% 

Spot 21 

Succinate-semialdehyde 
dehydrogenase, 
mitochondrial  K1PV02_CRAGI 74.22 3 3 3 0.04% 4.70% 

Spot 21 
Fructose-bisphosphate 
aldolase  K1R8R6_CRAGI 43.48 6 7 12 0.18% 24.10% 

Spot 21 Uncharacterized protein  K1R512_CRAGI 121.72 9 11 12 0.18% 8.91% 

Spot 21 
Cystathionine gamma-
lyase  K1R7F6_CRAGI 46.93 3 3 3 0.04% 6.59% 

Spot 21 

Glyceraldehyde-3-
phosphate 
dehydrogenase  K1Q350_CRAGI 36.08 2 2 2 0.03% 4.78% 
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Spot 21 

Delta-1-pyrroline-5-
carboxylate 
dehydrogenase, 
mitochondrial  K1RGD1_CRAGI 63.68 4 4 4 0.06% 8.10% 

Spot 21 Retinal dehydrogenase 1  K1R266_CRAGI 62.12 2 2 5 0.07% 9.09% 

Spot 21 Elongation factor 1-alpha  

K1QGS8_CRAGI
,Q75W48_CRAG
I 50.47 5 5 6 0.09% 12.60% 

Spot 21 

UTP--glucose-1-
phosphate 
uridylyltransferase  K1Q1D1_CRAGI 57.23 4 4 4 0.06% 6.88% 

Spot 22 Retinal dehydrogenase 1  K1R266_CRAGI 62.12 1 1 3 0.10% 7.34% 

Spot 22 
Fructose-bisphosphate 
aldolase  K1R8R6_CRAGI 43.48 4 7 9 0.30% 33.90% 

Spot 22 Arginine kinase  K1PLF9_CRAGI 39.63 5 5 5 0.16% 26.90% 

Spot 22 
4-hydroxyphenylpyruvate 
dioxygenase  K1QX22_CRAGI 211.58 2 2 2 0.07% 1.34% 
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Supplementary Table 3 Proteins identified in the IgE-reactive spots of the heated extract of Pacific Oyster. 

 

Spot 
No. Protein name 

Protein 
accession 
numbers 

Molecular 
weight 

(Da) 

Exclusive 
unique 
peptide 
count 

Exclusive 
unique 

spectrum 
count 

Total 
spectrum 

count 

Percentage 
of total 
spectra 

Percentage 
sequence 
coverage 

Spot 23 
Non-neuronal cytoplasmic 
intermediate filament protein  K1PBC0_CRAGI 69.29 9 9 9 0.14% 13.90% 

Spot 23 Splicing factor 3B subunit 2  K1QGF1_CRAGI 119.73 2 2 2 0.03% 2.14% 
Spot 23 Calreticulin  K1PXS8_CRAGI 39.12 0 0 11 0.17% 30.70% 
Spot 23 Filamin-C  K1PW06_CRAGI 323.73 7 7 7 0.11% 2.85% 
Spot 23 Integrin alpha-8  K1PAJ8_CRAGI 115.38 2 2 2 0.03% 1.56% 
Spot 23 Retinal dehydrogenase 1  K1QVG5_CRAGI 53.15 1 1 5 0.08% 10.30% 

Spot 23 
Myosin heavy chain, striated 
muscle  K1R1B3_CRAGI 79.95 6 6 7 0.11% 9.55% 

Spot 23 Collagen alpha-6(VI) chain  K1QEB9_CRAGI 46.30 2 2 2 0.03% 2.38% 
Spot 23 Calreticulin  A5LGG9_CRAGI 48.19 2 2 13 0.20% 33.10% 

Spot 23 
Na(+)/H(+) exchange regulatory 
cofactor NHE-RF1  K1RDG2_CRAGI 45.34 3 3 3 0.05% 8.96% 

Spot 23 Tropomyosin (Fragment)  Q95WY0_CRAGI 26.87 0 0 44 0.67% 52.40% 
Spot 23 Tropomyosin  K1QNV6_CRAGI 39.01 0 0 26 0.40% 23.60% 
Spot 23 Carboxylic ester hydrolase  K1S0A7_CRAGI 271.16 3 3 4 0.06% 1.10% 
Spot 23 Retinal dehydrogenase 1  K1R266_CRAGI 62.12 2 2 6 0.09% 9.79% 
Spot 23 Tropomyosin  B7XC66_CRAGI 33.02 2 4 63 0.96% 52.50% 
Spot 24 Severin  K1PE57_CRAGI 37.21 8 11 11 0.16% 28.50% 
Spot 24 Troponin T, skeletal muscle  K1QPC9_CRAGI 20.67 3 3 3 0.04% 18.50% 
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Spot 24 
Non-neuronal cytoplasmic 
intermediate filament protein  K1PBC0_CRAGI 69.29 5 5 5 0.07% 7.77% 

Spot 24 Filamin-C  K1PW06_CRAGI 323.73 6 6 6 0.09% 2.49% 
Spot 24 Retinal dehydrogenase 1  K1QVG5_CRAGI 53.15 1 1 3 0.04% 7.71% 

Spot 24 
Myosin heavy chain, striated 
muscle  K1R1B3_CRAGI 79.95 2 2 2 0.03% 2.81% 

Spot 24 Collagen alpha-6(VI) chain  K1QEB9_CRAGI 46.30 1 1 2 0.03% 4.28% 

Spot 24 
Na(+)/H(+) exchange regulatory 
cofactor NHE-RF1  K1RDG2_CRAGI 45.34 2 2 2 0.03% 9.44% 

Spot 24 Tropomyosin (Fragment)  Q95WY0_CRAGI 26.87 0 0 116 1.66% 65.70% 
Spot 24 Tropomyosin  K1QNV6_CRAGI 39.01 0 0 69 0.99% 31.00% 
Spot 24 Retinal dehydrogenase 1  K1R266_CRAGI 62.12 1 1 3 0.04% 6.12% 
Spot 24 Calumenin  K1PH89_CRAGI 47.66 7 7 7 0.10% 19.00% 
Spot 24 Tropomyosin  B7XC66_CRAGI 33.02 2 6 161 2.30% 70.10% 

Spot 25 
Non-neuronal cytoplasmic 
intermediate filament protein  K1PBC0_CRAGI 69.29 2 2 2 0.03% 2.75% 

Spot 25 Filamin-C  K1PW06_CRAGI 323.73 4 4 4 0.06% 1.53% 
Spot 25 Uncharacterized protein  K1R7Q9_CRAGI 19.63 3 3 3 0.05% 18.90% 
Spot 25 Tropomyosin  K1QNV6_CRAGI 39.01 2 2 16 0.26% 23.60% 

Spot 25 
SAP domain-containing 
ribonucleoprotein  K1QWU5_CRAGI 26.34 2 2 2 0.03% 8.44% 

Spot 25 Retinal dehydrogenase 1  K1R266_CRAGI 62.12 2 2 5 0.08% 8.92% 

Spot 25 
Calcium-dependent protein 
kinase isoform 2  K1QQK6_CRAGI 27.31 5 6 6 0.10% 15.50% 

Spot 26 
Myosin regulatory light chain A, 
smooth adductor muscle  K1Q801_CRAGI 14.62 4 4 4 0.08% 35.90% 

Spot 26 Uncharacterized protein  K1R5R9_CRAGI 111.24 2 2 2 0.04% 2.07% 
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Spot 26 Retinal dehydrogenase 1  K1R266_CRAGI 62.12 0 0 2 0.04% 4.37% 

Spot 26 
Myosin essential light chain, 
striated adductor muscle  K1RH05_CRAGI 16.35 1 1 2 0.04% 16.70% 

Spot 26 Troponin C  K1QFK6_CRAGI 25.65 3 3 5 0.10% 16.00% 
Spot 27 Troponin T, skeletal muscle  K1QPC9_CRAGI 20.67 3 3 3 0.04% 18.50% 
Spot 27 Tropomyosin  K1QNV6_CRAGI 39.01 0 0 18 0.26% 20.90% 
Spot 27 Retinal dehydrogenase 1  K1R266_CRAGI 62.12 2 2 3 0.04% 4.90% 
Spot 27 Glutathione synthetase  K1P746_CRAGI 62.49 2 2 2 0.03% 2.87% 
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