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Abstract: African para grass (Urochloa mutica) is an invasive weed that has become prevalent across 
many important freshwater wetlands of the world. In northern Australia, including the World 
Heritage landscape of Kakadu National Park (KNP), its dense cover can displace ecologically, 
genetically and culturally significant species, such as the Australian native rice (Oryza spp.). In 
regions under management for biodiversity conservation para grass is often beyond eradication.  
However, its targeted control is also necessary to manage and preserve site-specific wetland values. 
This requires an understanding of para grass spread-patterns and its potential impacts on valuable 
native vegetation. We apply a multi-scale approach to examine the spatial dynamics and impact of 
para grass cover across a 181 km2 floodplain of KNP. First, we measure the overall displacement of 
different native vegetation communities across the floodplain from 1986 to 2006. Using high spatial 
resolution satellite imagery in conjunction with historical aerial-photo mapping, we then measure 
finer-scale, inter-annual, changes between successive dry seasons from 1990 to 2010 (for a 48 km2 
focus area); Para grass presence-absence maps from satellite imagery (2002 to 2010) were produced 
with an object-based machine-learning approach (stochastic gradient boosting). Changes, over 
time, in mapped para grass areas were then related to maps of depth-habitat and inter-annual fire 
histories. Para grass invasion and establishment patterns varied greatly in time and space. Wild 
rice communities were the most frequently invaded, but the establishment and persistence of para 
grass fluctuated greatly between years, even within previously invaded communities. However, 
these different patterns were also shown to vary with different depth-habitat and recent fire 
history. These dynamics have not been previously documented and this understanding presents 
opportunities for intensive para grass management in areas of high conservation value, such as 
those occupied by wild rice. 

Keywords: Vegetation mapping, landscape ecology; Invasive weeds; freshwater wetlands; 
adaptive land management; biodiversity conservation; fire; remote sensing 

 

1. Introduction 

Wetlands are one of the world’s most threatened ecosystems. Over 50% of wetlands in the north 
America, Europe, Australia and New Zealand were destroyed during the twentieth century and 
others elsewhere degraded [1]. Some authors estimate the greatest global loss of wetlands has been 
in Asia [2]. Exotic weed invasions are assessed to be one of the main drivers of ongoing degradation 
of wetlands, globally [1,3,4]. The current causes of wetland degradation and loss (human land uses, 
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invasive species, water extraction and pollution) are expected to be exacerbated by concomitant 
impacts of climate change (i.e. changed temperature and rainfall regimes; risk of inundation from 
sea-level rise) [5]. 

Tropical grasses such as African para grass (Urochloa mutica) have become globally prevalent 
since introductions for pasture to various continents [6]. Such grasses tend to become invasive and 
can disrupt ecological dynamics by altering hydrological flows, nutrient cycles and seedbed 
conditions [7-9]. These high-biomass grasses are also likely to increase the frequency and severity of 
wildfires [10-14] and threaten valued endemic flora and fauna [3,15,16]. 

Para grass has already established in tropical wetlands across northern Australia [16,17]. Within 
Kakadu National Park (KNP), which includes internationally significant World Heritage and 
RAMSAR-listed freshwater wetlands [18], para grass is beyond eradication and continues to 
increase in extent [19-21]. It can form large, dense, patches that displace native vegetation of high 
conservation value, such as areas previously dominated by native rice (Oryza meridionalis and O. 
rufipogon), and the annual native water chestnut (Eleocharis dulcis) [8,14,16,19,22,23]. These rice 
populations of northern Australia comprise a globally significant genetic resource for cultivated rice 
breeding [24,25]. Native rice and water chestnut also underpin the floodplain vertebrate food web, 
which includes the iconic and range-restricted magpie goose [26,27] and dusky plains rat [28,29] 
both of which feed directly on native rice. If unmanaged, para grass could also adversely affect 
regionally important economic opportunities such as tourism and wild harvest of plant products 
that are culturally significant to Indigenous people [30,31]. 

Wetland conservation managers are called upon to make efficacious, spatially explicit, 
decisions to prioritize and deploy the limited available resources to control weeds. This requires a 
monitoring program that provides knowledge of: (A) The historical context and dynamics of weed 
establishment across landscapes [32,33]; (B) the spatial dynamics and impact of invasions, over time 
and in relation to the distributions of differently valued endemic life under conservation [34] and (C) 
the environmental factors influencing these dynamics [35-37]. Since the dynamic processes that 
induce vegetation change operate over multiple scales, it is also imperative that vegetation be 
monitored over an appropriate range of spatial and temporal scales and in different landscape 
contexts [38]. 

Without such a vegetation monitoring framework it is very difficult to assess the success (or 
otherwise) of specific weed control programs [37,39]. Lack of timely information on the dynamics 
and spatial distribution of weeds hampers control operations by creating uncertainty in 
decision-making [40-42]. However, gathering information on vegetation distribution in wetland 
environments has tended to be opportunistic, fragmented and inconsistent in time and space [40,43]. 
In northern Australia, monitoring efforts have also been limited by high costs and the many logistic 
challenges associated with accurately surveying these expansive, remote and relatively inaccessible 
monsoonal floodplains [40,44]. 

On floodplains of KNP, the seasonal dynamics of vegetation cover are largely controlled by the 
highly variable rains of the tropical monsoon. Their magnitude and duration directly influence the 
conditions that affect plant growth, such as nutrient cycling, water depths and the frequency and 
duration of wet or dry periods (i.e. when floodplain soils are either inundated by water or exposed 
to air) [12,45-49]. They also influence regimes of disturbance such as the incidence, extent and 
intensity of dry-season fire, which have a profound effect on vegetation dynamics [50]. These 
variables interact together with the low-relief topography of these plains to form vegetation 
patterns. 

Prioritization of weed control and research activities requires an understanding of which 
floodplain habitats and endemic vegetation are most prone to invasion or more severe impact, over 
time. In this context, distribution patterns of different native vegetation and para grass are known to 
correlate strongly with floodplain inundation frequency and depth [12,51,52]. Further knowledge on 
the spatial dynamics of vegetation patterns in relation to these variables, may assist in more effective 
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prioritization of para grass control activities and in the identification of timely, site-specific, 
opportunities for implementing para grass control. For example, an understanding of weed invasion 
rates across different water-depth habitats could guide where and when control activities are 
directed. 

In addition, the persistence of dense para grass cover may vary between these different habitats. 
Quantifying these differences could provide important information on the potential impacts of para 
grass, in terms of the permanency of displacement of native vegetation in any one location. In this 
regard, fire can have various effects on vegetation dynamics, because fire regimes (e.g., frequency 
and intensity) and environmental conditions immediately before and after fire will vary across 
different habitats on the floodplain. The periodic removal of dense perennial grass cover (e.g., para 
grass) by fire can favor conditions for the re-establishment of more favored plant species, such as 
native rice [30,53,54]. Alternatively and under different conditions, fire may favor the continued 
invasion of para grass into new areas [55]. Quantifying these effects is important for modeling 
invasion risk, as well as identifying site- and time-specific opportunities for the remediation of 
native vegetation. 

Optical remote sensing (RS) can provide the quantitative, multi-scale information necessary to 
assess vegetation condition and the risk and impact of weed invasions across landscapes 
[20,43,51,56-60]. It can provide accurate, cost-effective, continuous and contiguous spatial 
information on the distribution of vegetation and habitats over extensive and often inaccessible 
wetland landscapes [40,61-70]. Indeed, RS is often the only source of information readily available to 
characterise habitats, and monitor and detect weeds or environmental change in such areas [71,72]. 
Measurements can also be repeated with relative consistency over time, obtained at range of scales 
and spatially integrated within geographic information systems [73-76]. However, inherent and 
sometimes avoidable measurement errors contribute to uncertainty in RS interpretation, which 
therefore must be validated by finer-scale ground surveys, nested within the landscape. It is also 
important to develop RS image classification methods that deliver consistent and accurate spatial 
and temporal of information. This is also important because errors accumulate or are even 
propagated in vegetation change analyses [77-79]. 

In this study, we apply RS to monitor and understand the spatial dynamics of the 
environmental weed, para grass (Urochloa mutica) on a freshwater floodplain of KNP, Northern 
Territory, Australia. Our aim was to quantify the spatial dynamics of para grass invasion and 
establishment in relation to native vegetation, water depth and fire history on this floodplain. These 
analyses are conducted in a GIS environment using a range of monitoring products derived by 
remote sensing in combination with a field survey. In so doing, we assess the impacts and risk of 
para grass invasion on native vegetation communities and floodplain habitats, typical of freshwater 
wetlands in the region. This research provides valuable information for planning and prioritisation 
of site-specific management programs for this weed on this floodplain and other monsoonal 
wetlands under conservation management. 

2. Materials and Methods  

2.1. Site and Data Descriptions 

The Magela Creek floodplain is located in the monsoonal tropics of KNP and the Alligator 
Rivers Region of northern Australia (Figure 1). The first confirmed reports of para grass on this 
floodplain are from the 1950s [80,81]. A few planting trials for para grass as pasture occurred in 
small areas up until 1969 [21,80]. No active control of para grass has occurred on the floodplain since 
its incorporation into the KNP conservation zone in 1981. In fact, perennial grasses (including para 
grass) began to proliferate on KNP floodplains in the late 1980s after intense grazing pressure was 
relaxed by the controlled removal of feral water buffalo from the Park [82]. This situation makes this 
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site suitable for studying the dynamics of para grass under inherent conditions, without weed 
control intervention [51]. 

The datasets used in this study are summarized in Table 1. First, the displacement of different 
native vegetation communities by dense para grass cover is estimated for the whole floodplain area 
from maps representing vegetation cover in 1986 and 2006 (Site I.; Figure 1). Then, inter-annual 
changes in para grass cover were measured for the 48 km2 focus area (Site II, Figure 1). In these 
analyses, we mapped para grass cover from high spatial resolution satellite images captured 
biennially from 2001 to 2010 (Table 2). Details on the production and accuracy assessment of these 
maps are provided in Section 2.3.1. The mapped changes in para grass cover were then interrelated 
to published maps of floodplain depth habitat and fire history [51]. Historical maps of para grass 
cover were also available within the Site II area for years 1991 and 1996 [19]. These maps were 
included in analyses to assess rates of change over time (Section 2.3).  

 
Figure 1. Para grass monitoring sites on the Magela Creek floodplain within Kakadu National Park, 
NT, Australia, showing: Site I.; the greater floodplain area (181 km2) for measuring native vegetation 
types displaced by para grass between 1986 to 2006; and Site II (48 km2) which encloses the largest 
para grass infestation, where finer-scale dynamics of change were measured from 2001–2010. Site II 
contained para grass areas which were mapped historically for this infestation [19], and now 
combined in some Site II analyses. 
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Table 1. Map datasets used to characterize the spatial distribution of para grass and native vegetation in context to environmental variables, water depth and fire history. 

Site Analyses 
Map 

Variable 
Mapping 

year(s) Description Estimated Scale / Accuracy  

Broad scale, 
generalized, 

analyses  
(Site I) 

Para grass 
cover 

2006  
Published vegetation map produced by object-based image analysis 
from 2006 Landsat multi-temporal (dry season) composite using the 

Nearest Neighbour classifier [20].  

Horizontal accuracy ± 30 m. 
Overall accuracy for para grass cover class = 96%  

Native 
vegetation 

cover 
1986 

Published vegetation map produced by aerial photo interpretation 
from 1:25000 images, in conjunction with georeferenced field 

knowledge. [83].  

Quantitative accuracy of the original map is 
unmeasured. Map digitized and spatially 

co-registered to 2006 map (Section 2.2). 

Finer-scale, 
inter-annual, 

analyses  
(Site II) 

Para grass 
cover  

2001, 
2004,2006, 
2008, 2010  

This map series was produce from high spatial resolution satellite 
imagery (Table 2) using a supervised, object-based, classification 

(Section 2.3). Map accuracies were estimated using separate image 
samples reserved for validation.  

Imagery/maps spatially co-registered to an 
accurately georectified (2006 QuickBird imagery) 
with horizontal accuracy approximately ± 2.5 m. 

Overall classification accuracies were ≥96% (Table 
3, results). 

Para grass 
Cover  1991, 1996 

Map produced by aerial photo interpretation of 1:25000 images, with 
georeferenced ground surveys of vegetation used to validate 

interpretations. Published methods [19].  

Quantitative accuracy of the original 
imagery/maps is unmeasured.  

Water Depth  2006  
A depth model of site I, extracted for Site II analyses. Modeled by 

regression between a Landsat dry-season composite and georefereced 
floodplain depth records. Published methods [51]. 

Horizontal accuracy ± 30 m. 
Depth prediction strength R2 = 0.67, p < 0.0001, 
n = 254. Mapped at a spatial resolution of 30 m. 

Predicted depths ranged from 0 to 1.85 m in 
increments of 0.1 m.  

Fire Scar 
maps 

2000, 2003, 
2005, 2007, 

2009 

Maps produced by object-based image analysis of Landsat (available 
dry-season imagery) using the Nearest Neighbour classifier. 

Published methods [51].  

Horizontal accuracy ± 30 m pixels. 
Overall classification accuracies for map series: 

98%, 99.6%, 93%, 99% and 99% respectively.  
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Table 2. Characteristics of the high-resolution image datasets used in production of the vegetation map time-series produced for between 2001 and 2010. 

Sensor Spatial Resolution  Analysis resolution Spectral characteristics Acquisition 
Date(s) 

Additional notes 

IKONOS 

Pixel size: 
0.8 m (pan) 

4m (MS) 
All bands were provided 

at 1 m 

0.6 m 

  Band 1:  445–516 nm (Blue) 
  Band 2:  506–595 nm (Green) 
  Band 3:  632–698 nm (Red) 
  Band 4:  757–853 nm (Near-IR) 
  Pan:  450–900 nm 
Dynamic range: 11 bit  

03-06-2001 
Data geo-rectified and 
resampled to 1 m [84] 

QuickBird 

Pixel size: 
0.6 m (pan and 

pan-sharped bands),  
2.4 m (MS) 

 

0.6 m 

  Band 1:  450–520 nm (Blue) 
  Band 2:  520–600 nm (Green) 
  Band 3:  630–690 nm (Red) 
  Band 4:  760–900 nm (Near-IR) 
  Pan:  445–900 nm 
Dynamic range: 11 bit  

25-06-2004 
panchromatic + 4-band 
multispectral product 

23-06-2006 
24-07-2006 

4-band, UNB-pan-sharpened 
mosaic geo-rectified to 

ground control and used as 
the base image for spatial 

co-registration 
15-06-2008 UNB-pansharpened 

WorldView-2 
Pixel size: 

0.49 m (pan) 
2.4 m (MS) 

0.6 m 

  Band 1*: 400–450 nm (Coastal) 
  Band 2: 450–510 nm (Blue) 
  Band 3:  510–580 nm (Green) 
  Band 4*: 585–625 nm (Yellow) 
  Band 5:  630–690 nm (Red) 
  Band 6*: 705–745 nm (Red-edge) 
  Band 7: 770–895 nm (Near-IR-1) 
  Band 8*: 860–900 nm (Near-IR-2) 
  Pan:  450–800 nm 

15-05-2010 

panchromatic + 8-band 
multispectral product. Two 

separate scenes (Region 1 and 
2), 

Notes: MS/pan = multispectral and panchromatic image sensors with an 11-bit dynamic range; UNB = patented (University of New Brunswick) pan-sharpening algorithm applied to 
multispectral data. *Indicates bands excluded from image analyses (WorldView-2 only).  
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2.2. Native Vegetation Displaced by Para Grass from 1986 to 2006 (Site I): 

An original A3-size hardcopy of the 1986 map [83] was scanned at 1000 DPI then co-registered 
to the 2006 map [20] using image-to-image warping applied in ENVI® ver. 4.8 [85]. This step used 
613 control points manually selected from identifiable features of the July 2006 Landsat 5 TM image 
(i.e., the same base-image used to create the 2006 map). This color map was then segmented in 
eCognition® ver. 8.64 and labeled according to Finlayson (1989) using the manual editing tool [86]. 
Contiguous segments with identical class-labels were merged. A shapefile of the map was imported 
to ArcMap® ver. 9.3.1 [87]. A number of the vegetation classes of the 1989 map were also merged to 
simplify the vegetation change calculations (i.e., a single ‘Paperbark’ class was created from the two 
related sub-classes; and three classes, representing <6% of total displaced area in total, were merged 
and named ‘other’).  

Using the layer-intersect tool of ESRI ArcMap® ver. 10.1, the area of native vegetation displaced 
by para grass was determined by subtracting the para grass areas, mapped in 2006, from each 
intersecting 1986 map classes. Change-area estimates for each native-vegetation class are reported in 
hectares and as a proportion of their total areas. We omitted small boundary errors from analyses, 
evident between the outer boundary of both maps (i.e., between terrestrial and wetland areas). 

2.3 Production and Accuracy Assessment of Para Grass Map Series from 2001 to 2010 (Site II). 

As summarized in Figure 2, this section describes the steps involved in production and 
accuracy assessment of para grass maps produced for Site II.; years 2001 to 2010, by object-based 
image analysis (OBIA).  

 

Figure 2. Steps involved in the production of para grass presence–absence maps (2002–2010) by 
supervised object-based image analysis (OBIA) using stochastic gradient boosting (SGB) and 
assessment of classification map accuracies. 
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Using Trimble eCognition®, a multi-level ‘reference’ segmentation was first produced from the 
2006 image using a ‘bottom up’ segmentation [86,88]. In this step, segmentation scale parameters 
were chosen using a systematic ‘trial and error’ approach, with the objective of producing image 
objects of suitable scale and accuracy for subsequent classification. For each other image in the time 
series, scale parameters were adjusted to match the ‘reference’, based on the total number of image 
objects produced for the total scene area at each segmentation level [88].  

 A classification model was then built for each single-date image using the machine-learning 
algorithm, stochastic gradient boosting (SGB). The SGB method has been applied in several remote 
sensing studies and produced high image classification accuracies [90-93]. The algorithm recursively 
builds an ensemble or ‘grove’ of many independent classification and regression trees (CART) then 
combines them in a single classification model [94,95]. The process uses statistical bagging and 
boosting methods to optimize classification tree rules [94,96]. Bagging, also known as bootstrap 
aggregation, refers to the process of repeated, random selection of a separate subset of data to train 
each separate CART model [97]. Boosting refers to an additional process for the weighted selection 
of each new training data subset taken after each CART iteration. This adaptive weighting process 
uses an updated probability distribution of samples calculated from the residual error determined in 
the last model iteration. It places more weight on samples that were classified poorly in previous 
iterations [97]. By also applying the bagging procedure, the SGB method is resistant to model 
over-fitting [91,98]. It is a non-parametric method and does not rely on the assumption of normal 
distribution in data. In this context, the method is resilient to error arising from inaccurate training 
data, outliers and unbalanced sample data [99,100]. 

Image training samples for the SGB models were chosen from known para grass and non-para 
grass areas as defined in field surveys undertaken by airboat and helicopter (Figure 3 and Table 3). 
Image sample selection and subsequent classifications were conducted at the spatial scale of Level II 
image segmentations [88,89]. In this context, the mean size of sample objects used to train para grass 
was 16.3 m2 ± 14.3 SD. Selection of image samples was aided using the pan-sharpened, true-color 
and false-color image composites of each image. In this regard, visually selected sample objects were 
then validated with georeferenced photos vegetation and descriptions gathered by trained field 
observers. 



Remote Sens. 2019, 11, 2090 9 of 38 

 

 

Figure 3. The distribution of sample-object clusters as selected and used for supervised classification 
(training) or reserved for validation of resulting present-absent classification maps for para grass 
(years 2001 to 2010). 

Table 3. Wetland vegetation types sampled from the satellite imagery (years 2001 to 2010). 
Vegetation cover descriptions are summarized from Boyden et al. 2013 [20]. 

Model Training 
Class 

Sampled vegetation cover types  

Para grass  Urochloa mutica: dense cover, near mono-culture—wet and dry 
phases 

Non- 
para grass 

Native perennial grasses and floating vegetation mats: Dense 
vegetative cover dominated by Hymenachne acutigluma or 

Leersi hexandra 
Annual grasses and sparse native perennial grasses, and ephemeral 

sedges: Oryza meriondalis, Pseudoraphis spinecens and E. dulcis 
(native rice, mud-grass and water chestnut) 

Non-floodplain grasses and bare ground 
Sedges: Dense vegetative cover of perennial and ephemeral sedges 

(e.g., Eleocharis sphacelata and E. dulcis )  
Open water Lilies dominated by Nymphaea or Nymphoides spp.  

Nelumbo nucifera (red lily) 
Melaleuca (paperbark trees) 

Deeper open water with no emergent vegetation cover 
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2.3.1 Estimating Trends and Variability in Para Grass Cover (Site II). 

Linear regression was applied to assess trends and variability in total para grass cover (ha), over 
time (yr.) and in relation to water-depth habitat of the floodplain. These analyses were undertaken 
on data from the nine year study period (2001–2010, n = 5). We then repeated the regression on data 
spanning nineteen years (1991–2010), with historic para grass data included (years 1991 and 1996). In 
this analysis an outlier was removed (the 2004 datum), to be discussed further in the results. 

The para grass cover maps (including several different derived indices); water depth and fire 
history maps were analyzed using the Zone-statistics function of Spatial Analyst Tools of ArcMap® 
ver. 9.3.1 (Figure 4). To do this ‘zones’ were assigned using a regularly spaced hexagonal sample 
lattice with sample-cell areas of 0.21 ha with a cell-height of 50 m. This sample size was chosen 
because we considered it to be the minimum size that: (a) could be used to re-sample finer scale 
measurements without causing significant edge-effect errors; and (b) it was of a practical scale for 
future monitoring and applied research directed towards optimization of weed control operations or 
trials. Hexagonal resampling has also been shown to have better spatial sample efficiency due to 
symmetry with nearest neighbors and is visually less biased for displaying density-maps than 
square grids [101,102]. 

 
Figure 4. Methods used to calculate and integrate para grass and environmental layer datasets using 
a hexagonal sample lattice and zonal statistics. 

The several spatial and temporal indices derived for para grass (Table 4), enabled change in 
para grass cover to be characterized across multiple scales. These indices represent either local- or 
patch-scale traits. Local-scale traits included: (a) The presence/absence of para grass, measured at the 
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standardized spatial scale of the map productions; and (b) the percentage cover-density, measured 
within larger-scale, hexagonal, sample cells (0.21 ha) of a sample lattice. Patch-scale indices included 
the area of discrete patches; inter-patch distance; the ‘cumulative persistence score’, over time (i.e., 
the sum of all para grass from all high-spatial resolution map layers); and the distances to most 
‘persistent’ patches.
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Table 4. The vegetation and habitat indices used in the analysis of para grass change over Site II from 2001 to 2010. 

Group Variable  Description Derivation 

Para 

Grass  

Cumulative 

Persistence Score (CPS) 
The persistence of para grass at any one location, over time (2001 to 2010). 

The sum of binary map layers for para grass presence using maps 2001, 

2004, 2006, 2008 and 2010 (i.e., present = 1, or not present = 0). 

(a) Cell-density, and 

(b) change in 

 cell-densities 

(a) The percentage of para grass cover measured within each 0.24 ha, hexagonal, sample cell 

of each map layer (2001, 2004, 2006, 2008, and 2010); and (b) the negative or positive change in 

cell-densities, calculated for each image-difference pair in series: 2001-04, 2004-06, 2006-08 

and 2008-10. 

Percentage cover calculated based on the number of para grass pixels as a 

proportion of the total number of pixels within a hexagonal cell. Change in 

cover then calculated by subtraction for image-difference pair (please refer 

to Equation 1 and 2, below).  

Distance to patch and 

change in patch 

distance  

The Euclidean distances (m) to nearest discrete para grass ‘patch’ over time, 2001 to 2010. 

Changes in patch distances were also measured for each image-pair in series: 2001-04, 

2004-06, 2006-08 and 2008-10 and denoted as either an increase (+) or decrease (–) in distance. 

The Euclidean distance function applied at 1 m resolution to each map. 

Zone statistics were then derived for each layer from the hexagonal 

sample matrix. Refer to Equation 3, below for the ‘change in distance’ 

calculation. 

Distance to 

‘Permanent’ Patch 

The Euclidean distances (m) to the nearest ‘Permanent’ patch, defined as patches with a 

possible maximum cumulative persistence score (CPS) of 5 

Euclidean distance function applied at 1 m resolution. The spatial analyst 

‘Reclass’ function was used to generate the CPS map layer.  

Patch Size  
Contiguous areas classified as para grass. Patch sizes (ha) were calculated for each 

classification layer: 2001, 2004, 2006, 2008 and 2010.  

Patch areas (ha) calculated from polygon layers generated for all 

classifications. Georeferenced zone statistics (mean and maximum) were 

calculated for each respective layer using the hexagonal sample lattice.  

Other 

Depth habitat 

Used in the analysis of variance (ANOVA) of para grass change in relation to three depth 

categories: ‘Shallow’, ‘Moderate’ and ‘Deep’. Selection of the depth ranges of each depth 

category were based on the distribution of para grass in relation mapped depth [51}.   

 

Previous dry-season 

fire 

The burnt (or unburnt) areas mapped in the first dry-season period between each image- 

difference pair (i.e., 2001-04, 2004-06, 2006-08 and 2008-10.) 

The fire-scar maps derived from Landsat representing years 2003, 2005, 

2007 and 2009 [51].  
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Indices relating to changes in density and inter-patch distance of para grass were also 
calculated for a series of four ‘image-difference’ pairs 2001-04, 2004-06, 2006-08 and 2008-10 (refer to 
Equations 1, 2 and 3). 

Firstly, para grass sample-cell density was calculated for each map of the time-series (Equation 
1): 𝑃𝐶௧  =  ൬ 𝑆௧𝐶𝑡𝑖൰ ∗ 100 (1) 

where PCti is percentage cover in cell i for para grass classification layer t; Sti is the sum of all 
para grass pixels falling within cell i and C is the total count of all pixels (para grass and non-para 
grass classes) from layer t falling in cell i. Cell-density was also color-coded for the purpose of 
cartographic illustration. 

Then, from each of image-difference pair representing the near-biennial time intervals of the 
series (2001–04, 2004–06, 2006–08 and 2008–10), two indices relating to changes in cover-density and 
the distance between para grass patches were calculated (Equations 2 and 3):  Change in Density ୧  =  PC୧୲భ − PC୧୲బ (2) 

where Change in Density in cell i is the difference in PC (percentage cover, Equation 1) 
measured in that cell between at t1 and t0 (i.e., representing each image-difference pairs, above). Change in Interpatch Distance୧  =  PD୧୲భ − PD୧୲బ, (3) 

where Change in Interpatch Distance is the difference in the mean distance between patches 
boundaries (PD) in cell i measured between at t0 and t1 (representing each image-difference pair, 
above). 

The local Moran’s statistic was applied in ESRI ArcMap (ver. 9.3.1) to the mean the ‘change in 
density’ map [87]. This statistic identifies spatial clusters that differ significantly from a random 
distribution of the same values array [103]. We used a fixed search distance of 50 m in this analysis. 
Areas of either significant positive or negative change are referred to as ‘hot-spots’ and ‘cold-spots’ 
respectively. Hot- and cold-spots were then compared to depth habitat area using a one-way 
ANOVA.  

The spatial and temporal patterns in para grass were correlated with the maps of water depth 
and fire history. Indices for para grass density and change in density were plotted across the depth 
gradient as the mean for the total sample period, each sample year and each image-difference pair. 
The number and total area of sample cells within each water depth interval bin and each ANOVA 
depth category (Shallow, Moderate and Deep) are shown in Figure 5. In this regard, sample cells 
containing zero para grass over the entire sampling period (from 2001 to 2010) were omitted from all 
analyses. 
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Figure 5. The mapped depth categories (shallow, moderate and deep) tested in the ANOVA and the 
number of hexagonal sample-cells within each depth-interval bin across Site II. Data used for the 
ANOVA were only taken from sample-cells where para grass was ‘present’ (black bars). Sample cells 
with a complete absence of para grass over the sample period were omitted from the analysis (i.e., 
stacked grey bars). 

Linear regression was also applied to compare the rate of annual change in para grass cover in 
shallow (≤1.15 m), moderate (>1.15 to <1.45 m) and deep (≥1.45 m) water depth habitats. These depth 
ranges were selected to reflect major differences in total cover of para grass across the depth gradient 
as mapped in 2006, Site I [51]. In this regard, the total cover of para grass was known to be greatest 
within the depth-range of the moderate depth category. Two estimates of the linear rate of change in 
para grass cover were then calculated. First, changes in total extant para grass cover were measured 
across the 5-image series. Second, the cumulative spatial footprint of para grass was measured. This 
measure included attrition in para grass between years. 

The potential influences of water depth and fire habitat on para grass dynamics were tested 
using a two-way factorial analysis of variance (ANOVA) applied in Statistica® [89]. Change in para 
grass density and inter-patch distance (Equation 3) were the variables used to evaluate the effects of 
the habitat parameters of water depth and fire on para grass dynamics. The dependent variables 
were calculated for each time interval of the four image-difference pairs. These data were pooled 
such that each cell of the sample lattice was replicated four times. Hence, the ANOVA design was 
assumed to be balanced in relation to effects of time on para grass variables. For consistency, the 
interval unit of change was ‘biennial’ with the one exception being a 3-year change interval for 2001–
2004. Likewise, the time-interval between fire and post-fire para grass mapping was one wet season 
(i.e., about 1 year). In this analysis, we assumed that impacts of fire on para grass cover would be 
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most apparent in relation to the most recent fire. Therefore, fire categories were chosen from each 
fire-year (2003, 2005, 2007 and 2009) to correspond with each respective image-difference pair (2001–
2004, 2004–2006, 2006–2008 and 2008–2010). These categories were defined by the majority (of either 
burnt or unburnt classes by area) within each sample-cell on each fire-year map.  

3. Results and Discussion 

3.1.  Native Vegetation Displaced by Para Grass from 1986 to 2006 (Site I)  

Para grass covered 1308 ha or 7% of the total floodplain area in 2006 (Figure 6). Oryza was the 
most impacted of the native grassland communities mapped by Finlayson et al. (1989), with ≈471 ha 
or 24% of its area displaced by para grass by 2006. This was followed by native Hymenachne 
grassland ≈262 ha (20%), Pseudoraphis grassland ≈132 ha (5%) and Hymenachne–Eleocharis swamp ≈49 
ha (5%). The largest para grass patches were associated with the Oryza and Hymenachne 
communities. Smaller patches were commonly associated with floodplain margins, displacing large 
areas of Pseudoraphis grassland. In this regard, , similar native vegetation affiliations for para grass 
have been independently reported for the Magela Creek and the Mary River floodplains of Northern 
Territory, Australia [11,19,51,104-106]. 

 

Figure 6. The estimated displacement of native vegetation communities by para grass between 1986 
and 2006 shown as: (a) The distribution of dense para grass and the native communities displaced at 
2006; and (b) the total area of the key vegetation communities displaced. 
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To some extent, the different scale and accuracies of maps used for this analysis limit the 
conclusions that can be drawn. For example, due to semantic limitations, the displacement of the 
paperbark woodland class (309 ha) by para grass, does not necessarily indicate a reduction in 
paperbark tree numbers. Nevertheless, this warrants further investigation as other authors’ contest 
that grassy weeds can suppress woody recruitment in savannas. This may occur when such 
high-biomass weeds alter microsite conditions or lead to more frequent and severe fires [11,107,108].  

In addition, a spatial mismatch error of ±120 m was detected between the two intersecting 
maps; as calculated by the root-mean-square statistic of the map co-registration process. Such an 
error may distort generalized estimates of native vegetation displacement, particularly when 
discreet map features are small or have narrow linear shapes [109]. However, in this case we do not 
think this error will have a major impact on the result for the following reasons. Firstly, most of the 
contributing area of para grass (mapped at high accuracy) is confined to just several larger discreet 
patches on the 2006 map. That is, while smaller patches of para grass mapped by Landsat (and 
within 120 m of the boundaries of 1986 map features) will be most prone to this mismatch error, they 
contributed little to the total area of para grass mapped. Secondly, the total area over which para 
grass was measured was large (182 km2) and measured from a map produced with high 
classification accuracy for para grass (96%), and with an estimated spatial accuracy of 30 m. Thirdly, 
most discreet features on the 1986 map had large rounded shapes meaning the impact of spatial 
mismatch error of 120 m will be less significant. 

3.2. Production and Accuracy Assessment of Para Grass Map Series  from 2001 to 2010 (Site II).  

The series of maps produced by SGB-OBIA classifications, including ‘present–absent’, and of 
conditional probability maps for para grass are shown in Figure 7. In general, this method produced 
high classification accuracies for para grass (Table 5). However, there were notable inconsistencies 
between the classifications as highlighted by the 2004 image. In this case, conditional probabilities 
for para grass (based on the best fit produced from training variable inputs) appeared to be lower in 
comparison with other maps (Figure 7b). Potential inconsistencies between years in ‘on-ground’ 
data, used to train and validate each classification, or in the environmental conditions at the time of 
image capture, may have contributed to this anomaly. In the future, such uncertainties might be 
avoided by implementing where possible a more systematically stratified approach for the collection 
of adequate ‘on-ground’ samples across these large, relatively inaccessible, areas. In this context, 
integrated deployment of UAV (Unmanned Aerial Vehicles) with very high resolution, sensor 
technologies for ‘on-ground’ sampling can likely improve consistency and accuracy of satellite 
image mapping, over time [76]. 
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Figure 7. Site II maps produced from the five SGB-OBIA classification models (years 2001–2010) showing: a) The ‘presence–absence’ classifications of dense para grass 
cover used in subsequent analyses; and b) associated conditional probability maps for these classifications (inset area ,example).  
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Table 5. Accuracy statistics for the vegetation maps of the time-series (2001 to 2010) produced from the single-date SGB classification models and using the chosen set of 
139 OBIA predictor variables. 

Class Number of Pixels Accuracy Kappa Statistic Error Rate (%) 
Image Reference Classified Correct Producers Users Overall Producers Users Overall Omission Commission 

IKONOS (2001) 410897 413727 377619 92 91 96 0.90 0.89 0.89 8 9 
QuickBird (2004) 707180 756735 664166 94 88 96 0.92 0.84 0.88 6 12 
QuickBird (2006) 617425 643414 590333 96 92 96 0.94 0.88 0.91 4 8 
QuickBird (2008) 625118 700247 618718 99 88 97 0.99 0.88 0.91 1 12 

WorldView 
(2010, R1*) 

86461 89831 74124 86 83 99 0.85 0.82 0.83 14 17 

WorldView 
(2010, R2*) 

273762 279851 264567 96.6 95 97.6 0.95 0.93 0.94 3.4 5 
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3.3.  Measuring Distribution Trends and Inter-Annual Dynamics of Para Grass (Site II). 

From 2001 to 2010, para grass cover increased by 540 ha from 747 to 1287 ha, a total change of 
72% (Figure 8a–c). A distinct trend of increasing para grass was evident over the timeframe, 
underpinned by net increases of 145, 102 and 293 ha for the periods 2001–2006, 2006–2008 and 2008–
2010, respectively. This trend was also consistent over the extended 18-year period, 1992–2010, with 
historical map records included [19]. The relationship between increasing para grass (ha) and time 
(years) was not significant (R2 = 0.58, p = 0.08, n = 5) when all the 2001–2010 maps were included in 
analysis. However, the relationship was stronger if either the 2001 or the 2004 map was removed 
from the analysis (i.e., respectively R2 = 0.95, p = 0.02, n = 4 and R2 = 0.81, p = 0.07, n = 4). The 
relationship was strongest when results (less the 2004 outlier) were combined with the historical 
maps of para grass cover maps—Figure 8c, dashed line (i.e., R2 = 0.96, p = 0.0003).  

However, a net decline of 194 ha was also measured from 2001 to 2004 (Figure 8c). Changed 
hydrological conditions or fire disturbance might have contributed to these observed declines. 
Alternatively, the 2001 and 2004 image classifications might be less accurate than other 
classifications of the series due to a heavier reliance on reference samples selected by retrospective 
image interpretation [88].
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Figure 8. Para grass cover measurements (Site II) shown as: (a) The para grass cell density for each image from 2001 to 2010; (b) the mean cell density from these 
measurements (n = 5 image samples) and (c) as the total area (ha) of para grass over time (year) and including historic measurements (1991 and 1996) [19]. Note: Omission 
and commission error estimates only available for the recent maps, from 2001 to 2010. 
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The mean overall change in para grass density within sample cells was +3.3% and net 
inter-annual change in density ranged from –4.3% to +8.9%, as measured across the series of four 
image-difference pairs (Figure 9c). However, these statistics did not reflect the finer scale 
site-specific fluctuations in para grass cover occurring within areas where it had already established. 
The spatio-temporal variability of para grass in these areas was substantial, yet site-specific trends in 
cover increase or decrease were also apparent (Figure 9a,b). 

Mean ‘hot-spots’ and ‘cold-spots’ of change, measured by the local Moran’s statistic, were also 
spatially clustered (Figure 10). Hot-spots (areas of increasing cover) occurred in shallower areas 
compared to cold-spots (areas of decreasing cover), although the mean difference in depth between 
these extremes was less than 0.1 m (t = 6.8, d.f. = 5487, p < 0.0001). On average, hot-spot areas were 
much larger than cold-spot areas (138 ha ± 2 SE compared to 23 ha ± 1 SE.; respectively), contributing 
to the net increase in para grass cover. Hotspots were sometimes located along channel lines and 
associated levee banks on the floodplain. Raised levee banks are likely to enhance para grass growth 
because they may be more fertile, have a connection with permanent water and may support longer 
periods of aerobic root-metabolism of para grass [110,111]. 

The high inter-annual variability in annual wet season rainfall across the study period almost 
certainly influenced change and variability in para grass cover. In this regard, annual wet season 
rainfall ranged between 1111 and 2128 mm from 2001 to 2010 [112]. For the same period, the area of 
floodplain burnt annually ranged from near zero to 150,000 ha [51]. Between-year variation in 
hydroperiod and the spatial extent of this variation is also likely to influence the rates at which para 
grass distribution changes. For example, because the metabolism of para grass root systems are 
energetically most efficient under aerobic conditions, periods of soil inundation or, conversely, 
air-exposure, will influence attrition or production of para grass [111]. 

Extensive floodplain fires in the 2003 dry-season [51], followed by a late commencement of rain 
the following 2003/2004 wet-season [112] could have resulted in a reduction in para grass cover that 
favored the re-establishment of native vegetation cover in these areas. It has also been shown, for 
example, that Oryza re-establishment is facilitated by removal of para grass cover by fire [53] or 
mechanical means [8].
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Figure 9. Change in para grass cell-density at Site II as: (a) Mapped in series for each image-difference pair; (b) a map of the mean change in density from all 
Image-Difference Pairs (IDPs) and as (c) the graphed mean net change for each IDP. 
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Figure 10. Localized trends in para grass cell-density at Site II as determined by the local Moran’s statistic applied to the change in density data layer and overlaid in 
relation to predicted depth and a dot-density overlay of the last recorded para grass distribution in 2010. 
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Large increases in the size of para grass patches occurred between 2001 and 2010, despite the 
localized fluctuations in para grass density, within patches (Figure 11a). From 2001 to 2004, the mean 
patch size was less than 2.5 ha, but grew from 40 to 50 ha between 2006 and 2008, and to almost 200 
ha in 2010 (Figure 11b). These results imply that small patches eventually expand and coalesce with 
surrounding patches, completely replacing pre-existing vegetation.  

In other areas, the size of para grass patches fluctuated in time between zero to less than 0.1 ha 
in size (Figure 11a). In these areas sample cells including ‘small patches’, with an overall density of 
<5%, are likely to represent classification noise (i.e., para grass commission error). This level of error 
is consistent with accuracy statistics generated for the individual maps (Table 5, above). In this 
regard, future research might investigate the screening out of classification error based on smaller 
patch size to yield a more robust measurement of change. 

Rates of increase in para grass cover correlated strongly with the depth-habitat profile for Site II 
(Figure 12). While cover density varied substantially between years, mean density peaked within the 
0.5–1.5 m depth range (Figure 12b). Density fluctuations were greatest within the 1.5 to 2.5 m range, 
while the scale of change in cover density was greatest in the 1.0 to 1.3 m depth-zone (Figure 12d). 
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Figure 11. Changes in para grass patch-size (ha) at Site II from 2001 to 2010: (a) Mapped as the maximum patch-area by year; and (b) graphed as the mean patch area by 
year. Patch-size divisions were chosen manually, with a point of separating larger patch increases and areas that may represent zero para grass and higher likelihood of 
commission error (>0 to 0.1 ha). 
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Figure 12. Para grass cover densities (%) from 2001 to 2010 in relation to depth over Site II as measured from the 0.24 ha sample-cell lattice and defined by : a) mean 
densities from all present-absent maps; b); mean densities from each individual map; c) the ‘change-in-density’ means from all Image Difference Pairs; and d) the 
change-in-density means from each individual IDP. The representation of  depths- and low/high extremes as predicted for March 2009 [51]. Error bars are the 99% 
confidence interval. 
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As summarized in Figure 13 and Table 6, para grass spread most quickly through the 
moderate depth habitat (>1.15 to 1.4 m) compared to the shallow and deep depth habitats 
(≤1.15 and >1.4 m, respectively; ). The average increase in total ‘extant’ para grass cover 
within the moderate depth habitat area was estimated to be 37 ha per year (Figure 13a). The 
cumulative spatial footprint of para grass (i.e., ‘extant’ + ‘extinct’ cover) within the moderate 
habitat was 95 ha per year, almost three times the year-total rate of increase in the extant 
cover (Figure 13b). suggest that para grass percolated most quickly through the moderate 
depth habitat, but that attrition in para grass cover also occurred in this habitat, at an average 
rate of 58 ha per year.  

The spread of para grass was slower in the shallow habitat, while its cover-density was 
nevertheless greatest (Figures 12a and 13). This suggests that its capacity to establish stable, 
spatially persistent, patches is greater within this habitat. By contrast, within the moderate 
depth habitat, growth rates were higher but the difference between historical and extant para 
grass cover was also greater. Therefore, while rates of para grass growth were, on average, 
greater in this habitat, colonies also appeared to be more frequently disrupted. A regime of 
more frequent disturbance within this habitat area might be causing these fluctuations. For 
example, these areas might be subject more severe seasonal fires or hydrological conditions 
(e.g., a prolonged flood inundation period) that may cause para grass to be reduced in 
density.  

Measurement errors are compounded when calculating change from multiple 
classifications estimates [113]. Therefore, estimates of cumulative cover may be exaggerated. 
However, there are several reasons to suspect that the majority of the differences observed 
between the year totals and the cumulative footprint (Figure 13, Table 6) are real. Firstly, 
reduction in para grass cover does occur after fire, although the impact on para grass survival 
is variable and likely to be dependent on the severity of fire and the hydrological conditions 
before and after fire [114]. Secondly, periodic reductions in para grass cover might occur 
within the ‘optimal’ moderate depth habitat zone, in years when hydrological fluctuations 
occur that are outside the norm. In these cases, changes in local habitat conditions can 
amplify competition from coexisting native vegetation [115,116]. Thirdly, localized depletion 
of nutrients after invasion might cause periodic reductions in para grass cover-density. 
Individual para grass patches were sometimes ring-shaped, or were observed to move with 
an advancing growth front while also contracting behind this front. In other words, vigorous 
production by para grass may occur at an invasion front, in new areas not fully exploited of 
nutrients, while senescence and less vigorous growth occurs progressively in longer 
established areas where nutrient levels may have been depleted, locally. In support of this 
hypothesis, para grass productivity increases dramatically in response to increased nutrients 
[117]. 
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Figure 13. Changes in para grass cover within ‘shallow’, ‘moderate’ and ‘deep’ depth water 
habitats at Site II as calculated from: (a) The total mapped para grass cover for each year; and 
(b) the cumulative spatial footprint of para grass cover over time, calculated in series, 
sequentially, from 2002 to 2010. The symbols for shallow, moderate and deep categories on 
the graph are defined in Table 6, below 

Table 6. Regression statistics for the estimated rates of rates para grass cover increase within 
‘shallow’, ‘moderate’ and ‘deep’ depth water habitats at Site II as calculated from Figure 13.  

Cover measurement Depth range (m) 
Linear Regression Results 

Slope (b) R Adjusted R2 p Sig. 

Year by year totals 

Shallow  

≤1.15 m 
18 0.84 0.61 0.074 * 

Moderate 

>1.15 to 1.4 
37 0.75 0.42 0.141 * 

Deep 

>1.4 
11 0.59 0.13 0.297 ns 

Cumulative ‘footprint’ 
overtime 

Shallow  

≤1.15 m  
37 0.99 0.98 0.001 *** 

Moderate 

>1.15 to 1.4 
95 0.99 0.98 0.001 *** 

Deep 

>1.4 
46 0.99 0.98 0.001 *** 

In addition to these sites of dynamic para grass cover, more ‘permanent’ para grass 
patches were also apparent as illustrated by the mapped para grass ‘persistence’ score 
(Figure 14a). Patches that were more persistent tended to be in closer proximity to one 
another (Figure 14c) and persistence was highest in shallower depth-habitats, while the 
spread of para grass was fastest in the moderate water depth habitats (Figure 13, above). The 
degree to which cover density within established patches is fluctuating, while persistent 
patch abundance is increasing, can only be determined by longer-term sampling. The rate at 
which these patches form and whether these patches should be targeted in active control 
programs is an important management question. This could be answered experimentally by 
targeted field research and weed control.

a) 
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Figure 14. a) The mapped para grass ‘persistence’ score calculated by the sum of the present-absent map layers (n = 5, from 2001 to 2010); b) the distribution of the 
persistence score across the depth gradient intervals, measured by the cell-sample means; and c) the mean distance between ‘permanent’ patches, less persistent 
patches and where zero para grass was scored over the entire map time-series. 
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In the absence of fire, the density of para grass cover increased across all depth categories, with 
the most pronounced increase occurring in the moderate and shallow depth zones (Figure 15a). The 
related African floodplain grass, Urochloa mosambicensis, was found to behave similarly in the 
absence of fire, with cover density and extent increasing and plant biodiversity decreasing 
continuously for 8 years [108].  

The distance between para grass patches also increased in the two deeper depth habitats in the 
absence of fire (Figure 15b). This suggests that the spread of para grass in deeper habitats may be 
restricted by competitive interactions with other aquatic plants, such as perennial Hymenachne grass, 
that favor this habitat [51]. 

 
Figure 15. Results of a two-way ANOVA suggesting the interactive effects of depth regime and fire 
on para grass as measured by changes in: a) Cover-density; and b) para grass inter-patch distance. 
Numerical results from the ANOVA are shown in italics. Error bars are the 99% confidence interval. 

Conversely, fire appeared to facilitate the spread of para grass in the deep habitat (>1.4 m). Fire 
has been demonstrated to substantially reduce the abundance of native Hymenachne grassland 
[30,118]. Occurrences of dry season fire in the ‘deep’ habitat indicate that water levels were lower at 
the time but soil moisture remained high, providing conditions for para grass growth.  

Previous findings suggest that, in general, para grass has a faster growth rate than native H. 
acutigluma [117,119,120]. However, these results also suggest that, in an absence of fire and in deeper 
water habitats, native Hymenachne may competitively exclude para grass, under these conditions. 
Further trials, monitoring growth under different inundation regimes of the floodplain, may be 
necessary in order to quantify the differences between these two grass species in different wetland 
habitats. 

From a management perspective, the positive or negative influences of fire (and timing of fire 
for most effective control of para grass or establishment of native species) are likely to be context 
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specific and be related to local hydrological regimes [54,114,121]. Our initial results suggest that, 
within different depth habitats, different approaches in application (or suppression) of fire may be 
required to assist in control of para grass. Further research into these dynamics is therefore necessary 
if fire, in combination with other control methods, is to be skillfully applied to manage para grass on 
Kakadu wetlands.  

4. Conclusions 

Aquatic weeds remain a significant threat to the degradation of wetland systems that support 
economic and cultural livelihoods, ecosystem services and biodiversity conservation values, 
globally. This study demonstrated that satellite RS can provide a valuable spatial information 
framework from which to monitor vegetation condition across wetlands and over multiple scales. It 
also points to site-specific opportunities for targeted management actions, such as controlled 
burning. However, in order to manage uncertainty in RS vegetation monitoring, it is also important 
to develop and maintain a consistent and statistically rigorous foundation to train and validate 
satellite imagery. 

Ideally, land management decision makers require timely and accurate information on weed 
distribution change. However, the delivery of consistent, high quality, information for detection and 
prediction of vegetation change will also require a long-term, ongoing, commitment and resourcing 
from bodies governing the conservation management of wetlands. As shown in Figure 16 , a basic 
framework for coordinated effort to monitor, research and manage vegetation change , using our 
case study as an example (revised from [121, 122]). 

  
Figure 16. A conceptual basis for the strategic management of para grass invasion on wetlands of 
Kakadu National Park using spatially explicit monitoring, ecological risk assessment and adaptive 
management. Revised from [US EPA [122]] and [Boyden, et al. [123]]. 
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As this case study and others indicate, para grass continues to expand its distribution and 
density on freshwater floodplains of northern Australia and elsewhere. On the Magela floodplain, 
some 20% of the area previously mapped as native Oryza and Hymenachne in 1986, appear to have 
been displaced by dense para grass in 2006. Phases of both spread and contraction in para grass were 
also mapped. Despite periodic contraction of many para grass colonies, discreet patches continued 
to increase in size and coalesce to form larger patches. The concern is that the ongoing formation of 
larger, persistent, patches of para grass could lead to greater depletion of native plant seedbanks and 
habitat areas valuable for conservation. 

Methods to remediate depleted native grasslands could involve the selective control of weed 
cover. As results of this study suggest, effective strategies for para grass control are likely to benefit 
from better understanding of the judicious use (or exclusion) of fire within different floodplain 
habitats. In this context, we provide the initial spatial information required to design and coordinate 
future applied research on site-specific control strategies for para grass and other aquatic weeds.  
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