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ABSTRACT 

The assessment and excavation of the wreck of the iron-hulled SS Xantho (1848-72) 
has shown that otherwise unobtainable information about both materials and people can 
be found in the archaeological study of iron and steamship wrecks. 

One important development has been the initiation of full pre-disturbance studies of a 
shipwreck's biological and electrochemical properties, giving insights into the condition 
of the site and its materials of value to both the archaeologist and conservator. 
Conducted by diving conservation specialists at the request of the archaeologist, this 
was the first such comprehensive study to be performed on any underwater site. It is 
now recognised as an essential element in any modem maritime archaeological project. 

Site inspection revealed that Xantho was powered by a former Royal Navy gunboat 
engine, of a type that was evidently the first high pressure, high revolution and mass 
produced marine engine made. Despite these advances, they were suitable only for use 
in a naval context. The ship itself was a former paddle-steamer built in the formative 
years of iron shipbuilding. After 23 years of service it was sold to a scrap metal 
merchant who joined the hull to the second-hand screw-engine and offered the 
revamped hybrid for sale. 

That the ship appeared on the sparsely populated and poorly serviced Western 
Australian coast, far from coal supplies and marine engine repair facilities, posed an 
immediate question; what sort of person would use it in this manner? Thus the Xantho 
program came to focus on Charles Edward Broadhurst and how he came to make the 
apparently strange decision to purchase such an odd and apparently unsuitable vessel. 
Archival study and an excavation of the stem section of the wreck were conducted for 
these purposes. 

The study of Broadhurst was completed in 1990, the subject of the author's Masters 
thesis, resurrecting and analysing the entire business career and life of one of Wes tern 
Australia's forgotten, but most active and controversial colonial entrepreneurs. 

This thesis centres on the excavation of Broadhurst' s ship and describes the recovery 
of the ship's engine from a highly-oxygenated salt-water environment. The recovery of 
the engine was followed by conservation treatment and an archaeologically-based 
'excavation' of the heavily concreted engine in the laboratory. Begun in 1985 the 
deconcretion was completed by mid 1995 with the opening up of the last of the internal 
spaces and the freeing of all working parts in preparation for the engine's reassembly 
and exhibition. 

The successes of the two 'excavations' have confirmed both the place of the 
conservator on the sea-bed and the archaeologist's place in the conservation process. 
the disassembly of the engine, where nearly two tonnes of concretions were removed, 
evidence was found of technical significance and of the way Charles Broadhurst, the 
vessel's owner operated the ship. 

I also describe commonalities evident in the formation of iron and steamship wreck 
sites. This enables anomalies noted at the Xantho site to be assessed and quantified 
against a broader sample, leading to a focus on the behaviour of steamship owners in a 
frontier environment and the postulation of a number of testable propositions about the 
material residues of such behaviours. 
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Figure 1: Western Australian European centres in the 1870s (WA Maritime Museum) 
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INTRODUCTORY NARRATIVE 

Setting the scene 

The carriage of lead ore along the vast Western Australian coast in November 
1872 appeared to be a good sideline for entrepreneur, Charles Edward Broadhurst.1 

He was a pearler based in the north-west and he had a steamship; the iron-hulled SS 
Xantho. All that was required on the very long voyage down to Fremantle with an 
empty ship was to call into Port Gregory, load with ore and transport the cargo 30 
nautical miles south to Geraldton (Figure 1). At Geraldton, or Champion Bay as it 
was then called, the ore would be off-loaded into lofty wool-clippers for the long 
voyage to England as paying ballast, a substitute for the worthless rocks that were 
usually taken by sailing ships for that purpose. From there, the Xantho would 
continue south to Fremantle and Broadhurst would have a handsome profit to show 
for little effort and virtually no additional expenditure. 

So; 'fill the holds and cram every space with ore' was apparently the order given 
to Captain Ernest Denicke. Hundreds of bags of lead at the rate of 12 to the ton, 
were loaded on-board and manoeuvred into every available space. By mid-evening 
83 tons had been stowed, putting the ship noticeably down at the bows, well out of 
trim and clearly over-loaded. To make matters worse, the south-easterly breeze was 
freshening, lifting the sea into a heaving mass that would fight the ship every inch 
of the way on the voyage down the coast. The sails which the steamer carried 
would have been a hindrance in the head-wind and were probably stowed away. 

It was November 1872, at the beginning of the Western Australian summer and 
the vessel had just arrived at Port Gregory from the newly named Port of Cossack, 
then home of Australia's pearling industry (Figure 1). It had been very hot in the 
north-west and the yellow pine planking of the decks had opened up in the sun, 
allowing water to find its way below. 

The leaking decks and the heavy load did not unduly worry the first mate, who 
was at the wheel. Though the ship was a former paddle-steamer built almost a 
quarter of a century earlier, it had three watertight bulkheads and recently had repair 
work done on its ageing hull. Around midnight, Denicke came up on deck and 
relieved the mate who went below. After a quick glance the skipper was satisfied 
that, though the ship was sluggish and the bows were lying deeper than normal in 
the water, the Xantho was coping with the seas. All was well, he believed, and his 
thoughts would have drifted away as he stood, wheel in hand, legs braced against 
the comforting regularity of the ship's movement. 

Denicke's mind probably flitted across the year that had elapsed since he had left 
Britain as Broadhurst's pearling adviser and master of the newly purchased ship. 
No one else was pearling in such a grand fashion as Broadhurst. He had become a 
virtual king in the sparsely populated north with his small steamer, the first to be 
used on the coast and the first used in the pearling industry. As a result he was 
tremendously influential in a Colony hungry for steam transport, technology and 
the chance to profit from its nascent primary industries. 

Quite the English gentleman to people like Denicke, Broadhurst found little 
difficulty in dealing to his satisfaction with Government bureaucrats and sundry 
officials and was used to having his way. Despite his 'breeding', he was also a 
hard worker who expected nothing less from his crew. He was controversial too, 
not only being hard on his men, but he had been involved in some questionable 
enterprises. One was the Denison Plains Pastoral Company which had planned to 

1 Entrepreneur: In defining the term economists have stressed innovation, risk bearing, 
organisation and leadership. The entrepreneur organised production, capital and labour, selected the 
site, the most appropriate technology, bargained for raw materials and found outlets for the finished 
product. (cf., Payne, 1974:13-14). 
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settle the far north of Western Australia; the other was its sister company, the 
Camden Harbour Pastoral Association. Both hoped to form a new gateway into 
Australia from India and Singapore, by allowing mariners a safe alternative to the 
difficult sea-lanes into Melbourne and Sydney via the Bass or Torres Straits. It was 
all a pipe-dream and Broadhurst had been badly tainted by the inevitable collapse of 
both companies. He had also proved controversial as a pastoralist and pearler; but 
still Denicke had travelled far and wide with him and had amassed a considerable 
amount in wages that would be paid in a lump sum at the end of the voyage. 

Much had happened since Denicke, Broadhurst and the Xantho left England 
October 1871. They had passed through the newly opened Suez Canal, across to 
Galle, then onto Batavia (now Jakarta) and Surabaya to recruit a new breed of pearl 
divers, then generically called 'Malays' .1 Around April 1872, when the onset of 
cold weather signalled the end of the pearling season, they travelled down the long 
Western Australian coast-line to Fremantle. There they off-loaded and spent a short 
period ashore while Broadhurst attended to business and visited his family. Then 
they turned around and travelled back up the coast carrying passengers and a 
general cargo. In the north they went pearling for the season and then headed across 
to Surabaya and Batavia. 

Figure 2: Chart showing the Western Australian coast, Batavia (Jakarta) and 
Surabaya (Camden Harbour Pastoral Association Prospectus, 1864) 

J 0 l 0 

..., .,.r ,,. ,., ~ .. :. ~-.\ .i:'•••• • 

1Malay: A term, generally but incorrectly, used in the nineteenth century to denote indentured 
labourers from the islands to the north of Australia. Often found as divers in the pearling industry, 
the labourers came from Timor, the Philippines, Singapore, present-day Indonesia, Borneo and 
Malaysia. 
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After these few voyages, the proximity of the north coast of Western Australia to 
Batavia and Surabaya, ceased to surprise Denicke. Travel down the length of the 
vast unpopulated coastline between the pearling grounds and Fremantle took far 
longer. It was even further still to King George Sound (Albany) and the regular 
steam-ship connections with Adelaide, Melbourne and the outside world. Denicke 
soon appreciated the fact that Broadhurst' s pearling bases, and the entire 'North 
District' of the Swan River Colony, as it was called, was closer to Surabaya, 
Batavia and the outside world than to any other major settlement on the Australian 
coast, including Fremantle (See Figure 2). 

The formation of the Xantho site 
A rapid change in the motion and the feel of the ship would not have caught 

Denicke unawares. Like any experienced sailor, he would have felt the ship become 
more sluggish and the bows not rising to the seas. In fact the entire vessel seemed 
to be gradually sloping down into the seas and was not rising at all. The first mate 
was roused out of the cabin and sent forward with orders to report back on the 
problem. On arrival he was astounded to find that the entire fore-part of the ship 
was awash and was down by the bows at least seven feet. They were sinking. He 
scrambled aft, shouting at Denicke who immediately spun the wheel calling for all 
hands to rouse themselves and jettison the sacks of ore. The other crew hurried up 
on deck, already alerted by the commotion and the change in motion. 

Broadhurst also hurried up into the night, his mind undoubtedly on the profits 
rapidly disappearing overboard with every heave of the frightened crew. He quickly 
summed it all up. On the one hand, the pumps were useless being in the elevated 
stem of the ship. On the other, the bulkheads were watertight and the ship was just 
holding its own. They might just make it back. 

Characteristically, he ordered a halt to the dumping of the ore, saying he would 
rather save the ore than the ship. The crew were incredulous, but he was such a 
forceful character they could only obey. They did as they were ordered and stopped 
work, taking stock of their perilous situation as they rested. Though poised 
dangerously for a final plunge into the depths, the ship was just under control and 
they were still underway. Perhaps Broadhurst was right. 

For four long hours they watched in fear as they slowly crept back north, this 
time with the swell and the wind assisting them in their flight. Soon the crashing 
reefs that protect Port Gregory from the seas loomed white before them. It was 4 
am. They crept slowly in towards the coast; the vessel, with most of its rudder 
exposed, the propeller thrashing out of the water on every tum and the helm almost 
useless. On they went north, until slowly they turned into the passage. Behind the 
reefs the waves ceased their incessant pounding and then they were safe. Here the 
water was very shallow, the sea-bed lying only a few feet below the Xantho's keel. 
They only had to negotiate the last set of surge and swells opposite a small gap in 
the reef and they were in the harbour proper. 

Their joy was short lived however, for ten minutes later the sunken bows 
ground into a sand-bar opposite the gap and the ship came to a sudden jarring halt. 
In the engine room, the men recovered from the impact and swung the engines into 
mid-gear, awaiting further orders. As they glanced around, checking that all was in 
order, they became horrified as seawater surged up through the stokehold floors to 
eddy around their feet. For around 15 minutes they sweated and shovelled coal into 
the furnaces, keeping up steam to work the pumps in an attempt to keep water from 
the fires. But still it rose. As the sea crept beneath the boiler to the furnace grates, 
they slammed the furnace doors shut and opened the relief valves on the boiler. 
With a violent hissing and spattering of ash, the fires were extinguished and all of 
the machinery, including the pumps, slowly ground to a halt. 

Fearful of being trapped below as the vessel sank, the men rushed onto the deck 
to join in an attempt to manually bail water from the ship. It was a forlorn hope and 
they watched the Xantho slowly settle beneath them and come to rest in only five 
metres of water. Above their heads, against the black sky, they could see the 
vessel's tall funnel, the masts and the rigging; below their feet the decks were 
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awash. Timber, cabin fittings and loose items were already bubbling past them on 
the tide. 

Dawn soon began to break and as the sky brightened the crew saw that the 
shore, in the form of a small sand-bar, was only a stone's throw away. When the 
sun rose, they could still see the sacks of lead ore that they had left on the beach 
only hours before. Perhaps they should have left much more behind. 

It was all an anticlimax and each man would have been resigned to his own 
thoughts as they prepared to leave the ship. Broadhurst then remembered that the 
insurance on the ship had lapsed only two weeks previously. The SS Xantho had 
cost him a great deal to buy and he had no money to pay the men. He was 
effectively ruined, but he said nothing. 

Wasting no time, he set the men about removing everything that they could from 
the wreck. The sails, fittings, rigging and everything moveable were quickly taken 
from the wreck and stored on the beach opposite. Denicke was sent south to 
Champion Bay see if a buyer could be found for the wreck and Broadhurst took 
passage to Fremantle to salvage as much of his business empire as he could. 

The ship soon proved to be a total loss. Divers reported that it had sunk into the 
sea-bed and the shifting sand had quickly filled the vessel's holds, preventing them 
from salvaging all of the ore. They retrieved the loose bags, personal effects, goods 
and fittings that still lay strewn inside the ship, or were fixed by their buoyancy to 
the roof of the cabin and crew's quarters. What was not loose they would have 
attempted to lever off the deck or cabin walls. They did their work well and sent 
everything they could to be stacked safely on the beach. 

Thus the short colonial career of the SS Xantho had come to an abrupt end. 
Broadhurst' s attempts to salvage it came to naught and, being a total loss of no 
further use, it was soon forgotten. A few years later the Royal Navy charted the 
entrance to the port and noted that an unidentified wreck, which was found on the 
edge of the channel, would soon become engulfed by the sand-bar (Figure 3). It 
was Broadhurst' s ship, but this fact soon became lost to living memory. 

Figure 3: Excerpt from the Royal Navy chart showing a wreck at the 
entrance to Port Gregory (Archdeacon, 1879, Admiralty Chart No: 2. 
W estem Australian Coast) 1 

1From a low density pho!ograph of the ·original. 
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Inspection, pre-disturbance su-rvey and excavation 
In 1979 the wreck was found and Xantho was acknowledged to be of a regional 

importance. Following reports of looting at the wreck I was assigned responsibility 
to ascertain whether interference was likely to continue. If so, the option of a 
controlled salvage archaeological excavation was to be considered. Though an 
ostensibly mundane task, it had occurred to me that we were breaking new ground, 
for until then, the vast majority of maritime archaeologists had concentrated on 
wooden shipwrecks. It was assumed at the time that iron shipwrecks would last as 
long as a comparable wooden wrecks and, as a result, work on them was 
considered a low priority. In reality these were untested assumptions. Questions, 
such as how an iron wreck behaves in an underwater environment, or what the 
processes of iron ship disintegration were, remained to be answered. 

The archaeological evidence 
In May 1983, I attended to these and other questions with the assistance of 

biologists, corrosion scientist and other specialists. After facilitating and assisting in 
a pre-disturbance study, my attention turned to the technical features of the ship and 
a number of anomalous features that were identified. The engine was an inefficient 
piece of machinery with a huge appetite for coal. It was of a type primarily used in 
the naval context due to its configuration and compact nature. Its use was virtually 
unheard of in a merchant steamer, let alone one operating in a remote part of the 
world with very few repair facilities and poor coal supplies. This posed many 
questions about the Xantho, the manner in which it was engined, its mode of 
operation and its apparently ill-advised owner. Little was known of Broadhurst, 
however, as he had been dismissed historically as an unsavoury character and a 
failure in most of his business enterprises. 

Figure 4: A sketch of the SS Xantho as it appeared in 1983. By project artist 
Ian Warne. 

5 

(Not to scale) 



It soon became apparent that the engine of Broadhurst' s ship was not only 
anomalous but technologically important and in danger of destruction by natural and 
human forces. Covered in a rock-hard layer of marine growths, its recording and 
conservation necessitated a re-assessment of traditional maritime archaeological and 
conservation methods and philosophies. Protective anodes were applied to the 
engine and later to a part of the hull to slow the corrosion processes. A decision 
was then made to raise the engine in the context of a total excavation of the stem 
section of the wreck. 

The engine was bought to the surface in 1985 after more than a century on the 
seabed. It was the first attempt to raise a steam engine from a highly oxygenated, 
salt water environment. 

Concurrent research was conducted in the archives and oral histories were 
recorded in order to better understand Broadhurst (McCarthy, 1990). Questions 
remained unanswered, however. As a result excavation continued, both at the site 
and in the laboratory, all in order to answer the questions arising from both the 
examination of the ship and the archival analysis of Broadhurst. 

In April 1995, the excavation and analysis came to a finish. The conservation of 
the engine is in its final stages and an exhibition centring on Broadhurst and his 
ship is in preparation. 

This thesis presents the results of over a decade of archaeological work including 
a behavioural analysis based on maritime material remains. It is the culmination of a 
project that began with the preliminary assessment of what was expected to be a 
relatively modem, mundane iron-hulled steamship wreck holding few, if any, 
surprises. 
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CASE 

CHAPTER 1: 

THE ARCHAEOLOGY OF IRON 
STEAMSHIPS 

The study of iron and steamship wrecks has been seen by many as an 

unnecessary duplication of information appearing in archives and 

museums. Alternatively, it can be argued that it constitutes an important 

element in the general study of maritime history, culture and 

engineering. The Xantho study represents an opportunity to address this 

debate and to firmly demonstrate that the study of iron and steamship 

wrecks is a valid part of maritime archaeology and of archaeology as a 

whole. 

In order to place this particular study, and that of iron and steam 

shipwrecks generally, into an historical and theoretical context, it will 

first be necessary to examine the nature of maritime archaeology itself 

and to briefly examine it's place as an accepted part of the discipline of 

archaeology. 

I begin with archaeology practised underwater, so-called underwater 

archaeology, and then proceed to shipwreck archaeology and finally to 

maritime archaeology. 

The evolution of underwater archaeology 

Underwater archaeology, sometimes called marine archaeology, is 

archaeological investigation practised underwater. The vast research 

potential of underwater archaeology is only now being fully realised, 

even though in the mid-nineteenth century while the discipline of 

archaeology itself was becoming established, its potential was 

recognised. Over a century ago, the following observation was made 
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It is probable that a greater number of monuments of the 
skill and industry of man will, in the course of ages, be 
collected together in the bed of the ocean than will exist at 
any other time on the surface of the continents (Lyell, 
1832:258) 

The veracity of those words is increasingly becoming evident. 

Submerged Paleo-Indian sites have been located in Florida; Maori 

settlements in New Zealand; crannogs (lakeside villages) in Scottish 

lochs (Dixon, 1991:1-8); Greek, Roman and Phoenician ports and cities 

are found in the Mediterranean sea and inundated townships (such as 

Port Royal) have been studied in Jamaica (Cockrell et al., 1980:132-

175). Major inroads are now being made into the systematic location 

and mapping of submerged terrestrial sites reflecting past human 

activity along paleocoastlines and the modelling of population movement 

across land bridges (Masters and Flemming, 1983). Within mainland 

Australia, submerged Aboriginal sites are also being found (Dortch and 

Godfrey, 1990:28-33). 

It has been argued for over thirty years that 'archaeology 

underwater. .. should simply be called archaeology' and that it should 

not necessarily be considered a separate branch of the parent discipline 

purely because the material under examination has become inundated 

(Bass, 1966: 15). As a result it has been claimed that the only valid 

subdivisions that can be made between the study of terrestrial and 

underwater sites are those based on topics and perhaps the dominant 

classes of material which are the subject of study (Muckelroy, 1980:9). 

Obviously the philosophical basis and inferential logic with which a 

terrestrial archaeologist may approach a terrestrial excavation equally 

applies if that site becomes inundated mid-excavation, say due to a flash 

flood. Similarly, when presented with an inundated site adjacent to, or 

connected with, an existing terrestrial site, the terrestrial archaeologist 

merely needs to adapt the necessary techniques and methods in order to 
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proceed with a terrestrially-driven research strategy. An inundated site 

is no less an archaeological site because it is underwater. 

The submerged environment presents logistical and technical 

challenges which need to be mastered by the archaeologist before the 

required standard of recording and recovery can be reached. Often 

those who do not dive misunderstand the nature of these challenges. 

Influential terrestrial archaeologists Renfrew and Bahn, for example, 

recently noted (1991: 11) that for an archaeologist to proceed 

underwater demands 'great courage as well as skill', thereby setting 

those who take the plunge apart from the mainstream. This does not 

stand up well to objective scrutiny. As a very experienced underwater 

archaeologist once noted, diving is just a 'minor skill that can be learned 

by almost anybody' (Throckmorton, 1987:24). 

It has long been argued that the skills needed for effective inundated 

work are generally a part of any qualified and experienced 

archaeologist's training and can be transferred underwater with time, 

know ledge, good teaching and experience. There is ample proof of the 

truth in the simple axiom that is 'far easier to teach diving to an 

archaeologist than archaeology to a diver' (Goggin, 1964:299-309). One 

documented example, that of George Bass' evolution from a 

terrestrially-bound student of Classics is well recognised (Frey, 

1993:18-22). Bass is now widely recognised as one of the founders of 

underwater archaeology, even in the popular literature (Bahn, nd:49). 

There are many more, undeniably successful examples of this 

phenomenon, though Ivor Noel Hume (1975:191-2), a well known 

proponent of historical archaeology, has called for the teaching of 

underwater archaeology as a separate subject; rather than see 

archaeology and anthropology graduates precipitously take the plunge 

without proper 
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archaeology 

The relatively easy transport of terrestrial archaeologists and their 

research agenda into the water, after suitable induction to the marine 

environment, has not been easily extended to the case of 

studies. There are many reasons for this phenomenon. 

In the late 1960's Bass (in association with Peter Throckmorton) 

made considerable progress in bringing the shipwreck, as a useful 

inundated archaeological site, to the attention of his peers. began 

what is now termed underwater archaeology through his series of 

benchmark excavations of Bronze Age, Roman and Byzantine wrecks in 

the Mediterranean (Bass, et al., 1967). 

Bass was followed by many others rn realising the value of the 

shipwreck as an archaeological site. Most had no formal training in 

archaeology, however. As a result, and in contrast with Bass, much was 

done to an unsatisfactory standard (Bass, 1981 :x). Questions were 

subsequently raised about those professing to be shipwreck 

archaeologists due to their lack of academic standing, their sometimes 

crude methods and the very public involvement of some in what were 

essentially treasure seeking expeditions. 

Mainstream archaeologists pointed to these elements as proof that the 

study of shipwrecks, even when performed in ideal conditions to high 

standards, was at best a cataloguing of the existing resource, or the 

collection of objects for museums and other purposes. To them, only 

low level empirical generalisations were resulting from the work and 

the investigations had little archaeological value. This served inevitably 

to tar even those working to high standards with the same brush. The 

endeavours of workers such as Bass, Throckmorton and others across 

the Atlantic, such as Frederic Dumas and Joan Du Plat Taylor (Du Plat 
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Taylor, 1965), were seen by some in the 1960's as a 'silly business' 

(Bass, 1983:91). 

One of the early impediments to mainstream acceptance of shipwreck 

archaeology was the fact that Bass and others did not apply stratigraphic 

techniques to their excavations. It can be argued that they did not need 

to, however. In Bass' case each of the sites quickly proved to be quite 

discrete and related to only one incident in time or what Noel Hume 

termed 'an unimpeachable terminus ante quern' (1975:189-190). The 

often cataclysmic deposition of a single ship-borne culture in one place 

at one point in time is a characteristic of most large wreck sites. While 

many practitioners viewed a firm handle on chronology as one of the 

strengths of shipwreck research, to many and especially to 

anthropologists, the shipwreck presented a weakness in its apparent 

inability to provide the diachronic perspective of culture change. The 

scepticism was broadly felt. In noting that artefacts had 'lost' their 

stratigraphy in a scattered wreck Noel Hume, for example, reiterated 

the concerns of many of his peers 

Picking up the pieces from the bottom is essentially a 
salvage rather than an archaeological project because it 
requires none of the archaeologist's techniques of 
revealing, studying, and recording the relationship 
between objects and their stratigraphy (1975:190). 

In claiming on the one hand that the ideal wreck, such as the famous 

Wasa (1628-1628) which was raised intact from the waters of 

Stockholm Harbour in 1961, may be a 'miniature Pompeii' and 

therefore deserves to be treated accordingly and on the other, that there 

is little to be gained from the painstaking plotting of material from 

scattered sites, it is apparent that Noel Hume did not appreciate, or 
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agree with, the assemblage concept, as defined and widely accepted in 

his time (cf. Champion, 1980:11-12).1 

The first step by shipwreck archaeologists overcoming concerns 

about stratigraphy and association were attempts by Bass and 

improving the standards of recording and reporting from within the 

field of shipwreck archaeology itself. In 1970, for example, Colin 

Martin wrote to the editor of the newly produced, International Journal 

of Nautical Archaeology and Underwater Exploration (IJNA) 

questioning the 'general standards of competence'. He called for the 

appropriate qualification of practitioners and for standards of 

excavation, recording and reporting that were 'acceptable 1n 

conventional archaeological practice' (Martin, 1972:246-247). The call 

clearly indicated that standards within the field of underwater and 

shipwreck archaeology were often not generally acceptable at that time. 

Twenty-five years later this issue has largely been addressed by 

legitimate practitioners. In 1983, for example, Watson stated 

A great many terrestrial archaeologists and other scholars 
do not regard underwater archaeology as a legitimate part 
of the profession because they fail to realize that 
excavation and recording at underwater sites has attained a 
completely professional level (1983:29). 

New underwater recording methods and equipment come to 

underwater archaeology almost yearly from the oil and mineral 

industry. The general level of technical recording by underwater 

archaeologists is, as a result, more than satisfactory (cf. Green 1990). 

The same can be said for the conservation of materials raised from the 

1 Assemhla~e: A set of objects found in association with each other and therefore assumed to belong to 
one phase and one group of people. An assemblage can be made up of objects of different type ... An 
assemblage may reflect the totality of artefacts available to a particular group of people at one time. 
Association: Objects are said to be in association with each other when they are found together in a 
context which suggests simultaneous deposition. Associations between objects are the basis for relative 
dating ... The association of undated objects with artefacts of known date allows the one to be dated by 
the other (Champion, 1980:11-12). 
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sea-bed; an area where breakthroughs are also continually being made 

( e.g. Pearson, 1987). 

In response to the criticism stratigraphic approaches cannot be 

applied underwater, it should be noted that stratigraphic interpretation 

can be employed, where conditions are conducive to the development of 

a depositional sedimentary regime. Successful recording and analysis of 

inundated cultural layers has now been clearly demonstrated. 

Excavations at the former town of Phanagoria, and other cities along 

the Black Sea and at prehistoric villages built over water in Switzerland 

both revealed chronostratigraphic units (Blawatsky, 1972: 115-121; 

Ruoff, 1972: 123-133). 

Of significance, Robert Grenier's excavation of a Basque whaler in 

Red Bay, Labrador, provides an example where 'well-defined layers of 

cultural deposition' were recovered through the use of a 'stratigraphic 

technique'. The main cultural horizon contained datable organic 

materials such as crushed barnacle shells, providing 'important 

analytical statements' about the stratigraphy of the excavation (Stevens, 

1982:17-18; Ringer, 1983:119). The potential of stratigraphic 

approaches to wrecks and other maritime archaeological sites is clearly 

high. In late 1994, for example, I led an excavation which examined the 

possibility of locating defined cultural layers at 19th century underwater 

sites adjacent the land, such as jetties and other port-related structures. 

These were located and successfully recorded (Garratt, McCarthy, 

Richards and Wolfe 1995: 29-40). 

The major impediment to mainstream acceptance of shipwreck 

archaeology, however, was the perception that the growing number of 

underwater archaeologists after Bass, were theoretically depauperate, 

ranging from 'minutely particularist in scope ... to broader 

historiography' (Watson, 1983:25). Thus shipwreck archaeology was 
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isolated from mainstream archaeology at the time of rapid philosophical 

change associated the advent of 'New Archaeology' with its 

emphasis on explanation. Though I INA was an international 

publication, it is indicative of the academic isolation of underwater 

archaeology that a full seven years after its initial publication one 

American author, professing to be examining trends in historical 

archaeology, stated that 'no journal for underwater archaeology papers 

has yet been established' (South, 1977:21). This isolation led to a 

situation where, in the mid-to late 1970' s, Bass and leading practitioners 

such as Jeremy Green, in Australia, pursued what was in effect a 

crusade to legitimise their field in the face of a two pronged attack; one 

from fellow academics and the other from the treasure-hunters. These 

two influential workers were ardent historical particularists, 

unashamedly 'artefact oriented ... concerned with the artefacts and their 

functions' (Bass, 1983:91-104). Green and Bass' raison d'etre can be 

summed up in Green's words, thus 

Historical particularists are artefact orientated and are 
concerned with artefacts and their functions. This 
approach is particularly appropriate for the archaeology of 
shipwrecks, because being a new field of study, the 
material artefacts are not well understood. It is important, 
therefore, to build up a clear understanding of the material 
before constructing the deeper hypothesis (Green, 
1990:235). 

Many of Bass' and Green's colleagues and students naturally followed 

their approach. When new graduates in maritime archaeology did not 

enter the debate with their terrestrial colleagues, this added further to 

the difficulty in having underwater archaeology broadly accepted within 

the ranks of a parent discipline engaged in a rigorous questioning of 

particularist approaches through what has been termed the hypothetico

deductive logic of New Archaeology. 
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archaeology 

Moves towards the development of an explanatory base in maritime 

archaeology reached a zenith with publication of Muckelroy' s 

Maritime Archaeology (Muckelroy, 1978). Although young, he had 

then become one of the best known of the 'British School' 1 of 

underwater archaeologists (Lenihan, 1983 :49). He defined maritime 

archaeology as the scientific study of the material remains of humans 

and their activities on the sea, including not only shipwrecks, but 

'everything connected with seafaring in its broadest sense' (Muckelroy, 

1978:4). This included the study of port-related structures, shipwreck 

archaeology, nautical archaeology, or the specialised study of maritime 

technology and other elements of maritime endeavour. 

In an arguably conscious effort to establish the academic validity of 

underwater and maritime archaeology, Muckelroy wrote 

... the moment has come to consider the value and 
purpose of this sub-discipline ... With a clear definition of 
its scope and potential, it will have come of age and can 
take its place within the modern discipline of archaeology 
(1978:vii). 

Whilst well on the way to achieving that aim with a well-argued and 

logical attempt to propose a theoretical framework which he hoped 

would be 'applicable to all responsible and scientific underwater work', 

Muckelroy tragically drowned. 2 His theoretical contribution was 

recently described (Gibbins, 1992:82-85) as a 'most productive focus' 

on data characterisation and site formation analyses. He also clearly 

1 'British School' or 'English School of nautical archaeologists' : a term used generally by American 
underwater archaeologists to describe those such as Muckelroy, who are accepted in that country as 
bona fide archaeologists but who as yet are still to come to terms with the notion of 'research design' 
or problems of an 'anthropological nature.' Lenihan, for example, stated that 

The only exceptions (in this] have been recent. A few of the British 
School, most prominently the late Keith Muckelroy, have begun to 
raise some very germane theoretical issues (1983:49). 

2 Muckelroy was 29 when he died. 
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defined maritime archaeology, nautical archaeology and underwater 

archaeology, removing a stumbling block, even for those in the field 

(1978:1-10). 

Across the Atlantic, an American anthropologically-based 

was gathering in strength, calling for other reforms. In deliberately 

taking a social science approach, it questioned the historical particularist 

basis of the 'British' maritime archaeological school. The movement 

also questioned the lack of explicit research design or well defined 

research objectives, the failure to test hypotheses and the general lack of 

emphasis on human behaviour (e.g. Lenihan and Murphy, 1981; 

Gluckman 1981). 

Debate about archaeological reasoning has rarely been entered into 

between the shipwreck anthropologists and historical particularists. As 

noted by Gibbins (1992) 'a problem since Muckelroy has been the 

failure of theorists to address the main problems of wreck archaeology'. 

Many maritime archaeologists and especially those from the British 

School, did not join in philosophical debates raging in mainstream 

archaeology and anthropology, citing (with some justification), an 

excessive use of jargon as part of the reason (Green, 1990:240-241). 

The lack of dialogue clearly changed with the convening of the 

advanced seminar on shipwreck anthropology and the presentation of 

papers under the title Shipwreck Anthropology (Gould 1983). This 

volume was influential in paving the way for a broader acceptance of 

the shipwreck as an archaeological site and in widening the debate about 

the validity of shipwreck studies amongst anthropologists generally. In 

the volume Lenihan noted the importance of the wreck in both technical 

and historical terms and to archaeology and anthropology generally. He 

stated that 
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The actual remains of a shipwreck offer much that is not 
known from the literature about ship construction, material 
culture and unique events in hi~tory ... shipwrecks present 
an extraordinary data base for investigation by 
anthropologically oriented archaeologists (Lenihan, 
1983:42, 63). 

Watson (1983:31), in agreeing, also argued that a change of emphasis 

should occur in shipwreck archaeology, bringing it into line with 

'processual' or new archaeology. Murphy summed up the potential of 

the 'shipwreck anthropology' argument in the following manner 

The archaeology of shipwrecks should not be merely the 
embellishment of the maritime historical record, but the 
elucidation of otherwise unattainable aspects of human 
behavior. The combination of shipwreck archaeology with 
the methodologies of other disciplines will result in the 
authentic reconstruction of behavior patterns, and will 
permit the formulation of generalities regarding marine 
lifeways and human social processes (1983:69). 

Shipwreck Anthropology also served to illustrate the traditional bias 

in maritime archaeology up to the early 1980' s. For example Cockrell 

notes 

The bulk of the literature of shipwrecks has concerned 
itself with studies of method and technique ... an approach 
designed to transcend simple description and explanation 
and address processual topics with scientific explanation 
has been rare or non-existent (1983:207-9). 

Despite this critique, it must be reiterated that Muckelroy had earlier 

recognised the need to study submerged remains in order to derive 

insights into the organisational strategies of the people and the societies 

which produced them. For example, he emphasises 

Above all, it should be noted that the primary object of 
study is man ... and not the ships, cargoes, fittings or 
instruments with which the researcher is immediately 
confronted (Muckelroy, 1978:4) . 
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As the only non-anthropologist present at the shipwreck anthropology 

seminar following Muckelroy' s untimely demise, Bass ( 1983: 103) 

defended the value of what had gone before. so doing, found it 

necessary to present, what he termed a 'plea for historical particularism' 

in what he admitted was a 'biased case'. 

It is evident in the discussion above that, with the exception of 

Australia where there is but one published instance (Effenberger, 1987), 

the questioning of the descriptive approach and the strengthening of the 

theoretical base, are indisputably on-going elements in maritime 

archaeology where mature programs exist (cf. Carrell, 1990). As a 

result of the general trend towards the development of both practice and 

theory over the last thirty years, it is generally accepted that maritime 

archaeology is responsive to change and development within the wider 

discipline of archaeology. It can also claim with considerable 

justification that it is a specialised, sometimes highly scientific, part of 

archaeology as a whole and that is capable of shedding what was termed 

'new light' on life on land as well as at sea (Renfrew and Bahn, 

1991 :11). 
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archaeology of iron and steam shipwrecks 

was argued earlier that a number of areas within maritime 

archaeology require substantive validation. One area is study of 

iron-hulled steamship wrecks. The need to pursue this issue stems 

part from comments made by Muckelroy in 1980, when he stated that 

studies based on early steamships and the like, while interesting and 

sometimes furnishing useful displays for museums, were not 

archaeology. He argued that 

As an academic discipline, archaeology interprets the past 
on the basis of surviving objects; it becomes redundant at 
that point in the past after which surviving records, 

· descriptions, plans and drawings of contemporary objects 
can tell us more about the culture of the time than we can 
learn from digging up a few relics ... (Muckelroy 
(1980:10) 

Further, Muckelroy stated that the 'onset of industrialization and 

modern style bureaucracies in the early 1800s marks the cut-off point' 

for underwater archaeological studies (1980: 10). David Lyon, of the 

National Maritime Museum at Greenwich, has also noted that aspects of 

archaeology become redundant where historical records appear (cf. 

Henderson, 1988a : 10-11; Lyon, pers. comm). 

Interestingly the Muckelroy/Lyon position 1s primarily a British 

viewpoint in the English-speaking maritime archaeological world. It is 

also a view that would find little support amongst terrestrial historical 

archaeologists. Australian maritime archaeologists studying 

predominantly colonial and historical period wrecks, have not accepted 

this position (cf. Henderson, 1986; Green, 1977a). Equally, Bass 

(1972: I 0) noted 'the value of archaeological research on ships recent 

enough for photographic records to be available'. Gould and other 

anthropologists argue strongly for a cross-temporal and cultural 
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proach; one that is not encapsulated in a specific period of the past 

(cf. Gould, 1983; Peron, 1988). 

I aim to demonstrate through the medium of the SS Xantho 

cavation, that there is much to be learnt from an examination of post-

1800 sites. This is obviously not a new claim and it could be argued, 

with respect to the Xantho and other similar sites, that the study of the 

iron and steam shipwreck is akin to what is referred to as industrial 

archaeology, itself a sub branch of historical archaeology and a field of 

study well-recognised in its own right. 

Industrial archaeology is described by some as the study of the 

physical remains of industry in the recent past, particularly the products 

of the industrial revolution. It is clearly modern, as Renfrew and Bahn 

note 

For more recent technologies, such as those of the last 200 
or 300 years, the growing field of industrial archaeology 
can also make use of eyewitness accounts by living 
craftspeople or verbal descriptions handed down from one 
generation to the next, as well as historical and 
photographic records (1991:271). 

Though the abundance of archival material is at the root of their 

disclaimers, it is the propinquity of these objects to contemporary 

material cultures that may have alarmed some prehistorians and possibly 

Muckelroy so much. 

Muckelroy's (1978:196-214) acceptance of the validity of studies into 

17th and 18th century wrecks and his rejection of those of a more recent 

period on the basis of the availability of historical data (1980: 10) is not 

a sustainable position. Muckelroy' s earlier comment that excavation 

'becomes archaeological if it is problem orientated' (1978:250) is more 

universally acceptable. 

The systematic study of iron and steam shipwrecks can satisfy the 

purported aims of historical, industrial and general archaeology. 
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Though it is obvious that in many cases the study of iron and steam 

shipwrecks can add to a body of technological and historical know ledge, 

the question remains whether can add to our knowledge of the people 

who once owned, operated, serviced and sailed them, and to their social 

context. 

The Xantho study will answer that question in the affirmative through 

a marriage of traditional historical particularist studies, technological 

and historical documentation and modelling and in the deliberate use of 

problem oriented anthropologically-based enquiry in both the 

underwater excavation and in the excavation conducted in the 

conservation laboratory ( cf. Peron, 1988). 

Having proposed that the archaeological study of iron and steamship 

wrecks is a valid one, it is now my intention to examine the 

development of this field of enquiry up to the commencement of the 

Xantho project in 1983. 

From the time iron ships were first manufactured, there has been a 

great deal of interest in the study of the technology involved 

marine engines that powered them. Because the ship represents one of 

the largest and most complex expressions of human manufacturing 

expertise, a fascination with them and a willingness to expend vast sums 

of money on their remains, in contrast to other equally significant 

remains on-shore, is to be expected (cf. McCarthy, 1994). As a result, 

ship societies and ship and marine engine preservation societies abound 

throughout the world. Old ships and marine engines can be found in 

virtually every maritime museum on the globe. In Norman Brouwer's 

International Register of Historic Ships, which was first published in 

1985, details appear of over 700 historic ships surviving in 43 different 

21 



countries. A high percentage of these are built of iron or steel with 

many being propelled by steam. 

Museum ships survive today as outcome of many refits, and they 

are often far removed from their original context. Like wreck, little 

of the original structure remains, however, often for different reasons. 

Historic engines can be similarly affected through re-use over decades 

and by the restoration process. A wreck then is the primary and 

unbiased source of information relevant to the terminus ante quem. 

In being removed from their working context and by being 

significantly altered from their original state, much useful information 

is lost with museum vessels. This is not to deny the importance of what 

survives for the study of iron-founding, metallurgy, engineering or 

shipbuilding. Historic vessels such as the Russian cruiser Aurora (built 

1900) and the Chilean monitor Huascar (built 1865), to name but two 

examples, are clearly important (Brouwer, 1985). The fact that they 

have been subject to cultural transformations (before and after the 

recent recording of their structures) creates both strengths and 

weaknesses. This diachronic element of the ex-hulk/museum ship has 

been recognised by anthropologists. Murphy ( 1983 :7 5), for example, 

noted that 'the life of a ship and its use will be reflected in material 

remains'. Though a self-evident statement, this is a useful insight often 

forgotten by those who see the ship primarily as a monochronic unit. A 

case of a vessel that has been used in numerous configurations is the 

schooner-rigged SS Hansteen, which was built in 1866 (Figure 5). This 

was a common occurrence. SS Xantho (1848-1872), for example, was 

first a paddle-steamer and then a screw-steamer and this change is 

clearly reflected in the physical remains, as will be shown. Of itself, that 

is an interesting phenomenon, relevant to notions of artefact 

modification and re-use before abandonment; a theme common 
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terrestrial archaeology (cf. Schiffer, 1976). Abandoned hulks such as 

Brunel's Great Britain, built in 1843 and recovered in 1970 after many 

years in service under steam, sail and then as a hulk, are important on 

three levels: historical, technical and anthropological. 

recording over all these phases is essential. Hansteen, for example, was 

built in 1866 for use as a Government research vessel/royal yacht. It 

was converted in 1898 to a passenger steamer, in which service it 

underwent a number of refits (5a-b ). was altered in 1950 for use in 

the herring fishery (5c) and was stripped in 1962 for use as a hostel for 

homeless men (5d). In 1978 it was restored to the original (Envig 

1984). 

Figure 5 a-d : SS Hansteen from 1898 to the present day, showing its 
various configurations (Envig, 1993). 

1898-1900: 

\ 

\ 1 
1900-1950: 

1950•1962: 
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many cases, such as Great Britain, the recording of existing vessels 

is to a very high standard (e.g. Corlett, 1970). Unfortunately in many 

significant cases, little has been done about other existing remains. For 

example, hulks such the monitor Cerberus (launched 1870), now lying 

in Melbourne waters, are in danger of imminent collapse and may be 

lost before the recording process is completed (Maritime Archaeology 

Association of Victoria, 1983). 

Research into iron and steam shipwrecks, as opposed to abandoned 

hulks or museum ships, can be traced in the Northern Hemisphere 

mainly to North Carolina in the United States and, in the Southern 

Hemisphere, to Western Australia. A summary of these parallel 

developments provides an insight into the research orientation of early 

iron and steamship studies pre-Xantho and the evolution of protective 

legislation for such wrecks. 

In the Australian case, early shipwreck legislation enabled the 

Western Australian Museum to potentially exercise a controlling 

function over historic wrecks lying within State territorial waters. This 

legislation followed on from the location and subsequent looting of the 

rich wooden-hulled seventeenth century Dutch East India Company 

(VOC) wreck, the Vergulde Draeck (1628-1656) in 1964 (Green, 

1977b). Soon after, a party from the Western Australian Museum 

examined a number of iron wrecks with a view to 'obtaining first hand 

knowledge of the early colonial wrecks' (Advisory Committee Minutes, 

11/5/1965). The sites were not considered worthy of addition to a 

schedule of historic wrecks being prepared, however, as academic and 

political focus was on the bullion carrying 17th and 18th century East 

Indiamen. At the time the comment was made that 'nineteenth century 

wrecks were mainly of importance from the material recovered, rather 

of structure' (Advisory Committee Minutes, 29/10/1970). 
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Other East India wrecks were found around this time, notably the 

VOC ship Batavia (1628-1629) and the English East India Company 

(EEIC) ship Trial (?-1622) (Green, 1989; 1977c). There was further 

looting of these wrecks (cf. Henderson J., 1993), and given that only 

one curator with a small technical support staff was assigned to the job, 

it proved a near impossible task to investigate and stop the damage that 

was occurring. As a result, the question was put whether the wrecks 

would best be managed by the University of Western Australia or 

another specific purpose group that was yet to be developed (Williams, 

1971; Tyler, 1970). 

The issue was resolved when the Department of Maritime 

Archaeology was formed under the direction of Jeremy Green, who was 

brought from Britain in 1971. Green arrived from underwater 

archaeological work in Europe and the Mediterranean, and was 

arguably of the almost universally-held belief that wrecks of the recent 

past were of lesser significance to those of greater antiquity and, that as 

a general rule, little of significance would be found in shallow water 

(cf. Muckelroy, 1978: 60). Green's examination of the wooden 

Trial tended to confirm these claims (Green, 1977c). 

Green was directed by the Museum to halt rampant looting of the 

VOC sites through the systematic recovery of accessible material and 

bullion. After inspecting a number of iron sites he noted that, though 

the iron wrecks were of value as an underwater classroom useful for the 

teaching of mapping and survey, they were 'of no further historic 

interest' (Advisory Committee Minutes 20/8/1971) 

Given that the European community of Western Australia had a 

settlement-history only dating back to the early nineteenth century, 

however, mid-to late nineteenth century iron and steamship wrecks 

were intrinsically of interest. These popular sentiments influenced 
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Green and in 1972 he recommended to the Advisory Committee that 

they consider the declaration of the iron Barque Mira Flores (1867-

1886) as an historic wreck, chiefly because of its local historical 

significance to the diving community (Advisory Committee Minutes, 

27/1/1972). Considerable debate ensued as to whether the Museum Act 

should be used to protect wrecks which, in the words of one of Green's 

historical advisers, had 'only marginal historical interest'. In that 

context, a position paper entitled 'The Problem with Colonial Wrecks' 

was debated at length (Advisory Committee Minutes, 1/6/1972). 

At this time Green was assisted by Graeme Henderson, who brought 

strong research interests in shipping and wrecks of the colonial period. 

By the end of 1972 five late nineteenth century iron wrecks, including 

one streamer, were declared historic sites. The vessels included the 

nineteenth century iron barques Mira Flores ( 1867-1886), Sepia ( 1864-

1898), Denton Holme (1863-1890), the ship-rigged City of York (1869-

1899) and the SS Macedon (1870-1883), shown in Figure 6, below 

(Advisory Committee Minutes, 30/8/1972). The State then enacted the 

Maritime Archaeology Act, 1973 which protected all wrecks lost before 

1900, whether built of iron or wood or driven by sail or steam 

(0' Keefe and Prott, 1984: 172-17 4 ). 

Colonial period wrecks then became firmly established as potential 

historic sites (Henderson, 1977a). In order to manage the growing 

resource a wreck inspection program, in which all wreck sites were 

routinely inspected and reported on, was formally put in place in the 

mid 1970s (Sledge, 1977). 

In the face of a High Court challenge to the State Maritime 

Archaeology Act 1973, the Commonwealth Historic Shipwrecks Act 

1976 was introduced (Green, Henderson and McCarthy, 1981:145-160). 

This Federal Act applies to Australian waters and the 
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inspection and declaration of many iron and steel-hulled shipwrecks 

around Australia. By 1983, of the total of 77 wreck sites inspected in 

Western Australia, 14 were iron-hulled sailing vessels and 12 were 

iron-hulled steamers, such as the SS Macedon, shown below. 1 

Figure 6 : The midships section of the SS Macedon (1870-1883). The deck 
beams have disintegrated, leaving the sides of the hull unsupported and ready 
to collapse. The stern was apparently demolished to allow the salvage of the 
engines, shaft and propeller. By Colin Cockram, MAA WA (Kenderdine, 
1995: 52). 

SSMacedon 
isometric view 
Cockram, 1994 

0 metres 10 

1 As yet, Western Australia has no historic wooden-hulled steamship wrecks. The only available wreck 
of this type is the SS Dolphin (1882-1919), a small coastal steamer that was converted to a floating 
accommodation platform for sea-scouts after being stripped of all its fittings. Only sections of the hull 
remain in shallow water (Lap wood, 1991). 
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Following the enactment of the Federal legislation, voluntary 

research groups were formed in most Australian states. Examples 

include the Underwater Archaeology Research Group of New South 

Wales, the South Australian Society for Underwater Historical Research 

and The Maritime Archaeology Associations of Western Australia, 

Victoria and Tasmania. These groups facilitated the involvement of 

divers in site inspection and recording with professional guidance. This 

work, in turn, led to the inspection and declaration of more iron and 

steamship wreck sites, such as the PS Ballina (1865-1879) and the screw 

steamer Royal Shepherd (1853-1890). 

The Western Australian based Post-graduate Diploma Course in 

Maritime Archaeology began in 1981 under Green. This course and the 

resulting graduates facilitated the creation and growth of regional 

maritime archaeological units throughout Australia. These were located 

in museums (Queensland and Northern Territory) and in Government 

heritage management bodies (Victoria, South Australia, Tasmania and 

New South Wales). This has resulted in the inspection and declaration of 

many more sites, such as the wooden-hulled SS Monumental City (1850-

1853) and the wooden-hulled PS Clonmel (1836-1841). These two early 

colonial sites were inspected and declared historic (Harvey, 1985, 

Staniforth, nd). Many more sites, the majority of which are iron and 

steam shipwrecks, have since been declared historic. Comparatively 

modern vessels have also been included, notably the German WWI 

cruiser Emden (1909 -1914) and the diesel driven WWII Japanese 

Submarine I 124 (1927-1942) (McCarthy, 1991a: 10-52). Many of these 

studies are on-going. The HMAS Sydney (1934-1942) project, for 

example, is a major research program (McCarthy, 1991 b) and is of 

relevance here in that, though it is a modem steel-hulled1, screw-driven 

1.s.t.e.cl., a derivative of iron, is included in these discussions. 
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vessel, the archaeological record is expected to be a major element in 

illuminating one of Australia's major war-time disasters. 

The majority of declared maritime archaeological sites Australia 

are iron or steamship wrecks. Despite this fact, little more site 

inspections or regionally-based surveys occurred before the Xantho 

study began in 1983. The only exception was the test excavation of the 

iron hulled SS John Penn (1867-1879) off the coast of New South 

Wales. This site had been located in 1979 and following the declaration 

of the site as an historic wreck, volunteer amateur archaeologists Mike 

Lorimer and John Riley conducted fourteen days of work over a period 

of seven months between January and August 1983. Their initial aim 

was to test the application of Riley's proposition, that when iron ships 

sink onto a soft substrate, they come to rest at around the level they 

float on water (Riley, 1988a). This phenomenon is illustrated in Figure 

7 below using a model and isometric projection of the wreck of the John 

Penn. 

Finding the use of recording grids impractical due to the 

configuration of the vessel, Riley and Lorimer took measurements 

prominent features of the site by trilateration and by using 

angle/distance techniques. 

Through the use of a water dredge to recover artefactual 

assemblages, they uncovered three distinct layers of sediment in their 

excavation. The upper layer comprised mobile, clean sand, the middle, 

an anaerobic black mud and the lower unit, in which most of the 

artefacts appeared, a fine anaerobic silt. The salient features of the ship, 

including a characterisation of the artefact assemblages, its engines and 

other machinery, were recorded and published (John Penn Team, 

1984 ). Lorimer and Riley assisted considerably in the development of 

iron and steam shipwreck studies within Australia through the 
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application of isometric projections, wreck site models, and in the 

describing of layering within the hull. 

Figure 7: John Riley's model and isometric projection of the wreck of the 
TSS John Penn, illustrating the state of burial of the hull and the value of the 
isometric projection and wreck site models (Lorimer, 1988). 
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Other former British colonies, such as Canada, New Zealand and 

America, also developed an interest in iron wrecks and steamships of 

the nineteenth century, probably also due to their relatively recent 

settlement by Europeans. 

New Zealand, for example, is able to protect all sites over 100 years 

old under the Historic Places Amendment Act 197 5. The first survey of 

the wreck resource, including iron and steel vessels, was conducted in 

1977 and though limited in scope, was conducted as an 'exercise in 

archaeological research' by an anthropologist (Campbell, 1977). 

Canada, on the other hand, has seen considerable research activity on 

iron and steamship wrecks. In 1983 the Nippising University of Ontario 

conducted a survey of the remains of the wooden-hulled, SS John Fraser 

(1888 -1893). The results of the survey, carried out under very difficult 

conditions, were published locally and later internationally in 

summarised form through the pages of the JINA. Further work was 

planned there, including the establishment of conservation facilities 

(Vandenhazel, 1987). In the same year an Ottawa volunteer 

conservation group surveyed the remains of the 252 foot (76m) 

wooden-hulled 'propeller' Conestoga (1919-1922) 1. This large, and 

extensively damaged wreck, proved difficult to record and the survey 

was not completed (Gregory, 1984). 

In the United States, the location of the wooden-hulled, steam 

powered gunboat USS Cairo (1861-1862) in 1956 had the potential to 

provide a benchmark for studies into wooden-hulled steamship wrecks 

(Bearss, 1963). Being extraordinarily well preserved in the cold muddy 

waters of the Yazoo River in the State of Mississippi, it received 

considerable attention. It was subsequently salvaged at a time when the 

1 Propeller: The term 'propeller' is a contemporary one now regularly appearing in American literature. 
It was used on the North American continent to signify a screw or propeller-driven vessel. In British 
and other literature it refers solely to the screw. 

31 



call for archaeologists to 'develop diving skills and take over the 

responsibility for underwater remains' was still in its infancy (de 

Borhegyi, 1963). The adverse results, centring on an ill-conceived hull 

recovery program, were a useful lesson for the future and AAA-•-A• has 

been done since to remedy the situation. (McGrath, 1980; 1981 ). 

At around the same time, the State of North Carolina became actively 

interested in its nineteenth century shipwreck resource. Survey and 

excavation work was conducted on the British blockade runner SS 

Modern Greece (?-1862) and ten other Civil War wrecks (Watts, 1972, 

1988). In 1967, State legislation was enacted protecting all historical and 

archaeological material lying unclaimed in state waters for ten years or 

more. In 1972 a formal underwater archaeology program was 

established with professional staff. Work was immediately begun on a 

comprehensive site survey of a section of the coast and from that a 

considerable amount of work has flowed (Watts and Bright, 1973 ). 

Two wooden-hulled steamers also came to the attention of the 

archaeological community in America. These were the side-wheel 

cotton packet Black Cloud (1864-1873) and the inland 

steamboat Bertrand (?-1865). Black Cloud was surveyed and part

excavated by students at the Texas A&M University, under George 

Bass. A report was published, complete with artefact catalogue, 

description of conservation techniques and recommendations for future 

work (Adams, 1980). The Bertrand was located by prospective treasure 

salvors and was excavated with the participation of qualified 

archaeologists in the period 1968-9. The excavation was later 

considered of importance to the study of the type and of the cargoes 

carried (Simmons, 1988, Ch. 10). In both cases the majority of the 

machinery had been removed in earlier years. 
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Attention then came to focus on the iron-hulled USS Monitor (1862-

1862) which was located in 1973 and declared as the United States' first 

'National Maritime Sanctuary' two years later (Watts and Still, 1982). 

The location of the Monitor can be seen, from a national perspective, 

have marked a turning point in the study of iron and steamship wrecks 

(Edington et al., 1978). At a depth of 70 metres, it initially proved too 

deep for study by any but remote-sensing methods. In bringing its 

potential to the attention of the world's underwater archaeological 

community, the archaeologist in charge, Gordon Watts, firmly 

established the notion that iron and steam shipwrecks were worthy of 

study. In 1975, the following comment was made by the editors of the 

JINA with respect to Watt's report (1975). It was the first recognition 

by the 'British School' of the new field of study into iron and steamship 

wrecks 

Contributions to the Journal have maintained their high 
standard and we welcome the important paper on the 
discovery of the USS Monitor ( IJNA, 1975, 4.2:171). 

In some respects the importance of the Monitor program is reflected 

in the composition of the Technical Advisory Committee and the 

Governmental Review Committee formed to ' ... maximise output into 

the decision making process' (Watts, 1987: 128-139). Members included 

underwater archaeologists, historians, conservators, engineers, 

oceanographers, museologists, geologists and representatives of 

government agencies and institutions, including the Smithsonian 

Institution, the National Trust and the US Navy. In 1979 a master 

planning document was produced which identified basic research goals 

and developmental options. Two primary goals were identified; one to 

ensure the scientific recovery and dissemination of the historical and 

cultural information at the site, and the other the preservation of the 
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remains in a manner cognisant of its historical significance and its 

scientific and educational potential. 

Due to the depth of the site, equipment from the oil exploration 

industry was used to perform non-disturbance investigations. study 

included still and video photography, detailed measurement of the 

magnetic field of the site, sub-bottom profiling and sediment sampling. 

A photogrammetric survey was also conducted. Mini-submarines with 

lock-out facilities were deployed, allowing diver access for the first 

time. Artefactual material was recovered, allowing conservation 

scientists to physically test the materials in the laboratory and to 

consider the major conservation issues (Watts, 1975: 321-322) 

Later, in 1979 an extensive and complex research project was 

initiated at the Monitor site. This included a limited test-excavation, 

designed partly to further define the conservation requirements for 

material to be recovered in the future. First priority was the 

establishment of what were termed 'on site datum stations' to strictly 

control data collection. It was later justifiably described by Watts as 

... a highly regimented sequence including mapping and 
photography, excavation, additional mapping and 
documentation, artifact recovery and additional excavation 
(Watts, 1987: 135). 

Wood, leather, rubber impregnated fabric, glass, ceramics, iron, 

brass and other materials were raised and successfully conserved. 

Wooden structures, some part-buried by sediment, within and around 

the iron hull, were also noted. Where visible above the sea floor, the 

structural deterioration of the iron hull was considered to be of an 

advanced nature and the wreck itself was believed to be in a fragile state 

(See Figure 8). It was postulated that deterioration of the iron hull 

would be significantly less where it was buried in sediment in contrast 
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to the exposed iron-work (Watts, 1987). The studies of the sediment 

layer showed that the upper layers were extremely active and mobile 

and it was proposed that they could be removed without compromising 

the archaeological integrity of the site. 

On receiving the reports, the Technical Advisory 

recommended that the recovery, conservation, and display of the wreck 

be adopted as a major goal. This recommendation was adopted in 

November 1982 and an expedition was planned for the following year. 

Figure 8 : The inverted hull of the USS Monitor, showing extensive 
corrosion. By R. Volz (Farb, 1992) 
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The program was designed, in Watts' words, to 

... generate all of the additional archaeological, historical, 
technological, conservation, and fiscal data determined to 
be essential for formulating and evaluating plans for the 
in-situ stabilization of the Monitor's remains and the 
recovery of as much of the ship as determined to be 
technologically and fiscally feasible (1987:135). 

The study has provided an insight into both the condition of the 

wreck and the nature and scope of the archaeological record preserved 

at the site (Watts, 1987: 135). For a number of reasons, the Xantho 

project did not have the benefit of this research and, as a result, it 

operated in isolation for several years. 1 

Around the time the Xantho project commenced, work also began on 

an assessment of the steel-hulled USS Arizona (1915-1941), now a well

known national monument and memorial at Pearl Harbour (Murphy, 

1987; Lenihan, 1989). The first assessment dives on Arizona were 

conducted in 1983. Given the immense size of the wreck, the initial site 

survey was a protracted process, resulting in the completion of site 

plans and a video record (Figure 9, below). In 1986 a biofouling and 

corrosion study, similar to that conducted on the Xantho in 1983, was 

conducted (Henderson, 1989: 117-156). These developments allowed the 

site managers to develop an 'action plan' based on an informed 

understanding of the degradation processes at the site (Lenihan, 1989:6). 

It was acknowledged that corrosion and other data would facilitate a 

decision as to whether to attempt to modify the natural degradation 

processes at the site (Cummins and Dickinson, 1989:167-168). 

1 Unpublished data on the Monitor program was not available and the report was not widely 
disseminated until 1987 (Watts, 1987). 
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Figure 9: The Arizona site. The hull appears intact, though the upperworks 
have been substantially altered by bombing and salvage. By J. Livingstone 
(Lenihan and Murphy, 1989: 83). 

PERSPECTIVE VIEW FROM BOW 

Clearly the study of iron and steamship wrecks was an established 

component of North American underwater archaeology by the time the 

Xantho project commenced in Australia. From the beginning, groups 

from the United States proceeded to examine a large number of iron 

and steamship wreck sites and to declare a considerable number of them 

historic under both State and Federal legislation, for example (Gisecke, 

1985:138-141). 
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A number of thematic studies were also undertaken as the Xantho 

project got underway. One such study reassessed the California Gold 

Rush through maritime archaeology (Delgado, 1986). Others have 

concentrated on the phenomenon of 'blockade running', providing a 

detailed analyses of the fast steamers involved (Bright 1985; Watts, 

1972; Wilde-Ramsing, 1985; Wise 1985). These studies have links to 

manufacturing in Britain, for many of these vessels were built there, 

causing considerable contemporary interest in engineering circles due to 

their speed and power. The SS Tallahassie, for example, was described 

in Britain as a 'most efficient instrument of maritime warfare' (The 

Engineer, 3/6/1898:527). More recently the theme of 'American Naval 

Archaeology' has risen (Dudley, 1990). The broad acceptance of the 

validity of such thematic studies can be seen in the diversity of topics 

included in the 1989 edition of the American periodical Archaeology 

(Watts, 1989). 

I do not deal with the wooden-hulled steamer at any length in this 

thesis as it is subsumed through the study of wooden-hulled vessels and 

the study of iron and steamship wrecks. An exception is the wooden

hulled 'propeller' SS Indiana (1848-1858), as it represents an important 

development in the field of steamship archaeology (Figure 10, below). 

In 1979 the Smithsonian's National Museum of American History 

recovered all of the machinery of the Indiana which had sunk 121 years 

earlier in 37 metres of fresh water in Lake Superior (Jacobs, 1979). An 

early Great Lakes Steamer, it was powered by what is acknowledged as 

one of the earliest examples of a power plant from a commercially 

successful screw vessel (Simmons, 1988: 192). 
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Figure 10: The Indiana site, an early wooden-hulled 
steamship wreck (Johnston and Robinson, 1993). Drawing 
by D. S. Robinson. 

THE IND/ANA WRECK SITE 

Preliminary Plan 
M. 

Based On 1991 Field Survey 

FANTAIL WRECKAGE 

The recovery project was clearly a massive undertaking, resulting in 

the recovery of around 20 tonnes of machinery, including a boiler, a 

single cylinder (5.5m high by 1.2m diameter) vertical engine and a 3m 

diameter propeller (Society for Industrial Archaeology Newsletter, 

1979). 

After raising, the ancillary machinery was cleaned, coated with 

lacquer and placed on exhibition, being remarkably stable and in 

excellent condition due to the cold, deep fresh-water environment. The 

engine, also being similarly stable, has undergone passive conservation 

and is in good condition. The boiler is described as 'stable' and is stored 

in ambient conditions (Johnston pers. comm.). These appear below in 

Figure 11. 
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Paul Johnston, the present Curator of Maritime History at the 

Smithsonian Institution, eventually became responsible for the remains 

and recently joined with David Robinson of the Nautical Archaeology 

Program at Texas A&M in an examination of the site (Johnston 

Robinson, 1993). 

The Indiana provides a useful comparative study for the Xantho 

project, especially as I come to focus in later chapters on the treatment 

and complete dismantling of the machinery raised from the Xantho after 

113 years on the sea-bed. 

Figure 11: The boiler and engine from the Indiana. (Johnston and Robinson, 
1993). Both have created considerable interest as primary sources of 
information on marine engineering. Drawings by R.K. Anderson, Jr. 
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comparison to the efflorescence of maritime archaeologists in the 

former British Colonies, Europe still has few professional workers and 

most countries have considerable difficulty managing or studying sites 

of antiquity, let alone modern wrecks. Israel, where one of earliest 

courses in maritime archaeology was established, has produced few if 

any studies on wrecks of the recent past (Raban and Gertwagen, 1980). 

Notable exceptions outside former colonies such as USA, Canada and 

Australia have been site-specific French studies on the CSS Alabama 

(1862-1864 ), a Confederate raider found off Cherbourg in 1988 

(Enault, 1988; Guerout, 1988), English interest in the raising and 

exhibition of the early submarine Holland I in I 985 (Preston and 

Batchelor, nd: 20) and Swedish work on the SS Eric Nordewall (1836-

1856), a well preserved paddle steamer (Cederlund, 1987). In all of 

these cases interest has centred on the remains, their background, 

descriptive-oriented recording and management needs. 

Thus the Xantho (1848-1872) study, is best located in the context of 

late 1970' s to mid 1980' s research on iron and steam shipwrecks in the 

USA, Canada and Australia. As the study represents a 

the mainstream on a number of levels, I will now examine the 

philosophical basis and research orientation employed for the Xantho 

study. 
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CHAPTER 2: 

RESEARCH ORIENTATION 

Introduction 

In this chapter I outline the aims and research orientation developed 

for the Xantho investigation. Before doing so, it needs be noted that the 

study of iron and steamship wrecks was clearly in its infancy when the 

project began and there were few 'ready theoretical formulations' 

(Renfrew 1982:3) to prescribe an obvious way to proceed with the 

investigation. 

The May 1983 inspection of SS Xantho was not on traditional 

maritime archaeological lines. It was part-driven by questions aimed at 

investigating an iron-hulled steamship, rather than the wooden-hulled 

vessels generally the object of research in shipwreck archaeology. 

Questions included, whether iron hulls generally behaved in the 

underwater environment like their wooden counterparts? Did iron hulls 

pose any new problems to maritime archaeologists? Were traditional 

recording methods suitable? 

As a result of these and related issues, I requested and co-ordinated 

pre-disturbance surveys of the physical, biological and electro-chemical 

properties of the wreck in addition to the traditional wreck-inspection 

method (e.g., McCarthy, 1982a). 

By the time the Xantho project began, the generally-accepted 

processes for the study of wrecks in maritime archaeology were well 

described by Muckelroy (1978:249). Of importance is his crystallisation 

of the research stages contained in Table 1 below. According to 

Muckelroy, the process begins with the location of the site, its 

assessment and identification, the formulation of problem domains, data 

collection and then data analysis in the light of that problem. From there 

comes an understanding of the original ship, or what Muckelroy 
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describes as 'low-level interpretation'. This then leads on to explanation 

or his 'high-level interpretation'. 

Table 1 : Muckelroy's model of the research stages in maritime archaeology (1978:249) 

Site Previo1::1s state 
discovery of knowledge 

STAGES 

. ,~ 
' 

Problem 
,,.. 

Assessment and 

formulation 
~ identification of .,, 

.... 

( chaps. 1, 3 and 4) r--?" research questions 
➔ 'if 

RESULTS 

-Data 
r--?' collection Excavation .... 

Site records , 

(chap. 2) rw-
i\_ v--

Data - Wreck-site and 
analysis ~ artefact --,r,, Data description 

(chap. 5) i\.~ analysis and analysis 

Low-level - Understanding 
Conclusions about 

interpretation .... of original ~ original ship 
(chap. 6) 

,,. 
ship 

High-level Assessment of 

interpretation cultural ~ Conclusions about ,,. 

(chap. 7) implications maritime culture 

.. 

', 

New state 
of knowledge 

As indicated above, in the Xantho case, the 1983 site assessment was 

driven by research questions which reflected the fact that a new class of 

site was being examined. Subsequent to the 1983 inspection, there has 
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been a deliberate attempt to actively explore the 'cultural implications' 

of material patterning at the site to be more than an inductively-driven 

study. Here my purpose has been to explore the role of the individual, 

Charles Broadhurst, through an archaeological investigation of a 

material record at the site of the SS Xantho. I have then sought to 

examine possible cross-cultural and cross-temporal nautical behaviours. 

The 1983 inspection gave rise to a number of alternative possibilities. 

It was evident that Xantho could be viewed, on the one hand, as a badly

engineered, worn-out vessel, apparently unsuited for the poorly 

serviced coast of Western Australia; or on the other, a ship purchased 

primarily with a view to overcoming the problems associated with 

steamship operation in a frontier environment. As a result, its owner 

and operator, Charles Edward Broadhurst ( 1826-1905), could be 

viewed equally as a misguided, apparently naive and possibly eccentric 

colonial entrepreneur, or as a visionary acting with considerable fore

thought and imagination; a man beaten only by bad luck. Subsequent 

research and excavation has been oriented towards an examination of 

these initial propositions. 

It is useful to view the Xantho project within the general research 

design for archaeology as articulated by Renfrew and Bahn in 1991. 

They describe 

1) the formulation of a research strategy to resolve a 
particular question or idea; 

2) the collecting and recording of evidence against which to 
test that idea, usually by the organization of a team of 
specialists and conducting of fieldwork; 

3) the processing and analysis of that evidence and its 
interpretation in the light of the original idea to be tested; 

4) the publication of the results in journal articles, books 
(1991:61). 

Having posed a range of problems above in both pre- and post-site 

assessment stages, a series of excavations were carried out both at the 
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wreck and on the engine in the laboratory during the period 1985-1995. 

These combined with a detailed archival study conducted in the period 

1984-1990, focussing on Broadhurst (McCarthy, 1990), to encompass 

Renfrew and Bahn' s first and second steps. The results of these inquiries 

were gradually synthesised and appraised against alternative 

reconstructions as each phase of excavation came to a close, to culminate 

in Renfrew and Bahn' s third step; the equivalent of Muckelroy' s stage of 

data analysis and low-level interpretation. The articulation of the 

cultural implications of the study satisfies Renfrew and Bahn' s stage 

three, or what Muckelroy describes as 'high-level interpretation'. 

Publication, Renfrew and Bahn's stage four, has been on-going, 

commencing in 1985. As an indication of progress in this stage; 

publications (including popular offerings, film and video) are 

reproduced in Appendix 1. 

Notwithstanding the on-going process of publication, the re-working 

of the Xantho problem domains through time is consistent with the 

notion that 'feed-back and constant reassessment' is required over the 

life of any archaeological project (Binford 1972: 159). is also 

generally recognised that each of the stages above can be 'repeated and 

re-worked in the light of subsequent investigations' (Muckelroy, 

1978:249). Where logistical problems and conservation processes serve 

to ensure the longevity of a complex project, this will eventually prove 

to be one of the strengths of shipwreck excavations (Muckelroy, 

1978:249). 

Description and analysis 

As the first iron steamship to be systematically analysed and 

excavated in a combined maritime archaeological/materials conservation 

study, the Xantho investigation arguably provides an important 
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springboard for future shipwreck studies; whether of wood, iron or its 

derivative, $teel. With respect to what I believed must be an essential 

link between maritime archaeologists and material conservators in the 

inspection and analysis, surveying, excavation and management of iron 

and steam shipwrecks (and maritime archaeological sites generally), I 

advocated that 

If you accept that we are the temporary custodians of the 
artefacts under our care, i.e. the ships, vessels, coinage 
and everything else that comes under our control, then 
there is no room for a dichotomy between conservators 
and archaeologists when dealing with the same material ... 
[they] ... should be involved together on the excavation 
underwater and in the conservation process above 
water ... [in order] to extract the greatest possible amount 
of data from the artefact, not just archaeological and 
historical, but physical, chemical and biological. ... With 
this in mind, archaeologists and conservators are bound to 
be a group together from the beginning to the end of a 
project.. .. The work that we have done on the SS Xantho 
is very much a reflection of these philosophies 
(McCarthy, 1987:9). 

The Xantho project represents a linking of conservation specialists 

and archaeologists underwater at an iron shipwreck, not just for 

environmental or artefact conservation purposes, also 

archaeological aims in mind. The pre-disturbance survey and the 

successful recovery of the heavily-concreted Xantho engine, the first 

attempted from a saline, heavily oxygenated warm-water, environment, 

are significant developments in maritime archaeology and conservation 

science. 

Another feature of the Xantho program, in the wake of others such as 

Bass (1967), has been the number of specialists that have been drawn 

together to generate information from the site. These include practising 

steam engineers, model engine-makers, corrosion specialists, biologists, 

naval architects and other technical specialists. This 'maximisation 

strategy' is a feature of any modern complex maritime archaeological 
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study e.g., the Monitor project (Watts, 1987). It has also been employed 

in my research at the wreck of the wooden-hulled VOC ship Zuytdorp 

(1702-1711) and its adjacent sites, where is believed that the 

survivors intermingled with local Aboriginal people. On the Zuytdo rp, 

for example, I have developed and facilitated (in association with Phillip 

Playford) a team involving a geologist, conservators, pre-historians, 

anthropologists, geneticists, cartographers, surveyors and a specialist in

water team. (e.g. Bowdler 1990; Playford 1959; McCarthy, 1993; 

Morse, 1988:37-40; Weaver, 1994)· The same approach characterises 

my excavation of the less-complex Albany Town Jetty (Garratt, 

McCarthy, Richards and Wolfe, 1995). 

Though a commonsense approach, the strategy has been slow to 

receive the general recognition it requires. In 1983, for example, it was 

noted that the ' ... multidisciplinary approach is long overdue. Little is 

known about the environmental impact on wrecks ... ' (Murphy, 

1983: 80). The following comment, published only a few years ago in 

the IJNA, attests to the sad fact that it was still not standard-practice by 

1992. It also illustrates the reasons why a 'maximisation strategy' 

essential in maritime archaeology generally 

No one individual has sufficient knowledge to identify 
precisely all the interconnections represented in the complex 
archaeological site environments, so specialists from other 
disciplines must be enlisted. Initiatives taken to involve 
other disciplines in archaeology underwater are to be 
applauded as, although there is a recognized need, it is not 
always achieved effectively (Oxley, 1992:108). 

In utilising the interdisciplinary work of the specialists in the team, I 

will also focus on site formation processes at the Xantho and on iron 

ships generally. This builds on Keith Muckelroy' s site formation 

analyses (1978:157-214) and on John Riley's 'waterline' theory of iron 

ship disintegration (Riley, 1988a). 
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With respect to the Xantho engine, it will be shown that it is possible 

to obtain useful technical information from heavily-concreted marine 

engines. This is an important development, as it was once believed that 

only machinery recovered from a relatively non-corrosive environment 

would yield such information. Excavated ship's engines will be shown to 

match hull form or rigging details in the breadth of technical detail that 

they can provide. Finally, in leading into the next section dealing with 

explanation in maritime archaeology, it will become evident that when 

analysing the behaviour of those who owned and operated ships of the 

past, attention can now be paid, not only to the hull, fixtures, fittings 

and contents of each ship (e.g. its cargo, personal items, the crew's 

accoutrements and the like) but also to the form of propulsion. It will be 

shown that an examination of the interior of a ship's machinery has the 

potential to provide unbiased information on how a particular ship was 

operated and maintained, in comparison to how it was believed to be. 

Explanation 

Much of human 'achievement' over the last few thousand years has 

been associated with sea transport. Over the last one hundred and fifty 

years, a large portion of this has been through the use of iron vessels 

and steamships. 

Though iron and steam shipwrecks like the Xantho are sites of 

considerable complexity, consistent behavioural patterns may be 

inferred, for example about the owner Charles Edward Broadhurst. 

Patterns are suggested from evidence in the archives; these can be tested 

with the evidence taken from the wreck and further refined with 

evidence from the conservation laboratory. 

I attempt to keep the general aims of processual archaeology foremost 

in my strategy and additionally to make the processes of archaeological 
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reasoning more explicit to reach a clearer view of explanation ( cf. 

Renfrew, 1982:1). 

The period covered by the Xantho study has seen consolidation of 

processual archaeology, a vigorous fight-back from some historical 

particularists (e.g. Courbin, 1988) and the growth of the 'shipwreck 

anthropology' movement (e.g. Gould, 1983). More recently we have 

seen the application of post-processual approaches in maritime 

archaeology (as noted by Gibbins, 1992: 82-4), in some of the papers 

prepared for the 1990 Society for Historical Archaeology Conference in 

Tucson, Arizona (Carrell, 1990). 

It is clear that agreement may not be reached about explanation, no 

matter how clear the processes of explanation are. This is well 

articulated by Renfrew, who notes 

An essential characteristic of what is today called 
"processual archaeology" is the intention to seek 
explanations for the archaeological record of the past in 
terms of valid general statements, which manage to avoid 
the particularism of some schools of historical 
explanation. Yet despite these widely acknowledged aims, 
there is very little agreement about explanation itself, about 
what constitutes a meaningful explanation, or about 
appropriate ways of validating or testing explanations that 
have been offered (1982:5). 

Richard Watson summarised the dilemma faced by those operating on 

anything but a descriptive/analytical level when he noted that 

The harder it is to confirm or disconfirm hypotheses about 
a subject matter, the more interpretations can be given of it 
(1990:73). 

This is an important issue, because the difficulty experienced by 

anthropologists in coming to a consensus about research strategies, 

validation and processes of explanation (e.g. Bintliff, 1992: 111-113; 

Courbin, 1988; Gould, 1990:225-226; Thomas and Tilley, 1992: 106-
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110) has led many in maritime archaeology to spurn theoretical debate 

(e.g. Green, 1990:240). 

To point to the transient nature of theoretical approaches, however, 

and to then dismiss them as passing fashions, will inevitably have a 

'dampening effect on the growth of knowledge within archaeology in 

general', however (Binford, 1989: xiii). As Bintliff stated of the 

progress of archaeological debate in contemporary times 

Rather than proceeding in a cumulative fashion, deepening 
our theoretical perspective's, we seem instead to write off 
the research aims and achievements of each preceding 
decade (1991: 274). 

Understanding the debate is important; engaging in it is useful 

provided we can build upon what has gone before. I therefore reject the 

'traditional' maritime archaeological position on the lack of value of 

debate in archaeology. As a result, I will attempt to move beyond the 

relatively safe ground of particularist description and analysis in 

maritime archaeology to actively seek explanation. 

Terminology is an important issue. In a self-evident, but little-heeded 

statement, Renfrew (1982:8) stated that 'the aims of explanation may be 

described, without initial reference to any explicit methodology, as to 

make intelligible'. Lack of credibility occurs (as identified by 

practitioners like Gould (1990:15-16) when counter-productive and 

jargon-ridden, epistemological argument is overtly used. The question 

'how can alternative groups have access to a past that is locked up both 

intellectually and institutionally' (Hodder, 1991 :9) is well put with 

respect to the need to avoid cabbalistic language, the 'disease of 

immature and growing disciplines' (Clarke, 1968:24). 

The need to make debate 'open' in future maritime archaeological 

discourse is essential given that so many specialists seek access to our 
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data; e.g. historians, historical archaeologists, site managers, 

economists, conservators, biologists and not the least anthropologists. In 

maritime archaeology, because of the 'traditionalist' legacy, we have a 

unique opportunity to keep language simple and the discourse 'open' 

the future. 

With respect to explanation, it has become apparent that the 

emergence of anthropologically-based shipwreck studies, without a 

large data base on which to build, is a potential stumbling block for iron 

and steam shipwreck studies specifically, and for maritime archaeology 

generally. Bass (1983:103) was particularly adamant about this 

Based on ... [restrictive research designs] ... , as well as on 
the excavation reports published by anthropologically 
oriented archaeologists who must hire archivists and 
historians to interpret their catalogues of finds, I suggest 
strongly that wrecks of all periods be left to particularist 
archaeologists who have a proven record of gaining the 
most knowledge from wrecks. 

Green is of a similar opinion (1990:235) and Noel Hume has noted 

There are two essential requirements, the ability and 
experience to dig correctly and a thorough knowledge of 
the history and objects of the period of the site being dug 
(1975:15). 

In a sense, traditional or particularist archaeology is thereby defended 

and is seen to be of the utmost value as a necessary foundation for 

explanation. 

The need for a broad artefactual and technological data base 

generated by particularist approaches regularly surfaces. It is especially 

evident when scholars attempt to make general conclusions from too 

small a sample. An example includes the anthropologically-based 

discussion about the hull fastenings on the wreck of the wooden-hulled 

La Trinidad Valencera (?-1588). This built on earlier conclusions about 
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the 'mass-produced' nature of the ship, the processes of corrosion and 

the deterioration in hull strength that led to the loss of the ship ( cf. 

Gould, 1983:126-128). Studies on ship's fastenings (e.g. McCarthy, 

1983), are arguably too few for maritime archaeologists or 

anthropologists to generalise with safety on this subject. Indeed as Gould 

noted (1990:56-59), there was a lack of sufficient data on which to 

establish a base to validate the general inferences. He states that 

The problem with explaining the wreck of La Trinidad 
Valencera is that we have too many competing ideas about 
how it may have come about and no clear framework yet 
for choosing the most convincing of them (Gould, 
1990:59). 

This aside, given that the full spectrum of a ship's activities are 

deposited initially as a discrete unit on a sea-bed matrix, a wreck site 

provides a unique opportunity to infer related behaviours when 

adopting the anthropological approach. If relevant controls are used to 

control for post-depositional effects, the behavioural systems can be 

successfully identified (Schiffer, 1976:12-19; Muckelroy, 1978:157-

214). 

I now address the problem of using historical documentation 

alongside the archaeological record (cf. Little, 1992). It is 

acknowledged that the available historical record for people like 

Broadhurst is biased towards success, as a result of individual and 

familial forces and possibly to Victorian and post-Victorian perceptions 

of respectability. A useful concept which aims to come to grips with 

subjective skewing of the record is the notion of 'organizational 

behavior'. This is the 'conceptual category for the activities that have 

structured the ethnographic record, the documentary record and the 

archaeological record' (Potter, 1992: 10). Here we focus on, and take 

note of, the reasons why documents were created in the first place and 
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the role of 'organisational behaviour' 1n structuring or preserving 

documents. 

With respect to the need to use archaeological evidence and written 

material as both complementary and potentially conflicting data bases, 

the following truism is kept in mind 

The archaeological record and the documentary record are 
both imperfect representations of the same underlying 
reality ... (Potter, 1992: 10). 

As a result of these understandings, I will use the archival record as 

both an independent data base and as a source for generating alternative 

hypotheses about nautical behaviours and about Broadhurst ( the 

individual) which may be tested through the application of 

archaeological data. To a lesser extent, I will also refer to oral histories 

as a useful insight into Broadhurst and his activities. 

The application of low, middle and high level theory to data 

gathering and analyses, is required in shipwreck studies. Muckelroy 

(1978: 249) and Trigger (1989:19-24) categorise low level theory as 

'empirical research with generalizations'. This includes the examination 

and analysis of the physical features of a site and the analyses of the 

artefactual assemblages. These are the descriptive studies that provide 

the data base. Much of the work conducted by the conservators, 

engineers, biologists and myself in the pre-1987 period at the Xantho 

may be categorised as such. 

Middle level theory describes 'generalizations that attempt to account 

for the regularities that occur between two or more sets of variables in 

multiple instances' (Trigger, 1989:20). This largely involves the 

archaeologist making behavioural-material correlates. It should be noted 

that Muckelroy made no provision for mid-level theory in his schematic 

analysis (1978:249). is at this point that the paucity of genuine 
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behavioural modelling in maritime archaeology becomes most apparent. 

The term has also come to encompass the study of site formation 

processes (e.g. Gibbins, 1992:82-85; Anuskiewicz, 1990: 93-99). This is 

of relevance to the study of the regularities of ship disintegration 

will build on in succeeding chapters (cf. Riley 1988; Muckelroy 1978: 

Ch. 5). 

Trigger's high level theory describes 'abstract rules that explain the 

relationships among the theoretical propositions that are relevant for 

understanding major categories of phenomena' (1989:21). Bass has 

argued that social scientists rarely have the required command of lower 

order data on which to build higher order inferences in maritime 

archaeology, let alone to tap into competing theories of 'social order'. 

To remedy this, I believe that expertise in shipwreck studies at the 

descriptive and analytical levels, should be augmented by a broader 

grounding in the behavioural sciences and the forging of strong links 

with the appropriate specialists. This would ensure in terms of research 

orientation that anthropologically-oriented analyses would be articulated 

early on as part of the original research design so data recovery 

may be relevant to the questions and hypotheses raised. 

Finally, it must be noted that the Xantho project is museum-based, 

causing it to have a strong public emphasis and to encompass the 

collection, research, education and exhibition ethos of museum studies, 

generally. 
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CHAPTER 3: 

XANTHO HISTORICAL AND TECHNOLOGICAL CONTEXT 

In order to explain the significance of any historic archaeological site 

it is necessary to place it in its social, economic and technological 

context. The site then also needs to be compared with similar sites in 

order to qualify and quantify any variance found. 

In the Xantho instance it is necessary to examine the state of marine 

engineering and iron shipbuilding up to, and just beyond, the period 

when Xantho was built and when it was re-fitted as a screw-steamer. 

These two analyses will enable us to form a picture of what is to be 

expected at the wreck of any iron ship of the period. Shipping on the 

Western Australian coast will then be examined in order to place the 

features found on the wreck into a regional economic and colonial 

framework and again to account for any variance found. An 

examination of Charles Broadhurst' s entrepreneurial activities taken 

from evidence in the archives will then follow in order to ascertain the 

place of Xantho within his business empire and also to gain some 

insights into his operations. 

In a later chapter, these various findings will be tested with the 

evidence taken from the wreck and further refined with evidence from 

the conservation laboratory. 

The iron ship 

An iron hull can be expected on any wrecksite formed in 1872 when 

Xantho was lost; for iron had been in use as a shipbuilding medium for 

over a half a century and it was soon to be superseded by steel ( cf. 

Corlett, 1970; Grantham, 1859; Thearle, 1886). What is of significance 

is the reason why Broadhurst would opt for an iron hull in preference 
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to the traditional wooden hulls then in use on the Western Australian 

colonial frontier. 

Though there are examples of iron boat-building dating to the late 

18th century (cf. Grantham, 1859: 6), the first self-propelled iron vessel 

was the 32 metre long, side paddle-steamer Aaron Manby, fabricated in 

Staffordshire, England. It appeared in 1820 and was sent to London in 

parts where it was constructed on the dock. From there it steamed to Le 

Havre and from there on to Paris with a cargo. More vessels were built 

for use in British waters and in 1823 one was sent for use on the 1832 

Niger expedition. In 1832 Maudslay Sons and Field constructed four 36-

metre long (270-ton) iron steamers for use on the River Ganges in 

India. 1 This was followed by the launch of a c. 250-ton steamer, which 

was sent to America in pieces. The first iron vessel in which water tight 

bulkheads were fitted was produced in 1834 for use in Ireland. This was 

an important development, keeping some sections of the vessel dry when 

others were holed or began to leak. In 1838 the 260-ton ship-rigged 

sailing vessel Ironsides became the first large iron sailing vessel to be 

employed for sea voyages (Grantham, 1859:13-14). 

Of significance in this attempt is the fact that many of these early 

vessels were heavily built, mainly because the properties of iron in sheet 

form were not well understood. Of equal significance was the early 

appearance of water tight bulkheads and the rapid spread of the practice 

of building quite large vessels in widely dispersed regions of the world. 

A considerable amount of research was undertaken at the time on the 

benefits of the new technologies. One report examined the possibilities 

of applying the new technology in the construction of the Great Britain 

which was launched a few years before Xantho. This report (Corlett, 

1 Tonnage Appendix 2 contains a distillation of the term as it applies to shipping. The term ton can 
refer to space and weight in a maritime context. With respect to weight or mass, the ton=l016 kg. One 
tonne=lOOO kg=0.984 tons. The unit is left as per the original and a metric equivalent is not given. 
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1970: 27-28) indicated that iron afforded better strength, buoyancy and 

capacity at less expense than wood. Other advantages such as freedom 

from dry rot, less upkeep, reduced damage on grounding and the 

elimination of bilge water stench were also mooted. being stronger, 

yet less bulky, much more space was available for cargo. It was 

estimated, for example, that the use of iron instead of wood increased 

the potential carrying capacity of the Great Britain by 600 tons or 

24,000 cubic feet (Corlett, 1970: 27-28). It has been also estimated that 

the weight of an unladen wooden ship amounted to between 46-50% of 

its displacement, whereas in iron it amounted to only half that figure 

(Doeffer, 1981 :326). The greatest disadvantage was seen to be fouling 

with weed and animal growth, a phenomenon which dramatically 

reduced the vessel's speed. The Great Britain report under-estimated 

this factor and the length of time it would take to solve the problem. 

Though the iron hull theoretically presented a large number of 

advantages to those willing to experiment with it, when the decision was 

taken to use iron in the Great Britain its builder, Brunel, knew little of 

the practicalities required for its construction (cf. Corlett, 1970). 

Despite this, the eventual success of the Great Britain, and its publicised 

prolonged stranding and eventual salvage in 1846/7, helped cement the 

place of the iron hull as a viable shipbuilding medium. With iron 

shipbuilding establishments busy on the Clyde, Thames, Mersey, the 

Baltic and probably throughout the Continent, it becomes difficult to 

follow the history of individual iron ships. We can note that when 

Xantho was built in 1848, this was still a period of considerable 

technological experimentation in iron shipbuilding. 

In August 1843 Lloyd's, the British Association of Underwriters, 

began to collect information from their surveyors on iron ships. In 

January 1844 Lloyd's issued a notice stating that iron ships would be 
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entered into the register with the character A 1 provided that they were 

built under the supervision of the Society's surveyors (Annals of 

Lloyd's Register, 1884: 76). They also had to be of good workmanship 

with 'substantial materials' and were to be surveyed on an ........... JL,, ......... " basis. 

This enabled the vessels, and equally importantly their cargoes, to be 

insured. The first iron vessel classified thus was the Marseilles owned, 

iron steamer Sirius, which was built in London in 1837 (Annals of 

Lloyd's Register, 1884:76). 

It was soon realised that, with a few exceptions, the iron ship was 

superior to equivalent vessels built of wood (Fincham, 1851: 78). 

The iron ship of this experimental period generally had a series of 

transverse frames in the form of single angle iron and later Z shaped 

bars which carried the deck beams. This was, in effect, the application 

of European wooden shipbuilding tradition to the medium of iron. 

Lengthwise strength was provided by skin plating, decks, stringers and 

the keel (Figure 12 a). They were built, as a result, in the same fashion 

as a wooden ship, with ribs (frames) onto which the deck beams and 

longitudinal planks were attached. Plates were u ...... ,, ............. cases, 

including the Xantho, these were applied in clinker (clincher) fashion. 

In the best circumstances tapered liners were used to fill the ensuing gap 

between the plate and the frames (Figure 12b, 3rd from left). This 

contrasts with wooden ships where planks were fitted against each other, 

flush to the frames, with only smaller vessels being clinker-built. 
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Figure 12a: Framing systems on early nineteenth century 
iron ships (Westcott Abell, 1948;124). 

Figure 12b: Plating systems on early nineteenth century 
iron ships (Thearle, 1886: Plate 11). The Clinker System is 
third from the left · 
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Experimentation continued and much of it was scrutinised by other 

shipbuilders and the insurance industry, generally. Though the 

underwriters (insurers) had established a series of standards for type 

and scantlings (sizes) of materials used in wooden shipbuilding over 

years, by 1855 (seven years after the Xantho was built) Lloyd's had still 

not specified scantlings or mode of construction for iron ships. The 

following excerpt from the Register Book for 1855 illustrates this point 

Considering that iron shipbuilding is yet in its infancy and 
that there are no well-understood general rules for 
building Iron Ships, the Committee have not deemed it 
desirable to frame a scheme compelling the adoption of a 
particular form or mode of construction ... (Reproduced in 
Annals of Lloyd's Register, 1884:77). 

The clinker system of applying hull plating, as used on the Xantho, 

was superseded by the 'in and out' or 'alternative' plating system shown 

on the SS Colac (1886-1910) in Figure 13, below. There were obvious 

reasons for the rapid acceptance of the latter method as can be gauged 

from the following comment 

There was however, a serious objection to clinker
plating. Between each plate and the frame running across 
it there was a triangular gap which had to be filled before 
the rivets joining the outer plate and the frame could be 
hammered up; a rivet can be made good only if there is no 
'spring' between the parts to be connected. On occasion, 
ill-fitting washers were fitted in the gap around the rivets, 
but more usually a tapered 'liner' (a narrow strip of plate 
to fill in between a frame and an outer strake), was used. 
Such liners were difficult to make, and commonly not 
very well made (Robb, 1978: 357). 

On the other hand, the longitudinal system of lengthwise girders and 

partial and main bulkheads, which became a feature of 20th century 

shipbuilding (Figure 12a), was less quickly accepted (Westcott-Abell, 

1948: 87-111). 
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Figure 13 a &b: Hull plating on SS Colac (1895-1910). The 
'in and out' system is clearly visible. Photographs by M. 
McCarthy. 

Xantho was built at a time before enough data was available to allow 

the iron shipbuilding industry to specify hull thicknesses and building 

method. It was, as a result, a product of mid-nineteenth century 

experimentation with metallic hulls. Being clinker built the hull had an 
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acknowledged inherent weakness should it be subject to inordinate 

stresses during its working life. 

There were clearly distinct advantages Broadhurst purchasing a 

ship built of iron. These were enumerated by the engineer John 

Grantham thus 

1 . strength combined with lightness 
2. great capacity for stowage 
3. safety 
4. speed 
5 . durability 
6. economy in repairs 
7. cost 
8. draught of water (1859:86) 

The question still remains, however, whether Xantho was suitable for 

the purposes intended by Broadhurst. 

In order to address this question and to be able to characterise the 

scantlings of the iron used in the building of the Xantho and other ships 

constructed in the period before rules for iron hulls were promulgated, 

we need to examine the evidence available from both extant 

contemporary hulls and from the builder's specifications described in 

the early literature. 

SS Great Britain (built 1843) was clinker-built and had relatively 

thick garboard plates of 11/16 of an inch (17mm), 1 bilge and side plates 

of 10/16 of an inch ( 15mm) and upper decks and gunwales of 6/16 inch 

thickness (9.5mm). Another museum ship, Star of India (built 1863), 

was also very heavily built. Its entire bottom to the turn of the bilge was 

built of 1 inch (25mm) thick plates and from there the plates ranged 

from 12/16 (19mm) to 10/16 inch (16mm) plating (Wall, 1978:33; 

Reynard, 1979). Partly due to this over-building, far in excess of the 

1 An inch is 25.4 mm. Where a vessel is built in feet or inches, the original term is used traditionally 
in maritime archaeology, with the notation of the type of foot or inch; e.g. the Amsterdam or British 
foot. Metric equivalents are given when necessary. In this thesis the British foot of 12 inches (12") is 
used. 
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sizes later recommended, both of these ocean-going vessels are extant 

and in fact the Star of India is still afloat. 

At the opposite end of the scale at time, were small river 

steamers described by Grantham (1859:187-191). Some these 

hull plating of only a maximum of 4/16 inch (6mm) thick (see scantlings 

for two London river steamers reproduced in Appendix 3). Though 

Lloyd's rules were in operation by 1855, there was considerable 

variation in the scantlings of vessels built in the period. This was not 

only as a result of differences in the overall size of the vessels, but was 

also due to their operating parameters. Grantham, for example, actually 

advises that variations to Lloyd's new rules were justifiable and gives 

examples of successful vessels and their scantlings to support his 

argument. In some instances, notably river steamers, he advocates 

scantlings lighter than those sanctioned by Lloyd's (e.g. Grantham, 

1859: 186-187). 

In general, ocean-going steamers were normally of heavy 

construction due to their size and operating parameters. River-steamers 

were noticeably of smaller scantlings, due again to smaller size and 

operating parameters. Sometimes these scantlings were less than those 

advocated by Lloyd's. This is of relevance when we come to examine 

the Xantho. 

Steel began to replace iron as a shipbuilding medium after the 

invention of the Bessemer converter in 1856 and more rapidly after the 

Siemens process was initiated in 1866 (Tylecote, 1976: Chapter 10). It 

allowed for a further reduction of scantlings and hence weight, with a 

subsequent rise in carrying capacity. Though initially proving 

expensive, by 1880 it was only 50% more expensive than iron and by 

1891 down to 10%, with Lloyd's first rules appearing in 1888 (Corlett, 

1970:219). Showing considerable economic efficiencies due to the 
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reduction in scantlings and vessel weight, steel replaced iron as a 

shipbuilding medium and iron ships were not built in quantity after that 

time. Figure 14 illustrates the peak iron shipbuilding, as measured by 

tonnage at around 1890, with a rapid falling off after that time. The 

figure also illustrates the fact that the iron-hulled vessels 

Xantho, represented only a very small percentage of the tonnage of 

European shipping, making them of further interest. 

Figure 14: A graph of the tonnage of wooden, iron and 
steels ships built in the period 1820-1970 (Corlett, 
1979:281). 
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Therefore, a ship built during the period 1840-1880 can be expected 

to be built of either of iron or wood, but not of steel. If built early in 

the iron period (i.e. before 1850), it can be expected to differ from 
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ships built after the advent of general rules for iron shipbuilding. This 

may include hull plating techniques, frame, keel and support structure 

form, hull thicknesses and general scantling sizes. Early river or inland

water steamers were generally built with small scantlings due to 

operating parameters and they are expected to differ from Lloyd's 

rules, if the recommendations of influential iron shipbuilders such as 

John Grantham were followed. An analysis of his recommendations 

shows that they were often built to smaller scantlings than those allowed 

by the underwriters in later years. Their suitability for prolonged use at 

sea is then clearly bought into question. 

Engines and ancillary machinery 

The Xantho was first built as a paddle steamer and was then 

converted to screw propulsion. It was powered by a number of boilers, 

marine engines and ancillary machinery throughout its 23-year career. 

In understanding the machinery found on the wreck it is necessary to 

put its machinery into its engineering context (cf. Bourne, 1858; 

Jamieson, 1897; Guthrie, 1971) 

Xantho was built forty years after the first successful attempt to 

operate commercially viable steam vessels in America and Britain 

(Fincham, 1851: 288; Guthrie, 1971:37). Early marine engines were a 

bulky and heavy apparatus which reduced the capacity to carry cargo. 

The numerous working parts made the engines difficult to operate and 

expensive to maintain. Reduction of the weight and the space required 

for the engine-room became a prime consideration for early marine 

engineers. The disadvantages of early engines, such as the side-lever 

type, saw the development of the direct-acting marine engine with 

cylinders placed in various configurations immediately below the paddle 

shaft. The fore runner of configuration, the Gorgon engine, though 
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reducing space and weight, had problems due to the short connecting 

rods acting at an angle to the piston movement. Increased wear was a 

major problem. To remedy this situation types such as the steeple engine 

(as originally fitted to paddle steamer (PS) Xantho in 1848) were 

The steeple engine employed a long connecting rod passing vertically 

out of the cylinder, up past the crankshaft and then vertically back down 

to connect with it, thus avoiding the problems of angular thrust as in the 

case of the direct acting Gorgon Engine. 1 Open-top cylinders were also 

introduced at this time, allowing the attachment of long connecting rods 

close to the pistons themselves. These were all vertical engines, with the 

paddle shaft above the cylinder(s). 

Other variations such as the Oscillating Engine also came into vogue. 

With this engine the cylinders swung ( oscillated) on trunnions (bearers) 

keeping the angle of the piston constant to the line of the connecting 

rod. This eliminated the need for the long connecting rod used to reduce 

angular thrust. Being compact, these became a very popular engine, 

especially for paddle steamers. One of the earliest known sets of 

Oscillating Engines was fitted the first steamer, aron 

Manby in 1822 (Grantham, 1859:9). The oscillating engine was 

perfected for use in paddle propulsion by the firms ~audslay, Field and 

Son, of London and John Penn and Son· of Greenwich. The diagonal 

direct acting engine was added in the late 19th century and the two 

became the dominant types which took paddle propulsion into the 20th 

century (Yeo, 1894:4) 

Thus though Xantho was built in the formative years of iron 

shipbuilding, its paddle engines were of a common and proven form. It 

1 Engine: One cylinder was usually referred to as an 'engine'. If a particular piece of machinery had two 
cylinders it was often referred to as being or having 'two engines'. Later a machine with two or more 
cylinders was referred to as a ship's 'engines'. Gradually the term 'engine' referred to a piece of 
machinery with any number of cylinders. 
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was altered from paddle-propulsion to screw-propulsion in 1872 and it 

is to that transition in form of propulsion we now turn. 

The successful demonstration of the use of a screw (propeller), by the 

Ship Propeller Company's SS Archimedes 1839, attaining a speed of 

9 knots,1 sparked an interest in the screw as a viable means of ship 

propulsion. It was not, however, until after the Admiralty trials in 1845 

that the mechanical efficiency of the screw over the paddle was 

conclusively proved. From a naval point of view the advantages of the 

screw for war vessels were acknowledged at once, clearly illustrating 

the influence of warfare on technological innovation. Paddles had the 

disadvantage of causing reduction in the deck space available for the 

mounting of cannon. Roll in heavy seas posed considerable problems. 

Additionally a ship was less vulnerable to shot with the screw located 

below the water line as opposed to paddles exposed above it. The entire 

side of a screw-propelled vessel could be placed alongside a jetty or 

wharf in comparison with a 'side wheeler' and there was less danger 

while there of damaging the paddles against those structures. Finally, in 

placing the engines at the stern and not amidships, as was case 

the paddle-driven vessel, there were considerable gains to be made with 

the location of cargo holds amidships and the reduction in the number 

of cranes and derricks needed (Smith, 1937:217). 

Until Rankine produced his theory of propeller action in the mid-

1860s, thereby providing the basis for understanding the operation of 

the screw, the development of the screw was described as being 'totally 

empirical, intuitive and in some cases fortuitous' (Corlett, 1993: 102). 

After then it was based on scientific principles. The following quote 

illustrates this process 

1 The knot refers to the number of nautical miles travelled per hour. The nautical mile (1853m.) is fixed 
at a minute of latitude and hence the knot is a term still in use today. 
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By 1865, as far as the propulsive side was concerned, 
there was little to be done with screw propulsion except to 
refine it...1840-1865 was truly a golden age for the 
development of the modern ship and for screw propulsion 
in particular. (Corlett, 1993: 104) 

Early steamships invariably carried masts and spars on which to 

carry sails, allowing their masters to revert to sail propulsion m 

favourable conditions. Drag of the propeller then became a major 

concern. In these cases, an arrangement could be made whereby the 

screw could be disconnected and raised out of the water to counteract 

the resultant drag. On the other hand, a 'dog-clutch' (enabling the 

propeller to be disconnected from the engine, and thereby 'freewheel' in 

the vessel's wake), was often fitted if the screw was to be left immersed. 

Sometimes engines wen~ fitted on sailing vessels for use as auxiliary 

propulsion where the wind was fickle or contrary. Thus a nineteenth 

century steamship could be found fitted with auxiliary sails, and sailing 

vessels, notably private 'yachts' or other specialist craft, could be found 

with auxiliary engines. All can be found in the literature, registers and 

archives under the designation 'steamer', however. 

In order to drive the new breed of screw-driven ships, engmeers 

originally attempted to adapt existing paddle engines to drive the 

screws. 1 This caused considerable problems, as the screw required a 

greater speed of rotation (revolutions) than the paddle. To obtain the 

higher revolutions, engineers employed a system of gearing to increase 

the speed of the slow running paddle engines. The system was noisy, 

inefficient and prone to failure. Figure 15 shows the gearing on the 

engine of the SS Royal Shepherd (1853-1890) and the positioning of the 

direct-acting engine immediately below the crankshaft. 

1The term SS is generally used to indicate a screw steamer. TSS indicates a twin screw steamer. MV 
indicates an engine driven vessel. The term 'propeller' as used in contemporary North American 
literature is defined on page 31. 
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Figure 15: The stern section of the wreck of the SS Royal Shepherd showing 
gearing and the vertical oscillating engine. By John Riley (Riley, 1988b: 
144). 
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A gradual trend away from low pressure, low revolution, geared 

screw engines to specifically built, high revolution screw engines then 

occurred. Although not without problems, an early tendency towards 

horizontal engines was reinforced in 185 8 when an Admiralty 

Committee, seeking to find a satisfactory engine for naval purposes, 

decided in favour of horizontal engines because they could be kept low 

in the ship away from enemy fire. The horizontal types that the 

committee identified as being superior to the older types were the 

direct-acting engine, the double trunk engine, patented by a consortium 

including John Penn (Patents for Inventions, 1855) and the return

connecting-rod engine made by Maudslay, Son and Field (Smith, 
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1937: 146). The return-connecting-rod Engine was, in effect, a vertical 

steeple engine in horizontal form. 

Figure 16: A schematic representation of two horizontal screw engines. The upper 
diagram shows the arrangement of a direct-acting engine and the lower, a retum
connecting-rod engine. Note the direction of rotation (Yeo, 1894:54). 

The advantages of the new engine types were summarised by 

professional marine engineers Sennett and Oram, thus 

The majority of steamers, both war and mercantile, built 
during the years 1850-60, were fitted with horizontal 
screw propeller engines working with steam of from 20-
25 pounds pressure per square inch. The engines had jet 
injection condensers and were not remarkable for 
economy and fuel, but were much lighter and occupied 
considerably less space than the paddle wheel engines that 
preceded them (1918:10) .1 

1 Pressure was generally referred to as pounds per square inch (psi). In order to effect a conversion, one 
atmosphere is c. 15 psi. 2.2 pounds equals one kilogram (kg). The units are kept as per the originals. 
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Indicating a personal preference for the trunk engine, the engineer 

Burgh noted 

The horizontal arrangement for screw engines has many 
originators, many friends, and of course, naturally the 
usual amount of enemies. The object sought after with the 
type in question is compactness of arrangement, with free 
space above the cylinders and condensers. The double 
trunk engines ...... (as built by Messrs. Penn) combines 
simplicity of connection (piston to crank) and access for 
repair, with superlative design and arrangement 
(1869:41). 

The trunk engine (Figure 17, below) was a very compact, direct

acting type. It was designed to allow for the use of a relatively long 

connecting rod joined directly to the piston via a hollow trunk, which 

projected through both ends of the cylinder. By the end of the century, 

the engineer Andrew Jamieson noted that the engine was then outmoded 

partly as a result of the excessive friction at the stuffing-boxes and heat 

losses on the exposed trunks (Jamieson, 1897: 214-215). He also noted 

that the engine was designed to rotate in a particular direction in order 

to minimise wear on the under-surface of the piston. His comments are 

reproduced in full in Appendix 4. 

The trunk engine type was built from 1846 to 187 5. It proved very 

expensive to operate due to the inefficiencies noted above, using an 

average of 4-5 pounds (2-2.5 kg) of coal per indicated-horsepower-hour 

(Corlett, 1993: 97). 1 This was a high rate of energy consumption and 

the only real niche for an engine of this type was in naval service due to 

its ability to be built as a compact unit able to be kept below the water

line, away from shot and shell (Banbury, 1971: 227-229). For example 

the Himalaya, which was built for mercantile use in 1853 with a 2500 

1 Horsevower: is a measure of the engine's capacity for work and it is recorded as Horsepower, (HP), 
Indicated Horsepower (IHP) or Nominal Horsepower (NHP). Rivett, (nd: 52-5), reproduced in Appendix 
2 provides a useful synthesis of these three indicators of engine capacity. 
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horse power trunk engine, soon reverted to naval service as a troop ship 

having strategic (as opposed to economic) value by virtue of its size and 

mode of engineering (Guthrie, 1971:112-115; Engineer, 1898: 254, 

350). 

Figure 17: A trunk engine, showing the cylinder, trunk, condenser and air
pump (Jamieson, 1897: 214). Note the long rods from the piston crossing the 
mid-line of the vessel to the condenser air pump. 
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The trunk engine and the return-connecting-rod Engine eventually 

fell out of use due to their inefficiencies. Engines then came to be 

aligned in the vertical position, especially in the merchant marine, 

where there was no need to keep the engine below the waterline. Being 

vertical and easily accessible on all sides, they became favoured for 

their ease of maintenance. They were soon fitted to numerous ships, 

becoming known as the vertically-inverted engine. This name refers to 

the fact that though in the earlier vertical engines the cylinders were 

located below the crankshaft at the bottom of the ship (as shown in 

Figure 15 above), in later engines the cylinders were located above the 

shaft. Although the vertical engine was immediately seen to possess 

72 



many practical advantages for merchant vessels, it was not introduced 

readily into the Royal Navy due to the necessity to keep machinery 

below the water line. Thus the horizontal screw engine experienced its 

last popular usage within the framework and requirements of 

Navy and other major sea-powers. It was still found in that context up 

until the late nineteenth century, when it was rendered redundant partly 

due to the development of the armoured hull. 

Three other developments were necessary before the screw engine 

was able to achieve its full potential. The first was the invention of the 

Lignum vitae. stern gland in 1854. This device, based on the use of 

adjustable wooden inserts made from a very hard and self-lubricating 

timber called Lignum vitae., solved the problem of keeping watertight 

the tube through which the rapidly rotating propeller shaft passed from 

inside the vessel's hull outside to the screw (Barnaby, 1904: 283). 

Before the device was perfected there were many problems with wear 

on the metal to metal surfaces and near sinking's occurred ( see Figure 

18, below). 

The production of an efficient thrust block of 

solved the problem of transferring the forward pushing force generated 

by the screw back along the propeller shaft. Without an efficient device 

to take the strain, the engine and other components were subject to very 

destructive forces. The thrust block, which consisted of a series of 

adjustable collars in an oil filled container, effectively transferred the 

thrust from the rotating shaft via the enmeshing collars to a stationary 

'block' and then to strong bearers on the vessel's hull (see Figure 19, 

below). 
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Figure 18: The stern of an iron ship, showing the stern tube (10-14), joining 
flanges (9) and a plummer block (or stool) (4-5) supporting the propeller 
shaft(13) (Paasch, 1890; Plate 25). 

Figure 19: A multi-collar thrust block. The base (9) is attached to the vessel 
(12), the shaft (B) to the propeller and engine respectively at a flange (1). An 
oil reservoir is shown above (10). (Paasch, 1890; Plate 59 (B) 
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Advances in boiler-making were another prime consideration at this 

time. Though the production of steam for land engines and pumps dates 

back to at least 1663, significant developments occurred in the evolution 

of boilers and boiler making in the latter half of the working of 

Xantho. These are well documented, especially with respect to boilers 

(cf. Burgh, 1873: Ch. 1). Relevant to the Xantho is the fact that marine 

boilers initially used salt water as opposed to fresh water. Though the 

steam emanating from salt water was itself free of impurities, sea-water 

requires more energy to be brought to boil. At one atmosphere, or 15 

pounds per square inch, a temperature of 213.2°F is required to boil 

seawater, as compared to 212°F for fresh water. As boiling continues 

and fresh water was taken off as steam to drive the engines, the 

remaining water in the boiler becomes progressively more saline. 

Unless an attempt was made to replace the water, its density increases 

and the required boiling point would also progressively rise, thereby 

requiring more coal. One simple method of achieving the best possible 

thermal efficiency, was to note the temperature at which the water 

began to boil and if it was too high, to remedy the situation by replacing 

it with unused sea-water. It was recommended that if the boiling point 

of water reached a temperature of 215° F due to the increased salts, then 

it should be replaced with water from the ocean (Main and Brown, 

1855:28). Cold water as a boiler feed was undesirable and thermally 

inefficient in itself, a factor that could only be reduced if the water was 

preheated in a special vessel, called a feed-water heater (Figure 20, 

below). 

Pressure was also a Gonsideration, in that the higher the pressure in 

the boiler, the higher the boiling point of the water and hence the more 

salt precipitated. At 15-20 pounds (gauge) pressure (i.e. up to 5 

pounds square inch above atmosphere (15 psi), the boiling point was 
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relatively low and precipitation was minimal. As a result the use of sea

water was not a real problem at low pressures, though there was a slow 

depositing of scale which required cleaning at regular intervals. 

Figure 20: A feed-water heater (Hutton, 1903 :523) 
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Being soluble over a wide range of operating parameters, the sodium 

chloride in sea-water (though it contributed to scale formation) was not 

as much a problem as was the sulphate of lime, or calcium sulphate, in 

sea-water. As boiler temperature rose, either through increased density 

of the salt water or through the use of higher boiler pressures, the 

solubility of calcium sulphate decreased and it readily precipitated on 

the fire tubes, grates and other internal surfaces. The precipitate 
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produced a hard, poorly conducting scale obstructing heat transfer 

within the boiler itself, requiring more heat and therefore more coal to 

attain boiling point. order to remove this encrustation, the boiler 

needed to be regularly shut down and cooled to enable deposit to 

physically removed from the interior. 

Thus sulphate of lime in sea-water was a major factor keeping boiler 

pressures down where salt water feed was used. It was also well 

recognised in the mid-nineteenth century that marine boilers using salt 

water feed had a life expectancy of four or five years in comparison to 

a similar fresh water fed land boiler which was expected to last eighteen 

to twenty years (Bourne, 1858: 83). Marine engineers conducted 

experiments as to the cause of the problem and on the possible use of 

fresh water for the purposes of producing steam in the marine 

environment. Agreement could not be reached on the causes of the 

corrosion, however (Burgh, 1873: 356). 

Another important device dependent on, and linked to, this problem 

was that of the condenser. This device facilitated the recycling of 

exhaust steam in the form of fresh water condensate by passing a jet of 

cold sea-water on it (a jet condenser) or by passing the steam through, 

or over, tubes cooled by circulating sea-water (a surface condenser). 

The jet condenser resulted in a mixing of the fresh water condensate 

with sea-water. The surface condenser kept the sea-water and fresh 

water separate. As a result, salt water was not introduced into the 

system, with obvious thermal efficiencies. 

There were problems with surface condensers, however, in that the 

surfaces of the cooling tubes became clogged by tallow and other 

lubricants which entered the system through the steam chests and 

cylinders of the engine. These fats also decomposed at high 
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temperatures into an acidic state with obvious ramifications for the life 

of the boiler. 

Figure 21: A surface condenser with air pumps (Yeo, 1894:152) 

K 
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Initially these problems limited the choice of condensers to the jet 

condenser which sprayed sea-water on the exhaust steam, cooling it so 

that the mixture of salt and fresh water from the recycled steam could 

be collected and re-used. As coal consumption in a non-condensing 

engine of the time was calculated at 4 pound weight (lbs) of coal per 

indicated-horsepower-hour (Jarvis, 1993: 156), a jet condenser was 

clearly better than having no condenser at all. 1 

There was another advantage in the use of condensers and one that 

eventually led to the re-use of high pressure steam. The rapid cooling of 

1 The pound is the equivalent of 453 grams or 0.453kg. The consumption figure of 4 pounds of coal 
per indicated-horsepower-hour, incidentally is the same as that quoted earlier for a trunk engine fitted 
with a condenser, giving some indication of the relative inefficiencies of that type of machinery. 
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the exhaust steam caused a near vacuum in the condenser and in the 

pipes leading to it from the engine cylinders. This was a phenomenon 

that was used to advantage in reducing back pressure of the exhaust 

steam on the pistons by one atmosphere, or 15 psi. Conversely, 

steam exhausted straight to atmosphere, it immediately encountered a 

back pressure of 15 psi. To remove it by use of a vacuum resulted in an 

increase in useable power and a saving in coal. On the negative side, a 

supply of fresh water was required and pumps were needed to circulate 

the cooling water and to assist in maintaining or increasing the required 

vacuum (Yeo, 1894:152). Despite the need to power the pumps, an 

engine fitted with a condenser still proved far more thermally efficient 

than an equivalent engine without one. In recognition of this advance, 

the following comment was made in 1855 

A non condensing engine ... win only be used where fuel 
is readily obtained and it is important to save space and 
weight...[they] are serviceable for very short voyages in 
steamers ... especially river navigation ... [the] condensing 
engine is more economical...(Main and Brown: 50, 67). 

Thus a condenser of some sort was vital if long journeys were to be 

considered, if space was at a premium and if coal supplies were at a 

premium. Jet condensers were fitted until the 1860s, due to the 

problems earlier mentioned with the deposition of fats and their 

breakdown into acidic compounds. The development of temperature 

stable mineral oil lubricants in the USA in 1856 (Corlett, 1993:98) 

provided the breakthrough necessary for the further development of the 

surface condenser and the replacement of the jet condenser and salt 

water feed. The transition proved quite rapid, so that by the end of the 

1860' s surface condensers (Figure 21) were becoming widely adopted. 

With some exceptions, boiler pressures rose in unison with these 

advances from 5 lbs per square inch in the 1830' s, to 10 lbs per square 
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inch in the 1840' s, 20 lbs in the 1850' s and finally to over 100 lbs per 

square inch in the 1880's (Smith, 1937:133)1. 

The boilers that produced the steam themselves altered physically 

from the rectangular flue boilers of the 1840' s to the rectangular 

tubular boilers of the 1850' s and then the cylindrical multi-tubular type 

of the late 1860' s. Examples of rectangular boilers appear on the 

American blockade runner Mary Celestia (1864-1864) shown in Figure 

22 below. 

Figure 22: A pair of rectangular marine boilers on an l 860s 
paddle-wheeler, by Julie Melton (Watts, 1988: 163) . 
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By the late 1860' s, the cylindrical boiler, later to become known as 

the Scotch boiler, had proved so superior in regards to simplicity, 

reliability and ease of maintenance that most other types became out

moded. (Figure 23). 

1The Indiana's boiler pressures were around 80PSI in 1848 (Johnston, pers. com.) See pp 38-9. 
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Figure 23 
A Scotch marine boiler with a spring operated safety valve (S) (Yeo, 1894:39). 
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Thus though rectangular boilers could still found long after the l 860s 

on vessels such as Mary Celestia, Royal Shepherd and John Penn 

(Figures 8, 15 and 22, above), the Scotch boiler became the dominant 

marine-steam producing vessel of the latter of 

century. A selection of vessels utilising these boilers is shown in Figure 

24, below. 

Figure 24: A compilation of isometric projections showing a variety of sites 
ranging from 1863-1950 showing Scotch boilers in-situ. Prepared for this 
study by John Riley, the illustrations also provide evidence of commonalities 
in iron and steamship wreck disintegration which will be discussed in a 
subsequent chapter. 
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The advent of mu~h higher boiler pressures saw the development of 

efficient compound engines (Guthrie, 1971, Ch. 6). These engines 

allowed high pressure steam from boiler to be expanded in stages; 

first in a high pressure cylinder from where it was exhausted to a lower 

pressure cylinder and from there to the condenser for re-circulation 

back to the boiler (Figure 25). This type of engine allowed for a 

substantial saving in fuel due to its thermal and mechanical efficiency, 

reducing consumption to as low as 2 lbs per indicated-horsepower-hour 

(Jarvis, 1993:156; Griffiths, 1993: 168-170). Less coal had to be 

carried, more space was available for cargo and fewer stokers were 

required. 

Figure 25: A compound engine (Paasch, 1890: Plate 49) The columns, the 
low-pressure and high-pressure cylinders are shown, as is the condenser, 
bedplate and crankshaft. 
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The rises in boiler pressures in one field of operation, the Peninsula 

and Orient Steam Navigation Company (P&O), are shown in Figure 26 

below. With the exception of Crimean War gunboats of 1854-5, the 

link between the rise of pressure and the advent of compounding is 

evident. 
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Figure 26: The rise of boiler pressures in the P&O fleet and the advent of 
compounding (Corlett, 1981:284) 

Bo11..Slc! "PRE55Uf<.E5 F:> e.. 0 i:::LE:ET 

18-40 TO 1900 

,eso ,sc;;.o 

COMF'OU>-JO e.XPA>-J~IOt...l 

1eeo 1890 1~00 

Compound engines in their latest stages not only used less coal, but 

also operated at a higher speed, weighed less and occupied less space. 

These advances and the opening of the Suez Canal in 1869, through 

which SS Xantho was soon to pass, heralded the great age of the 

85 



trans-oceanic steamship and the complete passing of the clipper ship era 

(MacGregor, 1973:270). 

With the Royal Navy convinced the advantages of compound 

engines and of the value of the twin screw vessel, it became an obvious 

and almost necessary step for it to change from horizontal to vertical 

engines and to protect them with side armour. This allowed naval 

engineers the luxury, realised many years previously in the merchant 

marine, of tending to a vertical engine. Thus the replacement of the 

horizontal engine (whose only saving grace was the ability to be kept 

below the water line for tactical reasons), with vertically inverted 

compound engines was assured. The compound engine in its two, three, 

and quadruple cylinder forms took marine steam propulsion into the 

twentieth century. 

It is reasonable to expect therefore that a newly-engined, or 

substantially re-fitted vessel of the early to mid 1870's, which was 

designed to be operated over long distances, or where coal supplies 

were at a premium, would be fitted with a Scotch boiler, a surface 

condenser and a two-cylinder compound engine connected to a propeller 

via a multi-collar thrust block and a stern tube lined with lignum vitae. 

Out-moded, though still useable, simple expansion engines and 

inefficient rectangular boilers were still to be found (as in the three 

cases mentioned above) but normally only where coal was cheap, 

distances were short, or if the capital needed to upgrade or purchase 

suitable machinery was lacking. 

Figure 27, below, schematically presents the developments in marine 

engineering discussed above, albeit from a conservative perspective, that 

of the Royal Navy and it indicates the engineering characteristics one 

might expect of a ship, like Xantho, built or totally refitted in the early 

1870s. 
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Figure 27: Marine engineering developments in the RN (after Tomlin, 
1983; cf. Warsop and Tomlin, 1990). 1871 is marked in italics, 
illustrating the characteristics generally expected of a vessel built or 
substantially re-fitted around that time. 
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Having addressed the developments in marine engineering that would 

have influenced the design and configuration of a ship built or 

substantially refitted in 1871, like Xantho, I will now examine the 

regional factors which may have had an influence on 

and operation. 

SS Xantho in the Western Australian context 

configuration 

By 1865, when Broadhurst decided to go to west Australia as a 

prospective settler, the Swan River Settlement (present day Perth and 

Fremantle) was the administrative centre for a European population of 

approximately 20,000 people located within an area in excess of 

1,000,000 square kilometres (Knight, 1870).1 The colony had a 

coastline of approximately 4,350 nautical miles (8,066 kilometres) 

containing few safe or reliable harbours. Communications and 

conditions in the colony were relatively primitive when Xantho arrived 

in 1872. Conditions in the northern part of the state, to where 

Broadhurst and his family were bound, were even more primitive and 

communication was much more irregular than in south. Movement 

on the west Australian coast (Figure 1) was so slow that the colonial 

Government was allowing a maximum of fourteen days for a one way 

coasting voyage from Fremantle to Geraldton (250 nautical miles away) 

and twenty one days from Fremantle to Albany (300 nautical miles). 

Voyages from Fremantle to Cossack (nearly 1,000 nautical miles away) 

were allowed a maximum of 50 days (Government Gazette, 

14/8/1862).2 

1The European population in 1859 was 14,837 and in 1869 was 24,785. . 
2 Fremantle to Champion Bay, 10 days in summer and 14 days in winter, Return 14 days in summer 
and 10 days in winter. Fremantle to King George Sound, 21 days summer and 14 days winter. Return, 
10 days in summer and 21 days in winter. Fremantle to Nickol Bay, summer 30 days and winter 50 
days. Return, summer 50 days and winter 30 days. It also needs be noted that sailing vessels often had 
to travel far greater distances than those shown on the maps and charts due to unfavourable winds. 
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In this context Broadhurst and many of his contemporaries 

wereforced to spend a great deal of time in travel or in waiting for 

replies to requests for information or instruction. This latter 

consideration characterised European settlement in the north of Wes tern 

Australia in the 1860's (McCarthy, 1990: Ch. 3; Clement, 1991). 

Isolation, poor communications and vast coastlines dictated a reliance 

on the judgement of distant others; a major influence on what are often 

portrayed as examples of very poor decision-making. 

Vast distances, poorly serviced harbours and a tiny European 

population are some of the reasons why regular steam transport on the 

Western Australian coast was a very late phenomenon indeed. Dutch

owned steamers, for example, were in service in the East Indies by 

1825. A regular service between Batavia (Jakarta) and Surabaya was in 

operation by 1827 and a 236-ton wooden paddle-steamer was built in 

Surabaya under British supervision around that time (Roff, 1993: 30-

31). The first steam vessel to run on the Australian Coast operated 

between Sydney, Melbourne and other local ports on the eastern coast 

towards the end of 1831. It was followed 1832 by an 

ship. Both of these early colonial steamers had imported engines, though 

five years later, one was launched with an Australian-built engine 

(Richards, 1987). Western Australia proved much· tardier than even 

South Australia, an equivalent colony, where vessels were delivered 

from places such as Glasgow in parts and assembled there as early as the 

1850s. Ship and engine building flourished soon after (Cumming, 1988; 

Sexton, 1992: 1-31). 

Though the advent of steam transport on the western coast of 

Australia was still a long way off in the mid-nineteenth century, there 

was the occasional visitor. The first passenger steamer visited Fremantle 

1852 as of a feasibility survey by the P &O Company, for 
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example (Bulbeck, 1969: 103-7). The P&O had just been awarded an 

eight-year mail contract from Southhampton to Eastern Australia via 

intervening ports. One of those ports was to be on west or south

west coast. Unfortunately for those in Perth and its port of 

King George Sound (Albany), with its ideal sheltered harbour, was 

chosen. Being even further away from the geographical centre of the 

colony on the south coast, this decision provided of little advantage to 

the majority of settlers. Mail and passengers had to be sent to Albany 

overland or on small coastal sailing vessels. In 1870 the road from 

Albany to Perth had yet to be completed (Figure 1 ). Thus the south

western, western, north-western and northern coasts of Western 

Australia were without steam power until well over half a century after 

its advent elsewhere. 

A ware of the benefits of steam power from their experiences 

elsewhere and by the visits of steam vessels, settlers wanted access to a 

steamship. The technology was commonplace elsewhere and it appeared 

in the colony, on the land and in industry as well as on the river. In 

1855 a successful steamship service was begun on Swan River with 

the arrival from England, via Melbourne and South Australia, of the 

newly-built Les Trois Amis. This was an iron-hulled, 29-tonne, 20-

metre long, schooner-rigged screw steamer. Unfortunately the owner 

drowned and the ship was sold in 1856 for £840 (see a contemporary 

schedule of wages and salaries in Appendix 5 for a comparison). It was 

then put back on river service while the new owner tried to sell its 

apparently unsuitable engines before placing the ship on the run from 

Fremantle to Champion Bay as a sailing vessel. Les Trois Amis began a 

run from Fremantle to Champion Bay as a schooner (Perth Gazette, 

29/5/1957; Dickson, 1993: 56-62). In the meantime a number of wooden 
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paddle steamers were built and were successfully operated on the Swan 

River. 

The presence of all these steam vessels on the Swan added to the 

mounting pressure for similar vessels in the coastal trade. were 

also a number of serious, but unsuccessful, attempts to form companies 

in order to raise the estimated £3,000 required to for a steamship on the 

west coast (Dickson, 1993). The Governor and Colonial Secretary 

supported the establishment of steam communication and were prepared 

to do all that they could to induce someone to bring a steamer to the 

colony. Despite this, the government was not in a position to assist those 

willing to enter the industry. In 1862 a request for a subsidy to run a 

steamer out of the newly-proposed settlement at Camden Harbour in the 

far north received encouragement but a polite refusal. The prospectuses 

of the Camden Harbour Pastoral Association and the Denison Plains 

Pastoral Company, both of which involved Broadhurst, were published 

in 1864 and both referred to the intention of purchasing a steamer, for 

£3,000, to ply between Camden Harbour and the Straits Settlements. 

These settlement schemes were the brainchild of 

another of Broadhurst' s future associates (McCarthy, 1990:64-90). 

In 1867, following an inquiry from the manager of the Australasi,~m 

Steam Navigation Company, the government indicated that it was 

prepared to offer every assistance to those intending to establish a 

steamship service, but was still unable to offer the subsidy required to 

make such a venture profitable (Colonial Secretary to Manager, ASN 

Co, 14/2/1867). In February 1869 a north-west pastoralist, L.C. Burges, 

yet another of Broadhurst' s colleagues, publicly indicated his desire to 

float a steamship company. In June 1870, a prospectus was issued by a 

group of unnamed businessmen wishing to operate one or two 

steamships on the coast. matter was debated the Legislative 
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Council, where concern was raised about the isolation of the Nickol Bay 

settlement where Broadhurst was a pastoralist. Due to its proximity to 

Surabaya and Singapore its distance from Fremantle, it was 

perceived that the area could become economically separated from 

south by its being eventually forced to deal entirely with those centres 

on the basis of transport costs alone (Inquirer, 26/4/1871). 

A regular steamer run, linked to Singapore, India and eventually 

Europe, was then operating between Timor, Surabaya and Batavia, 

making a link with the north west of Australia a matter of economic 

common sense. It soon became obvious that if steamers could be induced 

to link with that run from Western Australia's north west, Fremantle 

would be by-passed on the basis of savings in transport costs alone. 

The government realised that it had to become involved to stave off 

this eventuality and finally, in August 1871, the Legislative Council 

proposed a subsidy of £2,000 pounds per annum for a steamer to run 

between Albany and Champion Bay (Geraldton) on a monthly basis. 

They were not prepared to extend the subsidy further north however. 

This is an important issue. One analysis of maritime economy 

Western Australia, just prior to Broadhurst' s purchase of the SS Xantho 

in late 1871, indicates that a critical shortage of capital was the likely 

cause of the inordinate delay in the development of the Wes tern 

Australian merchant fleet (Broeze, 1982: 108-9). Another reason for the 

delay in the development of the coastal trade was the failure of the Swan 

River Colony to grow appreciably in population. Consequently, the 

volume of trade was not sufficient to justify the considerable expense of 

operating a steamship on the vast and sparsely populated coast, 

especially in regions north of Geraldton. Another major drawback to 

the establishment of a coastal steam trade was the lack of coal. In late 

1872, coal could not be bought a reliable quantity even Fremantle. 
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There were also no suitable repair facilities on this coast, the nearest 

being at Surabaya in present day Indonesia and at Adelaide and 

Melbourne on the south-east coast of Australia. these reasons the 

coastal trade in Western Australia was awaiting the advent steam 

propulsion twenty years after steamships had captured over 30% of the 

traffic around Europe (Hartley, 1971 :221). Thus, experienced and 

prospective colonial ship-owners, such as Walter Padbury and J. W. 

Bateman, found themselves unwilling to enter the relatively expensive 

and complex business of steamship operations without governmental and 

logistical support in the form of a substantial subsidy. It has been 

claimed that they ' ... may have shown sound business sense ... ' in doing so 

(Hartley, 1982:97). 

As Henderson notes 

There were enormous difficulties to be overcome in opening up a 
commercially successful steam service on such a long sparsely 
populated coastline, where ports were widely separated and 
facilities for steamers did not exist (1977a:191). 

Thus, when the SS Xantho arrived at the colony in April 1872, it was 

almost half a century after the introduction of steamships in other parts 

of the world (Jamieson, 1897:187-200). The small European population 

ensured that coal and engineering facilities were also in short supply. It 

would therefore be expected that engineering characteristics of the 

Xantho would accomodate those considerations. Its machinery and hull 

should have been characteristic of sound, efficient and easily maintained 

steamers of the period. 

In bringing Xantho to a colony without the infrastructure required of 

steamship operation, Broadhurst appears, at a superficial glance, to have 

made the greatest of his many mistakes as a colonial entrepreneur. The 

subsidy required to effectively operate a steamer to a timetable was 
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estimated to be at least £4,000 per annum and even that figure would 

represent a loss for the first three years (Henderson, 1977: 191). Despite 

these projected losses, Messrs Connor and Mackay of New Zealand 

decided to embark on the venture and in September 1872, they entered 

into a three-year contract with the government to establish a fixed 

steamer service on the south-west coast. They expended £14,000 on the 

purchase of a near-new 21_1-ton, 46-metre, iron screw steamer 

Georgette. Built in 1872 at Dumbarton for use as a collier, it arrived on 

the coast in September 1873 complete with masts, sails and a spare 

propeller which was stowed onboard (McCarthy, 1980). It was.+ also 

fitted with a modern two-cylinder, condensing, 48-horsepower 

compound engine (Henderson and Henderson, 1988a:211). It also had a 

large cargo-carrying capacity, estimated by its owners at 460 tons 

deadweight, and had two steam-operated winches to assist in its handling 

(Colonial Secretary's Office, 757, 12/6/1873). Georgette appears to 

have been a wise choice, one that was engineered as expected, being 

newly-built with a two-cylinder compound engine, a Scotch boiler, 

spare propeller and a surface condenser. Despite this, Connor 

Mackay's enterprise was dogged by misfortune and labour problems and 

Georgette was lost in 1876. The remains (Figure 28, below) provide a 

useful physical comparison to Xantho. 

As a result of its failure, Xantho has usually been totally overlooked 

(cf. Dickson-Gregory, 1928; Parsons, 1973; Henderson, 1977b), or at 

best, viewed in the context of attempts to establish a commercially 

successful steam service on the west coast of Australia. Henderson's 

analysis of the transition of shipping from sail to steam in Western 

Australia, for example, argues that, because of its failure and 

Broadhurst' s apparent lack of business acumen, Xantho was of little 

significance in comparison to Georgette. 
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Figure 28: The wreck of the Georgette. In the foreground are the remains of 
the two cylinder compound engine. The diver (the author) is alongside the 
high pressure cylinder. See Figure 25 for a comparison. The boiler is missing 
(Photo Scott Sledge, WA Malitime Museum). 

In focussing on the provision of a service to a fixed timetable, 

Henderson attaches little import to the pearling and entrepreneurial 

elements of the Xantho venture, arguing that little need be said about it 

and its operations and that 'the significance of this experiment lies in its 

failure' (Henderson, 1977b: 191) 

In looking beyond the Georgette for other examples of how other 

early steam vessels on the Western Australian coast were engineered in 

this period, the 163-foot (49.6m) long, 267-ton, iron hulled SS Rob Roy 

needs to be examined. 
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Figures 29a: A contemporary illustration of the Rob Roy (Page, 1975:46-7). 

Figures 29b: A stylised illustration of the same vessel on its own china 1. 

1 The upper view is apparently reliable, being a representation of Rob Roy as it actually appeared, with 
auxiliary sails. The other, showing it as a full-rigged sailing ship and steamer, is designed to 
romanticise the vessel and portray it in a better light. There is a clear danger in accepting the lower 
illustration as fact. 
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Figure 29a above, shows the Rob Roy at work and Figure 29b is a 

depiction of it found on a ship's plate recovered during an excavation I 

conducted at the Albany Town which was one of the vessel's 

frequent ports-of-call (Garratt, McCarthy, Richards and Wolfe, 1995). 

In showing the ship under full sail it the figures illustrate the dual mode 

of propulsion used by steamers in those days. 

Owned by the Melbourne-based partners Marshall, Robinson, 

Anderson and Lilly, Rob Roy was larger but older than the Georgette. 

It had been earlier considered by the government for the coastal run but 

was rejected in favour of the Georgette, being too deep in the water and 

heavy on coal consumption due in part to its apparently 'bulky' hull 

(Henderson, l 977b:226). Built in Scotland in 1867, it was originally 

powered with what appears to be a two-cylinder, simple-expansion, low 

pressure 50 HP engine operating at quite a low pressure. In 1872, it was 

lengthened and refitted with a two-cylinder, 60 HP compound engine, 

and in this mode Rob Roy proved such a great success that it replaced 

the Georgette when that vessel sank. 

To broaden the sample of vessels examined against Xantho, we 

can include three examples from 1878 when the shipping schedule was 

expanded to include an inter-colonial service to Adelaide and 

Melbourne. To service the run, Marshall, Robinson, Anderson and Lilly 

purchased the SS Otway, a 180-feet long (54m) 271-ton iron ship built 

in 1872 at Glasgow with a two-cylinder compound engine. At this time 

the service on the Western Australian coast was increased to fortnightly 

runs between Albany, Champion Bay and intervening ports. Pressure to 

establish a regular run to the north-west, mainly Shark Bay and Nickol 

Bay, also grew. This was partly based on the few successful ad hoc trips 

that Georgette had made to Shark Bay in earlier years and possibly 

those of Xantho. The contractors resisted, however, and indicated 
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that they were only willing to commence if the Government bore the 

expected financial losses. 1881 a contract for three trips to the 

north-west per year, calling at Shark Cossack, was agreed to by 

Government. In late 1882 the SS Otway was sent to Melbourne 

lengthening in anticipation of its use on the run extending to Beagle 

Bay. SS Otway continued active service to 1913 after which time it was 

used as a coal hulk, a term used to describe an otherwise redundant 

vessel that was stripped down for use as a floating storehouse. These 

hulks, somewhat ironically, helped overcome the problem with the 

supply of coal on the Western Australian coast. Coal was imported in 

great quantity in sailing ships, often from Newcastle in New South 

Wales and then transferred to hulks moored in harbours frequented by 

the steamers (McKenna Notes; Bulbeck, 1969; Parsons, 1980:26). 

While awaiting a refit of the Otway, the Company chartered the 220-

foot long (67m) iron-hulled SS Macedon, which was built in 1870 at 

Liverpool with a two cylinder 100 HP engine (Figure 7). It was 

wrecked near Fremantle in March 1883 on the day it left for Beagle 

Bay. Marshall, Robinson, Anderson and into 

discussions with the well-established Adelaide Steamship Company for 

the purchase of the Claud Hamilton, a 200-foot ( 61 m) long iron steamer 

built in Britain in 1862 with a 100 NHP simple expansion engine. Not 

having a compound engine, and though otherwise well suited, the ship 

was considered unsuitable for their needs having had what was 

described as a ' ... healthy appetite for coal...' (Parsons, 1980:26). It was 

not used and the ship was later re-engined with a compound engine to 

make it more competitive. Seeing an opportunity for expansion, the 

Adelaide Steamship company sent over their newly-built, 210-foot 

(64m) long SS Investigator with an efficient 97 compound engine 

and large cargo carrying capacity. They entered discussions with 
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Marshall and Company and eventually purchased the Rob Roy and 

Otway. They also obtained three coal hulks and other accoutrements for 

£35,000, taking over the Western Australian colonial and inter-colonial 

trade and effectively ending the frontier phase of steamship operation 

on the western coast, an era arguably pioneered by the Xantho. Further 

details of these vessels and those that followed on the coast up until 1900 

are contained in Appendix 6. 

Thus, the engineering expectations for a newly-purchased ship that 

was designed to be operated on such a remote and vast coastline and its 

economic context have been established. An iron-hulled vessel, not more 

than ten years old, with sails and with a two-cylinder compound engine 

and surface condenser is to be expected. 

In completing this section of contextual analyses before dealing with 

the Xantho site itself, it now remains to examine Charles Broadhurst' s 

business activities in order to determine whether he exhibited a 

behavioural pattern that will prove useful as a pointer to the evidence 

found at the wreck of his ship. 

Broadhurst in historical context 

In 1983 when I began the search for archival material that would 

help in an understanding of the man largely responsible for the wreck 

of the Xantho, little other than a number of short resumes and 

transcripts were available (Kimberly, 1897: 97; Drake-Brockman, 

1969: 233-234; Weldon, nd). 

The reasons for this paucity of sources are many. One is the 

tendency for people to destroy or suppress records about ventures in 

which they have failed, something Broadhurst did with remarkable 

regularity. Another was the tendency amongst post-Victorian authors 

and historians to write only about those characters and activities that 
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could be re-cast and resurrected in an aura of success and respectability. 

The following discussion helps set the context for questions I pose about 

anomalous features recorded on Xantho site. and detailed 

description of the social and economic context in which 

operated may be found in my Masters thesis, entitled Charles Edward 

Broadhurst 1826-1905: a remarkable nineteenth century failure 

(McCarthy, 1990). In beginning the precis of that work, I present the 

results of oral historical enquiries made over the past decade to 

illustrate the immediacy and importance of such programs to historical 

archaeology generally (cf. Purser, 1992). 

When I first met Marjorie Darling, she was a remarkable 94-year 

old lady. She could still remember her grandparents Charles and Eliza 

Broadhurst and was interested in talking about them. With her hand 

shaking gently on the arm of the settee, rattling the cup in its saucer, she 

told of what she knew of them, of their children, her mother and father 

and of the many relatives. Some were in the east, one held a scrapbook, 

another had photographs, some had donated items to the Museum. 

Strangely, none held any property. "There was Jenny, Gwen, David, 

Margaret, and many more", she said to me. I eventually contacted all of 

them, each leading to another family member and another insight into 

their extraordinary past. It was slow yet satisfying work, especially as 

the family found a common link to Charles and Eliza Broadhurst 

through the Xantho and their 'Aunt Marjorie', my informant. Born in 

1894, she was the daughter of Charles and Eliza's eldest son Florance 

and was the last surviving member of the family to have a direct link 

with Broadhurst. To Marjorie Darling and her relatives, Charles 

Edward Broadhurst was a virtual stranger. In her words he was "never 

home" being always away off search of wealth, leaving her grand-
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mother Eliza to cope with her family and the problems Charles 

continuously caused. 

There was even an odd stroke of amazing fortune which presented 

itself in a hospital room. ''That's my great, great grandfather's 

you've got there," one nursing Sister exclaimed, pointing to a copy of a 

letter that lay at the foot ofmy bed. I had found it in the State Archives 

and the letter bore Broadhurst' s name. It was an unbelievable 

coincidence. The sister was named Penelope and she had even more to 

add to the story; a will, documents and more contacts. 

Broadhurst, the gentleman farmer and pastoralist 

Charles Edward Broadhurst was born in 1826 in Manchester, 

England, into a very well-known and financially-established textile 

merchant family. It was a privileged position, providing useful social 

contacts and the best possible education. One of Charles Broadhurst' s 

sisters married the famous and very wealthy engineer Sir Joseph 

Whitworth in the same year that the Xantho was purchased, for 

example. This is doubly of significance, as will be seen. 

In 1843 Broadhurst emigrated to Victoria, in Australia, joining his 

elder brother on a vast pastoral holding at Kilmore, north of Melbourne 

(Hamilton, 1914:9). Despite owning considerable amounts as freehold, 

the majority of the land was occupied on a de facto or 'squatter' basis 

(Roberts, 1935:66-68). Again it was a privileged position and 

Broadhurst' s emigration at 17 years of age into this wealthy pastoral 

context, surrounded by servants and labourers, would have further 

accustomed him to the life of a Victorian gentleman of considerable 

social standing and influence. Broadhurst was notably hard-working, 
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however, and soon became a considerable success as a pastoralist and 

grazier his own right.1 

At thirty four years of age concerned by growing demands for 

land by newly-displaced gold miners (Dingle, 1984:54), 

his young wife, Eliza Howes, turned their attention to newly-opened 

land in the North of Wes tern Australia; an area that had been described 

by explorers as a 'pastoralist Eldorado' (Richardson, 1909:37). 

Marjorie Darling could never really understand why the Broadhursts 

left Kilmore. "Eliza was so happy in Victoria surrounded by her 

socially well-placed family and friends," she told me. Having endured 

hardship and adversity as one of fourteen children born to a 

schoolteacher, Eliza apparently contrasted with her husband, having 

developed a great love for the bustle of family life and the warmth of 

everyday society. She also appears to have been practical and somewhat 

hard-headed. "She loved teaching," Marjorie Darling said, "and she was 

a very talented musician with a good singing voice." Strangely, both of 

these seemingly unconnected references are relevant in that they directly 

affected Broadhurst's career, as will be seen. 

The Broadhursts became attracted to what is now known as the 

Murchison, Gascoyne, Pilbara and Kimberley regions of Western 

Australia. Then called the North District, it encompassed the entire area 

of Western Australia north of the Murchison River (Figure I). It was a 

vast region and had no European inhabitants when land settlement 

regulations were promulgated in 1862. Many settlement schemes were 

formed as a result of the land off er, which in essence allowed the settler 

I 00,000 acres of land rent free for eight years should they land 200 

sheep or 20 cattle or horses in the district. Many could not afford the 

1 Pastoralists and graziers in Australia tend to hold most of their 'nm..s.' or 'stations' on a lease from the 
government. Some actually own part or all of the property as 'freehold'. 
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financial outlay required to charter vessels and joined, or formed, 

companies with intention of spreading the costs. The best known of 

these were the Melbourne-based Camden Harbour Pastoral Association 

and the Denison Plains Pastoral Company. They were in effect, sister 

companies formed with the intention of establishing a new 'gateway' to 

Australia at Camden Harbour. This was to be linked by a series of 

pastoral and telegraphic stations running through the Denison Plains and 

on to Sturt' s route which ran to embryo settlements in the north of 

Australia (near present-day Darwin) from Adelaide (See Figure 30). In 

this fashion overland links would be forged from Camden Harbour to 

the major Eastern States capitals. On paper it was a sound notion which 

would shorten the route to Singapore, India and Britain and obviate the 

need for mariners to navigate the difficult Torres and Bass Straits to 

access Sydney and Melbourne (See Figure 2). 

As part of the Denison Plains Pastoral Company, the Broadhursts 

were to land at Camden Harbour and proceed overland on an untried 

route to the fabled Denison Plains. This area, near present-day Halls 

Creek, had been much praised by earlier explorers unaware 

had traversed the country just after exceptional rains ( cf. Grey, 1843; 

Gregory, 1884). 

The Denison Plains Company was somewhat of a mystery to 

Marjorie Darling before my study began. The family had told her and 

the other children very little about Broadhurst and his business 

ventures. Clearly, it was not the sort of thing one wanted to recall, let 

alone pass on to children. My delving into what proved to be a scandal 

did not worry her, however, because a few details had filtered through 

to her as a small girl as she played around her parents' table and she had 

always had an interest in it. "Grand-father was somewhat of a dark 

horse," would say. appears that family did not discuss 

103 



much when the children were around and preferred instead to 

concentrate on the more successful elements of their family history. 

Most of these ·were apparently embodied Eliza Broadhurst and her 

activities. Herein lies one of the major problems of relying solely on 

historical documentation biased by the subjective weeding out of what is 

considered socially acceptable by family and society generally. 1 

Though it is not detailed in any of the archives, it is evident that 

Broadhurst needed to re-build, financially and socially, after the 

collapse of the Denison Plains Company. Given his background, the 

setbacks and the resulting physical and mental hardships probably would 

have hardened his resolve to succeed. Though impossible to accurately 

assess, it is likely that Charles and Eliza's attitudes towards others, and 

possibly to life itself, would have been considerably affected by the 

Denison Plains fiasco. 

The Denison Plains venture and its effect on their social standing was 

perhaps the driving force behind Charles and Eliza Broadhurst' s 

subsequent Western Australian colonial career and their ensuing thirty

year search for regained wealth and social position. I would argue that 

it was a major influence in Broadhurst' s decision to purchase the Xantho 

and to operate it in conditions so foreign to an English-born gentleman

pastoralist. For this reason, I will briefly examine Broadhurst' s 

involvement in the Company as follows. 

The explorer's glowing reports of Camden Harbour and Denison 

Plains regions were seized on by Government, the land-hungry and 

speculators alike. The Western Australian Government expended an 

estimated £5,000 in sending a Resident Magistrate (Robert Sholl) and his 

1 As indicated earlier, this selective process filtering the documentary record is described as 
'organizational behaviour' or the 'conceptual category for the activities that have structured the 
ethnographic record' (Potter, 1992: 10). It bas obvious ramifications for the analysis of people like 
Broadhurst and needs to be constantly kept in mind. 
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entourage to Camden Harbour, for example. Given the isolation and the 

distances involved, Sholl was effect the Governor of the region, 

having broad powers that ranged from judiciary through to day-to

day government functions and the collection of customs dues. 

Once a decision was made to proceed to the 'North District' to settle, 

it took between a month to six weeks to transit news from there to 

Melbourne via Fremantle, under favourable circumstances. In 

unfavourable circumstances the delays were much longer. This helps 

explain one of Broadhurst' s chief problems in his colonial career; that 

of making an informed decision at great distance based on what often 

eventually transpired to be unreliable information. 

The pastoral companies looked very good on paper. One of the 

promotional pamphlets which accompanied the Camden Harbour 

Company prospectuses (Description of Camden Harbour, 1864), for 

example, contained a chapter detailing the benefits of Camden Harbour 

and its proximity to Kupang, Surabaya, Batavia and a pool of cheap 

labour at Calcutta, Singapore and China. Indications of this geographical 

advantage appear in Figures 2 and 30. 

The inspiration for Xantho may have stemmed from the Camden 

Harbour and Denison Plains Company pamphleteer, who suggested that 

the Company might purchase a small steamer for £3,000. It was claimed 

that this hypothetical vessel would provide shorter and cheaper transit to 

Europe from Camden Harbour than from any other part of the 

Australian continent. Here, clearly spelt out, was the fact that north

western Australia was closer to the trade centres of Timor, Batavia, 

Surabaya and Singapore than it was to Melbourne, Sydney or even 

Fremantle. This realisation may well have inspired Broadhurst to 

operate his ship away from colonial officialdom in a remote part of the 
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Northwest that linked more with what is now the Indonesian 

Archipelago and Singapore than with settled parts of A~stralia. 

Figure 30: A contemporary map, showing Camden Harbour (on the coast at c. 125° 
E, the Denison Plains to the south-east, Stewart's Route [sic], Roebuck Bay, 
Nickol Bay and the proximity of the region to Surabaya and Kupang. Broadhurst 
later based Xantho at Banningarra Creek, situated at around 120° E on the coast a 
few kilometres from the De Grey River (McKay, 1864, Denison Plains Pastoral 
Company Prospectus). 
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Grand plans, lies and exaggerations were part of the various 

company notices appearing the Melbourne press. One claimed, for 

example, that the Company obtained permission to occupy 

5,000,000 acres extending from the Camden Harbour settlement to 

Creek including the Denison Plains (Geelong Advertiser, 84/1865). The 

Company was actually entitled to only 100,000 acres and this was 

clearly stated in the Western Australian Government's Regulations 

which appeared on the Company prospectus itself. For Broadhurst and 

his colleagues to have missed this point begs the question about their 

gullibility or attention to detail, at the least. 

By early 1865 Broadhurst' s name headed the list of Company 

Directors in advertisements, as he apparently assumed an increasing role 

in the venture. As a pointer to the controversies and suspicion that were 

later to dog Broadhurst's entire career, the Directors were later decried 

as 'self elected and irresponsible' and were accused of making a number 

of very questionable decisions (Baynton to his father, reproduced in the 

Perth Gazette, 23/11/1866). One was the issue of whether men, pregnant 

women and small children, with their cumbersome wagons and stock, 

could actually make the untried journey from Camden Harbour to the 

Denison Plains. A glance at a modern topographical map shows that it 

was a near impossible journey, and at no stage does the question of 

whether the trek was feasible appear to have been raised by the settlers 

before they departed Melbourne. It seems that a letter received by the 

Directors on the impossibility of the trek was considered at a meeting of 

the Board and then suppressed (Baynton to the Editor, Perth Gazette, 

23/11/1866). As a Board member, there are strong suspicions that 

Broadhurst was involved in the deception. Further, his decision to risk 

himself, his pregnant wife and two very young sons on the trek, attests 

to an lack of commonsense and the prevailing attitude of 
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Victorian-era men to their wives and families. Thus began Broadhurst' s 

involvement in one of the great, almost forgotten, scandals in the 

history of the settlement of Western Australia. In April 1865, members 

of the Company began loading their at Melbourne for the Denison 

Plains via Camden Harbour. On the very day they were to leave 

port, the first hint of problems at Camden Harbour surfaced. That 

particular settlement had failed dramatically many months earlier, but 

the delays in communication ensured that news had not yet filtered 

south. Disillusioned shareholders sent a message ahead the form of a 

public letter, cautioning the Denison Plains contingent and urging them 

to wait. The newspaper containing this letter was withheld from the 

shareholders in Melbourne, as was the fact that only 45 of the 500 

available shares in the Company had been sold. So they sailed to the 

North-west on the very day that the letter was published in the 

Melbourne press. Broadhurst appears to have been implicated in the 

deception and in other doubtful transactions which are dealt with in full 

elsewhere (McCarthy, 1990: Ch. 3). 

At the same time accounts of the debacle at Camden Harbour were 

published in Western Australia, causing great concern Government 

circles. Thus, when the Denison Plains Company finally arrived at 

Fremantle in May 1865, Broadhurst was met by the Colonial Secretary 

who accompanied him to Perth for interviews with the Governor and 

Surveyor General. There he was advised to make a change of 

destination to Roebuck Bay where the Government-backed settlement 

was struggling to become established (Figure 30). As a result, Charles 

Edward Broadhurst became a well known figure in the press and in the 

offices of the colonial administration, within hours of first setting foot 

on these shores. He also featured in the Western Australian press as the 

leader of the much-publicised Denison Plains Pastoral Company; the 

108 



largest and apparently best organised contingent of prospective settlers 

to pass through Fremantle on their way north. Well-educated, 

influential and leading a large, well equipped group of men and women, 

he could not have helped but create a considerable impression. 

influence was such that the Government assigned to him an Aboriginal 

convict labourer they called .'Harry'. The allocation of convict labour to 

him began Broadhurst' s involvement in another of the dominant and 

most controversial themes in his future life; his ill-treatment of 

labourers and staff. 

Due to adverse weather conditions, they landed not at Roebuck Bay 

but further south at Nickol Bay (Figures 1 and 30), where there was a 

thriving European settlement, good traversable land and friendly 

Aborigines on whom to depend for labour and assistance. The earlier 

settlers also provided great assistance to the new arrivals, however ill

prepared they may have appeared. Mrs Emma Withnell, the best known 

of the women settlers then in residence, passed down vivid memories of 

the Company women's fine clothes which, in her words, were 'similar 

to those illustrated in the magazines' (Withnell-Taylor, 1987 :73 ). Her 

thoughts on seeing the seven months pregnant Eliza Broadhurst landing 

in her finery with two young boys and her piano, are unfortunately not 

recorded. That the Broadhursts transported the piano to the north and 

apparently intended hauling it across the north of Australia on an 

untried route is a statement in itself. Either the explorers' glowing 

accounts of the north and the Government's support for settlement 

generally had lulled them into a false sense of security, or they were of 

the opinion that even in the most difficult of conditions, good graces, 

the retention of the bulky accoutrements of culture, and the maintenance 

of appearances would be a factor in their eventual success. Equally Eliza 

may have refused to go without it! 
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Under Broadhurst' s direction, the people of the Denison Plains 

Company went about their business at Nickol Bay with every intention 

of eventually proceeding to Denison Plains and complete 

ignorance of events in Melbourne. Newly arriving settlers eventually 

brought information that the Company had completely folded in 

Melbourne. Despite this, Broadhurst refused to wind up the venture in 

Western Australia, causing considerable disquiet amongst his colleagues. 

To make matters worse, a drought set in, supply ships did not come, and 

in an aura of despair, food supplies began to dwindle. Pressure was then 

applied on Broadhurst to release some animals for food. He resisted 

stoutly, creating great dissension amongst the group. As the drought 

deepened the remaining shareholders hardened in their resolve and 

exerted even more pressure on Broadhurst to break up the Company 

and to distribute stock and equipment. Still Broadhurst resisted their 

demands and he held out for exactly e!even months until a meeting 

resolved to wind up the Company and distribute the stock to pay 

outstanding wages and salaries. His actions in resisting calls for winding 

up the Company and his refusal to allow the goods flocks ................. .., ... his 

control to be dispersed, or to be used for food understandably 

engendered considerable ill feeling. News of the confrontation filtered 

south when the first members of the failed Company landed there. To 

many in the tiny settlements of Perth and Fremantle, Broadhurst was the 

person responsible for the debacle. Thus the collapse of the Denison 

Plains Company was to be the beginning of Western Australia's long 

lasting suspicion of Charles Edward Broadhurst. 

The following excerpt taken from an exchange of letters penned 

nearly three years later by two prominent Perth merchants illustrates 

this point 
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Mr Broadhurst is certainly a smart man ... but if success be 
the test of ability he has certainly not proved himself superior 
having made a pretty mess of the Denison Plains 
Company ... there is certainly a great distrust of him here 
(Barker and Gull letters, State Archive, 2423a, 16 May, 
1868). 

Robert Sholl, the Resident Magistrate, had transferred from Camden 

Harbour to Nickol Bay in the meantime and a growing European 

settlement developed at Withnell' s station, becoming the township of 

Roeboume. As Broadhurst was one of the few educated men in the area, 

Sholl appointed him as a Justice of the Peace and later, quite 

surprisingly given the prevailing attitudes towards him, as acting 

Resident Magistrate. It was an even more remarkable appointment when 

it is noted that Broadhurst had tendered for the defunct Denison Plains 

Pastoral Company, a matter which caused his colleagues occupying land 

and holding stock or equipment considerable concern. On his return to 

the North in the following February, Sholl advised his superiors that 

Broadhurst had acquitted himself discreetly in a difficult situation (State 

Archive, CSR, 603/8-24). When Broadhurst finally took possession of 

the former Company in June 1867, however, wasted no 

ruthlessly claiming everything it had once owned including stock, 

equipment and blocks of land occupied by his colleagues. 

In contrast, Eliza Broadhurst emerges as a much loved personality; 

one whose company was much more sought after than her husband in 

the private diaries of Robert Sholl and his adult son, who was in effect 

the Resident Magistrate's private secretary (Diary and Occurrence 

books, R.J. Sholl; Diary of T.C. Sholl). On one occasion, for example, 

Charles Broadhurst was observed busily digging up and actually 

'spoiling' young Sholl' s block of land in Roebourne. He was searching 

for building material (probably clay) for his own holding, on which he 

had built a house. finding it on Sholl' s property, Broadhurst 
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commenced excavation immediately and without permission. The 

younger Sholl dryly notes this transgression in his diary, yet on the very 

next night, and for many nights after, we the Sholls in both of the 

Broadhurst' s company, playing cards and chess, singing and listening 

Eliza on the piano. 

It is of significance that Charles and Eliza Broadhurst became close 

personal friends of the Resident Magistrate and his son; the two men 

who were, in effect, responsible for Government in the entire 'North 

District'. In this way, Charles and Eliza Broadhurst built a very strong 

link with Government in the North-west. This stood them in good stead, 

especially when Broadhurst turned his mind from pastoral activities to 

pearling (McCarthy, 1990: Ch. 3). 

Pearling from Nickol Bay 

Broadhurst purchased the SS Xantho primarily for use in pearling, 

an industry in which he became one of the most innovative 

practitioners. 

Pearl shell, or 'mother of pearl', fetched very high prices per ton; 

often as high as £100 landed at London (Bain, 1982: 18, 46). This was 

equivalent to a mid-level government servant's annual wage (see 

Appendix 5). It was however a brutal industry. Suffering and slavery 

were the lot of the 'coloured' workers who were 'recruited' to provide 

the labour force for the white pearlers. 

Though engaged in lucrative 'dry-shelling' (harvesting pearl shell at 

low water spring tides) using local Aborigines, Broadhurst left the 

North-west for Victoria in late 1867. As a result, he missed out on the 

very valuable experiences gained by others in this formative period. 

Those who stayed learnt more about the location of shell beds and the 

most efficient ( though necessarily the most humane) means of 
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utilising Aboriginal men and women in the industry. More importantly, 

the Aborigines were learning at a rapid rate how to make the transition 

from dry shelling or wading, into naked diving (i.e. diving without any 

aids such as goggles or fins). This development began 

Broadhurst left at the end of 1867 and he was apparently in ignorance 

of it. The transition was in full swing by the middle of the following 

year and by the end of 1868 divers were descending to depths of 6 

fathoms, or around 10 metres (Perth Gazette, 31/1/1868; Herald, 

6/6/1868; Inquirer, 31/3/1869). 

Broadhurst returned to Western Australia in April 1868 with plans 

to introduce diving apparatus to the pearling industry in a partnership 

with three others (Figure 32). Though the use of this equipment was 

commonplace outside of Australia (cf. Davis, 1955), through sheer 

inexperience, they chose a far too large vessel, in the form of a 27-

metre long wooden two-masted schooner Mary Ann. They then 

compounded the problem by commencing diving in the narrow Flying 

Foam Passage at Nickol Bay (Figure 31 ). Though a rich source of shell, 

the passage was subject to very strong currents, sometimes excess of 

3-4 knots. They had great difficulty manoeuvring the boat and even 

with heavy lead boots, their diver was lucky not to be swept off his feet. 

The chances of an accident were very great indeed. After a short while 

they gave up, having failed dismally in the attempt. Broadhurst and his 

colleagues had attempted to apply unnecessarily complex technology 

with inexperienced operators using a ship that proved far too large for 

the local conditions. They were doomed to failure from the outset. 
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Figure 32: A diver in a 'standard dress' or 'hard hat', with hoses and air 
compressor. The apparatus is bulky and expensive, requiring considerable 
space in the diving boat and paid operators (Michel, 1980:77). 
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On the other hand, the Aborigines in rowing boats were proving most 

successful, even the Flying Foam Passage. Here they actually used the 

current to advantage by allowing themselves to be carried along over 

vast areas of seabed without having to unduly exert themselves. 

they were without protective clothing, goggles and swimming aids, the 

availability of cheap and plentiful labour made this a most productive 

exercise-one that is still practised today by Indonesian fishermen 

(McCarthy, 1991a: 10-52). 

Despite the failure of this first known attempt to use diving apparatus 

on the Australian pearl fishery, Broadhurst correctly realised that the 

equipment had potential. He was twenty years ahead of his time in 

introducing it to the region, however, and there was a great deal to be 

learnt to adapt methods to the tides and waters of the North-west. 

Broadhurst clearly had vision in realising the value of technological 

advances, but he did not realise that a great deal of experimentation was 

required before the technology could be efficiently applied. 

He retained the diving apparatus when the partnership folded and 

entered a new diving venture, apparently with both the 'hard-hat' and a 

more complex and untried form of diving technology, the French 

Aerophore system (See McCarthy, 1990, Ch. 4, for an expansion). He 

and his partner, Mr. Hughan, travelled great distances in attempting to 

prove the venture a success. An examination of the plant specimens 

recovered by Mrs. Hughan, for example, shows that the partners 

travelled as far afield as the Camden Harbour region, King's Sound, 

Beagle Bay and La Grange Point, home of the Broome pearl industry 

which later proved hugely successful in other hands (Willing to 

McCarthy, 9/10/1991). But still Broadhurst failed. Though he had learnt 

that fast currents were to be avoided, he had still not discovered 
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efficient means of diving for pearls in tidal waters or even how to find 

submerged beds when out at sea. 

On the other hand, Aboriginal divers were getting excellent results. 

And so, despite their obvious capacity for experimentation, hard work 

and willingness to range far and wide in search of shell, Broadhurst and 

Hughan did not succeed. Hughan left the industry and Broadhurst tried 

again. By this stage pearlers were finding it difficult to acquire 

Aboriginal labour due to the increasing number of operators and the 

ravages of smallpox. Characteristically, Broadhurst looked elsewhere 

for labour and applied to the Government to interview Aboriginal 

prisoners from Rottnest Island, near Fremantle, with a view to enticing 

them to volunteer for service in the North-west pearl fishery. Attesting 

again to his powers of persuasion with Government, he received 

permission to do so and was successful in obtaining 18 volunteers for 

the 1870/71 season. 

Despite public opposition, Broadhurst gained official support and 

embarked on his latest venture in a much smaller and more suitable 

wooden, two-masted schooner. based himself at Banmngarra Creek, 

just east of the De Grey River (Figures 30 and 37) and there he 

employed both Aboriginals and a European apparatus as the conditions 

suited. This was an innovative, but misguided, last attempt to combine 

the use of Aborigines and the diving apparatus. 

Mainly southern people without a swimming tradition, the Rottnest 

convicts proved hopeless in the sea and were a stark contrast to the local 

Aborigines. Unfortunately, just as they found good pearling beds, the 

weather turned foul, becoming a series of gales that continued 

throughout the season. His use of the volunteer southern Aboriginal 

convict labour out of Banningarra was, in Broadhurst' s own opinion, 

another (Broadhurst to Sholl, 14/4/1871, CSR, 697/110). 
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Obviously, the idea of using the 'hard hat' and volunteer convicts 

appeared sound to Broadhurst on paper, but in reality both had proved 

impractical. Though these ventures were a failure, Broadhurst felt that 

the pearl beds they had found in the previous season were extensive and 

rich. He noted that only 'labour and capital' were required to develop 

the newly found beds (Broadhurst to Sholl, 14/4/1871). In an attempt to 

locate the required labour and to raise the capital for the industry, he 

left for Europe and soon after, Asia. 

Xantho and the 'Malays' 

The labour and capital that Broadhurst had in mind included a paid 

labour force of Asian divers (then called 'Malays') a string of managers 

and agents and the SS Xantho. The prospect of importing Malays, a 

practice that began around 1871, was a logical progression given that 

the supply of Aboriginal labour was drying up and the Malays had been 

operating as divers for centuries in the islands to Australia's north. 

In comparison to the Aborigines, however, the Malays required to be 

housed, fed, paid and then repatriated at the of their employment. 

In an attempt to provide his men with a reasonable diet, and no doubt 

reduce his costs and profit from the supply of the food, Broadhurst 

successfully applied for land at Mt. Blaze, near Banningarra Creek. 

There he established a 300-tree coconut plantation. In principle it was a 

sound notion. A Captain Tucker, who operated on the eastern seaboard 

of Australia in the late 1880' s, hoped to secure a return of £6,000 per 

annum from a plantation of 40,000 coconut trees, for example (Bain, 

1982: 66). 

As with most of Broadhurst' s projects, his idea was innovative and 

the plan was good, but things started to go wrong. One of his divers 

drowned, some of his men stole one of his boats from another base at 
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Port Hedland and set off for home. Others stole a boat from one of his 

bases at the Flying Foam Passage and also departed for home. Whether 

they were successful is not known, in the case of the Port Hedland 

theft it is worth noting that their manager claimed that the workers 

without rations or stores. These incidents led to official concern and the 

police subsequently made an inspection of the pearling camps in 

November 1872. This occurred while Broadhurst was away on the 

Xantho on its last voyage. The police report stated 

The Malays have not the slightest idea of either swimming or 
diving being completely out of their element in the water. I 
witnessed a specimen of their diving ... in 2 and a half 
fathoms of water .. [I was] ... not the least surprised at their 
getting drowned (V&P, 1874-5, 714/57:168 ). 

The same, almost singular, failure to perform in the water also beset 

Broadhurst's Malays in the Flying Foam Passage in Nickol Bay, further 

south. By this time Broadhurst had landed 140 Malays on the coast at a 

cost of over £10 per head. 

If they were as inexperienced as the reports indicate, the costs of 

transportation and their wages would have represented a great loss. 

Broadhurst' s decision to employ them without first ensuring that they 

could dive appears very ill-considered and it parallels the venture with 

diving apparatus and the Rottnest Island convicts. 

For Broadhurst, the 1872/3 pearling season was a disastrous one. 

The Xantho was lost, he could not pay the crew and the Malays had 

proved useless as divers. These failures, combined with the 

inappropriateness of the diving apparatus and the Aboriginal volunteer 

convicts, caused him to abandon the northern pearling grounds and 

concentrate solely on the pearling industry at Shark Bay. There pearls 
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could be had in a place where diving skills in the work force were 

useful, but not essential to success. 

Much can be learnt from Broadhurst' s behaviour these instances 

and the insights gained help us understand anomalous evidence gleaned 

from an examination of the wreck of his ship. He clearly had vision and 

was prepared to experiment with ideas and technology. He was equally 

prepared to risk himself and to travel great distances in the search for 

wealth and lost social status. He was persuasive and influential with 

Government, partly through his own attributes and from his and Eliza's 

friendship with the Sholls, and from the position he had inherited by 

virtue of his family name. 

Broadhurst unfortunately appeared to lack attention to detail and did 

not have the skills or experience required to bring his visions to 

fruition. In not having an eye for detail, or demonstrable commonsense, 

he appears to have regularly made poor technical decisions at distance 

and, as a result, depended greatly on others for advice. 

I will now briefly examine his career after the loss of the Xantho in 

1872 to ascertain if the behaviours to purchase and 

operation of the vessel are consistent with those that fallow. 

Pearling at Shark Bay 

Pearl shells at Shark Bay were noted for the pearls they provided, 

rather than for the shells and Broadhurst quickly followed others there. 

Most notable was the notorious 'black-birder', ship-owner and explorer, 

Captain Francis Cadell (Bain, 1982: 28-9). Broadhurst initially intended 

to work the Shark Bay, Nickol Bay, Port Hedland and Banningarra 

fisheries simultaneously. All of these places, especially Shark Bay, had 

confined and difficult waters that were a trap for sailing vessels, but 

ideal for a small steamship like Xantho. The difficulty experienced in 
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navigating in Shark Bay under sail, for example, is referred to by 

Broadhurst's contemporary, Julius Brockman, who describes having a 

'terrible beat' against the wind harbour to the pearling beds 

(Brockman, 1987 :42). The situation was the same at Broadhurst' s bases 

near Port Hedland, Banningarra, and the Flying Foam Passage. 

When the Xantho (which was to be the link between these centres) 

sank, as described in the introductory narrative (pp. 1-4 ), Broadhurst 

was placed in a difficult financial position without the means to link his 

widespread endeavours. By having allowed his insurance on Xantho to 

lapse, he did not have the funds to purchase another steamship, let alone 

a suitable sailing vessel with which to re-establish the links. On the other 

hand he had a large work-force of Malays at his disposal, and was able 

to muster some small boats that would prove suitable for shallow water 

work. Given the problems resulting from the loss of the steamer, the 

answer lay in concentrating in one location; at Shark Bay (Figure 1) and 

abandoning everything further north. 

A short time after Broadhurst and his men arrived at Shark Bay, 

there was a rush of pearlers centred on the very productive area called 

'Wilyah Miah' (Place of the Pearl). By January 1873 there were over 

400 men at work there. Broadhurst, with some undisclosed access to 

funds, soon established a well-stocked wooden store, one of only two 

operating in the entire fishery. Described as 'the most imposing looking 

structure in the place' (Inquirer, 8/10/1873, 3/12/1873), it was run by a 

nephew of Eliza's and proved to be most lucrative. Broadhurst saw the 

potential and began to supply merchandise, liquor and food. Always on 

the lookout for ways of diversifying and cutting costs, Broadhurst 

entertained ideas of establishing a fish-curing works on the beach at 

nearby Dirk Hartog Island. was to be managed by a European with 

five Malays and was, like his coconut plantation, a logical progression. 
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In the meantime the rest of his men were hard at work on the pearl 

beds. Initially the venture was a great success, and soon Broadhurst was 

eulogised in language reminiscent of 

the heroes of a go Id rush 

effusive tones used to describe 

And now we are startled by the announcement of one 
gentleman-Mr. Broadhurst- receiving as the proceeds of one 
month's fishing, no less than one hundred ounces of pearls 
worth at least £2500. Than Mr. Broadhurst no man better 
deserves his present success. He has been an energetic 
speculator, undaunted by adverse results (Inquirer, 
8/10/1873). 

Alongside Cadell, who had recently purchased a former steamship, 

the iron-hulled Les Trois Amis for use as a pearling and trading 

schooner, Broadhurst was clearly the best organised operator and had 

the most boats. By the end of 1873 there were 46 vessels in Shark Bay, 

ranging in size from fifteen tonnes to less than one tonne. Broadhurst 

owned at least eight small cutters. The largest, at two tons, was 

Shenandoah and the others Alabama, Florida, Talahassy, Stonewall, 

General Lee and Jefferson Davis were each of one ton. One boat, Sir 

Joseph, was of an unstated size. He also had two other pearling vessels, 

the dinghies Xantho and Pearler. 1 

What were the reasons for this unaccustomed success? Broadhurst, 

with about 75% of the Malays at Shark Bay at his disposal had the 

largest work-force. He had also bought a mariner from Batavia as his 

manager, a Mr Smith. Smith obviously knew how to get the best from 

his charges without resorting to violence and, as a result, received his 

1 The size of his Sir Joseph, (named apparently after Sir Joseph Whitworth, bis illustrious brother-in
law) and the reasons behind his obvious propensity for American 'Southern' names is not known. 
There is certainly more than a coincidence in it, for many years later he was described by his peers as 
having 'all the decisive action of a typical American'(Kimberly, 1897:8). By not choosing a broader 
range of names it does appear that in the American Civil War his sympathies lay with the pro-slavery 
States and their officers. On this evidence one could assume that be was in favour of slavery and that 
this propensity was a significant factor in Broadhurst' s notoriously poor labour relations. These are 
discussed in depth in my earlier work (McCarthy, 1990). 
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fair share of the adulation when news of their success spread to the local 

press. 

Smith, was described by press as an 'enterprising and 

indefatigable' manager. He built a small jetty and stone breakwater 

spared 'neither labour nor trouble' in improving the condition of the 

Malays in regard to their housing, health and work practices. The 

'substantial wooden houses' that he built for them, were contrasted with 

the usual 'dirty low hovel termed a Malay hut' (Inquirer, 8/10/1873; 

29/10/1873). Another factor was the technology employed. It was 

arguably simple, being small sailing vessels dragging a triangular 

dredge in which the shells were harvested. 

As Broadhurst expanded his fleet and travelled further afield, 

accidents began to occur and there was loss of life. One of his new 

cutters sank in South passage and another capsized, almost drowning 

Broadhurst and his assistant. His capacity for hard work and his 

willingness to risk himself in his search for wealth, is again evident. 

Broadhurst' s primary mode of operation was apparently to set up a 

base himself, work there for a while alongside his men, appoint a 

manager and then set off in search of other enterprises and activities. 

Such was the case in Shark Bay where he not only diversified his 

maritime pursuits (pearling, fishing and so on) but also submitted a 

tender to sink wells on the stock route ( or commonly-used droving 

track) from Tamalee Well at the south end of the bay to the Murchison 

River. In this instance, he showed his considerable vision in searching 

for a wide range of opportunities to deploy his men and resources to 

advantage. A further indication of his entrepreneurial flair is his 

attitude to the supposedly worthless pearl shell, of which nearly a 

thousand tons was lying abandoned in mounds throughout the camps. 

Broadhurst sent trial shipments of this Shark Bay shell to Europe and 
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while awaiting the returns, the following optimistic comments appeared 

in the press, reflecting the prevailing attitude towards Broadhurst 

The speculation is a bold one ... and on Mr Broadhurst' s 
account alone, who for enterprise and determination is a man 
out of 10,000, we sincerely hope the venture will tum out as 
profitable as Mr Broadhurst could desire and make up in 
some measure for the heavy losses he has sustained in other 
undertakings ... (Inquirer, 2/9/1874). 

In this comment we find that Broadhurst was on his way to being 

socially resurrected as a colonial benefactor after the Denison Plains 

fiasco and his much publicised failure to pay the crew of the Xantho 

when it sank (See Chapter 4 ). From a financial perspective however, he 

still had a long way to go to make up the financial losses incurred as a 

result of the vessel's loss. 

The trial shipment of shell was purchased by an intermediary who 

did well out of it. In contrast Broadhurst just covered his costs. As 

usual, he continued on undaunted, noting in his own revealing words 

that with 'careful management' he would eventually realise a profit 

(Herald, 17/6/1876; Inquirer, 27/1/1875). Though he appeared to have a 

talent at seeing opportunities, Broadhurst again exhibits an inability to 

turn hard work to advantage through appropriate management skills. 

Despite these failings, all looked promising at Shark Bay, until again 

things started to go drastically wrong following the departure of his 

much praised manager, Mr Smith and the arrival of his replacement, 

Daniel, Broadhurst' s nephew. 

Charles Broadhurst left the fishery soon after his nephew arrived 

and went to Perth attending to the sale and transport of the shell from 

Shark Bay. While in Perth, he was approached by the Governor to sit in 

Parliament. In nominating him, the Governor cited Broadhurst' s first 

hand know ledge of the North-west coast and the settlers there, and 
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claimed that he was 'the only person in the position who has the abilities 

and leisure to represent them' (Drake-Brockman, 1969:234). 

Broadhurst accepted the nomination and sat in the Chamber for the first 

time in late October 1874. His social and political elevation set the 

scene, however, for the very public humiliation that was soon to befall 

him. 

Figure 33: The Broadhursts and their 'Malay' servant in the early 1870s, (WA 
Maritime Museum).1 

1 Mru.jorie Dru.·ling and the Broadhurst family believed that the servant was Indian. As tl1ere was less of 
a stigma attached to being Indian as opposed to being 'Malay' or Ab01iginal, tl1is appru.·ently bec~une a 
common process (cf. Morgan, 1987) 
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short, Cadell and Daniel Broadhurst failed to pay and repatriate 

the 'Malays' at the end of contracts and Charles Broadhurst was 

held responsible. He was summonsed soon after he took his seat in 

Parliament and all his boats, huts and equipment were sold a 

auction in order to pay the money owed. Broadhurst then resigned from 

parliament. He and his entire family had received another severe social 

and financial set-back. Summonsed six times in Perth during this period 

for non-payment of debt by a cross-section of the European merchants 

in the Colony, his finances were obviously in a very bad state. 

Broadhurst left the Colony, making another voyage with a cargo of 

pearl shell at the end of 1875, arriving back in April 1876, having 

failed to realise a profit. On landing back in the Colony he wrote to the 

Colonial Secretary stating that he had 'lost so much in this colony in 

endeavouring to develop its resources'. His fortunes and morale were at 

a very low ebb and he requested to be appointed to the first available 

Government position, that of Sheriff (Broadhurst to Colonial Secretary, 

21/4/1876). 

As a scapegoat and no longer high regard by the 

Government, Broadhurst failed in his attempt to enter government 

service in order to obtain a relatively small, but secure income after 

years of hard work and tribulation. Eliza then announced her intention 

to open a school for day scholars and boarders. While a lady of standing 

could be expected to teach school subjects, especially music, it is 

doubtful that she would have taken in boarders unless forced to do so. 

Forced to make the most of any opportunity, Charles then left for 

London with another cargo of Shark Bay shell. 
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Broadhurst' s other enterprises 

Eliza was not to see her husband for over a year. When he did return 

1n October 1877 his mind had to canning Backed by a 

successful merchant firm, he successfully pursued this venture south of 

Fremantle (Figure 1) as the Mandurah Fish Canning and Preserving 

Company. Broadhurst set it up, obtained finance, established buildings 

and erected machinery. When at full capacity, the works employed 

about 50 people from a total population in the town of 200. 

Ever restless and searching for opportunities, he sold the canning 

business in 1882 and proceeded to the Abrolhos Islands near Geraldton 

(Figure 1). There he discovered previously unknown guano beds of 

great significance, 1 clearly demonstrating that he was 'a capitalist and 

trader who would go out of the ordinary grooves in search of wealth' 

(Kimberly, 1897: 90). 

The Government again became interested in his initiatives and 

decided to grant him a lease to the guano deposit. In December 1883, at 

57 years of age during a time of life when most people would have 

ceased their struggle for security and wealth, Broadhurst settled at the 

Abrolhos Islands in order to work the deposits. That he left Perth at this 

age to embark on the establishment of an industry noted for its isolation 

and harsh conditions is astounding in itself and a comment on his 

strength of character and physical resilience. It is also a reflection on his 

financial state and his desire to succeed after so many setbacks. 

Eliza, at 44 years of age, was still struggling to make ends meet. An 

advertisement announced her intention to open a girls school again and a 

preparatory school for boys under twelve, with a few boarders at a 

'reasonable rate' (West Australian, 4/3/1884). She was noted as being ill 

1.G:mw.Q.,. a rich organic substance consisting of the remains of birds, their droppings and other material. 
It was much sought after throughout the world as a fertiliser (cf. Stanbury, 1993: 7-14). 
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and looking 'quite fagged and worn out', being overworked from school 

and music lessons (Hillman Diaries, 7/10/1883). Life was certainly 

tough for them both and they did own a home, for in January 

1884 Eliza sought to rent a cottage for £50 per annum rates and 

taxes (Hillman Diaries, 21/1/1884). As a further indication that money 

was tight, or as further proof of his attitude towards creditors, 

Broadhurst was summonsed for non-payment of debt by his former 

backers in the fish canning industry. Further evidence of his lack of 

finance appears in Broadhurst' s difficulty in finding surety for the 

guano lease. 

In following what by now can be seen to be a consistent behavioural 

pattern, Broadhurst, the entrepreneur, was to seize on any opportunity 

with flair and vision, but without the capital, infrastructure and 

organisational ability required to profit from the venture. 

Broadhurst struggled on and, as is often the case today, the small 

entrepreneur was forced to take on a backer. This time it was the well

known colonial merchant W. J. Bateman. Facilities were established on 

Rat Island in the Abrolhos Islands, including a storeroom and a stone 

landing to load the lighters used to ship the guano in sacks to the much 

larger vessels waiting off-shore. In 1885 Broadhurst received further 

capital by taking in another partner, William Brown MacNeil, forming 

the firm of Broadhurst, MacNeil and Company. His indebtedness to 

Bateman, who did not become a partner in the business, also grew. 

Broadhurst mortgaged his share in the Company and all the goods, 

chattels and improvements to him. While Broadhurst was totally and 

absolutely in debt in the Abrolhos, Eliza was still working hard to make 

ends meet in Perth. 

Somewhat typically, for he looked forever to greener pastures, 

Broadhurst re-applied a lease to unused portions of pearling 
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banks at Shark Bay at £1000 per annum around this time. His bid was 

refused, however. 

By the middle of 1886, he and men succeeded in constructing 

accommodation huts, a stone enclosure to hold over a thousand ... '"' ............ ...,..., 

of guano, tramways and a stone jetty 77 metres long with a depth of two 

metres of water at its extremity. There was fifteen fathoms of water 

within 100 metres of the jetty and all was in readiness for an expansion 

of the enterprise to take oceangoing ships. Despite the hard work and 

increased scale of the venture, many mistakes were made due to 

inexperience and some cargoes failed to make a return at all because 

they contained little saleable guano. 

There was also little profit margin in the business at the time and 

with his personal finances still in disarray Broadhurst was again 

summonsed for non-payment of debt. He was in effect a complete 

bankrupt. 

The scene changed dramatically in 1886 when his son, Florance 

Constantine Broadhurst, was brought into the partnership. Recognising 

his own deficiencies as a business manager and seeing that his son, who 

had received a mercantile education and had been a success in the 

banking industry, was to be the key to the future success of the business, 

Charles Broadhurst retired. Under article 9 of the agreement under 

which Florance was brought into the Company, it was stated that 

The management of the firm shall be exclusively in the hands 
of the said William Brown MacNeil and Florance 
Constantine Broadhurst as joint managers ... and the said 
Charles Edward Broadhurst shall in no way interfere in the 
management of the said partnership business (Broadhurst, 
Family Papers). 1 

These words are a clear indication that Broadhurst senior, though 

capable of seeing opportunities and grasping them, was a bad business 

1My emphasis. 
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manager and a poor administrator. A further indication of this is the 

statement that proper books were to be kept and that a general 

accounting was to be made at the end of each calendar year. 

Thus it was not Charles who turned guano mining to his advantage, 

but his son Florance and it was he who finally became an acknowledged 

financial giant and 'pillar of society'. Ahead of his time, Charles 

Broadhurst had again seen an opportunity, seized it and then found that 

he lacked the know ledge or expertise to bring it to fruition. This scene 

had repeated itself so many times in Charles Broadhurst' s life. Florance, 

in contrast, was a man later noted for his 'clear sighted methods and 

organising power' and soon achieved remarkable results which need no 

elucidation here (Kimberly, 1897:98; West Australian, 24/10/1887). 

The family became extremely wealthy and in May 1890, at the age of 

64, Charles Broadhurst gave formal notice of his retirement from the 

firm. MacNeil had earlier retired from the partnership and Bateman 

was paid out. A family trust to the amount of £10,000 was then formed 

in order to secure the future of Eliza and their children and so they 

returned to England, very wealthy. Charles Edward Broadhurst' s 

remarkable thirty year Colonial career, which culminated in the 

Abrolhos Islands guano industry, finally came to a satisfactory close. 

Eliza died soon after her return to England; worn out from her 

exertions, leaving an as-yet unwritten, yet truly remarkable, story to be 

told. When Charles died in 1905, aged 86, news of his death was quickly 

relayed to the former Colonies. He received a suitable eulogy in the 

Victorian and Western Australian press, which in summing up his 

career, read 

Mr Broadhurst was one of the most indefatigable and 
persevering exploiters of the infant industries of Wes tern 
Australia in his day (West Australian, 1/5/1905). 
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Even from the grave he was to cause confusion and concern. The 

executors of his will found themselves unable to fulfil the conditions in 

the manner specified due to there being insufficient funds to attend to 

his wishes; indicating once again and for the last time, lack of 

attention to detail in such matters. 

Summary 

In this precis of my detailed analysis of Broadhurst w~ich began 

soon after I visited the wreck of his ship, I have discussed numerous 

examples of behaviour which can be used to understand anomalies in the 

archaeological record at the Xantho site. 

It is clear that Broadhurst was a 'gentleman' accustomed to position 

and wealth; an entrepreneur with access to some funds, but never quite 

enough to properly cater for all his needs. He had a propensity for 

grand schemes and untested technology. He also precipitously embarked 

on speculative ventures without the capital, experience or common-sense 

required to make them a success. 

He consistently failed, primarily due to lack of experience, poor 

advice and his consistent lack of attention to detail. A key is found in his 

managers. Where they were good, he succeeded; where they were bad, 

or where they gave poor advice, he failed. This may be related to his 

traditionally poor labour relations, in that by alienating his workforce 

Broadhurst may have set the scene for his ultimate demise in business 

ventures. 

He was remarkably resilient. Each time he failed he rebounded 

through flair, vision and hard work, only to fail again. When he did 

achieve some measure of success, he immediately looked elsewhere for 

other opportunities. His continued failure, his background and his desire 
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to restore himself and his family, may have been the catalyst for his 

propensity to gamble with grand schemes and unnecessary technology. 

Again this is relevant to the specifics of SS Xantho. 
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CHAPTER 4: 

STEAMSHIPS, CASE OF THE SS XANTHO 

Construction and operation as a 

Data on the Xantho and its operators was located in three places: 

seabed, the archives and oral histories. In this section I will focus on 

archival sources, beginning with the ship's construction. As noted 

earlier in the contextual studies, the history of iron shipbuilding and the 

marine engine is well documented (Corlett, 1971; Bourne, 1858; 

Burgh, 1869; Grantham, 1859; Fincham, 1851; Guthrie, 1971). My 

discussion therefore will be limited to information relevant to analysis 

of the archaeological record. 

Xantho was originally built as a paddle steamer by the well-known 

Denny shipbuilding company which operated out of Dumbarton in 

Scotland (Denny and Brothers, 1932). Xantho was the eighth steamer 

and only the twenty-second vessel built by the Denny Brothers (Lyon, 

1975: 18). It was, therefore, one of their early products. Much of the 

original material relating to the Company is still housed in the 'Moor 

Collection', a privately held compilation of documents and papers 

rescued after the failure of the Company in 1963. An unexpected find 

was the location of the contract and specifications for the building of 

the vessel together with a letter of acceptance from the purchasers (See 

Table 2 below). These documents illustrate the manufacture of the 

vessel and indirectly the acquisition and modification of the raw 

materials needed to do so. 
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Table 2: A summary of the specifications for the PS Xantho 1 

Length between perpendiculars: 101.3 feet (30.8 m) 
Length overall: 121 feet. (36.8m) 
Breadth of Beam: 17.6 feet. (5.3m) 
Depth of Hold: 8.4 feet. (2.5m) 

Keel: Of Bar iron, 3 inches x 1 inch [in section]2 (76.2mm x 25.4mm) 
Frames: For 40 feet (12m) in midships, 3 x 2x 5116 [inch] (c. 8mm) angle iron. Fore 

and abaft that 3 x 2 x 114 [inch] (c. 6mm) to be placed 21 inches (533 mm) from centre 
to centre. 

Floors: Of plates, 9 inches (228 mm) deep by 3116 inch (c. 5mm) thick with 2112 ( c. 

64mm) x 2112 x 3\ 6 inch angle iron, rivetted on top edge, with extra strength of 
floors for fastening engine. 
Plates: Bottom to 2 feet (610 mm) waterline 5\6 inch from 2 to 5 feet (1524 mm) 
114 inch to gunwale 3116 inch to be overlapped longitudinally with flush butts and 
rivets. 

Stringers: Of 2 112 x 2 112 x 114 inch angle iron and plates 12 inches (c. 305 mm) 

broad x 3116 inch thick the angle iron to be rivetted to the outside plates and stringers. 

Bulkheads: To have three of these full depth of vessel, all of 118 inch (3 mm) plates. 
To be stiffened with angle iron and made perfectly water tight. The plates to be all of 
one length, and neatly rivetted with snap headed rivets. 
Coal bunkers same thickness, size as required. 
Deck Beams: To have one on every alternate frame of angle iron 4 x 2 x 114 inches, 

to be single kneed with triangular plate knees, 12 inches long in the arm by 5\ 6 inch 

thick, with 3 rivets in each arm, and rivetted to frame with one 314 rivet in each beam 
end. 

Paddle Beams: To be framed of plates 12 inches deep, with 6 x 3 x 318 inch angle. 
iron, rivetted back to back. 
Decks: Deck plank of Quebec Yellow pine, 5 x 211 4 inch tapered 
Holds: To have hold fore and abaft engine and boiler space size as may be required. 
Two cargo derricks for use of holds, and a small winch to each derrick capable of lifting 

1112 tons. 
Sails: Foresail or square sail, mainsail and jib. 
Cabins: Main cabin and steerage to be finished complete, in a neat but plain manner. 
To have hair cloth sofas in main cabin and in captain and mates room. 
Carving: Figure-head and trail boards, trail boards to be hatched with gold. 
Cooking Apparatus: To cook for 8 men. 
Paintings: As iron boats usually are done. 
Sundries: 2 anchors and 2 chain cables. 2 cork fenders, 1 Ensign, 1 Union Jack, 1 
burgee and ferry flag, 1 long sweeping broom, one deck scraper, 3 brooms, 1 paint 
scrub and mop, 2 long brushes for funnel, 2 deck lanterns, 2 holly stones, bell and 
belfrey, 4 wooden fenders with hooks and chains, passengers gangways with ladders, 2 
hand poles and limber chains. To have an iron knee inside on gangway stanchions, 
hawsers and warps, water cask, 3 pails, axe and saw, 
Water closet in main cabin, and one in steerage - cabin store, tables and mirrors, 12 
camp stools, life buoys according to act, compass to be adjusted, 
Engine: To have a 60 horsepower Staple [sic] engine, with a tubular boiler, capable 
of generating a sufficient quantity of steam for the same. Diameter of cylinder 43 inch 
The engine and boiler to be upheld for 6 months by the Contractors in the event of 
materials or workmanship giving way. 

1 Where vessels were measured in tons and built to feet and inches, it is customary to quote the original 
figures; for often they show a pattern that is not otherwise evident in a metric conversion; e.g. 21 inch 
frame spacings as opposed to the metric equivalent (533.4 mm). 

Being of direct relevance to this discussion, the summary is prepared from a hand-written copy of the 
original which is housed on SS Xantho file 9/79, Department of Maritime Archaeology, WA Maritime 
Museum. The measurements given are as per original documents. Metric equivalents appear in 
parenthesis throughout this work, except where the tons are specified. 
21 inch =2.54 cm. 
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It can be seen from this data that Xantho had hull plate thickness of a 

maximum of 5/16 of an inch (c. 8 mm) and that it had other scantlings 

similar to those recommended by the contemporary iron shipbuilder 

John Grantham (1859:186-187). These appear ...,..., .................... 3a. 

recommended that river steamers of the same size as Xantho had hull 

plating a maximum of 4/16-5/16 of an inch ( c. 6-8 mm) thick, for 

example. The Xantho frame spacing of 21 inches (533 mm), centre to 

centre, was greater than Grantham suggested, however; his 

recommendations generally being 18 inches ( 457 mm), at most. 

Grantham's work was published in 1859, eleven years after the Xantho 

was built and it is to be expected that there were some differences. 

Being built before the advent of Lloyd's Rules in 1855, it is expected 

that Xantho would also differ from those requirements. These are 

reproduced in Appendix 3b, reflecting Lloyd's standards around that 

time. An examination of this data indicates that Xantho was lightly built 

in comparison to an equivalent seagoing steamer. Its hull, below the 

water-line, was over 1/16 inch (1.5 mm) less than that specified if it 

were to receive even a six year certificate for use at sea. Its 

bulkheads, at 2/16 inch (3 mm) thick, were only half that required by 

Lloyd's. Equally significant, its frame spacings were greater than 

Lloyd's requirements, which were uniformly set at 18 inches ( 457 

mm). This made Xantho weaker in comparison to a vessel built 

according to rules later devised by Lloyd's for ocean-going steamers. 

The same can be said with respect to Grantham's recommendations for 

river steamers, on the basis of frame spacings alone. 

The PS Xantho 's total building costs were £3,270; divided almost 

equally between the machinery and the hull. (Lyon, 1975:118). The 

name Xantho appears derived from the use of yellow pine (Pinus 

strobus) on deck timbers (Greek Xanthos). This softwood occurs 
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naturally in the south-eastern parts of the Northern American continent 

and is recognised for its qualities shipbuilding. It is especially noted 

for its ease of working, small shrinkage drying its stability in 

use. It is not resistant to rot, however (Bramwell 

1979:273). 

At the time of launching Xantho measured 106.8 feet (32.5m.) in 

length by 16.8 feet (5. lm.) in breadth and was 8.4 feet (2.6m.) deep, 

with a length between perpendiculars of 101.25 feet (30.8m).1 It was 

also schooner-rigged with two masts and it had one deck (Register, 

4/1848, Anstruther). The engine was a 60 horse power, steeple engine 

built by Twingate and Company and it was powered by steam from a 

tubular boiler, most likely of a rectangular form. The engine room was 

31.6 feet (9.6m) long, taking up a considerable percentage of the length 

of the vessel. Designed for paddle propulsion, the engine was located 

amidships, resulting in two cargo holds, one fore and the other aft of 

the machinery space, each served by separate winches and other 

attendant machinery. 

Plans, photographs or contemporary illustrations of Xantho do not 

appear in the Denny List or Moor Collection. Mentioned in the 

specifications for the building of Xantho, however, is Denny's iron 

paddle steamer Loch Lomond (Figure 34). Having been built in 1845 it 

is expected to bear some resemblance to the Xantho, which was 

comparable in length. 

Xantho's first certificate of British registry (No. 41 of 1848) was 

issued at the Port of Anstruther, Scotland. It shows that Xantho was 

given the official number of 7802 and its first owners were the elected 

trustees of a joint stock company called the Anstruther and Leith 

1 Fractions of a foot were expressed in tenths or decimals and not inches in these registers, as one 
would expect. 
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Steamship Company. Xantho was used in this period as a pleasure 

steamer operating on the Forth between Leith and Aberdour (Records, 

Scottish Maritime Museum). 

Figure 34: A side view of paddle steamer Loch Lomond, showing the hull 
configuration (Photograph, National Maritime Museum, Greenwich). 

After twelve years in this service, Xantho was sold and transferred to 

Scarborough (Certificate of British Registry, 21/5/1860). 1 The details 

in this register were basically the same as those previous, with the 

additional information that its tonnage was 97 .3 tons and its length was 

114 feet (34.7m). These various, and often conflicting, tonnage and 

length figures reflect measurements and formulae often quite different 

from the previous or subsequent Acts (MacGregor, 1973 :248). The 

1 The new owners were William Strong, a hotel proprietor, Samuel Bailey, a 'gentleman', Michael 
Hick, a shipowner, and Edwin Broomhead, also a shipowner. Hick, incidentally was a well-known 
figure in Wes tern Australia having operated vessels into Port Gregory, the site of Xantho 's eventual 
loss. He also had been heavily involved in the Geraldine Mine from which lead ore, which was on 
board Xantho when it was lost, was also mined. The Hick family was also involved in the Barque 
Arabella shown in Figure 39. 
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engine room also differed slightly at this time, being recorded as 32 

feet (9.75m.) length and of 53.04 tons capacity. 1 

While tonnage figures can source of considerable difficulty, 

confusion rarely arises over type of propulsion. can note 

comparison to Loch Lomond, the Xantho was topsail-schooner rigged 

and therefore was capable of carrying sails either as an assistant to the 

steam engine or as a substitute where conditions, or operating 

parameters, required. 

The in-water propulsion system in the two registers, quoted above, is 

recorded as being paddles driven by one engine of 60 horsepower 

(HP). 2 The Xantho was sold again, on 25 July in 1864, and its register 

transferred to Wick. The ship was recorded in the Mercantile Navy list 

of that year as being permitted to take excursions to sea (Henderson and 

Henderson, 1988: 119-124). In the following year it is described in the 

Glasgow Herald (7/6/1865), as a 'smart iron, passenger-cargo, paddle 

steamer'. 

Thus, the Xantho had an apparently uneventful career as a general-

purpose paddle-steamer, operating first a of 

16 years and then at sea around Scotland for a further 6 years. In 

undergoing a number of refits during this period and in order to 

prepare it for a sea-going role, re-engining and perhaps some 

alterations to deck structures and minor fittings are to be expected. 

1 Tonnage: As indicated, tonnage could both be a unit of space or weight and be expressed in a variety 
of forms each with a completely different meaning, such as 'Register Tons', 'Net Tons', 'Gross Tons', 
'Displacement Tons' and the like. Often the type of tonnage being referred to in a particular document 
or report was not specified at the time, adding further to the confusion. An analysis (MacGregor, 1973: 
283-5) of the various tonnages mentioned here appears in Appendix 2b. 
2(i) Horsepower is a complex rating. It is explained in Appendix 2a. 
(ii) Often the engine type is not specified and in most cases only the barest details are given. As 
indicated previously, the word 'engine,' for example also is often used to refer to the term 'cylinder', 
thus one engine can mean one cylinder and the word 'engines', where found in the literature of this 
time, can indicate two or more cylinders in any one piece of machinery. 
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The question that arises is whether the ageing Xantho with such 

relatively small scantlings and quite watertight bulkheads should 

have been put back into service on open ocean? 

Alteration of the PS Xantho to screw propulsion 

The First Transformation 

In dealing with the transformation of a site and assemblages, Schiffer 

developed the important distinction between changes that occur as a 

result of human versus natural actions. These he referred to as 'cultural 

formation processes' and 'natural formation processes' (Schiffer, 

1976:12-19). In applying Schiffer's concepts to an entire ship, in this 

case the X ant ho, it can be seen that both cultural and natural 

transformation processes occur, independently or together, over the 

active life of a vessel and following abandonment. These effects can be 

corrosion, damage at sea, refit, abandonment behaviour, salvage, or 

natural processes at the wreck or on the sea-bed. 

If material is raised from a site, changes occur both within it and 

around the disturbed site itself. Transformations also occur later in the 

conservation laboratory or in the exhibition gallery. Excavation by 

cultural resource managers or museum-based archaeologists for the 

purposes of exhibition, for example, result in the remains being 

returned to a systemic context, to become again a part of the cultural 

process. These are all significant processes. 

We are fortunate that the cultural transformations to the Xantho 's 

form wrought by its owners, or later by its salvors, are fairly well 

documented. Some of these were quite dramatic; altering the vessel not 

through periodic refit by re-engining, repairs or maintenance of the 

hull, but by completely changing its configuration and physical 

characteristics. 
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In 1871 for example, Xantho was sold to a 'metal merchant,' or 

scrap metal dealer, Robert Stewart of Glasgow (See Figure 35). Seeing 

an opportunity for profit, Stewart 

paddle to screw propulsion. 

ship and altered it from 

Xantho 's stern and figurehead also were altered and the ship was 

substantially lengthened to 116.3 feet (35.4m.). The cumbersome 

paddle engines were replaced with what was initially recorded in its 

register documents as a 30 HP horizontal engine built in 1861 by John 

Penn and Son (1871, Certificate of Registry). 1 

In making the transition from a large paddle engine housed around 

midships to a compact horizontal screw engine housed aft, the engine 

room length was reduced from 32 feet (9.7m) long to 23 and 1110th 

feet (7 .04m). This represented a considerable saving in space, with a 

resultant gain in cargo or coal carrying capacity. These alterations 

resulted in the relocation of all the machinery (including the pumps) 

aft, giving an increased cargo space. By relocating the cargo space 

forward, all the holds could be serviced by one deck winch. The 

economies of space, time and man-power resulting such a re-

arrangement resulted in an otherwise commercially unattractive vessel 

appearing quite viable. Through this particular transformation process, 

a redundant artefact ( the Xantho) was modified and re-used, rather than 

being broken-up in order to retrieve useful materials before deliberate 

scuttling or abandonment, as was the norm. 

1 Here is an example of the confusion caused by the term 'engine' noted earlier, for though each cylinder 
developed 30 HP, the two cylinders combined produced 60 HP in total and the register was 
subsequently altered in recognition of this. In one contemporary register (Liverpool Underwriter's 
Register, 1872: 381), the vessel appears as having 'one horizontal 30 HP engine'. 
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Figure 35: The 1871 Register of the SS Xantho (Certificate of Registry, 
Glasgow 61/1871: showing the details of the refit and tonnage figures. 
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is interesting to note that the tonnage figures shown on the register 

appear both tons and cubic metres. This was apparently with an eye 

to the continent where the metric system was place, especially in 

France. Here is an example of an object of little use to one group being 

offered for trade and presented in such a way to appear attractive to 

another group. 

In its late 1871 configuration, Xantho may indeed have been an 

attractive proposition for operations on rivers or sheltered waters such 

as the well-serviced River Seine. Its re-fit and mode of engineering 

may also have made it eminently suitable for use in semi-saline or fresh 

waters, as will be seen in a later chapter. 

The efficient use of sails would have represented a considerable 

saving in coal, but these savings were reduced in part by the windage or 

resistance of the masts, rigging and spars that were carried. The 

schooner rig, with its predominantly fore and aft configuration, had 

less windage and was also easier to handle than a rig with square sails 

and therefore required a smaller crew. An impression of the 

appearance of Xantho in its 1872 configuration is shown in Figure 36 

below. This is based on a comparison of plans and illustrations of 

similar steamers, from descriptions of Broadhurst' s ship and from the 

evidence on the sea-bed (Chapter 5). 

Broadhurst and the operation of the SS Xantho 

As indicated, Broadhurst travelled to Scotland with intentions of 

revolutionising pearling in Western Australia by introducing steam 

power to the industry. When he left, thirty one sailing vessels, ranging 

from one to fifty six tons, were in operation on the pearling grounds 

along with fifty two smaller boats or dinghies. All were wooden-hulled 

and not one was a steamship. 
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Figure 36: An impression of the SS Xantho in 1872 under Broadhurst' s 
ownership: By Ian Warne. The hachuring is to emphasise the sail 
configuration. 

Broadhurst does not appear to have adequately investigated the 

economics of the steamship industry before he purchased Xantho. He 

apparently did not make any formal enquires of Government, nor did 

he make public any prior intention of purchasing a steamer when he 

left for England in 1871. No mention of his scheme appears in any 

known official, private or family records where one would expect such 

things to appear. In addition, Broadhurst's subsequent letters to the 

Colonial Government on the matter show that he was, 1n his own 

words, 'entirely on... [his] ... own account'; 1.e. he was not 1n 

partnership with anyone else (Broadhurst to Colonial Secretary, 
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25/10/1871). To make the risk even greater, he planned to work the 

ship on a coast where other operators had demanded a subsidy to ensure 

their operations would be viable. the sum of £4,500 which 

Broadhurst eventually expended in the purchase and .................... ;.... 

Xantho with boats and whaling gear, coal and stores (Broadhurst to 

Colonial Secretary, 25/10/1871), was twenty times that of a mid to 

upper-level government servant's annual salary at the time and would 

be measured in the millions of dollars today (See Appendix 5 for a 

schedule of contemporary wages and salaries as a comparison). 

Where Broadhurst got the money is somewhat of a mystery. Pearling 

for him in the seasons before he purchased the ship appears to have 

been one series of disasters after another. The sale of his pastoral 

interests at Nickol Bay may have part-financed the purchase of the 

vessel, as could the sale of his stock and land in Victoria. He may also 

have been a beneficiary in his recently deceased sister's will and his 

family in England may have assisted in the purchase and even in the 

choice of vessel. When in England in 1871, for example, he would 

have visited his newly-married sister, Mary Louisa just 

the famous engineer, Sir Joseph Whitworth (Lee, 1900: 169). 

Whitworth may have advised his new brother-in-law that Glasgow, a 

noted shipbuilding region, was the best place to get a second-hand 

steamer. On being consulted on the options available for operation on a 

remote coast, he could have also volunteered the information that 

anything engineered by John Penn of Greenwich, Engineer to the Royal 

Navy, was bound to be good (for reasons that will later become 

apparent). 

Though he was to have only one steamer, Broadhurst intended to 

diversify his activities by using it as a 'mother boat', servicing a 

number of smaller dinghies he had working at distant bases 
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pearling industry on the north-west coast. He was carrying five boats 

on the vessel's deck, together with 120 tons of coal, 30 tons of stores, 

whaling gear and everything that his experience suggested was useful in 

order to pursue as many and diverse a range of maritime as 

possible. This included whaling and turtle shell collecting. If one were 

to deduct the estimated cost of these five boats, the coal, stores and 

whaling gear from the stated cost of £4,500, a figure not unlike the 

£3,000, flagged as the potential cost of a steamer by the Camden 

Harbour Association and Denison Plans Company, is approached. 

Finally, when not required for pearling, he intended to use Xantho as 

a trading vessel or 'tramp' carrying goods and people as the occasion 

allowed. 1 Thus the relatively high costs of obtaining coal, employing 

qualified masters and officers and the many other expenses incurred by 

operating the SS Xantho could potentially be recouped. It was a 

maximising strategy, common and identifiable through much of human 

endeavour in a difficult frontier environment or an untried economic 

context. Herein lies the difference between what Broadhurst was 

attempting and what steamship owners, prepared to operate a 

subsidy to a fixed timetable, had in mind. It clearly was a gamble, even 

under the best of circumstances. 

As also indicated earlier, the prospect of importing Malays in this 

period also was another logical progression, given that they had been 

operating as divers for centuries in the islands to Australia's north and 

that the available pool of Aboriginal labour had been over-stretched by 

mistreatment and the introduction of European diseases. In comparison 

to the Aborigines, who were in effect slaves, Malays required to be 

1 Tramp: A freight vessel that does not run on any regular line but takes cargo wherever shippers 
desire ... Tramp vessels are hired to carry cargo of any kind not requiring vessels of special design. They 
are operated singly over any ocean route and to any destination not prohibited by physical conditions 
such as insufficient harbour depth (de Kerchove, 1984:853). 

144 



paid and had to be transported back home at the end of their period of 

employment. 

Apart from being harvested, also had to be 

transported from the pearl beds to a suitable location for sale 

manufacture. These places were as far afield as the Australian north 

coast and the continent of Europe. Thus a string of agents and managers 

and a good vessel were crucial for an enterprise so geographically 

widespread. The managers and agents Broadhurst selected were 

connected to his family at Singapore and Batavia (Jakarta). To complete 

the chain, Broadhurst had one of the largest shell buyers in England 

willing to purchase, by telegraph, sight unseen, any shell he could land 

in Singapore. 

As noted in Chapter 3, the inspiration for the scheme may have come 

from the Camden Harbour and Denison Plains Companies. These 

companies had flagged the use of a small steamer ( costing around 

£3,000) between their settlements on the north coast of Australia, 

Batavia and the Straits Settlements (McCarthy, 1990:64-84). There was 

already a monthly steamer run across the island chain from Kupang in 

Timor to Batavia and, from there, direct links could be had by 

telegraph and steam-ship to India and London. It was a regular trading 

route to tap into for the carriage and disposal of harvested shell. 

Clearly if one were to use this network, pearl shell could be sold direct 

to the buyer, transport costs could be lowered and the government 

revenue charges levied out of Western Australian ports could be 

reduced. Indeed, if one were to bypass those ports, the charges could be 

avoided altogether. 

Broadhurst' s intention to use a steamship to satisfy the dual aims of 

harvesting and transporting shell and labourers between north-west 

Australia, Batavia and Surabaya and operating against time and tide in 
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difficult pearling harbours was a well-founded strategy. Port Hedland, 

where he established one of his pearling bases, for example, was 

considered a beautiful harbour; completely land-locked not suitable 

for sailing vessels in anything but perfect conditions. 

was taking an extraordinary gamble with unproven technology and that 

his Achilles Heel was potentially the ship itself, went unnoticed in the 

euphoria surrounding the news of the impending arrival of SS Xantho 

in the Colony, however. 

En route to Australia with the vessel, Broadhurst called in to his 

agents in Singapore, Batavia and Surabaya. There he obtained coal, 

engaged forty Malay divers and continued onto Banningarra, or Mt. 

Blaze, arriving around April 1872. 

Figure 37: Mt. Blaze, or Banningarra, where Broadhurst maintained his base. 
Access to Banningarra spring was via Banningarra Creek. Note Firewood 
Creek, a possible source of substitute fuel for Xantho. An excerpt from De 
Grey, WA 1: 500,000, SF 50-E. See also Figure 30. 
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Banningarra was a safe, virtually landlocked harbour with two and a 

half fathoms of water (5m) at low tide (See Figure 37). Near a small 

fresh water lagoon not far from shore, Broadhurst established a camp 

with a substantial wooden house and 'sick-bay' for 'Malays'. 

Firewood, from dead mangrove trees, was (and still is) in plentiful 

supply. 

The arrival of the steamer on the coast strengthened Broadhurst' s 

position with Government immeasurably. Even the Governor, who was 

then planning his first official visit to the north, intended to welcome 

Broadhurst and the steamer when it arrived at Nickol Bay, such was his 

improved standing in bringing the vessel to these shores. 

SS Xantho arrived a month late to find the Governor gone and it 

progressed on down the coast to Champion Bay, now Geraldton, 

arriving there to a populace clamouring to view the vessel. 

The Xantho a small steamer recently purchased by Mr 
C.E. Broadhurst and intended for the pearl fishery, called 
at the Bay yesterday on her way to Fremantle. Such a 
novelty as a veritable steamer in our waters attracted 
crowds to the jetty, and as the little vessel lay alongside 
for several hours, the curious had ample time to inspect 
her. The Xantho is a small Clyde built screw steamer of 
about 120 tons, with powerful engines for her size. She is 
stated to be a good sea boat and apparently can steam with 
ease 7-8 knots per hour (Inquirer, 22/5/1872)1. 

Public euphoria does not necessarily translate into things material, 

however, and Broadhurst had difficulty obtaining coal at a reasonable 

price. The only fuel available was offered at £4 per ton, an exorbitant 

figure, which was attacked in sardonic prose by the local papers. 

Undeterred, the ship carried on down to Fremantle and was greeted 

enthusiastically. Broadhurst, for his part, was eulogised as 'our 

enterprising speculator' (Inquirer, 15/5/1872). appears, however, 

1 There is a discrepancy between the tonnage figure quoted by the press and the registers. 
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that Government officials became worried when they learnt of his plans 

to carry shell direct from his bases to Singapore and sought to cater for 

his every demand in order to minimise potential revenue losses. After 

completing business Broadhurst and his ship departed 

Batavia via Champion Bay and Nickol Bay, carrying passengers, 

Aboriginal prisoners and assorted cargo. 

At Champion Bay they ran into a fierce storm and at one stage, 

Xantho was forced to steam at half speed with two anchors set to 

prevent it being wrecked. In the process of doing so the engines 

consumed over £100 pounds worth of coal. The capstan and the best 

anchor were also badly damaged. Of significance, in this instance, is the 

high cost of operating the vessel when steamed even at half speed over a 

prolonged period. 

After the storm, which lasted nearly a week, they proceeded north to 

the pearling grounds. There, they would have loaded the vessel with 

every available shell collected in the season. They then sailed north to 

Surabaya and Batavia where the shell was off-loaded for consignment 

to Broadhurst' s buyer in London. While at Batavia 

replenished the ship's coal supplies and loaded with saleable goods, 

including some that were later classed as contraband (McCarthy, 1990: 

267). Clearly Broadhurst exploited every conceivable opportunity for 

financial gain. 

After taking on more 'Malay' divers, the vessel returned from 

Batavia to Broadhurst' s pearling bases, first Banningarra, then Port 

Hedland and finally the Flying Foam Passage at Nickol Bay (Figure 

32). At the Flying Foam Passage, SS Xantho was allowed to rest on the 

bottom at low tide, like all the other vessels in the vicinity and it would 

have remained in that position until the next high tide (See Report of 

Inquiry into the loss of Xantho, following). 
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The tides of Nickol Bay are often in excess of 4 metres (Australian 

Tide Tables, 1994: 202-203). These tides, when combined with a 

coastline with little declination its off-shore profile, often resulted in 

vast areas of the sea-bed drying at low water. This presented a severe 

problem when moving cargo, stock and passengers to and from large 

ships. One solution was to allow the vessel to rest on the sand or mud at 

low tide and then perform all the cargo and passenger handling 

functions (See Figures 38 & 39 below). 

Figure 38: A late 19th century steamer, the SS Beagle, aground at low tide in 
Nickol Bay. Xantho would not have had the specially prepared blocks (State 
Archive, Battye Library, 21613P). 

Stresses and strains on the vessels involved could be expected and the 

practice was common with both iron and wooden vessels on the north

west coast until a few decades ago. When a vessel is old or vulnerable, 

as appears to have been the case with the Xantho, damage can occur. 
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Figure 39: The wool barque Arabella ashore at Condon near Banningarra in 
the 1900s (Simmer, nd: 373) 
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Complex, untried, or lightly-built technology often fails in a frontier 

environment. In not having enough capital to afford a relatively new, 

strongly-built iron ship, like those shown above, Broadhurst was taking 

a considerable risk and may have been better served with a traditional 

wooden-hulled sailing vessel. 

When the tide rose at the Flying Foam Passage Xantho was floated 

off and they departed for Geraldton as planned. Nothing appears to 

have been pre-arranged for the journey down to Fremantle and 

Broadhurst instructed his agents to look out for a paying cargo. While 

at Geraldton, Broadhurst heard of a good sideline and immediately took 

the ship back north to nearby Port Gregory to load a cargo of lead ore 

for a waiting sailing ship. 

Though an outport for lead mines, bay whaling operations, and the 

pastoral industries in the area, Port Gregory was a narrow harbour 
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with very strong currents, and was notoriously dangerous for sailing 

vessels (Totty, 1986). was, however, admirably suited for use by a 

small steamer such as the SS Xantho. 

The Loss of Xantho 

The Second Transformation 

Apart from on-going deterioration due to age, the next 

transformation operating on Xantho was what Schiffer would identify 

as a cultural formation process. 

While operating in the Geraldton area, on what was to prove to be its 

last voyage, Xantho had a crew of fifteen. This included the Captain, 

Ernest Denicke, an unspecified number of 'Malays', Joseph Taquer, late 

Master of a vessel wrecked in the storm discussed earlier acting as 

pilot, and William Smith, also a Master Mariner acting as second mate. 

At Port Gregory, the ship was chartered to load a cargo of 100 tons 

of lead ore from a nearby mine and to return it to Geraldton for tran

shipment to the barque Zephyr which was then waiting at Geraldton 

ready to load for Europe. Once the cargo was off-loaded, the intention 

was to take Xantho on to Fremantle and to continue in the carrying 

trade until it was needed back at the pearling grounds. 

Eighty three of the intended 100 tons of lead ore were loaded onto 

Xantho from small boats and this cargo was then topped with wool and 

whale oil from the nearby district and bay whaling establishments 

(Trenaman, 1934:1-5). Xantho left Port Gregory for Champion Bay at 

9:40 p.m. on the night of 16 November, heading into a strong south

easterly breeze and a heavy sea. It was then lost in the manner described 

in the introductory narrative. At a subsequent Court of Inquiry, the first 

mate, Augustus Thistleton described the events leading up to the loss of 

the vessel (Table 3). Some of the detail is included here as an example 
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of the information available and as important clues to the analysis of the 

archaeological record. Relevant sections are underlined. 

Table 3: Excerpts from the evidence given at the Court of Inquiry 

... We shipped at Port Gregory 83 tons of lead ore. We left Port Gregory for 
Champion Bay on the night of the 16th at 9.00 pm. The wind was SE. It was 
a strong breeze and a heavy sea. The Xantho was not deeper in the water 
than I had before seen her .... The cargo was stowed under the captain's 
direction. We expected to take 100 tons on board and the vessel was stowed 
with that expectation. Had the 100 tons been taken on board a considerable 
proportion of the deadweight would have been in the after part of the ship. 
The captain said he would only take 1 boat load more. Part of the cargo of 
ore was removed to the after part of the vessel. When we had finished taking 
cargo on board the Xantho she was about 5 or 6 inches by the head, her 
usual loading trim is about 2 inches by the stern. She was then 7 or 8 inches 
out of her proper trim .... It was my watch until twelve that night. During 
my watch the vessel was not taking in water more than I had before seen her 
do in a head sea. I was down in the fore compartment about half past eleven I 
did not notice any water in the fore compartment. The Xantho 's decks 
leaked a good deal. I went to see if any of the crew were asleep in the 
forepart of the ship as [indecipherable] .... I was relieved at twelve by the 
Captain. I didn't make any report to the Captain as to the water the vessel 
was taking in. I did not consider it excessive. I had before seen her taking as 
much water.. .. The fore hatch was battened down. The swinging doors of the 
forecastle were closed and the side also. I went to my berth on being 
relieved. At five minutes past I was called by the Captain. He told me he 
wanted me on deck to look after the hands as the forepart of the ship was full 
of water. I went on deck and passed the Captain at the wheel. He told me to 
go forward as the ship was in a sinking position the Xantho had two 
watertight compartments in her. On going forward I found the whole of the 
forepart of the ship under water it being level with the combings of the fore 
hatch, there was as near as possible a difference of elevation between the 
stem and the stern of 7 feet. Part of the lead was thrown overboard to lighten 
the vessel. At the time the vessel was heading SE by S being her course 
towards Champion Bay. I went aft and recommended to the Captain to return 
to port. He put the stem around. After the vessel was put around I observed 
he was going out to sea and I requested the pilot to go to the helm and steer 
for the port for the purpose of saving lives, which he did. Until then the 
Captain had the helm in his own hands. The engine pumps were going but 
were of no use, the water being all forward. There were no pumps in the 
forepart of the ship. We reached Port Gregory at a quarter to four in the 17th. 
We went in the Hero Passage. She took the ground about 10 minutes after 
entering the passage when abreast the Gold Digger Passage. The water then 
began to go aft. It was not more than 15 or 20 minutes after the water began 
to run aft that the fires in the engine room were put out by it. The vessel 
then settled down. The pumps were then useless. The vessel did not sink 
immediately. Attempts were made to free her by bailing but it had no effect 
on her .... At any rate the bailing had not the slightest effect in resolving the 
quantity. I cannot account how the water got from the fore compartment. ... 
the Captain ... gave no orders. He did not appear to be competent to give 
orders. He had lost the presence of mind altogether .... Xantho 's port of 
registry was Glasgow, she is an iron vessel rigged as a topsail schooner 
... hy the vessel heinf; down hy the head the water that came in overall could 
not get out of the scuoper holes. In the same way, it would had she been in 
proper trim. The Xantho was ashore in the Flying Foam Passage on the 
voyage from Point Walcott I did not think she received injury there to 
account for leakage on the night of the 16th. We bad a very heavy head sea 
while rounding the West Cape she then had about 18 ins in her fore 
compartment. It was bailed out at the time. The fore compartment was 
sound. The hulkhead of the fore compartment was about 15 ft from the 

~-
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Joseph Taquer stated that he would not have taken the vessel to sea in 

the trim that it was in as it had no chance to rise to the sea. As it was 

originally designed and licensed for use inland waters, it most likely 

had bows common to river and lake steamers; i.e. IS 

termed 'flare' or the resultant ability to thrust aside or rise above an 

oncoming wave or swell. As a result, the bows would have tended to 

bury into the sea and most of the water would have surged on-board 

instead of being hurled aside, as was usually the case with a ship 

designed for open water. Thus the vessel's design may have been 

unsuitable for the persistent, short seas of this coast. Though Broadhurst 

stated that they 'had a good trial' of the vessel out of Scotland 

(Broadhurst to Colonial Secretary, 25/10/1871), the heavy cargo taken 

on at Port Gregory may have exacerbated the failings inherent in a 

vessel which was not only leaking badly, but was also originally 

designed for use in sheltered waters and a cold climate. 

Alexander Maquis, the first engineer, also gave evidence. He revealed 

that he had previously examined the hull when the ship lay aground at 

low tide and found that about a metre up from keel, amidships, 

rivets had 'gone'; i.e. were corroded or had popped out of the hull. He 

replaced them, but thought that the rest of the hull was in good order. 

He also indicated that the Xantho always leaked forward in a head sea, 

partly in the hull and partly in the deck. 

Captain Denicke, in his defence, explained that the method of 

stowage of the ore was not at fault and stated that Broadhurst had 

prevented him throwing any more from the vessel on the way back to 

Port Gregory (Minutes of the Inquiry). Worth reiterating here is the 

fact than when Xantho was on the verge of sinking, Broadhurst called a 

halt to the jettisoning of the lead ore, and was recorded later as having 
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stated that he preferred to 'save the cargo rather than the ship' (Minutes 

of the Inquiry, Geraldton, 1872). 

Denicke added that when they were cleaning the at Batavia three 

of the plates in the fore part of the hull were scraped and 

required replacement. 

On the basis of the evidence, the Court found that the steamer was not 

lost by any default, neglect of duty or incompetence on the part of the 

Master and his certificate was duly returned. At the inquiry, Broadhurst 

revealed that he had forgotten to renew the ship's insurance. Realising 

this about a fortnight before the ship sank, he had sent an urgent letter 

home to rectify the situation, but it was too late, the mails were so slow 

and the telegraph to Europe was not connected (Minutes of the Inquiry). 

Thus, on the basis of the historical evidence alone, it appears that the 

SS Xantho was lost through old age, hull failure and incorrect loading. 

In purchasing this particular vessel, Broadhurst had made a very costly 

error. This modern assessment matches that of the local press, which 

claimed that 

Her hull is weather beaten and worn out... The vessel was 
simply swamped through her unfitness from age, service 
and other causes to carry the freight with which she was 
laden (Herald, 25/1/1873). 

Taking note of the evidence presented in the discussions above, 

project artist, Ian Warne presented my impressions of the Xantho as it 

would have appeared on the day it was lost. These impressions appear in 

Figure 40 below. This is the beginning of a continuum illustrating 

projected disintegration stages at the Xantho site. The other 

hypothetical stages appear in Figures 41, 44 and 72. 
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Figure 40: An impression of the Xantho on the seabed, the day it was 
wrecked. Based on contemporary accounts. Sketched by project 
artist Ian Warne. The sea-surface is emphasised. 
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Early Salvage 

The Third Transformation 

Once a shipwreck has occurred, the vessel is subject to both cultural 

change through the processes of immediate post-wrecking salvage and 

then to natural transformation. The latter occurs, firstly, by the action 

of the seas and swell and then by the wreck' s interaction with the sea

bed and its environment. All of these process will produce quite 

dramatic changes in the vessel, leading eventually to the formation of a 

wreck site as we know it today. 

Of importance to the archaeological record is the speed and process 

of the abandonment and salvage process itself. The loss of Xantho 

eventually proved not to be a life-threatening event, occurring in 

shallow water within the approaches to an existing port. As a result, 

abandonment was not hurried. The crew also had ample opportunity to 

return to the ship. Eventually all accessible valuable or re-usable loose 

material, and most likely all available personal effects, would have been 

retrieved and sent ashore to be sorted and reclaimed. 

There is in fact a continuum in abandonment processes generally, 

ranging from circumstances like that described, through to people being 

unexpectedly and abruptly cast ashore on a hostile coast, or into raging 

seas (e.g. the VOC ship Zuytdorp, mentioned earlier). Clearly the 

archaeological record is markedly affected by these variables and they 

must be taken into account before conclusions are made about the 

significance of the remaining assemblage. 

Broadhurst was keen to salvage ore from the wreck and as a 

preliminary a close examination of the wreck was made from the 

surface. It appears that the fore deck was three to four metres 

underwater and the afterdeck about one metre below the surface. The 

engine room, cabin skylights and cabin companion had all been washed 
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overboard. Within a few weeks, the main deck had partly lifted and 

washed away, as had the bulwarks. reports concluded that the vessel 

was a total wreck and should be sold (Colonial Secretaries Office, 

Records, 727 /268). 

By December diving apparatus had been obtained and Broadhurst 

would have then been set to work salvaging the lead ore and gear from 

the wreck. From a logistical perspective, it was a very difficult 

undertaking and in January 1873 negotiations were still under way for 

the hiring of other divers and more diving apparatus. The salvage of the 

loose gear and equipment within the wreck proved quite successful, 

however, and the list of gear landed on the beach and later sold at 

auction was substantial (Inquirer, 5/2/1873). This included a complete 

set of sails with running gear, anchors, 81 fathoms of chain, boat davits, 

lifebuoys, a barometer, thermometers, salinometers, navigation lights, 

fenders, a large ship's bell, a portable forge, three compasses, a 'patent' 

log, engine room tools, two clocks, lamps, a telescope, and a 13-f oot 

( 4m) dinghy. 

The list indicates that the vessel was stripped of everything that could 

be obtained, including material from the engine-room. This apparently 

left the ship virtually an empty shell, bar the machinery that was fixed 

to the hull and much of the lead ore. 

The processes of salvage that occur after the wreck is sold or 

abandoned by its original owners must also be accounted for. Where 

undertaken by the owners, insurers or their agents, I refer to this as 

'primary salvage'. When the Captain eventually proceeded with the sale 

of the wreck in order to obtain funds with which to pay the crew, the 

auction was poorly attended and was subsequently described as a 

'complete sacrifice'. Items such as the dinghy on the beach at Port 

Gregory, fetched only . As a result, the total sum raised was only 
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£180. Of significance was the fact that the hull and engines were also 

sold, as one lot, fetching £110. Interestingly, the purchaser refused to 

pay for the engines and hull he was guaranteed that the sale was 

authorised by Broadhurst. There was considerable confusion on 

issue, for Broadhurst had not yet relinquished ownership. In March and 

April 1873, for example, he was still calling for tenders for the raising 

of the steamer (Inquirer, 19/3/1873; Herald, 5/4/1873). 

That the wreck was still salvable and accessible is of importance. 

Equally of importance is the fact that the purchaser did not complete the 

deal or exercise his options as expected. As a result, the engine and hull 

remained on-site. 

Strangely, one of the reasons for this fortuitous outcome was 

Broadhurst' s consistently poor labour relations, which are dealt with 

elsewhere (McCarthy, 1990). The reasons for his engines remaining on 

the wreck, though they were a saleable proposition, can be traced partly 

to Broadhurst' s abandonment of his crew soon after the loss of the ship 

and their claim that all the proceeds of any sale were to go to them to 

pay their arrears in wages. Broadhurst naturally countered claims, 

adding further to the confusion. In examining the evidence from the 

papers, letters and the various government offices, it appears that 

Broadhurst did not pay his men off in the belief that, as the vessel was 

salvable, they were still in his employ. With this understanding he went 

off south to recover what he could of his faltering business empire. On 

the other hand, Denicke and the crew, left without instructions or 

money, believed that as the vessel had sunk they were entitled to be 

discharged and to be paid their dues, as was the custom. They then 

pursued Broadhurst up and down the coast, seeking their arrears in 

wages. In the meantime four 'Malays' were left destitute, wandering the 

streets of Geraldton. They were forced onto the government for help 
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and the matter became a great scandal in which Broadhurst was roundly 

criticised (Government Resident's Office to Colonial Secretary, 

31/12/1873). He eventually repaid Government the money owing for 

the accommodation and feeding of the 'Malays', but it is doubtful that 

ever paid out the rest of his men. In selling the vessel without his 

authority the crew would, in his eyes, have given him just cause to 

totally ignore any further demands. was a scene that destroyed the 

respect and position that he had re-built in bringing the steamer to these 

shores. 

In noting the cultural and natural changes recorded above, such as the 

extent of the salvage, the lifting of the decking, the loss of the skylights 

and the inevitable removal of the valuable masts, spars and rigging, I 

was able to conclude that the wreck would have been transformed within 

a few months of its loss to a form similar to that shown in Figure 41, 

below. 

Little is known about cultural transformations that may have followed 

at the site and it appears that the Xantho was quickly forgotten by all 

except those navigating the narrow channel which it lay. 1875, for 

example, Port Gregory was surveyed and the site was examined and 

marked with the notation, 'submerged wreck' (Figure 3, above and 

Figure 42, below). The surveyor, Commander, W.E Archdeacon RN, 

does not name the vessel, but describes the location exactly 

One third of a cable [c. 70 m] off the point a small coasting 
steam vessel foundered and her remains not having been 
removed it is probable the point will eventually work out to it 
(Archdeacon, 1879:16.) 

It is clear that by Archdeacon's time the wreck had been abandoned 

by all, including Broadhurst and his unfortunate crew, and soon it 

became lost to living memory. Of equal importance was Archdeacon's 
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belief that the point ( or sand-bar) would 'work out' to the wreck and 

that it would, by inference, become engulfed in it. 

Figure 41: A sketch of the of ship a few months after its loss. The illustration 
is based on the historical evidence and the removal of the masts and spars. By 

Ian Warne .. 

From Archdeacon's time on, we know little of what occurred at the 

site, but on days of complete calm and clear water sailors could not have 

missed seeing the wreck as they tacked into Port Gregory. It was also a 

distinct and quite noticeable hazard to navigation, with the boiler and 

upper-works barely a metre below the surface (See Figure 42). Pearling 

craft en-route Fremantle and the north for example, would have utilised 
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Port Gregory. With divers on-board, they may have investigated the 

site, removing anything that still appeared useful! 1 

In the early twentieth century, salt was harvested from inland lakes 

and it was shipped from Port Gregory. It appears that we are fortunate 

in having anything at all to examine at the site, for when the S S 

Kurnalpi called into Port Gregory in February 1918 to take on a cargo, 

the master requested that the wreck be removed as it constituted a 

hazard to navigation. 

11' 

2.s· ~ 

Figure 42: Port Gregory, in modem times, showing the location of an 
obvious navigation hazard (the Xantho) at the entrance to the Port (AUS 751, 
Houtman Abrolhos & Geelvinck Channel. 2 
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1 Indonesian trochus shellers, for example, are known to have dived on many wrecks further north, 
reducing them to sterile sites (See McCarthy, 1991). Pearl divers can be expected to have done the same 
(See Figure 64). 
2The vessel's name appears on more modern maps and charts (See Figure 73). 
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Fortunately it was decided to mark it with a permanent beacon instead 

of destroying it with explosives, as was usually the case. (Suckling nd: 

42-6). Though the nature and form of the beacon on the wreck is not 

known, it is expected that the marker would have been held in place by 

chains fastened to a portion of the wreck itself, further hastening its 

destruction in times of bad weather. 

In the interim, disintegration would have continued as a result of 

natural processes. We know from experience that wooden decking 

quickly disintegrates and that iron deck-beams, flexing with each heavy 

swell, gradually weaken to the point where they fail and the sides of the 

vessel no longer have any support (Figure 43). 

Figure 43: The author inspecting the midships section of the SS Macedon. 
The deck beams have disintegrated and the sides of the hull are only a few 
years off collapsing. Photograph by P. Baker (See also Figure 6). 
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At this point, the sides of the hull are totally vulnerable to the seas 

and as they corrode or are exposed to heavy swells across the hull, they 

collapse, especially around the cargo holds. The direction in which they 

fall is dependent on the direction of the seas at the time of near-collapse, 

the current, and the angle of heel of the hull itself. 

In contrast, the stronger, better-supported area around the boiler, 

coal bunkers, stokehold and engine-room often form a unit and remain 

intact for a considerably longer period. The bow and stern triangles, 

which are immensely strong structures, still remain upright and they 

often remain so for some time. These phenomena have been observed in 

contemporary photographs and illustrations of ships in similar situations 

and they are now believed to be a common process, notwithstanding 

salvage or other cultural transformations, such as the effect of war. 

This, somewhat surprisingly, is an issue which had to be considered at 

the Xantho site, for the area was shelled by a Japanese submarine in 

1943 (Hashimoto, nd). Investigations subsequently showed that the site 

was not damaged (MacDonald, 1994). 

On the basis of an examination of the remains of 

the projected appearance of Xantho as it began to collapse is shown in 

Figure 44, below. What is illustrated here is what I now believe is a 

standard slow midships-collapse for vessels of this type in similar 

conditions. 

There are a number of assumptions inherent in the production of the 

three illustrations of how Xantho would have appeared in the years 

between its abandonment in 1873 and its relocation and inspection in 

modern times (Figures 40, 41 & 44). They revolve around the notion of 

commonalities in iron ship disintegration through the processes of 

natural disintegration, an issue which will be discussed at length in 
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Chapter 6. Before examining this phenomenon, I will examine the 

wreck, as found in modern times. 

Figure 44: An impression of the appearance of the Xantho in the process of 
collapse. Sketch by Ian Warne. See also Figures 40 & 41 
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CHAPTER 5: 

THE WRECK OF THE SS XANTHO 

Discovery, inspection 

Station-hands living in the area of the wreck claimed to have 

its existence since the 1930' s, but kept it to themselves (McLaughlin to 

McCarthy, pers. com.). An amateur historian and member of the 

Underwater Explorer's Club of Fremantle, Bruce Melrose, first brought 

Commander Archdeacon's unnamed wreck at Port Gregory to the 

attention of the general public (Underwater Explorer's Club Newsletter, 

16/10/1966). He found the site while perusing early charts and modern 

aerial photographs for the purposes of locating new wrecks. Little was 

done about his report, however, and the exact location and identification 

of the wreck still remained a mystery for many years. This was probably 

fortuitous, for when the Underwater Explorer's Club found the wreck of 

the Georgette (1872-1876) during the same period, they removed 

everything possible and dismantled the engine for souvenirs, leaving it 

broken on the sea-bed (Figure 28). In an attempt to remove its propeller 

with explosives, they blew it to pieces and, though they dragged the spare 

ashore, it was lost in the sand. 

There was no official reaction to this site destruction or the Melrose 

report. Western Australian academics and politicians were preoccupied 

with decisions as to how best stop the systematic plundering of newly 

found 17th and 18th century English East India Company and Dutch East 

India Company ships, as discussed earlier. Later, in the mid- l 970s, an 

interest in iron and steamship wrecks grew due to the work of Graeme 

Henderson, Curator of Colonial Wrecks, and Scott Sledge, then Curator 

responsible for the wreck inspection program (Henderson, 1977; Sledge, 

1977). Knowing Xantho to be located in the vicinity of Archdeacon's 
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wreck, Henderson requested that the Maritime Archaeological Association 

of Western Australia (MAA WA) mount an expedition to locate the site. 

The Association searched the Gregory area, but initially failed to 

locate the wreck partly due to the prevailing strong current. 

Eventually the assistance of local fishermen was sought and as it 

eventuated, the wreck was well known to them as a navigational hazard. 

They promptly directed members to the site. The Association conducted a 

preliminary survey of the wreck, locating a boiler, iron frames, a 

windlass, propeller, other machinery and lead ore. A report with sketch 

plans was prepared that left no doubt that the wreck was that of the 

Xantho (Hall, Hill and Warne, 1979). The wreck was officially inspected 

by Sledge in October 1979. He was accompanied by a team of volunteers, 

including members of the original MAA WA team. Further sketches were 

made and compass bearings and transits were taken to facilitate its re

inspection at a later date. Five artefacts were located, recorded and raised. 

An excerpt of the 1979 report appears below, with elements significant 

to this project highlighted. 

The wreck lies in 5.5 m of water with a large boiler rising to 
within 3 m of the surface. The axis of the keel is directly NS 
on sand bottom. Overall length between stern and stem post 
34.05 m (110.7 ft) with a measured breadth of 5.2 m (16.9 ft) 
at 10 m abaft the stern. The stump of the foremast is located 
9.9 m abaft the stem and a large tubular boiler (2.8 m 
diameter) is located slightly abaft amidships. A two cylinder 
engine lies immediately abaft the boiler but has fallen over to 
port. The boiler is held in position by a wooden cradle, at least 
partly surrounded by an iron box. Small artefacts including a 
copper porthole ring and broken glass thereof, a small leather 
shoe sole and blue transfer ceramics sherds were recovered 
from the area to starboard engine. Several pieces of whalebone 
and deck skylight and samples of lead ore, found abundantly 
in the fore section of the wreck were recovered. A 16 cm 
diameter drive shaft with 40 cm connecting flange links an iron 
screw propeller to a confusion of rubble just aft of the engine. 
The whole construction is of thin iron plate (no more than 1 
cm thick) over iron frames, with tongue in groove 3 cm 
wooden ceiling planking. Wooden dunnage 1 was noted 

1Dunnage: A term applied to loose wood or other material used in a ship's hold for the protection of 
cargo (DeKerchove, 1948:250). 
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amongst the lead ore in the fore section. A mild to northerly 
current was encountered which did not shift with the change of 
tide. Visibility remained poor to moderate at 4.5 m. The five 
artefacts XA 2417-2421 were transported to Fremantle for 
conservation. A rough site plan and drawing and other 
drawings were also made (Sledge, 1979) . 

The inspection report was then presented to the Maritime Archaeology 

Advisory Committee of Western Australia (MAAC). This committee 

included academics, archivists, divers, professional staff and others who 

advised the Director of the Western Australian Museum on maritime 

archaeological issues. After the report was received and the identification 

accepted, the wreck was submitted to the Trustees (Board) of the Western 

Australian Museum for declaration as an historic site. From there the 

nomination went to the Western Australian State Government for 

protection under the terms of the 1973 Maritime Archaeology Act 

(Minutes, Maritime Archaeology Advisory Committee: Resolution 

4/1980) 

In January 1980 a further visit was made by members of the Geraldton 

Branch of the MAA WA. Measurements and sketches were made, 

photographs of the site were taken and an intact boiler gauge was noted 

lying 70 cm from the aft starboard corner of the boiler. In October 1980, 

the Geraldton MAA WA again visited the site of the wreck and found that 

some items, including the boiler gauge, had been removed. Concern was 

formally expressed by this group for the safety of loose artefacts on the 

site and they recommended that all be removed as soon as possible (Totty, 

1982). 

Having become responsible for the wreck inspection program, I 

attempted to visit the site in February 1981 with the intention of assessing 

the reported damage. Diving was not possible, however, due to extremely 

poor conditions. It was decided that a detailed survey of the site should be 
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conducted at a later date and I was requested to lead the project and 

conduct a test excavation. 

The 1983 Expedition 

In 1983, I prepared a submission for funding in order to assess the 

effect of the looting. A statement of aims, and proposals for a test 

excavation to a budget of $3,700 AUS were also presented. 

The problems and methods of effectively recording a site, such as 

Xantho with substantial relief were important considerations. Inspection, 

recording and excavation philosophies and techniques were to be re

examined and modified where necessary. My objective was also to record 

the propulsion system, to comment on the research potential of the hull, 

propulsion system and cargo remains and to assess and report on physical 

conditions affecting the wreck and its future stability. The aims, as set in 

1983, are reproduced below. 

AIM: To examine the Xantho wreck site and assess the feasibility of a future 
site excavation. 

Methods: 

1. Conduct a surface level survey resulting in a 
site plan produced by physical measurement and photography. 

2. Assess and report on site conditions, notably 
current, turbulence and visibility. 

3. Comment on the most appropriate excavation 
procedures and plant required in view of (1) and (2) above. 

4. Comment on the research potential of the hul 1, 
propulsion system and cargo remains. 

5. Conduct trial trenches to ascertain the 
orientation of the keel and the extent of hull remains for 
future grid positioning and recording techniques. 

6. Recover and conserve artefacts from the 
trial trench and forward them suitably conserved and 
photographed through to the laboratory and into the 
conservation. 

7. Record and report on the propulsion system. 
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8. Report on the problems and methods of 
effectively recording a site such as Xantho with 
substantial relief. 

In expectation of a successful submission, a study of 

weather and on-site conditions prevailing in the Geraldton/Port Gregory 

region was commissioned of Peter Worsley of the Geraldton MAA WA. 

In short, it recommended that the best time for a fieldwork program 

would be the period commencing late March through May. This pre

winter period was selected due to the expected easing of the prevailing 

southerly winds which are normally experienced in the months before. 

During the southerlies and winter storms, seas breaking over the southern 

end of the reef cause stronger currents than those which normally run up 

the channel. These could attain speeds of up to 3 knots. The tidal range 

was little over one metre and was not seen to be a significant factor. It 

was recommended that small vessels could be used in the proposed 

fieldwork due to the proximity of the wreck to the launching ramp and 

caravan park at Port Gregory. 

My proposals and budget were accepted and fieldwork was planned for 

the coming month of May. 

Earlier, I had published a number of guidelines for conducting wreck 

inspection programs in the JINA. These included the non-disturbance 

recording of biological, physical and chemical parameters of relevance to 

the conserving and managing of artefacts taken from wrecks (McCarthy, 

1982a: 47-52). They are presented below, 

(a) Temperature: water temperature is an important variable in determining the rate of 
marine growth, corrosion of metal objects and the biodeterioration of organic materials. 

(b) Salinity: water salinity has a pronounced effect on the stability of metal objects, 
ceramics and biological growth, e.g. bacteria and fungi which have a marked effect on the 
deterioration of wood. Salinity, therefore, is an important factor to be considered and measured. 

(c) pH and dissolved oxygen content: both should be measured on site where 
possible as they are major factors in determining the stability of both inorganic and organic 
materials. 
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(d) Water movement and purity: wave action, water movement and non-marine 
water sources nearby, e.g. rivers, sewers, etc., should be recorded in view of their effect on a-c 
above. 

(e) Bottom-type analysis: this variable also needs to be recorded since it has 
chemical as well as immediate physical effects on the wreck material and on the site itself. 
Samples of bottom sediment should be taken with a view to analysing micro-organisms present 
and mainly the sulphate-reducing bacteria content with a view to their effect on organic material 
and artefacts. 

(t) Corrosion products and marine concretions: these are best initially retained 
where practical, due to their protective coatings which help prevent damage of artefacts in transit 
and also for the information conservators can gain from an analysis of the corrosion products and 
marine concretions. Some marine concretions, however, harden considerably on artefacts such as 
ceramics and experience has shown that these are best removed soon after being taken from the site. 

Having expanded the brief to acknowledge that Xantho was the first 

iron and steam shipwreck to be studied by maritime archaeologists in 

Australia, I extended it further so that it might accommodate what I 

perceived were some new directions in underwater archaeology. One of 

these was the study of iron and steamship wrecks. 

My intention was to make no a priori assumptions about the Xantho 

site, how it should be treated or how it behaved in an underwater 

environment in comparison to the wooden-hulled wreck. Therefore, I 

decided that a full pre-disturbance survey had to be carried out prior to 

the main recording/excavation program. There was, unfortunately, little 

precedent on which to base the pre-disturbance work. All earlier 

examples of corrosion monitoring in Australia were undertaken post or 

mid-excavation, centring on the analysis of discrete metallic artefacts such 

as cannon, anchors, brass fittings, rigging and the like from wooden 

vessels (MacLeod, 1981:291-303; North, 1982:77). 

The results of work conducted overseas was not available to us at the 

time. A detailed examination the wreck of the iron hulled USS Monitor 

which was conducted in 1979, for example, was not made available. On 

reading that study in later years, it appears that it involved a 'limited 

amount of structural testing' that was based on in-laboratory work and on 
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a physical examination of the site (Watts, 1987:128-139). The other study 

I located on hull material recovered in 1967 from the USS Tecumseh (? 

-1864), is noted in Watts' account of the Monitor (1975:322; 

Edington, 1978; Friend, 1978). It also appears the subject of an 

laboratory corrosion study (cf. Baker, Bolster, Leach and Singleterry, 

1969). Thus it was not known whether the results obtained in either of 

these two cases mirrored what was happening on the site itself, as was the 

intention of the proposed in-situ recording of parameters (a-f) above. 

The most appropriate people to conduct the proposed pre-disturbance 

survey were specialists with experience in the handling of scientific 

equipment and in interpreting these results. Though comparatively new to 

work in the underwater environment, some of these normally laboratory

bound specialists were trained to dive and could operate their equipment 

underwater with a degree of confidence. The fallowing comment places 

this development in perspective 

Prior to the excavation of the iron steamship Xantho, the 
project leader (McCarthy, 1985) decided that a pre
disturbance biological, chemical and electrochemical survey 
should be made of the site since it was the first iron shipwreck 
to be systematically studied (MacLeod 1987 :50). 

The decision to involve these specialists from the beginning, and 

throughout all subsequent phases of archaeological investigation, provided 

an opportunity to study not only the physical state the hull, boiler, engine 

and fittings, but also the biological growth and electrochemistry of the 

site. As we expected there to be a considerable number of galvanic 

couples (bonding of dissimilar metals around the site and especially on the 

engine) this study also presented an opportunity to conduct the first 

underwater (as opposed to in-laboratory) study of corrosion on a 

composite structure which had been submerged for more than a few 

years. 
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As a result, an addition was made to the Xantho research design 

9) To conduct a pre-excavation study of the site conditions, biological 
factors and electrochemical state of the wreck and its engine, fittings and cargo. 

Clearly the study had to be performed before the site was transformed 

in any way. This was to be the other new direction. It is a strategy that 

has worked well, as will be seen, and as a result I was later to make the 

fallowing comment with respect to what I now consider to be an 

inextricable link between conservation and excavation 

There appears a need (almost a requirement) to have 
trained, experienced and capable conservators working, 
not only on-site at the expedition camp, but on-site 
underwater on the excavation itself (McCarthy, 1986c: 21-
25). 

The pre-disturbance survey 

By arrangement, local divers re-located and buoyed the site prior to 

our arrival. After a short familiarisation dive, corrosion potential 

measurements were taken and an assessment of the physical and chemical 

status and the biological growth on the wreck was made. The rationale for 

the study was that 

... very little is known about the rate and manner in which 
the ship's material decays and corrodes, what type of 
problems are likely to be encountered when attempting to 
excavate or raise artefacts, or how to protect any significant 
sections which have to remain in situ after the excavation is 
completed. Our aim in carrying out this preliminary survey 
was to collect enough data to answer some of these 
questions, or at least pinpoint where further work is 
needed ... The type of information which can be obtained 
from the Xantho is applicable, in part, to other marine 
problems such as the formation of artificial reefs and 
protection of long term off-shore facilities (Beegle, North 
and MacLeod, 1983:1). 

A precis of the pre~disturbance survey report by Neil North, Head of 

the Conservation Department at the Maritime Museum, assisted by 
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MacLeod and biologist, Ms CJ. Beegle follows (Beegle, North and 

MacLeod, 1983). (See original Appendix 7). 

The conservator's work shows the depth over the site ranged from 

between 3 to 6 metres and at the time of recording sea water 

temperature was 23 °C with no thermal gradient. The current, which ran 

from the port forward quarter of the hull across the site to the starboard 

quarter astern, was approximately 3 knots. This and the storms that 

preceded the inspection produced a mass of weed and sea-borne grit 

which gave a turbidity (visibility) of 2.5 to 3.0 metres at best, often 

falling to less than one metre. The salinity of the water was measured at 

37 .53 parts per thousand. No direct measurements on dissolved oxygen 

were made, but due to the strong current and shallow depth over the 

wreck, it was estimated at 100% saturation. The pH of the water at 23 °C 

was 8.1. 

Compared to the nearby barrier reef and benthic communities, the 

ecosystem of the Xantho appeared to be an anomaly. The surrounding 

areas comprised eel-grass communities with a large herbivore population 

which feed on the organisms seeking shelter protection .......... ,,'"' .......... ..., .. 

eel-grass fronds. The Xantho itself, however, was a tunicate-dominated 

community of primarily sedentary filter feeders. These served to 

camouflage much of the remains and possibly to protect them from wave 

action. Also present were tube worms and a single crinoid. Of all the 

structures of the ship, the most interesting area was the boiler. It was 

found that this large cubic structure located in such a strong current 

allowed higher rates of colonisation in comparison to successively more 

sheltered areas on the rest of the wreck. 

At the top of the boiler, the wave surge was found to be at right angles 

to the current and approximately 0.5 m in amplitude on the day of the 

study. Within the shelter of an opening, on the upper surface of the 
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boiler, tunicates were found. These were generally smaller forms of 7-10 

cm overall length. On the top of the boiler, which was 2. 9 metres from 

the sea surface, encrusting sponges occurred with small green algae. 

Where the upper surface sloped down towards its corners, large brown 

algae were present. A distinct demarcation of growth along the boiler 

surface was noted at a depth of 4.1 metres. Below this line, large tunicates 

(10-15 cm overall length), large upright sponges (5-10 cm high) and a 

few scattered red algae appeared. On the port side, above a depth of 3. 7 

metres, the full force of the south-west swell was felt, but below this 

depth there was only a mild surge along the plane of the face. The biology 

reflected each of these area's exposure to current and swell. Above 3. 7 m 

biota was associated with that found on the upper surface. However, from 

3.7 m to 4.2 m depth, a band of large brown algae occurred. From 4.2 m 

to the seabed (at 4.9 m depth) were encrusting sponges and red algae. The 

species of the lower areas were the same as on the forward side except for 

the lack of tunicates. 

The water column was also sampled for contaminants and high 

quantities of lead sulphide were found downstream of the lead ore (PbS) 

cargo. 

In highly oxygenated warm water and saline environments, such as that 

on Xantho, concretion occurs (See Chapter 6 for an expansion). This 

natural transformation process (Schiffer, 1976: 12-19) is a matrix formed 

through the combined effects of chemical processes, animal life and the 

accretion of sand and shell. It gradually covers iron and some other 

metallic surfaces (cf. North, 1982). Called concretion, due to its rock 

hard characteristics, it was seen to have formed a layer over the boiler, 

the engine and all other iron surfaces. On the engine it appeared to be up 

to 50 mm thick; on the boiler it was less. Animal matter often grew on 

top of this layer of concretion. 
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comparison to the thick layers found on the iron, the concretion 

layer observed on brass and copper fittings (e.g. oil cups and lubricators) 

on the engine was only a few millimetres thick and consisted of a dense 

white calcareous deposit. The mechanism for ....... ~,.._,:..,":::-v::.. ...... ~::. ...... T of 

concretion is of significance and is briefly discussed here ( cf. MacLeod, 

1982). 

Galvanic protection provided by the corroding iron on the engine 

allowed the copper based alloys in the fittings to act as cathodic sites in 

the corrosion cell. This caused the surface pH to increase and inorganic 

calcium carbonate precipitated on the metal. Once this protective layer 

covered the toxic metal corrosion products, the surface was then subject 

to normal colonisation by marine organisms. The carbonate layer was 

fairly dense and under it some of the copper oxides on the metal surface 

had been converted to copper sulphates, through the action of sulphate

reducing bacteria. 

It has long been acknowledged that to deconcrete an object underwater, 

in order to ascertain its stability or to record data from its surface, leaves 

it unprotected and liable to accelerated corrosion and abrasion 

movement. It is not a justifiable process. As a result, artefact markings 

and detailed features are rarely visible, often frustrating those wishing to 

use a concreted object for dating or identification purposes. These 

problems applied to the entire Xantho wreck and were a major factor in 

the design of the pre-disturbance survey. 

The corrosion specialists minimised the impact of their study by a 

procedure which consisted of clearing the loose plant and animal growth 

from the area to be examined and then by drilling a 6mm diameter hole 

through the concretion down to the metal itself. This procedure was 

performed using a using a masonry bit and a hand drill. A platinum 

electrode connected to a high impedance digital multimeter, housed in an 
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epoxy body, was then inserted into the hole. A reference electrode was 

placed adjacent to the hole and the voltage measured. For the resistance 

survey the reference electrode was replaced with a stainless steel probe 

(See Figure 45). The procedure was repeated elsewhere on the wreck, 

allowing the depth of the concretion layer on each feature to be tested. 

More importantly, the instruments allowed the corrosion specialists to 

ascertain the electrochemical environment and the physical state of the 

metal beneath. From there they were able to make predictions on its 

stability. Thus the c01Tosion potential of the iron work and other metallic 

surfaces were measured across the site. 

Figure 45: Neil North and Ian MacLeod at work on the engine during the pre
disturbance survey. MacLeod is using a hand-drill. on North is holding the 
multimeter. The electrode is visible in the foreground. Photograph by M. 
McCarthy. 
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of pre-disturbance survey 

The analysis of marine organisms on-site and other ambient conditions 

provided some evidence had apparently killed 

colonising plants and animals. 

It also became apparent that the hull plates remaining beneath the 

concretion were extremely thin and that some appeared only as hollow 

casts with no original metal at all, especially up current in the forward, 

port section of the ship. The ironwork on the boiler varied in thickness 

with some robust metal remaining in parts, especially on its aft face. In 

comparison to the coppers and bronzes, which appeared to be in excellent 

condition, there was no solid iron left in the winch or windlass, each 

being in effect hollow concretions. 

Only the engine, drive shaft, propeller and part of the starboard 

quarter at the stern appeared to have some solid metal, though Neil 

North, the senior conservator was of the opinion that the engine had a 

life-span of sixty to one hundred years at most; even if left totally 

undisturbed on the sea-bed (North to McCarthy, pers. com., SS Xantho 

Expedition, 1983). North advised that after this period 

be reduced to mere shells of concretion or would collapse under the force 

of the heavy seas and swell which sometimes affect the site. This 

observation was based on measurements of what proportion of the 

original metal remained on the engine and by predicting rates of 

corrosion in an underwater environment for areas that could not be 

assessed. This are discussed briefly in what follows, being of considerable 

importance to this study. 

Studies conducted before the Xantho project began showed that the rate 

for underwater corrosion of discrete steel and some iron objects in an 

anaerobic environment averaged 0.10 mm per year (ranging from 0.02 

-0.195 mm/yr) (LaQue, 1975:383-9). These results were supported a 
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subsequent study, where a mean rate of 0.08 mm per year was recorded 

after 16 years of measurement (Southwell, Bultman and Alexander, 

197 6). Studies on corrosion and galvanic coupling had also been 

conducted (North, 1984). As a result of these findings, North initially 

applied a corrosion rate of 0.08-0.10 mm/year to the 

predictive studies; noting that it could be expected to vary greatly, both 

below and above that figure (North to McCarthy, 23/1/1984). As 

indicated, North's predictions led, in part, to the belief that the Xantho 

engine had a short projected life, even if left undisturbed beneath its layer 

of concretion on the sea-bed. The rates were found to vary considerably 

across the wreck and across the engine itself, as North had forecast. 

Figure 46: The SS Xantho, showing the points at which the corrosion 
potential measurements were taken and the readings obtained. The prevailing 
current is shown by the arrows. Adapted from an isometric projection by John 
Riley. 
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The results are discussed at length in Appendix 7 (Beegle, MacLeod 

and North 1983). summary, the trend to more negative corrosion 

potentials of cast and wrought iron moving bow to stern indicates a 

slower corrosion rate. The 168-millivolt difference between windlass 

and the trunk is equivalent to the windlass corroding three times faster 

than the trunk. The 27-millivolt difference between the bow plate and the 

counter stern means that the former is corroding 20% faster than the 

latter. Differences in corrosion rate are primarily dependent on the flux 

of dissolved oxygen to the metal surface. The arrows show the dominant 

direction of the water flow over the site which indicates that the windlass 

is in the most exposed environment. This is directly reflected in the 

voltage of the fitting (MacLeod pers. com.). 

In summary, the wreck and its features, including the engine, were 

actively degrading and were not expected to last intact much more than 

another half a century (Beegle, MacLeod and North, 1983). The predicted 

short life of the hull and machinery was a surprise, contra-indicating 

extensive excavation, for most had assumed that iron wrecks with 

considerable relief and apparent structural integrity for a 

considerable time even above the sea-bed. Reports on this phase were 

subsequently published (MacLeod, North and Beagle, 1986; McCarthy, 

1986a-c; 1987; 1988a: 339-347; 1989a-c; MacLeod, 1986; 1989a-b; 

1992a). 

While escorting the conservators around the site, it became apparent 

that the engine was not, as originally reported by Sledge, lying on its side. 

This suspicion was confirmed when heavily camouflaged brass oil cups 

with lids opening upwards towards the surface of the sea were identified. 

Clearly they would not function on a vertical engine. This was, instead, a 

horizontal engine. More importantly, two hollow cylinders projected out 

of the engine block, indicating that the unit was of the trunk engine 
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variety, a favourite with the Royal Navy from the mid-1840' s to the mid-

1870' s, as discussed earlier. Protruding trunks were a feature of this 

design and were unique to this form of marine engine. They were, in fact, 

used almost entirely in the naval context (Banbury, 1971:227). 

Figure 47a-b: The SS Xantho engine on the sea-bed, clearly showing 
the oil cups and the trunks. Note the concreted boiler tube brushes on 
the right-hand (aft) trunk. Photographs by M McCarthy. 
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The following contemporary description provides the rationale for the 

trunk engine 

The difficulty of obtaining a sufficiently long stroke from a 
direct-acting horizontal engine in the case of a man-of-war, 
where the engines had to be placed as near the keel of the ship 
as possible, was solved by Mr. John Penn of Greenwich. He 
hinged the connecting rod direct to the centre of the piston by 
means of a gudgeon, surrounded by a brass cylindrical case or 
trunk as seen in the following figure. The trunk was fixed to 
the piston, and protruded from each end of the cylinder 
through stuffing boxes ... (Jamieson, 1897: 214-215). 

The only other trunk engine known to be in existence is in the Chilean 

Monitor Huascar, now a museum ship at Talcahuano, Chile (Brouwer, 

1985: 35). Though research conducted later confirmed that the Xantho 

engine was referred to in the 1871 Register as a 'horizontal engine' 

(Figure 35), its identification as one of the rare trunk engine variety came 

as a complete surprise. 

As the pre-disturbance survey continued it became apparent that the 

engine was even more significant as all its fittings, copper piping, brass 

taps, cocks, valves and tallow pots were intact, albeit heavily 

camouflaged. This was unexpected, for every other steamer shallow 

water close to a centre of population, like Port Gregory, had long since 

been stripped of all its brasses and copper-work by salvors and 

recreational divers. 

Alerted by the Museum and MAA WA presence, fishermen and sports 

divers were showing an unwelcome and renewed interest in the wreck and 

it was feared they would attempt to recover material as soon as we left. 

The wreck had not yet been declared historic and the options for its 

preservation were broadly canvassed. They ranged from not clearing it 

further of animal growth for recording, to the post-recording removal of 

items that were attractive to divers, to covering parts of the wreck, 

especially engine, sand and rocks and even to doing nothing. 
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was eventually decided to record the engine and other features 

manually and by photographic means after removing loose sedentary 

colonising marine life from the concretion layer. would at least give 

some record of the still-concreted structure. A covering of rocks 

on the engine, after recording was complete, would serve to further 

camouflage the engine and other features and would also serve to deter 

idle looters. 

The engine was also found to be functioning as a 'discrete 

electrochemical entity', electrically isolated from the remains of the hull, 

including the stern and propeller shaft (MacLeod, 1992a:46). As a result, 

the possibility of applying anodes to it to render the copper pipes and 

brasses cathodic was also mooted. It was hoped that this conservation 

technique would reduce the toxicity of the copper and allow a relatively 

rapid secondary colonisation by marine organisms after the concreted 

engine had been examined in detail (North to McCarthy, Expedition 

Day book, 9/5/1983: 15). This re-growth was considered a priority. The 

anodes would also begin the process of preservation of the metal itself and 

should prolong the life of the engine on sea-bed. was 

standard practice in underwater environments on working vessels, steel 

jetty piles, oil rigs and the like, but its application to a shipwreck had still 

to be tested; though it had been mooted for use at the wreck of the USS 

Monitor (The National Trust for Historic Preservation in the United 

States, 1978: 99, 123). 

Site Survey and test-excavation 

While the three-day pre-disturbance survey was under way, the site 

survey process was commenced in traditional fashion with the laying of a 

grid around the exterior of the site. This was constructed using graduated 

stainless steel ................. ...., ...... ....,,u. to star pickets ( or galvanised steel fence 
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supports) driven at 4 m intervals along each side of the wreck. A plastic 

tag indicating position along the wire ( e.g. 2m, 4m , 8m, 12m, and so on) 

was placed at each 2m interval. set and the pre-disturbance 

survey finished, work began to address the remainder of aims of the 

project; i.e., the production of site plans, the excavation of the perimeter 

of the site and trenches across the wreck at 4 metre intervals; the 

examination and recording of the machinery, the assessment of the natural 

forces at work on the wreck and the production of a two-dimensional and 

three-dimensional photographic record, including a photomosaic. 

Each experienced member of staff was allocated one of these aims as 

their specific responsibility which, in view of the still less than ideal 

conditions, became their sole task in the remaining ten days of the 

excavation. Chief assistant Geoff Kimpton spent all this time recording 

the engine, for example, while another senior diver, a maritime 

archaeology course graduate Steve Cushanahan, was to produce a site 

plan. Jill Worsley of the Geraldton MAA WA, was to examine the physical 

forces at work on the wreck following on from the predictive analysis 

conducted in the previous year by her husband. 

The air supply chosen for this phase was hookah, or compressor-driven 

surface supply type, which in the shallow waters on the Xantho allowed 

unlimited dive time. Given the strong currents and poor visibility, the 

hookah hoses also acted as a useful lifeline and recall system. With an 

unlimited air supply at shallow depth, divers were able to work for four 

hours or more per day when conditions were favourable. Obviously when 

conditions deteriorated, the time spent underwater lessened. On some days 

20 knot SW winds, moderate seas and a swell added to poor visibility and 

the strong current on the site. The combination of these factors made 

conditions for work underwater less than ideal. 
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Figure 48: Geoff Kimpton recording the Xantho engine using manual 
methods and the hookah system. The crankshaft , oil cups and piping 
are clearly visible. Photograph by M. McCarthy. The results appear 
in Figure 7 4. 

Current was by far the most trying factor, negatively affecting diving 

and making normal anchoring sometimes impossible. The strong current 

also resulted in equipment loss when gear was not properly secured. Thus 

visibility on site varied between excellent with half the site visible to very 

poor; i.e. one metre or less, with water turbulence throwing clouds of 

sand and weed fragments around the site. Days of strong current were 

invariably days of moderate to poor visibility with large banks of weed 

moving throughout the site and especially on tidal change. Though the 

Xantho lies on a sandy bottom, the weed (mainly Poseidonia fragments) 

reduced visibility and collected on grid wires, tapes and diver's gear. On 

occasions a cloud of weed would suddenly descend upon the wreck site 
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cutting visibility to less than one metre within only a few minutes. In most 

cases work would then have to cease until conditions cleared with the 

turning of the tide. Often the anticipated clearing did not occur. The grid 

used is shown in the site plan above as the port, starboard, bow and stem 

lines and lines across the site at 4m intervals (Figure 49, below). 

Figure 49: SS Xantho, site plan. By Stephen Cushnahan. 
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When measurements were able to be taken, graduated metric tapes 

were attached to star pickets marking distance ( e.g. 2m, 4m, 12m) along 

each side of the wreck in a one, two, or three tape configurations. This 

allowed measuring distance along a marked line or directly across the 

wreck from picket to picket or by trilateration from two or three fixed 

positions. Where suitable, tapes could also be stretched from one picket to 

another and left for continuous monitoring. It was soon evident that 

masses of weed collected on the wires, tapes and pickets, however. While 

the stainless wire grid withstood the pressure, tapes could not be left in 

position for any length of time. 

Measurement at times of strong current was precluded due to the 

catenary or stretching effect on the longer tapes. Retractable builder's 
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tapes proved suitable over short distances, though unless thoroughly 

cleaned and desalinated at the end of each day they had a very limited life 

span. Holding cameras and recording materials steady during 

adverse conditions was also difficult. 

The integrity of the hull was examined at some length as it appeared 

disarticulated or at best twisted around its longitudinal axis. Builder's 

levels and steel carpenter's tapes were used to assess this. After lateral and 

longitudinal measurements were taken at a number of locations it was 

found that the hull was broken in three places. Under the engine the hull 

drops 3 ° towards the stern and inclines 8° to starboard. Aft of the engine, 

it drops 11 ° towards the stern. Resulting forces appeared to have caused 

the propeller shaft to break away from the engine at its coupling with the 

thrust block. By contrast, the boiler forward of the engine drops 8-9° 

towards the bow and is inclined 6° to starboard. Forward of the boiler 

and on its starboard side there is a significant scour pit which has exposed 

the bottom of the boiler and its wooden bearers. Measurement of a 

wooden deck stanchion ( or mast section found) forward of the boiler 

indicates a lean to starboard of 14 ° in fore part of the 

The wreck therefore, appears to have broken into four parts. One 

section is that aft of the engine, broken under its coupling with the 

propeller shaft. Another appears to be that section of hull under the 

engine itself. Both of these lie on an angle to starboard and have adopted 

an angle down towards the stern. The rest of the hull, from the boiler 

forward, slopes down towards the bow and is also in two parts. The 

section of hull on which the boiler rests, and the majority of the hull 

forward of the boiler, is also leaning to starboard on the sea-bed, itself 

sloping from port to starboard. All bar a few unsupported parts of the 

hull have collapsed downhill to starboard in the direction of the 

prevailing current and not to port in the direction of the seas and swell. 

186 



Though broken into four sections, each has moved only centimetres apart, 

thus remaining in close proximity to other sections. The hull therefore 

could be recorded as a single 

Test-Excavation Method 

The sampling method employed for testing the wreck was based 

initially on a visual examination of the exposed surface remains and then 

by the examination of buried deposits after conducting an initial test 

trench. The test trenches were excavated along the length of the ship 

outside the hull, across the site at the bow and stern, and then through the 

hull at four-metre intervals. This particular sampling technique is 

cognisant of both the disintegration processes that often result in the 

spread of artefactual material outside of the hull remains as the wreck 

collapses or opens up, and of the traditional compartmentalisation of 

shipboard activity. 

On iron sailing ships and early steamers, officers were usually housed 

aft and the crew forward in the forecastle, as also appears to be the case 

with the Xantho. (See, for example, Evidence of 

into the loss of Xantho on page 152). The quarters of the officers, 

passengers and crew in a large ship are usually separate compartments. 

The separation was an almost rigid feature of shipboard life based on 

centuries of European seafaring tradition. The boundaries are usually 

crossed where officers and/or passengers require service, where work is 

to be performed, or by invitation to functions. On smaller ships, officers 

and passengers would dine together. Even more rigid conventions are 

seen on large naval vessels where entire classes of sailors ate and lived in 

separate compartments and where a ship's master could have completely 

separate accommodation, eating alone and served by a personal steward. 
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Accommodation, machinery and cargo spaces themselves are also 

discrete, specific-purpose compartments within a ship. These are 

separated by barriers deliberately designed to minimise unauthorised or 

unwanted access by people or materials, especially noxious engine wastes 

and sea-water. Though the movement of water through a wreck and the 

collapse of decks down onto lower ones can markedly affect this 

compartmentalisation, the artefact distribution and structural remains can 

reflect specific uses or classes of activities. With iron and steamship 

wrecks an opportunity emerges to structure research design around this 

element, enabling the researcher to target specific areas, leaving others 

untouched. Where structural elements such as bulkheads, decks or other 

features still exist, an excavation of one discrete area need not necessarily 

impinge on another. Area excavation, once the norm in Western 

Australia, is not necessary, nor should it be considered a valid procedure 

on large, compartmentalised iron or steel wrecks. 

The excavation tool used on Xantho was a water-dredge, an excavating 

system common to most underwater archaeological work. It operates on 

the venturi principle and relies on high-pressure 

through a small diameter opening at an angle past a much larger pipe, 

thus creating a suction at its entrance (Green, 1990:135-137). On Xantho, 

high pressure water was produced from an eleven kilowatt petrol engine 

driving a common fire pump, delivering 500 litres per minute at a 

pressure of 700 kilopascals. With a total weight of 91 kg, the unit was 

portable and took up relatively little space on the expedition's work boat. 

A 100-mm diameter fire hose supplied water to the dredge below. The 

dredge itself was constructed from a five-metre length of 125-mm PVC 

sewer piping. A five metre length of clear flexible pipe was mounted to 

the intake, giving greater mobility and enabling blockages to be 

monitored and to be removed. The excavated overburden was ejected 
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from the water dredge on the downstream side of the wreck and was 

taken away by the currents. 

In this particular phase, overburden was removed from defined areas. 

Initially this comprised a one-metre wide trench along 

delineating the site (Figure 49). The sensitivity of the dredge depends on 

both proximity of the dredge inlet to the seabed and the occlusion, or 

otherwise, of the inlet by the operator's hand. Where little sensitivity is 

required the inlet is fully opened and applied directly to the overburden, 

which is then sucked away in considerable quantities and with 

considerable force. Where sensitivity is required, the inlet is partly 

closed, or more frequently is positioned away from the excavation 

surface. Material was often exposed by 'hand fanning', with the dredge 

used to remove only the suspended particles in the water column. Once a 

section was exposed to the depth required, it was possible to proceed 

along the trench, allowing material to be first exposed and then carefully 

removed. Where excavation was conducted through a layer of mobile 

sand and loose clay, the customary backfilling of trenches after excavation 

and recording was not necessary due to rapid ingress of 

was of such a speed that within a few hours after excavation the trenches 

were again filled. All visible indications that an excavation had taken 

place disappeared overnight, such was the mobility of the sea-bed in the 

prevailing current. Recovered artefacts recovered were recorded in-situ, 

tagged and handled in the accepted manner before being raised for 

cataloguing, on-site conservation and further recording. 
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site survey and test excavation .. 

As indicated, the aims of the 1983 season were to examine the site and 

the forces acting on it, to conduct a sea-bed survey, assess and report on 

site conditions, comment on the most appropriate excavation procedures, 

comment on the research potential of the hull, propulsion system and 

cargo remains, conduct sampling trenches and recover and conserve those 

surface artefacts found in a salvage archaeological context. I also aimed to 

record the propulsion system, conduct a pre-disturbance survey and 

report on the problems and methods of effectively recording a site such as 

Xantho which had substantial relief. All these purely descriptive aims 

were satisfactorily addressed in 1983. 

The drawing, measurement and inspection of the hull, boiler, engine, 

drive shaft windlass, deck winch and other machinery were successfully 

completed. A site plan was produced by trilateration and by taking of 

right-angle offsets (Figure 49). Standard three-dimensional photographic 

techniques, allowing the relief of wreck to be viewed in the laboratory, 

were also successfully applied, though the relief of the wreck posed 

considerable problems. Common two-camera or stereo overlap 

photogrammetric techniques, or manual three-dimensional methods were 

suitable. Due to their sheer size and dominant nature the engine, boiler, 

stern and stem of the Xantho proved problematic, however. Eventually a 

combination of manual recording and photographic methods was applied 

resulting in a plan of the wreck, a plan view photomosaic of the stern 

section, a port elevation photomosaic of the entire site, a manually 

recorded three-dimensional drawing of the engine and other machinery 

and two-dimensional and three-dimensional photography throughout, 

including the engine. 
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Figure 50: A photomosaic of the stem section. By J. Buchanan and M. McCarthy. 
The scale is one metre in length 



Photomosaics provide not only single photographic illustrations of a 

large section of the site, but are also a reference allowing post- and pre

disturbance comparisons. Figure 50 above, shows from top to bottom, the 

edge of the boiler, the main steam pipe to the engine, 

trunks, a condenser(?) to starboard, the thrust block and stern shaft. 

The test excavation along the perimeter of the site, and across it at 

four-metre intervals, indicated a one-metre thick mobile sea-floor of soft 

sand overlaying a thin band of hard clay, which in turn overlaid a thick 

weed mat on a sand bottom. The latter proved almost impossible to 

penetrate and no further attempts were made to examine the deposits 

below it. Excavations in only one area, the region abaft of the boiler 

produced artefacts in any quantity. 

The plan view of the site (Figures 49 and 80) show the vessel has 

opened out down current and this is highlighted by the spread of lead ore 

and the presence of machinery outside the remains of the hull to 

starboard. The ore provides a near impenetrable and clearly protective 

mass for material and structure lying below. The presence of an almost

impenetrable weed mat below the mobile layer of sand leads 

conclusion that the wreck forms a barrier to the movement of weed in the 

current. Consequently, weed would have quickly filled the spaces inside 

the vessel and under the hull. Mobile sand would have helped compact this 

deposited weed and, as a result, preserved material could be expected to 

lie buried beneath it. 

No artefacts were seen on the surf ace. Excavations along the perimeter 

of the wreck on both sides and through the bow and stern compartments 

also revealed few artefacts. In total, thirty-five items were located and 

raised, to add to the six artefacts raised on the 1979 inspection. 

The artefacts are listed in the artefact catalogue in Appendix 7. In 

general, they can be categorised as material common 
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century European seaborne life, such as ship's fittings, cargo items, 

personal items (such as the sole of a shoe) and glass and ceramics from 

the galley or cargo. At variance from items usually recovered from 

wooden hulled wrecks were iron hull fragments and a boiler water gauge 

glass. Evidence of site contamination was noted deep in the mobile sand 

layer in the form of modern material, such as light globe fragments and a 

motor vehicle oil filter. 1 A coconut husk and whalebone may represent 

contamination from Port Gregory's early days as a whaling station 

(Trenaman, 1934; Heppingstone, nd. ), or simply reflect galley supplies 

and cargo from Broadhurst's activities further north. The lead ore and 

some of the bagging in which it was stowed was still visible in the cargo

hold forward of the boiler and samples of both were recovered. Rough 

cut branches were found throughout the cargo spaces, possibly 

representing the dunnage ( or softeners on which cargo was laid to prevent 

damage to the vessel's hull) mentioned in the Court of Enquiry into the 

loss of the ship. 

No evidence was found of the compartmentalisation of the ship into two 

accommodation areas. The forecastle, traditionally crew's 

was not closely examined or excavated, partly due to the weed mat. An 

accommodation section above the engine (which had collapsed down onto 

the machinery) was indicated by material later found in the engine spaces 

consistent with those activities. These included a salt cellar (XA 115). 

Sections of the hull have considerable relief, especially the bow and 

stern sections, or triangles. Much of the hull has collapsed, however, and 

missing sections of the port side of the vessel appear to have collapsed 

into the ship. In contrast, with the exception of a small section of the hull 

near the stern and just forward of the boiler, the entire starboard side has 

1 Electric light was yet to become a feature of such vessels and oil burning lamps were used. The saloon 
of the Inman liner City of Berlin was lit by electricity in 1879 and represents one of the first instances of 
the use of that technology (Smith, 1937: 229). 
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collapsed outwards and down-current. It too has disintegrated in all but 

the stem section. 

The inner and aft walls of a coal bunker were located on the starboard 

side of the boiler and a heavily built section consisting of a small number 

of heavily built hull frames was also noted just forward of ...,,.., .. , ............ on 

the starboard side. This proved to be the support for the starboard 

sponson that held the bearing of the starboard paddle wheel. The sponson 

also served to transmit the thrust of the paddle to the hull and needed to 

be stronger and thicker than the surrounding frames and hull plates (See 

Figure 51). 

Figure 51: Isometric projections of the SS Xantho and the PS Commodore 
by John Riley, with the paddle sponsons highlighted. The coal-bunker on 
Xantho is also shown on the starboard side of the boiler. The isometric 
projections represent an idealised view in a concretion-free state (Riley, 
1988a: 194). 

(Not to scale) 

t 
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In contrast to expectations, the Xantho hull was fragile above the sea

bed. Corrosion also appeared to be continuing within covering 

concretions. In the mid 1980s, was generally considered that where iron 

hulls are buried and covered in concretion, they are strong and to 

last indefinitely unless exposed to excessive physical forces. It was 

estimated that the remaining hull was buried to a depth of a least 1.5 to 2 

metres forward and slightly less aft. 

It soon became evident that the boiler and machinery were the most 

intact part of the vessel. The engine was identified as a small, simple 

expansion horizontal trunk engine, but it required considerably more 

research in order to identify its type conclusively. Being of a type 

normally found in a naval context, its presence on the Xantho also 

required some explanation. Like the remainder of the site it proved 

difficult to record in the conditions and under its thick layer of 

concretion. On the positive side, the engine appeared to be supported on a 

system of lateral iron bearers that served to keep it above the floor of the 

engine room, and in this instance clear of the sand inside the vessel's hold. 

This allowed access to most of its features, including those on its 

undersurf ace. 

The 16-cm in diameter propeller shaft extended from the thrust block 

to the propeller for a distance of 5.5 m. What appeared to be a dog-clutch 

or disconnecting device appeared on the shaft, though it proved difficult 

to confirm due to concretion. The shaft was supported in three places on 

thrust block bearers, on one separate stool and by the stern tube itself 

(Figure 52). An examination of the shaft, bearings, stern tube and 

propeller details was not made in detail due to concretion. The thrust 

block did appear similar, however, to that referred to by contemporary 

engineers as a common small thrust block (Jamieson, 1897: 286). This 
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type had wick lubricators to each collar, each positioned on an open oil 

box which was mounted on top of the thrust block. 

Figure 52: A working drawing of the propeller shaft, showing from left 
to right, the flanges coupling the shaft to the engine, the thrust block 
and its bearers, the 'dog-clutch, a stool or plummer block and the 
beginnings of the stem tube. By John Moffett. (See Figures 18 and 19 
for comparison). 

' 

The propeller was an iron screw of approximately 1. 8 metres ( 6 ft) 

diameter, situated inside a stern aperture constructed, as usual, forward of 

the stem post. Only one blade was visible. Detailed measurements of size 

and pitch were prevented by the sand build-up and strong currents which 

prevented accurate usage of a plumb-bob. 

The single-ended, two-furnaced, return tube boiler measured 3.2 

metres (10.5 feet) in length by 2.2 metres (7 .2 feet) in diameter. It 

appeared to have a slightly elliptical shape. Both the furnace doors were 

shut, precluding an inspection of the interior. An aperture on the upper 

surface of the boiler appeared to be for a steam dome or for a relief 

valve. A number of concreted and heavily camouflaged brass fittings 

were noted on the forward face. These were left undisturbed. A large 

unidentified valve, probably a relief valve, which appears to have been 

knocked off the boiler, was noted lying on the sea-bed on the starboard 

side. 
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Also lying to starboard of the engine, and apparently having fallen 

from a position on the starboard hull in the engine-room, was what 

appeared to be a condenser. indicated the section on marine 

engineering earlier, condensers were used to re-cycle expended steam. 

presence was expected on the Xantho. Its form in this instance was a 

puzzle, however, and no driving-rods connecting it to the engine were 

found. 

Figure 53: The condenser (?) and boiler valve on the starboard side of the 
wreck. 1 By S. Cushnahan. 

• 
VALVE 

CON DENSER 

The application of anodes to the engine and stern shaft 

It soon became apparent that the engine and the ship were of 

considerable regional importance. The engine was an uncommon type, it 

was physically degrading and was also in danger from recreational divers. 

1Toe condenser was later identified as a feed-water heater. 
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It clearly needed some form of protection. Conservator North's proposal 

to experiment with anodes and cover the engine with rocks was adopted 

after some discussion. In his instructions for the application of the anodes 

North, wrote 

The engine of the Xantho is in surprisingly good 
condition considering its age, the presence of many 
galvanic couples and the underwater environment. The 
attachment of sacrificial anodes, in May 1983, will 
prevent any further decay and should actually start in the 
preservation treatment by encouraging the release of 
chloride salts from the corrosion products (North to 
McCarthy, May 1983, SS Xantho file, 9/79). 

The anodes were subsequently attached to a counterweight on the 

crankshaft and to the propeller shaft aft of the th1ust block. A circuit was 

made by winding down a pointed screw, held in a bracelet, through the 

concretion to the original metal. 

Figure 54: The anodes before being attached to the vessel. 
Photograph by J. Carpenter. 
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After the anodes were attached to the engine, it was covered with rocks 

obtained from a nearby creek bed. After the removal of all grid wires, 

and other equipment, bar a small number of pickets at each extremity, the 

site was closed. 

In the process of this first study, 200 operator-hours had been spent 

underwater over a total of 76 operator-days worked on the ten-day 

expedition (including travel). 1 

An analysis of the natural site formation processes at Xantho 

During the May 1983 season, natural processes contributing to site

disintegration were monitored and the data was compiled and assessed by 

Jill Worsley of the Geraldton MAAWA (SS Xantho file, 9/79). A brief 

discussion of her conclusion that land form, swell, current, weed, tide and 

wind were the main visible forces follows. 

The land form at the wrecksite, combined with ambient weather 

conditions, such as south-west winds and swell crashing over the southern 

part of the barrier reef, cause a fast current to run up the natural channel 

between the reef and the shore. 

The prevailing swell has two main effects on the Xantho site; one 

generating a current travelling up the reef system and out over the 

Xantho site from the port to the starboard quarters, the other refracting 

around reefs into Gold Digger Passage which lies opposite the site. This 

impinges at right angles to the starboard side of the wreck. There are 

sufficient gaps in the reef, opposite and to the north of the wreck to allow 

1 The 1983 team had been reasonably small consisting of a small full time core comprising chief 
assistant, ex oil-industry diver and museum boat skipper and diver, Geoff Kimpton, Steve Cushnahan, a 
maritime archaeology course graduate, Jill and Peter Worsley of the Geraldton MAA WA, Bob Richards, a 
departmental diver/skipper and myself. 
Part-time assistance was rendered by 11 people including Brian Marfleet of the South Australian 
equivalent of MAA WA, Conservators, Neil North, CJ Beegle and Ian MacLeod. Scott Sledge and his 
wreck inspection team joined us en route an inspection tour for the second half of the season at the site. 
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the swell to impact on the Xantho site in all conditions except an offshore 

breeze. 

The tides are diurnal and order of up to one metre maximum, 

having a direct influence on current and weed banks. was 

strongest just after high tide, and then for an hour or more after (Figure 

56). 

Figure 55: The position of the SS Xantho at Port Gregory, showing 
prevailing forces. By Jill Worsley, MAA WA. 
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It appears then that the major sea-borne effects at the Xantho site are 

seas and swell pushing in from the south-west into shallow water, and a 

current running from south-east to north-west across the wreck, often in 

excess of 3 knots. These combine to produce both strong lateral forces on 

the wreck, one a steady current across the site from the port bow to the 

stern aft and the other a pulsating wave and swell action at right angles 

from starboard to port. These forces also had an effect on the sea-bed 

around the site. 
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An early account of the magnitude of these forces in the same locality 

comes from the experiences of those aboard the American whale ship J ris 

which was nearly wrecked at 

1979:111-112) 

Gregory of 1855 (Totty, 

A gale started to blow hard from the north. During it, a 
strong current swept the Iris out towards the open sea stem 
first, against the wind. Captain Davok had three anchors 
out, one of which became fouled up with a government 
mooring buoy. They were all swept away together .... the 
anchors seemed to drift faster than as the vessel as if the 
whole bottom of the anchorage lifted bodily four ways 
(Inquirer, 11/7/1855). 

The position of the Xantho in the current and across the direction of 

the prevailing seas and swell, may also have had a localised effect in 

causing the movement of the sand-bar out to the wreck which was noted 

by Commander Archdeacon. The resultant accretion of sand around and 

under the wreck would have continued over the years, producing 

additional forces on the site as the sand itself moved. This appears to have 

caused the wreck to break up into four parts, as described earlier. 

When these forces are combined with on-going corrosion processes, 

they are likely to have been sufficient to have caused the rapid 

disintegration of the hull. It is also possible that loose material left in the 

hull, after it was opened up by the seas, would have been swept off the 

site or buried under the hull on the downstream side. 
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CHAPTER 6: 
XANTHO SITE FORMATION MODEL 

Introduction 

Before attempting to account for the anomalous features 

Xantho site, this chapter aims, firstly, to consider the effects of 

transformation processes acting on iron and steamship wrecks, 

generally. This attempt to control for (properly account for) post

depositional process will examine iron and steamship wrecks as a class 

of similar sites and formulate statements which will make an analysis 

of individual remains at Xantho more valid. These are necessary 

steps, for as Gould (1990: 48) has noted 

In looking at general relationships between behaviour 
and material residues, the first thing to consider is the 
total ecosystem in which this behaviour takes place. 

Attempts to control for post-depositional processes in maritime 

archaeology represent an extension of work by Muckelroy, who 

attempted to identify features common to all shipwrecks, including 

disintegration processes. He noted, for example, that 

The phenomenon of the shipwreck must involve 
certain regular features common to all instances. If 
these can be described, then their implications for any 
analysis of sea-bed remains can be ascertained ... The 
validity of any conclusions reached in maritime 
archaeology depends fundamentally on the 
understanding of these processes .... (1978: 157). 

Muckelroy examined the general processes which lead to the 

disintegration of a wreck and the movement of artefactual and other 

material from, and around, the site. The identification and description 

of these processes could 'amplify the evidence regarding the ship 
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itself' (Muckelroy, 1978: 167) and were labelled 'extracting filters'. 

They include, the process of wrecking, salvage operations and the 

disintegration of perishables. 

In identifying the three process above, Muckelroy (a) 

unless the hull is pinned down by the weight of cargo, fittings or 

other objects, it will float away in the process of wrecking; (b) where 

people are present or in transit, some salvage of accessible sites is to 

be assumed; and (c), most 'perishables' on the site will disintegrate 

(Muckelroy, 1978: 167). 

Post-depositional processes and the iron wreck 

In contrast to Muckelroy' s first example, it would be noted that 

iron or steel vessels, unless they contain a very buoyant cargo, or 

large airtight spaces, will usually sink straight to the bottom once they 

are substantially holed. With respect to derelict or floating, yet 

abandoned hulks, the fallowing has long since been noted 

Steel ships that have been abandoned by their crews 
usually sink to the bottom of the ocean within a few 
hours at the most, but a wooden vessel, especially 
when carrying a buoyant cargo such as timber, will 
remain afloat for months, possibly years ... (Rogers, 
1945: 10). 

Where an iron or steel shipwreck lies in deep water it will remain 

virtually as it came to rest on the sea-bed, until the sea and corrosion 

processes destroy it. Until the hull is broached the artefacts within it 

will remain there, albeit in a confused form. When the hull is 

broached then they may spill out or collapse down through the decks, 

though often they will remain in situ, cemented as a result of their 

often rapid encapsulation in concretion (cf. North, 1976). 
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Sections of 19th century iron or steel hulls are often found with 

considerable relief, even in shallow water. This feature, common to 

many iron and steamship wrecks today, represented an acknowledged 

departure from the usual situation at 19th century wooden-hulled sites 

in high-energy waters. In the case of wooden vessels, though they are 

occasionally exposed due to sea-bed movement, the hull is normally 

found buried beneath ballast, sediments, cargo, or similar protective 

materials. Though there are notable exceptions, relief above the sea

bed is usually minimal. One example is the wreck of the 1235 ton 

wooden-hulled ship Redemptora (1853-1888), shown in Figure 56a 

buried in ballast. 

a 

Figure 56a: The hull of the wooden-hulled, ship-rigged Redemptora, 
beneath a protective mound of ballast. Four sections through the 
remains are also shown. By the author, from McCarthy (1981a: 239-
252). 
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The projected process of disintegration of such sites is illustrated 

using the case of one particular wooden wreck, believed to be the 

318 ton brig Gemma (1868-1893). This site was found buried in 
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sediments, near the Redemptora, but with only a series of iron knees 

visible. this instance an iron knee midships is used to follow the 

collapse of the wreck onto the sea-bed. 

Figure 56b: A plan view of a wreck believed to be the wooden-hulled brig 
Gemma. Five test-excavations are shown, together with three sections through 
the remains (A-B, C-D, E-F). By the author, from McCarthy, 1983b: 242-
252). 
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Figure 56c: The proposed stages of disintegration of the Gemma wreck using 
the section through points C-D and an iron knee as the focus. By the author. 
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In shallow waters and in very violent conditions, wave action can 

also destroy an iron or steel hull in a very short time and can move 

entire parts of the ship, including boilers and considerable 

distances from the parent wreck (See Figures 65 and 66 below, for 

example). Muckelroy identified these phenomena in general terms, 

as 'scrambling devices', or factors which served to rearrange the 

elements of the vessel and to alter the ship after it is wrecked. 1 

A wooden- or iron-hulled ship, afloat or sailing on the surface, is 

transformed from a highly organised unit whose constituent parts are 

arranged so as to ensure desirable qualities, including efficient cargo 

stowage, seaworthiness and ease of handling into one, which at best, 

has some semblance of order on the sea-bed. Elements such as the 

nature and topography of the sea-bed, the type of hull, its integrity at 

the moment of sinking, the type and weight of cargo and/or ballast 

carried are of relevance in that process. 

The effect of corrosion and concretion 

With reference to corrosion (one of the major scrambling .., ........ -.., ... u 

Muckelroy noted (1978: 167) that it can vary across short distances 

over a site, depending on sea-bed type, marine growths, the presence 

of dissimilar metals and other chemical and electrical phenomena. The 

Xantho study allows us to quantify these complex processes for the 

first time. 

Concretion is also a considerably complex phenomenon, appearing 

on most metallic surfaces underwater, especially where the water is 

1 Muckelroys' distillation of wreck-site formation processes into 'extracting filters' or 'scrambling 
devices' is useful, for though the choice of phraseology could cause semantic debate, invariably any 
other choice of words in turn is eventually brought into question. The term 'maritime archaeology' 
itself, for example, can be seen to have unfortunate connotations for those who profess to be purely 
'nautical archaeologists' or 'shipwreck archaeologists'; a debate which Muckelroy himself 
foreshadows (1978: 1-23). Quite recently the term 'hydroarchaeology' was coined for underwater 
archaeology in general, adding further to the possibilities and to the scope for semantic debate 
(Fenwick, 1993: 1). Few will find the term attractive, however logical it may appear. 
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comparatively warm and the wreck and its contents lie in a 

predominantly aerobic environment. Once it was believed that the 

concretion protected iron 

comment shows 

corrosion, as the following 

Iron corrodes in the presence of both oxygen and 
water and on the sea-bed this is usually a relatively 
slow process, particularly as iron objects often 
soon become covered with a concretion of calcium 
carbonate and iron compounds which protects the 
iron from further corrosion (Oddy, 1975:367). 

Oddy was writing before the first major study on shipwreck 

concretion was conducted (North, 1976: 253-258). North found that 

concretions were formed within the first few months of wrecking 

initially from coralline algae which, unlike soft algaes, had a partial 

exoskeleton of calcium carbonate (CaC03). This concretion formed 

on a thin layer on stationary and biologically non-toxic material, such 

as iron. As the coralline algae died their exoskeletons remained and 

were subsequently overlaid by later growths of the same substance. 

These build-ups merge progressively with adjacent objects, often 

forming a large mass on which a secondary growth of seaweed, soft 

corals, molluscs and other biota occurs. The rough outer surface of 

the concretion provides a trap for sand particles, coral fragments and 

other debris being moved around the site. Material can become 

completely covered with coralline algae and secondary growths within 

about 12 months. It was also found that though the concretions found 

on iron were externally indistinguishable from those formed on 

natural materials, they formed a layer of low porosity on the surface 

of the iron which retarded the movement of corrosion products away 

and resulted in the production of an acidic iron rich solution. These 

chloride concentrations can rise by a factor of three and the pH can 
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drop from around 8.2 to 4.2, thereby increasing acidity considerably 

(North, 1976: 253-258). 

Comments on the complex corrosion concretion processes 

operating at sites such as the USS Arizona in Pearl 

highlight the need to involve the appropriate specialists on 

archaeological sites. The anthropologist Larry Murphy has noted, for 

example, that 

Experience with materials from historical marine 
shipwrecks indicates that most ferrous materials are 
protected from continual corrosion by the formation 
of encrustation, a complex interaction of chemical and 
biological processes. Encrustation substantially 
reduces or stops active corrosion (Murphy, 1987:57). 

We now know that corrosion can continue, though it is most often 

at a reduced rate, within layers of concretion. It can do so until the 

last of the oxygen bound in the form H20 is consumed and hydrogen 

is given off. This leaves, in most cases, nothing of the original iron 

after a few hundred years. We also now know that the process is not 

uniform across a site and that it is affected by a large JI. ................. ..., • .., ... of 

variables. At the Xantho, for example, the conservators showed that 

corrosion was not proceeding at a uniform rate, and that it was 

continuing, even in an anaerobic environment under the concretions. 

Apparently intact, heavily concreted iron structures were shown to be 

merely hollow shells, for example. 

It could be claimed that we should have been well aware of these 

possibilities, even before North's study. The excavators of the seventh 

century wreck at Y assi Ada, for example, examined the encrusted 

remains of around 150 iron objects. They found that the iron had 

completely corroded away (Van Doorninck, 1972:156-7). 
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North and MacLeod also found iron and copper sulphides in the 

concretion matrices examined at the Xantho site. These indicated 

biological action by sulphate-reducing bacteria which were in the 

process of rendering sulphates to sulphides within some concretions. 

In finding evidence for the bacteria at work during some of the 

excavation phases, they were able to conclude that corrosion was also 

continuing in the sediments in which the vessel was buried (MacLeod, 

pers. com.). This is an important issue, for it was once believed that 

iron hulls buried in sediment would be relatively well preserved. 

Again this could reasonably be inferred from earlier excavations, 

such as the wooden-hulled Wasa (1628) where it was noted that the 

wrought iron fastenings had suffered heavy corrosion (Barkman, 

1977: 127). Of a total of 800 iron objects recovered from the 

previously buried ship, those of cast iron were often corroded right 

through. Even the bolts that modern divers placed into the hull of the 

Wasa to replace those lost prior to its being raised, were rapidly 

attacked by corrosion. One was reduced to a third of its original 

diameter within a short time (Arrhenius, Barkman Sjostrand, 

1973: 14-16). These findings have obvious ramifications for both 

archaeologists and conservators. 

Despite these well-published findings, it was believed until recently 

that burial in sediments would assist the preservation of iron hulls in a 

stable anaerobic environment. The following statement was made 

following visual observations at the Monitor in the period up to 1986. 

The comments could be correct, but in awaiting analysis by 

appropriate microbiologists, they are an example of the dangers of 

purely visual observation by archaeologists 
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Examination of the iron armour and lower hull plating 
confirmed that the interface between plates and 
fastenings had deteriorated through electrochemical 
galvanic action ... While this deterioration will 
probably prove to be significantly less where the 
wreck has been protected by the accumulation of 
sediment, areas exposed to the water column have 
deteriorated extensively (Watts, 1987:136-7). 

That is not to imply that some degree of protection might not 

occur as a result of sedimentation processes, but rather to 

acknowledge that protection will not necessarily result from burial in 

sea-bed sediments. 

Microbiological corrosion 1s a process defined as ' ... the 

deterioration of metal by corrosion processes which occur, either 

directly or indirectly, as a result of the metabolic activity of micro

organisms' (Evans, 1973 :469). It is not always a visible phenomenon; 

a factor that has considerable ramifications for the archaeologist, as 

the following comment shows 

Iron can corrode rapidly in the absence of oxygen if 
sulfate-reducing bacteria are present. These bacteria 
are commonly found in deep wells, in soils, and in 
seawater. The bacteria by their metabolic processes, 
reduce dissolved sulfates to sulfides in the course of 
which they are able to depolarize cathodic areas of 
iron. Corrosion thereupon, proceeds as rapidly as 
bacterial action permits. Galvanized pipe carrying 
cold water has failed from this source within two 
years time (Uhlig, 1948: 126). 

These bacteria can be categorised as either aerobic or anaerobic 

micro-organisms, depending on their viability in relatively high or 

virtually zero oxygen levels. Both types require organic and inorganic 

chemical compounds from which to obtain oxygen, carbon, nitrogen, 

hydrogen or sulphur. Other factors such as pH, oxygen concentration 

and temperature are also crucial to their growth. 

The implications of the presence of sulphate-reducing bacteria, for 

the survival of iron are profound. It was shown nearly a half century 
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ago, for example, that even non-corrosive, washed silica sands can be 

rendered corrosive by the combination of environmental factors. That 

is corrosion can and does occur beneath an apparently sterile sea-bed 

(cf. Hadley, 1948: 466-470). 

There is still much research to be carried out in this area, as the 

fallowing comment illustrates 

... one of the major limitations in studies of 
microbial corrosion has always been the lack of 
valid experimental procedures allowing the 
independent measurement of both the 
electrochemical and biological components of the 
system in such a manner that the nature of their 
interdependence is made manifest (Sequeira and 
Tiller, 1988: 17). 

A useful summary is provided by manne corrosion scientist 

Francis LaQue. He noted that on the one hand, heavy growths of 

marine organisms can reduce corrosion partly by eliminating the 

'acceleration' of corrosion produced by a high velocity of water flow 

over bare metal, and on the other (by acting as barriers to the 

diffusion of oxygen) the growth of anaerobic bacteria is promoted 

(1975:116). 

Corrosion is clearly a major transformational process operating on 

iron and steamship wrecks, though its effects are not always visible. 

As a result of the misconceptions that can result where specialists are 

not involved, archaeologists should become more aware of the 

processes. Corrosion specialists should become a fundamental part of 

iron shipwreck research. They, in turn, should be followed down onto 

the site by diving microbiologists. Recently, microbiologists 

conducted a survey of post-depositional micro-biological effects on 

the wooden-hulled HMS Pandora (1779-1791 ), heralding an important 

recognition of the process (Guthrie, Blackall, Moriarty and Gesner, 

1994). 
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classificatory index and the 'water-line theory' 

examining the end result of corrosion and other natural 

transformational factors, such as sea-bed topography, bottom slope 

and fetch, Muckelroy provided a useful five-stage site-classificatory 

index (1978:164-165). This is based on the degree of hull and 

material survival, ranging from his Class 1 sites, with extensive 

structural, organic and other remains in a coherent distribution, down 

to Class 5 sites with no structural and few if any other remains, all 

scattered in an apparently disordered fashion over the sea-bed. 

In utilising his classificatory index, iron wrecks would range down 

from Class 1 sites, such as Titanic (1911-1911) and the USS Monitor 

(Figure 8). Until recently, these were inaccessible, relatively intact 

hulls that had not been subject to what I call 'primary salvage', or the 

recovery of materials by their owners, operators or agents soon after 

the vessel was lost. 

Sites similar, yet subjected to 'primary salvage', are the USS Utah 

(1909-1942), a vessel sunk at Pearl Harbour (Figure 57), and the 

former USS Arizona, which was also bombed (Lenihan, et al., 1989) 

(See Figure 9). 

Figure 57: The USS Utah. By J. Livingstone, from Lenihan and Murphy, (1989:104). 
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Arizona is now inaccessible to divers by legislation and has not 

been affected by 'secondary salvage', or the action of professional 

salvors or sports divers recent times. Titanic is an interesting case 

in that, while its hull is being left undisturbed, its debris is now 

being regularly harvested by commercial and museological interests, 

i.e. secondary salvage is occurring at the site. 

The SS Yongala (1903-1911), an intact, but much more accessible 

wreck located off Townsville in Queensland (Figure 58), could be 

considered similar to the much-visited war-time wrecks of Truk 

Lagoon. Though protected by legislation, secondary salvage by sports 

divers does occur, albeit on a small scale. 

Though they fit Muckelroy' s highest classification, all of these 

sites, bar Monitor, have been subject to uncontrolled post-depositional 

transformations and would therefore form part of a number of sub

classes within the highest category (e.g. Class l(b)-(c) ). 

The equally intact wreck of the SS Sunbeam (1861-1892), off the 

Kimberley coast of Western Australia (Figure 59), would fall into a 

lower class entirely (possibly Class 2) because there are organic 

materials and the site generally has been picked clean of all material 

that is not buried or heavily encrusted (Sledge 1978:70-71; Henderson 

and Sledge, 1984). A lower category again would be given to the 

remains of the MV Uribes (1868-1942), a former iron barque which 

was converted to a schooner and then a motor-ship before being 

wrecked against a very accessible shoreline reef. There it was subject 

to heavy primary salvage and, being close to a popular holiday 

resort, to secondary salvage with the onset of sports diving. Though 

now a 'sterile' site, in recent years it has become a part of a popular 

'wreck trail' concept (McCarthy, 1983c) (Figure 60). 
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Figure 58: SS Yongala from 1973 to 1993. Illustrations by L. Zahn and J. 
Riley, (Riley, 1994: 8). Note the changes in the sea-bed astern, near the 
forward cargo-hold and at the bow between 1973 and 1986. Between 1986 and 
1993, the davits and deck-rails have been destroyed, probably by vessels 
anchoring to the wreck. This procedure has since ceased. When visited by the 
author in 1994, the scour pit at the bow was very marked, leaving much of the 
forward section unsupported and it is possible that the wreck will soon break in 
that region. The sand cover inside the ship extended from the main deck on the 
starboard side, through the mid-line of the vessel to the top of the engine and 
across to the port bilge. Thus, though lying on its starboard side, there are 
expected to be considerable artefactual remains within the hull. Skeletal 
material, fittings and fixtures were still visible in 1994, for example. 
Though the site is one of the tourist drawcards in the region, 'secondary 
salvage' or looting by sports divers is reasonably well controlled by the dive 
industry itself, leaving considerable amounts of loose artefactual material to be 
viewed in what I refer to as an 'underwater display case' mode (McCarthy, 
1981b). 

'iONGAL/\ t973. LEON ZAN"1. 
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Figure 59: The SS Sunbeam, showing an apparently intact hull minus 
its wooden decking. Photograph by R. Coulter, Australian Customs 
Service. (See discussion p. 356). 

Figure 60. The MV Uribes. An isometric projection by Colin Cockram, 
(Kenderdine, 1995: 96). 

\ 
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Less intact sites ranging through to totally disintegrated ships, such 

as the iron barque Ann Millicent (?-1890), or the SS Windsor (1890-

1908), lying on harq shallow reefs subject to considerable seas 

and swell, would form the remainder of Classes 4-5 proposed 

Muckelroy (1978: 157-169) (See Figures 64-66). 

It is not intended to dwell on his classificatory scheme other than 

to note the possibilities for further study and its ability to assist in 

descriptive and analytical studies of iron and steam shipwreck sites. 

Of importance is the need to assess a number of iron and steamship 

wreck sites and to view them as a category of archaeological site 

capable of being analysed as a suite and, from there, to progress in a 

comparative fashion to the Xantho. 

An examination of the illustrations below and those previous ( e.g. 

6-9, 22, 24) shows that the extent of burial of a wreck in sediment or 

other matrix is clearly a major factor in physically limiting the 

movement of fixtures, fittings and artefactual material from the hull. 

Commonalities in hull burial were first enunciated by John Riley 

following a decade of study of over one hundred wrecks off coast 

of New South Wales (Riley, 1988a:191-197). As indicated earlier, his 

sample indicates that ships generally sink to the waterline when they 

come to lie upright on a sea-floor of sand. Riley also illustrated other 

commonalities in iron ship disintegration, such as the fact that boilers 

eventually roll out of steamships lying in the surf zone or come to 

rest as upright cylinders in heavy conditions, thus presenting least 

resistance to seas and swell. These patterns are illustrated in figures 

throughout this thesis, most notably Figure 24). 

By moving further afield than the waters of New South Wales and 

the British coasts, as I have done in this dissertation, we can expand 

and test Muckelroy' s Riley's propositions, by ~··-~ ... A ....... A............ their 
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applicability to the study of iron, steel and steam shipwrecks in 

general. We are then able to avoid some of the generalisations made 

from earlier studies in the Mediterranean; birthplace of maritime 

archaeology. Until as late as 1972, scholars described special 

characteristics of that sea and made erroneous assumptions about 

wreck disintegration and survival of archaeological material on the 

sea-bed for the world. It was claimed, on the basis of studies 

conducted in the Mediterranean for example, that 'nothing of 

significance' would be found in shallow water for 'the sea smashes 

everything in shallow waters, and such scattered wreckage is of scant 

interest to the archaeologist' (Dumas, 1972: 160). Honor Frost, an 

equally influential underwater archaeologist, agreed (Muckelroy, 

1978:160). Though this destructive process certainly occurs, we now 

know that this is not a sustainable position. Work at the iron and 

steamship sites noted above e.g. Watts (1988); Bright (1985); Delgado 

(1986); at the wooden-hulled VOC ship Batavia (1622-1629) (Green, 

1987); the American China trader Rapid (1807-1811) (Henderson, 

1986:105-114) and the iron-hulled SS Xantho (1848-1872) 

show that archaeology in shallow water environments can produce 

significant results. This is especially so if the hull has time to act as a 

receptacle and becomes part-buried before being broached by the seas 

or destroyed by transformation processes (See Figure 6la-b below). 

Other commonalities become evident in an examination of the 

broader sample and it is now clear that iron and steamship wrecks 

generally appear to disintegrate in a common fashion, depending on 

how the wreck came to rest and on other relevant factors, such as 

depth, exposure to wave and swell action and sea-bed composition. 
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Figure 61a): The SS Kakapo (1900-1900), a beached wreck in South Africa 
(Wexham, 1984: 72-3). Its role in acting as a receptacle for artefactual material 
while the hull disintegrates is evident 

Figure 61 (b): The blockade-runner, SS Nola (1863-64) off Bermuda. By 
Morris (Watts, 1988). It has also acted as a receptacle. Note the rectangular 
boilers and the relatively intact bow and stern sections. The engines are 
missing in both these instances. 
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In comparison to the two examples above, iron hulls tend to flatten 

out as they disintegrate, when lying upright on a hard unyielding sea

bottom, again leaving a characteristic pattern. The hull floors break 

where they are not supported by the sea-bed, to flat, surmounted 

by engines and boilers with fittings and fixtures lying either side 

on the hull), depending on the direction of the prevailing seas. 

The relative longevity of the forecastle or poop (the bow and stern 

triangles) in comparison to cargo sections is another common feature. 

Eventually an exposed iron vessel comes to assume a characteristic 

appearance; i.e. bow and stern triangles lying on their side, separated 

by flattened cargo holds and a midships section surmounted by 

engines and boilers (if present). A progression to this stage is seen in 

the wreck of the SS Blackbird (1863-1878), shown below 

Figure 62: The SS Blackbird, By Geoff Hewitt, MAA V (1988: 147). 

219 



The Blackbird site will eventually be characterised by isolated bow 

and stern triangles separated by machinery and a collapsed hull 

section between. Eventually those triangles will also fall to the sea

bed, in similar fashion to the bow of the iron barque Denton Holme 

(1863-1890) (Figure 63). The bow of the Ann Millicent (?-1890), 

which dries at low-water spring tides (Figure 64) and the stern of the 

Ben Ledi (?-1879) (Figure 65) are examples of a similar 

phenomenon. See also SS Marie Celeste in Figure 22 and the SS Nola 

in Figure 61 b. 

Figure 63: The bow of the iron barque Denton Holme, Photograph by P. Baker. 

The angle on which sections of a particular hull fall will not 

necessarily be consistent with those other parts of the site which 

collapsed at a different time. Their angle of repose will be dependent 
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on such factors as the sea conditions as they reached the point of 

collapse and the movement of the sediments on which each section 

may lie. 

Figure 64: The bow of the iron barque Ann Millicent. Note the Indonesian 
fishermen searching for trochus shell. Having visited the area for over two 
centuries, the fishermen have subjected the wreck to heavy 'secondary 
salvage'. Despite that, material such as a large array of anchors, a cannon 
and other heavy mate1ial of interest remain (McCarthy, 1991a). Photograph 
by J. Carpenter 

Figure 65: The author inspecting the stern of the iron barque Ben Ledi. The 
illustration shows the integrity of the unit. 
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In the case of the SS Windsor (1890-1908), on the Abrolhos 

Islands in Western Australia, I have observed another interesting 

phenomenon; the gradual sinking of the wreck, or some of its parts, 

into apparently hard reef platforms. 

Lying in shallow water against a drying reef and subject to very 

heavy seas, the hull has completely disintegrated. The engine, shaft 

and propeller lie disjointed on the sea-bed near a submerged boiler. 

The hull has totally disintegrated, apart from the vessel's floors lying 

inverted on top of the drying reef adjacent to another boiler. These 

are shown in Figure 66a. The stern section lies even further inshore. 

Figure 66a: The Windsor boiler and a section of its floors on a drying reef. 
Photographs by the author (McCarthy, 1982b). 

The boiler, shown underwater in Figure 66b, lies only metres from 

the one shown in Figure 66a on the drying reef-top. Both lie on their 

end; one has sunk into the reef, the other has not, posing obvious 

questions about the site-disintegration processes and the substrate on 

which the separate parts of the wreck lie. Though there was 
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considerable discussion and disagreement on this phenomenon when it 

was first seen, the tight fit of the boiler and the finding of the rudder 

in a rudder-shaped hole were considered conclusive (McCarthy, 

1978a, 1978b ). Diving geologist R.J. Brown was also consulted and he 

agreed, after examining the evidence, that the boiler and the rudder 

had worked their way down through the reef and that they had not 

fallen into an existing hole (pers. com.). 

Figure 66-b: Burial in reef structures. A view of the Windsor boiler 
underwater. Photograph by the author (McCarthy, 1982b). The question was 
put whether the boiler could have fallen into the hole? Given that the hole in 
which the boiler lies is almost perfectly cylindrical and given the tight fit, it 
became evident that the boiler had gradually sunk into the reef. The finding of 
the ship's rudder deep within a rudder-shaped hole, provided conclusive proof. 
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In examining Riley's 'waterline' theory in soft sediments, or the 

cases noted above where material becomes embedded in a hard, but 

yielding, sea-floor it appears that the sea or swell initially impinges 

rhythmically against an object, or around a hull that comes to rest 

upright on a relatively soft bottom, causing it to slowly subside. The 

wooden three-masted American-built schooner Abemama (1918-

1927), shown below in Figure 67, is one example of this phenomenon. 

Illustrations (Figure 68a-c) of the French-built iron-hulled tug

boat Alacrity (1893-1931), lost within a few years of Abemama and 

now lying seven metres from it, show that the process applies as much 

to an upright wooden wreck as it does to the iron hull in the same 

environment. 

Figure 67: The wooden-hulled Abemama soon after it came ashore (Sawday 
collection). See Figure 51a and 68 for its appearance today. 
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Figure 68: The iron-hulled Alacrity in the process of disintegration over a 
period of about 20 years up to around 1975. Abemama can be seen inshore 
on the aft quarter of Alacrity. The uncovering of the two sites is due to 
dredging nearby. Note the varying angles of the Abemama hull to the 
Alacrity. Photographs by D. Gilroy and D. Robinson. 1 

1 It is useful to note at this juncture that wrecks can move, even after many years. The evidence 
appears above in the case of the Abemama. 
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is noted at this juncture, however, that where the seabed is very 

soft, hull burial can proceed beyond the turn of the bilge; e.g. the 

VOC ship Amsterdam (1748-1748) (Marsden, 1974: 72). 

Where wooden-hulled or iron-hulled vessels come to an 

angle on a soft yet unyielding seabed, such as the well-known Mary 

Rose, (1509-1545) (Rule, 1982), HMS Pandora (1782-1791 (Gesner, 

1991) or the USS Utah and SS Yongala (shown above) they settle to 

an area that often encompasses a line drawn laterally between the top 

of the keel ( on one side), to the sheer strake ( on the other) and in a 

longitudinal direction between the first and last of the cant frames ( cf. 

McCarthy, 1984). This leaves all else unsupported above the sea-bed 

until it degrades through natural forces such as water movement and 

wood borers ( cf. Florian, 1987: 15). Where the sediments are less 

yielding or underlaid by much harder formations the extent of settling 

is obviously much less. Where the seabed is mobile, or where there 

are sufficient currents or water movement to create localised scour

pits, variations must be expected. Sometimes these are seasonal. 

Where the sea-bed is hard and the water shallow, 

movement the extent of site degradation is much more marked and the 

hull and other fragile remains much less preserved. 

The commonalities of iron wreck disintegration 

Following both Muckelroy and Riley, it is my contention that there 

are a number of commonalities to be observed in the disintegration of 

iron and steam shipwrecks. When joined with a more informed 

appraisal of the on-going processes of metallic corrosion, both above 

and below the encapsulating sediments, these commonalities will 

enable archaeologists to properly control for a variety of depositional 
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and post-depositional factors and effects, before commenting on the 

remains before them. 

I have identified some of these common patterns as a) survival of 

the bow and stern triangles, b) variable hull settlement, with 

consequences for the degree of preservation and c) the flattening of 

the hull, especially in cargo holds amidships. 

The following illustrations of the SS Co lac (1895-1910) in King 

Sound near Derby (Figure 69a-c) show not only some of the patterns 

noted, such as the disjointed but otherwise intact bow and stern 

triangles and collapsed cargo sections, but also an apparent anomaly; a 

completely intact midships hull section after nearly a century of 

inundation. 

Figure 69a: Views of the SS Colac at low water spring tides near Derby on the 
Western Australian coast. Photographs by M. McCarthy, October 1995. See 
also Figure 13. 
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69b: The engine-room, boiler-room and stokehold showing surprising integrity1. 

69c: The stem, showing the integrity of the section in comparison with the cargo-hold. 

1 After being damaged and rendered unseaworthy, tl1is vessel was run aground on a sand-bar and 
abandoned after heavy salvage in 1910. Though subject to diurnal tides, sometimes in excess of 10 
metres, with strong currents, the wreck does not experience heavy swells (Australian Tide Tables, 
1994: 212-213). The ship has sunk to near the waterline in its own scour-pit and the bow and stern 
triangles and cargo holds are as expected. The engine and boiler -rooms together with the coal 
bunker have formed a very strong unit and are intact due to their substantial construction. 
Corrosion specialists are yet to visit the site, which lies in similar waters to the SS Sunbeam in 
Figure 59. I suspect that the colonising inter-tidal shellfish are an important element in these two 
instances in that tl1ey protect the hull from the effect of wind and wave. 
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On inspection it became evident that the relative longevity of the 

midships section is apparently due both to the longitudinal and lateral 

strength of the engine, bunker and boiler rooms. These form a very 

strong unit which is heavily braced both horizontally and vertically in 

traditional fashion and by a heavily-built coal chute at an angle of 

around 45° from the vertical in the bunker room. The prevailing site 

conditions of strong, but directionally constant, tidal currents and the 

absence of the constant pulsing action of seas and swell represent 

other major factors. 

An interesting comparison to the SS Colac is the former Liberty 

Ship SS Alkimos (1943-1963) (Stewart, 1992). This steel-hulled 

vessel lies a few miles north of Fremantle in an area having a tidal 

range between 1-1.Sm (Australian Tide Tables, 1994: 174-5). 

Though lost nearly half a century after Colac, little remains of its 

hull in what is effectively a constant 'splash-zone' between wind and 

wave, as it is colloquially known. 

Figure 70: The SS Alkimos, showing extensive corrosion in the 
splash-zone. Photograph by J. Clarke. 
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Highly oxygenated saline water at the sea surface has constantly 

impinged on this small (c. high) inter-tidal zone on Alkimos, with 

an obvious and well-recognised effect (cf. LaQue, 1975:113-116). 

This is in stark contrast to Colac, which is subject to 1 tides . .....,,,.,, ......... ._ 

in a Mediterranean climate in comparison to Colac's tropical location, 

the biofaunal colonisation of Alkimos also appears markedly 

different, requiring some attention by the appropriate specialists. 

Variations to the patterns noted above are expected and must be 

accounted for before any comment is made about natural or cultural 

depositional and post-depositional effects. The wreck of the iron 

barque Moltke (1867-1913), located in a rich coralline environment 

off Magnetic Island, North Queensland for example, provides an 

interesting example of a class of site yet to be analysed. In this 

instance it appears that an iron hull will eventually be totally colonised 

by coral. In this context, it is interesting to note that, after being 

jettisoned from HMB Endeavour in 1770, the explorer Lt. James 

Cook's anchors and cannon gradually became buried in coral and 

were found nearly 200 years later only aid of magnetometers 

(Knuckey, 1988; Callegari, 1994 ). 

Thus by examining the many variables involved, such as 

composition of the sea-bed, depth of the wreck, the extent of water 

movement, relevant chemical factors and the nature of colonising 

biofauna, it is possible to make informed comment about the 

appearance of an iron wreck site. More importantly, in identifying 

deviations from the expected, we can identify anomalies and try to 

account for the variance. One of the masts on Moltke, for example, 

lies at an angle inconsistent with the original angle of heel of the 

wreck. It transpires, that in being used as a practice-target for WWII 

bombers, wreck was not only heavily transformed by 

230 



explosions, but the mast was hit by one low-flying aircraft, causing it 

to lie at an angle incompatible with the remainder of the wreckage. 

An interesting example of the need to control for post-depositional 

effects is again found on ~he SS Alkimos. The following illustration 

(Figure 71) shows an apparent collapse in the forward cargo hold and 

an intact bow triangle, as expected. 

Figure 71: An aerial view of SS Alkimos showing the 
collapse of the forward cargo hold. Photo by R. Gould, 
1995. 
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Though fitting the expected mould for natural transformation 

processes at iron and steamship sites, these features are actually the 

result of cultural transformations of secondary salvage 

over a number of years (N aim and Sue, 197 5); making essential 

account for all post-depositional factors before making comment on 

the processes involved. The process of site disintegration in the case 

of such vessels is on-going and occasionally quite dramatic. The 

derrick and fore-deck shown in Figure 71, above have now totally 

collapsed, leaving only the fore-peak above the waves ahead of the 

bridge (Veth, pers. com. 1996). 

In summary, part of my preceding discussion has centred on hulls 

which were rapidly buried in sediments to around the turn of the 

bilge or the waterline, providing long-term remaining receptacles and 

closed systems for the materials and artefacts held within them. Over 

time they were transformed by both natural and cultural processes in 

the form of corrosion, wave action and salvage to one that is more a 

feature around or on which material lies or is fixed by the processes 

of concretion or sedimentation. This is apparently what has 

at the Xantho wreck. 

The formation of the Xantho site 

It can be seen from the discussion above that the fabric of Xantho 

fits the expected patterns of an iron wreck submerged for over a 

century, in that in 1983 it appeared to be buried to its water-line. The 

bow and stern triangles were essentially intact, as were the engine and 

boiler and some of the hull structure around them. Contrary to 

expected patterns, however, is the fact that although the wreck lies in 

shallow water opposite a break in the barrier reef protecting Port 

Gregory, the boiler has remained in situ. This suggests that the seas at 
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the site have not been as destructive as first thought, and/or that the 

sand-bar encroaching onto the wreck from the port side has had some 

effect in serving to help hold the boiler against the forces of seas and 

swell from the starboard quarter. 

Given its part-burial in soft sediments, the Xantho constitutes a 

hull which has apparently remained intact for a time, acting as a 

repository for a range of materials. In contrast to wrecks which have 

been cast onto hard reefs or hard shallow sea-floors and are rapidly 

torn apart, Xantho would have probably remained an intact 'vessel' 

for a period. It may have appeared for a while like Sunbeam (Figure 

59), containing much of its unsalvaged cargo, fittings and fixtures 

within the hull itself. By coming to lie on a mobile sand bottom in the 

surf zone and in the path of a strong current running diagonally 

across the site from port to starboard, the Xantho has opened up over 

the years to starboard, allowing material to spill out down slope. 

Being exposed to the full force of the current, the port side of the ship 

has collapsed inward. Corrosion specialists have advised that, being in 

aerated water directly in the path of the current, sections 

have experienced a corrosion rate in excess of the starboard side, 

especially the area aft of the boiler (MacLeod, pers. com.). Thus the 

potentially protective effects of concretion and animal growth as 

argued by LaQue in the discussion above, appear to have been less 

than expected. 

The south-west seas impinging on the wreck from starboard to 

port appear to have had some effect in hastening the break up the hull 

through their rhythmic action. Seas and severe storms from the north

west would have been partly broken by the Abrolhos Islands and a 

barrier reef just off-shore, leaving only a refracted wave effect and a 

broken swell to impinge on the site. As a result, a wreckage plume 
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following the prevailing current and not the prevailing seas is to be 

expected, with some materials undoubtedly lying under the hull along 

the starboard side. 

The moving sand has caused the wreck to break up into four 

distinct parts; i.e. forward of the boiler, under the boiler, under the 

engine and aft of the engine. This disarticulation appears to have been 

solely due to natural forces. On the other hand, the position of the 

wreck has caused it to be a navigation hazard and some elements of 

the site, such as the valve once atop of the boiler, has been either 

knocked off by a passing vessel or deliberately torn from its housing 

and allowed to fall to the sea-bed. Further, it appears from historical 

accounts that a considerable amount of primary salvage took place and 

much of the loose material was removed soon after the ship went 

down. 

By virtue of the hull having opened up laterally in the intervening 

years, and by being initially heavily salvaged, the wreck has slipped 

from an intact hull (say Class 1-2) in its earliest configuration to a 

lesser category, as the processes of site disintegration have continued 

and the hull has been affected by periodic burial and uncovering (See 

Figures 40, 41, 44 and 72 for the predicted continuum). 

Figure 72: A ske~ch of the SS Xantho in 1983, by Ian Warne. 
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The archaeological evidence from Xantho shows, however, that 

what occurred since sank was not a form of 'secondary salvage' as 

is the norm on most accessible wrecks. Most of the brass-work 

remains on the engine and boiler, where normally explosives 

equally robust methods would have been used by professional salvors 

and 20th Century sports divers to remove such fittings. 

Having attempted to control for post-depositional effects and to 

come to an informed opinion as to why the wreck appears as it does, 

it is now relevant to ask whether behaviour consistent with the 

circumstances of a vessel experiencing sudden hull failure and going 

down in an unsuccessful attempt to return to port is indicated by the 

remains at the site? 

The answer appears to be yes. 

The wreck lies on a direct course into Port Gregory from the open 

sea via the main channel, Leander Passage (Figure 73 ). 

Despite attempts at salvage, much of the vessel's cargo of lead ore 

remains in ~he hold, indicating that it represented a loss to the owner, 

Broadhurst. The bow lies at an angle that suggests an ~:~!::e~:-!::~~ to turn 

to seaward after the vessel struck; i.e. it was not run ashore. On the 

other hand, this configuration could be due to movement caused by 

shifting sands. The former analysis is supported by the fact that the 

rudder is hard to starboard. This would be expected of a vessel that 

abruptly struck a sand-bar on its port quarter. The fire-doors of the 

boiler are firmly shut, indicating that they were deliberately closed as 

the vessel slowly succumbed to inrushing water. The stern is in 

shallow water with the boiler coming to within two metres of the 

surface. 

From the material evidence, it appears that abandonment was slow 

and that grounding was accidental; i.e. the vessel was not 
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Figure 73: The position of the Xantho in relation to Port Gregory, the reefs 
and the beach. Note Whalebone Passage upstream of the wreck 
(Department of Land Administration) 

13 
111 12 

~ 131 
131 

125 
121 

115 
1~ 108 144 128 

1~ 

W;,rdehon e 

107 ti) 125 147 % 
14 i'l ( I - 13q ~56) 

Having accounted for both cultural transformations wrought by 

primary and secondary salvage and natural transformations in the 

form of corrosion, current, seas and swell, we are now able to 

recognise anomalies and begin to account for them through archival 

and other analyses. 

Though apparently fitting the norm for iron-hulled steamship 

wrecks, the Xantho presented engineering and technological 
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anomalies. It was powered by a horizontal trunk engine, a type 

expected only in a naval context, with steam apparently provided by a 

slightly elliptical boiler of an apparently early type and not the 

vertical compound engine and Scotch boiler that could expected. 

Ancillary machinery such as a 'condenser' was visible, although it did 

not appear connected to pumps, as expected. These anomalies must 

now be accounted for. 

The investigation continues, in the archives 

Some of the early conclusions about the wreck were not 

necessarily supported by subsequent research. The local press 

recorded, for example, that the boiler was new when it was fitted to 

the vessel in 1871. It was described thus 

The boiler, a multi-tubular one, also new and in 
perfect order, was manufactured by Davidson & 
Co., Boiler Makers, of Glasgow, and bear a steam 
pressure of 50 to the square inch (Herald, 
25/1/1873). 

This firm operated the Union Boiler-works out of Union Street, 

Glasgow, from 1867-1871 (Glasgow Post Office Directory, 1872). 

This cast some doubt on our preliminary analysis at the wreck, 

where indications were that it was an earlier type of low pressure 

boiler and not the high pressure cylindrical, tubular 'Scotch' boiler 

that became common in the later 1860s. A re-examination was 

clearly necessary. 

The pumps which fed the boiler, powered the condenser and 

cleared water from the ship's bilges, were also described in the local 

press as new 
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The feed pump, bilge pump, and steam-pipes are all 
copper and new. The cost of all this machinery 
[plus the boiler] and the extra gear could not have 
been less than 1500 pounds in Glasgow when 
purchased, and at present would be worth in that 
town almost half as much more, when the rise in 
the price of iron is considered (Herald, 25/1/1873). 

The pumps appeared to be part of an amorphous mass on the 

fore-side of the engine itself and were, if those impressions were 

correct, an integral part of the engine. Being located in the stern of 

the vessel, they could not have been easily deployed to clear water 

from the bows or cargo spaces. These impressions fitted the archival 

evidence well. On the other hand, the specifications for the building 

of the ship and the Court of Inquiry evidence also contained 

references to watertight bulkheads, yet reports of the loss of the 

vessel show that the bulkheads allowed water from the bows to rush 

aft and extinguish the boiler fires when the vessel struck the sand

bar at Port Gregory. The bulkheads were not visible in the pre

disturbance survey and they were not apparent in the transects or 

the trenches cut through the wreck. Here were additional problems 

requiring resolution and further recording of the hull and 

excavation on the site. No evidence of the clincher (clinker) 

construction of the hull was observed due to the layers of concretion 

encountered. 

What was thought to be the condenser lying to starboard of the 

engine was also an anomaly that required further examination. All 

available illustrations of trunk engines show that they were fitted with 

condensers and that these were located on the opposite side of the 

engine room to the engine itself. Condensers were in general use at 

that time and were to be expected on a vessel built or re-fitted in the 

early 1870' s, as indicated earlier (The Engineer, 1898:57 4; Burgh, 

1869:46). 
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They were normally driven by the engine itself, but being located on 

the opposite side of the vessel, long pump-rods were required (See 

Figure 17). The location of what was originally thought to be the 

Xantho condenser opposite the engine, where it had apparently been 

attached to the starboard hull, corresponded to these expectations. On 

the other hand, the expected pump-rods, or their remains, were not 

visible. Advice on trunk engine configuration was received from 

various sources, notably Noel Miller, our steam engine adviser, 

Richard Tomlin, part of the team refitting the HMS Warrior (built 

1860) (The Engineer, 1898: 444-446) and Joe Roone of the Science 

Museum in Kensington. The Warrior had been originally fitted with a 

1250 NHP trunk engine which no longer existed (Warsop and Tomlin, 

1990). As a result, a professional research assistant, Antonia 

MacArthur, was employed to comb British holdings at the National 

Maritime Museum in Greenwich for evidence of the engine type (pers. 

com., 1994). This led to the accumulation of a mass of information 

about the trunk engine type. 

After consulting this material, consensus of opinion was that a large 

amount of cylinder lubricant was required for a trunk engine and this 

would have precluded the use of a surface condenser. This was because 

tallow or animal fat lubricants would have insulated it and rendered it 

ineffective. It was generally agreed that if a condenser had been fitted 

to Xantho, it would have been a jet condenser (Miller to McCarthy, 

pers. com.; Tomlin to McCarthy, 29/9/1983). 

Further examination of the drawings and photographs from the 

wreck suggested that the unit was not like condensers of either the jet 

or surface type, however. Given the absence of piston rods to drive the 

'condenser' pumps, it was reasoned that the Xantho most likely had a 

non-condensing engine and that it exhausted to atmosphere, like a 
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common steam locomotive. This was most unexpected for a vessel re

fitted late 1871, when condensers were common. The absence of a 

condenser meant that salt water be used to top the boilers. 

The 50 psi boiler pressures on Xantho ( quoted the newspaper 

above) would have caused heavy precipitation insulating the heating 

surfaces and requiring more coal to attain boiling point. As a result, 

coal consumption could be expected to be inordinately high. As Main 

and Brown have noted 

A non condensing engine ... will only be used 
where fuel is readily obtained and it is important to 
save space and weight...[they] are serviceable for 
very short voyages in steamers ... especially river 
navigation ... [the] condensing engine is more 
economical ... (1855: 50, 67). 

After some deliberation it was eventually decided that the 

'condenser' was most likely a feed water heater designed to heat cold 

sea-water before it was fed into the hot boiler (Figure 20 and Figure 

74, below). 

Figure 74: The feed water heater. By John Moffet, MAAWA (Note that 
it is incorrectly labelled, reflecting our original thoughts). 
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A non-condensing, high pressure, salt water feed arrangement was 

clearly unsuitable for a vessel which had to steam considerable 

distances and was operating on a coastline notorious for length, poor 

facilities and lack of coal supplies. 

Attempts to identify the type of trunk engine located at the wreck 

initially posed problems, in that conflicting comments were found in 

the contemporary press. The engine was described thus 

... these were made by Payne [sic], the 
Government machinist, of London, and are a 
masterpiece of workmanship having been 
originally intended for a Government gunboat. 
They have only been 18 months in work in the 
Xantho which consequently at the time of that 
vessel's founding they were as good as new. 
Their nominal horsepower is 30 with the capability 
of working up to 50. (Herald, 25/1/1873).1 

Thus, my impressions about the naval origins of the engine were 

confirmed, though given the unreliability of the press, and in this 

instance their motives in writing this piece, more concrete evidence 

was required. 2 

A reading of the contemporary press and iverpool 

Underwriters' Register of 1871 gives the power of the engine 

variously as 30 HP, 33 HP, 40 HP and capable of up to 80 HP 

(Inquirer, 8/2/1873). The engine was recorded in the Register as being 

built by John Penn of London in 1861 and, in this respect, the register 

and the local press (though some got the spelling of his name wrong), 

were in agreement. All agreed that the average speed of the vessel 

under steam was 7 knots, though there was disagreement as to the 

1Not the plural 'these' referring to the earlier use of the term engines to mean cylinders. 
2 As an example of 'organisational behaviour' in creating what eventually becomes archival 
material, in this case the press are expected to exaggerate, being motivated by their desire to see the 
wreck of the Xantho sold off to pay the arrears of wages owing to the crew when Broadhurst 
abandoned them. See discussion on page 158. 
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suitability of the engines for the Xantho (e.g. Inquirer, 29/5/1872; 

Herald, 25/1/1873). 

In the 1871 Xantho register (Figure 35), the engine is described as a 

horizontal engine, built by Penn and Son of London 1861, 20 

inch diameter cylinders and a 13 inch stroke. can be seen that whilst 

originally recording the horsepower as 30, it was amended two weeks 

later to read 60 HP. This alteration helped resolve a number of 

problems. By combining the written sources with the evidence from 

the wreck itself, the engine was finally identified as a non-condensing, 

two cylinder 60 HP trunk engine built in 1861, most likely for the 

Royal Navy, by Penn and Son of London. 

The ability to resolve the difficulty experienced here attests to the 

value of the artefact as an primary historical source in its own right 

and clearly illustrates both the complementary and conflicting nature 

of the documentary record. The perils of accepting the written word 

verbatim are clearly indicated here, as is the need to take considerable 

care where the archaeological record is the sole source of information. 

Though there is room for debate on 

documentary and material evidence is expected to complement each 

other, or even which of the two takes primacy, the following comment 

by James Deetz, with respect to combining these two sources in 

historical archaeology generally, is clearly relevant in the Xantho case. 

In the nonexperimental [sic] sciences (if archaeology 
is indeed a science), precise certainty is rarely 
achieved. Rather, research takes the form of a gradual 
refinement of explanation, as more and more factors 
are incorporated into the construction of the past that 
one is attempting to create. In historical archaeology, 
this refinement is best accomplished by maintaining a 
balance between the documentary and material 
evidence, being always mindful that, to be a 
productive exercise, the results should provide a more 
satisfactory explanation than would be forthcoming 
from either set of data alone (Deetz, 1988:367). 
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The drawings of the Xantho engine in its concreted state (Figure 75) 

were sent to Britain and were examined by the Warrior team. With 

access to British Admiralty records they advised that the unit appeared 

similar to those described as the 40/60 NHP trunk engines built by 

John Penn for the Crimean War gunboats of 1854/5. 1 

Figure 7 5: The SS Xantho engine as recorded in its concreted state. By G. 
Kimpton, W AMM. 

1 Nominal horsepower (NHP) and Indicated horsepower (IHP) are defined in Appendix 2 
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The gunboat engines were described as having a cylinder diameter 

of 21 inches, a stroke of 12 inches and a computed trunk diameter of 

11 inches, producing 60 They developed 270 which drove the 

gunboats at approximately 7 knots (Preston and Major, 965: 107; 

Osbon, 1965: 106). They were non-condensing for reasons that now 

become evident. Firstly, they were designed to have a very shallow 

draught to enable them to safely negotiate shallow waters, as a matter 

of priority. This required that weight be kept to a minimum and 

clearly condensers were heavy. (See Main and Brown's comments 

above). Being compact vessels, with gunnery the other main priority, 

space was also at a premium. This was another factor which mitigated 

against the fitting of a condenser. The specific factor that enabled the 

designers to dispense with the condenser, in their efforts to save weight 

and space and attain the required operating parameters, was the nature 

of the Black Sea, their intended field of service, however. It had a 

salinity of 16-18 parts per thousand, being only half that of the major 

oceans of the world (Russian Ministry of Defences, 197 4; Florian, 

1987:4). The salinity of the ocean around Port Gregory, and .............. ...., ..... of 

the Western Australian coast, was double that of the engine's original 

intended operational conditions. 

A contemporary source, The Engineer, noted that these 60 HP, non

condensing, double-acting, double-trunk engines, exhausted to 

atmosphere and drove a two-bladed Smith's screw measuring six feet 

(1.8m) in diameter (The Engineer, l 1/2/1898:124-5). It appears that 

over 150 of these small 60 NHP engines were built for gunboats in the 

course of two years; half by the firm of John Penn of Greenwich and 

half by the firm of Maudslay, Son and Field of Lambeth. Penn used his 

well-known trunk design; Maudslay, the return-connecting-rod type 

(See Figures 16 and 17). Both allowed for the compactness 
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required for the engine to be kept below the water-line for strategic 

purposes. Of additional interest was that some form of sub-contracting 

was needed for such a large order a short space of time. As a 

result, it appears that engineering firms elsewhere produced 

as the cranks and connecting-rods and that, on delivery, the two firms 

completed only the final assembly and installation phases (Preston and 

Major, 1965 :29). As a result, the Crimean War gunboat engine is 

recorded as 'probably the first recorded instance of mass production 

being applied to marine engineering' (Preston and Major, 1965; 

Osbon, 1965:106). 

With respect to the apparently mass-produced nature of the Crimean 

War gunboat engine, the following comment is perhaps relevant 

Credit is nowadays usually given to the Americans 
for the pioneering of standardized mass
production and assembly line manufacture ... there 
is evidence, however, that in some fields they 
were preceeded in the application of such methods 
by certain British engineering firms (Musson, 
1969: 473). 

On the basis of historical evidence it appears that Penn and Son need 

be credited, jointly with Maudslay Son and Field, for producing the 

first mass-produced marine engines in the form of these Crimean War 

gunboat types. Though built after that conflict, the Xantho engine 

appears to be one of this type. Of interest is the question whether this 

claim is supported by archaeological evidence. This will be discussed 

in Chapter 8. 

As with the large trunk engines, such as that shown in Figure 76 

below, there was an apparently very high standard of workmanship in 

the construction of the relatively small gunboat engines. Not only were 

high standards a hallmark of Penn's workshops, but the gunboat 

engines represented a watershed in marine engineering; operating at 
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high speed ( 190 revolutions per minute) when other marine engines of 

the time were rotating at only 60 revolutions per minute at most. 

Figure 7 6: A large trunk engine being constructed at Penn's Workshop (Illustrated 
London News, 7/10/1865). 

The engine shown in Figure 76 revolved at around 60 revolutions 

per minute at most, while the gunboat engines were almost three times 

that speed. Resultant lubrication difficulties caused excessive wear, 

overheating of bearings and other problems for the engineers. They 

were also high-pressure engines, using steam at 90 pounds per square 

inch, or six atmospheres (Bar). This represented a quantum leap 

forward both in the pressure applied and in the speed of the engine 

(Preston and Major, 1965:108; The Engineer, 11/12/1898). The 

success of this type of engine represents the overturning of what had 

been described as ' ... foolish prejudice against use of high 
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pressure engines or boilers at sea ... ' and the removing of restrictions 

placed on steam which, to 1853, kept it to 30-45 pounds pressure or 

2-3 atmospheres (The Engineer, 11/12/1898). was considered an 

'enormous leap' compared with practices of only a few years 

These engines, described as having cylinders 'no larger than that of the 

land locomotive of the time,' were thus apparently the first high

pressure, first high-revolution and first mass-produced marine engines 

made (The Engineer, 11/12/1898).1 

Problems created by the high pressures and high speed forced the 

Royal Navy to keep a floating workshop on the China Station to 

service the engines (Preston and Major, 1965:108). Despite their 

limitations, some units remained in service for many years and a 

number lasted into the late nineteenth century and beyond (Osbon, 

1965: 211-218), leading to the possibility that others still exist on the 

sea-bed. Despite this, the combined problems of heat losses from the 

internal and external surfaces of the exposed trunks, the dangers of ash 

and other abrasive substances coming in contact with the trunks, the 

power losses caused by friction at the 11--'"""'"' ... '\...A .... JLJ-, glands 

associated large appetite for coal (even when fitted with a condenser), 

all served to see the trunk engine, no matter how well-engineered, 

uneconomic in comparison to the compound engine developed in the 

1860s (Guthrie, 1971: 112-115). Unfortunately plans and detailed 

descriptions of the 'gunboat type' have not yet been found. 

Thus the 23 year-old, former paddle-steamer Xantho had been fitted 

with a ten year-old gunboat engine during the refit that took place in 

1872 at the hands of the scrap 'metal merchant' dealer Robert Stewart. 

The first question requiring answering was how or why did this occur 

and what was its significance in general terms? 

1 There is room for debate on the claims made about pressure, as the SS Indiana and other American engines 
operated at 80 pounds per square inch. Johnston, pers. com., November 1996 
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How one of these engines would appear in the hands of a scrap metal 

dealer and then be good enough to be put back into service in the 

merchant marine, ten years was needed to be examined, 

before Broadhurst' s behaviour could be analysed in ...... ...,............... answer 

was found firstly in the shortage of seasoned oak which occurred in the 

mid 1850' s. This resulted in permission being given to the builders of 

the 1854/5 gunboats to use a variety of woods, some of which were 

known to be 'green'; i.e. unseasoned and liable to warp (Osbon, 1965, 

Preston and Major, 1965; Archibald, 1968 : 91). The gunboats ordered 

for the Crimean conflict and later posted to foreign stations (for 

example China, the Mediterranean, North America, the West Indies) 

achieved notoriety when some of them literally fell apart within years 

of their launching. Even those built after the Crimean War were in 

some cases hastily constructed. After the war, for example, three 

quarters of those vessels found rotting away in shipyards were the 60 

HP gunboats and there was a great scandal as a result (The Engineer, 

3/1/1862:7). When these gunboats were being disposed of their 

machinery had seen little service, and 56 engines were 

larger Plover class of twin-engine gunboats, for example (Preston and 

Major, 1965:93). Recycling of gunboat engines then became the norm 

as the excerpt in Figure 77 shows. 

Assuming the 1861 date for building (or final assembly) of the 

Xantho engine is accurate, it appears that it may have been part of a 

subsequent batch of gunboat engines designed for one of the Britomart 

class of post-Crimean War gunboats, illustrated below in Figure 77. 

These vessels were 120 feet (36m) in length, of 330 tons and had 

wooden hulls. A total of 20 were ordered; ten in 1859 from private 

shipyards and a further 10 in 1861 from Portsmouth. These included 

the vessels Bramble, Crown, Danube and Protector, were laid 
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down (or ordered) in 1861 and cancelled on the stocks (building yard) 

on 12 December 1863 (Colledge, 1969:14, 87, 152, 441). Though not 

conclusive, the chances of Xantho engine coming from one of these 

four vessels is reasonably high, especially given that its 

manufacture (or assembly) is 1861 (Xantho Register, 61/1871). 1 

Figure 77: An excerpt from Archibald, (1968: 89), showing the Britomart Class 
of RN Gunboats and commenting on the use of the Crimean gunboat engines in 
vessels of 1867 designed for the China Station. 

H.M.S. Beacon, launched 1867, the name ship of a class of composite built, 
twin-screw gun vessels built for service in China. They were shallow-draught, 
their two engines were taken from the hulls of unused and rotten Crimean gun 
boats. They were rigged as topsail schooners . 

. "' 

H.M.S. Tyrian of 1861, one of the Britomart class of wooden gun boat designed 
as an improvement on the Crimean gun boats. She was rigged as a three-mast 
schooner, with some additional square sails on the foremast. 

H.M.S. ,Skylark, one of the numerous 
Crimean gun boats. This one was 
launched in 1855 and is of the 
Dapper class. They had little 6o h.p. 
engines and originally a light schooner 
rzg. 

1 There is some conjecture here. A vessel built in 1861 could have been fitted with an engine built 
and assembled entirely in that year or one that was built earlier and assembled in 1861. Equally, 
where mass-production techniques were used it could have had an engine that was built and 
assembled earlier and stored until required. 
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Conclusion 

Having accounted for the wreck and its antecedents, the behaviour of 

those involved comes into focus in examining this u ........... '"'·'"'...., of 

nineteenth century recycling. Was the scrap-metal merchant, Robert 

Stewart, dishonest; the marine equivalent of today's crooked used car 

dealer? These, indeed were my original thoughts (McCarthy, 1985; 

1986). 

In highlighting the difficulty of attaining agreement on explanation 

for motivational behaviour, it should be noted that Stewart may not 

have been dishonest, but may have assumed that a prospective buyer 

would operate the ship around Britain or on the Continent in sheltered 

waters, close to engineering, repair and coaling facilities. Given that 

the ship was old and originally designed for use in inland waters, it 

was a reasonable expectation that it would be operated where the stress 

on the hull would be kept to a minimum such as on inland or coastal 

waters where shelter could easily be obtained. Stewart may also have 

assumed that it would be operated waters that were or 

so, and over short distances to compensate for the lack of the relatively 

expensive and bulky condensers. As indicated, the 1871 register 

recorded the Xantho tonnage and carrying capacity in both tons and 

cubic metres. This was apparently with a view to its sale to either 

British or Continental interests or at least to countries such as France, 

where the metric system was then in operation and where steamships 

had long been in service on the coast and river systems. Though 

freshly painted, with increased cargo space resulting from its 

conversion to screw propulsion and with efficient cargo handling 

facilities, the vessel's age, comparatively small scantlings and its mode 

of engineering could not have escaped the attention of any 
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knowledgeable buyer. An intent to defraud was not necessarily in 

Stewart's mind. On the other hand, perhaps he did not care and his 

interests were only on profit. recognition of the latter possibility I 

proposed in 1988 that ' ... the refit, re-engining and sale 

X ant ho in 1871 was not in the best interests of the unfortunate 

purchaser' (McCarthy, 1988a:347). 

I also believed that Broadhurst had been duped in purchasing the 

vessel and that the decision was ill-conceived at best and I was clearly 

viewing Broadhurst' s behaviour as evidence of naivete and poor 

judgement. That the ship appeared on the very distant Western 

Australian coast naturally posed the question; what sort of person 

would purchase it for use on the sparsely-populated, poorly-serviced, 

Western Australian coast, far from the nearest marine engine repair 

facilities at Adelaide and Surabaya? Was he an impulsive individual 

with vision and access to capital, yet lacking the necessary experience 

of practical, frontier capitalists such as his contemporaries Walter 

Padbury, Charles Harper and others (cf. McCarthy, 1990)? Worse 

still, was he a rich fool, or a gentleman eccentric, given 

poorly though-out schemes? 

Thus, a fundamental change of emphasis occurred in my research 

soon after I inspected the wreck and my attention came to focus on 

Broadhurst and how he came to make the apparently strange decision 

to purchase this odd vessel, a hybrid refugee from the scrapheap 

(McCarthy, 1985). By shifting emphasis to include the social context, 

the project ceased having the purely descriptive focus of traditional 

maritime archaeology and came to have an additional 

analytical/explanatory focus, eventually evolving into the 

Xantho/Broadhurst project. Elements of cognitive and behavioural 

approaches to archaeology were clearly called for. 
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I had also come to the realisation that the engine was of considerable 

historical and technological importance, not just as an intact example 

of the rare trunk engine type, but as an example of one of the earliest 

high-pressure engines used in the British Empire and the first mass

produced, high-revolution engines used at sea. It was physically 

degrading, however, and also was in danger from recreational divers. 

As noted, it was camouflaged with rocks and sediment to keep salvage 

divers at bay. Sacrificial anodes were also attached in order to hasten 

the regrowth of animal matter and to slow the processes of corrosion. 

I then examined the possibility of raising the entire engine and 

discussed with Conservator North the feasibility of raising the engine 

and of conserving it. He indicated that, if raised, it would have to be 

treated as one piece and that the main problem was simply one of size. 

He advised that a large specific-purpose treatment tank was not then 

available and would have to be obtained were the engine to be raised. 

Failing the provision of a tank, it could be left in its concreted state 

and placed in a safe underwater environment near Fremantle. There a 

sacrificial anode system could be attached to protect the engine against 

corrosion. North also indicated that, if the engine were to be raised 

and placed in a treatment tank with appropriate infrastructure, the 

external surfaces of the engine could be readily deconcreted and 

treated by electrolysis, a common technique successfully applied to 

large iron objects (North, 1987: 207-231). 

North felt that the internal cavities in the engine would be a much 

more difficult proposition, and that the only feasible approach would 

be to clean them as well as possible and then electrolyse them using 

insulated rod anodes. He predicted this would be a slow process. The 

main costs were the tank, the provision of space for the tank, treatment 
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chemicals and labour costs based on staff-time. These he estimated at 

200 operator hours for one person spread over a two-year period. In 

summary, he stated that ' ... the treatment of this engine will be difficult 

but there is no reason to believe it could not be done successfully' 

(North pers. com., May 1983, SS Xantho file, 9/79, Department of 

Maritime Archaeology, WA Maritime Museum). 

When all of this was considered, I came to favour the option of 

raising the engine for conservation, further examination and eventual 

display. The matter was taken to the Maritime Archaeology Advisory 

Committee (MAAC) and their support was obtained. Thus the project 

aims were further amended and a decision was made to examine the 

possibility of raising the engine in more detail (MAAC Minutes, 

22/6/1983). 

As a result of these developments, the SS Xantho research design 

was markedly changed to include three further considerations; one, an 

intensive study of Charles Broadhurst based on the archival evidence; 

another, the further examination and excavation of his ship in order to 

address the questions posed by the site; thirdly, 

raising the engine for conservation, study and eventual display in the 

context of an excavation of the stern section of the ship (McCarthy, 

1988c: 189). 

The archivally-based study of Broadhurst began in 1983 and came to 

a satisfactory conclusion in 1990 (McCarthy, 1990; pages 100-131, 

above). 

The excavation of the stern section (accommodation and engine 

room spaces) of the ship and the removal of the engine, in the context 

of that excavation, began in mid-1985 and will be the subject of the 

next chapter. 
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In the intervening decade, further analyses and excavations have 

occurred, both on-site and in-laboratory; leading to the retrieval of 

further data relevant to ship and Broadhurst. These will be 

described in following chapters and the results will be drawn together 

in the concluding chapter. 
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CHAPTER 7: 

ON-SITE EXCAVATIONS, 1984-1994 

The cutting 

The SS Xantho engine was clearly a significant historic 

technological relic at risk from natural and human forces. These 

considerations together with various conservation reports, led to the 

decision to assess whether the engine could be successfully raised, 

transported and conserved for the purposes of exhibition and further 

study. Broadhurst' s grand-daughter, Marjorie Darling, was told of the 

plan and received the idea with enthusiasm, thereby giving a final seal of 

approval. 1 

The feasibility study required that appropriate conservation facilities 

be developed to accommodate the largest and most complex artefact 

raised after a century in a heavily-oxygenated saline environment. 2 The 

means of removing the engine from the wreck and of transporting it to 

the beach at Port Gregory and then to Fremantle were assessed, both 

with favourable results. 

Test cuts of the bearers holding the engine to the were proposed, 

as part of the study, in preparation for the eventual recovery operation. 

The problems identified in this exercise were routine salvage procedures 

governed by engine size and water depth. On the other hand, the weight 

of the engine and hence the number of lifting bags required was difficult 

to predict. Eventually an estimation formula was obtained from 

practicing engineers, producing a range from 7-10 tonnes (allowing for 

the unknown weight of concretion).3 

1 Though the wreck had been declared historic and therefore the property of the State, I believed that her 
opinions needed to be taken into account before removing the engine. 
2Toe SS Indiana engine was recovered from a more benign environment. 
3 Pers. com., Brian Doherty, ex works Engineer, Cheynes Beach Whaling Station, to Miller and 
McCarthy, 22/2/1984. The formula used: Weight (in tons) equals length, by breadth by height (in feet) 
divided by 27 and multiplied by 1.3. 
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In cutting the engine free of the ship, standard methods, such as the 

use of hacksaws, were expected to be unserviceable given the size of the 

engine bed and the cramped conditions under the engine. As a result, the 

possibility of employing other underwater cutting equipment was 

assessed. 

It was eventually decided to use a thermal lance, an oxygen/steel 

powered, high temperature cutting tool used in many above water 

applications. I 

An underwater trial was conducted in January 1984 on the sea-bed 

adjacent the wreck of the steel-hulled SS Lygnern (1920-1928), which 

lies in shallow water just off Fremantle. 2 A clean eight mm thick sheet 

of scrap steel was lowered to the sand bottom adjacent to the wreck in an 

attempt to emulate site conditions at the Xantho. A test-cut was 

satisfactorily conducted, proving that a defined line could be followed 

with a neat cut of around 1.5 to 2 centimetres width resulting. 

With the benefit of this knowledge and attention to safety issues 

pertaining to the use of high-temperature cutting tools in a petrol-driven 

5.5m aluminium work-boat, the test was extended to a 

wreck of the Lygnern itself. Abandoned in 1928 after running aground, 

the wreck was partially destroyed with explosives in 1970 (Hall, 

1975:18-21). The submerged remains had accumulated corrosion 

products and a substantial layer of marine growth and concretion over 

the years. This mirrored, to an extent, the state of the iron-work on the 

Xantho. The results were similar to those with the clean scrap steel. It 

was decided to apply the method to the Xantho, in a pre-lifting survey 

1 The thermal lance consists of a hollow steel tube measuring 2 m in length and 18 mm in diameter, 
filled with 2 mm diameter steel rods. The working end of the lance is pre-heated to very high temperatures 
using oxy-acetylene equipment and when oxygen under pressure is passed through the rod to the red-hot 
tip, it ignites to produce a cutting flame. Its application underwater was not well documented, though 

, previous experience in the oil and salvage industries had shown that it could work under water. 
2 By Museum staff Geoff Kimpton (an ex-oil industry diver) and myself, assisted above water by Colin 
Powell and Bob Richards. 
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and test-cutting program, that was to be followed by a longer season at 

the site should the trial prove successful. 

A one week field trip was allocated to pre-lifting/test-cut survey. 

Having ascertained that the April/May period was suitable, summer 

months were selected instead. 

A team of conservators, led by North, was again included in order to 

examine the success of the anodes previously fixed to the engine and 

drive shaft and to monitor the extent of biological re-growth in the nine 

months since the first pre-disturbance survey was conducted. The 

remainder of the team was to conduct test-cuts and examine the best 

means of removal, lifting and transporting the engine to shore and, from 

there intact, to Fremantle. 1 

The aims set of this part of the project were to 

1. Relocate the site and buoy it ready for diving. 
2. Analyse the effectiveness of the conservation techniques 
used in 1983. 
3. Clear the engine of sand and rock. 
4. Continue recording details of the engine. 
5. Examine methods of engine removal and locate cutting positions. 
6. Undertake some test-cutting to ascertain, 

a. Problems 
b. Time 
c. Gases needed. 

7. Strop engine to examine lifting problems (then remove strops). 
8. Re-cover engine with sand and rocks. 
9. Examine how the engine is to be manoeuvred to the jetty, ashore then 

to transport (e.g. a truck). 

On arrival at the site in mid-January 1984, the team were startled to 

discover that though diving conditions were generally good, the 

visibility was poor and the wreck was almost totally covered in sand 

(Figure 78). The boiler, which nine months earlier stood almost clear of 

the seabed, had only 1.5m of its upper surfaces protruding from the sea

bed. The engine was buried up to the top of its trunks. Apart from the 

1 The team comprised Conservators North and MacLeod and the cutting team of Kimpton, Powell, 
Richards and and myself. 
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top 20 centimetres of the stern post, the remainder of the site was not 

visible. Despite this severe, yet informative, set-back, the strong 

currents and poor general conditions present in the April 1983 study 

were not in evidence. 

Figure 78: The extent of the sand cover on the engine. Photograph by M. McCarthy. 

The newly-deposited sand around the engine was quickly cleared. 

Even so the anodes were re-located only after considerable effort, being 

totally buried. When tested, the anodes were found to have had only a 

limited effect, due to their burial in sand and clay in the intervening 

months. After being excavated they were placed on a higher level on the 

understanding that they would begin protecting the engine once they 

were returned to an oxygenated environment. The sand cover had also 

effectively killed all marine growth on the engine and boiler, bar the 
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upper surface, leaving only newly colonised weed and dead molluscs on 

the concretions. This gave the divers clear access to the remains without 

the case on the previous expedition. Some of the dead bivalves, for 

example, were still articulated. 

Here were clues to the bands of marine growth seen on the boiler in 

April 1983. Accretion of sand had apparently killed marine growth on 

the boiler over the previous summer months. When we arrived at the 

wreck in April 1983, just before winter, the seas had begun to carry the 

sand away. The growths were apparently only a few months old. 1 

North concluded at the time that 

Sometime between May '83 and January '84 there 
had been a tremendous deposition of sand onto the 
Xantho site and this had [negated] nearly all our 
experiments ... My interpretation was that, for some 
reason, the site has been completely covered with 
sand so that none of the wreck protruded above the 
sea-level. Approximately 3 weeks ago some of the 
sand was swept away to reveal the top 3 feet of the 
boiler and colonisation started again. In the last 1 to 2 
weeks a second sand shift has exposed the boiler for 
a further 2 feet.. .. We had a further disappointment 
with the anode system. The potential measurements 
indicated that it wasn't working and I felt this may 
have been due to the anodes being buried under the 
sand ... About 3 feet below the present seabed we ran 
into a mixture of fine sand and clay. I estimated that 
there would have been 3 feet of this material 
overlying the anodes ... and above that another 10 feet 
of sand ... so it is not surprising they were not giving 
out much current (North to Beegle, pers com., 
February 1984, SS Xantho file 9/79). 

Having been filled with mobile sand since the 1983 program, the area 

immediately beneath the engine was excavated in a gross manner (i.e. 

without recording). The space was then examined with underwater 

torches in order to ascertain the size and strength of the engine bearers 

and other engine supports. 

1 A disadvantage in 1984 was that the rate of re-colonisation and re-growth of biological organisms over 
the 9 month period was obviously not able to be monitored and this element of the project was then 
shelved until our next visit. 
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North had earlier predicted a 0.08 to 0.10 mm corrosion rate per 

year; i.e., 8-10mm or 5/16-6/16ths (318th) inch per hundred years. The 

examination of the wreck May 1983 confirmed that what were 

originally 3/l 6ths inch (5 mm) and 5116th inch (8 plates 

and their supporting frames had become mere shells. 1 In similar fashion 

it was found that the one inch or 25 mm thick bearers, which supported 

the engine, and which were much thicker then the hull or its frames, 

also contained little residual metal. As the bearers had been exposed on 

both surfaces to the elements, corrosion had occurred simultaneously on 

each side. Thus, at a rate of 8-10 mm of corrosion per hundred years it 

was predicted that 16-20 mm of the original 25 mm thick engine 

supports would be severely corroded. When test-holes were drilled 

through the concretion into bare metal, it was found that in some cases 

corrosion rates had been higher and that in many cases the iron-work 

had totally disintegrated, leaving hollow shells filled with corros10n 

products. 

Though heavily concreted, it was ascertained that the engine was 

originally bolted to a rudimentary box frame consisting of 

iron, originally one inch or 25 mm in thickness and approximately 18 

inches or 500 mm deep. The frame, in turn, was riveted to lateral 

supports or beams of I-section iron, running laterally across the engine 

room. These were attached by rivets to the hull and frames on the 

vessel's side. Supporting the fore lateral bearer and fixing it to the 

keelson was a vertical iron plate measuring one foot (10 cm) wide and 

one inch (25 mm) thick. This was further braced to the keelson with a 

similar sized diagonal bearer. The engine bearers were almost totally 

corroded and were extremely fragile. The vertical supports fore of the 

lcorrosion occurs on both sides of the hull plates. Thus a predicted rate of 8-lOmm per one hundred 
years would see plates double that thickness consumed, if predictions were correct. 
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engine, attaching it to the keelson, had substantially more original metal 

left. 

The extent of the corrosion confirmed conservator's prediction 

that the engine would begin to disintegrate after a few decades, or best 

it would collapse intact into the ship's bilge. There it would be 

increasingly susceptible to sand abrasion. Copper piping was also found 

passing from the engine, under an iron decking, into the bilges 

underneath. 

As indicated earlier a large, four-bolt, flange on the aft section of the 

crankshaft, which was originally connected to another similar in size and 

construction on the propeller shaft forward of the thrust block, had 

parted from its mate as the hull of the Xantho broke up. This left the 

engine disconnected from the stern shaft and thrust block (See Figures 

53 and 82). 

After exploratory work in the bilge and around the engine, it became 

apparent that due to the rudimentary construction of the engine-bed and 

its advanced state of decay, very few points needing cutting in order to 

free the engine. A suitable location for the test-cut was 

marked and large timber bearers were wedged under the engine should 

it collapse during this exploratory work. 

Following the techniques tested on the Lygnern, the cut was carried 

out. More corrosion products than those experienced on the Lygnern 

were lifted towards the surface in a cloud by the gas bubbles produced 

by the cutting process. When the bubbles burst, the corrosion products 

descended in a cloud, obscuring visibility and covering the operators 

with detritus. Deafening noise was also generated by the escaping gases 

and the two factors made the cutting a very difficult process, indeed. In 

the enclosed spaces under the engine, visibility was further reduced by a 
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combination of the noise from the escaping gases and the glare from the 

cutting tool (Figure 79)/ 

Though planned as a test-cut, there was so little original metal holding 

the engine and its box frame to the vessel that within the space of a few 

hours, the engine was cut free (Kimpton and McCarthy, 1988). 

Figure 79: Cutting in progress. Photograph M. McCarthy. 

At the conclusion of the cutting process the engine remained fixed in 

place, however. Apart from the copper piping, nothing solid could be 

seen or felt in the spaces underneath. A vehicle jack was then positioned 

on the under-surface of the engine and pressure was carefully applied in 

order to examine the orientation in which the engine was held. Having 

ascertained that the engine was held only by a small number of copper 

pipes running vertically through the engine-room deck, into the bilges, 

1 In the Xantho case the resultant gases had a free exit to the surface and the effectiveness and safety of 
the tool in an enclosed underwater space was not assessed. Were it to be used in an enclosed 
environment, considerable care would be needed due to the build up of gases which have the effect of 
producing an upward force on the ceiling of the space; additionally they could become explosive. 
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these were cut using a hacksaw. As the last cut was completed and the 

jack was lowered, the engine slowly settled downwards onto the large 

timber baulks previously placed !.!:!'li:1:~r·n.e:1!:..'1 was free and ready to 

be lifted at a later date. 

Where the freeing of the engine was expected to be a lengthy process, 

requiring large quantities of cutting equipment applied over a number of 

seasons, instead the whole operation took just a few hours spent over a 

four day period. 1 

The excavation of the stern and the removal of the engine. 

Briefings on the 1983 and 1984 phases of the SS Xantho project were 

regularly made to Maritime Advisory Committee (MAAC) of the 

Western Australian Maritime Museum. As indicated earlier, this group 

of academics and representatives of the community at large advised the 

Director of the WA Museum, who in turn advised the Trustees, who 

were then legally responsible for the Museum and its operations. In 

receiving various reports on the merits of the project, discussions were 

held on the question of a reward to the finders of 

justification for the reward took into account the vessel's pioneering 

role, its links to Broadhurst and its importance to the history of marine 

engineering (Sledge, to Director, WA Museum, 2/10/1984). Letters of 

support from the HMS Warrior team and from the Water Transport 

Department of the Science Museum in London were also provided. 

These indicated that the Xantho engine was an 'exciting and unique find', 

one which would be (in their words) 'invaluable' in order to 'fill in the 

gap' for a period were no records had been found (Tomlin to McCarthy 

28/12/1983; Roone to McCarthy 18/5/1984). 

lThe expedition left Fremantle on 14 January and returned on 20 January 1984. 
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Eventually it was decided to present to the finders a reward of 

$3,000-the largest sum ever given under the terms of the State Maritime 

Archaeology Act of 1973. late 1994, when rewards were 

retroactively paid to the finders of the Dutch and 

Indiamen, it was the third largest reward paid in Australia under either 

State or Federal shipwreck legislation. 1 This was a fair indication of the 

changing perception that, though built of iron, the SS Xantho had 

become one of the most significant wrecks found in the waters off 

Western Australia. It was also a major change in direction for research 

in maritime archaeology within Australia. 

In addition to the reward, a budget of $7,200 was allocated to the next 

phase of the project; the excavation of the stern and the recovery of the 

engine. Being a relatively small sum in comparison to that then allocated 

to the excavation of wooden wrecks, I elected to augment the funds with 

sponsorships, tax incentives and other schemes. Being a new element in 

Australian underwater archaeology, it was also decided to maximise the 

returns from the excavation by involving graduates from the Post

graduate Diploma Course co-ordinated by the Department 

Archaeology and by volunteers and professionals from other maritime 

archaeological units in Australia. As a result, calls for expressions of 

interest in participating in both the excavation and a proposed seminar 

on iron and steamship wrecks were made through the Australian 

Institute for Maritime Archaeology (AIMA). 2 

In the briefing notes the participants were given logistical and other 

information common to large expeditions. Summaries on the philosophy 

behind the practical and theoretical seminar, project aims and a 

1The finders of the wooden-hulled American China Trader Rapid (1807-1811), in Western Australian 
waters, received a total of $30,000, mainly in recognition of the bullion recovered and the finders of 
H:MS Pandora, (1783- 1791), in Queensland waters, received an interim reward of $5,000. 
2The seminar was to be the first conducted under the umbrella of AIMA. AIMA also gave its official 
support to the program as a recognised project ensuring that all donations, or support in kind, became 
tax deductible. 
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background to the excavation, in the form of a paper presented earlier 

in the Steamship Archaeology Section of the Annual Council for 

Underwater Archaeology Conference at Boston, USA (McCarthy, 1985) 

were also disseminated (McCarthy to Participants, SS Xantho excavation 

and seminar, File 9/79/5, WA Maritime Museum). 

The expedition was planned for mid-April through mid-May 1985 

with the knowledge that, although the summer months presented far 

more amenable diving, they also resulted in the covering of the wreck in 

mobile sand. The aims of this section of the project were 

1. The relocation and re-examination of the site. 
2. Familiarisation dive for all divers. 
3. Re-examination of the chemical state of the wreck and assessment of 
the effectiveness of the anodes set in 1983. 
4. Conducting the seminar on practical and theoretical aspects including 
recording and conservation objectives. 
5. Practical demonstration of the methods used in measuring the 
electropotential of the wreck. 
6. The setting of site grids, excavation of the forecastle, under the hull 
and stern. Attempted recovery of some cargo in the original sacks. 
Detailed examination and recording of hull, boiler and machinery 
mounts. Removal and recovery of the engine propeller, shaft, rudder, 
thrust-block. 
7. The re-photographing of the site in colour and black and white, 
mosaic of the plan view, port and starboard elevation. Stereo 
photogrammetry of engine, boiler, stokehold and other fittings. General 
photography, including video coverage above and below water. 
8. The production of an isometric view of the site and the machinery 

A considerable amount of sponsorship had been obtained in the 

interim, ranging from equipment such as buses, cranes, other transport, 

machinery, a large treatment tank for the engine, underwater video 

systems, machinery, dive gear, air-fares and other items including boats. 

The on-site equipment was standard; a 6m aluminium work boat as the 

chief dive-boat, smaller vessels, caravans, trucks, 4WDs and the 

Museum's marquee as expedition meeting and victualling hall. 

Shortly before the expedition got under way, senior conservator Dr. 

Neil North left the Museum. In believing the conservation project 

possible, North was the key element in the decision to go ahead with the 
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raising of the engine. His replacement was Dr. Ian MacLeod, North's 

assistant the pre-disturbance survey. Macleod' s conservation team 

included an organics conservator a specialist on-site conservator 

who were to replace him when he returned to Fremantle mid

expedition change-over.1 The organics conservator was to attend to 

timber, leathers etc., and to examine the biology at the site in a effort to 

ascertain whether it had altered since 1983. The on-site conservator's 

task was to conduct conservation and stabilisation required of the 

artefacts on-site, in the water column, on board the work-boat and 

ashore. At the field-station the artefacts were to be catalogued, 

photographed, drawn and then packed, loaded and then transported to 

the laboratories at Fremantle. Also present was the Museum's artefact 

(finds) manager, whose task was to co-ordinate the management of 

artefacts after they were delivered to the field laboratory. 2 The finds 

manager was also to be responsible for tracking each item through the 

conservation process at the Museum's laboratories, and from there 

eventually into storage or onto the exhibition floor. All conservators 

were divers. The diving contingent also included 1981/2 

Archaeology Course graduates, some of whom were then staff of the 

various maritime archaeological site management units burgeoning 

throughout Australia, such as the Victoria Archaeological Survey. 3 

Other staff were technical officers from Museums, such as the State 

facility in Queensland and Western Australia.4 Representing the many 

volunteer archaeological groups interested in iron and steam shipwrecks 

throughout Australia were other specialist or volunteer staff.5 Added to 

1Nancy Mills-Reid and Jon Carpenter, respectively. 
2Fairlie Sawday. 
3 The maritime archaeologists present for the excavation and seminar were Mark Staniforth, Shirley 
Strachan, Peter Harvey, Nick Clarke, Jill Worsley, Brunhilde Prince, Steve Cushnahan and Dena Garratt. 
4 Sally May, Patrick Baker, Geoff Kimpton and Bob Richards. 
5 John Riley from the Maritime Archaeology Association of NSW, Geoff Hewitt (diver/marine architect) 
and Lyall Mills (underwater video camera-operator), both from the Maritime Archaeology Association of 
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this skilled group were many local volunteer divers, medical 

practitioners, sponsors, partners and others. A mid-season changeover 

of all participants, bar a core team five, was also planned. 

The excavation season opened in mid-April 1985 our 

Port Gregory, settling into the caravan park, and setting up in readiness 

for the seminar and excavation. The wreck was re-located after a very 

difficult 45 minute search hampered by poor visibility, swell, suspended 

weed and currents similar to those experienced in 1983. When located, it 

was buoyed after a perfunctory examination to await better conditions. 

In the meantime the skills of new divers were tested and improved 

where required while experienced personnel set about preparing 

equipment, field laboratories and other gear. 

The seminar was brought forward in the face of the bad weather and 

began with a letter of welcome in-absentia from Jeremy Green, the 

AIMA president. Graeme Henderson, Curator responsible for the 

Museum's Colonial Wreck Program, attended the seminar briefly and 

presented another introductory address. In recognising that 

archaeologists had only recently begun to contemplate 

shipwrecks as a truly significant part of the nation's cultural heritage, 

Henderson stated that 

We archaeologists ( and conservators) must expect to 
be surprised by iron steamships sites. There has been 
so little (properly published) work done underwater 
on this type of site that we hardly know what to 
expect in terms of their preservation underwater 
(1988b: 10-12). 

On the other hand in reflecting current thought in British circles 

Henderson quoted the well-known David Lyon of the National Maritime 

Victoria, Brian Marfleet, (professional police diver) from the Society for Underwater Historical Research 
in South Australia, Phil Clegg (professional oil industry diver), Chris Buhagiar (diver/artist) both from 
the Fremantle MAA WA and Peter and Jill Worsley from the Geraldton MAA WA. 
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Museum (Greenwich), who doubted the wisdom of spending what he 

believed were great sums of money to make inferior plans on the sea

bed. Henderson then echoed commonly-held belief that iron wrecks 

would survive better than wooden wrecks many 

argued that, due to their mode of construction, they would not 

constitute, what he termed, the 'individual expression of creativity' 

which he believed was to be found on the wooden wreck. In questioning 

whether anything other than what was readily available in engineering 

books and plans would result from the study of iron and steamship 

wrecks, Henderson also suggested that ' ... no further engines be raised at 

least until the Xantho engine has been successfully conserved' 

(1988b: 11). 

As conditions improved work began on-site. On inspection, the wreck 

site was found to be in similar condition to May 1983, with the stern 

post, tip of the propeller, all of the engine, most of the boiler, deck 

winch, windlass, stem-post and sections of the port hull were exposed. 

copper cable attached to an anode connected to the engine had a sulphide 

summer 

months previous to our visit. The anode itself was found to have been 

partly working, resulting in a reconstituted layer of calcium carbonate 

on previously cleared copper and brass fittings. The anode attached to 

the stern shaft also appeared to have also worked only partially, due to 

its having been buried. MacLeod and his team continued the corrosion 

study, proceeding to measure the temperature at the site and to take 

corrosion potentials at points on the wreck earlier ear-marked for 

comparative study (Conservation Daybook, 15-25 April, 1985). 
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An external site grid (a reconstruction of the 1983 external grid) was 

set up while the engine was carefully stropped (sandbagged and bound 

with wide webbing straps to spread the pressure) in preparation for 

lifting by a rigging team. 

Figure 80: The engine ready for lifting. The strops and sandbags protecting 
the engine are clearly evident. To the right of the engine are oil and other 
containers. The break between the flanges joining the engine and the thrust
block is visible in the bottom left-hand corner. Photograph by P. Baker. 

John Riley, whose work on iron shipwrecks was discussed earlier, 

commenced the production of an isometric projection of the site. 
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Figure 81: An isometric projection and plan view of the SS Xantho, by 
John Riley and Steve Cushnahan, respectively. 1 See also figures 52, 
54 and 80. 

1 Where sites are large, extending beyond the limits of diver visibility, the isometric projection allows 
areas chosen for detailed excavation or examination to be conceptualised as part of the whole. They are 
also very useful as a briefing tool, as were the site models produced by Riley for the John Penn 
(Figure 7). 
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Throughout the excavation, the stereoscopic system shown in Figure 

81 was deployed. It comprised a twin 15 mm underwater camera system 

mounted on a one metre-long bar and a double grid frame which allows 

the diver to locate the cameras vertically above the target. Intended as a 

three dimensional supplement to manual recording, it provided a very 

useful cross reference where the manual recording required checking or 

augmentation in the laboratory (cf. Green 1990: Ch. 5). 

Figure 82: Photographer Pat Baker employing two Nikonos III cameras with 
15mm Nikonos lenses and a double grid square used for keeping the cameras 
in a horizontal plane. Photograph by N. Clarke. 1 

1 When correctly in position above the dual grid frame, only one of the pair can be seen through the 
view-finder. 
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Underwater and above water video recording successfully augmented 

the traditional 2D and 3D colour and black-and-white still photography, 

common to most underwater excavations. As the recording program 

continued, a late-season cyclone was identified slowly progressing down 

the coast. This had the effect of holding the off-shore wind pattern, 

making the conditions ideal for work, although the prognosis was bad. 

As a result, it was decided that the engine lift would have to be brought 

forward. 

Work then began on attaching and part filling lifting bags to ascertain 

the security of the strops and to test the system. All went well and a 

decision was made to proceed. The wreck was then cleared of all but the 

rigging team and camera operators in preparation for the lift (Figures 

83a-c). 

Figure 83a: Riggers Geoff Kimpton and Blian Marfleet adjusting the 
lift bags. Photograph by P. Baker. 
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Figure 83b: Geoff Kimpton and the author making final checks. 
Photograph by P. Baker. 

Figure 83c: Video-operator Lyall Mills recording the engine at the 
point of neutral buoyancy. Photograph by P. Baker. 
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Air was slowly fed into the lifting bags and as they filled they 

commenced to pull towards the surface putting tremendous strain on the 

strops. More were added to obtain maximum lift, bringing the engine 

closer to neutral buoyancy. As it approached that point ( with 27 lifting 

devices ranging from one-tonne bags to inverted tubs) the engine began 

rocking gently and then with some force in the almost imperceptible 

swell. The on-coming cyclone had produced flat-calm conditions and an 

imperceptible swell on the surface, but on the sea-bed, with a neutrally 

buoyant engine, the swell was quite noticeable and was proving 

potentially damaging. As a result, the engine was returned back to the 

sea-bed for re-stropping. The lift recommenced and the engine, on its 

bearers, rose vertically from the seabed. 

The tow was then taken up by the work boat and the engine was 

pulled to the starboard side of the ship. From there, the engine with 

divers monitoring the tow, began a slow voyage behind the work-boat 

back to the beach near Port Gregory where a pre-fabricated iron sled 

was waiting. The engine was then run in towards the shore until it was 

located just centimetres above the sled. 

Figure 84: The engine in position above the sled prior to the two being joined. 
Photograph by P. Baker. 
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The sled was then lifted up to the engine using upturned tubs filled 

with air and when the two had met, they were firmly lashed together, as 

the chief rigger Geoff Kimpton had planned. The sled, with engine 

attached, was then pulled further into the beach until it grounded in 

shallow water (3 metres), approximately 30 metres from shore. Air was 

slowly released from the tubs and bags and the engine was returned to 

the seabed. The remaining lifting devices were slowly emptied and 

removed. 

The underwater slope ahead of the sled was modified by excavating 

with the water dredge. A bulldozer and front-end loader were then 

shackled to the chains on the sled which was then slowly towed into 

progressively shallower water, until the top of the engine greeted air 

after 113 years on the sea-bed. 1 The sled was then towed along the 

shore and up the slope to a parking zone overlooking Port Gregory. 

Figure 85: The engine being dragged ashore on the sled. Photograph by P. Baker. 

1 This description does not adequately reflect the difficulties experienced both at the site or with the earth
movers. Details appear in the day-book. 
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Once the engine and sled were secured on the land, the earth-movers 

were unhitched and the photographers and conservators went about their 

business recording and preparing the engine transport south. This 

included 3D recording of the engine by photogrammetrists 

University using a special-purpose camera with glass negatives so that an 

accurate record could be obtained, should the engine not survive the 

journey intact. 1 

Having been brought ashore ahead of schedule due to the onset of the 

cyclone, the engine required temporary storing. Large iron objects, such 

as cannon and anchors, are usually covered in hessian and kept wet with 

sprinklers or are preferably inundated in a 5% solution of sodium 

hydroxide ( caustic soda) to keep them from further corrosion. 

Water was at a premium at Port Gregory, however, and the engine 

was a composite of cast and wrought iron, coppers and brasses. In this 

instance it was decided to use Erosel, combined with a solution of I% 

sodium bicarbonate and 5 % sodium carbonate soaked into hessian 

(Conservation Daybook, 19/4/1985: 34). 

This technique had been used a few years before to 

pack material raised from HMS Pandora (Carpenter, 1987). Before the 

treatment was finished the engine received its artefact number; XA 57. 

Though completely covered with Erosel, wet hessian, black plastic and 

ropes, by night-fall a roster had to be set up to monitor the engine and 

guard until dawn. 2 

1 By Chris Dixon and Laurie White of the WA Institute of Technology, now Curtin University. 
2 An attempt had been made earlier that day, while staff were busy elsewhere, to lever off one of the 
copper pipes. Around 1.30 AM the next morning, a car noisily pulled up and its totally inebriated 
occupants attempted to hitch up their 4WD to the sled and proceed to drive off with the engine and sled 
in tow. Angry words and threats were exchanged. There were offers of fisticuffs but nothing further 
transpired and they noisily departed. Thankfully they did not return, though later they were to apologise 
for their actions, while at the same time indicating that if they had known there was so much sellable 
scrap metal on the wreck they would have removed it long before. 
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Figure 86: The engine ashore, in its coating of Erosel. Photograph by P. Baker. 

With the engine removed from the site, the excavation of the stern of 

the Xantho aft of the boiler began in earnest. Each of the archaeologists 

present was allocated a small team and a two-metre-wide section of 

trench to excavate across the hull. It was each group's responsibility to 

excavate their allotted rectangle down to the engine room floor to the set 

recording parameters. In the process of excavating each of the 

rectangles they were to record all the features and artefacts in three co

ordinates and annotate that information on a pre-prepared underwater 

tag. The latter was a system designed to minimise discrepancies that 
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often occur in transition from recording underwater to entering the data 

in the artefact catalogue. Spatial (non-photographic) recording involved 

standard techniques, such as builder's levels to maintain the horizontal, 

plumbobs to gauge vertical separation and two and three-tape systems 

for horizontal fixing. 

Figures 87 a-c: The excavation and recording process. 

Figure 87a: Using a builder's level and plumbob to record the feed
water heater and its surrounds. Photograph P. Baker. 
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Figure 87b: An excavation team utilising a water-dredge in a grid aft of the thrust 
block. A 'dog-clutch' or device which enables the propeller shaft to be disconnected 
from the engine is visible on the shaft. 'Photograph P. Baker. 

Figure 87c: A view of the excavated stem section from the top of the boiler. 
Photograph P. Baker 
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Tagged artefacts were transferred to the conservation facility at the 

base camp. There the finds manager took over, completing the 

remainder of the information required on the tag and beginning the field 

artefact catalogue. In the evening the archaeologists 

and find on a I: 10 site plan. Additionally, they had to ensure that every 

artefact was correctly passed, complete with its identifying tag, to the 

conservators and finds manager. On the following day the conservators 

would remove the underwater tags, check the details and transfer them 

to the artefact catalogue and replace the tag with a more permanent 

plastic or stainless steel dymo tape type. Plastic was used where water 

was the conserving solution and steel where treatment was in a caustic or 

other chemical solution. 

Given our belief that the boiler was not cylindrical, diving naval 

architect Geoff Hewitt from the Maritime Archaeological Association of 

Victoria (MAAV), spent considerable time re-examining and redrawing 

it in detail (Figure 88). 

The illustration shows both the anomalous shape of the boiler and the 

fact that the furnace doors were firmly shut before 

The brasswork for the gauge glasses is visible on the upper face at each 

side as are the return tubes which are visible within the remains of the 

uptake to the funnel. The base of the steam dome is also visible. 

Though slightly elliptical, the boiler was once cylindrical, its 

anomalous shape being due to distortion on the sea-bed caused by the 

ingress of sand, corrosion and other forces. It was the type now 

generally known as the Scotch boiler (Figure 23). The brasswork on the 

aft face of the boiler was removed, catalogued and sent for conservation. 
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Figure 88: The aft face of the Xantho boiler, by G. Hewitt. The fire doors are shut. 
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Hewitt then recorded the piping arrangement between the boiler and 

the engine (Figure 89, below) and produced a schematic analysis of the 

function of each component part (Figure 90). Though conjectural, the 

arrangement is based both on marine engineering know ledge and his 

experience of design in modern naval vessels (cf. Hewitt, 1988b). 

Hewitt's representations have provided a useful basis on which to 

develop an understanding of the operation of the Xantho machinery. 
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Figure 89 : The piping arrangement in the stokehold. By G. Hewitt (MAA V). 
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Figure 90 : A schematic analysis of the Xantho piping. By G. Hewitt (MAA V). 
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Hewitt and the other seminar delegates were 

other course graduates and then by volunteers from MAA WA. While 

the crew changeover was in progress, the engine arrived in Fremantle 

and was immersed in the newly built conservation tank, to await the end 

of the excavation and the beginning of the deconcretion phase. 

The excavation continued at the site until the cyclone crossed the 

coast, bringing work to an abrupt halt. As numerous whalebones had 

been found on the wreck, including one firmly cemented to what proved 

to be the ship's three bladed propeller, the lost days were spent 

searching for a whaling station near the wreck (Figure 91, below). 
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Figure 91: The whalebone found cemented to the tip of Xantho propeller . 
Photograph by P. Baker. 
A piece of wood has lodged under the propeller on the starboard side. Both 
it and the whalebone are an indication of the sand movement around the 
hull. Note the paucity of the hull remains. (See discussion following). 

Evidence of a previously unknown whaling station was found 

immediately opposite and just upstream of the site. Surface indications 

were that it pre-dated the Xantho (Xantho Excavation Daybook). The 

site was recorded in a non-disturbance fashion and a selection of surface 

material was recovered and catalogued for further study. The belief that 

it was a whaling camp from the 1840-S0s was later confirmed in a 

separate study (Gibbs, 1994). Other evidence of whaling activities were 

also noted (e.g. Whalebone Passage upstream of Xantho in Figure 73). 

When conditions allowed, the excavation and 3D recording of the site 

continued, eventually finishing with the entire inside of the hull, from 

the boiler to the stern tube. 
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When the conservators were not acting as part of the excavation or 

recording teams, they conducted further corrosion potential and hull 

thickness measurements. One series of measurements showed that on the 

starboard side of the stern, opposite the thrust block just above the sea

floor, the plates were 0.25-0.4 mm thick under the concretion layer, 

which averaged around 40mm in thickness. When measured for its 

electro-potential, even the original metal was found to be very corroded. 

The rear section of the hull on the starboard side aft of the thrust block 

appeared in uniformly good condition, measuring a minimum of 4 mm 

thick (See Figure 91). No original metal was found on the port, or 

upstream side of the hull, however. Forward of rib 5 (on the 1: 10 plan), 

there was virtually no metal left beneath the concretion on the the ship's 

hull. 

The area from which the engine had been removed (the 

stokehold/engine room) had been cleared to the deck and corrosion 

potentials were recorded (Conservation Daybook: 40-42) (See Figure 

87c). The stokehold was lined not just with concretion but also with 

cement, as was often the case with the bilge of iron ships. There, Oj..., ...................... .. 

the cement, original metal remained though not of uniform thickness. At 

best, some plates were 4 mm thick. The exterior of the hull under this 

section was not recorded, for fear of damaging the structure. 

In the only attempt to excavate under the hull, a one-metre-wide 

trench was excavated down and under the starboard side of the hull 

immediately aft of the thrust block. This was conducted in order to 

ascertain the state of the iron-work and to gauge the depth to which the 

hull was actually buried. This trench showed that the hull on the 

starboard side of the stern, aft of the thrust block and adjacent to rib 3, 

was still strong, projecting 700 mm above the sea-floor. Below the sea

floor a band of 200-400 mm was covered by weed mat, leaving a 
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further 800 mm of well-preserved hull in sand down to the keel. Thus a 

two-metre-high section of hull remained in the vicinity of the propeller 

aperture in the aft section of the ship on starboard side (See Figure 

91 above). 

This section contained much original metal and appears to be the only 

intact part of the ship. After discussion with corrosion specialists and 

other conservators, I then came to favour the recovery of this stern 

section and commissioned diving-artist Chris Buhagiar to produce a 

conceptualisation of an exhibition that could combine both the engine 

and the stern section (See Appendix 8). 

The thermal lance was then used to cut this section of the stern free, 

in preparation for its future raising as a unit together with the propeller, 

stern tube, shaft and thrust block. This was effected overa period of 

four days, resulting in the remaining two metres of the stern of the ship, 

aft of the thrust block (from Rib 3 aft), being cut free from the rest of 

the hull. Even when cut, it would not move, however. Eventually two 70 

mm diameter limestone pinnacles were found holding the stern section 

fast to the limestone reef underneath the mobile sand. were 

subsequently cut. The section was stropped for a trial lift, which proved 

successful to the point of near neutral buoyancy. The bags were then 

deflated and the stern section allowed to settle firmly back on to the 

seabed. All rigging materials, bar one strop were removed and anodes 

were applied, beginning in-situ treatment. A small section of exposed 

hull, consisting of a butt-plate covering a clincker joint and frame, all 

attached with rivets (XA 517), was cut free and raised after its corrosion 

potentials were measured. It was conserved in the field station and sent 

to the laboratory in Fremantle for further analysis (Figure 95). 

The feed-water heater, boiler valve and the remainder of the 

unidentified pump were subsequently covered with rocks and work 
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began on the cleaning up of the site and the finalisation of recording. 

The expedition had deployed a total of 55 people for a total of 605 

operator days, with a total of 603 diving spent on the wreck over 

a one-month period from mid-April to mid-May 1985. 

Subsequent on-site excavations 

In February 1988 a visit was made to Xantho en route to the author's 

season of excavation on the VOC ship Zuytdorp. Our intention was to 

monitor the anodes which were attached to Xantho stern in 1985. 1 

Conditions were suitable, though the site was covered in sand to just 

above the level or the top of the furnace doors. During the inspection, 

the boiler relief valve and feed-water heater that had been left in-situ 

were further examined and a decision was made to recover them after 

the planned corrosion measurement study was completed. The finding of 

an eccentric strap buried under the feed-water heater indicated that the 

area could still contain material of interest. A surface search of the 

depression from which the heater came, and the downhill slope to 

starboard of it. revealed a brass tap and some ....... JU ......... , ........................ , ..... tools. 

were recorded, catalogued and recovered for conservation. 

The scour pit on the fore part of the starboard side of the boiler was 

deeper than previously seen, illustrating the mobile nature of the sand. It 

also exposed the wooden bearers on which the boiler lay. 

In March 1992, with the aim of further monitoring the site and 

removing the air-pot and auxiliary pump assembly previously recorded 

by Hewitt (Figure 89), the Xantho was visited again en route to the 

Zuytdorp excavation. By then interest in the Xantho project had spread 

and we were joined by M. Paul Mardikian, a Paris-based diving 

1 The visit to the site in this instance was in two parts, each of approximately two days duration 
separated by a month of fieldwork at the Zuytdorp excavation. The team comprised conservators, Ian 
MacLeod, Jon Carpenter, Geoff Kimpton and myself. 
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conservator, working on both the artefacts from the iron hulled 

steamers SS Titanic and CSS Alabama. Mardikian was on an internship 

at the Museum's conservation laboratory and had come partly to 

familiarise himself with the site and the techniques of on-site corrosion 

study. Having had a very difficult season on the Zuytdorp, it was to be a 

short, one day visit to Port Gregory, however. 1 

The stern of Xantho was covered by sand to the level of the counter 

and to the top of the fire boxes on the boiler (Figure 92). The bow area 

had less cover than normal, considerably exposing the starboard side 

from the bow to the boiler. 

Figure 92: A working diagram, showing the site as found in 1992 and the 
electro-potentials measured. Based on an adaptation of J. Riley's isometric by 
P. Mardikian 
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1 The diving team comprised Paul Mardildan, Geoff Kimpton and myself. Conservators David Gilroy and 
Dick Garcia assisted above. 
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The electro-potentials Mardikian recorded for all points previously 

measured, bar those buried, are shown in Figure 92. When analysed in 

the conservation laboratory, these measurements showed that when 

compared with the 1983 data, there was no change corrosion on 

upper part of the stem-post. On the other hand, there was a 44% 

increase at the windlass and a 50% increase on the boiler. The propeller 

shaft, on the other hand, showed a 15% decrease. The air-pot and pump 

assembly were also recovered. The anodes fixed in 1985 were found to 

have worked well, being totally consumed and in need of replacement. 

In the following months an inventory of the data and results of the 

previous excavations was made, leading to the conclusion that no useful 

data had yet been obtained on the clincher-built construction of the hull, 

bar that which was evident from the small section removed in 1985. The 

presence of concretions, cement layers and the fragile state of the hull 

had rendered Ii ttle data in this area. It was decided to make one final 

attempt to address this issue and to comb the site for evidence of hull 

construction technique. To facilitate the work, a small water dredge with 

an outlet nozzle designed to produce both gentle suction a 

water was obtained. 

In March 1994 the last visit took place with three aims in mind: I) to 

re-record and examine the site; 2) to further examine the construction of 

the hull, and 3) to attach new anodes to the stern. 1 Conditions for the 

study were excellent. A video and colour/black and white stills record 

was obtained for comparison with that produced in 1985. Using newly 

obtained equipment, the GPS position of the wreck was fixed for the 

first time. 2 

1 The team in this instance was Jon Carpenter, Pat Baker, Geoff Kimpton and myself. The expedition 
took place over two days on 23-25 March. 
228° 11.28' S, 114° 14.07' E, SD 24.1, Satellites 17, 21, 28, PDOP 9s) 
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When located, the wreck was seen to be in what can now be referred 

to as its summer configuration. The tip of the propeller was exposed by 

only about 30 cm, the boiler was visible to just below the furnace 

doors and the fore part was completely exposed on the starboard side 

the scour pit. Midships was totally covered in sand, as expected, though 

the stem was exposed more than before, allowing it to be examined 

closely for the first time. We also found that the starboard plating at the 

bow had collapsed outwards and that the forepeak was being totally 

opened up by the current. This revealed much more of the timber 

ceiling and other fittings than had been accessible in earlier years. 

The anodes were uncovered by excavation, one lying alongside the 

starboard hull at the stern, the other inside the hull at a higher level. The 

upper one had been consumed and the lower was in original form. It had 

apparently ceased working soon after it was fitted, due to a break in its 

connections. 

A corrosion potential study was completed by Carpenter to add to the 

data obtained by North, MacLeod and Mardikian since the first 

application of anodes to the site in 1983. These have proved 

a long-term comparative study (cf. MacLeod, 1992; 1995). 

In returning to the 1848 hull for clues to its construction, eventually 

four exposed areas were selected for examination; the port bow, a 

section of frame projecting on the port side of the boiler aft, a collapsed 

section of hull forward of a set of heavy frames and the heavy frames 

themselves. The newly-exposed bow plates and the paddle-wheel sponson 

bearers were very heavily concreted and nothing of value could be 

ascertained from a visual inspection. One frame alongside the boiler on 

the port side appeared more suitable for inspection and animal growth 

was removed to reveal the concreted surface of the frame and the 

various hull plates remaining on it. Again nothing of value could be 
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obtained from a non-destructive examination of the external surfaces 

due to their physical state and the concretion layer. On the internal 

surface there was not only concretion, but also possibly cement, further 

obscuring the details of the original plating. 

Particular attention was paid to the collapsed section of hull forward 

of the boiler near the starboard paddle-wheel sponson. Lying flat and 

totally exposed on the sea-bed, it consisted of three frames and a two 

metre square section of hull plate. Loose detritus was cleared using 

suction, hand fanning and the water jet. Again the concretion/cement 

layer made an attempt to obtain data by physical means or by 

photography impossible. When a stream of water was applied to the 

water column above the opening in order to develop a gentle suction, 

clouds of black corrosion products streamed out into the column. This 

left a totally hollow and very fragile thin shell from which no 

information could be obtained. The procedure was not continued. 

These experiences further highlighted the problem of taking an 

accurate record of concreted surfaces. Where the corrosion is advanced 

and the concretion fragile, as was the case in this instance, 

of obtaining useful data on the sea-bed in a non-destructive mode is 

extreme. The interstices of the concretions were too thin to produce 

latex, polysulphide rubber or similar casts traditionally produced in such 

cases (e.g. Murdock and Daley, 1982). 

It was also decided that, as the conservation and analysis of the engine 

and ancillary machinery still had to be completed in the laboratory at 

Fremantle, nothing further of the hull, including the stern section, 

would be raised at this stage. The remaining anode was then 

reconnected, a new one was fitted and further potential measurements 

were taken (Figure 93). 
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Figure 93: A sketch of the position and fixing points for the anodes. By J. Carpenter 

(Not to scale) 
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On this, the last dive on the Xantho to date, a plastic handled, steel

bladed diving knife was seen projecting from the sea-floor three metres 

from the starboard paddle-wheel sponson. It was recognised as one lost 

by the author in 1985 by a roll of blue electrical tape carried on the 

handle. It was very heavily concreted, far more than had been expected. 

The knife was recovered and preserved ............. iu. ....... 

specimen. It shows the results of a decade of concretion growth and 

corrosion on modern steel at the Xantho and provides an insight into 

what may have happened over quite a short period on the wreck itself. It 

also provides a useful example of the rapidity of the concretion process 

(cf. North, 1976). It has proved a most useful comparison and is 

currently being used for such purposes in other studies ( cf. MacLeod, 

1995: 58). It will also be referred to in an ensuing discussion of the 

formation of concretion on the Xantho engine and in its interstices. 
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Figure 94: A diver's knife after nearly a decade on the sea-bed alongside the 
Xantho. Photograph J. Carpenter. ' 

Results of the 1984-1994 on-site excavations 

The interior of the stern section of the Xantho wreck up to and 

including the boiler face was totally excavated. The vessel's engine and 

most of its auxiliary machinery, bar the boiler, were raised in the 

context of that excavation. The interior was recorded in three 

dimensions down to the cement lining in the stokehold and in the areas 

aft of the th1ust block. So too were the rudder, stern post and propeller. 

The exterior of the hull was not excavated below the weed mat in any 

but the aft-most stern section on the starboard side. Where excavated, on 

the outside of the hull, the disturbance was limited to within a metre of 

the hull proper. The area around and forward of the boiler face was not 

excavated, though a surface inspection in the forecastle area revealed 
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that iron and organic material remained and that some material, such 

as a rope fender, was occasionally exposed by the currents and then 

subsequently reburied. 

The small section raised from the stern (XA 517) was analysed by 

Maria Pitrun, a metallurgist with considerable experience in the analysis 

of shipwreck materials (cf. MacLeod and Pitrun, 1986). As indicated, it 

comprised a double riveted butt-plate over two strakes of clincher hull 

plating with part of a frame (rib) attached. The section, through one of 

the rivets holding the butt-plate (top layer), two strakes of plating, and a 

frame (bottom layer) together, shows considerable interseam corrosion 

(Figure 95 a-b below). 

Figure 95a: A magnified (X2) photographic section of XA 517, by Maria 
Pitrun, showing a rivet passing through four layers of iron plate: 
1 top) an external butt plate 
2) & 3) two strakes of clincher style hull-plating 
4 bottom) a hull frame. 
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Figure 95b: A sketch showing the location of a similar butt-plate on an iron 
clinker-built hull. The dotted line in the diagram indicates the centre-line of a 
frame or rib beneath the strakes of plating and the butt-plate itself. By Geoff 
Kimpton. 

(Not to scale) 

In addressing the question whether corrosion, or other associated 

problems, had contributed to the sinking of the vessel Pitrun advised 

as follows 

The chemical analysis is typical of a wrought iron of 
that period... Although there are no traces of cold 
deformation in the grains, the microhardness 
measurements show major differences in their 
average values ... Examination of the section showed 
that significant corrosion had occurred in the crevice
like spaces in between the sheets .. .It is impossible to 
determine how much of the overall corrosion had 
taken place prior to the vessel's demise. However, 
given that preferential corrosion occurred along the 
lines of extensive working adjacent to areas of greater 
hardness, it is not inconsistent to blame extensive 
interseam and stress corrosion. Since the wreck site is 
subject to periodic burial and exposure from under 
two metres of sediment, the overall corrosion 
phenomenon are complicated by differential aeration 
and the presence of tons of lead ore galena (PbS) 
(Pitrun to MacLeod, pers. com., SS Xantho file, 
9/79). 
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Thus, though the extent of the corrosion can be measured at the 

Xantho, its use as a comparative tool is complicated by the periodic 

burial of the wreck and by excessive amounts of lead sulphide 

contaminant (from the lead ore PbS) the water 

sulphide levels were later found to be 11,500 times higher than that 

found upstream of the wreck (MacLeod, 1992a: 46). It is therefore 

impossible to calculate the extent to which corrosion had occurred 

before the vessel was lost. 

Despite the problems caused by the presence of lead sulphide and the 

possible refurbishment of the section of hull analysed, a beginning is 

being made on which to build a comparative study of 19th century 

metallurgy from primary sources. Some of the results are presented 

below, in Table 4. 

Table 4: Analyses of Xantho ironwork from the stem plating, a rivet, the 
forward valve chest, the starboard pump and an inspection plate on that 
pump . 

Forward Starboard 
;Elanent Stem Rivet valve pump 

Inspection Plate I 
starboard pu:np 

Plating chest 

Carbon equivalent 0.395 0.24 3.59 4.06 3.42 

C 0.165 0.030 2.65 2.95 2.42 ! 

s 0.03 0.01 · 0.13 0.06 0.07 

Mn 0.022 0.045 1.05 0.81 0.709 
i 

0.58 p 0.33 0.25 ; 1.10 0.92 

Si 0.36 0 .. 38 1. 73 2.42 2.43 

Ni 0.053 0.035 0.015 0.017 0.016 

Cu 0.022 0.048 0.045 0.011 0.013 

Cl 0 .. 02 0.02 0.0175 0.0175 ! <0.01 
i 

296 



The results show the expected difference in carbon equivalent between 

the cast irons of the pump and valve chest and the wrought irons of the 

stern section. The pump inspection plate and its parent body appear to be 

of the same casting, as expected, while the valve chest is same 

composition, giving rise to the belief that the pumps and engine were 

cast in separate workshops. 

A total of 178 artefacts (XA 43-XA 219), including the engine XA 

57, were recovered in the various excavation phases; 14 before the 

engine was raised and the remainder after it had been moved off-site. 

The assemblage was consistent with the location of the engine-room and 

accommodation spaces in the stern of the ship. These, of necessity, were 

on two levels or decks and the artefact spread reflects the contents of an 

accommodation section which has collapsed down onto an engine room 

below. The artefacts ranged from numerous concretions, glass and 

ceramic sherds, tools, oil containers, engine spares (such as a connecting 

rod, XA 139), boiler fittings, cup hooks, metal cabin fittings, fire 

bricks, door keys, a lamp glass, a box of matches, a salt cellar, brass 

taps, whalebone ( on the propeller and alongside some ..... .11. ...... ....,..., ... 

(possibly wooden cabin fittings), tree branches (possibly dunnage), 

hessian fragments ( ore sacks), a small portion of the hull and modern 

contamination. 

Small fragments of lead ore were found around the engine, indicating 

that some of the ore had been stored in the aft section of the ship. This 

would most likely have been between the boiler and the stern, in the 

accommodation spaces and on the deck above the engine. This spatial 

patterning is consistent with the evidence given at the inquiry into the 

loss of the ship. 

As indicated, the fore section of the ship was not excavated, beyond 

the test trenches dug in 1983. 
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The source of the whale-bone attached to the vessel's propeller 

appears to have been the early whaling station adjacent to the wreck, 

though the location of 'Whalebone Passage' upstream of the wreck 

(Figure 73) provides another possibility ................... ..., ... way, been 

disposed of in the sea, the bone appears to have been carried by the 

currents or swell onto the site, where it remained lodged, to become 

concreted to the wreck. The position of the bone also provides an insight 

into the periodic covering and uncovering of the wreck (Figure 91 ). 

With respect to the anodes, it was shown that, even when they were 

not working to capacity in the early stages of the experiment, the anodes 

produced a drop of 120 millivolts on the engine, causing a reduction in 

corrosion rate of approximately 90% (MacLeod, North and Beegle, 

1986:123). 

The surface pH of the stern section. to which anodes were also 

applied, had reduced after 20 months of treatment indicating a sixty-fold 

reduction in acidity (MacLeod, 1986:78; MacLeod, 1992:47). was 

later estimated that, in using the anodes, a one-hundred-fold decrease in 

corrosion rate from about 0.08 to about 0.008 

achieved (MacLeod, 1986:87). Thus the stern 1s undergoing 

conservation treatment in situ in preparation for the time when a 

decision is made to return and recover it for further conservation, study 

and eventual exhibition. MacLeod has reported in detail on this work 

and on its subsequent application to other sites where in-situ treatment 

is desirable (MacLeod, 1987: 49-56; MacLeod, 1992:45-51). 

Despite the skewing effects of periodic burying and the presence of 

excessive amounts of lead sulphide from the lead ore cargo, the decade 

of work that has been completed at the wreck of the Xantho, together 

with various underwater corrosion studies, has provided a firm basis for 

comparative studies into iron and steam shipwrecks, generally. 
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Finally, though it is often buried to the water-line, it is now known 

that the Xantho does not completely fit Riley's expected model in that 

the wreck has a dual configuration; one the effect of accretion of 

sand over the Western Australian summers, and the ~:~:~::: of 

winter scouring. This has had both a protective and disintegrating effect 

on the wreck. The moving sand has subjected the hull to strong forces, 

causing it to break at a number of points. On the other hand, the boiler, 

being in the wave-line, should have rolled out of the wreck, yet this has 

been prevented due to the much shallower and relatively steep sand-bar 

on the shore-side of the wreck. The severe current and suspended weed 

at Xantho has had a negative effect, serving to hasten the disintegration 

of the site, but not in a uniform fashion. On the other hand, both the 

current and suspended weed have had a protective effect, serving to 

make the site often undiveable, thereby reducing the extent of the 

salvage and looting that would have resulted had the wreck been more 

easily accessed by sport-divers. This is in direct comparison to the 

contemporary SS Georgette, which was lost in 1876 and lies buried to 

near its waterline in a wave zone on a gently 50 

kilometres north of Cape Leeuwin (Figure 1 ). In this instance, the boiler 

has totally disappeared due to wave action. Being easily accessible on a 

clean sand bottom, the wreck has also been subject to heavy cultural 

transformation, including the removal of both its working and spare 

propellers and the total dismantling of its engine. 

Though providing information of technological significance, nothing 

substantial was found in the excavations following the 1985 season that 

shed new light on Broadhurst and the way he operated his ship. Data 

relevant to these issues were recovered from further excavation of the 

engine and fittings in the laboratory. This is the subject of the following 

chapter. 
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CHAPTER 8: 

EXCAVATION CONTINUES IN THE LABORATORY 

( -1995) 

Introduction 

I have argued that the process of deconcreting or disassembling an 

artefact in the laboratory or field station and the entering of its internal 

spaces, for the purposes of examining its contents or structure, is no less an 

excavation than that conducted on a site (McCarthy, 1989:21-27). Clearly 

important are the surface inscriptions and markings covered by the 

concretion, clues to an object's identity, construction and, in the case of the 

Xantho, its mass-produced nature and mode of assembly. It is doubly 

important where one of the specific purposes of deconcretion is to reveal 

information about the behaviour of those who owned and operated the 

object before it acquired its covering layer. Accurate, archaeologically

based observations and recording, with hypotheses and technical questions 

in mind, are just as important in the process of deconcretion as in the 

excavation, recording and removal of the artefacts from their matrix on 

the sea-bed. 

Before Xantho, deconcretion was seen to be in the domain of the 

conservator, albeit assisted and advised by the archaeologist (Green, 1990: 

161-167; Pearson, 1987: 107-109). I have treated the deconcreting process 

and disassembly of the Xantho engine, not as an exercise in traditional 

materials conservation, but as a modern, problem-oriented archaeological 

excavation; addressing the hypothesis that Broadhurst was naive, ill

advised and eccentric. Deconcretion was to me an excavation in its own 

right, requiring the archaeologist and conservator to work side by side 

throughout the process. As a result, since work began on the Xantho 

engine, conservators, corrosion scientists, technical staff and volunteers 
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have worked successfully with me as a team as they did in the water, 

analysing and deconcreting the engine as if it were an excavation. 

The final stage of the ntho project has illustrated that with 

appropriate facilities, expertise and care a heavily concreted engine can be 

successfully recovered, dismantled and studied after being submerged for a 

century in a heavily oxygenated, salt-water environment. Techniques have 

been devised or modified in the process, giving those who follow a 

foundation on which to build. 

Graeme Henderson's statement that ' ... no further engines be raised at 

least until the Xantho engine has been successfully conserved ... ' was 

delivered in April 1985, on the eve of the removal of the Xantho engine 

from the sea-bed (1988a: 11 ). In making the comment, he correctly noted 

the experimental nature of this project. He also indirectly highlighted the 

risk involved. This is a pertinent observation, for though a conservator 

might be excused for having failed to satisfactorily treat an object due to 

its complexity or the experimental nature of the treatment strategies, the 

archaeologist who raises it bears full responsibility for the ultimate failure 

in these two instances. Currently we are in the final stages of conservation. 

It is not intended to dwell at length on technical elements of the 

conservation of the Xantho engine or its in-situ treatment; for that is the 

arena of the specialists involved ( cf. Carpenter, 1987; Carpenter, 1990; 

Garcia, in prep; MacLeod and Pitrun, 1986; MacLeod, North and Beegle, 

1986; MacLeod, 1989a; MacLeod, 1989b; MacLeod, 1990; MacLeod, 

1992b; North, 1976; North, 1982; North, 1984; North 1987; Pennec, 

1990). A brief explanatory note is required, however, in order to illustrate 

how the deconcretion and disassembly of the Xantho engine represents a 

new development in maritime archaeology. 

When iron objects are submerged they corrode at a rate dependent on a 

wide range of factors; notably water movement, biological activity, 
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temperature, dissolved oxygen, the presence of dissimilar metals and 

salinity. essence, the corrosion results in the inward diffusion of 

chloride ions through the concretion into the corroding metal and the 

outward diffusion of metal ions back out through the concretion sea. 

The treatment process is designed to speed up the diffusion of chloride ions 

from the metal into the treatment solution. The accepted methods used to 

achieve this involve the stabilisation of the iron, using a solution of alkalis 

(5% sodium sesqui-carbonate, 5% sodium carbonate or 2% sodium 

hydroxide) in water. It is a lengthy process. Where artefacts are small, 

hydrogen reduction is performed. This procedure involves the heating of 

corroded iron up to at least 400°C in a current of hydrogen gas, reducing 

the corrosion products back to iron and giving off the chlorides as 

hydrogen chloride gas. There are some dangers involved and the 

metallographic structure of the uncorroded iron can be altered at 

temperatures above 450°C. Electrolytic reduction, a process part

pioneered and refined by Neil North and his predecessor Colin Pearson, is 

performed where possible (North and MacLeod, 1987:68-98). This entails 

making the iron object a cathode within a tank of 2% sodium 

5 % sodium sesqui-carbonate. The anode is a sheet of mild steel and 

electrolysis occurs when a current is passed through to the metals. By these 

three means, salt is released from deconcreted iron. The main danger is the 

risk of losing surface detail if the current is too high (cf. Oddy, 1975:367-

370).1 

The deconcretion process not only reveals the structure for subsequent 

recording, but also allows chlorides to escape from the surface of the iron. 

As a result, the levels of chloride in solution in which a deconcreted object 

is placed will rise to a point where they match that of the chlorides in the 

1 Excessively high currents cause an evolution of gases near the surface of the metal being treated. This 
can cause considerable damage by lifting off the fragile surfaces. 

302 



deconcreted iron and at that point the diffusion of the salts across the 

surface of the iron stops. When this occurs, or when it is slowed to a 

marked extent, the tank is emptied and deconcretion work begins again. 

Following the arrival of the Xantho engine at the Conservation 

laboratory at the Western Australian Maritime Museum in late April 1985 

it was lowered into a treatment tank containing a solution of 40 kilograms 

of sodium bi-carbonate (NaHCO3) and 60 kilograms of sodium hydroxide 

(Na OH), to inhibit further corrosion. 

Figure 96: The engine before placement in the treatment tank at Fremantle. 
The flange is on the right, radius link centre and valve chest and trunks left. 
The remains of the engine bed is visible beneath. Photograph P. Baker. 

Deconcretion of the engine: stage 1, the external surfaces 

The gradual disintegration of the engine bearers on the underwater sled 

continued in the tank. This necessitated the engine being re-shored so that 

it rested on timbers. 
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In May the tank was drained and the first deconcretion session began. 

Not having been attempted on such a large and complex artefact before, 

considerable experimentation was required. 

Figure 97: The author examining the concretion on the Xantho engine. 
Photograph P. Baker. 

Firstly the obvious shapes, such as two iron-haired cylindrical boiler 

tube brushes, (XA 222 a and b), were examined and chipped free. These 

are visible in Figure 47, but required X-ray analysis to confirm their 

identification. Concreted rope, tools, lead ore, boiler sight glass fragments, 

screws and other smaller objects were also found amongst amorphous 

concretions on, and around, the engine. Copper pipes that had fallen onto 

the engine as the ship disintegrated were also chipped free. These finds and 

their locations indicated that they had collapsed onto the engine as the ship 

disintegrated. 

Brasses, copper, wrought and cast irons are typically found on marine 

engines. Wood is often found as lagging ( or insulation) around the 

cylinders. A surprise find was a engineer's foot-rest; a shaped baulk of 
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timber that was fixed onto the engine-bed and ran parallel to the 

crankshaft, though only centimetres below it (Figure 98). This prevented 

the engineer's foot from slipping as he attended to the engine. Of 

additional interest was the fact that it was located very close to the 

crankshaft and that it had to be scalloped out to avoid being in contact with 

the big-ends of the connecting-rods. Being wood, it had to be removed for 

separate treatment (XA 273). 

Figure 98: A view and close-up of the partly-deconcreted engine showing the 
wooden foot-rest and the scalloping-out to cater for its proximity to the 
crankshaft. Photograph by J. Carpenter. 
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Figure 99: Deconcretion in progress Photographs by P. Baker 

306 



Removing the numerous brass lubricators, tallow pots, tap, nuts and 

bolts screwed onto the engine presented little difficulty, as the layer of 

their threads 

were in pristine condition. These components were unscrewed same 

fashion they were fitted a century before (See Figure 100). They were then 

treated using 5% citric acid and thiourea, in the deconcretion phases, and 

then de-salinated in a solution of sodium sulphate and sodium hydroxide in 

order to remove the chlorides. After cleaning they were prepared for 

storage or exhibition (Berry, Treatment notes and conservation report; 

6/10/1993, XA 444, Butterfly Valve). 

Figure 100: A brass plug cock (XA 69), showing the excellent condition of the 
brasses on the engine. By G. Hewitt. 
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The wrought and cast iron structures, such as the cylinders, cranks, 

valve chests, pipes, main-frame, and the trunks were far more difficult to 

treat. These were covered totally a layer of concretion ranging from 

25-50 mm in thickness. Often the layer was thicker object buried 

within. The principal method used initially to remove the concretion was 

by hammering and chipping in the traditional 'percussive' mode (Pearson, 

1987:107-109; Carpenter, 1990:25). This involved the use of tools such as 

hammers, geopicks and chisels; the principle being that it is possible to 

separate the concretion and artefact at their junction by applying 

compressive or shearing forces. A trial application of what appeared to be 

more 'acceptable' techniques, such as chemicals and ultra-sound methods 

had earlier proved unsuccessful given the size of the engine and the 

thickness of the concretions. It was frustrating, backbreaking, dirty and 

difficult work. To an archaeologist, especially one not having been exposed 

to such a large concretion, the methods used were initially frightening 

though undeniably effective. 

As is the norm in excavation, progress was recorded manually, 

photographically and by video; engine parts were catalogued as were 

removed, systematic day books were kept, in addition to field and 

laboratory catalogues. As each engine component was sent for treatment it 

was labelled and tracked through the conservation process for storage or 

exhibition for eventual reassembly in years to come. 

Ninety-two kilograms of concretion were removed in the first week. 

Over the weekend the engine was kept wet with sprinklers and continually 

monitored. On the first day of the following week a total of 350 kilograms 

of concretion and corrosion products were removed, revealing the upper 

surfaces of the trunks, the pumps, the tops of the cylinders and cranks. 

After the first week of experimentation, work progressed from 9-a.m. 

to 5-p.m., averaging six operators in the tank at any one time (including 
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Ian MacLeod and myself full-time). We shared responsibility for progress 

of the deconcretion and for the safety of the artefact itself, acknowledging 

the fact that the deconcretion process was a threat its integrity. It is 

recognised that damage does occur, especially on thin projecting surfaces 

The concretion that is formed both in aerobic or anaerobic 
conditions can be exceedingly tough so that when 
conservators and archaeologists attempt to remove the 
marine growth, a significant amount of damage occurs, 
often with the loss of archaeological information (MacLeod, 
1987:49). 

A halt was called to the work at the end of this week. The engine was 

washed, the floor of the tank cleaned and all of the loose concretion 

removed to be weighed. The engine was once again returned to a bath of 

chemicals. After two weeks, 1,250 kilograms of concretion had been 

cleared from the upper surfaces of the engine (see Figure 100). The tank 

was then filled with a clean solution. 

During a week in July a further 555 kilograms of concretion was 

removed. The drop in weight by over 50% is an indication that, after the 

initial period of rapid deconcretion of large objects and 

attention was diverted to finer work. 

At the end of October 1985, the salt levels in the tank were 727 parts 

per million (ppm). The tap water originally used to make the solution had 

105 ppm salt content, indicating that a six-fold increase in salt content had 

occurred since the tank was filled after the last deconcreting session. As 

little change occurred in the salt level over the next week, the time had 

come to again drain the tank (Engine Deconcretion Book 23/5/1991: 30). 

The core deconcretion team was joined at odd times throughout the next 

ten years by visiting conservators, some on internship from a number of 

countries throughout the world. 
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Figure 101: A deconcretion team in the tank, showing the engine after its 
upper surfaces were deconcreted. From the left: Dick Garcia, (VV A Museum), 
Kolam Gaspar (Brunei), Alexandra Elliott (Canada), the author, Paul 
Mardikian (France), Ian MacLeod (VV A Museum). The wooden foot-rest was 
bolted to the bearer under MacLeod's left foot 

As the excavation progressed, it became apparent that corrosion rates 

over the engine were not uniform. In some places iron nuts and bolts had 

totally disintegrated or were present merely as hollow shells; in others they 

were intact. The fore side wrought iron radius link, for example, was 

found to be a mere hollow concretion due to its being preferentially 
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corroded by the cast iron. Its concretions were kept to be moulded as casts 

for reconstruction the future. The corresponding link on the aft side of 

the engine was in far better condition, however. wrought iron weigh 

shaft, which joined the two, was similarly badly affected and soon 

became evident that all of the wrought iron on the engine, including the 

heavy engine bearers, had suffered in a similar fashion. In the latter 

instance some parts had totally corroded away. This contrasted with the 

brass-work and copper, which as one would expect from their place in the 

electrolytic table were uniformly in good condition. For example, the 

maker's nameplate was further deconcreted and found to be in perfect 

condition (Figure 102). 

The nameplate was removed for treatment as the centrepiece of a 

proposed exhibition featuring the Xantho brasswork. The written record 

noting the maker of the engine was thus corroborated, and in part 

corrected, by the physical evidence. 1 

Figure 102: The maker's nameplate, J. PENN & SON ENGINEERS 
GREENWICH. Photograph J. Carpenter. 

The surfaces of the cast iron structures, though extensively corroded and 

graphitised, were uniformly intact, although very fragile. A series of 

numbers and letters were visible and eventually a pattern was seen to 

emerge. The majority comprised the letters 58 30 F or 58 30 on the 

1One newspaper referred to the engines as built by 'Payne, the government machinist' (Herald, 25/1/1873) 
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valve chests, the end of the trunks and the brass-work (Figure 103). They 

were eventually located on every discrete part of the engine, indicating that 

each unit carrying part number 58 30 F was to be attached to the fore 

cylinder and that those with the number 58 30 A were to be attached to the 

aft cylinder. Occasionally the numbers 1-4, and identifying or position 

fixing dots, were located. On the eccentric straps, of which there were two 

on each side of the engine, the figures FB and FT (fore bottom and fore 

top) and correspondingly AB and AT (aft bottom and aft top) appeared. 

More inscriptions were found as the 'excavation' continued. 

Figure 103: A close-up of a valve chest, showing some of the markings 
found in the deconcretion process. Photograph P. Baker 
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The markings attested to the possibility that the engine was number 

58:30 and that it was capable of being readily assembled and disassembled, 

with interchangeable parts suitably identified and marked to ensure their 

correct order and place of application. This led to the ...,...,A............. was 

the 30th engine produced by Penn and Son in 1858. As the engine is 

recorded in the Xantho register as having been built in 1861, the question 

was put whether it had been stored for the intervening three years before 

being fully assembled for its fitting into a gunboat. 

In looking for evidence as to how the engine and the Xantho were 

operated, evidence of hasty repair was sometimes found. What was 

described in the artefact book as a 'rough rubber gasket with wire' (XA 

288) was in fact a very crude attempt to stem the leakage of steam between 

the inlet valve attached to the fore valve chest and the chest itself. Other 

instances of crude repair were found, as discussed below. 

The next deconcretion session, which began in early June 1986, resulted 

in our steam engineer, Noel Miller making an amazing discovery. While 

recording an oil cup on the crankshaft he noted that it was designed to take 

lubricant on each rotation from an oil impregnated 

the crankshaft (Figure 104, below). 

suspended 

This in itself was not unusual. The surprising feature was that the cup 

was open to the starboard side of the ship. This indicated that, when 

viewed from astern (as in Figures 104 and 105 below), the crankshaft and 

hence the propeller rotated in a clockwise direction and the top of the 

propeller and crank moved from left to right, i.e. the propeller and the 

engine had a right-handed rotation (Engine Deconcretion Book, 23/5/1991: 

31). 
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Figure 104: Noel Miller recording the upper surfaces of the engine. The oil cup is 
in the foreground, right. Photograph by P. Baker. 



stark contrast, John Penn had designed all his trunk engines fitted to 

the port side of the ship (like Xantho) to rotate anti-clockwise, in order to 

counteract the force of gravity on the cylinders and to thus reduce their 

wear (Seaton, 1911 :74). A discussion of this appears Figure 105 below. 

Figure 105: An excerpt from (Sothem, 1923: 299); explaining the direction of rotation 1 

Trunk Engines . 

. ~\ trunk engine has no piston rod, but ~imply 2. co1111ccting rod 
1..:xtcnding betm:;cn the crank-pin and the pi::-l1111. The tru11k passe:-; 

--½:-7 
1--------------U . l ......, __ 

N_o. 20.-Trunk Engine and Double-Acting Air Pump. 

through both ends of the cylinder, and is bolted by a flangc to the 
piston. For a right-handcd propeller this type of engine is pl;:i.ccd_ on 
the starboard side of the engine-room, so that \,·hen ~oing ahc,«l ·the 
stress ,vill be thrown on the top side of the trunk ;u1d piston; for a 
left-handed propc1icr the engine \vould be placed on the port side to 
obtain the same result. 

The air pump shown on the sketch is of the· double-acting type, 
and has foot and head valves at either encl, and a _..;, ilid piston ; the 
cnndcnser suction is below, and the hot-\\·cll abc)\',:. \ \"hen the engi11c~ 
arc of the jm·erted type, the pump i:-; \\"<.lrkcd from the main shaft by 
an eccentric, or by a pin on the crank \\ c:b. 

The Xantho engine, therefore, appeared to be rotating in the opposite 

direction to that which its maker had designed. In order to confirm this 

observation, the photographic and video record was consulted, and it 

clearly showed that the propeller was also right-handed and rotated 

clockwise when viewed from astern (Figure 106). 

This was a most anomalous find as the direction of rotation on the 

Xantho engine served not to lift the piston up from the cylinder floor on 

1See also the excerpt from Jamieson, (1897) reproduced in Appendix 4. 
It should be noted that Figure 16 shows two other horizontal engine types with an opposite rotation. 
Neither suffers from angular thrust on the piston by virtue of the cross-head utilised, however, and as a 
result direction of rotation is not a major issue. 
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each rotation, as Penn had designed in order to reduce wear ( cf. Jamieson, 

1897: 215), but to force it downwards adding to the gravitational force and 

thus increasing engine wear markedly. This made complete engine failure 

only a matter of time, raising further questions about Broadhurst' s 

decision to purchase the Xantho. Was he aware of the problem? When had 

the propeller been fitted? Why did Xantho not carry a spare, when we 

know Georgette carried a spare propeller for use on a run far closer to 

engineering facilities. (cf. McCarthy, 1985: 22-25; McCarthy, 1986a: 54-

59, McCarthy, 1988c: 179-190). 

Figure 106: The propeller on the Xantho. When viewed from astern the upper 
blade rotates from left to right. Photograph by J. Carpenter. Note that the rudder is 
hard to starboard. 
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Very hard concretions were also encountered during this phase, 

necessitating experimentation with an air compressed needle gun, with 

little success. In late October 1986, the was again drained for another 

week of work and, in view of the hardness of the concretion, an 

chisel (A two speed Zytek model with changeable heads) and an air driven 

drill were utilised to some effect. Though the potential for damage was 

noted, these tools were considered more suitable than the percussive 

methods used earlier due to their efficiency in cramped spaces. 

In order to speed up the removal of salts from the iron, deionised water 

was used after the tank was drained. Eventually, few artefacts remained 

attached to the engine structure, leaving mainly nuts bolts and a few 

remaining oil cups and other brasswork pieces to be removed. It was slow 

work, however, and in 1986 only nine objects ranging from an iron bolt to 

rubber and wood fragments (XA 304-5) were removed compared to the 

total of 345 recovered up to that time. 

The next stage of deconcretion was conducted over a two and a half 

week period in late September to early October 1987. It involved the 

raising and re-shoring of the engine with baulks of !!:~-~'.e:::- to to 

begin underneath. Three hundred kilograms of concretions varying from 

30-50 mm thick were removed from the underside of the engine reflecting 

the fact that work was being performed in this previously inaccessible area. 

A halt was eventually called to this phase due to safety considerations. 

While this work was in progress, the recording of the upper surfaces 

continued. Deconcretion of the spare connecting rod, which was found in 

the engine room of the Xantho also began. On its surface was the legend 

SP ARE FITTED 58 30, the first indisputable proof of the existence of 

interchangeable parts. This artefact was sent to the hydrogen furnace for 

treatment and this proved so effective that it was placed on display almost 

immediately after application of a layer of microcrystalline wax. 
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was a standard procedure designed to protect conserved objects from the 

atmosphere and from the effects of handling. 

Figure 107: One end of the spare connecting rod, showing the markings, 
SPARE FITTED 58.30. The connecting rod is shown in-situ beneath the 
thrust-block and flanges in Figure 80. Photograph, J. Carpenter. 

More importantly the spare connecting rod, when combined with the 

ubiquitous markings 58:30 F and 58:30 A, indicated that the engine was 

designed to be easily assembled and that it was of a mass-produced type 

which would potentially allow the use of interchangeable parts from other 

similar engines. Broadhurst' s decision to purchase this particular ship, 
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fitted with a very simple, easily-worked engine that had easily fitted spares 

and interchangeable parts, came to assume another dimension. Was his 

decision based on logic after all? Was wrong to hypothesise he was a 

naive English Gentleman duped through his lack of business-sense? 

a smart entrepreneur planning to operate a ship in a remote part of the 

world with poor coal supplies, few engineering facilities, little water and 

little else besides, opt for a vessel that was cheap, multi-purpose and, in 

effect, an auxiliary steamer i.e. a vessel which used its engine as a 

secondary source of propulsion? Was this decision more appropriate than 

purchasing a steamship proper, with auxiliary sails, thus obviating the need 

for coal supplies and to some extent mitigating against the thermal 

inefficiencies of the engine? Would he have looked for a vessel fitted with 

compact, easily-repaired machinery? Should the engine be considered 

separate to the ship, which was a unit that Broadhurst may have been 

forced to buy because his capital was limited? Was the decision to purchase 

the Xantho a good one after all? The interpretations were conflicting, but 

new possibilities had been established. 

Attention then turned to the deconcretion openmg of pumps, 

one of which (the starboard pump) was completely dry. The two pumps 

were attached to a 'Scotch yoke' arrangement, a form of eccentric attached 

to the crankshaft causing them to be always in operation (i.e. they could 

not be disconnected). The iron that had been used to manufacture the 

pumps was analysed and the results showed that it was poorly cast, 

resulting in their being in very poor condition in comparison to the rest of 

the ironwork examined and leading to the belief that they were not part of 

the original engine (MacLeod to McCarthy, pers. com.). 

Inside each pump were two non-return 'mushroom' valves, each of 

which originally had a c. 50 mm stem (Figure 108). These were adjusted 

by a on the of ~·::.:::::~~ case. a ... A ............. ..,, ........ of instances the stems 
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had been worn flat as could be expected through their continual use (XA 

325 & 324, XA 331 & 332). poorly cast, previously unidentified spare 

(XA 50) had been located during excavation of stern of the ship, 

providing an interesting comparison. 

Figure 108: A sketch of three of the mushroom valves recovered from 
the pumps, showing the extent of wear on those in use in comparison to 
the spare on the left. By P. Correy. 
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~i€.R CD«:9-E.'i 1,996 

The dismantling of the inlet and exhaust pipes and other piping, that 

once linked the boiler to the engine and it to the pumps, also began. In the 

meantime a special purpose heavy metal frame with lifting eyes had been 

constructed on which to rest the engine and, where necessary, on which to 

raise it without further stropping. Being of solid construction, it also 

allowed work to continue under the engine. The deconcretion of the area 

inside the trunks began at this time. This involved the use of traditional 

percussive methods with the addition of air tools and masonry drills. 
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total of 547 kilograms of concretion was removed in this phase making a 

total 2469 kilograms removed up to that point. 1 

Finer deconcreting amongst interstices of engine resulted in the 

removal of a number of brass fittings. A kitchen knife (XA 366) was 

recovered from one of the concretions, again providing some insight into 

the disintegration of the accommodation spaces above the engine room and 

adding to the evidence found during on-site excavation. Work also 

continued on the removal of all of the trunk gland tightening nuts (XA 

349-362) and on the deconcretion of the inside of the trunks. 

The tank was again drained in December 1990 and in May 1991 a 

further week of extensive deconcretion was carried out. This proved most 

successful, and it included much fine work and engineering-based 

recording by Miller. 

Before he was forced to discontinue work due to ill-health, Miller noted 

that the engine was in 'mid-gear'; i.e., it was stationary and was not 

driving the propeller either forward or in reverse. A slowly sinking vessel 

can be expected to have its engines in mid-gear, in order to facilitate an 

orderly abandonment by reducing the danger from a 

and in order to bring the vessel to a halt so that lifeboats can be launched. 

Steam is still needed to drive auxiliary machinery, however. Where the 

vessel is hard aground, and cannot be got off, the engines are also expected 

to be in mid-gear for the same reason. Only where a ship is rapidly sinking 

1 There were also a number of unexpected problems. In August 1988, for example, the edges of 14 discrete 
surfaces on the engine and especially the pumps, were found to have fractured and cast iron fragments had 
fallen off between treatments. It was eventually ascertained that the exfoliation had been caused partly by 
an inability to maintain a uniform field of current throughout an angular object (without the surface 
symmetry of the iron cannons usually treated) and by the application of more current than was necessary. 
The combination of these two factors produced an evolution of hydrogen at stress sites. The evolution of 
the gas caused the fragile metal to spall off, especially at comers where it was most at risk from external 
forces. Advice was sought on the exfoliation problem from both Dr North (then in private practice) and 
M. Stephane Pennec (a conservator on internship from France) involved with the treatment of Titanic 
material. Eventually it was decided that deconcretion could continue but that the monitoring process 
should be stepped up. The phenomenon is described at some length by Pennec (1990). After the problem 
was rectified, the tank was again filled and treatment continued. 
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or where abandonment is abrupt, or panic-driven, are the engines expected 

to be found in forward or reverse gear. 

Further deconcretion work was conducted March and October 1992 

and, by the end of seven years, the engine lay almost 

deconcreted with all but the internal parts of the trunks, cylinders and 

valve chests, as clean as the day the Xantho was lost. The engine looked as 

if it could run again. In the process, 2,544 kilograms of concretions had 

been removed from its surfaces and 48 kilograms of chloride ions had 

been released from within the actual metal of the engine itself (MacLeod, 

1992:49). The visible parts were stable and looked as if all they needed was 

a coating of wax and the engine could go onto the exhibition floor (See 

Figures 104 and 106). 

On the negative side, the area inside the trunks had proved too difficult 

and work in these spaces had been halted. Due to the difficulties of dealing 

with the thin (10-25 mm thick) cast iron piping removed earlier and the 

fact that the thin cylinder and valve chest walls and cover plates apparently 

had no original metal left in them, work in the internal cavities had also 

not been envisaged. The deconcretion of spaces was 

considered possible and the use of corrosion inhibitors and internal 

coatings was planned. The excavation and analysis could only be 

considered part complete as a result and an examination of the interior and 

deconcretion of the trunks was necessary in order to complete the 

archaeological analysis of the engine. Earlier, there had been an 

unexpected effusion of gasses from a number of internal spaces when 

drainage taps and indicator cocks were removed. This indicated that the 

opened sections were dry. An endoscope was applied to these spaces 

revealing, in some instances, previously unseen areas that had not been 

flooded when the ship went down. This led to the possibility that the 

interior could be recorded using cameras mounted on endoscope. 

322 



day book of the time (Xantho Engine Deconcretion Book 23/5/1991: 71) 

reads thus 

Both the valve chests and the cylinders were examined and 
proved remarkably free of concretion with surface 
corrosion only and very sharp edges to all surfaces. This is 
a wonderful boost to us all and the light at the end of the 
tunnel now looms large:- with vapor phase inhibitors it is 
clear that the cylinders and valve chests will not become a 
source of continued corrosion in the future and we can 
concentrate instead on existing concretion in the trunks 
themselves. 

Thus it was initially decided that the interior would be examined with 

endoscopes, recorded with cameras and filled with vapour phase inhibitors, 

as would the trunk cavities. When rendered internally and externally 

stable, the engine would be coated in microcrystalline wax and placed on 

exhibition. Further recording work could be conducted in the public 

gallery itself, including the completion of the engineering drawings and the 

recording of the various oil-cups, nuts, bolts and studs and their threads. 

We were prepared to halt at this juncture, in the belief that corrosion 

inhibitors would most likely protect the internal workings and that to 

proceed further with the deconcretion could result in the destruction of the 

engme. 

The engine model 

The philosophy behind the production of working models or replicas of 

ships and boats, their construction and their use in testing alternative ideas 

has been covered at length by a number of authors (e.g. Claasen, 

1983: 189-205). 

In the Xantho case, excavation of the hull for the purposes of obtaining 

the ship's lines, even at considerable intervals, was contraindicated due to 

its fragility (Beegle, North and MacLeod, 1983); see Appendix 7. As a 

result the production of lines for the underbody of the ship and a resulting 
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hull model or replica capable of being used for tank tests and other 

experimental purposes, was not attempted. 

Once it was decided to raise the Xantho engine, the production of a 

working scale replica, based on the resulting engineering drawings, 

became desirable in order to assess specific engineering features. It was to 

be the first model of a marine steam engine recovered from the sea. 

Miller, a practising steam engineer and model maker, had spent a great 

deal of time measuring and recording each section of the engine as it 

emerged from its layer of concretion, partly with that aim in mind. He 

became gravely ill, however and the part-finished engineering drawings 

were given to a colleague, accomplished model maker C.E. (Bob) Burgess. 

After a number of years and thousands of working hours he completed 

both a wooden mock-up and a 1 :6 working scale model of the engine 

which was presented to the Museum in May 1991 (Burgess and McCarthy, 

1994). A suitable hand-over ceremony was held and in turn he was 

presented with one of two replicas of the engine name-plate, the other 

going to the HMS Warrior in England. Soon after this ceremony both 

Marjorie Darling and Noel Miller died. 

The working model (Figure 109) has enabled us to examine the engine 

over what is now an extended period of time. By reproducing each 

external part faithfully, Burgess has enabled us to understand the engine as 

a unit and to visualise how it appeared statically and in motion. Insights 

were also gained into its compact and easily accessed nature, its change 

from forward to reverse or mid-gear, how it was supported on the engine 

bed and compactly housed within the vessel. 

What Miller and Burgess could not do, however, was reproduce the 

internal workings. Up until that time our only glimpse of what was inside 

the engine was through the lens of an endoscope and that had proved 

a 
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very good condition. As Burgess assembled the model progress was 

recorded until finally it was ready to receive compressed air, an accepted 

alternative to steam in the model world. Not having dealt with a trunk 

Engine before, Burgess was not sure that the engine would work. It did, 

however, and from a technical point of view the model has been an 

undeniable success, proving to those who doubted that a tiunk engine could 

work (or that it even existed) that they were functional and even possessed 

a number of engineering advantages. 1 

Figure 109a-b: Model engineer Bob Burgess with the model in his 
workshop and in the exhibition gallery. Photographs by D. Elford 
and P. Baker. 

1 A number of steam engineers had been in contact on hearing of the project claiming that they had been 
involved in steam all their lives and that they had never heard of a tmnk engine and nor could they believe 
tliat one would work. Instances of this in c01i-espondence appear on tl1e Xantho file, Department of 
Maritime archaeology, WA Maritime Museum, 9/79. The model has proved extremely useful in 
explaining the workings of tl1e type. It is on exhibition in a working mode today. Contemporary models 
exist in the Science Museum Kensington. 
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The model demonstrated that the Xantho 's engineer was in grave danger 

of being crushed between the rotating crankshaft and the wooden rest. 

With the engine rotating in a contrary fashion to that designed by Penn and 

Son, the counter-weights and crankshaft were moving down towards 

engineer's foot-rest and not up and away from it, as planned. These 

dangers are clearly illustrated in Figure 101 above, where one of the 

deconcretion team has his left boot where the foot-rest was located before 

it was removed for conservation. A counter-weight is poised just above his 

foot, showing that there was no margin for error in the circumstances 

described above. Here was another clear example of shoddy engineering 

practice. 

Deconcretion of the engine: stage 2, the internal spaces 

Another change in direction for the Xantho project came when Richard 

(Dick) Garcia, a conservator with extensive experience in refurbishing 

munitions and armaments, vehicles and other heavy equipment provided us 

with the benefit of his extensive experience. He had found that the internal 

parts of fire-arms and munitions buried for over half a century 

of battlefields, could be freed and the corrosion products loosened using 

direct heat. He had also applied the method to small-arms, which were in 

effect composite iron and brass objects, with considerable success. Having 

successfully applied an oxy-acetylene flame to the deconcretion of a pair of 

fragile iron trypots recovered from a wooden-hulled wreck (Carpenter, 

1990: 31-34), Garcia suggested the method could be applied to the Xantho. 

In March 1992, mindful of the results with trypots, Garcia was 

authorised to conduct a test on a heavily concreted brass tap from the 

Xantho. The experiment proved successful and the method was tested on 

the area inside the trunks, where deconcretion had earlier proved 

impossible. The 'direct flame method' causes differential expansion of the 
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matrix in addition to the production of steam at the metal/concretion 

interface. This causes the concretion to break its grip and the surface of the 

metal does not suffer undue heating if the method is correctly applied. 

Figure 110: Dick Garcia us1ng the 'direct-flame' method. The long tip of the 
oxy-acetylene equipment allowed the heating of previously inaccessible areas 
inside the trunks. The photograph shows the cramped space between the 
crankshaft counterweight and the trunk aperture in front of Garcia. Traditional 
percussive deconcreting methods were rendered practically impossible in the 
circumstances. The chain above the space in question was used to prevent the 
sides of the tank bowing. 
The two pumps are shown on either side of the crankshaft on the light of the 
picture. The pump valves shown in Figure 108 were recovered from the 
chambers, which appear without their covers in this illustration. Photograph 
J. Carpenter. 
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Work proceeded successfully and a total of 7 5 kilograms of otherwise 

immoveable concretion was removed from within the confined spaces. 

Eventually I concluded that the method was superior to percussive 

methods, especially in confined spaces or where the concretion was 

difficult to remove (Engine Deconcreting Book, 3/1992: 73). 

The percussive and direct-flame techniques were then applied to a very 

fragile container that had been recovered from Xantho in 1985 and had 

been considered impossible to treat, (See Figure 82), the feed-water heater 

(which was recovered in 1988), and to the boiler valve and the pump 

(which was recovered form the port side of the stokehold in 1992). The 

percussive technique resulted in the usual surface chips, while the flame 

method showed little visible damage at all; though its long-term 

ramifications are still to be observed and much work still needs to be done 

before the method is universally accepted. 

While deconcreting the feed-water heater, a nameplate was located 

bearing the inscription 

Chaplin's Patent 
Alexr Chaplin & Co 

Cranstonhill Engine works 
Glasgow 

This information was recorded and work has begun on tracing the 

company involved and examining its patent documents. 

The boiler 'valve' (XA 339) proved to be a safety valve designed to 

release steam when the boiler pressures exceeded those considered safe for 

normal operation. Onboard ocean-going ships, where pitching and rolling 

in heavy seas is the norm, boiler safety valves are usually the spring-loaded 

type as shown in Figure 23. The spring provides a constant force in any 

plane, independent of gravity. When fitted on land-based stationary engines 

and boilers, the valves often had a counter-weight or 'dead weight' system 

where the steam had to overcome only the gravitational forces exerted by 
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weight on a valve-seat. Where more steam pressure was required more 

weights were attached and vice-versa. The dead weight safety valve 

worked well where boilers are kept in one plane e.g. on land or on rivers 

or still waters. If fitted to boilers on ocean-going steamships, the valve seat 

would be subject to varying pressures as the vessel pitched or rolled. It has 

been stated that 'this type of valve is not suitable for marine practice' 
' 

(Sothern, 1923: 960). Contrary to expectations, Xantho was fitted with a 

dead weight safety valve. Though suitable for use on rivers and sheltered 

waters, the valve was considered inappropriate for use at sea and its 

appearance on the Xantho was intially considered anomalous. 1 

Figure 111: The Xantho boiler relief valve. It is a 'dead weight' type. 
Photograph by J. Carpenter. 

1In enquiring further it was ascertained that Royal Shepherd (1853-1890) lost of the NSW coast was also fitted 
with a counterweight type (J. Riley, pers com., January, 1997). See page 69. I was also advised, after this thesis 
was submitted, that 'equal space' is given to lever and spring-operated valves in The Practical Engineer's Handbook 
(Hutton, 1890), while in A Manual of Marine Engineering (Seaton, 1904), it was stated that the lever type or dead 
weight type were no longer in use by then. (R.H. Webb, pers. com., November 1996) (RWebb56467@aol.com). 
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At this stage" it is relevant to follow on from an earlier comment about 

the categories of archaeological information that can result from an 

examination of a ship's engine. order to do so, it is reasonable to make 

analogy and point to the sort of information that would be required by any 

informed observer today in order to judge the state or 

machinery and to answer the question whether an engine was suitable for 

the purposes intended. I take this step because much of what follows 

recognises that the reader will have some experience with machinery, and 

especially with engines both new and used. 

In attempting to answer questions raised about any particular machine, 

an inquirer would turn from the records and verbal statements given by a 

former owner, to an examination of the engine itself. This would first be 

performed externally by visual observation, then with the machine 

running. (With the substitution of a working model for the original, we 

have done this in the Xantho project). An external examination and 

compilation of technical data and oral histories would be followed by an 

examination of the internal state of the engine through the use of cylinder 

pressure gauges and other sensory aids. Where vital indications are not 

positive or conclusive, an analysis of interior of engine, by the 

removal of the cylinder heads, or the covers is likely. If further 

information is required, or standards are more rigid, such as in the 

aircraft industry, then the engine could be disassembled and its parts 

subjected to minute structural analysis, maybe even by metallurgists. In 

combining all of these approaches, answers could be provided to questions 

such as, was the engine new or recently reconditioned, had it been 

modified in any way, were those modifications suitable, was it well 

maintained, how long would it last, etc. 

These interpretations, when applied to an engine recovered from a past 

context, have both technical and behavioural dimensions. Firstly a 
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statement can be made about whether the engine is of a suitable design 

or whether it was well maintained and, importantly, conclusions can be 

made about those who owned and operated it. Thus, though conservation 

of the Xantho engine was still a major aim 

archaeological considerations came to the fore. 

final stage, 

Having proved that the flame deconcretion system was effective in 

removing very hard or inaccessible concretion, Garcia was requested to 

begin work on a feasibility study by first removing one bolt on the engine. 

Heat and lubricant were applied, followed by spanners. The method proved 

successful. Garcia was then authorised to remove the bolts on the 

crankshaft. The big end nuts and assemblies (XA 387-8) were removed, 

followed by the end caps, pumps, radius links, eccentric straps (XA 396-9) 

and weigh shaft. 

The corrosion exposed under the nuts and bolts was greater than had 

been expected and it is likely that it would have eventually destroyed these 

components from the inside. Consequently Garcia continued, removing as 

many nuts and bolts as possible, exposing many previously joined surfaces. 

At the end of March 1993 the tank was again drained and work 

continued, with such success that Garcia proposed the engine be dismantled 

into its component cylinders and main frames. Again a small-scale 

feasibility study was conducted. Starting with the fore starboard side, all 

bolts holding the engine to the bed plate were carefully heated and 

removed for cataloguing and conservation. This was followed by removing 

the bolts holding the cylinders to the main-frame, the pump to its bed bolts 

and those bolts holding the cylinders together. Then the engine was 

carefully lifted using specially built hydraulic jacks. Under each of the 

three webs of the main frame were a series of rough wooden wedges and 

iron spacers used to align the engine with the crankshaft. The use of 

spacers is standard practice in engineering, but in this instance they 
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appeared particularly crude. Similar wedges were found under the 

cylinders. After being recorded and numbered in the usual fashion these 

too were removed for conservation. Each part was then separated using 

hydraulic jacks and levers and tiny rollers inserted under each 

wedges were then inserted at the breaks, pressure applied and the engine 

slowly separated into its component parts, just as John Penn had designed. 

Eventually the cylinders were split into each unit (XA 445 and 446) and 

with the main treatment tank near the end of its life (ironically due to 

corrosion), the smaller engine sections were removed from the tank and 

placed into other tanks in December 1993. Further disassembling of the 

numerous, mass-produced and interchangeable component parts then 

began. The cylinder covers were removed after hundreds of hours of work 

and the cylinders themselves were entered. Their state reflected the fact 

that one side of each cylinder was open to atmosphere via the valve chests 

and the other was steam and watertight. Sand had been deposited in the 

'open' cylinders together with corrosion products and other detritus. 

Samples were taken and sent for analysis. The 'closed' cylinders were in 

exceptional condition. The wrought iron engine bed was also ........ ..., .................................... , 

revealing that it was in a very eroded and fragile state and that it was 

barely strong enough to hold the engine. This supported North's analysis in 

1983. 

Then, using heat, lubrication and force, Garcia was able to turn the 

crank-shaft for the first time in over a century and the end caps, bearings 

and finally the crank was removed from its frames. These, in turn, were 

separated and placed in a treatment tank for further electrolysis. Then 

work started on removing the glands from the pistons. This required the 

construction of special purpose mechanical 'pullers' and miniature jacks 

which were applied, along with heat, to surfaces seized for over a century. 

After months of work, involving cleaning minute channels of concretion, 
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applying heat with tension and lubricants, success was achieved and the 

first steam glands and their packings were removed. In late June the 

cylinder head was also removed, allowing the packing glands and internal 

spaces to be recorded and analysed. The trunk, with its piston attached, was 

seized inside the piston. Garcia then set about its removal by systematically 

applying heat, lubricants, percussion and then tension in the form of a 

specially constructed 'puller'. 

Figure 112 a-c: The disassembly of the engine. Photographs by Ray Sutcliffe 

Figure 112a: The separation of the cylinders began with the insertion of a hydraulic jack. 
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Figure 112b: The fore cylinder and valve chest assembly, showing 
concretion that had earlier proved impossible to remove. 

Figure 112c: The crankshaft and web assembly. The light-coloured circles on the 
counterweights are lead, which was poured while molten into the recesses to prevent 
the bolts loosening. 
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The deconcreting of the interstices of the Xantho engine has allowed the 

engine to be examined from a technical and archaeological perspective 

down to its last nut and bolt-setting the scene for similar studies in a area 

of inquiry once considered to be impossible. 

One of the important observations that resulted from this 'excavation' 

relates to the threads found on the engine, providing an interesting link to 

Broadhurst and his family. In 1841 Sir Joseph Whitworth, Broadhurst's 

future brother-in-law, proposed a standard for the screw thread which was 

quickly adopted and now bears his name, the British Standard Whitworth 

(BSW) thread (Lee, 1900:166-170; Gilbert and Galloway, 1978: 431-5, 

637-638). His role in the development of engineering is illustrated in 

Figure 113, clearly straddling the Xantho/gunboat period. As indicated 

earlier, I would argue it is likely that Whitworth would have influenced 

Broadhurst in his decision to purchase Xantho, in that he would have been 

well aware of the pedigree of the gunboat engine type; for we now know 

that he was a part of its development. 

Figure 113: Joseph Whitworth's place in 18th and 19th century 
engineering (Gilbert, 1978: 418) 
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Every thread on the Xantho engine has been analysed and they are all 

British Standard Whitworth (BSW) threads (Garcia and McCarthy, 
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prep). contrast threads found on the new boiler and in other locations 

on the ship are not BSW, showing on the one hand that this standard was 

used by Penn in his mass production, that was not universally used in 

Britain at the time. The threads found on the pumps were also be 

Whitworth standard threads. This was a surprise, giving rise to the belief 

that they may have not have been an afterthought added in an 

unsatisfactory manner to the original engine as suggested by the 

metallurgic studies mentioned previously. 

There are many other potential studies of a technical nature to be 

conducted and most, being peripheral to Broadhurst, are outside the scope 

of this particular dissertation. Of immediate importance to maritime 

archaeology, however, is the analysis of the concretions found within the 

trunks. These were not uniform in composition, thickness or hardness, 

posing questions about their formation and the ramifications of this 

phenomenon for the materials preserved inside. This caused me to seek the 

advice of M. Paul Mardikian. Mardikian was able to make a number of 

observations, with respect to the formation of concretions in the months 

and years following the sinking of the Xantho (See Figure 11 

so, he provided a preliminary model for the formation of concretions and 

corrosion-products within interstices, like the trunks that are rapidly sealed 

(Engine Deconcreting Book, 1992:77-78). 

Though Mardikian' s reconstructions are of a preliminary nature, they 

provide a useful schematic representation assisting maritime archaeologists 

to understand concretion processes, one of the greatest post-depositional 

effects on iron and steamship wrecks. The reconstructions are also 

important in illustrating that within concretions there are regions with 

differing micro-environments. 
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Figure 114: Paul Mardikian's analysis of the growth of the concretions in the trunks. 
(Working sketches: Not to scale) 
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his stage 1, for example, the trunk, a composite metal structure with 

numerous galvanic couples, is open to the sea. In stage 2, the middle 

section of the trunk is becoming isolated due to the accumulation of 

concretion and detritus. The heavily-concreted diver's 1994 

gives some indication of the speed of this process (Figure 94). 

In this preliminary analysis, Mardikian has identified the operation of 

sulphate-reducing bacteria, oxygen and carbonate depletion in the water 

column, a reduction in pH and a subsequent increase in corrosion. In stage 

3, the engine itself is totally concreted, in part protecting, yet at the same 

time rendering the inner part of the trunk anaerobic, leaving it part-filled 

with soft, highly acidic corrosion products. Stage 4 sees the area totally 

filled, though the corrosion products are still relatively soft. 

Thus the formation of concretion has both a positive and negative post

depositional effect on iron and steamship wrecks. It is only recently that 

concretions have been shown to be more than just an impediment to 

archaeological studies, however. It· is now known that they can contain 

information of archaeological importance. For example, microscopic 

examination of concretions from Xantho has also 

approximately 16 separate bands occur in the matrix, indicating that the 

wreck seems to have been exposed and buried 16 times since 1872 

(MacLeod, North and Beegle 1986:122; MacLeod, 1992:46). The timing of 

these cycles is not known and this avenue of inquiry is, as yet in its 

infancy. Despite this, the information obtained is of importance, not just to 

conservators and site managers, but also to archaeologists in providing 

information about post-depositional effects and conditions. 

Finally in the deconcretion process, we are taken back to Broadhurst and 

the way he and his men operated the Xantho. When the aft cylinder was 

opened and dismantled, the 'little-end' crank-pin in the aft cylinder was 

found to have been exposed at each extremity, by roughly grinding down 
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the casting of the little-end itself. The exposed pin was then apparently 

heated and hammered over using extreme force at each end; like a rivet 

(See Figures 115 and 116). 

It appears that the pin had become loose during operation, causing 'slap' 

at the little-end on each stroke, vibrating the engine and causing obvious 

problems to the engineers. In order to alleviate the problem, a crude 

attempt was made to expand the pin in-situ and to take up the slack, 

thereby reducing vibration and wear. The engineers had shaved down the 

metal sleeve through which the pin was fastened to the little-end, thereby 

exposing around 1-2 centimetres of the pin at each end. The exposed pin 

was then heated until malleable and 'peened over', using heavy hammers. 

Figure 115, Sketches of the trunk assembly, showing the position of the little-end 
gudgeon pin and the three stages in the 'peening over' of the pin using hammers and 
heat. By F. Sawday and P. Correy respectively. (Not to scale) 

/ 

/ 
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The procedure was apparently unsuccessful, for in dismantling the 

piston and removing the rings, we found that one of the nuts holding a 

locking ring in place on the face of the piston had worked loose and had 

fallen into the drain plug at the bottom of the cylinder. The locking ring, 

was also in the process of working loose and, had it done so, the rings and 

piston would have separated, component parts would have been released 

into the cylinder and the engine would have eventually seized. 

Figure 116: Detail of the gudgeon pin and its smTounds. By J. Carpenter. 
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Thus the Xantho engine was apparently succumbing to the combined 

effects of high speed, high working pressures and poor maintenance. These 

were precisely the kinds of problems that caused the Admiralty to station a 

special-purpose, properly-equipped floating machinery workshop 

Crimea to service the gunboat engines. Technology essential for one 

context can easily fail in another, due to the absence of ancillary support 

facilities or to the presence of factors outside its normal operating 

parameters. Broadhurst and his crew could not have been unaware of the 

fact that their engine was in dire need of expert repair and refurbishment. 

Their problem was where and how. 

Results of the deconcretion 

The Xantho engine was mass-produced, as shown by the spare 

connecting rod bearing the legend SPARE FITTED 58:30 and the 

appearance of the numbers 58:30 F and 58:30 A on surfaces throughout. 

The only exceptions to this were four cylinder indicator-cocks. 

Indicator-cocks connect an instrument (an indicator-gauge) to the 

cylinders. The indicator-guage itself is used to assess 

an engine by measuring the pressure of steam throughout its entire cycle. 

The indicator-gauge produces the data in diagrammatic form (an indicator

diagram). The indicator-cocks recovered (XA 311-314) bear the 

inscriptions 44 3F 30 (MACK); 44 T 30; 64 3A 30 and 44 A 30. They are 

all marked with the Government-issue broad arrow, which is not found on 

any other part of the engine. They may not be part of the original machine 

and could have come supplied with the indicator-gauge itself. Engineers 

tend to keep tools of their own, especially precision instruments. 

The shared markings, including those on the indicator-cocks, and the 

various aligning dots, attest to the acknowledged fact that the engine was 

easily assembled and disassembled, and· that it was undeniably simple and 
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easy to operate. There appears to be some logic in Broadhurst purchasing a 

vessel fitted with a simple, compact, mass-produced engine, with an 

apparent abundance of spare parts. Though there was some justification for 

the employment of such an engine in a remote setting far from engineering 

facilities, there were enough flaws in the concept to cast doubt on 

Broadhurst' s powers of judgement. 

At the time of its loss, the hull of Xantho was worn out, the engine was 

falling apart and the repairs that had been performed on it were poorly 

conducted, at best. The pumps were on the verge of breakdown due to 

constant operation and the resultant wear on the mushroom valves. The 

boiler was of high enough pressure to cause heavy precipitation of its salt

water feed. The engine was running in reverse, as a result of the fitting of 

an incorrect propeller, causing both excessive wear and safety problems. 

Related to this failing, the fact that Xantho did not carry a spare propeller, 

as did Georgette its successor on this coast, is a major oversight on 

Broadhurst' s part. 
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CHAPTER 9: 

The multi-faceted nature of the Xantho study requires that it be 

concluded as it began; firstly as a traditionally-based 

descriptive/analytical maritime archaeological project designed to 

examine a relatively new class of site from a technical perspective and 

then, as an anthropologically-based study designed to examine its owner 

and operator, Charles Edward Broadhurst. 

Description and analysis 

It has been argued that the Xantho was a vessel of regional social, 

historical and economic significance. It is also of technological and 

general maritime interest as an example of re-cycling and abandonment 

in the latter half of the nineteenth century. The description and analysis 

of its remarkable engine provides clear material evidence of the 

introduction of standardisation, mass-production, the use of high pressure 

steam and high-revolution engines in the Royal Navy as a result of the 

pressures of war. The re-use, modification and abandonment of the 

engine after the conflict is also of interest in that it parallels many past 

and modern processes. 

Contrary to opinions expressed by Keith Muckelroy and David Lyon, 

to name but two influential authors, it is clear that the iron and steamship 

wreck is capable of adding to the body of technical and historical 

knowledge in archives and museums. The Xantho project has 

unequivocally shown that, in using the material evidence as a primary 

source, the study of iron and steamship wrecks can add to both the body 

of know ledge about the owning and operation of iron steamships and 

about marine engineering generally. 

343 



The relevance of iron and steel wreck research has been firmly 

established at the wrecks of the USS Monitor, SS Xantho and the USS 

Arizona, providing useful comparative studies for the future. 

Beyond this, the Xantho project has also broken new ground 

technical level. An experimental steam engine, the product of a strategic 

need on the part of the warring British Government, became redundant 

and was unsuccessfully re-used in a remote colonial context. Lost in 

warm, highly-oxygenated waters off Western Australia, the heavily

concreted engine was recovered from a saline environment after a 

century on the sea-bed. It has since been successfully deconcreted, 

disassembled and is in the final stages of electrolysis in preparation for 

reassembly and exhibition. The engine has been examined (both internally 

and externally) and has provided information of technical, historical and 

archaeological importance. This is a unique development in modern 

maritime archaeology; one which could be repeated elsewhere if there 

were sufficient justification. I 

The SS Xantho, USS Monitor and the USS Arizona excavations show 

beyond doubt that iron and steamship wrecks are a 

archaeological resource and that where time and funds can be made 

available, their recording and in some cases their protection, should be a 

high priority. The following comment reveals that others are now 

beginning to realise that fact 

The discovery of the Titanic, an iron wreck, is given 
greater significance when one realizes that the iron 
will not last forever, and that the vast hull will 
probably crumble within a further 7 5-100 years 
(Flemming, 1988: 198-200). 

1 Apart from the SS Indiana machinery, there are two other engines which could conceivably be 
disassembled in order to extract archaeological (as opposed to purely technical) information about the 
manner in which they were operated and maintained. These are the machinery from the steamer Arabic 
(1853-1856), which was salvaged in 1988 and is now on exhibit in Kansas City (Hawley, 1989) and the 
crosshead engine of the Steamboat (PS) Columbus (1828-1850 recovered from the waters of Chesapeake 
Bay in May 1993 (Holly, 1996). (Johnston pers. com.). 
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In noting that ' .. .iron will not last forever ... ', Flemming echoes one of 

the major reasons why the study of iron wrecks, even modern steel ones, 

is presently warranted. 

Though far more manageable as a cultural resource than ..., ...... , .... ..., ... Monitor 

and Arizona, the Xantho has provided a number of scientifically-based 

working models for those interested in the problem of assessment and 

future management of degrading iron or steel shipwrecks. This is partly 

because the Xantho study has been acknowledged by conservators and 

corrosion scientists (in Australia at least) as the first iron steamship to be 

systematically examined by diving corrosion specialists (MacLeod, 

1986:71). 

It was argued over a decade ago that a wreck inspection assessment 

strategy must include a pre-disturbance recording of biological, physical 

and chemical parameters by appropriate specialists to enable an informed 

opinion to be made about the state of the wreck and to better facilitate the 

management of both it and the artefacts from it (McCarthy, 1982). The 

procedure did not become standard practice, however, even where 

facilities, funding and infrastructure existed. As a some projects 

have suffered from a lack of attention to this need. The following was 

noted of the Monitor, for example. 

In comparing data from archaeological expeditions in 
1979, 1983, 1987 and 1990, it is apparent that the rate 
of deterioration of the wreck of the Monitor is 
increasing ... The management philosophy of a "hands 
off' policy (the best preservation being no destruction) 
used until recently is now seen to be misguided. This 
philosophy has been rendered outdated by the rapid 
progression of deterioration (Arnold, Fleshman, 
Peterson, Stewart, Watts and Weldon, 1992: 47-56). 

The process of routine pre-disturbance analysis by corrosion 

specialists was begun at Xantho in 1983 at the archaeologist's request 
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(MacLeod, 1987 :50). The following statement, attesting to the value of 

the strategy, was made by the conservators after that survey was complete 

By having the opportunity to carry out this work before 
the shipwreck was disturbed we were not only able to 
provide information on the condition of artefacts before 
they are excavated but we will also be able to document 
exactly the effects of partial cleaning of marine growth 
and cathodic protection on an iron shipwreck. Neither of 
these has been previously studied and indeed, cathodic 
protection has never previously been applied to an 
historic shipwreck. In scientific terms the data obtained 
to date are highly significant (Beagle, MacLeod and 
North, 1983:11). 

The Xantho study has shown that the presence of corrosion specialists, 

biologists and conservators on an underwater site, ab initio and 

throughout a particular project, is fundamental if an informed opinion on 

the state of a site is required. It was said of Xantho, for example, that 

The Xantho project has lead to a new understanding of 
the interaction of iron shipwrecks with their micro
environment...(MacLeod, 1992 :49). 

While the use of on-site conservators 

new, 1 the involvement of conservation specialists in ab initio underwater 

analyses is a progression from these earlier developments. The practice 

has become more prevalent in recent years on iron and steamship wrecks, 

at wooden-hulled sites and lately at port-related structures such as jetties 

(e.g. Carpenter and Richards, 1994; Garratt, McCarthy, Richards and 

Wolfe, 1995; Gould, 1991; Guthrie, et. al., 1994; Kenderdine and 

Jeffery, 1992; Lenihan et. al., 1989; MacLeod, 1992; McCarthy, 1993; 

and Murphy, 1987). 

1 Archaeologists such as Bass, Hamilton, Piercy, the Smithsonian, Rule, Green, Henderson et. al. have 
all used on-site conservators in varying degrees for decades. 
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utilising the services of these specialists, the Xantho project has 

demonstrated that predictions about the corrosion rates on shipwrecks are 

an unreliable management tool. On other hand, the principle of 

applying anodic protection devices, or impressed current, has been 

to have considerable merit. First applied to the Xantho engine in 1983 

and initially a failure due to burial in sediments, the anodes were re

applied to the engine in 1984 and to the stern in 1985. They have been 

continually monitored over the ensuing decade, proving a success in 

slowing corrosion rates and in beginning the in-situ conservation of the 

stern, should it be raised in the future. The process has since been 

repeated elsewhere on anchors and cannon and lately at the hulk of the 

iron barque Santiago (Kentish, 1995). Most recently, a dive charter 

operator and member of the MAAC applied anodes to the deliberately

scuttled wreck of the barge WH Gemini, in order to prolong its life on 

the sea-bed and thereby increase revenue from dive tourism (J. Clarke, 

pers. com.). 

By involving metallurgist Maria Pitrun in the analysis of the material 

raised from the Xantho wreck, archaeologists have begun to .................... ...,,:,._., 

question first posed by Murphy (1983:75) whether it is possible to show 

that pre-depositional corrosion or stress had led to the loss of a particular 

ship. Other studies, specifically on the metallurgy of the Xantho engine, 

have also been published (e.g. MacLeod and Pitrun, 1986; MacLeod, 

1992: 48-49). 

On these bases, it been argued that, from a purely archaeological 

perspective alone, the traditionally-accepted dichotomy between maritime 

archaeology and conservation is an out-moded position. Formal research 

links between the two must be increasingly facilitated so that iron and 

steamship wrecks (and wrecks generally) will come to be properly 

understood better managed. This is even more important as we have 

347 



come to appreciate the vast amounts of archaeologically-relevant 

information that even rust stains contain. Indeed, as Turgoose notes with 

respect to corrosion products and the information 

formation processes 

contain about site 

[With respect to] ... the types of evidence that may be 
preserved in corrosion products ... it could be said 
that removal of corrosion products, when necessary, 
should be carried out with an awareness that potential 
information about the artifact and its burial 
environment are being lost (1989:30-31). 

Archaeologists must now involve specialists directly in underwater 

work, in order to properly understand one of the major natural 

transformation processes that occurs on all metal wrecks, the corrosion 

of iron. In following this theme through, there is a reciprocal need for 

these specialists to be aware of the history of technological evolution, or 

at least to avail themselves of specialists who do. Considerable 

importance, for example, needs to be attached to the methods by which 

metals were forged, welded and otherwise produced. Thus, a conservator 

or corrosion specialist dealing with archaeological material must be 

exposed to some materials history as well as material cultural science. 

Tylecote' s 'Metallurgy in Archaeology' (1962) and 'A History of 

Metallurgy' (1977: 269-287), provide invaluable data with which 

corrosion scientists of today can develop an understanding of ancient 

metalworking practices fundamental to the conservation of archaeological 

materials. 

In summary, by combining archaeologists and conservators on the sea

bed from its beginnings in 1983 and by treating the two as a single team 

for archaeological (as well as conservation) purposes in all subsequent 

stages, the Xantho project has provided a new direction in the study of 

iron wrecks. It has been claimed that 
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The wreck site of the iron steam-ship Xantho has 
provided a model for how an underwater 
archaeological site can be managed. Pre-disturbance 
surveys of the marine biology and electrochemical 
and physical environment of the site established 
reference criteria for monitoring changes in the site 
conditions (MacLeod, North and Beegle, 1986: 113). 

Not only must conservators become part of the underwater 

archaeological process, but the Xantho deconcreting program has shown 

that the archaeologist must also be prepared to become a part of the in

laboratory conservation process. This is especially true where shipwreck 

concretions are of considerable size and contain a wide variety of 

artefacts. The deconcretion of the Xantho engine has shown clearly that 

the 'excavation continues in the laboratory' and that to perceive maritime 

archaeology and conservation science as completely dichotomous is an 

outmoded position (cf. McCarthy, 1986a:21-25; McCarthy 1989a: 21-29; 

McCarthy, 1989b: 9-13). 

Finally, with respect to description and analysis, the Xantho wreck has 

allowed us to focus on the development of general models for iron and 

steam shipwreck disintegration in the wake of Muckelroy and Riley and 

to examine these against the case of the Xantho. In establishing these 

commonalities in iron ship disintegration, we have been able to identify 

anomalous features such as the configuration of the boiler and the 

presence of paddle-sponson bearers on a screw steamer. Evidence of 

important post-depositional effects, such as the periodic covering and 

uncovering of the site, were also found at Xantho. This had ramifications 

for the survival of the engine and its fittings, for the retention of the 

boiler in situ and appears to have led, at least in part, to the breaking of 

the wreck into four parts on a mobile bed of sand. 

By controlling for such post-depositional effects, we are able to 

comment in a more informed manner on both the abandonment processes 
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and such fundamental questions as whether the loss of the vessel was 

deliberate or accidental. Eventually we may also be able to make 

comment on the effect of corrosion in that process. 

Analysis and explanation 

I now wish to proceed beyond the descriptive mode of empirical 

generalisation and address some of the anthropological issues raised by 

this thesis. The complementary nature of particularist and generalist 

examinations are well described by Lenihan (1983:43), who notes 

The questions the marine historians and marine 
architects ask of shipwrecks are different from, but 
every bit as valid as, those an anthropologist would 
ask. 

Though acknowledging the importance of both approaches, Patty Jo 

Watson summarised the underlying tension between historical 

particularism and anthropologically-based approaches to maritime 

archaeology when she noted that 

... the logical response to the debate between 
generalists and particularists is always the same : both 
are essential and both are present in everyone's work, 
although individual scholars usually stress one more 
heavily than the other ( 1983 :310). 

In answer to the question of whether an iron or steamship wreck is 

capable of providing an understanding of the social context and behaviour 

of its owners and operators, it is now also clear that the answer can be in 

the affirmative. The potential relevance of iron and steamship studies to 

anthropology has, I believe, been established in the Xantho project, where 

I have attempted to define physical parameters before analysing the 

behaviour of Broadhurst. 
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The anomalous material remains found at the wreck and in the 

deconcretion laboratory can be seen to be the product of the activities of 

a 'frontier gentleman' accustomed to privilege and command; someone 

with access to finance, with ideas on which to build, 

necessary experience to succeed. The ideational gulf between Broadhurst 

and his contemporaries, such as the very successful colonial 

entrepreneurs Walter Padbury, an orphan child (Nairn, 1984) and 

Charles Harper (Mercer, 1958), a local boy who grew up with 

Aborigines, is stark. Broadhurst was markedly different in both his 

approach and methods. 

From a processual perspective, the Xantho can be seen as a component 

of entrepreneurial expansion on a major frontier underwritten, though 

sometimes impeded, by bureaucracy and the legislature. The vessel 

spearheaded an ambitiously broad range of economic enterprises, 

including pearling, whaling, fishing and the carriage of passengers and 

general cargo, over a vast geographical area ranging from Fremantle on 

the south-western Australian coast to Batavia (Jakarta) in Indonesia. Such 

diverse endeavours required a non-specialised craft capable 

returns on any potential commodity. Given the frontier setting, the craft 

would have had to be simple, robust, of low maintenance with available 

spare parts and be capable of operation, repair and refit with a paucity of 

resources. That is, its use-life might potentially be long and it would need 

a minimum of infrastructure. One hypothesis, then, could be that such 

optimising strategies are a feature of entrepreneurial, maritime groups in 

the initial colonisation of coastal frontiers. 

In failing to realise the temporal limitations of the ageing hull and the 

already 10-year-old experimental engine, Broadhurst may have been 

illustrating the commonly-acknowledged failings of those born into 

'landed' privilege and power; with a surfeit of ideas, but without 
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practical skills required to bring them to fruition. Further, his training 

was in the pastoral and farming industries, a background that would 

hardly lent itself to success in pearling steamship operation. 

A cognitive processual critique might view the numerous ............ ,., ......... ,'""' ... JL'..,IJ 

identified at the wreck of the Xantho as symbolic of, or representing, the 

unconventional and idiosyncratic approach of Charles Broadhurst, the 

unpredictable individual. A post-processualist might seize upon 

Broadhurst' s curious behaviour with the Xantho as a real example, 

supported by the historical record, of the impossibility of applying or 

trying to apply general rules or semi-quantitative analyses to the human 

situation, especially where enough funds exist to fuel capricious whims. 

Despite this, Broadhurst' s behaviour may be seen as consistent with 

philosophies about the place of the Victorian-era individual within the 

'landed' class and within mercantile capitalism, generally. Broadhurst was 

singularly obsessed by a search for wealth, security and position, and was 

especially so after his failure with the Denison Plains Pastoral Company. 

To illustrate this point we may look at the technology found at the 

Xantho. There, a curious marriage was found of a 

inland waters with a mass-produced, non-condensing, sea-water fed, high 

compression, high revolution, energy-expensive, steam engine running in 

reverse (due to an incorrect propeller). The engine was showing evidence 

of very shoddy maintenance in the form of the pump valves and the little

end gudgeon. This makes sense if we see the purchase of the vessel as the 

product of poor advice and possibly Broadhurst' s own naivete and 

eccentricity. As the archival sources show, when he had good advice and 

good managers, he succeeded; when he did not he failed (McCarthy, 

1990). 

He also attempted to apply otherwise useful technology out of its 

context. Though his brother-in-law, the noted engineer, Joseph 
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Whitworth may have advised that the gunboat engine was an excellent one 

and that could provide a useful source of auxiliary steam, he could not 

have envisaged that Broadhurst or his engineer would operate it in 

reverse, or maintain it as badly as they did. 

On the other hand, Broadhurst was an undoubted visionary, 

continuously attempting to apply new ideas and technology in frontier 

environments, with an undeniable capacity to interest others and to raise 

some of the funds necessary to pursue his dreams. With the Xantho his 

object in acquiring a multi-purpose carrier capable of operating in the 

face of all kinds of material shortages, with a very simple engine, having 

interchangeable parts, capable of operating without fresh-water and away 

from engineering facilities, can be seen as a result of an identifiable 

process. The idea of using a steamer in the north-west is traceable to his 

earlier involvement in the Camden Harbour Pastoral Association and the 

Denison Plains Pastoral Company. Both of these endeavours flagged the 

benefits of an independently-operated small steamer that would link the 

far north-west coast of Australia with the outside world and thereby 

provide a new gateway to this continent. 

Broadhurst' s role as an innovator may be examined at this point. For 

example, anthropologist Daniel Lenihan, proposed that 

The phenomenon of inventions having to "wait their 
time" is another aspect of technological innovation 
which might be the subject of an interesting study by 
anthropologists. Certainly shipwrecks over time offer · 
an excellent data base for getting at this question 
(Lenihan, 1983: 56). 

This concept is relevant both to an examination of Charles 

Broadhurst' s personal propensity for innovative methods and new ideas 

and to the technology evident at the wreck of the Xantho. Broadhurst 
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consistently applied technology well ahead of its time (e.g. the application 

of diving apparatus and the use of steam power in the pearling industry). 

Broadhurst, the Victorian-era gentleman born into wealth and 

command, had vision but clearly lacked the practical focus and common

sense necessary to translate ideas into a viable enterprise. clearly 

exhibited the same 'misplaced confidence in engineering' discussed by 

Gould as common amongst men of the 'Victorian-era' (Gould, 1990: 55). 

One major failing, in the context of his visionary zeal, can be 

attributed to his failure to pay attention to the minutiae required for 

successful steamship operation in such a remote setting. These details 

might include the inappropriateness of the scantlings and operating 

parameters of the vessel, the availability of repair facilities and coal 

supplies and, ironically; the maintenance of his insurance cover. 

Larry Murphy's 'one-more-voyage' hypothesis is also of relevance in 

this instance (Murphy, 1983:75). Broadhurst could not have been 

unaware that his ship was ailing. The engine would have been vibrating 

badly, the hull was disintegrating before his eyes; yet he carried on, even 

to the point of knowingly overloading the on voyage. 

either saw that its loss was inevitable, and was going to squeeze out the 

last ounce of use from it before it sank (risking crew, cargo and himself), 

or he had a misplaced confidence in engineering in abundance. What 

clouds Murphy's analysis of shipowner behaviour in this instance is, not 

the loss of the ship and its cargo, but the failure to re-insure it, as he had 

intended. Arguably one basis for the 'one-more-voyage' syndrome is the 

availability of insurance, in that the taking of risk can be directly related 

to access to insurance in its various forms. 1 

1 In contrast, Gould indicates that this phenomenon is also one of the manifestations of the Murphy's 
'one more voyage' syndrome and that '[o]perating uninsured vessels was just another form of high-risk 
behavior' on the part of unscrupulous shipowners. Research currently being conducted at Fort Jefferson in 
the Dry Tortugas (Gould, 1995) indicates that shipowners generally operated vessels to that port even 
after they had been condemned and the insurance cover withdrawn (Gould, pers. com.). 
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Broadhurst also exhibited what Gould (1990:54) has identified in 

other circumstances, as 'social and cultural factors' which help account 

for particular 'high risk behaviour'. a result of his personality and 

background and his fall from grace and social position, 

dramatic failure of his foray into the Denison Plains Pastoral Company, 

Broadhurst' s personal failings were dramatically bared. As a result, they 

did not remain cloaked in a veneer of Victorian respectability. His 

precipitate and well-publicised social demise may be seen as the major 

driving force behind his subsequent high risk behaviour. This manifested 

itself in his acknowledged propensity to 'go out of the ordinary grooves 

in search of wealth' (Kimberly, 1897: 97), to travel vast distances, to risk 

himself and his family, and most pertinently, to experiment with untried 

technology and ideas in a frontier environment. One could also argue that 

this represents a pattern where a wealthy and socially well-placed 

individual is driven to perform extraordinary feats in order to resurrect 

a destroyed career or social position. Broadhurst performed phoenix-like 

resurrections too often for them to be a coincidence. The only alternative 

for him was an unaccustomed and much despised mediocrity, 

in the government position sought when at his lowest ebb. 

In searching for behavioural generalisations from a broad-based study 

of iron and steamship wrecks, as generated by the SS Xantho, I make the 

following propositions which could be tested through further analyses 

using a broader sample (cf. McCarthy and Veth, in prep.). 

1. Vessels used by individual entrepreneurs in frontier contexts were non-specialised, 

simple and robust. I 

2. In frontier settings engines and general mechanical fittings were selected for low 

maintenance and ease of interchangeability of parts, rather than for efficiency. 

1 In this instance Xantlw was not robust, partly due to the effects of corrosion and an unsuitable design. 
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3. The 'robustness' of such vessels is a reflection of deliberate redundancy, in that 

numerous aspects of the Xantho 's engine (as one example) were aimed towards 

replication and interchangeability. The vessel (and therefore the system) is less likely 

to fail should a single component fail. 

4. Craft owned by individual entrepreneurs, as opposed to corporations, had higher 

rates of failure. 

5. Frontier craft were designed in such a way that they could be used for a wide 

range of carrying functions and specifically for a variety of functions that might not 

be envisaged at the time of initial use of the craft. For example the layout of the 

interior of the hull Xantho allowed for radical re-design of the internal configuration 

of cargo space. As has been noted, the location of the compact, high-pressure engine 

on the Xantho allowed for maximum use of cargo space. 

6 When vessels are owned by individual entrepreneurs there may be a greater 

potential for innovation and, therefore, discard of inefficient features following 

failure. The opposite case would be the continuing presence of obsolete features such 

as ramming devices on ironclads well after they were demonstrated to be ineffectual, 

because corporate groups (such as the Admiralty) were locked into what has been 

described elsewhere as 'trend innovation' (cf. Gould, 1990: 170 et seq.). 

As an example, we can examine similarities to the Xantho instance in 

the wreck of the iron-hulled SS Sunbeam (1861-1892), illustrated in 

Figure 59. The wreck lies in shallow, protected waters off the Osborne 

Islands in the Admiralty Gulf on the north Kimberley coast of Western 

Australia. 

Sunbeam was built of iron in 1861 on the Thames and was a 92.1-foot 

long (28m), 72-ton, clincher-built, one-deck, three-masted schooner. Its 

engine was originally a vertical single-cylinder annular engine built by 

John Penn's chief competitor, Maudslay, Son and Field (Register, 

34/1878). After twenty-five years on the coast of Britain under numerous 

owners, the vessel was re-engined with a two-cylinder 18 HP compound 

engine and the ship was placed on the market. The newly-refitted 
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Sunbeam was purchased by the well-known pearler and entrepreneur 

Edwin Streeter for use in the Australian pearling industry (Streeter, 

1886; Stanbury, 1995). 

Like Xantho it had only one successful season, case 1891. 

lost in March 1892, it was operating with a crew of four Europeans and 

35 'Asiatics' (as they were called), utilising four boats with diving 

apparatus. While at anchor near Osborne Islands a leak was discovered 

and the vessel was run ashore to be patched up. It was refloated after the 

repairs were effected, but twelve hours later the first mate reported that 

it was again making water. The master, on going down into the engine 

room, found a 14 centimetre gash in the hull caused by corrosion. The 

torrent was quickly plugged and they tried to run the vessel back ashore, 

but they struck a sand-bank en-route and the ship became firmly 

embedded in it. The Sunbeam slowly settled down to the sea-bed, coming 

to rest in the sediments at or around its water-line (Sledge, 1976). There 

it remains today, looking (but not necessarily being) completely intact. 1 

Being in such a remote frontier situation the crew were forced to 

make the journey to Broome in a small boat. 

In 1984 the following was noted of Sunbeam 

The Sunbeam added an important element to the 
[pearling] industry-steam power ... If the Sunbeam had 
not been wrecked, it might well have set the pace and 
led to earlier mechanisation of the industry-at least for 
the mother-ships operating in the most remote high tide 
areas (Henderson and Sledge, 1984: 28-32). 

We now know that these words actually apply to startlingly similar 

events which took place two decades earlier centring on Xantho and 

Broadhurst. They also indirectly illustrate a commonality of behaviour 

1Corrosion potential measurements have yet to be taken. 
It is interesting to note that the wreck has also become part of Aboriginal legend, in that the local people 
believe that the wreck was sunk by a Spirit in retribution for the sailors keeping Aboriginal women on
board for longer than the agreed period (Crawford, pers. com.). 
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on the part of two wealthy frontier steamship owners and two 

acknowledged pioneers in the pearling industry. 

What is interesting in these remarkably similar events is that both men 

were noted entrepreneurs and that both had training 

elsewhere; Streeter as a jeweller, Broadhurst as a pastoralist. Both were 

'Victorian-era' gentlemen, with access to finance, and both had some 

prior involvement in the pearling industry. 

Finally, with reference to attempts to identify trends on a regional 

level, it should be noted that what is found at sea, must eventually be 

linked to what is found on land. Towards that end, I facilitated the 

beginnings of a survey of Broadhurst' s Abrolhos Islands guano sites 

(Stanbury, 1993 ). I am also assisting in the historical archaeological study 

of pearling bases at Shark Bay with emphasis on Wilyah Miah, the place 

Broadhurst was once based, (McGann, in prep). A preliminary 

examination of Miaree Pool, where Charles and Eliza Broadhurst were 

once based during their pastoral phase, has been made (McCarthy, 1990: 

99-1 I 8; and in prep). Broadhurst' s pearling base at Banningarra, east of 

Nickol Bay, was recently examined as part of a study 

structures in Western Australia (Cumming, Garratt, McCarthy and 

Wolfe, 1995). The study of Broadhurst' s fish canning industry at 

Mandurah is also mooted here (McCarthy, 1990:295-7). By these means 

the physical remains of one person's entrepreneurial endeavour can be 

examined in order to conduct a pattern recognition study. The evidence 

from remains, both on land and at sea, can be combined to cover a 

considerable period of time and to reflect different circumstances, so that 

valid generalisations can be made. 

Finally, in treating the iron-hulled steamship wreck as a new element 

in maritime archaeology, I join conservators, corrosion scientists and 

biologists as one archaeological team. deconcretion of 
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materials raised from the excavation, especially the engine, I maintain 

this unity of purpose and new light has been cast on Xantho and its 

owner, Charles Edward Broadhurst. Modern maritime archaeology must 

acknowledge the complexity of both the materials on 

the behaviour of those who owned and operated them. It must provide 

for, and facilitate, the involvement of specialists throughout all phases 

from inspection and evaluation, through to excavation, analysis and 

finally explanation. It is clear that a maximisation strategy is essential and 

that the active endorsement of the anthropological approach is one part of 

that strategy. 
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Appendix 2. 
Horse-power and tonnage defined (from Rivett, nd: 52-55) 

HORSE-POWER 

Early steam engines were often employed on various haulage tasks previously performed by horses. It 
was therefore natural that comparison should be made between their relative power, and to express the 
power of a steam engine in terms of equivalent horses. The unit of work had long been the foot-pound, 
that is, a force of one pound moved through a distance of one foot. A very small unit for practical 
purposes. As power is the 'rate' of performing work, the power of a steam engine, like that of a horse 
could be measured in foot pounds of work performed in one minute. Although this was the scientific 
way to describe the power of an engine, the resulting value was usually a large meaningless figure. 
More importantly the power of an engine expressed in foot pounds per minute failed to provide a 
means of comparison with the power of a horse, which was an unknown quantity. Watt established the 
unit of horse-power by a series of experiments conducted at the London brewery of Barclay and 
Perkins. A heavy dray horse pulling on a rope passed over a pulley suspended above a deep well, was 
found to be capable of lifting a load of 100 lbs at a rate of 2.5 miles per hour. This is the equivalent of 
22000 foot pounds per minute. As horses vary considerably in strength, Watt added 50 per cent to the 
determined value in order to give his customers good measure, and as a concession to sceptics. 
Thereafter he rated his engines on the basis of a HORSE-POWER (HP) of 33000 foot pounds per 
minute. 
HP remained the legal Imperial unit of mechanical power until the introduction of the 'SYSTEME 
INTERNATIONAL' (SI) metric units. 

Appropriately, the universal unit of power then adopted was the Watt' (W). 

NOMINAL HORSE-POWER 

Watt found that the mean effective pressure usually obtained in the cylinders of his atmospheric 
engines throughout the working stroke, was 7 lbs per square inch absolute. 
He also held firm opinions regarding the optimum piston speed for his steam engines, and set the 

value at 128X ✓3 stroke feet per minute. 
Watt thereafter determined the power of his engines from the formula:-

NHP=AREA OF PISTON (sq.ins) x EFFECTIVE PRESSURE (lbs.sq.ins) x SPEED OF PISTON 
(FT.MIN.)+ 33000 FT.LBS.MIN. 

NHP=AREA OF PISTON X 7 X 128✓3 stroke+ 33000 

Power so calculated was designated 'nominal' horse-power, because the engine was denominated as 
being of that power, and in practice was the power actually obtained from a Watt atmosphere engine. 
This simple rating system was short lived as a means of conveying the true power of a steam engine. 
Some manufacturers considered Watt's rating to be too conservative, and assumed an effective pressure 
of 7 l/ 2 lbs. per sq.in., and adopted higher piston speeds, thereby gaining a commercial advantage. 
When improved boiler manufacturing techniques permitted the use of steam in excess of atmospheric 
pressure, the concept of 'nominal' horse-power became meaningless and should logically have been 
abandoned. 
Unfortunately the term continued to be used for commercial convenience, as it defined with tolerable 
accuracy the physical size of an engine and its commercial value in so far as these were dependent upon 
cylinder dimensions. 
In an attempt to make provision for the increasing number of variables introduced in the course of 
steam engine development, various authorities made numerous amendments to the original formula for 
nominal horse-power. 
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The Admiralty initially adopted an arbitrary rule for the speed of the piston, which was presumed to 
vary with the length of stroke as shown in the following table:-

Stroke Speed of Piston Stroke Speed of Piston 

Ft. In. Ft per min Ft. In. ft per min 

3 0 180 6 0 221 

3 6 188 k5 6 226 

4 0 196 r, 0 231 

4 6 204 7 6 236 

5 0 210 8 0 240 

5 6 l216 9 0 l248 

Events quickly rendered these values obsolescent, and it became the normal practice for purchasers of 
steam engines to insert a clause in the contract binding the manufacturers to specify the 'indicated' 
horse-power. (HP) 
Eventually the Admiralty came to regard the value of the nominal horse-power as being in the order of 
one sixth of the indicated horse-power, before finally abandoning the use of the term in 1871. 
The British Board of Trade and its successor The Ministry of Transport, Lloyds Register and engine 
manufacturers, each continued to use their own formulae for nominal horse-power, covering a wide 
range of engine variants, until the end of the steam reciprocating era. 

REGISTERED HORSE-POWER 

In Lloyds Register the nominal horse-power calculated from Lloyds formula was recorded in the official 
register of a merchant vessel as Registered Horse-Power. (RHP) 

INDICATED HORSE-POWER 

The indicated horse-power (IHP) of an engine is determined with the aid of a small instrument called an 
indicator, the original of which was invented circa 1780 by James Watt, who was appropriately a 
scientific instrument maker by profession. 
The indicator produces a diagram, the vertical ordinates of which represent to scale the pressure in the 
engine cylinder at all positions of the piston during a cycle, or engine revolution. 
The mean height of the diagram therefore indicates the average, or 'mean effective pressure' (m.e.p.) in 
the engine cylinder throughout the stroke. 
IHP is determined by substituting the m.e.p. derived from the indicator diagram, and other relevant 
engine data in the formula, 

PLAN 
IHP= 33000 

where:- P. = mean effective pressure in lbs. per sq.inch. 
L. = length of piston stroke in feet 
A. = area of cylinder in sq. inches. 
N. = of working strokes per minute. 

33,000 = one horse-power in foot lbs. 

This is virtually the same formula as that originally used to determine nominal horse-power (NHP), 
but uses different expressions and actual values for piston speed and effective pressure. 
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IHP represents the power developed internally by an engine, and includes the power expended in 
overcoming internal frictional resistance, generally referred to as frictional horse-power. 
All the power indicated is therefore not available for performing useful work, but because IHP is 
relatively easy to determine it is the most practical means available for monitoring performance and 
comparing engines. 
Occasionally in engine design work, or for purposes of comparison, use is made of calculated, or 
approximated IHP. 
This is determined from calculations made using given dimensions, and some calculated figures 
approximating those likely to be obtained from an indicator, or selected from the vast accumulation of 
tabulated engine data available. 
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TONNAGE (MacGregor, 1993: 283-4) 

DEFINITIONS OF MEASUREMENTS FOR 
TONNAGE, 1854 RULE. 4 

Length 

Breadth 

Depth 

Under deck 
tonnage 

Gross 
tonnage 

Net 
Register 
t0nnage 

B.M. or 
B.O.i\1. 
ronnagc 

This is the distance between the extreme ends of the 
hold, below the tonnage deck. f-or the sake of con
venience it is measured on top of the tonnage deck, 
and allo,vance has to be made at each end for the rake 
of the stem and sternpost, which if not deducted could 
increase the length somewhat. The transverse areas 
are set out along this length. Ir was found that in 
vessels with normal sheer, i.e. 3ft-Oin in 250ft-0in, the 
length could be measured along the deck, rather than 
in a dead-straight line or chord between the extrem
ities, and that the ultimate difference in the under deck 
ronnage was about . 01 ~-;,. But in vessels with great 
sheer, such as Sft-0in in 100ft-0in the difference would 
be 1 %, which meant that the length had to be mea
sured 'by means of a tape or line stretched tightly from 
end to end of the deck'. 5 

Taken at heights given in the rule, between inner 
faces of the ceiling, or battens in an iron ship; or to 
inner surfaces of frames if there is no ceiling or battens. 

This is depth of hold, which is taken from below the 
underside of the deck to tap of ceiling at the limber 
strake beside the keelson, from which is deducted 
one-third of the deck camber or 'round of beam'. If 
there is a water-ballast tank, the depth is measured 
to the upper edge of the ordinary floor plate. 

This is the figure obtained from all spaces below the 
tonnage deck. No deductions are made from it. It 
is sometimes used as a basis for block coefficients of 
fineness. 

The volume of all enclosed spaces, above the tonnage 
deck was added to the under deck tbnnage, to produce 
this gross figure and it is from this total that deductions 
can be made for the various crew and stare-room 
allowances. Before 1867 when crew accommodation 
above the tonnage deck was exempted from mea
surement, small flush-decked vessels with onlv a 
deckhouse for the crew had similar figures for u~der 
deck and gross connage, and as there was nothing to 

deduct, the net connage was also similar. 

Any allowances were deducted from the gross ronnage 
co give the net connage. Before I 867, the only allow
able deduction was the engine room in steamships, 
but after that \·ear crew accommodation was dedtrcted 
from the gro;s total rather than exetllpted from it. 
Other allowances have since been added. The net 
tonnage is also the ·n.:gisrer t0nnage' (ne\·er 'reg
istered') on which is assessed light, pilot and harbour 
dues and which is the official tonnage entered for 
registry. 

Builder's Measurement or Builder's Old Measure
ment tonnage. These were synonymous terms for 
the pre-1836 old measurement rule which many 
buikkrs used until the mid-sixties for 9uoring tbe 
price for a new ship, as it only required a simple calcu
lation to obtain the ronnage figure. 

Due to the divisor of 100, easy arithmetical sums 
n:sulted without an\· of the a\l.:kward fractions that 
occured when 3500 · was the divisor, as in the years 
1836-54. 
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DEFINITIONS OF MEASUREMENTS FOR 
REGISTRY, 1854 ACT 

These are the dimensions normally seen in descriptions of ships 
which appeared in the Certificate of Registry and survey reports. The 
length is often the most diHicult to measure for the layman when con
fronted by a sheer elention, and it is hoped that th is description and 
sketch will ducidate the matter. (See figure 161). 

Length 

Breadth 

Depth 

'Length from the forepart of the stem under the bow
sprit to the aftside of the head of the sternpost'. So 
runs the description in the Certificate. The length 
was measured along the deck, although in craft with 
considerable sheer it was probably taken in a dead
straight line. (Sec abo\·e un·der 'tonnage length' for 
1854). The aftside of the sternpost at deck level is 
easy co locate, but the forward point presents diffi
culties, which are intensified in iron ships. In wooden 
ships, it is fre9uemly necessary to project the line of 
the stem parallel to the stem rabbet to a point below 
the bowsprit, to obtain. the forward termination of 
the length. But in iron ships, the stem and cutwater 
are the same and the stem cun·es awav rather as in an 
Aberdeen bow until it is running alm~st parallel with 
the steeve of the bowsprit. A practical article in the 
magazine 1\Javaf Sci'mt"e contained an explanatory draw
ing up0n which figure 161 is based, which shows that 
in iron ships the length was measured from the stem 
where it stopped against the bottom block of the 
figurehead.6 It will be obvious from the drawings 
that length for registry will often be longer in sailing 

. ships of normal design than length for tonnage. 
The forward termination of the length reven:ed to 
that in use before I 836, which some shipyards had 
continued tO use. 

'Main breadth to the outside of plank'. This was rhe 
maximum external breadth sometimes called 'extreme 
breadth outside'. 

'Depth in hold from tonnage deck to ceiling at mid
ships'. This is fairly straight-forward, the upper 
point of measurement being the underside of the 
deck and the lower point being taken beside the keel
son; it is never the draught of ,vater. 

Other measurements encountered: 

I.engch 
between 
perpen
diculars 

Length 
alot"r 

l.ength 
<.n-erall 

:\louldcd 
breadth 

This is a term used by shipbuilders and varied from 
yard to vard, but in nnm· cases it !av between the nfter
;ide of ~he stem at deck b·cl and ,the afterside of the 
heel of the sternpost. perpendiculars being drawn 
through these: points and projected down to the half
breadth plan. 

· .-\loft' indicates ,1 kngth measured along the deck 
as opposed tO the ked and probably lies ber,\·cen th<: 
same: points as for the register length. 

Usually measured from foreside of figurt.>hcad to 

aftcrsidc of caffrai I. 

This is identical to the description for the old mca
su rernent rule. 

The above derailed comments, if read in conjunction with the dra,,·
ings, will go some way to prevent those anomalies which frequently 
cause confusion ovcr a ship's length and connagc:. 



APPENDIX3 
Grantham's scantlings for river steamers and iron ships (Grantham, 1859:186-7) 

180 SPECIFICATIOXS OF 

SPECIFICATIONS. -

PADDLE STEAMERS, 187 

?6 ill.; sides, s in. ; all to bo flush-jointed and counteramik, ritcto<l. 
A bar of half-round iron to run all round tho gunwale strake n.ncl 
nlong the sponsons. 

Frames to be of 2 X 2 in. angle-iron, spaced 18 in. apart in 
centre of the vessel, widening out at both ends of the vessel to 
Z4 inches. 

Engine Sleepers to be 12 in. deep and i in. thick ; arnl of snfil
cicnt length to distributo the weight of the engines and boiler OYer 

30 ft. length of vessel. 
Biukheads and Coal Bunkers. -Bulkheads to be made of k in. 

plates bare in thickness, ancl the coa.l bunkers to be ¼ in. full. 

Iron 1Vork of the Paddle Steamer,-" Vernon," bu-iltjor Rircr TVol'l.· 
by :Messrs. S. Vernon cf: Son, 184D. 

Dfoiensions.-Length on tho waterline, 130 ft.; breadth, lG ft. 
6 in. ; depth from skin to underside of dock, 8 ft. 6 in. 

HA vrxG endeaYourecl to illustrate the plain ancl ordinary ' 
mocles of Iron Ship-building, I reserve for the conclusion , 
n. fe,-r Specifications of various .Steam and Sailing vessels. 
One of -these is strictly in accordance with the last pub. 
lished regulations of Lloyd's, ancl by following the rules 
there laid down, it is not difficult t~ discover the correct 
scantling required for different sized vessels ·which are to 
be classed at Lloyd's. The rema~nder are chosen rather 
to show instances of vessels which, though differing from 
Lloyd's rules in many essential points, have nevei'theless 
stoocl well, and -J.11E1Y therefore be useful guides to those 
who have occasion to construct vessels for peculiar pur

poses, and ·wish for examples to guide them. 

Keel Plate to bo i in. thick, to be made hollow and form a 
waterway under the flooring plates ; the keel plate to bo sin61e 
riveted to the garboard st.rn,kcs, and to be ma.cle of best Staf

' forclshi.re iron. 

I could wish to have enlarged this · sectiof of my ,vork, 
but, ·without the permission of either the owners or the ': 

builders, I did not feel myself at lib~rty to insert so111e 
examples that would have been valuable for the objects· 

above-named : other cn.ses, which it was in my power to 
give, did not afford sufficient interest or variety. 

Iron JYork of a London River Steamer., 

Dimensions, ctc.-Lcngth on dock, 12G ft. ; breadth, 13 ft.•· : 
<lepth of hold, 7 ft. ; draught of water to be 2 ft. 6 in., with machi~ ~ 
nery and coals on board. 

Xcel and Stems of 6 Xi in. bar iron. 
Plating.-Garbo:ml stra.ke, ± in. thick; bottom and bilges,; 
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Stern Posts to bo formed of solid bar iron, -:1 in. thick n.t tho fore
part ; the after-part to correspond with the lines of tho vessel, to 
be 4 i.u. wide, with a projection to cover the edges of the plates. 
The posts to be bent, or ·worked round to ·suit tho form of the 
rudder, and to run iii upon and be securely fastened to the keel 
plate, and to have holes for the rudder post and locking bolt, 
brace for lower part of rudder, a.ncl shoo for it to ,....-ork on. Tho 
rudder guards to bo 5 x l¼ in.•iron. ' 

Plates to be of best Staffordshire .iron, clincher built, with flush 
butts and rivets. Thickness of garboard strakc, fore-and-aft, 
/a in. ; bottom, up to bilge, for 30 ft. amidships, i1; in. ; bottom, up 
to bilge, for 8 ft. fore-and-aft of this, ¼ in. ; sides, for 30 ft. amid
ships, ¼ in. ; remainder of pb,ti.ng, -it in. Th& whole to be singl.: 
riveted. · 

Frames to be of 2½ in. angle-iron, l; i11: thick, 2 ft. from centre to 
centre amidships, ancl widening to 2½ ft. fore-and-aft ; each fra.me to 
be in two pieces, and the encls to be connected in the centro of the 
,cssel by· ;1, reversed anglo-iron, 4 ft. long in the mi<ls11i1)s, :.uicl 
gradually reduced fore-and-aft ; to Lo securely riveted together, 
with the flooring plate between them. The frames fore-and-aft of 
the engine room to be fu in. thick. 

Flooring Plates to ho 9 in. deep at the ccntre"'by ¼ in. t11ick 



Lloyd's scantlings for iron ships (Grantham, 1859:180) 
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RIVETS. g of an inch. ¾ of an inch. ~ of an inch. j 1 inch. I l<iM• to be¼ of on inch 
Diameter of Rivets required for ~ ~ ~, 

~ 
• larg<:r in diameter in the 

Thickness~ of Plates ~ I ~ ·I , R I 9 l l O ttlHIH stem, stern po::;t, and keel. 1'0 To Tii iii H' io {u ·1u j lll 

* When Hollow Pl:i.to Kools ;U'O ~optod, thoir thickness ~l<.l _not bo Jes:; than one mid :i l.t:i.lf th:~t of tho G:trbo:ml Stmko. F,>r Keels c,f ,;tlicr ~'orm~, H~c Sec:t. 2. 
t Pw.tlug nut to be roducocl lll tluckuoiss forward or aft, oxcopt JU tho shocrat1~ik:o and i;trakc next below it which m:w bo rc<lnccJ I-16th of :m rncL m \: essd.s of 1000 Tons and 

under; and 2-16ths of:m inch~ Vessels above 1000 'l'ons, ~ot: a dist..·1.11ce uot c~cc,ding 0110 quarter ~f the length of.the \'c:;scl i•roru c:id1 cud. ,. . . 
t A.11 lle.'l.m Plates to I.lo 1u depth 0110 quarter of :in mch for overy foot m lcui;th of tl1c Mitlsh:p Beam• to h:i.vo <louLle A11 ,.lc-Iro111:po11 upi,cr cclg-c. S1dmg and ?irou!<lmg together 

of each to be u:.,t lcs,i th:m three-fourths tho depth of 1.!c.'l.m l'la.te, aud to uc iu thickness l•lvth of :m iuch for C\'Ot'\' iuch uf thc0 two si,lns vf tl:<.i ,\11glc-lron. 
§ Stringer Ph\te,1 upoa ends of llcaulS not to be less in brc.-idth th:tn three timc::1 the ,lopLh of Beams :tad to ·be of the tliiclrncss g: rt:11 iu the T:i.ble. the &'l.id String-er Pl:ttes to U<! 

fitted home n.ud riveted to tho outside pl:itiug at all Upper Deck!', a.nd :i.t the Middle Heck in Ves.sels ha\·in;,. three deck8 with An,,le-lr,m of the dirnensious given in the Tulile above. 
Tie Plates muging all foro-:md-:1.ft upon llc.'l.mS on c:ich siJe of Hatchw:lyS, or from si<lo to side diagonally to be half the wi<lth .~ucl of the s:uuc tl.ickuc:111 as the 8triugcr I'latcs upon 
ends of Ben.ms. E.-ich a.nn of Knee l'latos not to be less in length tl.t:i.u twico and h.nlf the <lcpth ot'thc ll~rus. ' 
• II Depth of J!'loor l'l:ltcs nt tho middle liuo uot .to bo lc,ss than ouo inch for every foot of tho Yes.·-d's depth, ruc:i.;;urctl :imidsl.iips from the top of the Floor rJatos to the top of the 
Upper_ or Sp:i.r Deck l3e:un$. to o~teud 1.,<)yond ~ho !31lgc Kcelsons, a.nd not to ~e less in depth nt the Bilge Keelsons tlian the :\louh.ii1!,t of the Fr~unc:-i. . . . 
The R1vet.s to be of the best quality, aud to bo m dm.meter :i.s per Table; the nvct holes to be rcgul:i.rly aud cqri:i.lh· spaced and c:i.rdutly puucl.i<:<l opposite each other m the laps :ind 

liuiug pieces, or strips;_ to be ~ouutcrs_uuk all through the Outer Platiug, the rivets not to be 11c:1rcr to the Butts or c<lgcs of the Plating, Liuiu;;- Pieces ~o l3utts,_ or ~ny Anglc-Irvn, 
than n. space not less than then· owu d1:i.moter, :i.ud uot to bo further apart froin centre to centro th:\u four times their di:tmctcr, or uearcr tl::m three tunes their di:i.rueter, aud to 
be spaced through tho Frames a.nd outside Platiug :i. clfat:i.nco equ:i.l to eight tin1cs thci_r diu.mctcr apart. Whi.:n rivc.:tt:<l up, they are completely to_ ~JI tlic bol_es, t1.nd_ their poiDt8, 

. or outer end>i, nrd to bo rouud or couvox, :.uid uot to l>o bel<>w the surface of the Pl:itmg tllrongh which tbev arc riveted. .1.ll .,f.~.J<S ,,,. hoi-,:0,<1.,,L J<)•·,.14 of o·uta«.l( plu.!.m9 to b< d=ble 
rit1lUd fa vasels inkndcdfor tlt.t 12 year$' grade, q(700 Tons and upwards, and from. Kc<'l to the lu:iyht ofvpper 1iari of Bilf1e:1 all f<,,.e•and.-<;ft in 1:c1111cl~ i1tt,..,,dcdj,,r tlu, ti year$' gra.dt!, and/or 
tlt.t 12 ytars' grade undu 700 Tons. The l:>tem. Stcru Post, Keel. E<lgos of G:u·bo:ird Stmkcs aud Sbccrstrakcs, :mu Butts of ottti;i<le l'lating, and Butt.'! of Floor .l:'lateis, llr.::i.stb.ooka, 

. Transoms, and Pw.tes of Iloams; also butts of Keclso11S, Striugors, Shelf Plates, an<l :i.11 other loDg-itudin:i.l tics to Le doul,lc riveted i11 :di Vessels. The overlaps vf l.'l:i.ti11g where 

\ 
double riveting is r<!quired, tv be not less in bre_:i.dth than five times the diameter of the rivets, :mJ where :iiug-ic r~\·etin;; is ad:!.!ittcci, th<: overlaps tv be not less ID: tread.th ~lmu 

. throe time.':! the d~a.metcr of the rivets. I_f doub1e i:iveting be adop~ed where siuv,lc ri\•ctiug is allowed l:y the It..ilcs, ~he <li.amctcr of tho rivets way Le reduced 1-lt.ith uf Wl meh 
• · bdow tll.l.t prescnbcd by tho Rules, prondod that lll llO case tho di:i.moter be reduced below 5-8ths of au illc.:h. 
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APPENDIX4 
Descriptions of the Trunk Engine (Jamieson, 1897: 97) 

. Penn's Trunk Engine.-The difficulty of obtaining a sufficiently~-· 
lqng st~oke from, the direct-acting horizontal engine in the case of 
a man-of-war, wher~ the engines had to be placed as near the :
keel of• the ship as possible,. wa~ solved· ~y Mr ... John Pen.Ii pf . ; 

. ;,/:1 
Cyllndef ,:1 

----<.:::=-....;;,..J,.--A-'-----1-=----,. . :-::I½;·~ 
:riJ~J/j 

~=~=~~~~~~~~~=m:fri==ffi~--Pr""'.'""'. i fl 
• ••.. - • ! • . • ••.• • • •• ·-. :-~ii 

· Green~ich. Re hinged the connecting-rod direct' to the., centre\t~ 
9f _the _piston by means of. a gudgeon,· surrounded: by _a ·brastf 

:_cyhnd_n~al c~~e or t:unk, co_nqentric_.with _t~e· steam cy?-1:1-d·e!, #~ 
:.?~en . m the followmg figure._ This trunk. was_ fixed· ·to · t~_~i~ 
;P.1ston., ~nd protruded ~o~., ~ach. ~:3-d _<?f: ~h:3 cylinde_r_ -_t~ro~g~~ 
}>~ufilng boxes, thereby not only givmg additional support to.: tlieJi 

;t~I~~~~~1.:~~~-o p~rmitting_{_~~c~~s: for_·_ ?.i,li~g ._the gudg~?~:,_~#~~ 

connecting-rod end, and preserving an equal area to the pressure: 
of the steam on both sides of the piston. · ··' · · 

. Seatqn, in his Manual of Marin,e Engineering, says-"This 
engine is the lightest and most compact of all the forms of 
marine screw engines, when constructed of the same !Ilaterials;. 
and for lar§<? sizes with the lower steam pressures, b.s ·been 
unsurpassed by any other type of engine. The length of stroke. 
is considerably more than that of the ordinary _direct-acting 
engine, and the connecting-rod much longer than that of any, 
other form, being from two and a half to three times the length 
of the scroke ; the weight of the piston is taken by the trunks in' 
a gre?,t. ~easure, and 'there are no piston-rod guides. But with 
the· increase of pressure the defects of this form become more 
apparent, and lie with the very part that distinguishes i~viz., 
the truril:, .· . · 

"The friction of the large stuffing-boxes is very great; in fact;· 
may be ~o great by unduly tightening thf3. glands as to sto_p the 
engine. The los~ of heat from the large surfac~ _of the trunks · 
being alternately exposed to steam and to the atmosphere, is 
yery great, as is also that from their inner surfaces1 The· 
gudgeon brasses are exposed to a very high temperature and 
liable to become heated, and when heated cannot easily be 
cooled, as from their position they are not readily adjusted." · : 

Penn arranged his engine so that the direction of motion of ~ts. 
crank when going ahead caused the thrust of the connecting-rod 
to be up~vard, and thus, as far as possible, to relieve 'the botto.n( 
of the cylinder from the tear and wear due to the weight of th_t 
piston. . Some of the largest and most po1Yerful_ ships in th_e-_;_ 
British Navy have been engined with this Trunk form, such as-_--.:. 
H.M.S. Neptune, 9000 I.H.P., H.M.S. Sultan, Hercules, Minotau7:;'_:; 
!17 ,..._;7,~,,.,......"J..,.,,.,..l,..,,...,.,,.J Wrr,,..,,_;,v,• n.J,..,l'lr. p,r;mrP. TlP.11nsl.rr.t.i.nn. kr..* .:, a;::.::_ 
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APPENDIX5 
Wages and Salaries 1872 (Knight, 1879) 

Colonial Surgeon 
Post Master General 
Chief Clerk 
Harbour Master (Fremantle) 
Crown Solicitor 
Headmaster (Perth Boys) 
Draughtsman 
Surveyor (Roebourne) 
Harbour Master (Albany) 
Doctor 
Cooper and Warehouse Keeper 
Teacher (Perth Boys) 
Teacher, Girls School 
Post Master 
Caretaker of the Public Gardens 
Hospital Matron 
General House Servant 
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£400 
£350 
£300 
£250 
£250 
£200 
£200 
£200 
£150 
£150 
£130 
£100 
£100 
£100 
£70 
£50 
£16 



APPENDIX6 

Steamships in Wes tern Australian waters: 
the sample used to analyse Xantho on a regional basis. (Parsons, 1980, Dickson, 1993) 

Albany 

Iron single screw steamship, ON 44865, (ex Claud Hamilton Feb.1886) 668g,529n, B.1862 (3) 
Mitchell & Co Low Walkerffyne. 3 m barque rig, 200.2 x 28.2 x 16.5: Simple steam engine, 
lOOnhp, by Morrison & Co, Newcastleffyne, Lengthened & rebuilt 1886 - 878g 794n, 231.4 x 16.5. 
Engine: compound surface condensing type, 120nhp, by D & W Henderson Ltd. Glasgow 1900 -
alterations 889g: Built for Intercolonial Royal Mail S. P Co, reg. London name of owners changed 
1866 to Panama, New Zealand & Australian Royal Mail S.P. Co: April 1869 to McMeckan, 
Blackwood & Co, reg. Melbourne: March 1880 Nipper & See: Dec. 1881 The Adelaide S.S. Co. Ltd: 
Wrecked off Nambucca Heads, NSW, March 28, 1905, under charter to AUSN. 

Colac 

Iron, single screw steamship, ON89469, 1,479g, 958m. B.1884 (1) E. Withy & Co, West Hartlepool. 
245.2 x 34.2 x 17.2: Compound surface condensing direct acting steam engine. 140nhp, T. Richardson 
& Sons, Hartlepool l deck, well deck. Owners:- J. Huddart & Partners, reg. Melbomne: Oct. 1886 The 
Adelaide Steam Ship Co. Ltd, reg Port Adelaide. Stranded in the vicinity of Derby WA, Sept 17, 1910 
and subsequently dismantled and abandoned. 

Croydon 

Steel, single screw steamship, ON101625, 68g, 38n: B.1896 Riley, Hargraves & Co, Singapore: 76.0 
x 16.0 x 6.7: Compound surface condensing steam engine, 25nhp by shipbuilder. Owners: not 
registered until 1899 but reputedly owned by J.W. Bateman & Sons, Fremantle: 1899 H. Osborne & 
Partners, reg. Fremantle: 1901 The Adelaide S.S. Co Ltd: In 1905 tried to get to South Australia but 
got such a buffeting that she had to be towed from Point Malcolm by Tarcoola. On arrival at Pt 
Adelaide 1905 she was slipped and was found to be so strained that she was abandoned to the 
Underwriters. Sold to W.R. Cave & C., reg. Port Adelaide August 1913: Oct. 1918 sold Huon 
Shipping & Logging Co.: Sunk, Savage River, west coast Tasmania, May 13, 1919. Adelaide 
Company used the vessel in lightering operations at Cossack, but she was also the mail steamer 
between Albany and Esperance for some years, and for 12 months ran the mails to Houptoun. 

Eddystone 

Iron single screw steamship, ON91942, 2040g, 1313n, B.1886 (6) M. Pearse & Co, Stockton 275.0 x 
36.0 x 20.0: Raised qtr dk,103:1 deck, Three cylinder, compound steam engine, 200 nhp, blr 160psi, 
by Blair & Co Ltd. Stockton. Owners: Farrar, Groves & Co, reg. London: 1893 Mcilwraith, 
McEacham Ltd., reg Melbourne: Wrecked Depuch Is, West Aust. Sept 8, 1894 (about 40 miles east of 
Cossack - Port Walcott). 

Franklin 

Iron single screw steamship, ON79328m 730g, 395n.: B1880 (8) D. & W. Henderson, Patrick, 
Glasgow 200.1 x 26.3 x 19.4: 1 dk & awning deck. Compound steam eng, 280nhp, by shipbuilder. 
Owners:- Spencers Gulf S.S. Co. Ltd reg. Port Adelaide: Dec. 1882 The Adelaide Steam Ship Co. Ltd. 
Wrecked, Point Malcolm, Western Australia, April 18, 1902. 
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Georgette 

Iron single screw steamship, ON68004, 337g. 212n. 151.5 x 22.5 x 11.5, B.1872 (10) McKellar, 
McMillan, Dumbarton, Compound vertical direct acting steam eng, 50 hp, Smith Bros & Co, 
Glasgow: Owner: Thos. Connor Wrecked at Calgardup, WA Dec 1, 1876. 

Though Georgette had established regular trade connections between Albany, Champion Bay and 
intervening ports, it was dogged by problems with the crew and concerns about its suitability for the 
trade. Human error resulted in the ship being stranded on a reef near Fremantle soon after it arrived, 
causing considerable structural damage such that stanchions and faremes were bent and plates sprung. It 
appears that the vessel was lucky not to be lost on the voyage home (Inquirer 29/10/1873). Tensions 
between the contractors and the government grew and as a result the Government found itself unwilling 
to renew their contract with Connor and McKay and advised the owners accordingly in September 1876 
(Henderson, 1977:197). Two months later the vessel was lost on a voyage from Fremantle to Adelaide 
where it was to receive an overhaul· It appears that a heavy baulk of timber fell into the vessel's hold 
while they were loading ship. Nothing untoward was noticed at the time, but eventually a leak, 
apparently caused by the falling timber, was discovered around midnight while in the vicinity of 
Hamelin Bay on the south-west coast. In attempting to stem the influx neither the ship's pumps nor 
the auxiliary steam pumps could be made to function properly. This left the unfortunate passengers and 
crew to bail out the vessel out with buckets. They proved only partly successful and the captain took 
the ship in towards the coast while the water slowly rose inside the hull. Eventually the fires were 
extinguished by the sea and the main engines stopped. The Georgette then drifted ashore and was 
wrecked (Henderson, 1988:212). 
Such a series of coincidences would have roused considerable suspicions amongst ship's underwriters 
in modern times when the deliberate scuttling of redundant or unsuitable vessels in order to claim 
insurance money is a not unknown occurrance. It appears co-incidental and no hint of impropriety 
surfaced in this instance however. 

Karrakatta 

Steel, single screw steamship, ON102212, 2091g, 1271n: B.1897 John Scott & Co, Kinghorn. 
300.0 x 42.2 x 17.6:2 masts, 2 decks. Triple expansion steam eng, 1800 ihp, 300 nhp, rated 12112 
knots, by shipbuilder. Owners:- West Australian S.N. Co. Ltd., reg. Fremantle. Totally wrecked, 
march 26, 1901, near Swan Point, North West coast, Western Australia, on a voyage Fremantle to 
Singapore. 

Les Trois Amis 

Iron single screw steamship, ON 40477, 42.2 g, 28.7n. Built in 1854 by Pitchers at Northfleet 
Dockyard. 65.7x12.9x10.1. One direct-acting steam engine, 9HP. Arrived Melbourne on 6 December 
1854, Campbell and Co agents, arrived Swan River from Adelaide on 15 March 1855. Masts and 
ballast removed for use as a river steamer, carrying passengers and goods, often to a timetable. 
Campbell drowned in November and the vessel was mothballed pending settlement of his estate. The 
vessel was sold to George Shenton in December 1856 who attempted to sell its engine, which had 
proved unsuitable. Sold to George Green, the vessel was re-rigged to run from Fremantle to Champion 
Bay as a sailing schooner. Its first voyage was in July 1857 on what was to become a regular run. 
Described in the press as a 'steam schooner', it appears the engines were used as auxiliary power only 
and the vessel had a narrow escape in May 1858 when, in the face of a severe gale, the crew had to 
resort to chopping up the fittings for fuel in order to 'get up steam' to keep the ship off a reef .. The 
machinery was removed in the following November to be used in a flour mill. Its plates were noted as 
being worn out in October 1872 and the hull was planked over with Jarrah (hardwood) boar~. In 
December 1873, the vessel was sold to Broadhurst' s colleague Francis Cadell for use in the pearl shell 
industry and for carriage of passengers and general goods. The vessel was apparently lost off the coast 
of Timor in 1884. 
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Lubra 

Iron single screw steamship, ON29368, 246g, 167n: 1877 - 320g, 224n. B. 1860 (11) Laurance Hill 
& Co, Pt. Glasgow: 147.0 x 22.2 x 10.5: Lengthened 1877. 167.3 x 22.2 x 10.4: Single 50 hp steam 
engine. Compound engine, 60hp by D & W. Henderson installed 1877: Owners:- W.Ward, reg. 
Glasgow: 1862 A.L. Elder reg London: 1863 Thos Elder & Rbt. Barr Smith & Others reg. Port 
Adelaide: Feb. 1877 Spencers Gulf SS Co. Ltd: Sept 1882 The Adelaide SS Co. Ltd. Wrecked Jurien 
Bay, West Australia, Jan 9, 1898. 

Macedon 

Iron, single screw steamship, ON63253m 826g 532n, B.1879 (2), W.H. Potter & Co. Liverpool, 
220.6 x 29.8 x 15.8, 3 m bq. 2 cylinder inverted direct acting, steam engine, lOOhp, James Jack & 
Co., Liverpool: Owners: Wm Howard Smith & Partners, reg Melbourne: Wrecked Kingston Reef, 
near Rottnest Island, WA March 21, 1883. (Press reports and other sources say that the vessel was 
sold to Anderson & Marshall in Sept. 1881. This does seem to have been recorded on her official 
papers). 

Otway 

Iron single screw steamship, ON64783, 446g, 271n: 1883 - 563g 352m, B.1872 (6) Blackwood & 
Gordon, Port Glasgow. 180.0 x 25.0 x 12.0: Lengthened 1883 - 203.0 x 25.2 x 12.0: Compound 
inverted direct acting steam eng, 93hp, by shipbuilder: Owners:- Warrnambool Steam Packet Co, reg. 
Warrnambool, May 1878 C.V. Robinson & Partners, reg. Melbourne: Nov. 1878 Lilly & Marshall 
May 1883 The Adelaide Steam Ship Co. Ltd: Jan 84 transferred to Port Adelaide Sept 1892. A. Jouve 
& Co, Noumea: June 1897 E.F.A. Knoblauch, reg. Sydney: Oct. 1897 Illawarra S.N. Co. Ltd: June 
1901 North Coast S.N. Co. Ltd. and renamed Nymbodia hulked 1913. 

Perth 

Iron, single screw steamship (ex Penola March 1885) ON48408, 499g, 298n. B.1863 (6) Laurance 
Hill & Co. Ltd, Pt. Glasgow rebuilt & lengthened at Port Adelaide 1884/5 - 192.1 x 22.5 x 12.6, 2 
mast, NE 1885 - Compound direct acting steam engine, 70 nhp, D & W Henderson, Ltd. Glasgow. 
Owners:- The Adelaide Steam Ship Co. Ltd, reg. Port Adelaide. Wrecked at Point Cloates on North 
West coast of West Australia, September 13, 1887. (When rebuilt she lost her clipper bow). 

Rob Roy 

Iron single screw steamship, ON60331, 309g. 200n: Nov. 1872 - 393g 231n. B.1867 (12) T. 
Wingate & Co., Whiteinch. 148.2 x 21.5 x 15.1. Lengthened Nov. 1872 - 163.0 x 21.5 x 15.1: 
Original engine 2 cylinder 50hp, 26 psi, by ship builder, replaced 1..5 by Compound, 60hp, by D. & 
W. Henderson Ltd, Glasgow. Owners:- C.V. Robinson & Partners, reg Melbourne: Nov 1878 
Marshall & Lilley: Register closed after vessel stranded at Cossack:, N.W. of West Australia Feb. 1882 
Rob Roy suffered severe damage and worlanen were despatched from Melbourne to repair the stricken 
ship and make it seaworthy for the lengthy trip back to Melbourne were it was repaired and lengthened 
to 203 feet (61m) at a cost of £6,000, to re-enter service in September, thereafter operating up to 1893 
when it was 26 years old (Parsons, 1973:70). 
Re-registered upon production of a new certificate of seaworthiness, in Melbourne by Marshall and 

Lilly. May 1883 The Adelaide S.S. Co. Ltd, and registration transferred to Adelaide, January 1884. 
Register closed April 1904 and vessel bulked. She was used as a coal hulk in Melbourne until at least 
1910 Engine and boiler went into the tug Uraidla. Rob Roy was usually in the Albany-Geraldton run, 
but in 1893 she was replaced by Flinders. By February 1896 Rob Roy, Lubra and Flinders were 
maintaining a twice-weekly service from Pt Adelaide to Esperance supplying the Norseman and Dundas 
goldfields. By 1898 Flinders alone maintained the run and Rob Roy was on standby in Port Adelaide 
until hulked. 

402 



Rodondo 

Iron single screw steamship, ON79508, 1119g, 715n. B.1879 (Lloyds - 1873 (12)) W.H. Potter & 
Sons, Liverpool. 239.8 x 30.2 x 21.3. 1 dk & awning deck. Compound inverted direct acting steam 
eng, 150hp, blr 75 psi, by James Jack & Co, Liverpool. Owners:- W.H. Smith & Partners, reg. 
Melbourne Oct 1883 W. Howard Smith & Sons Ltd: registry transferred to Sydney 1885. Foundered 
after striking Pollock Reef, Western Australia Oct 7, 1894, vide Sydney Customs records. 
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APPENDIX? 
The 1983 predisturbance Survey 

PRELIMINARY SURVEY OF XANTHO AND 

INSTALLATION OF A CATHODIC PROTECTION SYSTEM 

C.J.·Beegle, I.D. MacLeod and N.A. North 
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The history of the Xantho and its present visible remains have been 
described earlier in this report.. As the :Kantho was an undisturbed ship
wreck, it presented an excellent opportuni'ty'""to"examine the physical,_ 
chemical and biological status of an iron shipwreck. in its stable long
term state. studies oi! this nature are important both in terms of pure 
scientific research and in the application of that knowledge to the 
excavation and conservation of historic shipwrecks. 

The Xantho was a steam powered iron hulled ship, typical of the 
first years of marine steam. Ships of a similar type are receiving 
increasing attention world wide as maritime archaeologists are starting 
to devote more attention to marine industrial archaeology. However, very 
little is known about rate and manner in which the ships material decays 
and corrodes, what type of problems are likely to be encountered when 
attempting to excavate or raise artefacts, or how to protect any signi
ficant sections which have to remain in situ after the excavation is 
completed. our aim in carrying out this preliminary survey was to 
collect enough data to answer some of these questions, or at least 
pinpoint where further work is needed. 

In terms of basic marine research, the :Kantho is an ideal long term 
experiment in marine corrosion fouling and a.rtificial reef formation. The 
shipwreck, although completely submerged at all times, stands 3 metres 
above the seabed for a considerable length in the stern and engine room 
sections. This area contains large quantities of cast iron, steel, copper, 
brass and some white metal. As this section is well above sand level it 
is freely available for colonization and growth of marine organisms. 
From the combined data on metal corrosion and the marine growth, it was 
hoped a better understanding could be obtained on how these effect each 
other. The significance of this interaction, particularly as regards 
metal corrosion, is often overlooked. This neglect is partially due to 
the long experimental times, of several years, before results of these 
interactions become apparent. The Xantho is a ready made test site which 
has been running for over 100 years~ type of information which can 
be obtained from"the Xantho is applicable, in pa.rt, to other marine 
problems such as the Toriiia'tion of artificial reefs and protection of long 
term off shore facilities such as oil producing platforms. 

Marine Growth: 

compared to the nearby barrier reef and benthic communities, the 
ecosystem of the xantho ap~ars to be somewhat of an anomaly. From 
personal observationand conversation with local divers the surrounding 
areas are all eel-grass communities with a large fauna of herbivores 
feeding on the eel-grass organisms seeking shelter and protection among 
the fronds. The Xantho, however, is a tunicate dominated community. The 
organisms coloniz~e wreck were primarily sedentary filter feeders, 
particularly solitary ascidians, with upright and encrusting sponges and 
a few encrusting bryozoans. The algae present were small chrophytans on 
the upper light-rich areas (2. 9 - J.Jm) and large phacophylans in deeper 
water (below 3.3m). Also observed present were several tube worms and a 
single crinoid. A complete list of macroscopic identified species will 
follow later. 

Of the remaining structures of the ship, the most interesting area 
for study was the boiler. It's cubic structure (l(3.2m) x w(2.8m) x h(2.6m)) 
placed into such a strong current (3-5 knots) set up an interesting situation. 
The colonization in areas exposed to the current could be compared with 

2.~n down to its lower structural limit of 3. 7m. The boiler 
endplate has a series of boiler tube holes of approximately 
7cm in diameter. A few of the holes were utilized by crinoids 
and feather worms. 

,t,emical Environment 
1; 

The on-site sea water temperature during May 5th - 9th was 23°C 
no thermal gradient was observed in the 3m-6m range. Because of the 

strong current, approximately 3 knots, and storms that 
our inspection a mass of weed and sea borne grit gave a 
of 2.s to 3.0 metres at the best but this often fell to less 

one metre. The salinity of the water was measured by conducitivity 
:3d by coulometric titration (for chlorinity) and gave the value of 
'll.53 parts per tho1J.sand. No direct measurements on dissolved oxygen 
lfire made, however, it is reasonable to assume that because of the strong 
Ytrrent and shallow depth it was 100\ saturation. The pH of the water at 
zl•c was 8.1 

➔ 
I 

~rrosion Potentials 

When metals are placed in oxygenated sea water they will begin. to 
~rrode. Positively charged ions are produced as the meta~ corrodes_ lll;d they 
t,nd to diffuse away from the solid metal where they are e:i.ther prec:i.p:i.tated 
· e surface or dissolve in the sea. Each metal corrodes at a rate that 

ds on variables such as temperature, dissolved oxygen, salinity, water 
t and the inherent reactivity of the metal in relation to water. 

eactivity· of a metal is determined by the relative rates of. reactions 
e metal and its ions with water. A reactive metal such as :i.ron has a 
er tendency to give off electrons than it has to accept them from 

under standard conditions; this is reflected in the relatively 
rate of corrosion that is found for unprotected iron surfaces. For 

s such as copper the rate of accepting electrons from water under 
d· conditions is much faster than the rate of giving them up and 
metals are deemed •noble• since the overall tendency is for the 

not to corrode. A convenient way of comparing the reactivity of 
in aqueous media is gained by a comparison of the logarithm of ti:ie 
of the rates of forward (corrosion of metal) and reverse (reduct:i.on 

ions) reaction using the relationship 

= 2.303RT log K- . 

~ K+ 

K- is the rate of the reduction ·reaction and where K+ the rate of the 
reaction defined under standard conditions. 

+ ne 
K-

... 
K+ 

M 

is called the standard potential and n is the number of electrons 
in the process (normally two for iron corrosion and one for copper 

water). 

data is summarised as tables of standard potentials (E 0 's) for metal/ 
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successively more sheltered areas. 

The orien~~ion of the wreck and the current is illustrated in figure l. 
The w,:,ter ':'ond:i.t:i.ons at each face will be described with reference to figure l. 
The b:i.olog:i.cal areas referred to in the description below are drawn in 
figure 2. , 

Top of Boiler 

The sur?e was perpendicular to current, approximately o.sm 
in amplitude. 

Only within the shelter of the opening were tunicates found. 
These were generally smaller forms of 7-lOcm overall length. 
On the exposed top (depth 2.9111) were generally encrusting 
~ponges and small green algae. As the top sloped down towards 
:i.ts corners, large brown algae were present. 

Forward Side 

T~e -::urrent was only periodic along this face. There was a 
d:i.st:i.nct demarcation of growth at the depth of 4.lm. Above 
this mark the life forms were like those at the edges of the 
top. However, below this line there were large tunicates 
(10-lScm overall length), large upright sponges (5-lOcm high), 
and a few scattered red algae. 

~ve 3. 7m the prevailing current was full force, but below 
th:i.s depth there was only a mild surge along the plane of the 
face. The biol~ reflected the areas exposure to the current. 
Above 3. 7m the b:i.ology was that of the top surface. However, 
at 3 • 7m down •to 4. ~ depth was a band of large brown algae. 
Then from 4. 2m down l:o the bottom at 4. 9111 depth were encrusting 
sponges and some red algae. The species of this lower areas 
wer7 the same as on the forward side except for the lack of 
tun:i.cates. 

Starboard Side 

The current on this side was periodic but along the plane of 
the face toward the stern rather than from above, as one would 
expect. A band of large tunicates (10-lScm) with small upright 
sponges (5=) and large brown algae was present from a depth of 
3.3m down to 4.0m. There were a few scattered individuals of 
the above fauna from 4.0m down to the sandy bottom at 4. 7m 

The complicated structure of the aft side of the boiler caused 
more unusual water flow and more varied fauna. The current 
flowed along th7 p~ane of this face as one would expect. However, 
there was a per:i.od:i.c backflow of water in the other direction 
caused by extensions from the boiler to the engine. The area 
was covered with large brown algae from its upper extension of 

metal ion couples. Noble metals such as gold, silver and copper have positive 
E0 

• s while reactive metals such as iron, zinc and aluminium have negative 
values of E0

• 

Copper has an E0 of +o.34 volts (it accepts electrons faster than it 
donates them to an acid solution) while iron has an E 0 value of -0.41 volts 
(iron has a greater rate of giving off electrons to' a, standard acid solution 
than it has of accepting electrons). 

Since we ·are concerned with metals in a marine environment the 
solutions under consideration pertain more to sea water than to standard 
acid conditions. Because chloride ions alter the rates of many electrode 
processes (e.g. metal oxidation - metal reduction) the E0 's of the metals 
in "standard sea water" are different to those in ordinary water. Iron 
and less commonly copper and its alloys are often covered with a layer of 
marine growth which effectively places the metal in an environment which is 
different to normal sea water. Such environments tend to have a higher 
chloride concentration and lower pH and much lower oxygen concentration 
than ambient sea water since the concretions act in many ways as a semi 
permeable membrane which inhibits rapid transport of some ions and gases. 
Not surprisingly the voltages associated with the metals under such 
conditions are different to those found in reference tables. 

When a metal is corroding one of two processes limits the rate of the 
dissolution/corrosion reaction; it is either the rate of the cathodic 
(reduction) process - which is cOl!mlOnly oxygen reduction or the rate of 
the anodic (oxidation) process (metal dissolution) • For most cases 
involving concreted metals the rate reduction of oxygen is the controlling 
factor that determines how fast the object will corrode. The voltage of a 
metal object in the sea, will be dependent on how fast the metal is corroding 
and this is interdependent on the pH of solution adjacent to the corroding 
object. If we have a knowledge of the pH and the voltage of the corroding 
metal (commonly called the corrosion potential, Ecorr) we can tell whether 
the metal is immune (not corroding) passive or if it is actively corroding. 
Since the voltage is dependent on both the metal oxidatiOn and cathodic 
reduction process the voltage is also known as a "mixed" potential. 

The corrosi~n potentials 1were measured in situ using a high impedence 
digital multimeter (Fluke 8010A), a platinum electrode (0.8mm thick) housed 
in an expoxy body and a silver/silver chloride reference electrode (Titron 
model No. 211). Sea water was used as the reference solution. The procedure 
consisted of drilling into the concretion (using a ¼" masonary bit and a hand 
drill) and placing the platinum electrode into the hole while· pressing firmly 
to establish good electrical contact; the reference electrode was placed 
adjacent to the hole and the voltage measured. For the resistance survey 
the reference electrode was ·replaced with a stainless steel probe. 

The results of ·the survey are shown in Table I and also shown in a 
diagramatic way in figure which shows the Pourbaix diagrams for iron and 
copper in sea water. A Pourbaix or voltage/pH diagram is a convenient way 
of summarising thermodynamic data pertaining to metal in aqueous solution. 
An i=ne area is a region of pH and Eh (voltage relative to the normal 
hydrogen electrode) in which the metal will not corrode, an active region 
is one where the metal is undergoing corrosion and passive zones are areas 
where the corrosion has been inhibited by the formation of a passive film/ 
corrosion product. Although in situ pll measurements were not done on the 
wreck material we have estimated the pH of the metal under concretion on 
the basis of our previously published data on iron and copper based concre
tions. When the iron concretion was beiJ:lg drilled bubbles of escaping gas 
were occasionally observed - the gas is mainly hydrogen and light weight 
hydrocarbons· that are formed as a result of the corrosion process. 



Inspection of the Pourbaix diagram shows that the potential of the frame 
plates lies on the hydrogen discharge line viz. at such potentials and pH 
water is in equilibrium with one atmosphere of hydrogen gas. Seventeen 
of the twenty-five sites measured had a corrosion potential of -0.268±0.006 V 
vs NHE (or -0.539 vs AgCl seawater); in effect this shows that they are all 
in essentially the same corrosion microenvironment•. From the observed 
relationship between corrosion currents and voltage in laboratory experiments 
the standard deviation of :1:6 mV -ans that the rates of corrosion are within 
fifty percent of each other. The difference of 113 mV between the corrosion 
potentials of the deck winch and the frame plates near the stern reflects 
a ten fold difference in their relative corrosion rates. The value of 
-0.113 volts for the windlass is typical of potentials where no solid metal 
remains and this was indicated when the drill bit penetrated to a depth 
greater than 10cm. 

All the potentials observed or the non ferrous fittings show that 
they are all in ·the imlnune (for copper and brass) or passive zones (white 
metal on crankshaft bearings) - see the copper Pourbaix diagram. The 
corrosion potentials of the brass/bronze oil cups and valves are largely 
determined by the iron corrosion potentials since the objects are in 
electrical contact with the iron metal which has a much larger surface area. 
Although the copper and iron fittings have the same potential the results 
are different; copper/brass will not corrode and iron is actively corroding. 
The concretion layer observed on the brass and copper fittings was a. few mm 

·•thick and consisted of a dense "'hite calcareous deposit. Because of the 
galvanic protection provided by the corroding iron the copper based alloys 
act as cathodic sites in the corrosion cell and this causes the surface pH 
to increase and inorganic calcium carbonate as calcite/aragonite precipitates 
on the metal. Once this "protective• layer of Ca.CO• covers the biologically 
toxic metal corrosion products the surface is then subject to normal 
colonization by marine organisms. The ea.co. layer is fairly dense since 
under its protection some of the Cu_.O on the metal surface had been converted 
to Cu_.S through the action of sulphate reducing bacteria. The less negative 
potential for the copper tubes and case on the condenser is simply due to 
the different corrosion rate of the condenser to which it is still connected. 

Although the corrosion potential of the white metal bearings on the 
crankshaft is -0.268 volt vs NHE is outside the immunity range for lead it 
is in a region of stability of passivation through lead sulphate (anglesite) 
formation. On site inspection suggested that the 2.5mm film covering the 
bearings was a mixture of anglesite and calcite (PbS04 and caco. respectively). 

Mineralogy of Ore Cargo 

One possible explanation for the lack of gross concretion on the engine 
was that the sea water may have leached out biologically toxic material from 
the galena (lead sulphide, PbS) cargo in the hessian bags. The lode from the 
Geraldine mine, situated on the Northampton river, was almost pure galena 
and the associated minerals were lead carbonate, zinc blende, iron P8rites, a 
blue slatey clay and quartz. There were no arsenic or mercury minerals present 
and so the possibility that poisoning from such sources could be ruled 
out. Examination of some of the remaining galena showed some oxidation of 
the PbS to lead sulphate (PbS04) and some laurionite (Pb OH Cl). The 
apJ?roximate. so~ubili~y of lead from Pbso4 in sea water is 0.4 ppm but at 
this level it is unlikely to have had any significant effect on the 
colonization or growth of the marine organisms - see section III on 
colonization and speciation. 

Cathodic Protection 

To make detailed drawings of the historically important engine, it 

was necessary to 'remove a. lot of the living ~rine growth from the engine. 
In this clearing only loosely attached material was removed. The hard•, 
calcareous concretions which covered the steel and ca.st iron were deliberately 
not disturbed as removal of this material produces accelerated corrosion 
of the underlying metal. 

The clearing of the engine area caused a considerable quantity of 
copper and brass. fittings to become readily visible to any casual diver, 
and hence an .obvious target for pilfering. Some minor cw.mage had also 
occurred to the protective iron concretions through accidents and by holes 
drilled into it during the potential survey (see above). In order to 
accelerate the regrowth of marine organisms on the copper alloys and to 
protect the iron from corrosion attack, a. sacrificial cathodic protection 
system was attached to the engine. 

In broad terms a sacrificial cathodic protection system consists of 
a highly rea.cti ve disposable · metal which is in electrical contact to a. 
less reactive metal. This forms a. galvanic couple with the more reactive 
(and expendible) metal suffering increased corrosion attack with the 
less reactive metal, usually steel, being protected against corrosion. 
Detailed explanations of cathodic protection are readily available with 
several standard text books on this subject. 

;· Apa.rt from corrosion control there are some side effects of cathodic 
f protection which made it desirable for use on the~ engine. Firstly 
I. the action of the cathodic protection generates alkali at the surface of 
~ the protected metal and thus raises the pH of the seawater at this 

surface. This rise in pH causes a white deposit, mainly calcium and 
magnesium carbonate, to precipitate out of the seawater. This deposit 
coats the protected surface and thus hides the metal under a paint-like 
layer. It was hoped that this white coating would camouflage the copper 
alloys and render them less obvious to a. casual diver. On the iron 
sections, the white deposit will block up and fill in any holes in the 
concretion which were produced during the survey work. 

f Under normal conditions the copper alloys are unsuitable sites for 
marine growth as· the copper corrosion products a.re _toxic. With cathodic 

\ protection no new copper corrosion products are formed and those already 
;I' present are slowly converted back to metallic copper. This eliminates the 
· biological toxicity of the copper and thus allows normal colonization and 

growth of marine organisms, which further obscures the copper artefacts 
from casual divers. 

Design and Installation 

~conta!~rw~~e:! :o::; ca:~i~=~l~:~t:t::t!~ :~~~~- in~~~~:r~~a~s 
: a relatively simple matter to attac~ anodes to a point on the engine, 
~this will not give protection to the rest of the engine if that is not 
electrical continuous to the point of a.node attachment. 

Electrical continuity was determined before attaching anodes. This 
~as done by measuring the electrical resistance between different points 
on the engine and associated metalwork.. On land it is easy to determine 
if two points are in electrical contact from resistance values between 

I those points; a contact gives zero resistance, no contact gives infinite 
I resistance. In seawater this is complicated by the ability of seawater 
}to conduct electricity. In seawater, a metal to metal contact will show 
!tero resistance but a. metal/seawater/metal pathway may only show a. few 
)Ohms resistance. In practise a further problem arises due to the 
,lifficulty in making a good contact between components. For convenience 406 

Corrosion potentia.ls1 recorded on the ~ wreck.site 

Propeller blade, shaft 
and shaft bearing 

Frame plates hr. stern 

Plating near stern 

Crankshaft; bearings, crank 
~d oil cup 

Connecting rod, "A" frame 
trunk and engine block 

TrUnk stuffing block 

Boiler 

·Deck winch 

Stem ·post 

Condenser, case end 

Windlass 

Large copper piping 

Small copper piping 

Oil cups and brass valves 

I· 

-0.269 

-o. 280 

-0.267 

iron fitting, rapid gas 
evolution on shaft. 

gas bubbles escaping 

iron 

-0.267 bearings white metal 
oil cup is a copper alloy 

-0. 265 very solid 

-0.271 

-0.270 to -0.283 concretion approx. 4mm thick 

-0.214 gas on wheel, cone. approx. 

-0.253 

50mm thick. Measured centre 
axle also. 

-o .163 copper case, iron end 

-0.103 no solid metal, drill in > 100mm 

-0.202 

-0.244 

-0.268 

near boiler 

engine fittings 

piston cup 

1voltages were measured using a Ag/AgCl sea water reference electrode which 
was calibrated using the Pt electrode in a Quinhydrone solution at pH 4.0 
Voltages have been converted to the NHE scale. 

most of the resistivity survey was carried out using one, or both, 
resistance probe in contact with either copper or white metal. 

The resistivity survey showed that the engine formed a single conducting 
unit which was also electrically bonded to the propellor shaft. Most of 
the copper pipework attached to the engine was also in electrical contact 
with the engine but there was no metal-metal contact from the engine to the 
hull remains or to the boiler and condensor. 

Following the resistivity survey it was decided to install two 
protective anodes on the engine remains. Each anode consisted of a 2kg 
magnesium anode welded to a 25kg aluminium anode. Sufficient cable was 
used to place the anodes outside the hull remains, and at sufficient 
distance from the engine to give a good current spread (see diagram 1). 
The anode cables were welded to a clamp system which was then clamped onto 
an engine component (see diagram 2) • Each clamp was individually designed 
to fit that particular attachment point. The points chosen for attachment 
were the propellor shaft and a white metal bearing. These points were 
chosen on the basis of ease of attachment and suitability for formir_1g a 
good electrical contact. Before attaching clamps each point was deconcreted 
back to the_ residual "":tal. No apparent problems occurred during installation. 

Discussion 

Marine Biology: 

One might assume that after 110 years of submersion the ecosystem set 
up on the Xantho site would be stabilized. A comparison of the present-day 
flora and ~with that far .in the future would be the only way to tell 
for certain. The striking difference between the wreck site and the 
surrounding areas point toward some twist in development. Two possibilities 
seem most likely. The first possibility is that the Xantho community has 
not fully "matured". In time the wreck site may be thesame as the 
surrounding are.:.s are now. JThis would mean that .these other areas went 
through a similar stage, an evidence may be present. . 

Another hypothesis is that the structure of the substrate affects the 
colonization more than is currently believed. In natural systems, new 
substrates generally become available only slowly as by the rise in sea 
level after an ice age. Such new areas are generally continuous with the 
old ecosystem so the colonization is more an expansion of the old ecosystem's 
boundaries than a new invasion. At a shipwreck site, the situation is 
markedly different. Suddenly a large area of fresh substrate, spanning 
a range of depths, is available for colonization. The colonization of such 
large areas would not feel the pressure of the surrounding life forms as 
much as the natural system would. Once a foothold was gained, the new life 
forms might be able to keep the local ecology out. Hence, the differences 
in biology. Evidence for this is found when comparing wrecks in different 
situations. 

The Lygnern .(1928) and Samuel Plimsoll (1948) are in a similar 
situation to the Xantho. The two lie in Cockburn Sound, one atop the 
other, on a sandy bottom. The only structure close by is a shipping channel 
masker with its mussel community. The vessels are not intact, but 
structures several metres high off the bottom are still evident. The 
ecosystem here is very similar to Xantho. High light areas are covered 
by large phaeophytans (brown algae) and darker areas show the same tunicate 
dominated community as seen on the Xantho. Another wreck which appears to 
be developing the same way is the Cheynes III (1982) located in Albany 



f(.1t:lt1tt11·. lt.,wovcu-, ll Lu llilUt:h Luu u.u•J.y Lu &.'(J"'-11y lull lu which dlccx:t.i~ll 
the Cheynes III will develop. 

such wrecks as the Lady Eliza.beth (1878) , the Rllpid (1811) , and the 
s,,.eavia (1629) show a very different development. 'l'hese wrecks are located 
~ rocky bottoCII where the wreck is in cont.act with 'the loea.l flora and 
tau.na. Also the structures have collapsed so very little material extends 
ioore than a aetre or two off the bottocll. The wooden wrecks have assimilated 
the local ecosystem quite well. It is also possible witli these wrecks 
th,11.t a tunieate eommunity existed up until the tiae of collapse, at which 
point the local eommnnity took over. Observing the development of a 

.

1

~shipwreek beyond its collapse would be the only way to solve this mystery. 

These findings raise some questions about the current practices in 
~<building artificial reefs to promote the local biology. Today artificial 

reefs are built as a final complete units much as an intact shipwreck. 

~ 

It would appear that a better way to build these would be in layers perhaps 
not more than a metre in height. Each new layer could be added after the 
previous layer had developed the local flora a.nd fauna. These structures 
would be more like the low lying reefs which do pick up the local ecosystem. 

Corrosion: 

l The potential survey on the metal structures of the shipwreck gave 
three items which can be related to the condition of the underlying metal. 

,

1 

fhese are potential, presence of entrapped gases and depth to solid iaetal. 
From these we can estimate the condition of the underlying metal. 

The engine and boiler are in relatively good condition and show low 
potentials, no significant gas evolution and metal close to the original 
i,,etal surface. The non-ferrous components of the engine and boiler are 
all in excellent condition with potentials too low for active corrosion. 

The hull remains are in fair condition with the amount of corrosion 
being higher in the forward areas than in the stern. These are a 

doubtful proposition for excavation and a large amount would be lost due 
to the already advanced state of corrosion. 

The windlass appears to be very badly corroded and, although its 
shape is well p{eserved by concretions, there is unlikely to be any solid 
..etal remaining. Similarly with the condensor, the potentials indicate 
that iron is very heavily corroded but the copper components should be in 
good conditions beneath the concretions. 

As a result of this initial survey the boiler and engine had been 
, cleaned of the bulk of the marine growth and a cathodic protection system 

~had been installed on the engine. In the next site inspection the main 
aims will be examination of the biological regrowth and monitoring of the 
cathodic protection effects. 

As the initial survey was carried out before the site was disturbed, 
we have virtually unique data from which to assess changes in the wrecksite. 
The biological data provides a baseline against which the regrowth can be 
cOlllpared. The potential survey provided the baseline against which we 
can determine exactly the extent of cathodic protection being achieved 

"on each part of the wrecksite. The resistivity survey showed there was 
no electrical contact between the engine and the boiler. If the forth-

"' cOllling potential survey confirms this then we will be able to compare the 

' 
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biological regrowth in the presence (engine) and absence (boiler) of 
cathodic protection. 

By having the opportunity to carry out thi~ work ~fore the shipw:"'7k 
was disturbed we were not only able to provide information on the condition 
of artefacts before they are excavated but we will ,also be able to document 
exactly the effects of partial cleaning of marine growth and cathodic 
protection on an iron shipwreck. Neither of these has previously been 
studied and indeed, cathodic protection has never previou:;ly been applied 
to an historic shipwreck. In scientific terms the data obtained to date 

are highly significant. 



APPENDIX 8: 

The 1985 concept plan for the exhibition of the Xantho engine and stern. I 
and 

The Xantho artefact catalogue 

o,.,.l"f't{ .i.ct 0-..- "" C.-~~h,,g,w (111\">J"} 

(c.-.,i~t,o,,. <l~\-<t.' l'lU/3<\ ) 

Proposed layout of Xantho exhibit scheduled for 1988/89. 
Developed and drawn by C. Buhagiar (MAA WA). 

1 By Chris Buhagiar, MAA WA. The boiler is to be a mock-up McCarthy (1988c: 189). 
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9-0 CW TUB 15 WET 82 l Hull plate 
ROOM 

;(A20 

XA2l 
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'A27 
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4 

CL 
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CL 

CL 
CL 

CL 

MME 
MME 

CL 

MAX 

MAX 

MAX 

TUB 65 WET 84 l 
ROOM 

32 2 
TUB 14 WET 84 1 
ROOM 
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ROOM 
Chock thio 32 4 
location. 

Chock 22 0 
location? 

location. 

JC ROOM 

JC ROOM 

JC ROOM 

JC ROOM 

JC ROOM 

JC ROOM 

X3?? MAX 
X7? MAX 

Organic 
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21 

46 l 

441 
8 3 
8 1 
8 l 

8 l 
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32 l 
32 l 

44 l 

46 l 

61 1 

68 l 
411 
491 
67 0 

441 
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86 l 

61 l 
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41 1 
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44 0 

44 0 

441 

441 
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Orum 

Lubricator box,+ lacrN, bra•• 
Ca.at iron ato.ui. do«le-doconc. 
inaide. 
concretion unid. 

Ring 17cm, bra•• + ,1, piece of 
it• glaaa; ca•• gin bottle + 

.stop-per. 
Blue transfer ware ceramics. 
ahorda 
Soot aole 

Dock skylight 
Graphithed pieces No. l 
Graphitised piOCH No.2 
Graphitbed piecoa No.3, 
corners 
Gr4phitiaed pieces No. 4 
Graphitised pieces, Crank -b• 
and flangH No, 5 
Craphitisod pi.ces,.Edgos scotch 
yoke-port pump No.6 
Knob, [handle), braH 10 .\UC:: 83 
Screw plug, brass, w/ cork insetl2 MAR 83 
? 
Light globe, part only - tho 13 l'.AR 83 
center. Composite of glus &nd 

metal. 
Rope frags. Found on a largo 13 MAR 83 
concretion w/ wood and iron. 
Lining fro= forepoak, ceiling- 13 MAR 83 
for analysis. 
Coconut husk section 13 MAR 83 
Bone 13 MAR 83 
Clay, grey 13 MAR 83 
Twigs,. looso .. contamination or 14 MAY 83 
dunnago 
Shord, thick clear glass, 15 MAY 83 
fract.urod~ feathorod pattern 
Sherds, thin g:reen glass- caao 1S MAY 83 
bottle frags ? 
Iron concretion ... Xray. Treated 16 MAY 83 
in furnace • 2 nail•. 
Screws, wood -a piece of stick 16 MA.Y 83 
returnod this no• . 
Fire brick, from boiler 
insulation. 

16 MAR 70 

Bone- large vertebrae 18 MAY 83 
Timber pieces ; hull underneat.h 18 MAY 83 
stbd aide stern block. 
Glass frags; very thin. clear, 19 MAY 83 
some darkened. probably part of 
li9ht bulb + shade. 
Sherds, clear gla.:ss, green tint 19 MAY 83 
1111 pattern- striated window 
glass. 
Shord, very thick clear glass, 19 MAY 83 
green tint 
Sherd, clear glasa. green tinoe 19 MAY 83 

4mm 
Sherd, (Jreen glaa.s, thin clear- 19 MAY 8'3 
3rrun 
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V.76 
V.77 
V.78 
XA79 
XABO 
XA81 

_;JtA82 

l'.\83 

il'.\84 

l'.\85 
l'.\86 

l'.\87 

l'.\88 
XA89 
XA90 

""x.-.91 
XA92 
XA93 

'f)',,\94 

XA95 
XA96 
XA97 
XA98 
XA99 

XAlOO 
AIAl0l 

XAlOl 
1>.102 
l>.103 

"ll.104 
l>.106 

Xl.107 
Xl.108 

Xl.109 
Xl.110 
Xl.111 

'1.\112 

1.\113 

1.\11s 

1.\116 
1.\117 
1.1110 
1.\119 

MME 
MME 
MA 
MME 
MAX 

CWJ 
MAX 

CW.\ 

MME 

MME 
MA 
0 

MA 

KA 

MAX 

CWA 

CFC:: 

MMX 

MMX 
C!,V 

X7 
X3 

X3 

tub 60 

X3 

X3 
Storage 

Storage 

Storage 

organic 

Tank J 

321 
32 l 
32 3 
32 2 
341 
44 1 
44 l 

44 l 
32 1 

83 1 
32 l 

26 l 

641 
32 l 
341 

ll 1 
32 l 
44 3 

44 3 

441 
44 1 
32 2 
321 
321 

321 

44 2 

44 3 

32 2 
46 l 
32 3 

49 l 
44 4 

44 l 
44 0 

32 1 

67 0 
32 l 

64 l 

443 

32 1 
447 
44 l 

32 3 

321 

32 l 
321 
441 

Lid w/ acrew cap, brue 
Hook, largo, bra•• 
Hook•. bra•• for cup.a ? 
Hook .. bru.s, for cups ? 

Fiahing aink•r .,spoon type 
Flat.., thin gla.ss frag 
Glau fr.ag, fine curved and 
cl•ar 
Flat olass - 4mm 
Hand r4il support, bracket, 
bras.a 
Scissor concretion' 

20 .\PR 85 
20 .\PR 85 
20 .\PR 85 
20 .\PR 85 
20 .\PR 85 
20 .\PR 85 
20 .\PR 85 

20 .\PR 85 
20 .\PR 85 

20 .\PR 85 
Shoot pie<:0 1 bras.s,soction:s cut 20 APR 85 
out. 
Paving steno., fire brick- 20 APR 85 
broken 
Unid. length of wood 20 .\PR 85 
Tube w/ flange. copper 20 APR 85 
Tube? Bar inside, possibly wood 20 APR 85 
too. Investigate 
Slate fraga - concretion 20 .\PR BS 
Handle, brass- coat hook 20 .\PR 85 
Flat glass, fine 20 .\PR 85 
Glau, atriatod - 2 pieces • 1 20 .\PR 85 
curved piece 
Fragm4nt, glass- 6m thick 20 .\PR 85 
Bottle glaas frag, green 21 .\PR 85 
Keys, brass 21 .\PR 85 
Butterfly catch, bra•s 21 APR. 85 
Lid w/ ring, brasa, acr.,, each 21 .\PR 85 
side 
Eyelet, brass w/ thr0&d 21 .\PR 85 

Glass frags, clear and striped 21 .\PR 85 
Glus !raga, clear 21 .\PR 85 
Ser.,,.,, bras• 21 .\PR 85 
HoHi&n frag 21 .\PR 85 
Boiler guage • brau, w/ hand 21 .\PR 85 
and cone ae.,.rato 
Rubber piece 21 .\PR 85 
Glau fraga- striped, thick, 21 .\PR 85 
case bottle + plain 
Lamp glass, coq,lote 21 .\PR 85 
Glass frags, largo, thin 21 APR 85 
Plate w. riv•t•. brau + soft 21 APR 85 
material on rovers•. 
Box + ,....tches 21 .\PR 85 
Hand rail w/ part bracket w/ 21 APR 85 
pitch inside 
Unid wood, part furniture or 21 APR 85 
fittino 1 could have putty or 
paint in it. 
Salt cellar. rectangular qlass. 21 APR 85 
• 2 .tma.11 frags 
Koy, brass in cone 21 APR 85 
Bevelled glass 21 APR 85 
Ribbed glass piece 21 .\PR 85 
Spig-ot.. brass- tap center valve 
+ • washer /pipe' 
Cylinder with diamond hole, 
brass 
Knob, [handle l bran 
Oil can. brass- incomplote 
Class- 90m.."O 

21 APR 85 
21 APR 85 
21 APR 85 

l NOV 88 

l NOV 88 

l NOV 88 
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XA.29 MME X2 44 1 Sight olu•- water gauge from 19 MAY 83 

boiler 
X.\30 
X.\31 
X.\33 
X.\34 
XA35 

X.\36 
X.\37 
XA38 
X.\39 

X.\40 
XMl 

X.\43 

X.\44 
X.\45 
X.\46 
XA47 
X.\48 
X.\49 
XA49 
XA50 
XA5l 
XA52 
XA53 
X.\54 

XA55 

X.\56 
X.\57 

XA58 

X.\59 

XA60 
XA62 

XA63 

X.\64 

XA65 

X.\66 
X.\67 

MAX 
MAX 
CFC:: 
MAX 

CWA 

cc 

MME 

CWJ 

JCA68 CW 
X.\69 

XA69A-0 CWJ 

X.\70 
XA70C CWJ 

X.\71 

XA73 
X.\74 

X7. MAX? 

23/6/92 

Tank J 

61 l 
64 3 
49 l 
14 l 

44 l 

68 1 
347 
411 
321 

411 
MA X oroanie 47 1 

44 2 

X3 86 l 
44 0 

44 0 
61 l 

X3 32 l 
32 l 
32 l 

X2 31 l 
41 l 
44 0 
64 l 

TUB 64 WET 86 4 
ROOM 
TUB 63 WET 
ROOM 

X2 

86 0 

66 l 
88 l 

44 l 
44 2 

88 1 

TUB 60 WET 86 l 
ROOM 

49 l 

44 l 
Glass tub 6 44 l 

l 

WET ROOM/TUB 82 4 
l 

441 
T1JB9WET 8 3 
ROOM 

44 2 

88 l 

88 l 
441 

Timber w. tonquo 19 MAY 83 
Timber acrapa 19 MAR 83 
Rubber •trip 19 MAY 83 
Sh.\rpanino atone. pa.rt only 19 MAY 83 
Sherd- thin dark green glass- 19 KAY 83 
CASO bottle 
Stick, small piece 18 KAY 83 
Flano•. l•ad + 6 bra•• nail• 20 KAY 83 
Whale bone, long 20 MAY 83 
Ring ponibly fro1:1 guago cover, 20 MAY 83 
brua. s .. 346 
Tooth Ht in part of jaw. 20 KAY 83 
Hessian. Sacks contained qa.leru,, 

Bottle frags,dark green glass. 15 J>.N 84 
Square, Seal w/ an eagle and 
mark. Round one seam 
Can( oil), concretion, flat 15 J>.N 84 
Glus frags, thin whito 16 J>.N 84 
Glass frag:, thick 16 J>.N 84' 
Wood 16 J>.N 84 
Cylinder w/ diamond hole, brass 16 J>.N 84 
Hook, brass 16 J>.N 84 
Cup hook, brasa. 
Mushroom valve. bronze 
Bone, jawbone 
Cl.us fraos. striated 
Fulley block iron /wood 
Iron cone. 

16 JAN 84 
16 J>.N 84 
16 JAN 84 
16 JAN 84 
16 JAN 84 
16 J>.N 84 

Composite, Glass/iron/wood 16 J>.N 84 

Wood frag 
St.am Engine - composite • 18 APR 8S 
brus .. bronzo, ~- •. 
Oil cans in flat tray- 18 APR 85 
concreted 
Sight glu•• boiler guago for 19 .\PR 85 
water levels 
Shoot glass, ribbed 19 .\PR 85 
Sheet glau, flat, rubMd • darkl.9 .\PR 85 
bottle glass frag 
&r section. rounded, concreted 19 APR 85 
to iro 
Unid. • aoft flat layered shoet-19 APR 85 
for analyaia 
Scissor concretion 

Concrete' pioco- broken 
Sherd. striated olaas 

19 .\PR 85 

19 .\PR 85 
19 .\PR 85 

Sherd. clear glass 19 APR 85 
Valve small, brass/ plug cock in20 APR 85 
4 .. 

Bolts/nuta 

Case bottle base 

19 APR 85 

20 APR 85 
Bolt threaded/loose washer/ cast 
iron frag. 
Sherds, clear glass. Thickness a20 APR 85 

Unid. ooft flat layered sheet. 20 APR 85 
See XA 64 
Unid. possibly part fish bone 20 APR 85 
Boiler qua.oe, glAas, part only 20 APR 85 
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XA123 44 l Boiler guage, glue 21 .\PR 85 
XA124 44 l Ribbed glass 21 APR 85 

X.\125 
X.\126 
X.\127 

X.\128 

X.\129 
X.\130 
XA13l 

X.\132 
X.\133 

X.\134 
XA135 

X.\136 

X.\137 
XA138 

X.\138.\-0 

X.\139 

X.\140 
X.\141 
X.\142 

JCA143 

JCA144 
JCA145 

X.\147 
JCA148 

XA149 

lCAlSO 

X.\151 

X.\152 

X.\153 

X.\154 

X.\155 
XA1S6 
X.\157 

XA158 

X.\159 

X.\160 

X.\161 
X.\162 

CWJ 

MME 

CWJ 

CWA 

MA 

CWJ 

MAWC: 

MAWG 

44 6 
441 

TUB 61 WET 86 l 
ROOM 

Xl 

TUB 8 WET 
ROOM 

Storage 

TUB 61 WE:T 
ROOM 

26 l 

61 2 
34 l 
44 l 

44 l 
44 2 

44 4 
441 

32 4 

44 1 
32 l 

32 4 

32 1 

48 l 
25 1 
64 l 

0 l 

46 l 
49 l 

44 0 

2 l 

2 1 

0 l 

44 0 

32 l 

0 l 

86 1 
67 8 

8 1 

32 1 

67 1 

86 l 
67 1 

Strietod gla•• fraos 
Striatod gla•• ~ 

Bar 

Tile section - 70mm wide. 
Similar to 87 

21 .\PR 85 
21 APR 85 
21 .\PR 85 

22 .\PR 85 

Wood pieces, pine - 40 mm thick 22 APR 85 
Strip, w/ naib ? 22 APR 85 
Claaa piocoa., part of bottle or 22 APR 85 
lamp glass 
Class frag- 70rNn thick 22 APR 85 
Glass frag 70 mm thick + dark 22 APR 85 
glaaa frag. 
Bottle trags, dark glasa 22 APR 85 
Clu:.t pi~•• large - 10 mm 22 APR 85 
thick 
Tap., bra:ss- •valve/ htmdle · 22 APR 85 
washer /nut 
Gla.sa piece, 100 mm. 22 APR 85 
Valve .. bra:sa- includes 3 scrows.,23 APR- as 
l cu pipe~ 1 valve• 5 sections -
main part. C+ D holes are flange 
for 2 .screws, e • valve centre. 
Nut/bolt 

Spare con rod ( + surroundng 23 APR 85 
cone. - crank shaft} containino 
glua boiler guago. brAss 
Whale vertebrae 23 APR 85 
Brick 23 .\PR 85 
Wood, part of furniture? - 23 .\PR 85 
Jar<lh? 
Unid. layered sheet- tor 23 .\PR 85 
analysis 
Hessian frag (bag corne:i:;) 23 .\PR 85 
Clay sample (greyish color)• 23 APR 85 
unid. sand w/ :stuff from anodes 
Rope and ,....tting 2 MAY 85 
Bowl section w/ wido rim ... 
uiatic pheuant 
Caso bottle frags, green ... 
falcon aoa.l + mark. 

2 MAY 85 

2 MAY 85 

Plate frag, "'hite w/ blue rim- 2 MAY 85 
shipwa.re 
Pr..aqrnont, tr.an.sforware. blue andl MAY 85 
white 
Unid white gel, possibly in 2 MAY 85 
assoc. with a.nodes 
Glass fragments, approx 3/8 • 2 MAY 85 
thick 
Strap w/ screw f.tsteni~ .. brass 2 MAY 85 
w/ load core 
Unid, similar to 64 and 72 2 MAY 85 
Cone. iron 
Wood w/ lead covering and copperl MAY 8S 
aloy nails- 7 
Flange??? and Rod. 1 MAY 85 

Pipe# copper 2• di.am and pprox 2 MAY 85 
1.7 m long 
Tr•• branch, bark r♦moved, lio-ht2 MAY 85 
yellow brown 
Cone. w/ metal pipe 
Tree branches w/ dark brown 
bork 

2 MAY 85 
2 MAY as 

1 NOV 88 

l NOV 88 
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63 MAWG 67 l Trff branchea v/ dark brown 

bark 
2 MAY 85 

64 CWA 67 l 

44 11 
44 l 
44 l 
6 l 

165 
j,1.166 
j,1.167 
)1.168 CWA 

)1.169ABCD CPG 64 6 

,J<J,l.170 

jJ.1.171 

J.,m 
l:~;! 

!' J,1.175 

J,1.176 
/}.177 

'~f].178 

l!l,179 

k,;A180 

luao 
Jl}.181 
';o.182 
!:0-183 
';o.184 

,V.185 

1 V.186 

11}.101 

JJA188 

:0-189 

CWA 6 8 
CW.J TI/B 61 WET 86 2 

ROOM 
CW.J TI/B 61 WET 86 l 

ROOM 
44 l 

CW.J Tl/8 73 WET 82 l 
ROOM 

29 l 

32 l 
41 l 

MME X3 32 1 
MME X2 32 l 

MA Storage 32 4 

CLV 32 4 
34 l 

MAX 34 2 
86 l 

MME X3 32 l 
CW.J Tl/8 59 WET 86 l 

ROOM 

32 l 

CW.J TI/B 61 WET 82 3 
ROOM 

CW.J Tl/8 21 WET 82 l 

MME 
ROOM• 
Xl,X9 32 l 

XA190 MME X2 32 l 
32 2 
34 S 
444 
l l 
25 5 
82 l 

XA19lJ\B 
XAl92 
XA193 

,;0XA194 
XAl95 
XAl96 CW.J 

-4'0.197 

XA198 

ICA199 
ICA200 
ICA20l 
XA202 
XA203 

_,;!A204 

TI/B 9 WET 
ROOM 

Tl/8 61 WET 
ROOM 

445 
2 l 

441 
0 l 
8 l 

441 
6 l 

84 l 

Branch aoction, w/ dark brown 2 AOO 85 
bark, reddish color 
OlaH piocoa, •tripod texture 3 W.Y 85 
Olaaa piece, plain 3 MAY 85 
Tuba glau trag 3 MAY 85 
Unid. pioc• of wood w/ white 3 MAY 85 
point, 2 holea 
T•pioce, eoftwood - pouibly 3 MAY 85 
from carlino or dock w/ aOJMt 
concretion and metal ring tc 4 
largo naila 

Cone:. 

Plate Cast iron 

Glass fr.ag, cl Mr 

Flange. Register read.a 
concrotion, wood, glass. Drum • 
174 only 

3 MAY 85 

3 MAY 85 
3 MAY 86 

Fragment, white olazod, curvod 6 MAY 85 
w/ 2 ridges.Porcelain. 
Rivet type object 6 MAY 85 
Whale bone rib 6 MAY 85 
Hinge, br&aa 
Valvo, braaa and sight glus 7 MAY 85 
tube 

Valvo, brass- for engine g-laas .. 
some glass in situ. 
Sight glaas, pieces 6 MAY 85 
Pipe, lead 7 MAY 85 
Collar aoctions w/ nail holes 7 MAY 85 

Concretion - rock 7 MAY 85 
Spigot tap, bra.. 7 MAY 85 
Flange- Concretion w/ load plate? MAY 85 
and copper nail• 
Pipe .. copper or cone ot iron 7 MAY 85 
rod 
Bar 7 MAY 85 

Bar w/ loopod ends 7 MAY 85 

Pipe, copper- Engine room (pump 8 MAY 85 
) Port - check rogiater 
description ppl3. + gasket 
Approx 3• 

Va;lv•., brass 8 MAY 85 
Valvo, braas. Nail• x4 8 MAY 85 
Flange, lead + 4 alloy nail• 8 MAY 85 
Pane glass., clear 8 MAY 85 
Stone ? slag? 8 MAY 85 
Bricks, 4 white l rod. E• red 8 MAY 85 
Nut, from pump, port engine 8 MAY 85 
room 
Class frags w/ striped t•xture 7 MAY 85 
Ceramic frag, white glaze w/ 7 MAY 85 
blue line - shipware 
sh .. t gla••· plain, 10 mm thick 7 MAY 85 
Unid. probably cement 7 MAY 85 
Propeller piece ? 7 MAY 85 
Glass frag, striped texture. 7 MAY 85 
Wood frag - burnt. Possibly 7 MAY 85 
fuel. 
Can~ oil. large. ??? in 10 MAY 85 
concretion 

irltlme Arcbaoolo::r DepaC't-nt Database printed by SITE 
olod u of: 09:00: 8 JAN 96 Pago 7 
g. No. MU• • Co. Mu•. Loe • No. 

246L HME X7 32 1 
32 l 
46 1 
32 10 

246R 
247 
248 

~.249 

iuso 
1251 

1252 
,253 

~254 
k255 

'f.u55 
1.1257 

'(:.>.258 

IA259 
:.>.260 

IA261 

IA262 

4'1A263 

XA264 
l!A26S 

XA266 

XA267 

XA268 
"XA269 

XA270 

41 

XA272 

XA274 

XA274P 

XA275 

XA276 
4 

XA277 
XA278 

HME 

CWJ 

CW.J 

CW.J 

CWJ 

CLV 

CL.J 

CW.J 

CW.J 

CW.J 

X7 

XS 

XS 32 10 

32 l 
Tl/8 58 WET 32 2 
ROOM 

86 l 
xa 32 4 

82 l 
TUB 51 WET 86 1 
ROOM 

86 l 
32 1 

32 l 

2 l 
TI/B 30 WET 82 1 
ROOM 

TUB9WET 81 
ROOM 

32 2 

.JC ROQI 8 2 

82 l 
XS 32 2 

TI/B 64 WET 86 3 
ROOM 
X4 32 l 

47 2 

6 2 
Xl 47 2 
cs 32 3 

Xa. Storage 32 7 

86 2 

X7 32 3 

TUB9WET 81 
ROOM 
XS 32 4 

44 l 

86 S 
TUB 72 WET 82 l 
ROOM 

Tap from cooling pipe bru• 
Tap fr0«1 cooling pipo bra•• 
Rope w. cu wir• 
Cylinder aft. pipe, brass- 10 
pi.e•• oach .. m,ain pi~. top 
aeetion, middle, top ocrew plug, 
2 sets handle, waaher + nut 

Dato r5 
22 MAY 85 
22 MAY 85 
22 MAY 85 
23 MAY 85 

Cylinder .fwd. pipo, brau• 10 23 MAY 85 
pi.cea - main pipe, top ••<=tion. 
middle, top •er.,,,, plug, 2 aot• 
handle, W41Shor + nut. 
Scrw, brass from ?? 
Aft wiper am + suspension 
link. 
Rubber in cone 

24 MAY 85 
24 MAY 85 

24 MAY 85 
Cog, ratchet, '- 2 screws, brass.24 MAY 85 
Listed a• olass- thick, flat and 
on top of forward cylinder. 
Bar port only, iron 24 MAY 85 
concretion casts for display- 24 MAY 85 

dry 
Cast from spore con rod. 24 MAY 85 
Inch ruler, bra.as, •oetion only 24 MAY 85 
- fro• spare crank :shaft cone. 
Lid, hinged, brus- rectangular .l 7 MAY 85 
From oil container. 
Tile. complete 17 MAY 85 
Flange ( to doconc. l • !raga 29 .JUL 85 
<1xhaust pipo + ongino nic ? , 

trunk 
Locking nut free camshaft 29 .JUL 85 

OUkot mat, 2 pieces and brus 30 .JUL 85 
"'ir• from front valve chest 
Wear plates from _expan,,ion links30 .JUL 85 
- bras• 
Mill• iron 30 JUL 85 
Cogs, aft , fwd., brass- from 30 .JUL 85 
fore cylinder. Th• one w/ a stud 
is tho foremost. 
Cones. (2 baga) 

Lubricator, little end, brass. 1 AUG 85 
w/ tuba- tore cylinder 
Canvas and filling from exhaust 1 AUG 85 
pipo 
Wood and rubber (gasket)? 1 AUG 85 
Oasketa, fabric/canvas 30 .JUL 85 
Makers Name Plate, brass + 2 l AUG 85 
screws 
Tallow cup, bra.as- con:,ists of 2 AUG 85 
body + 2 set.a each- pipe:, 
washer, nut. 
Cones • engine burer frags • 2 29 JUL SS 
+ piece• 
1,ubrica~or cup lids, CE, M, FJ l AUG 8S 
brass- tallow cup 
Bolt fragment 

Indicator cocks, bras•. FP, FS .. l AUC 85 
AP, AS, 4 parts each- cock, 
handle, w.asher, nut. 
Class.under pumps attatched to 1 AUC 85 
bearers 
Cone. samples + putty l AUG 85 
Radius arm link iron + brass l AUC 85 

Dato collect 

410 
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XA205 
XA206 
XA207 
XA208 

XA209 
XA210 
XA211A 
XA2llB 
XA212 
XA2l3 
XA214 

XA215 

XA216 
XA217 
XA219 

XA220 

XA22l 

XA222 

XA223 
XA224 
XA225 
XA226 

XA227 
XA228 

XA229 
XA230 
XA231A 

XA231B 
XA232 

XA233 

XA234 
XA235 

XA236 

cw 
MA 

Tub 47 
Storage 

44 l 
44 0 

82 l 
32 l 

MA Storage 
44 0 

46 l 
46 1 
32 l 
321 
25 l3 
411 

MAWG 
CFG Tank J 

MAX 

CW.J 

CW.J 

CW.J 

CW.J 

CW.J 

CW.J 
CW.J 

MA 
CW.J 

32 6 

46 1 
32 7 

TI/B 64 WET 86 2 
ROOM 

61 l 

61 1 

TI/B 24 WET 32 l 
ROOM 

46 l 
46 l 
46 l 

TI/B 51 WET 82 l 
ROOM 
BLUE RACK 

C6 

82 l 
86 l 

32 l 
46 l 

BLUE RACK· 12 46 l 
• rope /ll• 
iron. 
BLUE RACK 82 l1 
TI/B 51 WET 86 2 
ROOM 

Storage 82 l 
TI/B 24 WET 32 l 
ROOM 

32 l 

XA237AB MME 32 4 

XA238 

XA239 
XA240 
XA241 

XA242 
XA243 
XA244 
XA245 
XA246 

MA 
MME 

MME 
MME 

Storage 
C6 

)(4 

X7 

44 0 

86 l 
82 l 
88 2 

321 
32 l 
862 
321 
32 l 

Oat• reg 
OlaH !rag 10 MAY 85 
Glaao fraqa 10 MAY 85 
Bar, bent 10 MAY 85 
Pl•t• •.ct ion w/ rivet•. copper 10 MAY BS 
? 

Clu• frao•. 
Lo.ether trag, tiny 
Rope fr.ag 
sh .. thinq tack 
Shfft frog. copper 
Brick • 6 ; 7 tiles + frao-.s 
Whalo bone. largo lump, in 
cone? 
Flange, wood with lead 
sheathing, in concretion w/ S 
alloy nails 
Rope w. knot• modern ?? 

Valve., brass. See 179 

10 MAY 85 
10 MAY 85 
10 MAY as 
10 MAY 85 
10 MAY 85 
10 MAY 85 
10 MAY 85 

10 MAY 85 

2 MAY 85 
14 MAY 85 

Cone,:. {2 bags)assoc with 14 MAY BS 
engine 
Plank, wood • 18 • a .. oc. -.,/ 4 .JUN 85 
engine cone. and 221 
Plank, wood • 3ft. associated w/4 .JUN 85 
engine cone. 
Brushes. composites. Copper. Notl 7 MAY BS 
part of the engine. 
Rope frags 17 MAY 85 
Ropo frags 17 MAY 85 
Rope !rags 17 MAY 85 
Aft slide valve spindle 17 MAY 85 

Nut frags, hexagonal 17 MAY 85 
Shackle cone. Koles attatched tcl.7 MAY 85 
rope ?? 

St♦a.m Pipe, copper 
Rope frag:1 
R.opo frao 

15 MAY 85 
15 MAY 85 
20 MAY 85 

Thimble, iron 20 MAY 85 
Nut casts- forward pump- 6 20 MAY 85 
sided, neat circular centre-
from aft handle. 
Casts trom spare con rod
complete flange in 
Stum pipe flange £rags 
Brushes. copper 

20 MAY 85 

20 MAY 85 
20 MAY 85 

Handle (<ool) w/ thread, brass -20 MAY 85 
transverse. iron section erroded 
a.way. 
Oil cup, aft, brass (A); tube, 20 MAY 85 
copper (B} + SO mm copper wire 
(twisted ) + folded lead 10 mm 
sq. 
Sito glass £rags and flat 
frags. 
Fore suspension 1 ink - cast 
Bar, cast iron -square 
tJnid iron w/ nuts - possibly 
shackle cone. 
Pipe frag. copper 

Pipe. copper- ex pump port 
Wipera.rm cast. shaft cast 
Lid of oil cup, brass 
Cooling pipe brass 

20 MAY 85 

20 MAY 85 
20 MAY 85 
20 MAY 85 

25 APR 85 
20 MAY 85 
20 MAY 85 
2l MAY 85 
22 MAY 85 
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XA279 
XA280 

XA28l 

XA282 

XA283 

XA284 

XA285 

XA286 

XA287 

XA288 

XA289 

XA290 

XA29l 

XA292 

XA293 
XA294 
XA295 
XA296 
XA297 

XA298 

XA299 

MME 

MME 

MME 

MME 

MME 

MME 

CW.J 

XA300F CW.J 

XA301 

XA302 
XA303 
XA304. 12 CW.J 

XA305 
XA306 

XA306 LO 

X4 

X4 

XS 

XS 

X7 

X4 

X4 

X4 

83 l 
32 4 

32 1 

32 1 

32 l 

32 l 

32 l 

67 2 

32 l 

49 l 

82 1 

32 1 

32 2 

WET l\OOM/TI/B 82 2 

32 l 

TUB9WET 8 1 
ROOM 

32 l 

86 l 
86 l 

TUB 8 WET 32 l 
ROOM 

6 6 

2 

Various 32 l 
locations tor 
individual 
p.,;rts. 

Tool, iron~ aquaro ooetion 
Lubricator box, + 3 screws, 
br.ua- forward valve spindle 
ouldo. 

Dato rog 
29 .JUL 85 
29 .JUL 85 

t..ut)ricator box, bra••- aft valve12 NOV 85 
spindle guide lubricator + l 
screw. 
Inboard trunk 9land, brass, aft 12 NOV 85 
teed pump - l acrew 
Inboard trunk qland, bras:s- 12 NOV as 
forward feed gland 
Pet cock, brasa. from inboard 12 NOV 85 
feed pump 

Die block lubricator box, brass,12 NOV 85 
from fore radius link a.rm 
Cork + piece of wire from. 12 NOV 85 
forward main bearing lubricating 
box. 
Die block lubricator box. brass,12 NOV 85 
from aft radius 
Rubber gasket. rough w/ wire - 12 NOV 85 

wire preventing leak between 
foro butterfly + fore va,lve 
chest.- wrapped around flange -
wire wrapped around butterfly 
spindle. 
Stop valve tlano• from ma.in 12 NOV 85 
st.MA pipe (CASO a.pa.rt during 
tro&tMnt ) 
Lubricator box, brass• af< 12 NOV 85 
outboard gland - l •crew only 
Lubricator box + lscre:w brua- 12 NOV 85 
forward outboard gland 
Ratchet ft 2 screws, brass- from 12 NOV 85 
Aft outboAr 
Canvas from gasket 12 NOV 85 
Bottle neck, light green glass 12 NOV 85 
Rivot head, brua 12 NOV 85 
Lead ore sample 
Cone, fro= cone. betwecm S JUN 86 
cylinders 
Bolts- 55 - 5 JUN 86 

Pl.ate, brass- possibly drip 
tray 
Nu< 

5 JUN 86 

29 OCT 86 

Pipe, copper - SO 1M1 "ide x 1.6029 OCT 86 
m long 
Trunk concretion 29 OCT 86 
W•bbing concretion 29 OCT 86 
Rivet .. R09isterod as rubber 29 OCT 86 
frag. 
Wood frags 29 OCT 86 
Valves (holes M, ~ R) brau. 25 SEP 87 
Valve M• S secti 
Pump discharge live air v••••l .:is SEP 8/ 
attatched pipes. Air pot complex 
includes - 3 pipes + 3 valves 
also a cover (join) with l l/2 • 
small section pipe + 6 fa.bric 
gaskets from joins. There are 7 
joins : a-d;e-h(valve) ;i-l;m-p 
(valve) ;q-t {valve) ;u-x- Appl 
joint (heAds toward:, air pot 
pipe with valve O to T ) ; y-: • 
2 iron bolts. AA-DD• 4 iron 

Date col loct 
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X,\306 

X,\306 

j':::: 
l 

CWJ 

l XA306H-J/L CWJ 

I XA306M-P CWJ 

X,\306U-X CWJ 

XA306Y/Z CWJ 

XA307 MME 

)IA307 

X.>.307 

XA307 

XA307 

XA307A-D CWJ 

XA307E-H CWJ 

XA308 LO 

XA308 

47 6 

32 4 

XlX 32 l 
TUB 8 WET 32 4 
ROOM 
TUB 14 WET 82 3 
ROOM 

TUB 8 WET 32 4 
ROOM 
TUB 8 WET 32 4 
ROOM 

32 4 
TUB 8 WET 32 4 
ROOM 

TUB 9 WET 8 3 
ROOM 

Xl 32 l 

32 3 

32 2 

32 2 

47 6 

TUB 8 WET 324 
ROOM 
TUB 8 WET 32 5 
ROOM 
L. Hi 11 for 
drawinq 29/ 
9/95 

32 0 

Date reg Date col loct 

bolt• + 2 vaah•r• only which fit 
onto air pot join. Concerning 
joina - 2 hol .. on join• are 
numborod.. 2hol•• on ga•k•t• •r• 
numbered, .all th• iron bolt•, 
&OM bolt• hevo nut• and 
w.a•h•r•. Th• 041P9r&to part• havo 
indi vidW>l ontri•• following 
this. 
Caakota, fabric, from joina - 25 SEP 87 
306 APPl, APP2, 306 (A,B), 306 
{E 4 I'), 306 (I4JJ), 306 (Mr.N). 
Pi1>9 W,OP - 5 opening• with 25 SEP 87 
!langu ; pipe UV,El', 3 
openinga,2 flangoa, opening 
broken: pil)lt AB,. NM,. 2 op,oningo 
w/ !langoa, complete; pipe - 3 
flanges labelled A, inscribed T 

B. 
Flange w/ pipe, brass/ copper 25 SEP 87 
Nut/bolts. 25 SEP 87 

Nut/bolts. Thia ahould include H25 SEP 87 
as part of th• valve. Valve • E• • 
.appear• ~r• coppery + aru.ller 
th.an •m•. Center of valve has 
thr•• OPGnings. Thero are 4 
aoc:tions - main part, va.lvo 
co-nter, washer (::aq hole) + nut 
(no top). 
Nut/bolts 25 SEP 87 

Nut/bolt•• po.rt o:f valvo M 25 SEP 87 

Nut/bolt:s • Valve 25 SEP 87 
Nut/bolt/fibr•• APPl joint - 25 SEP 87 
heads towards air port pipe with 
valve Q to T. 
Nut/Bolt/Washer. Que.st ion a.a to 25 SEP 87 
whothor those piocoa from this 
complex. 
PiP<t, [hol<t A I, copper• 2 
flanges + broken end AB ? 

Pipe aectioM (3) from port 

pump, down fttd pump, discharge 

+ suction valve chamber .. 2 joirus 
A-0, E-H. Plus iron bolts and 
washora and gaakets (6). 

S•.,_raco entrio:s :follow ... 
Fla.no• opening EF + broken 
PiP<t, 
F'lanoe openings (2} AB-EF • 
plain end. 
Caskets- A-0 ■ Hemp?, 3 aeperate 
sections only B,C,O. casket E -H 
• Rubber ? , l only. Plus 2 other 
gaskets ( which belor19 where?) 
Nut/bolt/waahers 

Nut (1) / bolt• (4) 

Valve, brass. from Port pump 

oo ... n fuel pump discharge • 
suction valve chamber. 308 • 1 
pipe- • l valve from pore pump 

Maritime Arcbaeolo&7 Departm011t Database printed b7 SITE 
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XA329 CWJ TUB 14 WET 8 l Flange cover 

XA329 CWJ 

XA329AB CWJ 

-< XA330 

XA331 

I 
XA332 MME 

XA333 

XA334 

XA336 

XA337 CWJ 

XA339 CFJ 

XA340 

XA341 MME 

XA341B MAX 

X>.341B MAX 

,XA342 CWA 
lCA343 CWA 

XA344 MA 

lCA345 
XA346 

~47 

)J.34s 

11350 

TUB8WET 83 
ROOM 
TUB 8 WET 32 J 
ROOM- nut:,/ 
bolts. 

X2 

TUB 9 WET 
ROOM 

CONCRETE TANK 

B 

X6?? 

3 frags CONS 
JON 4/85 
3 frags CONS 
JON 4/85 

WET ROOM TUB 

Orgimic 
Stora9e 

82 l 

31 l 

31 l 

82 l 

82 22 

8 4 

82 1 

47 l 

31 4 

82 4 

82 4 

82 l 
83 l 

47 l 

47 l 
32 1 

32 11 

32 1 

32 3 

32 4 

Fraga. cut iron from ongino?? 

Starboard food pwnp discharge 
and ••ction ch&.11.ber - iron. TOP 
plate. Bolts AB(2), nut (1) B 

ha• nut. + ga:sket. 
Starboard food pump discharge • 
suction chamber - iron - SIDE 
plato, h.u gasket - bolt:, ??? 
Mushroom valve., bronzo. STBO, 
TOP 

Mushroorc valve., bronze. STBO, 
BOTTOH. 
Port /Stbd pump covers, am.all 
frag. 
Right angle support pl.a.tea from 
under engine. l,4,5,6,7,8,9,10 
small +· 12 reverse + part plate. 
2 large pieces in engine tank. 
Plat•, sQUar•, on stbd. pump
Fraga. cut iron from engine. 
Nut/bolt/wuhor• - all bolt• w/ 
nuts and washer:,. Possibly 
incorrectly Mrkod XA 307. 
Pump, boilor valve• prooauro 19 FEB 88 
relief valve- concretod 
Casket, poHibly from XA 338 B, 
dofinetly t:rom one of tho Above 
Eccentric strap.. bronze- .apare -
2 little pieces fit on one end, 
broken off. 1 bit in storage 
X4. 
Cone ot bolt heads v/ washers.+ 
3 iron fraos 
Cone of bolt huda w/ waaher.a .+ 

3 iron fraga 
Bar, in cone, 19 PEB 88 
Tool handlo -M•tal file in 
concretion w/ wood and bras.s 
C...kot ...,terial- from aft port 26 JUN 88 
side piston flange- min exhaust 
pipe 
CA.skot .. t:roa min aft exhaust 26 JUN 88 
Bore, bra..s.. for instrument • 
like compass• - X.ntho boiler 
pioc .. 322 gm treated we- 15 c:ms 
diam. 
Oil box fro11 X. 258 (no· XA 57/ 
7)- aft pi.at.on trunk Tallow Box. 
Includes ••ction ot bra.a• pip.-
480 !Ml, this fits at the back of 
tho box; tack (modern?) ; 8 
solder.a: frag.s (from round pipe 
- check?). 
Pl.tte., brass. curved - plate fom 
a• in from ·2 o· clock· on 
inside forward piston trunk. 
INacribed on brachet-58,38,1; 
scr.-w section- 2. 
Ratchet/ lock '- 2 screws, brass
cog nut i 
CCKJ/ ratchet. k 2 screws, brass., 
lock ia missing - 2o' clock. Stbd 
Forward. 

411 
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XA308A-O CWJ TUB 8 WET 32 4 

ROOM 

XA308E,F CWJ TUB 8WET ROOM 32 2 

XA309 MME X7 32 l 

XA3l0 MME X7 32 1 

XA3ll MM 32 1 

XA3l2 MME X6 32 l 

XA313 MME X6 32 l 

XA314 MME X6 32 l 
XA315 32 4 

XA3l6 32 4 

XA317 32 4 

XA3l8 32 4 

XA319 MME X3 32 l 

XA320 CWJ TUB 8 WET 82 l 
ROOM 

XA321 CWJ TUB 8 WET 82 l 

ROOM 

XA322 CWJ TUB 14 WET 32 11 
ROOM 

XA323 CWJ TUB 8 WET 32 2 
ROOM- nut / 
bolts only 

XA324 31 l 

XA325 MME X2 311 

XA326 CWJ TUB 8 WET 32 ll 
ROOM- nut/ 

bolts only 
XA327 32 7 

XA328 321 

XA328 CWJ TUB 8 WET 32 4 

ROOM 

aido. There i• one joint w/ 
rubber guket - 1 4 • ? • Plua 4 
iron bolt• A-0, E-F iron bolt• 
with waahor•, nuta .and bolt• ( 
from valve). C ••ction • center 
of valve. 
Nut/bolt• 

Nut/bolt/wa•h•r 
Valvo cheat drain. aft, brasa 
Valvo cheat drain, :fwd, brasa 
Cylinder drain Port Aft br••• 
Cylinder drain Port F',,td. br.a.s:11 
Cylinder drain Aft Fwd brass

piston 
Cylinder dr.a.in Starb Fwd brass 
Forward cylinder flange, 
adjusting nuts + block • Cog, 
bra•• w/ 2 nuts + a lock. • 11 
o'clock. 
Forward cylinder flange, 
adjusting nuts + block • Cog. 
brus w/ 2 nuts + a lock. • 4 
o'clock. Port Forward. 
Forw&rd cylinder flange, 
adjusting nuts + block • Cog. 
brass w/ 2 nuts • a lock. • 2 
o•clock. 
Forward cylinder flange, 
adjusting nuts + block • Cog, 
brass w/ 2 nuts + a lock. • 7 
o'clock. 
crankshaft lubricator. bra•• 
Throa..ded abaft- adjuoting bolts 
for gland on torwa.rd port 
cylind♦r - 4 o'clock. 
Threaded shaft- adjusting bolt• 
for gland on forward port 
cylindor .. 11 o"clock 

04te reg Oo.to collect 

Flange cover w/ bra:ss thr.adtd 
bolt- port food pump discharge + 

suction chamber - iron. TOP 
plate w/ spindle. Spindle ha• 

brass end + guket still in 
place kuping broken plate on 
place. C&akot in organic 
storage. 
Port feed l'UIIIP discharge • 
suction chamber SIDE plate. Iron 
{bra•• a.ction on •ha.ft) + 2 
iron bolts + nuts w/ square 
heads (possibly brass nut 
removed earlier) gasket in 
place. 
Mushroom valve, bronze- top. 
From. in.side 
Mushroom valve., bronze- Bottom 
Port pump flange bolts X 4, 4 
nut:, + 3 washers. Also stbd pump 
tra.g:, 
Starboard pump outer pipe, 
copper. w/ flanoe • broken end 
Pipe w/ flanoe copper• starboard 
pump o 
Bolt (1), nuts (3) 
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XA35l MME XS 32 3 Cog, t. 2 ecr.,,., bra .. • 7 

XA351 
XA352 

XA353 

XA354 

XA355 

XA356 

XA357 

XA358 

XA359 

XA360 • 

XA361 

XA362 

XA363 
XA364 

XA365 

XA366 

XAJ66 
XA366 
XAJ67 
XA368 
XA369 
XA370 

XA37l 
XA372 
XA373 

XA374 
XA375 

XA376 

XA377 
XA378 
XA379 

XA380 

XA38l 

XA382 

XA383 
XA384 
XA38S 

MME 
MME 

MME 

MME 

MME 

MME 

MME 

MME 

CLV 
CLV 

MAX 
MA 

MA 

MA 

co 

MAB2 

cw 

MAX 

CWJ 

XS 

X8 

XS 

x0 

xa 

XS 

XS 

X8 

32 4 
32 4 

32 4 

32 4 

32 4 

323 

324 

32 4 

32 4 

32 4 

J2 10 

32 10 

34 2 
32 2 

86 l 

Stor.age+CWA, 83 1 
CWJ 

Storage 

Storage 

Stor.aoe 

Con 

CWA 

JC ROOM 

JC ROOM 

8 l 

32 l 

88 \ 
88 r 
88 l 
47 l 
6 2 
3 l 
32 l 
8 l 
32 1 

32 2 

8 2 
8 1 
87 1 

32 1 

82 2 

321 

8 4 
32 l 

321 

o •clock. Stbd Forward. 
Cog, ratchet, 4 2 acr....,s. bra as 
C09. ratchet, " 2 a crown. brass, 
•4 o'clock. Stbd forward. 
Coo, ratchet. '- 2 acrows, bra••· 
ll o'clock. Stbd aft. 
coo, ratchet, " 2 acrows, brass, 
2 o'clock. Stbd a.ft 
Cog, ratchet, '- 2 a crows, brass• 
7 o'clock. Stbd 
Ratchet, " 2 •crews, brass, 4 
o·clock. Stbd a 
C09, ratchet. 4 2 screws. brass. 
11 o'clock.. Port aft 
Cog, ratchet, , 2 screws, brass, 
2 o •clock.. Port aft. 
Ceo, ratchet, It 2 screws, brass, 
7 o'clock. Port aft. 
Cao, ratchet, " 2 .screws~ bras:,, 
are 292. 4 o"clock. Port aft. 
Nuts, cylinder fastenings, 
bra.as, frc»'I\ port .sid• forward 
piston, lF to 10 F, larger 
flange. 
Nut:s• cylinder fastenings, 
brau, from portaid<t aft piston 
{!lff 361} lA to 10 A, larger 
flange. 
Oil wick crimp and acrew 15 AUC 88 
Lower lubricator + l screw- fore23 DEC 88 
radious link., brass 
Cone. t:rom. c.ast iron pipe in 10 KAR 89 
treatment 
Knife, brau ferrul•, iron 23 SEP 89 

blad<t, wood handle. 
Ferrule, braa.s, from knit• 
Ferrule from knit• .. br&ss 
S&1111>le, motal from trunk 23 SEP 89 
Sa.mpl•, J:Mtal fro=i valve choat 23 SEP 89 
Sample, Mtal from Pump. 23 SEP 89 

Casket material, unlabelled 27 MAR 90 
Wood trags for samples 23 MAY 91 
oval cover, tin 23 MAY 91 

Copper fragment - cut 
Bolt head 

23 MAY 91 

23 MAY 91 
Lubricator pipe guide ; 23 MAY 9l 

inacribed S8,30, l 
Lubricator pipe guide, larger w/23 MAY 9l 
hexagonal treated extension, 
inscribed 58,30, 2. 

Ser""•• from 376 23 MAY 91 
Flange fragment, part of 23 MAY 91 
Model of engine, workino- lto 6 28 MAY 91 

working model 
PiP<t, lubricating guide - 6 MAR 92 

brus/bronz• 
Lockinq scr.w, on littl♦ nut w/ 6 MAR 92 
••ction of this nut ?? 
PiP<t, lubricating guide section ll MAR 92 
- .brass/bronze, l 1/2 screw 
holes 
Ca.st iron frags 
Flange .. br/cu- diam: 130mm 
Pull\P from engine, ca.:,t iron 

11 MAR 92 

18 MAR 92 
18 MAR 92 

base, l~r cylind•r iron, upper 
sect ion copper, + copper tubing. 
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,6 MAX 32 1 Wiro, brua, holding lubricating20 OCT 92 

;i;. ': .•. 7 CWA 32 9 1;:~.;•;::.1~.1./:: tore 20 OCT 92 

. .. compri••• 2 brua •h•lla - ono 
ia atill &ttatchod to tho ongino 

f 
f7A 

l 

S7C 

CWA 

CWA 

CWA 

32 l 

82 l 

82 2 

82 2 

82 2 

82 l 

32 l 

+ in aOCN cuoa nuts are ao 
badly errodod as to ro1Min in 
aitu + tho e&JU for grub acrow. 
+ locking pina. 
Shall, brau. Proa Big End 
aaaeflbly, from fore connecting 
rod. Bio ond cccnpri••• 2 brass 
.shell:, ... one is atill Attatchod 
to the onqino + in aCICH' caaos 
nut• are so badly orrodod u to 
rcta\ain in situ + tho oamo for 
grub •crew • locking pina. 

20 OCT 92 

End place, iron. From Big End 20 OCT 92 
assembly, from fore connecting 
rod. Bi9 end eompriau 2 bra.as 
aholl:s - ono i• still attatchod 
to tho onoino + in somo caus 
nuts: are ao badly orroded u to 
rer:.ain in situ + the same tor 
grub screws + locking pina. 
Bolta, iron.Proa Big End 
asaio=bly * from fore connocting 
rod. Big and compriau 2 bro.so 
•hells • one is still attatehed 
to tho engine + in a01t0 cu•• 
nut:, are so badly errodod u to 
re=ain in situ + the same tor 
grub acrows + locking pin.a. 
Nuts, iron.From Big End 
4us:iombly * from fore connecting 
rod. Big end cocapri••• 2 brass 
shells • one is .eill attatehed 
to tho engirna + in #OCH caaos 
nut. ar• so badly erroded as to 
romain in situ + the saJMt for 
grub screws + locking pins. 

20 OCT 92 

20 OCT 92 

Nuta, each nut with locking 20 OCT 92 
ring, iron, grub ring •. From Big 
End assembly, from fore 
connecting rod. Big end 
comprises 2 brus shells - one 
is still attatched to the engine 
• in some ca.sea nuts are .so 
badly orrodod u to remain in 
•itu • tM same for grub acrews 
• locking pins. 
Locking pin. From Big End 20 OCT 92 

assembly, from fore connecting 
rod. Big end compri••• 2 brass 
.shells .. on• ia still attatched 
to the engine + in some caso,,a 
nuts are so badly erroded as to 
remain in situ • the same for 
grub screws • locking pins. 
Shell, brass, Bio End auelllbly- 20 OCT 92 

section •till on engine. From 
a.ft connecting rod. Big end 
comprises 2 brass sh•lls -one is 
still attatched to engine, • in 
some cases nuts are so badly 

lfarlllme Arellaeology Departme11I Database prl11led b7 SITE 
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iA388L CWA 82 2 

ICA.389 32 2 

ICA.390 32 3 

0\391 82 l 

32 6 

XA393AB 82 2 

X>.394 82 l 

82 2 

32 12 

XA396AB 31 2 

XA396C 82 l 
XA396D 82 2 

l(l>.396E MAX 32 l 

l(/>.396F 82 l 

l(l>.396G MAX 32 l 

,XA396H 82 l 

l(/>.3961 64 l 
,l(/>.396J 82 l 

XA396K 64 l 

Date reg 
Locking pins, iron. Big End 
a•ae=bly- section still on 
•noin.. Proa a.ft connecting rod. 

20 OCT 92 

Big end comprise• 2 brass ahella 
-one i• •till attatched to 
onoin•, • in aorH ca••• nut• are 
so badly erroded &a to r4tfl'4in in 
aitu • the ••• for grub acrowa 
+ lockinQ pins. 
Pipes, oil, tr0111 lubricator eut,20 OCT 92 
removed previously froca Fore Bio 
END, brass 
L.ubricator cup ... complete w/ 20 OCT 92 
pipes + stud# fro111 aft Big End. 
Br/CU + lead 
Poro radius link· iron. ( 20 OCT 92 
lubricating cup cu attatchedl w/ 

excentric rod .attatched. which 
i• attatched to oxoeutive strap 
(398 Cl 
Die block u.sfflbly from fore 20 OCT 92 
radius link. PA.rt of 2 iron 
screws still inaitu. 4 bru• 
sectiona, l bolt - threaded ( 
iron) •erov; length. 30mm; l 
copper eirclo vhieh has had a 

•urround 
Crank .support• - top and bottom 20 OCT 92 
of mid crank aupport. Botto= 
bolt. B, is more eroded 
Crank •upport, aft, TOP. Bottom 20 OCT 92 
bolt totdly eroded, to be 
analysised 
Crank support .. fore .. Top and 20 OCT 92 
Bott011. Tallest .and inost orodod 
ia tM bottOll one - B 
Eccentric serap anombly • AB" . 20 OCT 92 
Consists of 2 brass strap.,,. each 
w/ 2 bolt• • •pa.cos w/ wood 
seperat ion to compltte A circle. 
They are inscribed- FB - foro 
bottom: FT fore top; AB aft 
bottom; AT Aft top. Iron rod 
attatc:hed w/ 2 bolt.,: • nuts. CU 
shin seperatinQ this section. 
Circle, 1/2, top, and bottom. 20 APR 93 
bronze.Bottom marked 58,30. 
Eccentric rod, iron. 20 APR 93 
Bolt "' nut. wtt ddo joining 20 APR 93 
rod - stamped 12. D angled to 
fit Uush in rino. 
Shi,a, copper. Left sido joining 20 APR 93 
rod. 
Bolt, rioht sic!<, joining rod. 20 APR 93 
Stamped 12. F angled to fit 
flush in rino. 
Shim, copper, right side joining20 APR 93 
rod. Chopp,td off on angle, 
labelled 12. 
Bolt joinir,,; rin9s. !Aft - nut 20 APR 93 
on side of A 

Spacer, W<>Od, left. 20 APR 93 
Bolt, right ~ nut on side of A. 20 APR 93 
t.abell.d ll 
Sp.acer, wood. Ri9ht ~ hole 
incomplet~. 

20 APR 93 

Oa.to col loct 
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XA3888 

XA388C 82 l 

XA3880I 82 2 

XA388EJ CWA 82 2 

XA388F CWA 

XA388G 82 2 

XA388K 82 : 

erroded Aa to romain in aitu + 

tho ••m• for grub acrwa + 

locking pin.o. 
End plate, iron. Big End 
•••embly- ••etion atill on 
onoino. From aft connecting rod. 
Bio end compriaH 2 bru• •hells 
-on. ia at.ill attatched to 
engine, • in aomo caaes nuts are 
ao badly erroded .aa to remain in 
aitu + tho •ame t:or grub scr.....,a 
• locking pin.o. 

Dato rog 

20 OCT 92 

Bolt, iron. Big End auO!llbly- 20 OCT 92 
section still on ong-ine. From 
aft connecting rod. Big end 
com;,ri••• 2 bra:ss shells -one is 
still attatched to engine, • in 
ao:ao cases nuts a.re ao badly 
erroded u to remain in situ + 

the same for grub acrow:s + 

lockino pins. 
Nuto, iron. Big End uaelllbly- 20 OCT 92 
:Hction still on engine. From 
aft connecting rod. Bio end 
eon;>riaoa 2 bra.so shells -one is 
still aCCAtehed to engine, • in 
so::io cases nuts are ao badly 
orrodod as to remain in rsitu • 
the .same for grub screws + 

locking pins. 
Locking ringa, iron. Big End 20 OCT 92 
assembly- aoetion still on 
engine. Prom aft connecting rod. 
Big ond coaprises 2 brus sholls 
-one is still att&tch-od to 
engine, + in aome cues nuts are 
so badly erroded .u to remain in 
situ • th• aame for grub screw-a 
• locking pina. 
Gr1Jb •crow, iron. Big End 20 OCT 92 
as:sembly- section still on 
enqine. Prom aft connecting rod. 
Big end c:ompriaes 2 brass shells 
-one ia still a.ttatchocl to 
engine, • in s~ ca.••• nuts are 
so badly errodod u to rom.ain in 
situ • tho •a.me tor grub •crows 
• locking pins. 
Locking pin., iron. Bio End 20 OCT 92 
assembly- section still on 
en;ine. From aft connecting rod. 
Bi• end c:ompri••• 2 brass shells 
-one is still atta.tched to 
en;ine. • in some c&ses nllts are 
so badly erroded as to r•main in 
si:u + the sam,e for grub screws 
• locking pins . 

20 OCT 92 Cr.:.b screw~ iron. Bio End 
as,ernbly- section still on 
er:.;ine. From aft connectin9 rod. 
Bi; end comprises 2 brass shells 
-o~e is still attatch•d to 
er.;i.ne, • in some cases nuts are 
so badly erroded as to remain in 
si -:u • the #Arne for o-rub scrt?Ws 
• !ocldng pins. 
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XA397 32 11 Eccentric Strap aaafflbly • FB" 20 APR 93 
XA397AB 31 2 Circle, 1/2, top, and bottom. 20 APR 93 

XA397C 
XA3970 

XA397E 

XA397F 

XA397C 

XA397H 

XA397I 
XA397J 

XA397K 
XA398 

XA398AB 

XA398C 

XA3980 

XA398F 
XA398H 

XA398I 
XA398J 

XA398K 
XA399 

XA399AB 

XA399C 

XA399D 

XA399E MAX 

XA399F 

XA399G MAX 
XA399H 

XA399J 

XA399K 
XA399L 

XA400 

XA401 MAX 

XA402A-H 

82 l 
82 2 

32 l 

82 l 

321 

82 l 

64 l 
82 l 

64 l 
32 l 

31 2 

82 l 

82 l 

82 l 
82 l 

64 l 
82 l 

64 l 
32 l 

31 2 

32 l 

82 2 

32 l 
82 l 

82 l 

64 l 
84 l 

61 0 

8 3 

32 8 

bronze. 
Eccentric rod, iron. 20 APR 9.3 
Bolt w/ nut. Loft side joinino 20 APR 93 
rod .. stamped 15 
Shim, copper, Loft side joinin9 20 APR 93 

rod. 
Bolt, rioht side joining rod. 20 APR 93 
Stamped 16 
Shim, cower. right side joinino:20 >.PR 93 
rod. 
Bolt joining rings. Left -head 20 APR 93 
towards B - has pin in .situ. 
Spacer, \o/OOd, left. 20 APR 93 
Bolt, right - joinin9 straps. 20 APR 9.3 
Rem&ins of head on B side. 
Spacer, wood, Right 20 APR 93 
Eccentric Strap 0;ssombly 'FT'. 20 OCT 92 
Includ<,s A•O, I', H•K. 
Circle, 1/2. top and Bottom, 20 OCT 92 

Bronze. 3/4. 
Eccentric Rod - attAtched to 20 APR 93 
391. 
Bolt· erroded. Above no• stamp 20 APR 93 
398 C 
Bolt - erod.d • no stamp. 
Bolt - joining •traps left 
thread. on side of A 

20 APR 93 
20 APR 93 

Spacer, wood - left 20 APR 93 
Bolt, joining straps. rioht 20 APR 93 
thread. On aide of A. 
Spacer, wood, right· inc0111plate 20 APR 93 
Eccentric Strap auO!llbly "AT·. 20 OCT 92 
Includes A•H J-L. 39/40. 
Circle, 1/2. top and Bottom, 20 OCT 92 

Bronze. 39/40 
Eccentric Rod - small section 20 APR 93 
only. 
Bolt- loft side - joiniM rod 20 APR 93 
and nut. Stu,pod 40. 
Shim copper, left side. Joining 20 APR 93 
rid and nut. 
Bolt, right side, rod • 1/2 nut.20 APR 93 
Stamped 39 
Shim, copper. right side • rod 20 APR 93 
Bolt - joining straps left • 20 APR 93 
scrow towards A. Hole for 
cocking pin. 
Bolt, joining straps. rioht 20 APR 93 
thread- thread on .side A, hole 
for pins?. Stamped 39. 
Spacer, wood, right 20 APR 93 
Loc•ting pin (oblique lockinol, 20 APR 93 
riQ'ht. This fits into threa.ded 
r~ion of Bolt J. into locatin9 
heel {?) in A. 
Timber fraq.s from on top ot fore20 OCT 92 
cylinder. 
Spa.ull (?) pieces- replace on 20 OCT 92 
en9ine when cons complete 
Pump (from 385). A. cylinder - 20 OCT 92 

cu; B. fla.noo-, brass; c. C4sket 
to B;D. flange, bras:s; E. Cask.et 
to D, I'. fitting to pipe (Cl ;G. 
pipe cu; H. locking nut-cu. 

04to collect 

DAte collect 



1126 
1427 
.428 

.429 

131H 

-"~l31I-O 

MAX 

CWA 

HA Stora:90 

MA Storage 

64 2 

32 l 

32 3 

0 0 

0 0 
82 l 
6 l 

44 0 

82 3 
82 3 
82 3 
82 4 

82 4 
82 5 
82 0 

82 8 
82 0 
82 7 

82 6 

82 l 

82 l 

82 l 

82 l 
82 l 
Jl l 

Jl l 

32 l 

82 l 
64 10 

82 l 

64 7 

Wo,dao, wooden. l'roa pump 20 OCT 92 
concretion. 
Pluq, threaded br•••. Prom pump 20 OCT 92 
concretion 
Maker•• platoa, br••• w./ 2 12 NOV 92 
acrewo 
Filling• frOI\I Forward valve 20 OCT 92 
cheat 
Fillings from Aft valvo ehoat 20 OCT 92 
Flange, .,..inly cone 23 MAR 93 
Wood piece# large w/ cone and 23 MAR 93 
glau 
Flat glasa sherds- from Druzn 23 MAR 93 
174 
Bolt- no hoad (A); BC bolts. l APR 93 
Bolt (Al; BC nut. l APR 93 
Bolt • nut (A + B ) ; CD bolt• l APR 93 
Bolts. C - long; D bolt + nut > l APR 93 
long 
Bolts l APR 93 
Bolts. D• Bolt and nut l APR 93 
Aft .,.b. iron nuts and bolts - l APR 93 
holding frame to bed. 
Contor ...b? l APR 93 
Wob. See 418, 419. ?????? l APR 93 
Pump bolt.a• pore. Viowod from l APR 93 
aide overlooking •• A· bolt and 
nut romains. B- bolt and but. c-
bolt. D· nut and bolt romains. 
Pump bolts - starboard. A- l APR 93 
romains of bolt. B- nut remains. 
c- nut and bolt rONins.D•nut 
and bolt. 
Packing slipper ·v• under eentorl APR 93 
web, east iron. So• 432. ·v• is 
top. 
Scotc:h yoke bolt• top. Rolllllina l APR 93 
of nut each end - larger + 

•~rated Port end. CA.st iron 
surround.a are in frag• 
Seotc:h Yoke Bolt - Bottom, hu l APR 93 
eroded surface on stbd half. 
Pump right. l APR 93 
Pump loft. l APR 93 
Scotch yoke bearing block, stbd,l APR 93 
lubricating tube at top. 
Scotch yoke bearing block, port,l APR 93 
wire in lubricacinq tube at 
top. 
Sp.acor, brass tits between con l APR 93 
rod + big end. Top is where tag 
i• tied scores on big end side. 
Wedge- tapered 2 APR 93 
Spacers• wooden vedges. B- 2 APR 93 
wedge • C .. 2 wood wedges. on top 

of B, w/ bolt hole. D· wood 
w~• w/ bolt hole. appears to 
fit over £. £-wood wedge. F. 3 
wood wedge. G- 3 wood ._..dges, 
fits ov~r F. 
Sp.acer. iron, marked VII. From 2 APR 93 
forward w.:b. Label tied on top. 
Spacers- from forvard web. I- 2 APR 93 
wood wedge. J- wood wedge, fits 
over I. K- wood wedo•. L- wood 
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•442 

,~443 

1444 MA 

,445 CF 
,446 CF 

1447 MAX 
1448A CW' 

1449 CW' 

'll450A CW' 

1451A 

1452 

1453 

""454 CW' 

M55 CW' 

4\456 CW' 

cw 

M59 

BOTTOM 
DISPLAY 
CUPBOARD 

More to com• 

82 l 
82 2 

64 21 

82 l 

82 2 

82 l 

31 1 

32 1 
32 1 
32 l 
32 14 

32 5 

32 28 

32 2 

32 l 

32 1 

32 3 

32 25 

32 l 

32 I 

32 13 

8 l 

appear• to be one piece. F. 2 
wedg .. -F fit• over G. G W<Klgo. 

Spacer, iron. •I• 

Dato reg 

6 APR 93 
7 APR 93 Spacor, iron. Prom under 

cylinder. Block forward. A. 
apaeer Xl (probably 11 but could 
bo 9??) • J. Spacer- •till in 
situ. 
Spacer•, from under cylinder 
Block forward. B. ~• (wider 
block• than previously) . c. 
~ .. (3) fit• over B. D. 
~•-wide.£.~•• small 
piece fita right of D. F. 2 
wedQ"os, tits over 0. C. 7 om.all 
sections .. fits somewhere 
betwoon D + H. H. wodgo- wide . I 
S wedges~ sections fit over H. 

7 APR 93 

Riv.t from dock - •ta.rb aft •• ; 7 A.PR 93 
just inside 433 A+C. 
Nut from cylinder connecting 7 APR 93 
Bolt • TOP 
Nut from cylinder connecting 7 APR 93 
bolt- BO'l"l'OH 
Butterfly valve, bronze 7 APR 93 

Dato collect 

Porward trunk. 58. 30 F 6 DEC 93 
Aft trunk. 58.30 A 6 DEC 93 
Crank ass..,bly 6 DEC 93 
Plate + angl• plate. Ass rivots 7 DEC 93 
• 15 .,.. diam. Prom engine 
trame. 
Plate (parallel to 448). AH 7 DEC 93 
rivets lSaw diam. 
Angle plate (rt angles to 448 • 7 DEC 93 
rivet) • A • :flat plate w/ us. 
rivets 15- in diam. 26 rivot 
sections 
Anglo plate (parallel to 450 ( 
c.-ntre)). A • :flat plate. 
Anglo plate from engine framo. 
Parallel to 451 
Plato parallel to 448 (440 
spaeos on this (?) ) 

Plate• h.u connecting holos A•F 
(next to 455). Parallel to 448. 
A-F a.re gusaets, angles - .tuusoc. 
plates holes a.re marked 
accordingly. Au rivets 15mm 
di-am. 2 rivets -more to coino. 
Plate: botween 453, 454 .. vertical 
has hole A for angle :support 
457. Hole D for angle support· 
455 which connects to 454 D. 
As•. Rivets 15mm diam. 24 rivet 
section, l plate frag- more to 
come. 
Anglo braekot fits side 455 at 
hole 456 X. 
Angle bracket. section. fits on 
455 at hole A. 
Cusset rivet~ rHKWctd from 
frame. 
Spall {sections cone) from crank 
assembly. L.ocation unknown. 

7 DEC 93 

7 DEC 93 

7 DEC 93 

7 DEC 93 

7 DEC 93 

7 DEC 93 

7 DEC 93 

7 DEC 93 

6 DEC 93 

r -

413 
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XA4310 
XA431PU 

XA432/\-T CLV 

XA432FN CWJ 

XA433AGN CWJ 

XM33B-F CLV 

XA433H•M 

XA433o-v 

XA434 

XA435 

X/\436 

XA437A-D CWJ 

X/\4381\·D 

XA439A-G 

82 I 
64 9 

64 23 

82 2 

82 4 

64 7 

64 7 

64 8 

82 l 

31 l 

31 I 

82 7 

82 7 

64 8 

~•• fit• over K. M- 2 wood 
wodQe•. N-wood w.dgo, fit• over 
M. 

Sp.acer. iron- rectangle 2 APR 93 
Spacer•- trom forward w«b. P· 2 APR 93 
wood ""'dge. Q- 2 wood wedge•. 
RST• wooden vedgo. u- 3 Hall 

wood.on wedo••• fit• over T. 
Spacera- Center wob. A- 2 wedge 5 APR 93 
w/ bolt hole, on top of a. a-
wood wodgo w/ bolt hole. C-wodoe 
w/ bolt holes. o- 2 wodo••• goos 
on top ot C. E- amal l thin wedge 
ooos on top pf D. CH- wood 

w•do'•• w/ lug impre:usions. H 
fits on top of G. I - 3 amall 
slithu• of wood under H. JK 

wooden wodgoa. th••• 2 oo 
together. K over J. 2 .tmal l 
wedges under K. LM wooden 

~es. M tits over L. OP wedge, 
p Hts over O. QR wo,dge- R fits 
over Q. sr 1iffdoo. T fits over 
s. 
Spocor,, iron. F- ·vr• with 5 APR 93 
lugs. N- spacer •VII' 
Wed.gos from aft wob, Iron. /\. 5 APR 93 
~•• (2), IV. G. Spacer III-
two luo•. N. Spacer II 
Wedges from aft wob. a. 2 woodenS APR 93 
wedges w/ bolt holes. c. 2 
wooden wodges w/ bolt holes. D. 
small wood wedf.• .. :shaded area. 
of D tita undor cover of B, E. 
wooden ~•. F. wooden wodge 
sits over E. 
Wedges from aft web. Wood. H. 5 APR 93 
wooden ~•. i. Wedge - H fits 
over I • J. Wooden wedge. K 
wooden ~• - J fits under K. L 
Woodon wodgo. M. 2 ~es. 
Wedges/•paeors from aft web. o. 5 APR 93 
Wedge. P. Wedge- O fit• over P. 
Q. wodgo. R. ~•- fits Q over 
R. s. ~•- T. wedge •S over T. 
U. narrow wed.go. V. narrow wedge 

- V tits over U. 
Bolt, upper aft big end bnring .5 APR 93 
Moad • port end. 
Big ond - Forward. Top has 5 APR 93 
lettering and oil holes. 
Big ond • Aft. Top bu lettering5 APR 93 
and oil holes. 
Bolts holding cylinder block to 6 APR 93 
frame under valve chest. Forward 
end. A• bolt, nut fixed. B. 
Bolt, nut in pieces- tree. C 
Bolt and nut - froe. 0 nut only-
bolt still in situ. 
Bolts holding cylinder block to 6 APR 93 
frame under valve chest. Aft 
end. A- 2 bolt frags + 1 washer 
frag. a. Bolt only. C Bolt and 
washer. D bolt only. 
Wedoes. wooden spacers under 6 APR 93 
cylinder block /\ft. AB. wedge- b 
fits on top of A. CO. wedges- D 
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XA484 CW/\ 32 l Flange 
TUB 8 WET XA823 CWJ Fla.no• cover. 

XA2387 
XA2417 

XA2418 

XA2419 
XA2420 

XA242l 

XA2422 
XA2525 

XA2526 

XA320S 

XA4169 

XA4215A-G 

CLG 

Ml\.82 

MA.B2 

CWJ 

ROOM 
X4 

CWA - on top 
ot cupboard 
CWA.- on top 
of the 
cupboard 

T4 

TUB 16 WET 
ROOM 

321 
322 

22 I 

34 l 
44 2 

321 

46 l 
321 

341 

821 

86 7 

Oil cup brass 
Porthole ring, copper. 
9laso. 
Plato frag, blue/white -asiatic 
pheasant. 
Calena. ore, sample, lead 
Neck and shoulder case bottle + 

Skylite vent w/ screw. brass, 
9 lus and rubber. 
Shoe sole, leather 
Pipe 

Lead !ittimq w/ copper nails. 

Sheathing, br4as w/ rM.koup stamp 
M.S. 

Stanchion?? 

concretions to be exc.nva.tod. To 

qo into sope,rc.t• rooi.strations. 

Date collect 

19 DEC 90 
18 OCT 79 

18 OCT 79 

18 OCT 79 
18 OCT 79 

lB OCT 79 

18 OCT 79 
9 FEB 80 

9 FEB 80 
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