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Abstract

The safety of hydraulic water retaining structures (HWRS) is an important issue as many
instances of HWRS failure have been reported. Failure of HWRS may lead to catastrophic events,
especially those associated with seepage failures. Therefore, seepage safety factors recommended
for HWRS design are generally very conservative. These safety factors have been developed based
on approximation calculations, unreliable assumptions, and ideal experimental conditions, which
are rarely replicated in real field situations. However, with the development of the numerical
methods, and high speed processors, more accurate seepage analysis has become possible, even for
complex flow domains, different scenarios of boundary conditions, and varied hydraulic
conductivity. On the other hand, because construction of HWRS requires a significant amount of
construction material and engineering effort, the construction cost efficiency of HWRS is an issue

that must be considered in design of HWRS.

This study aims to determine the minimum cost design of HWRS constructed on permeable
soils, incorporating numerical solutions of a seepage system related to HWRS, utilizing linked a
simulation—optimization (S-O) model. Due to the complexity and inefficacy of directly linking a
simulation model to the optimization model, the numerical simulation model was replaced by trained
surrogate models. These surrogate models can be trained based on numerically simulated data sets.
Therefore, trained surrogate models expeditiously and accurately provide predicted responses
relating to seepage characteristics pertaining to HWRS. The optimization model based on the linked
S-O technique incorporated different safety factors and hydraulic structure design requirements as
constraints. The majority of these constraints and objective function(s) were affected by the

responses of predicted seepage characteristics based on the developed surrogate models.

To improve the safety of HWRS design, the effect of non-homogenous and anisotropic
hydraulic conductivity were incorporated in the S-O model. Obtained solution results demonstrated
that considering stratification of the flow domain due to different hydraulic conductivity values or
anisotropic ratios can significantly change the optimum design of HWRS. Low hydraulic
conductivity and anisotropic ratios resulted in more critical seepage characteristics. Consequently,
the minimum construction cost increased due to an increase of dimensions of involved seepage

protection design variables.

Furthermore, uncertainty in estimating hydraulic conductivity is incorporated in the S-O
model. The reliability based optimal design (RBOD) framework based on the multi-realization

optimization technique was implemented using the S-O model. The uncertainty in seepage quantities
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due to uncertainty of hydraulic conductivity was represented using many stochastic ensemble
surrogate models. Each ensemble model included many surrogate models trained in utilizing input—
output data sets simulated with different scenarios of hydraulic conductivity drawn from diverse
random fields based on different log-normal distributions. Obtained results of this approach
demonstrated substantial consequences of considering uncertainty in hydraulic conductivity. Also,
the deterministic safety factors, especially for those pertaining to the exit gradient, were insufficient

to provide prescribed safety in the long term.

Although surrogate models are utilized in S-O approaches, each run of the S-O model takes
a long time as developed S-O models are applied to complex and large scale problems. Hence,
efficiency of the S-O model was a key factor to successfully implement the methodology. Three
main techniques were utilized to increase the efficiency of the S-O technique: using parallel
computing, utilizing nested function technique, and using a vectorised formulation system. These

strategies substantially boosted efficiency of implementing the S-O model.

The S-O models were implemented for many hypothetical scenarios for different purposes.
In general, results demonstrated that optimum design of the seepage protection system relating to
HWRS design must include two end cut-offs with an apron between them. The dimensions of these
components were augmented with an increase of upstream water head, and reduction of anisotropic
ratios or hydraulic conductivity value. The main role of the downstream cut-off was to decrease the
actual exit gradient value. This impact is more pronounced if the inclination angle of the cut-off is
toward the downstream side (>90 degrees). The role of the upstream cut-off was to decrease uplift
pressure values on the HWRS base. Consequently, this partially contributed to decreasing the exit
gradient value. The effect of the upstream cut-off in reducing the uplift pressure was more when the
inclination angle was toward the upstream side (<90 degrees). Moreover, the apron (floor) width
helped to increase the stability of HWRS. This variable provided the required weight to improve
HWRS resistance to external hydraulic forces and to uplift pressure. Incorporating the weight of
water (hydrostatic pressure) at the upstream side in counterbalancing momentum and hydraulic
forces showed improvement in the safety of the HWRS. Also, all conditions and safety factors
pertaining to HWRS design were satisfied. The exit gradient safety factor was the most important
critical factor affecting optimum design as obtained optimum solutions satisfied the minimum
permissible values of the exit gradient safety factor, i.e., at the minimum permissible value. Also,

the eccentric load condition played a crucial role in resulting optimum solutions.

Finally, applying the S-O model to obtain reliable and safe design of HWRS at minimum

cost was successfully implemented for performance evaluation purposes. This technique may be



extended to incorporate more complex scenarios in HWRS design where the impact of dynamic and
seismic load could be incorporated. The effect of unsteady state seepage system could be another
interesting direction for future studies. Further, incorporating more sources of the uncertainty
associated with design parameters could achieve a more accurate estimation of actual safety for the

HWRS design.
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Chapter One

1 Introduction

1.1 General Introduction

Construction of hydraulic water retaining structures (HWRS), such as dams, barrages,
regulators and weirs, is essential for stable and safe water management and to generate clean energy.
Future projections of water resources indicate that water availability will significantly decrease for
several countries around the world (Gerten et al., 2011). This may be attributed to climate change
and carbon dioxide (greenhouse gas) emissions due to human activities. Building HWRS is a
beneficial and important solution to reduce the impacts of water scarcity. However, significant
considerations and hazards must be considered in design of HWRS. The economic cost of building
such projects is enormous; additionally, failures of HWRS threaten human life and properties on
downstream. Accordingly, the design and analysis of such structures must involve precise estimation
and sufficient understanding of the influencing design variables and parameters, especially the
seepage quantities and their impacts on safety of HWRS. This study presents coupled simulation-
optimization (S-O) approaches to identify the minimum cost HWRS design, incorporating numerical
seepage analysis and considering the hydraulic design safety factors in S-O models. Furthermore,
the effects of permeability (hydraulic conductivity) and its uncertainty are integrated in S-O models.
The numerical seepage simulation is indirectly linked to the optimization model using machine
learning techniques based on surrogate models. Artificial neural network (ANN), support vector
machine (SVM) and Gaussian process regression (GPR) machine learning techniques were used to
develop surrogate models. The genetic algorithm (GA), hybrid genetic algorithm (HGA) and non-
dominated sorting genetic algorithm II (NSGA-II) were utilized to solve optimization tasks due to

the complexity and the attribute of each S-O model.

Hydraulic structures that impound a considerable amount of water (head) and are
constructed on permeable soil foundation are associated with water seepage impacts. Seepage forces
threaten hydraulic efficiency and structural stability of hydraulic structures. Seepage failure is
classified as the second or third most frequent cause of dam failure after overtopping (ICOLD, 2016;
NPODP, 2015). A critical and dangerous seepage consequence is piping failure. This failure is
attributed to seepage forces, which move small soil grains and wash them out of the flow domain.
Unless sufficient precautions are taken, continuous erosion of the soil constituent inevitably happen,

and leads to piping failure. Furthermore, another consequence of seeping water is pore-water
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pressure, which applies uplift (upward) pressure on the structure floor (apron) and may result in

collapse of the floor.

The hydraulics of seeping water and associated mathematical relationship of seepage
variables with flow domain characteristics is complex and nonlinear. The complexity arises from
many factors, such as sub-structure geometry, soil properties and hydraulic conductivity variation
and uncertainty. An analytical solution may be obtained only for simple and symmetrical cases and
is often based on assumptions that are not always correct. However, it is difficult to obtain analytical
solutions for more complex scenarios, which occur in most of existing projects. Therefore, many
approximation and empirical theories have been proposed to estimate seepage quantities (uplift
pressure and exit gradient). These theories include Bligh’s creep theory, Lane’s weighted creep
theory, flow-net method, fragment method and Khosla’s theory. Solutions of these approximate
theories are acceptable to some extent. Their applications have an associated non-trivial amount of
error compared to applications that use analytical solutions or experimental modelling, as shown in
Figurel.l. Additionally, these theories apply to ideal general soil conditions (homogeneous and
isotropic), which are rarely found in real life cases (Lambe & Whitman, 1969). Also, it is not possible
to integrate the effects of hydraulic conductivity and uncertainty when utilizing these methods and

theories.

08
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Figure 1.1 Comparing computed exit gradient by different methods and FEM based numerical
solutions (Shahrbanozadeh, Barani, & Shojaee, 2015)

Recently, as a result of development of numerical methods and computerized processes,

many seepage problems related to HWRS have been accurately simulated and solved by numerical



Chapter One

methods, such as finite element method (FEM) and finite difference method (FDM). The FEM and
FDM are the dominant numerical methods in this field. These methods provide accurate and efficient
results even for complex problems. Consequently, many software and codes have been developed
to facilitate numerical simulation of seepage problems, particularly after development of high-speed
computer processors. These codes can be used to analyse complex seepage problems precisely.
Furthermore, hydraulic conductivity variation and other soil parameters can be integrated in the
numerical model to study consequences of soil parameter variation on HWRS design. However, a
source of weakness of using numerical solutions is that the numerical technique only provides a
solution for predetermined problems, including pre-defined boundary conditions and geometry of
the flow domain of hydraulic structures. This means the numerical model may not provide a

generalized performance equation regarding what can be obtained by analytical solution.

Considering the above-mentioned arguments, contradicting goals of safety and cost must be
simultaneously integrated in design of HWRS to attain optimum, safe and economic design based
on accurate seepage numerical solutions. Hence, the optimization approach can be used to identify
optimal design of HWRS. As a result, the minimum cost and safest HWRS can be achieved. Directly
integrating the numerical model with the optimization model to attain an optimum HWRS design is
computationally inefficient, a computational burden and time consuming task. Also, most
evolutionary optimization algorithms (solvers) utilize direct search techniques based on a large
population size. These optimization solvers present many random candidate solutions (individuals)
and evaluate each single solution based on numerical seepage responses for that solution. This
optimization process and others continue for many generations until the stopping criteria is met.
Accordingly, directly linking the optimization model to the simulation model is a complex and
computationally expensive process. Alternatively, the numerical model could be replaced by an
approximate machine learning model (surrogate model) that accurately and expeditiously imitates
numerical model responses. The surrogate model may be trained based on numerically simulated
data (input and output) sets. There are many machine learning techniques that can be utilized to
develop a surrogate mode, such as artificial neural network (ANN), support vector machine and

Gaussian process regression (GPR).

The aim of this thesis is to develop a linked S-O methodology to produce a safe, reliable
and economic design of HWRS based on adequately trained surrogate models. These models are
trained based on numerically simulated data sets. Basically, different scenarios of hydraulic
conductivity and geometry of the flow domain (number and attributes of cut-offs and apron length)

are incorporated in S-O models to simulate the effects of these design parameters on optimum design
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of HWRS. The uncertainty and spatial variation of hydraulic conductivity are considered in optimum
design of HWRS. Identifying the most important design variable in optimum design is another goal
of this study. Also, computational efficiency of the developed methodology is a significant aspect
that must be considered in developing S-O techniques. Induced seepage forces and many safety
factors and design requirements related to HWRS, such as overturning, sliding safety factors and
preventing the eccentric load condition, are considered in the S-O approaches. For each S-O model,
the type of machine learning technique and optimization solver are selected based on prediction

accuracy and efficiency.

1.2 Problem Statement

The relationship between seepage design variables related to HWRS is usually categorized
as a high degree nonlinearity problem, especially for complex problems (Harr, 1962). Many existing
hydraulic structures built with high cost suffered from seepage problems, which may lead to failure
of the structure. Such problems may be attributed to the approximation methods and theories by
which the seepage related structures were analysed. Furthermore, these theories disregard spatial
variation and uncertainties in some parameters, such as hydraulic conductivity, which have a
significant effect on seepage characteristics. Providing a safe exit gradient for HWRS based on
accurate and reliable analysis reduces actual possibility of piping failure. Also, decrease in the uplift
pressure impacts provide a safer HWRS design. Moreover, construction of HWRS requires a
considerable amount of construction materials and engineering effort, resulting in higher
construction cost. Also, the HWRS safety design requirement must be simultaneously considered in
HWRS design. Hence, there is a knowledge gap in obtaining optimum design for HWRS, which is
partially filled by this research via developing a linked S-O model to determine minimum cost and
safe design of HWRS by integrating numerical responses. These responses are based on trained

surrogate models adequately trained and validated using numerically simulated data sets.

1.3 Objectives of the Research
The main objectives of this research are:

1. Develop and evaluate a coupled S-O model to obtain optimum design of HWRS founded
on homogenous isotropic permeable soils and including a variable flat apron (floor) with
variable length cut-offs.

2. Develop and evaluate a coupled S-O model to find the optimum design of HWRS founded
on non-homogenous non-isotopic permeable soil and including variable and multi aprons

with many cut-offs having variable length and orientation.
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3. Enhancing the performance of the S-O model by hybridizing the genetic algorithm with the
interior point algorithm to attain a global optimum solution of multiple cut-offs multi
aprons seepage flow domain under HWRS constructed on homogenous anisotropic
permeable soil.

4. Develop stochastic ensemble surrogate models to incorporate various uncertainties to
develop reliability based optimum design (RBOD) framework to determine the reliable and
optimum design of HWRS founded on heterogeneous isotopic permeable soil, and
including and a flat apron with end cut-offs.

5. Develop a multi-objective multi-realization optimization model for reliability based
optimum design framework to find a reliable and optimum design of HWRS founded on

heterogeneous isotropic permeable soils.

1.4 Organization of the Thesis

The thesis contains eight chapters, encompassing the current (Introduction) chapter. The
introduction chapter provides a brief description of the main effects of seepage quantities on the
HWRS design. The chapter includes an overview of the utilized methodology to find the optimum
design and to incorporate the numerical seepage responses based on surrogate models in the S-O

model. The problem statement and objective of the study are also presented in this chapter.

Chapter two provides a review of literature starting with earliest methods related to seepage
analysis of HWRS. Also, important previous studies utilizing numerical methods for seepage
solution are briefly discussed. The chapter cites previous research which incorporates optimization
models to improve HWRS design. This chapter also highlights the contribution of machine learning
techniques in enhancing understanding of relationships between design variables of HWRS.
Additionally, machine learning technique applications in predicting the future behaviour or

consequences for a particular design of HWRS are presented.

Chapter three demonstrates the formulation of the linked S-O approach to determine the
optimum design of HWRS constructed on homogenous permeable soils, including two end cut-offs
with apron. The description of generated and simulated data, training surrogate models based on
ANN and the attributed genetic algorithm optimization solver are presented in this chapter. All
design requirements of HWRS and related seepage safety factors are considered in formulating the
S-O model. Obtained results for implemented cases and performance evaluation of the S-O model

are included in this chapter.
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Chapter four contains the formulation of the linked S-O model to attain the optimum design
of HWRS comprising of many cut-offs and aprons between them. The effects of non-homogenous
anisotropic hydraulic conductivity are incorporated in the S-O model. Development of surrogate
models was based on the support vector machine (SVM) technique, and the optimization model was
based on the hybrid genetic algorithm (HGA). The optimum solution obtained via the S-O model

and evaluation of S-O models are also included in this chapter.

Chapter five demonstrates the efficiency of hybridizing the genetic algorithm with the
gradient search algorithm to achieve the global optimum solution within the linked S-O technique.
Description and formulation of the optimization model are demonstrated in this chapter. The
conceptual model of seepage includes many cut-offs, many aprons and homogenous anisotropic
permeable flow domain. The SVM technique was utilized to develop the surrogate models. The
safety factors and HWRS design requirements are included, with the results and performance

evaluation of the S-O model presented in this chapter.

Chapter six encompasses formulation of the reliability based optimum design of HWRS.
This was achieved by developing many ensemble surrogate models to incorporate stochastic
responses of seepage characteristics due to uncertainties in estimating hydraulic conductivity in the
linked S-O model. The surrogate models were developed based on the Gaussian progress recession
(GPR) technique and the optimization solver was the genetic algorithm (GA). Hydraulic
conductivity was represented as a random field sampled from a log-normal distribution based on
different standard deviation values. Solution results and performance evaluation of the developed

methodology are included in this chapter.

Chapter seven presents a new formulation of the reliability based optimum design utilizing
the multi-objective, multi-realization optimization model based on the ensemble surrogate models.
Many ensemble surrogate models were developed to represent the stochastic responses of seepage
characteristics due to uncertainty in estimation of hydraulic conductivity. The conceptual model
included an apron between two end cut-offs. Hydraulic conductivity was defined as a random field
based on log-normal distribution. The results and performance evaluation of the methodology are

presented in this chapter.

Chapter eight presents the conclusion of this study and recommendations for future studies.
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2 Theoretical Background and Literature Review

This chapter covers seepage theory and related equations of seeping water through porous
media, and presents a review of literature related to seepage analysis and HWRS design. This
literature review is organized in accordance with techniques utilized in the proposed methodology,
starting from earliest methods to analyses of seepage, then numerical seepage analysis methods,
previous studies utilizing the FEM method and previously developed surrogate models. Also, the
optimization theory and previous studies related to linked simulation optimization approaches are
described. Additionally, the inadequacy and difficulties of applying the previous methods and
theories to analysis of seepage under HWRS are presented. The complexity of developing an
analytical solution for complex seepage models is described in this chapter. Applications of the
numerical solutions based on FEM in obtaining accurate seepage analysis are included. Also,
utilization of the previous research for the optimization technique in obtaining optimum design of
hydraulic structures and for water resource management is discussed. The efficiency of building a
linked simulation optimization approach is demonstrated with its application in water resource
management and in ground water to find the optimum design integrating numerical responses based

on the surrogate models.
2.1 Earlier Empirical Seepage Analysis Methods for Hydraulic Structures

2.1.1 Bligh’s and Lane’s Theory

Bligh (1910) concluded that the weight of the hydraulic structure is the most significant
factor involving in hydraulic structure stability. However, Bligh (1915) adopted the hydraulic
gradient and creep theory to explain water movement under a hydraulic structure and compared his
theory with experimental results. He found that the seepage stream is the shortest and closer path to
the foundation of the hydraulic structure. This path is called the length of creep (L) at which the
hydraulic gradient (H.G.) decreases with an increase in (L) according to this equation (H.G. =h/L)
(Garg, 1987; Khosla, Bose , & Taylor, 1936).

Where: h= difference between upstream and downstream water level, and

L= total length of water seepage stream near hydraulic structure foundation.
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Furthermore, Bligh (1915) assumed empirical exit gradient safety factors relate to different
soil classes, and he considered the exit gradient is safe compared with these factors. Additionally,
the uplift pressure hazard could be addressed by designing sufficient thickness of the floor. This
thickness could be computed by the physical equilibrium of the submerge weight of floor at certain
points with uplift pressure value at the same point. The computed thickness can be magnified by a
factor of 1.33 to achieve safer situations (Bligh, 1910, 1915; Garg, 1987). Although Bligh’s theory
has been utilized to design many hydraulic structures, the theory did not distinguish between
horizontal and vertical or other directions of seeping water movement. This shortcoming was solved

by Lane’s weighted creep theory.

Lane (1935) observed, after a precise investigation of 200 dams around the world, that water
movement in the horizontal direction was relatively easier than the vertical direction. Consequently,
he recommended that horizontal creep length must be shortened by a factor of 1/3, whereas vertical
length could be kept without change. He assumed different safe exit gradient factors for different
soil types to compare with computed hydraulic exit gradients to obtain safe hydraulic design (Garg,

1987; Khosla et al., 1936).

For comparison purposes, recently many researchers have considered solutions of Bligh’s
and Lane’s methods. They concluded that the obtained values of seepage characteristics based on
these methods are inaccurate compared to experimental observations or numerical solutions

(Sedghi-Asl, Rahimi, & Khaleghi, 2012; Shahrbanozadeh et al., 2015; Tokaldany & Shayan, 2013)

2.1.2 Khosla’s Theory

Khosla et al. (1936) used an independent variable technique to develop a method by which
seepage characteristics under weirs including different seepage features, such as aprons, floor slopes
and a varied number of cut-offs, could be analysed. Khosla’s theory is based on an analytical solution
(conformal mapping concept) and experimental data analysis. According to this theory, complex
sub-structures related to seepage control variables can be split into three categories: end sheet piles
(cut-offs), intermediate cut-offs and depressed floors. By this method, the uplift pressure values
could separately be determined at a specific points (key points). Pressure values must be corrected

based on the interaction effects between these variables (Garg, 1987; Khosla et al., 1936).

Moreover, Khosla et al. (1936) derived different exit gradient equations considering many
design cases, such as flat floor, single cut-off, depressed floor and cut-off at the end of the floor.
However, Khosla et al. (1936) supposed that exit gradient is affected by end floor condition

(geometry) only and disregarded other components, such as hydraulic conductivity of porous media
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(Eq. 2.1). Khosla et al. (1936) recommended that the exit gradient safety factor is: 4 to 5 for gravel,
5 to 6 for coarse sand and 6 to7 for fine sand. The safety factor is the ratio of the critical exit gradient

to the computed exit gradient (Delleur, 2006). The exit gradient is computed as given by Eq. (2.1):

ip = h 2.1
e_T[d\/I ()

Where i, is the exit gradient by Khosla et al. (1936) theory, h is total head, d is length of

downstream cut-off and A is computed by equation 2.2

1+ al +1+ a3
B 2

2 2.2)

Where a; = l:i—l, a, = 1:1_2 as shown in Figure 2.1 and the factor of safety can be computed

by F.S = ke ,ie = Ysub o = Gs7D

le Yw ¢ (1+e)

Where Gg is the specific gravity of the soil, e is void ratio, i. is critical exit gradient, ygp 18

the submerged soil density, y;, is weight water density.
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Figure 2.1 One cut-off with apron (Khosla et al., 1936)

Furthermore, Khosla’s theory is based on homogenous and isotropic hydraulic conductivity.
Khosla et al. (1936) considered that the geometry of flow domain is the dominant factor for seepage
quantities. That is clearly seen in Eq. 2.1 (above). The hydraulic conductivity value is disregarded
in computing the exit gradient which is illogical to some extent. However, approximation ranges of
safety factors have been proposed based on the main types of soil. Few researchers have utilized
Khosla’s for seepage analysis and employed Khosla’s equations in optimization models (Garg,

Bhagat, & Asthana, 2002; Singh, 2010).
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2.2 Approximate Solutions of Seepage

2.2.1 Fragment Method

Pavlovsky (1935) developed the approximation fragment method to determine seepage
characteristics easily and directly under HWRS. In this method, the seepage flow domain was
divided into a certain number of fragments. An imaginary section was assumed, where the
equipotential line could be considered a vertical line (Harr, 1962). Therefore, flow rate and
consequent head could be computed for regular shape regions. The mathematical expression of this

theory is expressed below as:
Qu=khp, /@, (2.3)
Where: m=1, 2, 3,..., n, Qu= discharge passed through fragment
hm = head loss through fragment
@, = dimensionless shape factor depends on the geometry of the fragment
And when discharge for all fragments is the same

Q = kh]/q)l = khz/(Dz = kh3/(D3 ....... Khn /(I)n

Q =k Zhy/Zdy, (2.4)
Q Kth kh
= = (2.5)
Lo oy o

Where h without a subscript is total head loss. Therefore, by a similar method:

_ho,

h_Z—CD

(2.6)

Consequently, the distribution of pressure head and exit gradient can be estimated as head
losses have been computed. Also, there are many standards and forms to calculate the shape factor

for each fragment easily according to the geometry and location of these fragments.

It could be seen that application of the fragment method is only limited for regular soil
properties. It is difficult to implement the fragment method for stratified, anisotropic or
heterogeneous soils due to the variation of hydraulic conductivity value. Also, there are limited
shape factors and standards, which means that this method cannot cover all expected scenarios of

the flow domain.

10
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Recently, many researchers have utilized the fragment method to determine seepage
characteristics for the stop during filling in the mining industry (Madanayaka & Sivakugan, 2016;
Sivakugan & Rankine, 2011; Sivakugan, Rankine, Lovisa, & Hall, 2013). For these studies, the
solutions using fragment method were compared to numerical simulation and the results

demonstrated good agreement with the numerical solution.

2.2.2 Flow Net Method

Flow net is one of the easiest and most prominent approximation methods used for seepage
analysis. It depends on many sketching trials of equipotential lines and streamlines. These lines must
be drawn in such a way that each equipotential line intersects the streamline orthogonally. When an
imaginary grid of equipotential line and streamline is created, seepage characteristics can be
determined at each intersection point using Eq. (2.7) (Das, 2008; Lambe & Whitman, 1969;
Terzaghi, Peck, & Mesri, 1996).

q=Nfaq= khll\;]—; 2.7)

Where: h = total hydraulic head or difference in elevation of water between upstream and

downstream, Ng = number of potential drops, Nr= number of flow channel, k = soil conductivity

(L/T), q = discharge (L*/T).

2.3 Analytical Solution/Conformal Mapping by Schwarz-Christoffel

Transformation

The Schwarz-Christoffel transformation is one of the most important transformation
methods commonly used to derive analytical solutions for groundwater movement or seepage.
Conformal mapping constitutes geometric transformation of the complex domain to another simple
domain (plan), while retaining the properties of the complex domain in the new domain. In
groundwater problems, by using conformal mapping, Laplace’s equation can be solved with related
boundary conditions and seepage characteristics (Harr, 2012). The basic concept of this mapping
consists of opening the boundary polygon of the flow domain from a certain point in z(x, y) plan to
extract this polygon in a straight line aligned with a real axis of t(r, s) plan from -co to +oo on the
upper half plan. The interior angles of the polygon must be considered in this transformation. The
new polygon is described as part of a semicircle with one or more vertices at the infinity on the

upper half t-plan. The transformation equation is given by Eq. (2.8).

11
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dz A
dt (a—t)"mx(b— t)ﬁ/ﬂ x(c—t)/mx ...

(2.8)

Where A refers to a complex number in z-plan and a, b and c are the real constants
corresponding to the projection location in z-plane and a, 3 and y represent the external angles of

the polygon.

A substantial amount of research has been conducted based on this technique. Elganainy
(1986) determined the exit gradient and seepage flow for a filter constructed between two hydraulic
structures and at the downstream, using a conformal mapping technique. Elganainy (1987) utilized
the Schwarz—Christoffel method to derive a mathematical solution (for exit gradient and uplift
pressure) for new conditions of Nile barrages and the subside weir. Ilyinsky and Kacimov (1991)
demonstrated the procedure to compute the ground water flow around cut-off walls and to trench.
The adopted conformal mapping concept conjugated with the variation method. Ilyinsky, Kacimov,
and Yakimov (1998) reviewed different techniques, inverse method, variation theorems and

optimization process, to develop an analytical solution for seepage under hydraulic structures.

Additionally, conformal mapping method has been used by Farouk and Smith (2000) to
derive the exit gradient and potential seepage equations for hydraulic structures with two
intermediate filters. Jain (2011) derived mathematical models to determine seepage flow parameters
underneath a weir with aprons, two cut-offs, finite depth condition and step at down side. [jam (2011)
used the Schwarz—Chrisoffel transformation method to obtain an analytical solution for seepage
flow under hydraulic structures to analyze many variables in the seepage equation, such as cut-off

wall with variable locations and angles.

Previous discussion of analytical and approximation methods shows that there are many
limitations to apply these methods in the S-O model. For example, the analytical solution based on
conformal mapping can be applied only for simple and symmetrical cases. Solving the integration
of the transformation equation is a demanding task, especially for non-homogenous anisotropic
hydraulic conductivity, even for simple geometry. Moreover, the solutions of approximation
methods have a noticeable amount of error and are limited to a specified range of simple flow
conditions. In the present study, a comprehensive method is required to describe the seepage
characteristic for different underground flow conditions, including varied length, number and
orientation of cut-offs. These different scenarios provide more alternatives to find optimum design
at minimum cost. Incorporating heterogeneous and non-homogeneous hydraulic conductivity of the

flow domain must be considered in the utilized seepage analysis technique. Using the traditional
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approximation and analytical solution for this study is not possible. Hence, numerical method based

on the finite element method (FEM) is adopted in developing the linked S-O approach.
2.4 Numerical Solution

The numerical solution is considered more beneficial than analytical and approximation
solutions, as complex seepage problems can be solved precisely. Analytical solutions are based on
many simplified assumptions, such as isotropic, homogeneous soil properties, which are not always
correct. Moreover, the upstream water level is assumed as horizontal level, and the seepage flow
domain is mostly considered in a rectangular shape. These assumptions are not necessary for
numerical methods. The numerical model can be utilized to solve complex seepage problems,
including different boundary conditions. Hence, several efficient numerical methods such as finite
difference method (FDM) and FEM are used to solve and simulate a large number of seepage related

problems (Wang & Anderson, 1995).

2.4.1 Finite Element Method (FEM)

The FEM is based on the approximation integration approach to solve differential governing
Laplace equations (Jain, 2011). FEM solves complex problems with accurate results that is not
possible using the closed form solution. The results are more accurate and precise if more time and
effort are spent on the computational process (Rao, 2013).

The small panels resulting from subdivision of the flow domain or continuum are called
finite elements. Each element is connected with an adjacent element by nodal points (nodes), which
lie on the element boundaries. Variation of any design variable or parameter through the continuum
is not easy to be determined. Hence, the interpolation model (approximate simple function) is
assumed to identify seepage variable values for each node. By applying the interpolation model,
boundary condition and governing equation, the variable value for each node can be calculated

accurately (Rao, 2013).
The steps of the FEM process are summarized as:

1. Subdividing the continuum of the problem into finite elements with a certain number, size
and shape depending on the problem feature.

2. Finding the best interpolation model describing boundary conditions and variables
variation. The interpolation model is mostly derived as a simple polynomial (linear,
quadratic or cubic).

3. Deriving the action and deformation element matrix equation.

4. Formulating a control equation (equilibrium) for the general model.

13
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5. Solving the control equation for each node.
In 1970, FEM was applied for the first time by Neuman and Whiterspoon for steady state
seepage problems involving anisotropic heterogeneous soil and different boundary conditions. The
efficiency and accuracy of the FEM solution compared to experimental, analytical and published

results was demonstrated by Neuman and Whiterspoon (Chen, Huan, & Ma, 2006)

As FEM provides precise solutions, numerous researchers have utilized FEM to solve
seepage problems. Lefebvre, Lupien, Pare, and Tournier (1981) used FEM to evaluate different
scenarios to control and reduce the exit gradient value for embankment dams. Alsenousi and
Mohamed (2008) studied the effect of inclined cut-offs for varying distances and angles.
Heterogeneous and anisotropic underlying soil layers with limited depth were assumed for the
numerical model. Tatone, Donnelly, Protulipac, and Clark (2009) evaluated the efficiency of
21000m? plastic concrete cut-off in a newly constructed dam in northern Ontario. FEM models were
developed to simulate seepage flow of the dam to be compared to drilling investigations and

laboratory tests.

Azizi, Salmasi, Abbaspour, and Arvanaghi (2012) utilized hydraulic design data and the
structural parameters of a diversion dam to simulate the flow process. SEEP/W based on FEM
software was used to evaluate hydraulic design parameters. El-Jumaily and AL-Bakry (2013)
utilized the finite volume method to analyze seepage through permeable soil. Furthermore, he

studied the effects of anisotropic and non-homogenous soil on uplift pressure and exit gradient.

Mansuri, Salmasi, and Oghati (2014) determined the effects of positions and angles of cut-
offs on exit gradient, seepage flow and uplift pressure underneath a diversion dam. Moharrami,
Moradi, Bonab, Katebi, and Moharrami (2014) evaluated the effects of cut-off beneath dams to
reduce uplift pressure and prevent piping problems. Shahrbanozadeh et al. (2015) adopted a
complementary numerical method ISO-geometrical analysis (IGA) and FEM to determine the uplift
pressure and exit gradient value for a hydraulic structure model. They compared the experimental
results to approximation methods and numerical methods solutions to demonstrate that FEM and

IGA provide the most accurate solutions.

This literature review of FEM shows that most researchers focus on evaluating, comparing
and studying the effect of seepage parameters and simulate a certain seepage system for a particular
case. Most conducted research shows that FEM provides an efficient and accurate solution for
complex problems. However, FEM is applicable for pre-defined problems and cannot provide

generalized equations representing the relationship between seepage variables as in the closed form
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solution. Therefore, the machine learning technique is utilized to develop surrogate models based
on many input and output data sets simulated by the FEM numerical method to accurately predict

numerical responses within inked S-O models.

2.4.2 SEEP/W numerical seepage modeling and limited validation

The Geo-Studio SEEP/W software (numerical model) based on FEM was used to find the
seepage characteristic value for all simulated seepage scenarios in this study. The seepage
characteristics obtained by SEEP/W were solely utilized to create training data (input-output data
sets) to train surrogate models, or to evaluate the seepage characteristics of the optimum solution
obtained by the S-O technique. SEEP/W can efficiently solve different seepage problems, such as
saturated/ unsaturated cases, steady/ transient states, multilayer system and isotropic / anisotropic /
heterogeneous hydraulic conductivity, etc. Furthermore, the effect of other geotechnical
considerations, stresses, loads, boundary conditions and soil parameters can be combined with
SEEP/W numerical seepage simulation. This is achieved based on integrating the provided Geo-
Studio components, such as SLOP/W, SIGMA/W and QUAKE/W, with the SEEP/W model (Krahn,
2012). However, it should be noted that the linked simulation-optimization methodology being
proposed here is not dependent on a particular simulation model. Indeed, it is possible to easily
replace SEEP/W by an even more robust or efficient simulation model in the future. In that case,

only surrogate models will require fresh training and validation.

Many researchers have applied SEEP/W for different problems. Chenaf and Chapuis (2007)
utilized SEEP/W as a numerical model to validate many approximation equations used to describe
a seepage system related to a pumping well. Oh and Vanapalli (2010) combined SLOPE/W and
SEEP/W to study the effect of water infiltration on the stability of homogenous compacted
embankments. White, Beaven, Powrie, and Knox (2011) used SEEP/W numerical solutions to
compare with observed depths of drained liquid resulting from field testing of the leachate
recirculation model for different periods. Chapuis, Chenaf, Bussiére, Aubertin, and Crespo (2001)
conducted a precise validation for SEEP/W solution compared to the analytical solution of different

seepage problems.

Additionally, in this study, before utilizing SEEP/W as a numerical solution for seepage
related to HWRS, the SEEP/W solution is validated with a closed form solution. Many arbitrary
selected scenarios of a simple model, including one end cut-off (at downstream) and apron were
solved by the closed form method (Harr, 1962; Khosla et al., 1936) and SEEP/W numerical

modeling. The evaluation demonstrated that SEEP/W can provide accurate solutions compared to
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the closed form solution. The mean absolute error (MAE) for the uplift pressure obtained by

SEEP/W was 0.905 (2.5%) and for exit gradient was 0.041 (4.6%), as shown in Figures 2.2 and 2.3.
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Figure 2.2 Validation of the SEEP/W solutions (uplift pressure)
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Figure 2.3 Validation of the SEEP/W solutions (Exit gradient)

2.5 Meta Model (Surrogate Model)

The surrogate models in the linked simulation optimization model have been efficiently

utilized to imitate the numerical model responses for complex and computationally expensive

problems. Furthermore, meta modeling techniques have been implemented to enhance

understanding of input design variable effects on the output design variable. Also, meta models are

used as predictors for future expectations of some variables in a specified design. Developing an

efficient surrogate (meta) model is based on selecting an adequate machine learning technique and
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sufficient and uniformly distributed data sets. Many studies have utilized different machine learning
techniques to develop efficient surrogate models for hydraulic structures and ground water
applications. The most efficient machine learning techniques are artificial neural network (ANN),

support vector machine (SVM) and Gaussian process regression (GPR).

2.5.1 Artificial Neural Network (ANN)

ANN imitates human brain neurons, which can change responses according to different
environments and / or actions. In the 1940’s, McCulloch and Pitts designed the first neural network,
and at the end of this year, Donal Hebb designed the first learning law for ANN. In 1972, Kohonen
and Anderson developed strength theory between neurons. Between 1958 and 1988 Rosenblatt,
Block, Minsky, Widrow and Hoff submitted a complementary concept for ANN, such as input layer
perceptron, connection to associated neurons, fixed weights and other learning rules (Ersayin, 2006;

Sivanandam, Sumathi, & Deepa, 2006).

For seepage and ground water problems related to hydraulic structures, ANN has been
utilized to simulate and identify seepage characteristics. Garcia and Shigidi (2006) utilized ANN as
an approximation model to compute aquifer transmissivity and hydraulic head values. Ersayin
(2006) developed an ANN model to predict the phreatic line (seepage path) in an earth fill dam
(Jeziorsko Dam) in Poland. Szidarovszky, Coppola, Long, Hall, and Poulton (2007) combined
numerical models with the ANN model (hybrid-ANN numerical) to improve the simulation of
groundwater characteristics. Kim and Kim (2008) used the ANN method to predict relative crest
settlement of concrete faced rock fill dams. Predicted results of the utilized methodology showed

good agreement with conventional methods.

Joorabchi, Zhang, and Blumenstein (2009) successfully developed ANN models to simulate
and predict the ground water fluctuation based on many variables, such as water table, tide elevation,
beach slope and hydraulic conductivity, in five locations on the east coast of Australia. Nourani,
Sharghi, and Aminfar (2012) used a single ANN model to predict head values for each piezo-metric
on upstream and downstream of different sections of the Sattarkhan earth fill dam (Iran). Santillan,
Fraile-Ardanuy, and Toledo (2013) developed an ANN model for seepage analysis beneath a
hydraulic structure, considering different water head. Al-Suhaili and Karim (2014) presented a
methodology based on the ANN model to optimize the cost of cut-off walls and floors for small

hydraulic structures constructed on permeable foundation using genetic algorithm (GA).

The main shortcoming of using the ANN model is a tendency to overfit unless a sufficient

amount of data is used for validation and test phases. Also, there are many training algorithms, such
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as Bayesian regularization and Lievenberg-Marquardt, which can be used to decrease overfitting
effects. Also, the early stopping and regularization technique significantly improves performance of
the ANN model. The early stopping strategy monitors training error and validation error. The
training process is continued while training and validation errors decrease. However, when training
error decreases and validation error increases (overfitting phenomena), the training process stops
too soon (early stopping) and the optimum value of weight and biases are saved. The regularization
technique evaluates performance of the ANN model not only based on the error of predicted data,

but it tries to minimize the summation of weights and biases to provide smother responses.

2.5.2  Support Vector Machine

Originally, Vapnik (1999) developed and discussed the advantages of using optimal
spreading hyper plane in classification and regression machine learning problems. He showed that
the generalization ability of the developed technique with fewer support vectors is better. The SVM
has the ability to overcome the over-training (overfitting) phenomena (Raghavendra.N & Deka,
2014; Vapnik, 2013). Recently, SVM has been widely used in research in civil engineering and
hydraulic structure disciplines (Fisher, Camp, & Krzhizhanovskaya, 2016; Mahani, Shojaee,
Salajegheh, & Khatibinia, 2015; Parsaie, Yonesi, & Najafian, 2015; Rankovi¢, Grujovi¢, Divac, &
Milivojevi¢, 2014; Su, Chen, & Wen, 2016). Many other researchers have employed SVM for
different purposes related to water resources and hydrology application (Azamathulla, Ghani,
Chang, Hasan, & Zakaria, 2010; Bhagwat & Maity, 2012; Cimen, 2008; Eslamian, Gohari,
Biabanaki, & Malekian, 2008; Goel & Pal, 2009; Han, Chan, & Zhu, 2007; Hipni et al., 2013; Khan
& Coulibaly, 2006; Lin, Cheng, & Chau, 2006; Misra, Oommen, Agarwal, Mishra, & Thompson,
2009; Moghaddamnia, Ghafari, Piri, & Han, 2009; Rankovi¢ et al., 2014; Samui, 2011; Yu, Chen,
& Chang, 2006).

Specifically for ground water applications, many researchers have used SVM to predict the
ground water fluctuation and study the seepage characteristic in a specific system for various
conditions (Behzad, Asghari, & Coppola Jr, 2009; Yoon, Jun, Hyun, Bae, & Lee, 2011). Others have
utilized SVM to assess the quality of the ground water and quantify the pollution sources (Bashi-
Azghadi, Kerachian, Bazargan-Lari, & Solouki, 2010; Liu, Chang, & Zhang, 2009). Most of these
studies include comparison of SVM performance to another technique, such as ANN model, and the
results revealed that SVM prediction is better than ANN. Also, SVM is more likely to capture the

relationship between input and output data and filter out outliers and noise instances.
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The majority of previous studies were implemented in predicting/forecasting responses of a
certain variable based on training data. Different error measures were used to evaluate performance
of SVM prediction. The key conclusion was that SVM can provide an efficient prediction, especially
when the proper options of kernel function and box-constraint are setup carefully. For some complex
problems, developing a SVM was used to enhance understanding of input variable effects on
prediction responses. However, SVM is rarely linked with the optimization model in civil
engineering applications. Also, reported studies utilizing SVM as a prediction or a surrogate related

to HWRS models are scarce.

2.5.3 Gaussian Process Regression (GPR)

Originally, Rasmussen (2004) developed the GPR technique. However, there were many earlier
applications of Gaussian distribution in the machine learning technique. The radial basis function

network and Gaussian kernel function based on SVM are an initial and simple version of the GPR.

The GPR machine learning technique is a generalization of the probability distribution. The
stochastic Gaussian process based on random probability distribution governs the properties of the
GPR function (f (x)) at a particular point. Hence, the GPR algorithm provides a flexible technique
based on Bayesian framework to figure out the relationship between given data sets. Many technical
factors, such as hyper-parameter and uncertainty estimation, make the GPR a robust technique (Sun,

Wang, & Xu, 2014).

Few studies have been conducted in different disciplines and engineering applications. The GPR
technique is utilized for prediction and forecasting purposes (Chen & Ren, 2009; He et al., 2017;
Kang, Han, Salgado, & Li, 2015; Kang, Xu, Li, & Zhao, 2017; Kim, Lee, & Essa, 2011; Li et al.,
2017; Pal & Deswal, 2010; Samui & Jagan, 2013; Xu & Suzuki, 2011). From these studies, the most
important conclusion was that GPR is less impacted by noisy training data, and the generalization
ability of GPR is better than other machine learning techniques, such as SVM and ANN. Although,
there are many factors which enhance prediction ability and efficiency of the GPR technique
compared to other techniques, applications of the GPR technique in ground water and hydraulic
structures are scarce. Furthermore, utilization of GPR as a surrogate model replacing the numerical

model is extremely limited for different disciplines (Xia, Luo, & Liao, 2011).

2.5.4 Optimization Theory and the Application in HWRS

Optimization is a technique utilized to find the best solution, design or maintenance
engineering system. The objective of optimization is either searching for a minimum or maximum

value of the objective function, which includes design (decision) variables. Basically, in this study,
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the optimum solution represents the optimum value for the seepage control design variables. These
variables, such as upstream and downstream cut-offs, location and orientation of cut-offs and apron
length, provide minimum cost and safe HWRS design. The constraints of the optimization model
reflect the design safety factor of HWRS and other design requirements. As the optimization solver
is based on surrogate model responses to evaluate the objective function value and constraints,
evolutionary optimization algorithms, such as the genetic algorithm (GA), are utilized for such
complex problems. Most evolutionary optimization algorithms are based on direct search and natural
selection techniques. Recently, evolutionary optimization algorithms have been widely utilized, as
compared to traditional optimization methods. Complex engineering optimization problems can be
solved using these algorithms, such as GA, simulated annealing, fuzzy optimization and other
methods (Rao, 2009). These algorithms imitate biological behavior for some creatures, swarming of

insects and neurobiological system as listed below:

1. Genetic algorithm (GA) is based on a direct search technique and natural gene selection.

GA is effective in identifying the global minimum or maximum.

2. Simulated annealing (SA) is based on complete thermal annealing of critically heated

mutation and is efficient in identifying the global optimum solution.

3. Particle swarm optimization is based on the behavior of a colony of living things, such

as birds, insects and fish.
4. Ant colony optimization is based on the behavior of ant colonies.

In this study, GA, hybird genetic algoritim (HGA) and non-dominated sorting genetic
algorithm II (NSGA-II) are selected as the optimization algorithms. These algorithms can efficiently
locate a global optimal solution, especially for nonlinear optimization problems. In general, Many
researchers from different engineering backgrounds have utlized GA. They conclude that GA
provies an efficient optimum solution (Al-Suhaili & Karim, 2014; Bornschlegell et al., 2012;
Cojocaru, Duca, & Gonta, 2013; Datta, Chakrabarty, & Dhar, 2011; Hassan, 2015; Housh, Ostfeld,
& Shamir, 2012; Innal, Dutuit, & Chebila, 2015; Islam, Buijk, Rais-Rohani, & Motoyama, 2015;
Rajper & Amin, 2012; Singh, 2010, 2011).

Particularly in hydraulic structures, different optimization algorithms are utilized to find an
optimal solution for the design. Yazd, Arabshahi, Tavousi, and Alvani (2015) studied optimum
geometry of concrete gravity dams at minimum cost using the particle swarm optimization (PSO)
algorithm. Sustainable and seismic loads are considered in the optimization model. Arman and

Ghader (2014) studied the optimum shape of concrete gravity dams by applying a new objective
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function. This function is the allowable duration under earthquake loads, as this duration gives an

indication of a specific tension stress value.

AL-Musawi, Shukur, and Al-Delewy (2006) studied the optimum characteristics for three
alternatives, cut-off wall, blanket floor and filter trench, to reduce seepage effects. FEM was used
to analyze and simulate each case of the optimization model based on Lagrange multipliers.
Optimization results showed that the filter trench attained minimum cost. Singh (2010) used GA to
minimize construction cost of barrages. Additionally, Singh (2011) used fuzzy numbers to measure
the uncertainty in seepage analysis under a varied hydraulic head. Singh and Duggal (2015) used
the hybrid differential evolution multiple particle swarm optimization technique (HDEMPSO) to
solve the optimization model of the hydraulic structures. Seyedpoor, Salajegheh, and Salajegheh
(2010) studied optimal design of arch dams using soft computing techniques which included dam-
water-rock interactions. They used FEM simulation model with earthquake load to estimate the
dynamic behavior of an arch dam. Furthermore, optimization models are applied to minimize

construction cost.

2.6 Linked Simulation Optimization (S-O) Model for HWRS design

The linked simulation optimization (S-O) approach is considered a useful technique for
complex problems to identify the optimum solution based on numerical simulations. The first
attempt of this technique in groundwater and water resources was conducted by (Gorelick, 1983)
followed (Das & Datta, 1999; Wagner & Gorelick, 1986; Willis & Finney, 1988). These authors
applied the S-O model to identify the contaminate source characteristics in specific aquifers and a
case study area. Later, as linked S-O provides efficient and accurate solutions, S-O has been applied
to many problems related to groundwater management in coastal aquifers and identifying source of
contaminants, which are considered complex and computationally expensive tasks (Ayvaz, 2016;
Bhattacharjya & Datta, 2009; Bhattacharjya, Datta, & Satish, 2007; Datta et al., 2011; Dhar & Datta,
2009; Hazrati-Yadkoori & Datta, 2017; Heydari, Saghafian, & Delavar, 2016; Jha & Datta, 2011,
Shourian, Mousavi, Menhaj, & Jabbari, 2008; Sreekanth & Datta, 2011, 2015a, 2015b).

Specifically in HWRS design involving seepage effects, few studies have utilized S-O
techniques. Singh (2010, 2011) formulated an optimization model to find the optimum dimension
of barrage at minimum cost. The author used Khosla’s theory to obtain seepage characteristics to be
processed in the optimization algorithm. The limitation of this study was that Kholsa’s theory is only
applicable for small hydraulic structures and the solution by Khosla’s theory has a noticeable amount

of error. Also, incorporating the effects of hydraulic conductivity on seepage analysis is not possible

21



Chapter Two

using Khosla’s theory. Moreover, Khosla’s theory can be applied for specified components of

substructures related to seepage under HWRS with many restrictions.

Hamidian and Seyedpoor (2010); Seyedpoor, Salajegheh, Salajegheh, and Gholizadeh
(2009); Seyedpoor, Salajegheh, Salajegheh, and Gholizadeh (2011) developed a new methodology
to find the optimum shape of a concrete dam. Adaptive neuro-fuzzy inference system (ANFIS) and
simultaneous perturbation stochastic approximation (SPSA) were applied to reduce the
computational cost of the optimization model. An improved version of particle swarm optimization
(PSO) was utilized to solve this problem. Al-Suhaili and Karim (2014) implemented an indirect S-
O model based on the ANN model to find the optimum solution of hydraulic structure at minimum
cost. In their study, the safety factors of HWRS were only considered for exit gradient and uplift
pressure, disregarding sliding, overturning and eccentric load effects. The utilized method to
generate training data and description of the data were undecided. Also, the ranges of the

implemented cases were only applied for small HWRS (total head less than 10 m).

Hence, studies that have utilized the S-O model for optimum design of HWRS incorporating
numerical seepage responses are scarce. Furthermore, incorporating the effect of the complex flow
domain of seepage characteristics on optimum design has not been considered previously.
Additionally, new formulations of the linked S-O model based on relatively new surrogate models
(SVM, GPR) to find the optimum design HWRS have not been utilized. Also, integrating the effect
of hydraulic conductivity or uncertainty of hydraulic conductivity has not been implemented within

the context of S-O models.

2.7 Motivation and Scope

With the developments in numerical seepage simulation and its efficiency in providing an
accurate solution for different problems integrating a complex seepage flow domain and non-
homogenous and anisotropic soil parameters, there is motivation to advance a methodology based
on linking the numerical simulation to the optimization model. The benefit of this methodology is
to integrate accurate seepage simulation models with optimization models, and simultaneously to
provide the safest and most economic design of HWRS. This methodology could not be
implemented based on approximation and analytical seepage analysis methods. Also, by this
methodology, many design safety factors related to HWRS may be incorporated to corroborate the

safety of the HWRS.

Furthermore, the soil parameter uncertainty related to seepage characteristics, such as

hydraulic conductivity which has a wide variation and uncertainty range (COV 200%-300%), may
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affect HWRS safety. Quantifying the uncertainty in seepage characteristics due to uncertainty in
estimating hydraulic conductivity was considered and applied based on a reliability based optimum
design (RBOD) framework using the S-O model to determine the effect of the uncertainty in design
parameters to the safety and minimum cost design of HWRS. Moreover, improving search efficiency
of the S-O model related to the RBOD model in obtaining a global optimum solution with a certain
reliability level was implemented based on multi-objective multi-realization optimization
(MOMRO) technique. Using such a technique can improve the search process based on direct search
technique and provide diverse alternatives of optimum solutions, which may approach the global
optimum solution. Also, some optimum solutions based on the MOMRO technique are more
applicable in some aspects of HWRS design requirements and field conditions. Furthermore,
additional motivation is to provide an efficient and applicable combination of accurate numerical
seepage simulation with an optimization based decision model to identify a feasible optimum
solution (design). This was achieved by replacing the computationally expensive numerical

simulation model with the expeditious surrogate model based on machine learning techniques.

From review of existing literature, it can be concluded that the previously developed
approximate and analytical seepage analysis methods do not provide a precise solution, as their
solutions have noticeable errors. In real fields, hydraulic conductivity is rarely seen in uniform,
homogenous or isotropy conditions. Therefore, considering the variation of hydraulic parameters
and flow conditions and effects on seepage characteristics is only possible by utilizing numerical
methods. However, utilizing the numerical model solely provides accurate seepage characteristics
for a predefined problem, and does not provide an explicit expression describing the relationship

between the design variables related to seepage under HWRS.

Accordingly, there is a need to use an efficient methodology to find optimum design of
HWRS and best combination of seepage control design variables for different conditions
incorporating accurate seepage analysis and HWRS design requirements. Integrating important
factors, such as safety and cost, could significantly improve design of HWRS and simultaneously
provide an efficient cost design. Hence, the linked S-O technique is implemented in this study to
achieve this goal. Optimum design of HWRS includes providing the best seepage control design
variables with different upstream water levels and different scenarios of hydraulic conductivity.
Seepage control design variables encompass optimum depths and orientation of many cut-offs and

distances (aprons) between cut-offs.

As there are many (design) decision variables, and the relationship between these is

nonlinear, and these variables influence the seepage characteristics of the candidate optimum
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solution, the optimization problem is considered a complex task. Consequently, only the
evolutionary optimization algorithm could solve such problems with some degree of confidence
regarding global optimality. Hence, GA is utilized in this study to provide the global optimum

solution for this problem.

To successfully and efficiently apply linked S-O techniques in this study, surrogate models
are developed to imitate the numerical responses of seepage quantities. Identifying optimum design
of HWRS based on direct linking of numerical model with the optimization model is an inefficient
and time consuming process because the optimization algorithm (GA) based on direct search
technique requires a large number of repeated solutions of nonlinear and complex numerical
operations to seepage characteristics for each iteration. This process may lead to an infeasible
solution and take a long time. Hence, developing an approximation seepage simulator (surrogate
model) based on the machine learning technique can provide precise and expeditious responses for
the S-O model to find the optimum solution. The surrogate model can be trained based on
numerically simulated data sets encompassing the most effective design variables and seepage

characteristics.

The linked S-O model was implemented in different scenarios with different machine
learning techniques based on the purposes and the complexity of the seepage model related to the
HWRS. S-O techniques include the developed surrogate models, and the formulation of the
optimization task are presented in the following chapters. Specifically, in chapter three the S-O
model based on ANN machine learning technique is implemented for a simple seepage conceptual
model including two end cut-offs with apron (floor) between them. The chapter includes evaluations

of the developed methodology and evaluations for developed surrogate models
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3 Performance Evaluation of Genetic Algorithm and Artificial Neural
Network Based Linked Simulation-Optimization Model for Optimal

Design of Hydraulic Water Retaining Structures

A shorter version of this chapter has been published in the Journal of Applied Water

Engineering and Research.

Al-Juboori, M & Datta, B. 2018 . Performance evaluation of a Genetic Algorithm based linked
simulation-optimization model for optimal hydraulic seepage related design of concrete gravity dams.

Journal of Applied Water Engineering and Research

The general concepts, theoretical background and literature review related to this chapter are
covered in chapter two. This chapter highlights the procedure to apply the linked S-O methodology to
find the optimum design of HWRS. Also, this chapter demonstrates to what extent the predictions of
the developed surrogate models are trustworthy and applicable to be used instead of the numerical
model. The findings and conclusion of this chapter are a foundation for the following chapters, which
include more complex simulation and optimization models. The S-O methodology was applied on a
simple conceptual model of HWRS including simple seepage scenarios of two cut-offs and one apron
between them. Hydraulic conductivity is considered as homogenous isotropic. The ANN surrogate
models are trained based on numerically simulated data sets, and then linked to the optimization solver
(GA) to find the best seepage control variables and the best dimension of HWRS. The options and

parameters of ANN and GA were carefully selected to attain ideal performance of these models.

3.1 Introduction

In addition to external hydrostatic and dynamic loads, seepage characteristics, such as uplift
pressure and exit gradient values, resulting from seeping water are also critical design variables
significantly affecting hydraulic stability of HWRS. Achieving accurate seepage analysis under
hydraulic structures is a challenging task, especially for complex problems classified as nonlinear
discontinuous problems (Chapuis et al., 2001; Harr, 1962). The complexity arises from several factors,
such as the geometry of the flow domain under a hydraulic structure, soil properties, boundary
conditions and the governing seepage equation, etc. The process of finding optimum economic design
of HWRS, while incorporating accurate seepage analysis methods is a difficult task. Any feasible
optimum solution must be based on reasonably accurate prediction of seepage characteristics. Only

numerical seepage analysis methods, such as FEM, provide precise solutions.
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Therefore, an alternative approach is utilized to achieve the optimum design based on linking
the numerical seepage simulation model to the optimization model. Direct linking of the optimization
model with the computationally demanding numerical simulation model is a computationally inefficient
and time consuming procedure. The optimization solver (GA) based on direct search technique calls
the simulation model a huge number of times to evaluate the objective function and constraints. For
example, SEEP/W code may require one to two minutes to accomplish a run for one candidate solution,
depending on the mesh size and complexity of the model. If GA starts with a limited population size
for the first generation, e.g. 200, and the SEEP/W code is used for solving each candidate solution to
evaluate the objective function, approximately six hours may be required to finish the evaluation of the
first generation. To achieve the global optimum solution, the population size and number of generations
need to be much larger. Further, the properties (genetic information) of each individual are modified
and recombined many times to produce a new offspring by applying the crossover and mutation
processes. These processes may be repeated several times and the fitness of each new candidate solution
is evaluated by GA based on the SEEP/W solution to find the global optimum point. Hence, the directly
linked S-O model needs an extensive computational process. Therefore, obtaining a global optimal
solution for a particular seepage problem, using high performance processer unit, based on the directly
linked S-O model may consume many days or even weeks. For instance, Dhar & Datta (2009)
conducted a directly linked S-O model with a small aquifer system. The run time was 30 days utilizing

relatively high qualification processors to find the optimum solution.

In addition to a computationally expensive process, the complexity of the problem decreases
the adoptability of a robust direct linking of a rigorous numerical solution code within the S-O model.
Design geometry and boundary conditions of the numerical model are different from case to case.
Through the optimization process, seepage characteristic values and their locations are continuously
changed from one numerical seepage simulation to another based on the candidate solution presented
by GA. Alternatively, for computational efficiency through acceptable approximation of physical
processes, the numerical model can be replaced with a surrogate model to provide accurate and fast
approximation responses for different seepage scenarios. Hence, linking the surrogate model to the
optimization model is computationally efficient compared to direct linking based on the numerical

model.

One of the most conspicuous machine learning techniques to develop an efficient surrogate
model is the ANN model. The ANN surrogate models were trained using many numerically simulated
data utilizing GEO-STUDIO/ SEEP/W codes (Krahn, 2012). Additionally, the ANN models were
rigorously tested using out of training data sets to measure the efficiency and predictive ability of the
models. Within the linked S-O model, the GA calls the surrogate model numerous times iteratively to

compare the fitness value of the objective function and evaluate the constraints. Furthermore, well
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trained surrogate models can be used as an approximate seepage simulator and predictive model to

precisely determine a particular seepage characteristic within the indicated ranges and conditions.

This chapter concentrates on developing surrogate models based linked S-O techniques to
achieve optimal hydraulic design of HWRS. The optimization model is formulated to provide optimum
hydraulic design, considering the safety and cost of HWRS, and integrate precise seepage simulation
responses. The methodology is evaluated by various scenarios to demonstrate the efficiency and

potential applicability of the methodology.

3.2 Numerical Seepage Simulation Model Based on Finite Element Method (FEM)

The numerical seepage simulation model utilized in this study is a finite element based model,
SEEP/W, within Geo-studio modeling software (Krahn, 2012). The FEM code is used to solve the
Laplace equation, as the seepage governing equation. FEM encompasses discretization of seepage flow
continuum to small elements, defining material properties and physical boundary conditions. All
equations of FEM are formulated at element nodes. The specified equation parameters are changed at
each node based on location, properties and boundary condition for each node, which in turn represent

surrounding elements. The general finite element form of the transient seepage equation is given by Eq.

(3.1):
[KI{H} + [M]{H},t = {Q} (3.1

Where: [K] = the element characteristic matrix;
[M] = element mass matrix;

{Q} = element applied flux vector;

{H} = vector of nodal heads;

t = time.

For steady state seepage, the terms {H}, t vanish, then the finite element equation can be

expressed by Eq. (3.2):

[K]{H} = {Q} (3.2)
The Gaussian numerical integration is used in SEEP/W to evaluate an element characteristic

matrix [K]. For example, the integral form of [K] matrix is given by Eq. (3.3):

[K]=1 jA([B]T[C] [B])dA (3.3)

Where: [B] = gradient matrix;
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[C] = element hydraulic conductivity matrix;
T = thickness of an element;
A= area of the element.

3.3 Conceptual Seepage Model

The conceptual seepage model was proposed for the illustrative HWRS design problem as
shown in Figure 3.1. The variables and design parameters of this model are assumed based on many
theoretical and practical considerations. Input variables (di, d2, b and H) are assumed, as shown in Table
3.1, to cover wide ranges of expected problems in the real fields. Additionally, Tanchev (2014)
recommended that the value of H must not be more than 40 m, because permeable soils have low bearing

capacity values, and it is hard to bear the tremendous amount of hydrostatic pressure.

Table 3.1 Assumed range of input variables

Description Minimum Maximum

value (m) value (m)
di Depth of cut-off in upstream side | 40
d> Depth of cut-offs in downstream side 1 40
b Half width of concrete HWRS (apron) 1 60
Upstream water head 1 40

T=140.0 my

. 1800m 1

Figure 3.1 Conceptual seepage model

Furthermore, to satisfy the unconfined seepage flow condition, the ratio of the thickness of the
permeable soil layer (T) to the half width of hydraulic structure (b) should be more than one, as shown
in Figure 3.2 (Harr, 2012). Therefore, the soil layer thickness is assumed 140 m, which is more than

double the maximum expected value of b (Table 3.2). This step guarantees that the unconfined flow

28



Chapter Three

condition is achieved. Similarly, Figure.3.3 shows a strong effect of cut-off depth ratios (s/T) variation
on the normalized discharge ratios (q/kh) for the (b/T) values less than 0.5 (unconfined flow condition).

This means the influence of the embedded cut-off length has a significant effect on the unconfined flow

condition.
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Figure 3.2 Comparing effect of soil layer depth to HWRS width on total head ratio (Harr, 1962)
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Figure 3.3 Effect of the cut-off embedment length on normalized discharge (q/kh) (Harr, 1962)

Moreover, Novak, Moffat, Natully and Narayanan(2007) suggested that major portion of the
width of a HWRS floor (b") should be within the upstream side. This length corroborates the stability
of the HWRS, where upstream hydrostatic downward pressure and weight of floor counterbalance the

substantial amount of the uplift pressure on the HWRS floor. On the other hand, the homogenous and
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isotropic flow domain is assumed with the constant hydraulic conductivity value k= 5E-5 m/s,

representing grained sand soils (Terzaghi et al., 1996).

3.4 Data Generation

Training of surrogate models is based on data sets simulated by numerical seepage modeling
code (SEEP/W). Input data are the independent variables (di, d», 2b, H) randomly generated using the
Latin hypercube sampling (LHS) method (Lin & Tang, 2015). The LHS method is a design of
experiment (DOE) technique used to generate samples for experiments. This method provides local
periodic information with equal probability that facilitates the training process to build an efficient
surrogate model based on the input data and their numerical responses, i.e., the output data. The output
data is obtained as a solution resulting from numerical seepage modeling for each input set. The most
important output data are uplift pressure on the floor at the Us cut-off (8C) in kPa, uplift pressure on

the floor at the downstream (Ds) cut-off (BE) in kPa and the exit gradient value (ie) at the toe of HWRS.

3.5 ANN Description

The ANN technique can explore complex, discontinuous and nonlinear relationships between
data sets. The ANN captures the relationship between training input and output data sets to build an
efficient surrogate model. Based on the generated data set related to the seepage system under HWRS,
the ANN was used to build three surrogate models. These models provide accurate predictions of
seepage characteristics without further utilizing numerical seepage simulation (SEEP/W code). A
typical and simple ANN consists of input layer, hidden layer(s) and output layer. As shown in Figure
3.4, circles represent neurons, lines between layers represent weights, squares represent scalar biases,

and X and Y vectors represent input and output data, respectively (Jain & Kumar, 2006).

Input layer

xi—s{ )}

Hidden layer Output layer

Figure3.4 Typical ANN architecture

The ANN tests all input and output data sets and learns, using ANN training rules, how changes

in input data sets impact output data sets. The objective function of the ANN training algorithm is to
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minimize the error between predicted and observed data. The ANN algorithm modifies the weights and
biases several times until the best model is attained based on minimum mean square error (MSE) value,

shown in Eq. (3.4) (Sivanandam et al., 2006).

N (3.4)
Where: Y, = target data;

Y, = output of the ANN;
N = number of scenarios.

There are three kinds of training processes, supervised, unsupervised (self-learning) and
reinforcement training (Sivanandam et al., 2006). In this study, feed-forward supervised training based
on the Lievenberg-Marquardt algorithm was applied with a back propagation error. Matlab programing
language was utilized to develop ANN models because Matlab is a versatile tool providing many
options that can be modified to build perfect ANN models. Three ANN models were developed
individually to approximately simulate each hydraulic seepage characteristic (0C, 0E, ie). Generated
input data sets of the four input variables (di, d2, 2b and H( and their seepage simulation responses (6C,
OE, ie) were utilized to build the ANN models. Input data passes through the input layer and training
operations are performed in the forward direction. Outcomes of the output layer are compared with
target values. Errors between ANN prediction and target values are distributed back on the weights and
biases to modify their value. The forward training and back propagation error processes are repeated
numerous times until the convergence is achieved between output data and target data (Jain & Kumar,

2006).

An example of mathematical expression of an ANN which has one hidden layer, s hidden

neurons, i input variables and m output variables is given by Eq. (3.5):

m S
Y, =f, Ewgls £, {Zwshi X; + by §+bm
=1 i=1 3-5)

Where Y, = output of the ANN;

X; = input variables;

W, s = connection weight between (s)th node of hidden layer and (m)th node of output layer;
Wg‘i = connection weight for (i)th input variable and (s) th node of hidden layer;

f1, £ = transformation functions;

b = bias factors.
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3.5.1 Size of Training Data

Quantifying the required size for training data to develop an efficient surrogate model is one of
the most difficult challenges of machine learning techniques. The difficulty arises from complexity of
the relationship between input and output data, which is different from case to case. Often researchers
use the trial and error procedure and check MSE or coefficient of determination (RSQ) until the
developed model presents accurate results. However, Pruett and Hester (2016) increased training data
sets many times and each time measured standard deviation error of predicted data based on the trained
surrogate model. They considered that the data set adequate and the training surrogate model became
efficient when standard deviation of the error is approximately constant. A similar concept was applied
in this study to find the required data size to train ANN models. Therefore, the initial source data was
generated and divided into two subsets: 70% for training and 30% for testing. The training/testing data
sets were randomly selected without replacement from the source data. This process was repeated five
times to generate five (5-fold) different training/testing data sets. Consequently, five ANN models were
trained and tested using the 5-fold data. Average standard deviation and standardized error (standard
deviation divided by the square root of data size) for the five developed models were computed for
training and testing data. Then, source data was increased gradually and the same procedure was
repeated for five new ANN models until standard deviation and standardized error did not substantially
change. Results of the developed ANN models for different data size are presented in Figures 3.5, 3.6
and 3.7. Obtained results indicate that the data size of 500 sets (350/150) provides adequate ANN

models.
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Figure 3.5 Standardized and standard deviation error for 0C ANN model with different training/testing
data size
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Figure 3.6 Standardized and standard deviation error for 0E ANN models with different training/testing
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Figure 3.7 Standardized and standard deviation error for exit gradient ANN model with different
training/testing data size

3.5.2 Optimizing ANN performance

ANN performance is based on several options and parameters, where these parameters can be
modified to provide accurate and generalized surrogate models. Furthermore, performance of ANN is
different from task to another task depending on relationship complexity between training data and data
properties. Key parameters affecting ANN performance are: number of neurons, percentage of training
to validation data, transfer function of hidden layer(s) and transfer function of the output layer. The

most commonly utilized transfer functions are logsig, tansig, purelin and radbas (MathWorks, 2018).

In some previous studies, effective ANN parameters were selected based on the trial and error
technique or user experience (Hamzagebi, 2008; Jaddi, Abdullah, & Hamdan, 2013; Khaw, Lim, &
Lim, 1995). The best model that can provide better data fit is chosen. However, more systematic and
effective procedures, such as analysis of variance (ANOVA), Taguchi DOE method and other methods,

have been used to maximize performance of ANN models.
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The Taguchi DOE method (Cavazzuti, 2012) is one of the best tools utilized to attain optimum
performance of a certain system (model, experiments, etc.) based on a small number of experiments.
Based on data analysis, orthogonal array and signal noise ratio (S/N), Taguchi developed an efficient
DOE method. Briefly, this method quantifies the impacts of effective variables (control variables) and
noise variables, which have a trivial effect on experiment results. Depending on different performance
measures, Taguchi successfully developed what he called signal to noise ratio (S/N) measures. These
measures optimize variable performance and find the effective factors’ combination, by which
performance of the experiment (model) maximize or minimize the results (Cavazzuti 2012). The most
prominent measures are larger the better (LTB) and smaller the better (STB), which are used in this

study and given by Egs. (3.6) and (3.7).

Smaller the better equation (S7B):

1
N = —10log— Z 2 3.6
S/ ogn( y ) (3.6)
Larger the better equation (L7B):
1 1
S/N=-101 —(z —) .
/ 0821252 (3.7)

Where: y = responses of a certain factor combination in Taguchi DOE;
n = number of responses in the factor level combination.

To find the best parameters’ combination of ANN models, the four factors with four levels of
16 runs Taguchi DOE (L4"4) were conducted, as shown in Table 3.2. The levels of each factor in
Taguchi DOE represent the ANN parameters that can be modified in ANN training (Matlab) code for
each experiment based on the same training/testing data set. Taguchi DOE was individually applied to
the three seepage characteristics (6C, OF, ie). Taguchi analysis was accomplished using Minitab
software and the SN ratio for each model was determined based on the RSQ for each experiment, as

shown in Table 3.2.
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Table 3.2 Taguchi Orthogonal Array Design L16 (4*4) with S/N ratio

Run =z Training/ Transfer Transfer 0C 0E ie
8 validation function of  function
= ratio (B) hidden of output SNR SNR SNR
g layer (C)  layer (D) - E:H‘ - &’—J - 51
g N5 n g N5
= SN Sy S
3 aQ aQ aQ
1 3 50/50 logsig logsig 55 34.80 32 30.10 5 13.97
2 3 60/40 purelin  purelin 95 39.55 81 38.17 39 31.82
3 3 75/25 tansig tansig 97 39.73 98 3982 87 3879
4 3 90/10 radbas radbas 1 0.00 1 0.00 1 0.00
5 6 50/50 purelin tansig 94 39.46 94 3946 72 37.14
6 6 60/40 logsig radbas 21 26.44 1 0.00 1 0.000
7 6 75/25 radbas logsig 2 6.02 1 0.00 1 0.00
8 6 90/10 tansig purelin 99 3991 99 3991 94 3946
9 9 50/50 tansig radbas 1 0.00 1 0.00 1 0.00
10 9 60/40 radbas tansig 98 39.82 93 3937 53 3448
11 9 75/25 logsig  purelin 99 39.91 99 3991 96 39.64
12 9 90/10 purelin logsig 49 33.80 14 2292 1 0.00
13 12 50/50 radbas  purelin 96 39.64 94 3946 92  39.27
14 12 60/40 tansig logsig 40 32.04 1 0.00 1 0.00
15 12 75/25 purelin  radbas 40 32.04 3 9.54 1 0.00
16 12 90/10 logsig tansig 98 39.82 99 3991 98 39.82

The Taguchi DOE analysis results for 6C model shown in Figure 3.8 demonstrate that factors
Cl1, C2 and D2, D3 have a parallel positive effect on S/N ratios of the 6C ANN model. As Taguchi
DOE is an approximation method, additional possible scenarios listed in Table 3.3 were implemented
to find the best combination. Further experiments were implemented to find the best number of neurons
between 12 and 9, i.e., level 3 and 4. The results of conformation experiments demonstrate that the
model with 11 neurons provides the best fit. The final 6C ANN model has 11 neurons, 60/40 training
to validation ratio, logsig transformation function for the hidden layer and purelin transformation

function for the output layer.

Table 3.3 Conformation experiments for different levels of C1, C2, D2 and D3 for 60C ANN model

Training Testing
A B ¢ b SN RSQ RSQ  MSE
4 2 1 2 54.78 99.6 99.4 102.3
4 2 1 3 54.74 99.7 99.2 140
4 2 2 2 55.75 95.2 95.5 641
4 2 2 3 55.71 94.8 94.0 1045
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Figure 3.8 Main effects SN ratio (larger is better) of the 0C ANN model

The same procedure was applied to the OE and ie ANN models and the result of Taguchi
analysis is shown in Figures 3.9 and 3.10. The 6E model has (A1B1C1D2) initial factors’ combination,
and the final combination is 4 neurons, 50/50 training to validation ratio, logsig transformation function
for the hidden layer and purelin transformation function for the output layer. Similarly, the best factor
combination for the ie model is (A1B1C1D3) and the final model has 5 neurons, 50/50 training to

validation ratio, logsig transformation function for the hidden layer and fansig transformation function

for the output layer.

0

Mean of SN ratios
o
°

0

Levels for each parameter

Figure 3.9 Main effects SN ratio (larger is better) of the 0E ANN model
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Figure 3.10 Main effects SN ratio (larger is better) of the exit gradient ANN model

3.5.3 Cross validation

Measuring the accuracy of the developed surrogate models related to seepage characteristics
(6C, BE, ie) based on a single scenario of the training/testing data is a fragile technique. Alternatively,
the multiple training/testing sets (cross validation (CV)) technique provides more understanding and
precise estimation about prediction accuracy of the developed models for out of training data (Alpaydin,
2014). The CV process involves randomly dividing source data into K (5 to 10) folds without
replacement. Each fold encompasses a unique data indexing for training and testing parts and is different
to other folds. The CV technique ensures that every single point in data is used in the training and testing
process. The training process was implemented K times. Error measures, such as MSE and RSQ, were
recorded each run for training and testing sets. The average of measurements provides an accurate

understanding of the model performance and a reliable prediction for detached data.

Based on ANN optimum parameters obtained by the Taguchi method, CV was conducted for
each model. the source data was divided into five folds and new training processes were implemented
five times with different (training/testing) sets. Results in Table 3.4 show robust predictions of the
trained models with varied training and testing data sets. Although CV provides perfect understanding
of model performance, it is a relatively expensive process and results of CV are used only to measure
efficiency of the developed models. Therefore, after achieving a satisfactory CV results, the final
models are different to CV models. The final model is trained on high percentage source data to provide

an accurate prediction.
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Table 3.4 Cross valuation results for different training / testing sets

CV- 6C OFE Exit gradient
Set

Training Testing Training Testing Training Testing
RSQ MSE RSQ MSE RSQ MSE RSQ MSE RSQ MSE RSQ MSE
set 1 99.8 27.57 994 1135 99.1 68.16 988 1482 951 0.017 93.8 0.006
set2  99.7 415 99.7 30.17 984 1425 983 132.6 97.6 0.008 914 0.02
set 3 99.8 31.8 99.1 941 985 1437 98.16 1034 974 0.007 98.1 0.007
set4  99.6 518 99.7 59.6 994 4777 985 1451 97.8 0.005 91  0.056
set5  99.6 5398 99.6 43.07 99.1 8225 99.33 4563 959 0.013 96.8 0.006
average 99.7 41.33 99.5 68.09 98.9 96.87 98.62 115 96.76 0.01 94.22 0.019

3.6 Optimization Model

The optimization model was formulated to find safe and minimum cost design of HWRS that
impounds a significant amount of water, considering the effects of seepage characteristics. Additionally,
the hydraulic design requirements of HWRS were considered in the optimization model, such as
flotation, sliding and overturning safety factors. The optimization model components are summarized

as follows:

3.6.1 Decision vector X

The decision vector X = [Xi, X2, X3... Xa] 18 a set of variables embedded in the objective function
and/or constraints of the optimization model. Values of X are modified many times by GA until the
minimum or maximum value of the objective function is achieved and simultaneously all constraints
are satisfied. In this study, the decision vector (X=[xi, X2, X3, X4, X5, X¢]) represents seepage design
variables of the candidate design. Some of these variables describe the geometry of seepage control
components and geometry of the HWRS. These variables are incorporated in the objective function and

constraints, as shown in Eq. (3.8) to Eq. (3.32). The decision variables are defined as shown below:
x1 = (di) = Us cut-off length (m);
X2 = (dz) = Ds cut-off length (m);
X3 = (2b) = width of hydraulic structure (m);
x4= (b*) = portion of the floor at the Us side (m);
x5 = (t1) = thickness of the HWRS floor at Us (m);

X6 = (t2) = the thickness of the HWRS floor at Ds (m).
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3.6.2 Objective function f (x)

The objective function (f (x)) refers to the mathematical description of a certain value in a
system or design to be minimized or maximized. Mostly, this function includes the decision variables.
The optimization solver (GA) iterates and modifies the decision variables many times until the optimum
value of the objective function is achieved. In this study, the objective function minimizes cost of the
HWRS considering the cost of seepage prevention components. The objective function is shown in Eq.

(3.8).

Minimize, f(x)=CV;+C,V;+C3V; 3.8)

Where C; and C; are costs coefficients related to construction Us and Ds cut-offs per unit
volume (m?), respectively. C; and C; can be expressed by Egs. (3.9) and (3.10) as a function of the cut-
off depth because construction cost of the cut-off is a critical stage and needs more time and effort with
augmentation of cut-off depths. Further, theses functions were formulated based on the assumption
that the cost could not represent a linear relationship with cut off depths, as the requirements, tools and
field conditions to construct cut-offs less than 10 m (for example) in depth are generally different than
when the depth of cut off is greater than 30, etc. Furthermore, these functions return high construction
cost of deep cut-offs, which is undesirable in a minimum cost design optimization. However, it may be
a feasible and good alternative for some HWRS which retain a high upstream water head value (H).
However, the cost coefficient functions given by Eqgs. 3.9 and 3.10 are only illustrative, and need to be
carefully defined for each site condition. A typical plot of the costs per unit volume (Ci, or C,) are
shown in the Appendix B, as Figure B3.1. Cs is construction cost of the floor per unit volume and equals

$400/m”.

Ci = x.7+20x,% + 200 x;+400 (3.9
Cy=x2°+20x,> + 200 x,+400 (3.10)
Viand V; are volume of Us and Ds cut-offs (m®), respectively, which are given by Egs. (3.11)
and (3.12), where tqi, ts> are thicknesses of the Us and Ds cut-offs (assumed 0.5m), respectively; Vsis
volume of the floor (m?) given by Eq. (3.13).

Vi=xi ts1 (3.11)
Vo=x, te (3.12)
RCEESE s

Where x5 x6 are computed utilizing Egs. (3.14), and (3.15):

1.3 6C

X = Goo1 (3.14)
1.3 6F

X = Goo1 (3.15)
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The values 6C and 6E are computed using the trained ANN models, which are linked with the
optimization model. Hence, ANN models work as a function of (xi, x> and x3) or (di, d2, 2b). Therefore,
the X value is modified for each optimization iteration as a new candidate solution, until the optimum
solution is achieved. As expression of Egs. (3.8) to (3.15) are nonlinear and some decision variables
(x5, X¢) are based on complex nonlinear (ANN) surrogate model responses, the objective function and
some constraints are considered nonlinear. Therefore, using evolutionary optimization algorithms, such

as GA, is extremely effective to solve such nonlinear optimization tasks.

3.6.3 Constraints defining simulated impact on the optimum design

In order to define feasibility of any candidate optimal solution, the impact of decision variable
values (i.e., depth of cut-offs, distance between cut-offs, floor thickness, etc.) on the candidate optimal
solution needs to be predicted. Without accurate prediction of these impacts for each candidate design
solution an optimum solution cannot be obtained. This aspect can be addressed by directly linking a
numerical simulation model to compute the seepage characteristics, uplift pressure, exit gradient, etc.
In the proposed methodology, because the optimization algorithm requires numerous runs of the
numerical simulation model in order to identify an optimum solution, a trained and tested ANN based
surrogate model was utilized as an approximate simulator and was introduced as a binding set of
constraints (Eq. (3.16)) of the optimization model. The seepage characteristics are used to evaluate the
objective function and constraints. Therefore, incorporating surrogate models in the optimization model

represents an implicit equality constraint.

(6C, BE, ie) = f(x4, X5, X3, H, k) (3.16)
Additionally, ANN surrogate models are linked with other constraints because some design
requirements and safety factors are based on the value of seepage characteristics. The general procedure

of linking surrogate models with the optimization model is shown in Figure 3.11.

Candidate scenano

(di, ds, 2b. B* ¢ 1.)

Optimization Algorithm
(GA)
he constraints

{ Objective Tunction value

Seepage simulator solution

i f(x) »C V4GV, 40,V

(&C, DE, ic)

Other constraints

Figure 3.11 General schematic of the linked simulation-optimization model
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3.6.4 Constraints defining design safety factors related to overturning, sliding, floatation,

exit gradient and load eccentricity requirements

Design constraints represent particular conditions or design requirements and the optimal
design must satisfy all these requirements in terms of permissible safety factors. In addition to
simulation constraints discussed earlier, two types of constraints were incorporated: i) the design
requirements to be complied with in terms of safety factors, and ii) the logical constraints, e.g.,
minimum permissible distance between cut-offs. Most of these constraints include the decision vector

and are classified as nonlinear constraints as discussed below.

3.6.4.1 Flotation constraints

The standard stabilization criterion against uplift pressure provided by U.S. Army Corps of
Engineers (1987) recommends that the uplift pressure safety factor for hydraulic structures with normal
operation conditions is 1.5, whereas for construction and maintenance conditions with zero water level
of upstream head (H) is 1.3. These factors were formulated as constraints, where Us uplift pressure (6C)
must be less than the unit weight of concrete floor plus hydrostatic pressure near the first cut-off. Mostly,
HWRS are constructed from concrete to efficiently resist external hydrostatic and dynamic pressures,
and to provide the required weight to counterbalance external loads. The mathematical expressions for

the two constraints are presented in Eq. (3.17) and (3.18):

g1(x) = - yc xs- yw (H- x5)+1.5 6c yw <0 (3.17)
@(x) = —ycxs +1.36cyw < 0 (3.18)
Where:

vc = concrete weight density (25 kN/m?);
yw = water weight density (9.81 kN/m3);
H = total water head (m);

B¢ = uplift pressure at Us cut-off (kPa).

Also, Ds uplift pressure (OE) must be less than the unit weight of concrete floor near the second

cut-off for normal conditions as shown in Eq. (3.19).

23(x) = —ycxg+1.30E yw < 0 (3.19)
3.6.4.2 Exit gradient constraint
The exit gradient (ie) is one of the most crucial design characteristics related to safety of HWRS.
Physically, ie can be represented by the amount of hydraulic gradient dissipated at the last square of the

stream-equipotential flow-net divided by length of the square (ie = Ah/L). In this study, actual ie value

41



Chapter Three

is determined based on SEEP/W solution for each case. The exit gradient safety factor is computed by

Eq. (3.20):

F.s= < (3.20)
1€

Where i.is the critical exit gradient and given by Eq. (3.21)

| = Ysub or i = (GS - 1)
C Yw ¢ (1+ey)

Where v, is submerged soil density; Gs is specific gravity of the soil; e is void ratio of the

(3.21)

soil.

Soil properties are assumed mixed grained sand (s =21.2 kN/m?), and that results in ic=1.15
(Terzaghi et al., 1996). Consequently, the minimum allowable safety factor for the exit gradient must
be between three and five (Harr, 2012; Khosla et al., 1936). Therefore, the constraint is expressed by
Eq. (3.22), considering the ie safety factor equals five:

g4(X) = 5 ig-ic <0 (3.22)

3.6.4.3 Sliding constraint

HWRS resistance must be sufficient against sliding and shear forces along the contact surface
between the HWRS foundation and soil surface or any horizontal joint within the body of HWRS. To
examine HWRS safety against sliding, two soil parameters must be estimated: cohesion factor (C) and
internal friction resistance factor (f= tan@), where @ is an internal soil friction angle. Tanchev (2014)
recommended, for normal load conditions, a sliding safety factor (Ks) of 1.5, which can be determined

by Eq. (3.23).

_ YVtanp +CB

K
S SW

(3.23)
Where:

Ks = sliding safety factor;

YW = resultant of horizontal forces acting on the HWRS;

3V =resultant of all vertical forces;

C = cohesion resistance factor;

B = 2b = width of structures;

@ = internal friction angle.
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The values of f and C are assumed as f= tan®=0.7 and C=20 kPa (Tanchev, 2014), and the

constraint is expressed as shown in Eq. (3.24).

g5(x)=1.5-Ks <0 (3.24)
3.6.4.4 The eccentric load condition and overturning constraint
Overturning stability is another important concept in HWRS design. According to the U.S.
Army Corps of Engineers (1987) recommendation, the resultant (R) of all acting forces on the HWRS
force must be located at a distance (e) from the toe of the hydraulic structure for normal conditions.
This means that R must be located within the middle third of the foundation width (2b). This condition
corroborates the full compression zone under the hydraulic structure’s foundation and prevents the

probability of a tension zone, as shown in Figure (3.12). The resultant location (e) is determined by Eq.

(3.25).

e= & (3.25)

Where:

M = summation of applied moments (of forces) around the toe;
'V = summation of vertical forces acting on the HWRS.

The constraints are given by following equations.

g6(x)=x3/3-e <0 (3.26)
g7(x)=e -2/3xx3 <0 (3.27)
Also, Tanchev (2014) recommended that the design safety factor against overturning (Fov)
must be more than 1.5 and can be expressed by Eq. (3.28)

_ Mpas
Fovt = M
act

(3.28)
Where

M;as =passive moments about the toe, which stabilize the HWRS;

M,=active moments about the toe, which weaken HWRS overturning stability. The constraint

is given by Eq. (3.29).

gs(x)=1.5-Fovt < 0 (3.29)
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Figure 3.12 Free body diagram of the HWRS

3.6.4.5 Other hydraulic logical constraints

Most other constraints are logical and geometrical constraints; for instance, all the design
variables must be in the positive range. Additionally, Tanchev (2014) mentioned that the minimum
distance between two cut-offs is not less than the summation of cut-offs lengths. Moreover, the cut-off
length must be less than 1.5 times of the total head. The formulation of these constraints is given by Eq.

(3.30) to (3.32).

go(x) =x1-1.5xh <0 (3.30)
g10(x) =x2-1.5xh <0 (3.31)
gi(x) =x4-x3 <0 (3.32)

3.6.5 Genetic Algorithm (GA)

GA is a non-traditional optimization algorithm widely utilized due to its efficiency in attaining
global optimal solutions. Complex engineering optimization problems can be solved using GA. GA is
an effective global optimization algorithm because GA: [1] has a parallel processing capability, [2]
utilizes multiple offspring, [3] explores solutions in multi directions, [4] can easily eliminate dead
directions and continue with more effective directions, [5] changes many parameters instantaneously,
[6] randomly changes selected solutions and checks whether or not this provides improvements in

solutions (Bajpai & Kumar, 2010).

GA randomly generates the initial population (individuals) covering the search design space.
The fitness value of each individual is evaluated, then the high rank individual has a significant

contribution to breed new individuals. The new generation is a combination of high rank parents and
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new offspring (children). Children are generated by making crossover, or mutates for the genes’
properties of selected parents. Hence, the new population inherits a large portion of parental
characteristics. This process continues many times to find the optimum solution and stops when fitness

value does not improve for new generations (Gen & Cheng, 2000; Haupt & Haupt, 2004; Rao, 2009).

Furthermore, GA can be used when the objective function or constraints are nonlinear,
stochastic and have undefined derivatives. Because the objective function and constraints are based on
ANN models, which is a non-differential function, it is extremely difficult to solve the optimization
model using traditional optimization methods, which are based on the gradient search technique.
Therefore, GA is a suitable choice to solve such optimization tasks. In the proposed linked S-O model,
GA randomly generates many solutions and invokes ANN models many times to compute and evaluate
the fitness value and constraints for each solution. These processes continue for many generations until

the optimum solution is achieved.

3.6.6 Maximizing GA performance

There are many parameters and functions affecting GA performance. The impacts of these
parameters must be explored before running GA. Population size, fitness scaling, selection,
reproduction, migration crossover, mutation, stopping criterion and constraint parameters are the main

parameters and functions that influence GA performance.

Many previous researchers used a non-systematic procedure to select GA parameters, such as
the trial and error method, selecting default options and using their experience. Other researchers did
not explain why they selected GA parameters in a particular combination (Al-Suhaili & Karim, 2014;
Bornschlegell et al., 2012; Cojocaru et al., 2013; Datta et al., 2011; Dhar & Datta, 2008; Housh et al.,
2012; Innal et al., 2015; Islam et al., 2015; Rajper & Amin, 2012; Singh, 2010, 2011). However, using
such scenarios may not lead to ideal GA performance. Furthermore, varying a particular parameter
individually, without considering other parameters, does not provide an insight into interactions

between different GA parameters in different levels.

On the other hand, others systematically analysed and studied the influences of GA parameters
on GA performance (Haines, Mills, & Filliben, 2012; Kolahan & Doughabadi, 2012; Koljonen &
Alander, 2006; Pereira et al., 2005; Rand, Riolo, & Holland, 2006). From the review of previous
research, it can be concluded that the most active parameters are population size, fitness scaling

function, selection function, cross over fraction, cross over function and mutation function.

Studying comprehensive interactions between all GA parameters in different levels is a
complex process and beyond of the scope of this research because extensive effort and time are required.

Hence, the Taguchi DOE method was applied to provide an efficient parameter combination to
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maximise GA performance with minimum experiment number (Dao, Abhary, & Marian, 2016;

Majumdar & Ghosh, 2015).

The six factors (parameters) mentioned above with five experimental levels were considered in
Taguchi DOE method L25 (576) using Minitab software, as shown in Table 3.5. The Taguchi DOE
analyses were processed for different head value (10, 20, 30 and 40 m) to determine the GA fitness
value for each run. To ensure the initial starting point of the GA is same for all DOE runs, Matlab
optimization toolbox option “Use random states from previous run” was activated, which ensures an

objective comparison for DOE results.

Table 3.5 Taguchi DOE for GA parameters with normalized fitness value for different head values

Population Fltngss Selection Cross Cross over Mutation .
. scaling . over . . Normalized fitness value
RUN size . function . function function
function fraction
A B C D E F 10(m) 20(m) 30(m) 40(m)
1 50 Rank Stoc_:hastlc 03 constraint Constraint 0911 0782 1.000 0723
uniform dependent dependent
; Uniform
2 50 Top Qty 0.2 Reminder 0.45 Scattered Rate 0.01 0.221 0545 0.839  0.201
Top Qty . . . Uniform
3 50 030 Uniform 0.6 Single point Rate 0.1 0.070  0.378  0.807  0.004
Top Qty . Uniform
4 50 040 Roulette 0.75 two point Rate 0.5 0.075 0384 0905 0.036
Heuristic Adaptive
5 50 Top Qty 0.5  Tournament 0.9 (1.2) Feasible 0.903 0.026 0.212 0.011
6 100 Rank Reminder 0.6 two point Adaptive ) 007 0043 0655 0739
Feasible
. Heuristic Constraint
7 100 Top Qty 0.2 Uniform 0.75 (1.2) dependent 0.135 0.862 0.166 0.001
Top Qty constraint Uniform
8 100 0.30 Roulette 0.9 dependent Rate 0.01 0.130 0442 0.868 0.116
9 100 ToP QY Toumament 0.3 Scattered Uniform 6 114 0308 0.803  0.020
0.40 Rate 0.1
Stochastic . . Uniform
10 100 Top Qty 0.5 uniform 0.45 Single point Rate 05 0.041 0.263 0.842 0.010
1 200 Rank Uniform 0.9 Scattered Uniform 6 023 0013 0909  0.003
Rate 0.5
12 200 Top Qty 0.2  Roulette 03 Single point ?S:g%;’: 0.092 0.032 0010 0.725
13 200 TopQty  roumament 045 twopoint  COMSIANt 060 0276 0.663 0998
0.30 dependent
Top Qty Stochastic Heuristic Uniform
14 200 0.40 uniform 0.6 (1.2) Rate 0.01 0.111  0.243  0.633  0.100
. constraint Uniform
15 200 Top Qty 0.5 Reminder 0.75 dependent Rate 0.1 0.075 0.102 0.564 0.125
Heuristic Uniform
16 300 Rank Roulette 0.45 (1.2) Rate 0.1 0.924 0.861 0.000 0.697
constraint Uniform
17 300 Top Qty 0.2 Tournament 0.6 dependent Rate 0.5 0.011  0.002 0910 0.003
18 300 Top Qty  Stochastic 7 Scattered  APUYE 500 0978 0242 0.584
0.30 uniform Feasible
Top Qty . . . Constraint
19 300 040 Reminder 0.9 Single point dependent 0.957 1.000 0.884 0.062
. . Uniform
20 300 Top Qty 0.5 Uniform 0.3 two point Rate 0.01 0.072 0236 0.815  0.041
21 400 Rank Tournament  0.75  Single point ]gl?e‘f%“& 0.085 0.689 0908 0.131
Stochastic . Uniform
22 400 Top Qty 0.2 uniform 0.9 two point Rate 0.1 0.142 0421 0.880 0.007
Top Qty . Heuristic Uniform
23 400 0.30 Reminder 0.3 (1.2) Rate 0.5 0.906  0.000 0.391  0.000
Top Qty . constraint Adaptive
24 400 0.40 Uniform 0.45 dependent Feasible 0.898 0.862 0.311 0.161
25 400 TopQty 0.5  Roulette 0.6 Scattered  COMSTANT 935 0934 0915 1.000
dependent
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The resulting objective function for all experiments are normalized between 0 and 1 before
starting Taguchi analysis, because there is a major variation in the fitness values for different head
values, as shown in Table 3.5. A multiple response analysis was conducted for different head values to
explore general performance of GA for different scenarios. The results showed that the best combination
of the five factors is A3B2C3D4ESF3, as shown in Figure 3.13. This combination means that the
population size is 300, the fitness scaling function is Top Qty 0.2, selection function is Uniform, the
crossover fraction is 0.75, the crossover function is Heuristic (1.2), and the mutation function is Uniform
Rate 0.1. Other GA parameters were the same as default Matlab options. One interesting inference seen
from Taguchi results (Figure 3.12) is that increasing the population size does not guarantee improving
GA performance. In this example problem, performance of GA deteriorated by increasing population

size to 400 or 500 individuals.
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Figure 3.13 Main effects SN ratio (small is better) for GA parameters

Evaluation experiments based on Taguchi analysis results were conducted with three runs starting
at different random initial generations. These experiments can help in measuring GA performance
improvements with the best parameter combinations for different head values. The results are compared
with the default Matlab options, as shown in Table 3.6. The comparison demonstrates that the best
parameter combination significantly improves GA performance to find the optimum solution. The
average of the minimum cost objective function obtained by the improved version of GA satisfy (on
average) 17% cost reduction compared to the cost obtained by default GA options for the implemented

cases.
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Table 3.6 Comparison of the objective function values obtained by improved GA model and the
MATLAB default parameter model.

Exp. Run H=10m H=20m H=30m H=40m

é 1 52182.5 492412.8 2816276.3 10491423.7
e}

% 2 51947.4 492672.6 2816192.4 10480348.0
=

9

£ 3 51637.9 492315.5 2817477.8 10497979.9
< 1 61442.42 693504.06 3099718.80 13740084.84
@)

:3 2 52607.54 636480.18 3908556.00 10826865.39
(31

5

A 3 52451.07 640121.32 3943266.37 12124962.18
5 =B 1 15.07 29.00 9.14 23.64

% E

g5
£ 2 2 1.25 22.59 27.95 3.20

S &
& E 3 1.55 23.09 28.55 13.42

3.7 Results and discussion

3.7.1 ANN models

Three ANN models were successfully trained and tested to develop the surrogate models
for (6C, OE, ie) individually, because each seepage characteristic has different attributes and ranges.
Based on Taguchi DOE results and CV outcomes, robust ANN models were obtained. Many indicators
and error coefficients were utilized to evaluate the accuracy of the developed models. In addition to
MSE and RSQ, scatter index (SI) and bias parameter (Mentaschi, Besio, Cassola, & Mazzino, 2013;
Moeini & Etemad-Shahidi, 2007) were implemented to measure the error between observed (simulated)
data and predicted data. All these error indicators provide reliable evaluations of training and testing

process accuracy for the developed models. The results were reasonable, as shown in Table 3.7.

Table 3.7 Description of the developed ANN models

Number  Training/ Transfer Transfer o ]
ANN 2ININE, function  function of Training Testing
of validation .
model . of hidden output
neurons ratio
layer layer
RSQ  MSE Sl BIAS RSQ MSE Sl BIAS
ec 11 60/40 Logsig purlin 99.7 369 0.05 0.54 99.3 89.1 0.06 0.95
OE 4 50/50 Logsig purlin 989 96.8 0.11 -0.53 99.1 67.16 0.09 0.29
Exit . . -
. .009 . . . . -0.004
gradient 50/50 Logsig tansig 97.5 0.00 0.28 0.007 97.3 0.004 0.15

The trained ANN surrogate models were used as generalized predictive models to determine
the seepage characteristics of problems having similar ranges of training variables. Groups of ANN

responses for each characteristic were used to develop the charts shown in Figures 3.14, 3.15 and 3.16
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to easily determine the seepage characteristic for different scenarios as a percentage of H. These Figures
reveal a noticeable effect of upstream cut-off depth (d;) on ie values. This effect has been neglected by

previous theories, such as Khosla’s theory.
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DS cut-off length (d,) m

Figure 3.14 Chart for estimating the exit gradient based on the developed ANN model as a fraction of
total head, a=2b/d:
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Figure 3.15 Chart for estimating the uplift pressure (OE) based on the developed ANN model as a fraction
of total head, o=2b/d:
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Figure 3.16 Chart for estimating the uplift pressure (0C) based on the developed ANN model as a fraction
of total head, a=2b/d:

Also, seepage characteristics could be determined using the scalar weights, scalar biases and
transfer functions for each model, which are presented in Tables A 3.1, A 3.2, A 3.3, A 3.4, A 3.5 and
A 3.6 in Appendix A. A mathematical example for the 6E model was implemented and is described in
the appendix. This example mathematically explains how ANN works based on the obtained weights,
biases and transformation functions to determine seepage characteristics, and could be applied for any

programming language.

Moreover, ANN models were successfully linked to the optimization model to provide an
accurate seepage simulator. The developed ANN models worked smoothly and efficiently with GA.
Each S-O run took approximately three minutes, which is an expeditious process to attain an optimum
solution based on the approximate seepage simulator (ANN) and the GA direct search technique.
Therefore, the ANN technique is a powerful method and provides accurate responses even with extreme

points randomly presented by GA.

3.7.2  Simulation—Optimization model

The S-O technique was implemented for different H values ranging from 2 m to 40 m. The
initial chromosomes of GA were randomly generated for each iteration. This ensures inclusion of a
large portion of the search domain in the optimization process. Consequently, the possibility to attain
the global optimum solution is increased. Results of the S-O model, including the design variables,
design parameters, safety factors and optimum construction cost, are presented in Table 3.8. The design

requirement of the HWRS and all the constraints were satisfied for each optimum solution.

Referring to Figure 3.17, optimum solutions for different H values show that d;, d; make a
considerable contribution in the hydraulic safety of HWRS. Nonetheless, the length of d. is relatively

more important than d;, because d, has a substantial impact on the ie value, which is the critical factor
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in hydraulic design of HWRS. Approximately, the optimum ratio of (di/d) is 0.65 and it increases to
0.75 with head growth.

60
—e—d1l(m) —A—d2 (m)
50 -G-2b (m) — — b*(m)
—¢—1t1 (m) -=X=-12 (m)
40
—_
g
<= 30
i
=)
Q
— 20
10
0 "
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Total head (m)

Figure 3.17 Optimum solution (d1, dz, 2b, b*, ti, t2) for different head values

On the other hand, the optimum width (2b) of HWRS effectively influences optimum hydraulic
design of HWRS, because the total width is directly integrated in many safety factors, such as
overturning, sliding and ie. The optimum ratio of 2b/(d;+d») changed with head value. This ratio is 0.8
for H (0-10 m), 1 for H (10-20 m), 0.7 for H (20-30 m) and 0.4 for H (30-40 m). Reduction of the
optimum HWRS width (2b) could be attributed to increasing floor thicknesses on the Us and Ds sides
(t1, t2) with head increase, which results in an expensive design. Therefore, the S-O model reduced the
total width and simultaneously augmented the depth of d; and d», which was an efficient and cost

effective solution to reduce tremendous uplift pressure and exit gradient effects for large H values.

Moreover, b* considerably contributed to achieving optimum hydraulic design of HWRS. The
weight of water head above b* (Figure 3.15) counterbalances uplift pressure and enhances the stability
of HWRS. Hence, the optimum ratio of (b*/2b) ranges from (0.45-0.65) as seen in Figure 3.17. This
means that the value of b* substantially contributed to the safety of HWRS and provides cheaper
solutions. Usually, HWRS shape is without b* value. Therefore, replacing the volume of concrete (in
case of b* = 0) by a sufficient volume of water is extremely cheaper solution when b* is a considerable

value (0.45-0.65 of 2b).

Additionally, the values of t; and t; also affect optimum design of HWRS, which is logical as
HWRS are partially based on its weight to resist hydrostatic and uplift pressure. The optimum ratio of
ti/H is approximately (0.5) and around (0.43) for t,/H. All these design parameters and safety factors

are integrated within the constraints, objective function and surrogate models.
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Additionally, referring to Table 3.8, optimum cost can be approximately expressed as an
exponential function with respect the water head (H), as shown in Eq. (3.33). This implies that
construction cost for cases with a small H (less than 20 m) is significantly lower than cases with large
H. For example, optimum cost is around ($490,000) for 20 m head, but when H attains 30 m the cost is
almost six times that of the first case ($2,815,000). Therefore, the construction cost for HWRS
exponentially increased with the head augmentation, especially for head values more than 20 m. That
can be explained by two reasons: first, the construction cost of cut-offs dramatically increased with cut-
off depth of, as the cost of cut-off is a function of its depth, see Egs. (3.9) and (3.10). Second, when the
head reached 20m or more, floor thickness values (ti, t;) became higher, which resulted in high
construction cost. Roughly, the optimum hydraulic design of HWRS must include sufficient floor width
(2b) ranging from H to 2H, upstream cut-off (d;) ranging from 0.8H to1.25H, downstream cut-off (d,)
ranging from H tol.5H, upstream portion of the floor (b*) around 0.5(2b), upstream thickness (ti)
around 0.5H and downstream thickness (t2) around 0.45H.

HWRS.t = 6407 EXP 0.1992 H,  RSQ=0.98 (3.33)
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Table 3.8 Optimization — simulation model results with SEEW and Khosla evaluations
Optimization-simulation results SEEPW result (cvaluation) Khosla result (evaluation)
Optimum design vector The safety factors Other results cost S
head di €2 2T B tl 2 Ks  F_over ¢ aC | e Exi oc Exul oc OF Exa
{m) (m) {m) (m) (m) {m) (m) SO SO gradient SEEPW  SEEPW  gradient | Khosla  Khosla  Gradiem
(m) (m) S0 {m) {m) SEEPW (m) (m) Khosla
2 25 300 617 115 0.9 082 8738 250 87 09 0.6 023 4,758.28 12 0.9 0.16 1.2 09 0.17
4 2.00 467 376 3.62 232 207 252 181 1.32 27 25 023 8,639.49 28 26 024 il 21 0.26
6 627 533 294 405 349 192 1,63 1.86 4.7 4.0 0.23 17,151.23 45 42 0.27 50 36 028
8 738 2.01 209 33 38 167 1.75 349 36 37 023 30,778.05 45 4.2 0226 49 37 0.31
10 6,68 544 1518 514 443 37 223 220 7.56 s 4.3 0.23 51835499 58 4.9 027 59 7 0.3
12 846 1021 1964 686 526 438 229 22 1008 6.1 50 0.23 83,799.48 10 58 026 0 56 0.30
£} 962 1248 2476 1173 651 533 260 246 1306 7.5 62 023 132,730.48 84 6.8 025 84 6.6 0.28
16 1061 1605 2525 1638 7.76 680 255 24 1258 89 79 023 209,207 .30 98 85 0.24 10.0 840 0.27
I8 1341 1850 3130 1680 885 749 260 245 1623 102 86 0.23 zonmn 10.8 9.2 0.23 109 88 0.25
20 1559 21,73 3500 2095 1032 853 268 246 1802 119 98 0.23 492431 87 120 10,4 023 122 98 0.24
2 1791 2539 3380 1608 1182 9™ 205 2.10 1642 137 115 0.23 731.887.539 13.1 122 0.22 13.7 10.8 0.24
2 2084 2872 3385 1760 1328 1070 207 207 1636 153 123 0.23 1,060,131 96 141 131 022 152 114 0.24
26 2369 3197 3646 1890 1423 11560 204 217 17539 164 155 0.23 1,497,331.19 151 142 0.22 16.6 121 0.25
28 26,54 3527 4026 1973 1475 1241 204 220 1961 170 143 0.23 2.072.930.37 16.2 15.2 0.22 17.8 130 0.23
30 2982 3R39 3891 2134 1309 1327 159 1.91 1717 170 151 023 28158299 17.0 16.2 022 19.8 13.0 0.23
32 JL86 4249 3801 2222 1627 1439 174 207 1702 188 166 0.23 3,766,369.50 185 18.0 022 224 131 0.22
34 3465 459 4301 2158 1706 15210 LW7 210 1982 197 175§ 0.23 1,963,850 .86 196 19.0 o 233 143 0.22
36 3825 4924 4009 2562 1901 1600 165 1.99 1717 219 185 0.23 645111934 206 202 021 26.7 131 0.22
38 3735 5466 4036 2356 2205 1773 156 1.88 1673 254 204 0.23 8,369,651 45 29 226 on 30.1 14.0 021
40 4378 5666 3654 3400 2207 1790 152 L7 1258 255 206 023 10,472,071 .86 231 229 022 354 93 0.21
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3.7.3 Evaluation

An objective evaluation of the methodology was conducted to assess the performance of
developed ANN models and the linked S-O model. Basically, the evaluation processes included
comparing the predicted seepage characteristics value based on ANN / S-O models to solutions of

numerical simulation and other methods for the resulting optimum solutions.

3.7.4 The ANN model evaluation

Forty different scenarios of di, d», 2b and H were randomly generated using LHS. The seepage
models based on these values are solved/simulated by the developed ANN models, numerical seepage
code and Khosla’s theory. The evaluations showed a superior match between ANN and SEEP/W results
for uplift pressure and ie values, as shown in Figures 3.18, 3.19, 3.20 and Table 3.9. The ANN
predictions did not precisely match Khosla’s solutions as much as the numerical solution. This can be
assigned to two factors: first, the ANN model was not trained based on Khosla’s solutions. Second, the
approximation and empirical assumptions utilized in Khosla’s equations affect the accuracy of Khosla’s
solutions. Furthermore, irregular results were presented by Khosla’s theory for uplift pressure values.
This could be attributed to Khosla’s empirical correction formula for mutual interference between cut-
offs, which is the last term in Egs. (3.35) and (3.36). This term provides illogical values and affects the
uplift pressure value strongly when the ratio of (di/2b) or (d»/2b) is more than 1. The calculation of ie
value and uplift pressure (percentages from a total head (H)) by Khosla’s theory are given by Egs. (3.34)
to (3.37):

h
IExhosia = Trked, (3.34)
1 k=2 D (d+D
%0 khosta = 100 = =COS 1(—7(—)4-19/57 (5-) (3.35)

1 =2 D (d+D
h0e 050 = €05 (=) =19 7 (%) (3.36)
1+a? +1
AzJ “ _ _2b (3.37)

2 > Y T

Where

b' = distance between two cut-offs (m);

2b = total width of the floor (m);

d = depth of the cut-off at which uplift pressure is determined (m);

D = depth of the cut-off which affects neighbouring pile (m).
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Figure 3.18 Comparison of ANN solution with SEEP/W and Khosla’s solutions (Exit gradient)
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Figure 3.19 Comparison of ANN solution with SEEP/W and Khosla’s solutions (0C)

Up lifet pressure(m)
&
o

N e
W ™
S o

-280

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

B gE by ANN oE by SEEPW

B ¢E by khosla

Total head (m)

Figure 3.20 Comparison of ANN solution with SEEP/W and Khosla’s solutions (0E)
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3.7.5 S-0 model evaluation

Seepage characteristic values related to optimum solutions obtained by the S-O model were
evaluated to verify that the surrogate model responses within S-O model are accurate. The optimum
solutions were solved by the numerical seepage modeling and Khosla’s method. The resulting seepage
characteristic values obtained by these methods and seepage characteristic of the optimum solution

given by S-O technique are shown in Figures. 3.20, 3.21, 3.22 and Table 3.9.

Broadly, S-O solutions totally agreed with SEEP/W solutions for uplift pressure and ie values.
However, there are minimal deviations for ie and uplift pressure values for a few points. This is expected
performance for any approximation and surrogate model, and may be attributed to imperfect training of
the developed ANN models for data located beyond or near the training ranges. For example, for cases
having H value between 32 and 40 m, the optimum d, value was more than 40m (Table 3.8), whereas

the maximum training range for d, is 40 m.

Moreover, all ie values attained ultimate allowable value (0.23) to achieve the safety factor
value (5), which can be clearly observed in Figure 3.22. This means ie values substantially and critically
impact S-O the optimal solutions and safety of HWRS design. Therefore, the S-O model modifies the
decision vector to provide ultimate allowable safe ie value. Hence, that might influence efficiency of S-

O solutions for some cases compared to the numerical solution.

Comparing with Khosla’s solutions, a good match is obtained for most results. Nevertheless,
there were considerable deviations, as clearly seen in Figures 3.20, 3.21 and 3.22, which could be
attributed to the same reasons discussed earlier in the context of ANN evaluation. There is a noticeable
deviation of Khosla’s solution for the large HWRS scenarios (large H value) for uplift pressure value.
Also, for exit gradient values, Khosla’s solutions present a noticeable error for small HWRS instances

(low H value). Hence, there are some imprecise solutions and limitations in applying Khosla’s theory.

Generally, the linked S-O model provided precise and computationally efficient results.
Therefore, this methodology is potentially applicable for a real life minimum cost optimal design.
However, it is recommended to adequately expand training data range to obtain accurate solutions using

trained ANN models for different cases of HWRS design.
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Figure 3.21 Comparison of seepage characteristics (0C) of the optimum obtained by S-O model,
Numerical model (SEEP/W) and Khosla’s theory
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Figure 3.22 Comparison of seepage characteristics (OE) of the optimum obtained by S-O model,
Numerical model (SEEP/W) and Khosla’s theory
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Figure 3.23 Comparison of seepage characteristics (Exit gradient) of the optimum obtained by S-O model,
Numerical model (SEEP/W) and Khosla’s theory
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Table 3.9 Evaluation of S-O optimum solutions with SEEP/W and Khosla’s solutions

Z
D)

01NN AW -

B W W W WL W W WD NN NNNRNDNDRD e e e ek k| o
SO RIS U R WN =SSO0 RINNEAWNMOSOOROIANNEWN =D

Assumed data S-O Result SEEP/W result Khosla result
Exit Exit Exit
0C (C)3) . 0C OF . 0C OFE .
dl d2 2b H radient radient radient
ANN  ANN 8 ANN SEEPW  SEEPW ‘;’EEPW Khosla | Khosla gKhosla

28.5 14.5 44,78 10.78 542 4.01 0.10 4.76 3.65 0.13 3.98 3.62 0.11
30.5 21.5 106.73 = 79.03 | 43.71 27.19 0.63 43.82 27.51 0.70 42.96 30.78 0.39
5.5 38.5 77.23 2.98 2.78 0.38 0.02 2.47 1.76 0.02 2.27 1.71 0.02
27.5 35.5 68.38 59.53 35.54 30.07 0.42 35.28 29.54 0.43 35.59 34.79 0.34
20.5 5.5 112.63 | 63.43 | 39.22 10.88 0.98 37.33 11.69 1.10 39.83 12.52 0.34
6.5 11.5 32.98 67.33 | 46.59 30.72 1.18 45.88 30.67 1.26 41.34 3347 0.92
13.5 28.5 94.93 8.83 5.71 3.90 0.06 6.32 4.12 0.08 5.90 4.11 0.04
14.5 31.5 91.98 38.08 | 26.39 18.84 0.36 27.08 18.62 0.32 24.83 18.79 0.19
37.5 30.5 47.73 30.28 14.11 12.77 0.25 14.42 13.22 0.23 16.32 11.84 0.22
36.5 32.5 71.33 61.48 | 30.77 26.94 0.42 32.13 26.79 0.44 25.73 26.05 0.35
9.5 0.5 9.38 47.83 18.20 13.47 5.75 13.38 4.72 6.37 12.85 0.10 3.08
38.5 18.5 6.43 77.08 18.08 22.47 0.48 17.91 17.91 0.72 224.42 -249.16 1.29
35.5 29.5 62.48 | 2248 11.06 10.18 0.17 11.35 9.61 0.17 8.88 9.31 0.15
18.5 9.5 100.83 | 32.23 | 20.19 8.79 0.46 19.79 8.18 0.45 20.19 8.76 0.19
31.5 10.5 118.53 | 20.53 11.33 3.24 0.25 10.55 4.73 0.24 11.45 5.42 0.10
8.5 16.5 18.23 16.63 9.89 9.58 0.26 10.85 9.97 0.27 11.42 11.76 0.26
10.5 37.5 74.28 69.28 54.50 41.07 0.51 52.57 39.53 0.54 52.43 40.05 0.37
34.5 8.5 56.58 55.63 | 21.84 11.91 0.69 22.22 12.97 0.78 21.09 12.63 0.54
25.5 15.5 3.48 53.68 16.81 19.41 0.87 14.73 14.73 0.72 256.34 -275.95 1.09
39.5 1.5 41.83 18.58 2.95 1.01 0.65 5.19 1.66 0.69 5.26 -0.21 0.27
15.5 25.5 24.13 65.38 | 40.40 38.12 0.70 40.72 38.87 0.71 45.71 3143 0.69
2.5 12.5 97.88 57.58 50.43 17.75 0.80 49.73 19.42 0.80 49.31 18.11 0.33
26.5 20.5 38.88 36.13 19.14 13.94 0.41 17.40 15.20 0.38 18.82 14.39 0.36
32.5 27.5 59.53 51.73 | 26.77 21.74 0.43 26.48 22.16 0.42 20.90 21.56 0.35
16.5 335 30.03 41.98 | 28.48 26.16 0.39 27.90 26.53 0.37 30.92 21.65 0.34
22.5 39.5 83.13 6.88 3.85 291 0.03 4.51 3.58 0.05 3.81 3.88 0.03
23.5 24.5 35.93 26.38 15.63 11.86 0.28 14.03 12.77 0.26 15.11 11.62 0.25
17.5 4.5 80.18 12.73 7.40 3.12 0.25 7.44 2.38 0.27 7.58 2.69 0.10
21.5 7.5 86.08 | 24.43 13.77 6.58 0.39 13.73 5.60 0.38 13.93 6.39 0.17
11.5 17.5 89.03 28.33 19.73 11.28 0.37 20.03 10.78 0.32 19.36 10.91 0.17
19.5 36.5 53.63 4393 | 29.21 24.71 0.37 28.61 24.88 0.34 28.87 28.34 0.28
4.5 2.5 15.28 4.93 2.20 0.53 0.33 2.82 1.44 0.30 2.65 1.74 0.17
7.5 26.5 27.08 73.18 55.64 48.45 0.81 54.53 48.75 0.81 57.50 52.97 0.72
3.5 6.5 109.68 = 75.13 | 64.24 16.43 1.36 62.75 17.56 1.40 63.08 16.30 0.41
0.5 34.5 21.18 | 49.78 | 4832 42.20 0.51 47.35 40.65 0.47 62.85 40.71 0.42
29.5 23.5 103.78 = 45.88 | 25.88 17.62 0.41 26.02 16.92 0.39 24.99 18.85 0.22
24.5 3.5 65.43 34.18 16.57 6.82 0.82 16.38 5.53 0.82 16.65 7.05 0.32
12.5 13.5 115.58 = 71.23 51.85 20.22 0.82 50.03 22.29 0.88 50.51 21.47 0.35
335 19.5 12.33 40.03 13.81 12.13 0.53 12.91 12.89 0.42 45.66 -21.35 0.60
1.5 22.5 50.68 14.68 13.58 8.71 0.18 13.01 8.16 0.17 1241 8.06 0.12

3.8 Conclusion

This chapter presents a methodology to develop and validate the linked S-O technique in the
hydraulic design of HWRS integrating the numerical responses of nonlinear seepage characteristic
values. The biggest challenges in directly linking the complex optimization model to the numerical
simulation model is that the method is computationally expensive and time consuming. Therefore,
efficient ANN surrogate models were built to imitate numerical seepage responses. The developed
models were successfully and efficiently linked to the optimization model to find the optimum hydraulic
design of HWRS based on expeditious surrogate model responses. Systematic method is used to find
the optimum training data size for ANN models. The ANN and GA parameters were carefully selected

based on Taguchi DOE analysis to improve their performance. This procedure improved GA
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performance by 17 % and significantly increased prediction preciseness of ANN models. The cross
validation technique was implemented to evaluate ANN performance with different training/testing data
combinations. The cross validation results demonstrated that the developed ANN surrogate models

provide sufficient accuracy.

The S-O model was implemented for different H values ranging from 2 m to 40 m to find the
optimum hydraulic design of a HWRS. In general, the optimum hydraulic design variable values of the
HWRS can be summarized as: di/d; ratio ranges from (0.7-0.8), 2b/(d;+d.) ratio increases with H value
growth from 0.8 to 1 then drops to 0.7 and 0.4, ( b*/2b) ranges from (0.45-0.65), ti/H is approximately
0.5, t2/H is 0.43 and the optimum construction cost could be estimated based on H value using the
equation (HWRScost = 6407 € 0.1992 H). One of the most important inference of the results is that the

inclusion of b* value in the optimization model significantly reduces construction cost of HWRS.

The optimum solutions obtained by the S-O model demonstrate that the most important design
variable is ie (exit gradient). As ie value drastically influences the HWRS design and construction cost,
it is recommended that future studies quantify uncertainty of the exit gradient safety factor and related

parameters and variables, and how it affects minimum cost design.

The optimum solutions presented in this study could be used to select the optimum combination
of (di, da, 2b, b*, t1, t») for specific (H) value in design HWRS. Additionally, seepage characteristics
could be directly obtained using the provided charts or by substituting input variables in ANN equations
(in appendix A). However, application of these techniques is limited by the assumed ranges of the

design variables.

Extensive evaluations to the optimum solutions based on ANN predictions were performed by
comparing the seepage characteristic of the optimum solution obtained by the S-O model to the seepage
characteristic resulting from numerical simulation of optimum solutions. The S-O and ANN predictions
demonstrated good agreement with the numerical solutions. Therefore, the proposed methodology is
potentially applicable to minimum cost and safe optimal hydraulic design of HWRS integrating accurate

seepage modeling.

In Chapter Four, the S-O methodology is applied to the comprehensive conceptual seepage
model. This model included ten cut-offs and varied inclination for each cut-off. The locations of cut-
offs varied also. The SVM surrogate model is utilized in this problem to provide a robust prediction for
seepage characteristics. Also, the effects of hydraulic conductivity and anisotropic hydraulic

conductivity are studied in the next chapter.
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4 Coupled Simulation-Optimization Technique for Optimum Hydraulic
Design of Hydraulic Water Retaining Structures Constructed on

Anisotropic and Non-homogenous Permeable Soil

Parts of this chapter were published, as per following details:

Al-Juboori, Muqdad, and Datta, Bithin (2018) Linked simulation-optimization model for optimum
hydraulic design of water retaining structures constructed on permeable soils. International Journal of

GEOMATE, 14 (44). pp. 39-46.

Al-Juboori, Muqdad, and Datta, Bithin (2018) Minimum Cost Design of Hydraulic Water Retaining
Structure by Using Coupled Simulation Optimization Approach. KSCE Journal of Civil Engineering, in press.

In this chapter the S-O based methodology is implemented for a comprehensive scenario,
incorporating different features of hydraulic conductivity and many seepage prevention components
(cut-offs). The aim of this chapter is to find optimum design of HWRS, the most effective
variable/parameters in the optimum design of HWRS, and how the variation of hydraulic conductivity

affects optimum design of HWRS.

4.1 Introduction

An obvious concern in designing HWRS is the limitation of seepage prevention components,
especially for high water head, to provide a safe design. Often seepage prevention components of most
constructed projects are end cut-offs (upstream and downstream) with an apron between them. Also,
with limited orientation, lengths and number of cut-offs, and width of the apron, the opportunity to find
a feasible optimum solution using a linked S-O technique is reduced. On the other hand, including the
effects of different scenarios of hydraulic conductivity and its anisotropic ratio on the optimum HWRS
is an important concept that must be considered in optimum design of HWRS. Moreover, studying soil
stratification based on different values of hydraulic conductivity and its effects on optimum design of

HWRS is another concept that needs to be considered in optimum HWRS design.

Hence, a comprehensive conceptual model is proposed. This model includes ten cut-offs
distributed along the apron of the HWRS. The lengths, orientation of cut-offs and distance between
them (apron) are considered variables. These variables are used to build surrogate models and within
the S-O model the optimum value of these variables can be achieved. Based on optimum solutions,
which provide a safe and minimum cost design of HWRS considering seepage impacts, the most

important and active sets with their optimum value could be identified.

On the other hand, seepage characteristics are affected by soil properties. Soil properties in real

fields vary with different locations and directions and rarely exhibit homogenous isotropic hydraulic
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conductivity (Lambe & Whitman, 1969). Hence, hydraulic conductivity of the flow domain is proposed
as a variable value, and is included in three different layers, and anisotropic ratio for each layer is varied
as well. The depth of each layer is another variable incorporated in the conceptual model. The precise
values for uplift pressure and exit gradient in non-homogenous anisotropic soils with different boundary
conditions could only be determined using numerical simulation, specifically the finite element method

(FEM).

This chapter concentrates on studying the effect of soil properties on optimum solution, and
finding the most important and effective seepage control components for optimum design of HWRS.
The S-O methodology involved formulating the optimization model to minimize construction cost.
Also, many constraints were proposed to represent the safety factors and design requirements of HWRS.
The hybrid genetic algorithm (HGA) was based on the support vector machine (SVM) surrogate model
responses (seepage characteristics) to evaluate the objective function and constraints to select the
optimum decision variable. The SVM surrogate models were trained and tested by a large amount of
numerically simulated data sets. The input variables were randomly generated, then numerically
simulated to determine seepage characteristics (output variables). Additionally, optimum solutions
obtained using the S-O model were evaluated by numerically simulating the optimal solutions and
comparing seepage characteristics resulting from the S-O to the numerical solution results. More details

about the developed S-O approach and related models are covered in the following sections.

4.2 Seepage conceptual model and data generation

The first step in developing a surrogate model is to propose a comprehensive conceptual model.
This model includes all expected parameters and variables affecting design of HWRS. Based on the
conceptual model, many scenarios of input data could be generated and simulated to find the
corresponding seepage characteristic (output data) for each scenario. Each scenario represents a specific

numerical simulation seepage model and includes different features and soil properties.

The comprehensive numerical model is shown in Figure 4.1. The variables of the
comprehensive conceptual model are processed through the optimization model to find the most
important design variables that provide a safe, economic and optimum solution. The geometry of the
assumed numerical model comprised ten cut-offs (sheet piles) with varied positions, length and
orientation. Additionally, three subsoil layers were assumed and the principle (horizontal) hydraulic
conductivity (k) and anisotropic ratio (k/k) varied for each layer and for each case. As a result, the
contribution of each variable involved in the comprehensive model to the optimal design could be

explored for different boundary conditions.

The prescribed range of each design variable and parameter, shown in Table 4.1, was selected

carefully to satisfy the flow condition and other design requirements, as discussed in Section 3.3. Also,
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the ranges of hydraulic conductivity and anisotropic ratio were proposed to cover a wide range of
expected real life hydraulic conductive and anisotropic ratios and were based on many studies and
experimental data (Beckwith, Baird, & Heathwaite, 2003; Burger & Belitz, 1997; Greenkorn, Johnson,
& Shallenberger, 1964; Terzaghi et al., 1996).

DL2

DL3

Figure 4.1 Seepage conceptual model scheme

The second step is to randomly generate numerous and different seepage scenarios, then
simulate them by the numerical model. In each scenario, the design variables of the numerical model
were completely different to other scenarios. The input and output variables for each scenario
represented one data set. The 41 input variables included in the conceptual model were: total upstream
water head (H), ten cut-off depths (di, ds ,... dio), their angles (B1, B2,-... Pio), distance (width) between
cut-offs (b, ba,.... big), three subsoil layers depths (LD, LD,, LD3), their hydraulic conductivity in a
horizontal direction (kys, kx2, kv3) and their anisotropic ratio (k/k:)1, (kv/kx)2, (k/ki)3, respectively.

Latin hypercube sampling method (LHS) (Cox & Reid, 2000) was used to randomly generate
data sets within the specified range. Statistical description of the input data is listed in Table 4.1. The
input data and their corresponding simulated responses (output data) was utilized to train and build
SVM surrogate models. The output data for each case was obtained by simulating the input data for the
same case using the numerical simulation model. The most important seepage design characteristics for
each numerical seepage model were uplift pressure in front (PEi) and behind (PCi) each single cut-off
(S1, S, ... Sip) in addition to the exit gradient (ie) at the toe of the hydraulic structure. Hence, it was

required to develop 21 surrgate models, one surrgate model for each seepage characteristic.
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Table 4.1 Statistical description of the generated data

Input variable Unite Min Max Average Std.

H m 2 100 50.61 28.11

bl, bz, b11 m 1 120 60.37 34.26

di, da, ... dio m 0 60 29.98 17.37
B1,Ba... B dgree 30 150 90.4 34.11
LDy, LD,,LDs3 m 5 100 53.67 27.01

b, ka2, ks m? /day 0.01 20 10.04 5.78
(k/k)1, (ky/kx)a, (ky/k)3 - 0.1 1.5 0.80 0.40

Seepage characteristics varied for each scenario and were affected by different parameters
(input parameters), such as upstream water head, soil properties, flow geometry, cut-off depths, etc.
Achiveing adequately trained surrogate models to predict seepage characteristics for complex problems
provides good understanding of the effects and contribution of each parameter and variable on seepage
characteristics. As a result, based on surrogate model responses the optimizaiton model could select the

most important variable which provides safety and most efficient construction cost of HWRS.

4.3 Variable importance analysis

Variable importance or feature selection analysis is an important step which must be
implemented before training surrogate models to select and incorporate active input design variables in
building required surrogate models to predict a certain seepage characteristic. There are 41 input
variables (Table 4.1) and 21 output seepage characteristics, and it is unexpected that all input variables
play a significant role in training the surrogate model of a particular seepage characteristic. Therefore,
a feature selection technique was utilized to find the most important variables contributing to prediction

of a particular output variable.

Using this technique provides two advantages. First, accuracy of the surrogate model increases
because the training process including many input variables deteriorates training quality of the surrogate
model. Each input variable produces a specified amount of error. Consequently, with a huge amount of
predictors (input variables/parameters) accumulate error becomes larger and this may lead to an
inadequate surrogate model. Additionally, mixing uncontrollable predictors with controllable variables
substantially affects the training process (Cavazzuti, 2012). Consequently, ill-trained surrogate models
are produced and prediction accuracy is unsatisfied. Second, surrogate model speed responses, trained
on large number of input variables, is less compared to the surrogate model trained on a small number
of input variables. The expeditious responses of surrogate models are considered an important factor to
successfully develop S-O approaches. The surrogate models would be invoked by the optimization

solver numerous times to evaluate the related objective function and constraints.

Variable importance analysis comprises of passing generated data sets used for training

surrogate models to the feature selection model. Analysis results demonstrate the importance level of
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each input variable and its contribution in calculation of the output variable. Based on feature selection
results, surrogate models can be trained using the active and important sets of input variables. The
variable importance process was conducted for each output seepage characteristic variable to find the
most relevant input variable. Two techniques were utilized for variable importance analysis: the first is
based on beta standardized coefficient and the second is based on the random forest (RF) regression, as

discussed below.

4.3.1 Variable importance analysis using Beta weight (standardized coefficient)

The standardised regression coefficient, or beta weight coefficient, was used to find the
contribution of each predictor (input variable) for the specified dependent variable (output variable).
Calculation of the standardized coefficient involves converting variables to z-score (matric-free or
standardized score). This means that all dependent and independent variables have zero mean and one
variance. Hence, variable importance is measured based on the variation of standard deviation values
of dependent and independent variables. Consequently, a reliable and objective comparison could be
achieved to determine actual variable contribution. The greatest absolute value of standardized
coefficient for a specific input variable means that the variable considerably correlated to the output
variable (Gail, Krickeberg, Samet, Tsiatis, & Wong, 2007; Pallant, 2007; Schumacker & Lomax, 2004).
The beta coefficient (5,) for multi-predictors regression model was determined using Eq. (4.1):

o X 2)

Be = bg D) (4.1)

Where:

Ox;> Oy = standard deviation of X and Y, respectively;

b = unstandardized coefficient from the normal regression model,;

Zx, Zy = z-score for X and Y variables, respectively, and is determined by the Eq. (4.2).

4.2)

Also, B, could be determined by Pearson product-moment correlation coefficient (7y,,) as

shown in Eq. (4.3).

_Cov (x,y)

Bc = Txy = oy o, 4.3)

Where: Cove (x,y) is the covariance of x and y,

For two variables, the standardized beta coefficients .1 , ., are given as shown in Egs. (4.4

and 4.5).
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Ty — Tx,T12
ﬁl =21 *2 -4 4.4
1-— 7,.122 ( )
Ty, = T 712
B, =—"———5— 4.5
1-— T'122 ( )

4.3.2 Variable importance analysis using Random Forest (RF)

By developing machine learning techniques and its applications, the random forest (RF)
technique has played a significant role in solving many complex problems related to machine learning
techniques and data analysis, such as prediction tasks and variable importance analysis. Basically,
variable importance analysis via the RF technique is based on the random permutation of a certain
predictor, then measuring the influences on the target variable. The difference between the permuted
and non-permuted model responses reflects the importance of that variable (Strobl, Boulesteix, Zeileis,

& Hothorn, 2007).

Generally, the RF technique combines many individuals of a classification tree and it is
important to note that 36.8% of training datasets are not incorporated for any individual tree. This
percentage is called ‘out of the bag’ (OOB) of the tree. Prediction accuracy of the random forest model

can be determined based on mean square error (MSE) of OOB datasets, as shown in Eq. (4.6):

n
1 =
OOB_MSE = HE(}Q — Yvoos )* (4.6)
i=1

Where: ﬁ:oos refers to the average prediction value from all trees for i datasets, which have
been OOB. Accordingly, Breiman (2001) developed a measure (criterion) based on permuting a
particular variable, called ‘MSE reduction’ to estimate variable importance, which can be determined

as shown in Eq. (4.7).

n
1
OOBMSE; = z = Tt )?
t noos: £ i = it) 4.7)
i€ 00B;

Where ~ refers to predicted values;
O0B; = {i: observation i is OOB for tree ¢};
Noop,¢ = number OOB datasets in tree ¢.

This means that variable X;would not have a significant impact on model prediction if randomly

permuting X; in OOB data and would not influence on the value of 0O BMSE, determined by Eq. (4.8).
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n
1
OOBMSEt(Xj permuted) = 0B Z (Yi = Vit (Xj permuted))z
oA

i€ 00B;

Ng (4.8)

Therefore, measuring permutation for Xj variable in tree ¢ using the difference
[OOBMSEt(X § permuted) — O0OBMSE;] provides a significant understanding of Xj variable
importance. When the difference approaches zero, this reflects that the variable is not integrated in any

tree split, which means the contribution of this variable is negligible (Genuer, Poggi, & Tuleau-Malot,

2010; Gromping, 2009).

After accomplishing the feature selection analysis, results were listed from the first and second
method in Tables B4.1 to B4.21 (Appendix B). Approximately, the two methods provide the same sets
of controllable variables for each seepage characteristic. The highest rank input variables were chosen
as active variables to be incorporated in training data. Variables with an importance index between (100
to = 0.01) were considered effective variables. Even though there were few variables with a low variable
importance index, they were incorporated in training surrogate model. Incorporating such variables,
from physical meaning, may have some effect and can provide an efficient surrogate model. Also, the

feature selection methods may have some uncertainty or approximation in the obtained results.

4.3.3 Variable importance results and discussion

As seen from variable importance results (Tables B4.1 to B4.21) the controllable variable, its
sequences and ranks are different for each dependent variable. For example, the controllable variable
related to PE2 is different to PE3. This variation may be attributed to noise in provided data and close
resulting ranks for the most controllable variables. Hence, it is more systematic and efficient to provide
the same sequential input variables for training the surrogate model to predict the values of PCi or PEi.
This particularly helps provide more uniform formulation and programing code of the linked S-O
approach for such a complex model. Therefore, in addition to the rank of each independent variable,
the number of appearance of each independent variable is also considered for different locations of PCi
or PEi values. This also provides a good indicator of variable importance to select a variable to be in

the most controllable factors, as shown in Tables 4.2 and 4.3.
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PE; PE, PE; PE, PE; PE¢ PE; PEg PE, PEio
H PC, PC, PC; PC, PCs PCs PC, PCs PCo
b1 b2 b3 b4 b5 bs b7 b8 b9 blO
B B2 Ps P4 Bs Bs B7 Bs Bo Bio
d1 dz d3 d4 ds d6 d7 d8 d9 dl 0
- d] dz d3 d4 ds ds d7 d8 d9
- B B2 Bs Ba Bs Be B Bs Bo
- (ky/ kx) 1 (ky/ kx) 1 (ky/ kx) 1 (ky/ kx) 1 (ky/ kx) 1 (ky/ kx) 1 (ky/ kx) 1 - (ky/ kx) 1
kxi kxi - - - - - - - -

kx2 - - kx » - - kx » - - -

layer ) ) ) ) ) ) ) layer
depthl depth;
layer layer ) ) ) ) ) layer
depth2 depth, depth,
. - - - - (k) - - (k) -
Table 4.3 Appearance of the important variables in the PCi model
PC, PC, PC; PC4 PC;s PCs PC,; PCs PCy PCio
PE, PE; PE; PE,4 PE;s PEs PE,; PEg PE, PEio
d] dz d3 d4 ds d6 d7 dg d() d 10
- d d> d; ds ds ds d; - -
d2 d3 d4 d5 d(, d7 dx d9 dl 0 -
b b, bs ba bs bs by bs bo -
b, b3 ba bs bs - - - - -

B B2 - Ba Be - - - B1o
(k/ko ) (k/ko)r (ky/ka)n - - - ; (ko/kx)1 (ko/kx)1
kx1 - - kx1 - kx1 - k1 kx1 kx1
- - - - , - - . (k/kx)2  (ky/k)2

) ) ) ) ) i i layer layer
depth, depth,
) layer ) ) layer i i ) ) )
depthl depth,

Consequently, the widespread controllable variables of PEi and PCi related to cut-off (Si) are
shown in Table 4.4. These results were selected based on quantifying importance rankings and the most
repetitive variables related to the dependent variable (PCi or PEi) for the ten cut-offs. Therefore, a
comprehensive combination of independent variables was utilized to be the predictors of PEi or PCi
variables. Predictors of the exit gradient variable, mentioned in Table B4.21, were selected based on
results of variable importance analysis. The dependent variables PE10, PC10, PE1 and PC1 have a
special location; therefore, the variable combination is slightly different to other dependent variables of

the same class.
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Table 4.4 Final combination of predictors for each seepage characteristic

PE, PE; to Eo PEqo PC, PC, to PCo PCo
1 b bi bio b bi bio
2 d; di-1 b1 b, bi+1 b1
3 Bl di do d: di-1 do
4 DL, B i-1 dio d di dio
5 DL, Bi Bo B di+1 Bio
6 ki DL, Bio DL, Bi DL,
7 (k/ko DL, DL, DL, DL, DL,
8 ko ke DL, ke DL, ket
Y N S S (/8 e (o /k),
10 H ko (/ko)1 o (ky/lech ko
1 1 - (ky/kx)z kx2 (ky/kx)Z kx2 (ky/kx)z
12 - Pci-1 (ky/kx)z pe1 (ky/kx)z Pelo
13 - - Pcy - pei -

Variable importance analysis significantly decreases the number of input variables for each
model. For example, input variables for the PEi surrogate model is 12 and for PCi is 13, which are less
than the total number (41) of independent variables for each dependent variable. After feature selection
is conducted and the most important variables in each model are identified, the surrogate model could

be trained based on these results.

4.4 Support Vector Machine surrogate model

The support vector machine (SVM) is one of the most popular machine learning techniques and
has recently been implemented for different nonlinear and complex engineering problems. The SVM is
a regression and classification technique that provides generalized responses and is less affected by the

overfitting phenomena (Alpaydin, 2014).

The SVM algorithm selects from training data sets an efficient hyperplane, by which a good
separation can be achieved. As long as the boundary (margin) of the hyperplane is far from the center
of the hyperplane, good prediction ability of the SVM model can be attained (Figure 4.2). The multi-
objective optimization task of the SVM algorithm concentrates on defining the best data sets that
provide an efficient classification and maximize margin widths of the hyperplane. Therefore, SVM is
less constrained by training data and prediction ability for unseen data sets is robust (Alpaydin, 2014;

Kramer, 2016).
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support
vectors -~

r's+1

separating |
B nyperplane |

Figure 4.2 Linear separation support vector (two classes)
A normal vector W= (w, .., wq)" € R%and a point xo on the hyperplane could be used to describe
the hyperplane A as: A = {x € R*: wTx + w, = 0}. Then, assuming there are two classes +1 /-1 and

sample X = {x';r'}, where r'=+1 if x' € C;and r'= -1 if X' € C;, as shown in Eq. (4.9a) and (4.9b):
WTxt + wy) = +1 for rt=+1 (4.92)

(WTXt + Wo) <-1 fOT rt=-1 (49b)
Eq. (4.8) and Eq. (4.9) can be written as Eq. (4.10):
rtWTxt + wy) = +1 (4.10)

So, according to Eq. (4.10), the instances must not be located on the hyperplane (= +0) only,

but also must be at a distance (= +1) away to provide better separation. Then, the best separating

1 1

2 .
=—+4+—=— or the minimum
lwl] = iwl] [Iwl]

hyperplane is the one which has maximum margin m

1 2 L.
norm - | lw| | ; therefore, the optimization task can be formulated as shown below:

o 2
Minimize: % | [w] |
Subject to: r*(WTxt +wy) = +1, Vt

This optimization problem can be solved by finding W and wj, to define the optimal hyperplane
having an efficient margin m and the decision boundary, which is called support vectors (Alpaydin,
2014; Kramer, 2016). This optimization task can be solved by using Lagrange multipliers, as shown in

Egs. (4.11 to 4.14).
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N
1
Ly =5 ||w||2 — Zat [rtWTxt +wy) — 1] 4.11)
t=1
1 N N
Ly =3 |lwl|* - Zafrt WTxt + wy) — 1] +Zat (4.12)
t=1 i=1
JdL
P _ — tot ot
— =0- W—zarx (4.13)
ow e
oL
S =0 > Z“trtzo (4.14)
Wo t=1

Substitute Eq. (4.13 and 4.14) in Eq. (4.11) then:

1 1 N N N
Lg = —E(WTW) - WTEZ atrtxt — WOZ atrt + ) at (4.15)
t=1 t=1 t=1
) N
=—S(Ww)+ ) o (4.16)
t=1

N
1
Li==5) Y at@rtrsxTxs+ ) at (4.17)
t=1 s=1 t=1

So, Lq is maximized with respect to a® only and subjected to the constraints ,,—; a‘frt =0
and at > 0, Vt. By solving the Eq. (4.17) using the quadratic programing method, the value a! is equal
to zero for most cases and sets of x‘that have a® > 0 are support vectors. Additionally, W is the
weighted sum of instances selected as support vectors. Therefore, sets of vectors located on the margin
satisfy r*(WTxt + wy) = 1. Then, wy can be easily determined from any support vector using wy =
rt — WTxt. The majority of training instances have a® = 0 at which r*(WTxt + w,) > 1. These sets
are located away from the decision boundary and rarely affect hyperplane parameters. Therefore, SVM
algorithm is influenced by the training vector located close to boundaries (Alpaydin, 2014; Kramer,
2016).

The SVM technique was utilized to build surrogate models to imitate the numerical responses
of seepage within the S-O model. Matlab programing language was utilized to develop surrogate models
because Matlab is a versatile tool including many options that can be modified to build efficient SVM
surrogate models. Twenty one models were built to determine the uplift pressure in front and behind
each cut-off and exit gradient near the toe of the HWRS. These models were trained based on 1,500
scenarios of numerically simulated data.

For each uplift pressure dependent variable, two different SVM models were built and trained

on different training/testing data sets randomly selected from source data, as shown in Table B4.22. A
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basic version of the ensemble surrogate model based on an average of the two models was developed.
This procedure provides a more robust and accurate prediction. Also, any uncertainty arising from
source data or surrogate model prediction could be reduced by using the ensemble surrogate model. For
exit gradient three different models were developed.

Seventy five percent of the simulated data was utilized for training and 25% was used for
testing. Predictors for each model were selected based on variable importance results. The coefficient
of determination for RSQ and MSE for the training and testing phases are listed in Table B4.22.
Parameters for each SVR model were carefully selected after several iterations of trial and errors until
best RSQ and less MSE value were achieved. The most influencing parameters on SVM performance
were type of kernel function, box constraint and epsilon. The kernel function used in this study was

second order polynomial, which provided precise predictions compared to other kernels.
4.5 Optimization model

A constrained optimization model was formulated as an S-O model to determine optimum
design of HWRS. The optimization model includes a large number of decision variables (32) and
several constraints. Also, the optimization solver evaluates the objective function and constraint values
based on 21 ensemble surrogate model responses. This makes the optimization problem a complex task.
Safety factors and other hydraulic design requirements represent imposed constraints of the
optimization model within the S-O model. The best value of each design/decision variable was selected
by the optimization algorithm to provide a safe and economic design. Therefore, for such optimization
tasks, the hybrid genetic algorithm (HGA) was used. The HGA is a combination of two optimization
algorithms: GA and interior point algorithm (IPA), as discussed in the next chapter. The HGA provided

a global optimum solution and has the ability to deal with a complex problem.

Matlab programing language was used to implement the optimization model. The parameters
of GA were: population size 2,000, elite count 10 and crossover fraction 0.8, function tolerancele-6,
constraint tolerancele-3 and the remaining GA options were left to default Matlab options. The
parameters of the [PA were: max function evaluations 10,000, max iterations 1,000, optimality
tolerance 1.00E-04, function tolerance 1.00E-04, step tolerance 1.00E-04 and constraint tolerance

1.00E-04.

4.5.1 Formulation of the optimization model

The goal of the optimization model is to find the optimum decision vector X, providing the minimum
construction cost objective function (f(X)) and safe HWRS design, which satisfies all design
requirements, i.e., the optimization constraints. The decision vector represents the most important
design variables of the HWRS model. Design variables from x; to x;; represent width between cut-offs
(b1, ba...b11), the variables from x> to X2, represent depth of cut-offs (d; ,di,...dio) and variables from

X23 to X3 represent inclination angles for cut-offs ( Bi, B 2,... B 10) (Figure 4.1). The objective function
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represents construction cost of HWRS considering the substructure components related to seepage
design. The objective function includes the decision vector and some design parameters. Formulation

of the optimization model includes the following steps:

b,
b,
) | ba
2 dl
d,
Find the decision vector X = { - ;=< '
. le
B
X32
B2
BIO
Which minimizes the cost objective function shown in Eq. (4.18)
11 21
FOO) = cfz T,x + c.t, Z x VTx (4.18)
x=1 x=12

Where: ¢, = cost of constructing the body of the HWRS ($500); t. = thickness of the cut-off,

which is constant (1 m); Ti= thickness of each width between cut-offs (bi, b, ... bi1), for example T, =
(t2+t3)/2 ,etc. Thickness value (ti) is determined based on uplift pressure values PCi or PEi as shown in

Eq. (4.19).

1.3 (PCi or PEi) o

tp = Vv i, PCi, PEi (4.19)

Gs—1

¢, = construction cost of cut-offs, which is a function of depth(d) and inclination angle (B), as
shown in Eq. (4.20). It may be difficult to drive an inclined cut-off; therefore, the cost function
incrported angle values to reflect increase in associated cost. Practically, there is no specific techniques
to implement deep inclined cut-offs. However, a complementary version of Trench Cutter Machine
(TCM) may be able to construct a deep inclined cut-offs in future. Such machines include ultrasonic

measuring devices and computerized technology used for constructing complex trench systems

(BAUER Group, 2016; O’Brien, Dann, Hunter, & Schwermer, 2005)

¢l =0.05di2+200 di +0.0698 Bi>- 12.558 Bi +565.93 V i, B, d (4.20)
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The PCi and PEi values are based on candidate decision variables, which are randomly
presented by the HGA solver. The decision variable values are modified in each optimization iteration
as a candidate solution until the optimum solution is achieved. As a consequence, the objective function
of this problem is classified as nonlinear because the expressions in Egs. (18) to (20) are nonlinear, and
some of the constraint values are based on nonlinear numerical surrogate model responses based on
SVM model.

The decision vector is subject to the constraints similar to the sets of constraints presented in
chapter two. These constraints were applied in the comprehensive design model in this chapter. The
difference in this model is that there are many values of uplift pressure to be considered for the flotation
safety factor and other specified safety factors. Because of the complexity of the problem, the portion
(b*) of the floor on upstream side has not been considered in this chapter. Involving this variable in the
optimization model makes the formulation of the optimization task more complex. The other logical

and boundary constraints are also applied for each variable as discussed in chapter two.

4.6 Results and discussion

Many synthetic instances were proposed and implemented using the linked S-O model to find
the influences of different hydraulic parameters and variables on the optimum solution. The important
variables, such as upstream water head, hydraulic conductivity for the first layer and anisotropic for the
first layer, were selected to find their effects on the optimum solution. Also, an evaluation phase was
applied to measure efficiency and accuracy of the developed methodology to attain the optimum
solution. Hence, the following results and discussion is categorized based on the effects of the variables

or parameters through the S-O model.

4.6.1 Head variation effects

The linked S-O was implemented for different head values ranging from 20 m to 100 m. Other
parameters were kept constant, such as hydraulic conductivity for all layers (kx= 5 m/day), anisotropic
ratio ((ky/k:)1 = 1) and depth of soil layers (50 m). The obtained optimum solutions can figure out the
vital variables of all the provided design (decision) variables. This means that the optimization solver
selects the design variables that provide safe and cost efficient design of HWRS for the optimum

solution.

In general, the resulting optimum solutions demonstrated that contribution of variables b; to bg
and d to ds in the safety of HWRS was insignificant, as shown in Figures 4.3, 4.4 and Table B4.23.
The optimum value for these variables approached to zero. In contrast, values by, bio, bi1, do and dio had
a vital role in the optimum design of HWRS. These variables, for most implemented cases, presented
considerable values and were relatively varying with the variation of head values. The function of do is
to reduce PC9 and PE10 uplift pressure and exit gradient value. More importantly, the function of dio

is to directly reduce exit gradient value, which is the most critical seepage characteristic. The function
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of by and by is to provide a sufficient weight for stability of the HWRS, reduce the uplift pressure and

provide sufficient width to counterbalance overturning and sliding forces.

Other important variables were o and P10, which are related to d9 and dio, respectively. The
values of other inclination angles (B to Bs) had a trivial value because the value of d; to ds approached
zero. The optimum value of Bio is150 degrees. This is logical, as making the inclination angle of the
last cut-off toward downstream (>90 degrees) substantially decreased exit gradient value. This can be
attributed to the augmentation of the streamline length of seeping water, particularly when B reached
150 degrees. Thus, time and travel distance of seeping water would increase, which can reduce exit
gradient value. The optimum value of 9 was 30 degrees in all implemented cases. Such inclination
angle can reduce uplift pressure under bjo. This aids to decrease the construction cost of HWRS.
Furthermore, since predicting exit gradient value (using surrogate model) is based on PC;¢ value (Table
B4.21), decreasing PE;y value by reducing B¢ value aids to reduce the exit gradient value also.
Additionally, B9 with a value less than 90 degrees contributes to reducing the exit gradient value,

because small By value (<90 degrees) increases seeping water stream length.

Approximately, it seems that effective and general optimum design of HWRS must include two
upstream and downstream cut-offs and the width (bio) between them, plus the width (bo) on the upstream
side. These widths are necessary to provide sufficient weight for the HWRS to resist the external
hydrostatic loads and uplift pressure, and the width plays a vital role in the optimum design to satisfy
HWRS design requirements (constraints), such as the sliding, overturning and eccentric load conditions.
The downstream cut-off must have an inclination angle up to 150 degrees toward downstream. The

upstream cut-off must have an inclination angle 30 degrees toward upstream.
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Figure 4.3 Optimum width between cut-offs of the implemented cases for different head values
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Figure 4.4 Optimum cut-off depths for the implemented cases for different head values

For the implemented cases, with high head value (> 60 m), the depth of first cut-off (d;) makes
a contribution to the optimum design of these cases (Figure 4.4). The optimization solver increased d;
to minimize construction cost, because d; is effective in reducing uplift pressure at the downstream side
of the HWRS and this aids to reduce the cross section of HWRS and cost of the HWRS. Also,
construction cost of deep cut-offs (> 40 m) is less cost efficient (Eq. (4.20)). Therefore, the optimization
solver increased the depth of the first cut-off, which is a cheaper option for optimum design of HWRS.
Hence, the function of d; is to reduce high uplift pressure, which could not be solely faced by do, dio, by
and by.

On the other hand, all the optimum solutions satisfied the safety factors and requirements of
HWRS design. For all implemented cases, the optimum solution attained the minimum allowable value
of the exit gradient safety factor (5), as shown in Table 4.5. This reflects the significance of the exit
gradient safety factor in HWRS design and how the exit gradient safety factor affects the construction
cost of HWRS because exit gradient value is mainly controlled by the depth and inclination angle of
the last cut-off (dio, B10), which are indispensable and expensive components to reduce the exit gradient

value.

Table 4.5 Safety factors for different values of H

H Exit gradient e Overturning  Sliding
safety factor  value safety factor  safety

factor
100 5 36.11 1.60 1.50
90 5 31.52 1.59 1.50
80 5 28.60 1.59 1.50
70 5 24.90 1.59 1.50
60 5 22.46 1.64 1.74
50 5 20.79 1.69 1.96
40 5 19.44 1.77 2.30
30 5 19.61 1.86 3.09
20 5 10.28 1.81 2.76
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The minimum allowable e distance was achieved for all obtained optimum solutions, as can be
seen in Figure 4.5 and Table 4.5. This reflects the important contribution of this safety factor in HWRS
stability and the crucial effect of this factor in attaining the optimum solution. Achieving the minimum
allowable e value reveals that the optimization model provides a safe and cost efficient solution. The e

value is the location of the resultant force R (Chapter Three).
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Figure 4.5 Optimum location of load resultant (R) for different values of head

Moreover, in some implemented instances (H > 60) the sliding and overturning safety factors
approached the minimum allowable safety factors (Table 4.5). This refers to the extensive hydrostatic
horizontal and uplift pressure created due to high upstream water head. The sliding and overturning
safety factors ensure that the optimum solution satisfies, at least, the minimum allowable value of these
safety factors. This could be attained by increasing the weight of the HWRS, which could be achieved
by increasing the thickness and width of the HWRS floor. Hence, the HGA optimization solver based

on the direct search process was efficient to satisfy safe design at minimum cost.

As clearly seen, all constraints have significant interactions and restrictions for decision
variables. This means the search process for optimum solution of such a problem is complex and
computationally expensive. Therefore, each run of the S-O model took approximately three hours,
including the parallel computing technique based on Matlab programing language. Hence, the direct
link of numerical simulation to the optimization model (if that was a case) is an inefficient method with

a huge number of evaluations for the objective function and prescribed constraints.

The total construction cost curve, shown in Figure 4.6, demonstrates that construction cost
increased dramatically with head augmentation. Approximately, the average construction cost per meter
of upstream water head per meter width is: $24,000 for H between 10 m to 40 m, $40,000 for H between
50 m to 70 m, and $50,000 for H between 80m to 100m. This implies that construction cost of a single
HWRS impounding water head (H) equal to 100 m is more expensive than constructing three HWRS
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impounding H equal to 40 m. This may be attributed to the high construction cost value for deep cut-

offs with large inclination angle (Eq. (4.20)) to provide a safe exit gradient for the high value of H.

—&— The total cost ($)

[P
P

Total cost (Millions)

10 20 30 40 50 60 70 8 90 100
Total head (m)

Figure 4.6 Minimum cost optimum design of HWRS for different values of head

Figure 4.6 shows optimum thickness values for different locations along the width of HWRS
versus different H values. The t9 and tyo, for example, represent floor thicknesses before and after cut-
off Sio. The values of t; to tis are not presented in the figure, because these values are approximately
constant and similar to tis. This is logical, considering widths (b; to bs) and cut-offs depths (d; to ds)
between these thicknesses are almost zero (Table B4.23). Mainly, significant variation could be seen at
t17, tis, ti9 and tx. This reflects the effects of seepage control components (cut-offs and width of the
floor) at these locations in reducing uplift pressure, and the required thickness. To prevent the
optimization solver from presenting inapplicable thicknesses, the minimum allowable thickness is
restricted to 1 m. Therefore, for all the implemented cases, the value of too was 1 at which uplift pressure

approached zero.
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Theickness( m)

The thickness location

Figure 4.7 Optimum floor thickness of HWRS for different values of head

4.6.1.1 Evaluate optimum solutions for different H
To evaluate the accuracy of the S-O technique, the seepage characteristics of optimum solutions

obtained based on the S-O model were compared to the seepage characteristics resulting from numerical
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simulation of optimum solutions, which were processed as input variables for the simulation model.
The results of evaluation revealed high agreement of S-O solutions with numerical solutions, as shown
in Figures 4.7 to 4.12 and Table B4.24. However, there was a slight deviation for predicted uplift
pressure and exit gradient values in some cases. This deviation can be attributed to weak learning of
SVM for unseen or extreme data. The majority of optimum solutions included extreme values. For
example, b, to bg and d; to ds values approached zero (minimum value). Also, inclination angles for So
and Sio reached 30 degrees (the minimum value) and 150 degrees (the maximum value), respectively.
Although the optimum solution included extreme values, SVM models based the S-O approach

precisely predicted uplift pressure and exit gradient values.

In general, for all implemented cases, average of mean absolute error (MAE) of the predicted
uplift pressure was 1.01, which is acceptable for such complex problems. The MAE for predicted exit
gradient values was 1.le-3. However, few predicted exit gradient values had noticeable error.
Additionally, the bar charts below demonstrate accuracy of predicted uplift pressure and exit gradient.
These bar charts include 5% (+/- 2.5%) error indications. Hence, the evaluation results demonstrate the
efficiency of the developed methodology in achieving optimum design of HWRS considering minimum

cost and safety requirements in the design.
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Figure 4.8 Evaluation results for different locations of uplift pressure (H=100 m)
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Figure 4.9 Evaluation results for different locations of uplift pressure (H=80 m)
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Figure 4.10 Evaluation results for different locations of uplift pressure (H=60 m)
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Figure 4.11 Evaluation results for different locations of uplift pressure (H=40 m)
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Figure 4.12 Evaluation results for different locations of uplift pressure (H=20 m)
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Figure 4.13 Comparison of exit gradient of the optimum design to the numerical solution

4.6.2 Hydraulic conductivity (kx1) and anisotropic ratio (ky/ ki) effects

The same procedure applied to study the effects of upstream water head was implemented to
quantify effects of hydraulic conductivity (k) and anisotropic ratio (k,/ k)1 of the first layer. The first
layer is the nearest layer to the foundation of HWRS (Figure 4.1), and soil parameters of this layer are
expected to significantly influence seepage characteristics. The effect of (k/k:): was studied by
assuming eight different values ranging from 0.1 to 1.5. Ten different values of k,; ranging from 0.01
m/day to 20 m/day were specified and processed using the S-O technique. The value of other design
variables and parameters were left constant. For example, k. and (k,/k.) of the second and third layers
were 5 m/day and 1, respectively. The upstream head, i.e. H, value was 50 m and depth of the three
layers equaled 50 m. Other variables were considered the decision variables to be obtained by the

optimization solver as an optimum solution for each implemented case.

Generally, obtained optimum solutions revealed that increase of (k)1 and (ky/k,)i ratio
significantly decreased total cost of HWRS, as shown in Figures 4.13 and 4.14. The reason for this is

when £k, increases with the constant anisotropic ratio ((k,/k:)1 = 1), seeping water can move easily from
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the high pressure zone (upstream) to the low pressure zone (downstream). Consequently, pore-water
pressure underneath HWRS and exit gradient values decrease. Thus, deep cut-offs and significant width

between cut-offs are not needed.

Similarly, when the anisotropic ratio (k/kx): is large with specified hydraulic conductivity (.,
= 5), the seeping water motion in the vertical direction becomes faster and the exit gradient value
becomes smaller compared to the exit gradient value obtained for small values of (k,/k;): ratio. Hence,
for high values of (kx): and (k,/k)1, the optimum value of dy, dio, bgand b1, which are the most effective

variables, decreased and consequently the optimal cost declined.
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Figure 4.15 Minimum cost for optimum design of HWRS for different values of (ky/kx)1

Low anisotropic ratios (0.1 to 0.6) drastically increased the construction cost, as shown in
Figure 4.14. The reason is that optimum values of dy, dio, bo and bio, B, Bio were relatively large to
counterbalance the effect of high uplift pressure, satisfy design safety factors and yield a safe exit
gradient value (< 0.23). Also, for the same reasons, there was a large optimum construction cost for low

k1 values ranging between 0.01 m/day and 4 m/day.

For the (k/k:)1 >1 and k.; >5 m/day, the optimum solutions and design variables were

approximately the same and construction cost was almost at the same level. One possible reason for
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this outcome with the example problems presented here, is that soil properties of the second and third
layers have more influence on seepage characteristics than the first layer, as they have smaller (k/k:)
and k,; values than values of (k,/k)1 and k., for the first layer. Hence, the seepage characteristics did not
change with variation in hydraulic conductivity; therefore, the optimum solution was almost same. This
results in a more or less constant construction cost with varied soil properties of the first layer and

constant soil properties of the second and third layers.

The resulting optimum design of HWRS for the implemented cases satisfied all safety factors
and design requirements. For small values of (k/k:)1 and k,;, the exit gradient safety factor and safe
eccentric distance played a crucial role in the optimum solution, compared to other safety factors. This
is evident as these safety factors reached the maximum or minimum allowable limit to satisfy design
requirements, while the optimum design attained minimum construction cost. Tables 4.6, 4.7 and
Figures 4.15, 4.16 demonstrate the safety factor variations for different values of (k/k:): and ki,
respectively. However, with augmentation of k,; and (k/k:)1, exit gradient and eccentric distance had
less impact on safety factors in the optimum solutions. Consequently, the sliding and overturning safety
factor approached the minimum allowable limits and had more influence with increasing (k,/k:)1 and k.;
values. The reason is that the seepage characteristic decreases with an increase in (k,/k:)1 and ky; values,

and that aids to satisfy the minimum allowable limits of all safety factors.

Table 4.6 Safety factors for the implemented cases for different kx

k.  Exitgradient e Overturning  Sliding
safety factor value safety factor  safety

factor
0.10 5.00 28.75 1.83 2.38
0.50 5.00 27.95 1.82 2.33
0.90 5.00 27.17 1.81 2.30
1.50 5.00 25.94 1.79 2.25
4.00 5.00 21.84 1.72 2.04
7.00 5.00 19.39 1.61 1.50
10.00 5.00 19.11 1.59 1.50
13.00 5.00 19.37 1.59 1.50
17.00 5.00 20.02 1.60 1.50
20.00 5.00 21.01 1.61 1.50
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Table 4.7 Safety factors for the implemented cases for different (ky/k:)1

(ky/kx)1 Exit e Overturning ~ Sliding

gradient value safety safety

safety factor factor

factor

0.1 5.0 91.4 2.0 6.5
0.3 5.0 64.1 1.9 5.7
0.5 5.0 41.7 1.9 3.8
0.7 5.0 23.9 1.8 22
0.9 5.0 22.7 1.7 2.1
1.1 5.0 22.3 1.7 2.0
1.3 5.0 22.1 1.7 2.1
1.5 5.0 23.7 1.8 2.2
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Figure 4.17 Resultant (R) location for different (k,/kx)1 values

The S-O results demonstrated that the contribution of b; to bs and d; to ds to the safety of HWRS
was insignificant, because the optimum value of those variables approached zero, as shown in Figures
4.17 and 4.18. Therefore, inclination angles (B1, B2, ... Ps) were negligible because they are related d;
to ds. Optimum solutions for HWRS were based on increasing the value of bg and by to counterbalance

the uplift pressure values, and based on augmenting do, dio and B to decrease the exit gradient value.

83



Chapter Four

Also, there is a significant contribution for dy associated with the minimum value of B9 to decrease uplift

pressure beneath bio, which represents a large portion of the HWRS floor.

Additionally, the optimization solver particularly increased dio and 1o values to satisfy the safe
exit gradient value, even it is a more expensive option (Eq. 4.20). These variables were more effective
at reducing exit gradient value, which is the most critical safety factor. Also, increasing these values,
particularly provides an effective and minimum cost alternative. Augmentations of these values
lengthened the seeping water stream line; consequently, the exit gradient value particularly, and other
seepage characteristics were decreased. Hence, the optimum value of B equalled 150 degrees, which
is the maximum specified limit for this variable. For the same reason, the inclination angle of cut-offs
at upstream (Po) approached the minimum allowable limit (30 degrees) for all implemented cases, as

shown in Tables B4.25 and B4.27.

Simultaneously, to corroborate stability of HWRS and satisfy related safety factors, the required
optimum width of HWRS was provided by by and bi. Furthermore, the uplift pressure on the
downstream side decreased with total width augmentation, contributing to reducing the exit gradient
value. Therefore, the values of by and bjo mainly provide an efficient cross section and weight to resist

external loads and uplift pressure, and partially reduce the uplift pressure and exit gradient value.
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Figure 4.18 Optimum width between cut-offs of HWRS for different values k.
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Figure 4.21 Optimum cut-off depths for different values (k,/kx)1

For small value of ky/ky, which results in high uplift pressure and high exit gradient value, the
optimization solver provided a depth for the upstream cut-off (S1) (Figure 4.20) to reduce the effect of
uplift pressure. This value with the provided do, dio, by and b can provide a safe and minimum cost

design.
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In a few cases, including high value k.;, the value of do, dio declined and the value of d,
increased, as shown in Figure 4.18. For these cases, the exit gradient safety factor became less
controllable and the optimization solver searched for a cheaper alternative. Therefore, the optimization
solver decreased the more costly and significant depth of do, dio and slightly increased the depth of d;.

This solution provides the most cost efficient and safe HWRS design.

4.6.2.1 Evaluate optimum solutions for different values of (ky/ky)1 and kv

The same procedure utilized to evaluate optimum solutions of the implemented cases with
different head values was used to evaluate optimum solutions resulting due to the variation of k,; and
(ky/k:)1 values. The evaluations demonstrated that the developed surrogate models based on the SVM
technique within the S-O model provided accurate predictions of seepage characteristics for the
optimum solutions located within the training range. However, prediction accuracy of surrogate models
was slightly less for a few extreme optimum solutions (out of training ranges). In general, maximum
error percentages of predicted seepage characteristics compared to numerical seepage simulation
solutions were less than £10 %. The MAE of predicted uplift pressure at specified locations compared
to numerical solutions for different values of (k,/k.)1 and ki is presented in Tables 4.7 and 4.8. Also, the
MEA for exit gradient value of implemented cases with different values of k. was (0.0272) and was
(0.0386) for the implemented cases with different values of (k/k:)i. However, there were slight
deviations for a few cases in predicted exit gradient values compared to the numerical solutions (Figures
4.39 and 4.40), which may be attributed to imprecise learning of the exit gradient surrogate model for

out of training data sets.

In general, performance of the utilized surrogate models within the S-O model was within
acceptable ranges. The predicted uplift pressure and exit gradient values for these cases were precise
and within safe limits. Also, the evaluation process demonstrates that the SVM technique can be used
to develop accurate and efficient surrogate models for complex problems, including many design
variables. Some evaluation results are represented in Figures 4.22 to 4.41, including five (£2.5%)

percentage error.

Table 4.8 Mean absolute error for predicted uplift pressure at specified locations of HWRS for different

(kx)]
kx1 001 005 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 4 6 8 10
MAE
(m) 539 518 539 522 533 444 489 3.07 466 447 386 370 243 218 1.14 338 261
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Table 4.9 Mean absolute error for predicted uplift pressure at specified locations of HWRS for different
(ky/kx)

(ky/kx)1 01 02 03 04 06 08 1 1.2 14 15

MAE(m) 0.74 585 537 203 228 225 171 0.62 0.80 227

| mix()=0.1 50 mkx(1)=01 N.s.[

Uplift pressure value (m)
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Figure 4.22 Evaluation results for different locations of uplift pressure (kx;/=0.1 m/day)
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Figure 4.23 Evaluation results for different locations of uplift pressure (kx/=0.1 m/day)
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Figure 4.24 Evaluation results for different locations of uplift pressure (kx;=0.1 m/day)
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Figure 4.25 Evaluation results for different locations of uplift pressure (k./=0.1 m/day)
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Figure 4.26 Evaluation results for different locations of uplift pressure (kx;=0.1 m/day)
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Figure 4.27 Evaluation results for different locations of uplift pressure (kx;=0.1 m/day)
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Figure 4.28 Evaluation results for different locations of uplift pressure (kx;=0.1 m/day)
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Figure 4.29 Evaluation results for different locations of uplift pressure (kx/=0.1 m/day)
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Figure 4.30 Evaluation results for different locations of uplift pressure (kx;/=0.1 m/day)
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Figure 4.31 Evaluation results for different locations of uplift pressure (kx/=0.1 m/day)
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Figure 4.32 Evaluation results for different locations of uplift pressure ((ky/kx)1=0.1)
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Figure 4.33 Evaluation results for different locations of uplift pressure ((ky/kx)1=0.3)
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Figure 4.34 Evaluation results for different locations of uplift pressure ((ky/kx)1=0.5)
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Figure 4.35 Evaluation results for different locations of uplift pressure ((ky/kx)1=0.7)
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Figure 4.36 Evaluation results for different locations of uplift pressure ((ky/kx)1=0.9)
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Figure 4.37 Evaluation results for different locations of the uplift pressure ((ky/k«)1=1.1)
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Figure 4.38 Evaluation results for different locations of uplift pressure ((ky/kx)1=1.3)
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Figure 4.39 Evaluation results for different locations of uplift pressure ((ky/kx)1=1.5)
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4.7 Conclusion

In this chapter, the S-O methodology was successfully applied to study the effects of design

parameters and variables, such as hydraulic conductivity and upstream head, on the optimum design of
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HWRS. Also, this chapter focuses on identifying the most effective and optimum design variable

combination to produce an efficient optimum design of HWRS.

Twenty one ensemble surrogate models were developed based on the SVM technique utilizing
1,500 numerically simulated data sets. The simulated data was generated based on a comprehensive
conceptual model including many cut-offs, many widths between cut-offs and varied inclination angle
for each cut-off. Before training the surrogate models, variable importance analysis was implemented
using beta standardized coefficient and random forest techniques. This significantly decreased the
number of the incorporated input variables related to each seepage characteristic. Hence, expeditious
and accurate surrogate models were developed. These surrogate models were successfully linked to the
HGA. Based on the surrogate model responses, HGA evaluated the objective function and constraints,

which represent the design requirements and safety factors related to HWRS.

In general, the obtained optimum solution of the implemented cases demonstrated that there
were many unnecessary design variables, such as b; to bs, d; to ds and related inclination angles. This
means that the optimum solution for most implemented cases must include upstream and downstream
cut-offs, upstream apron (width) by and an apron (bio) between cut-offs. The optimum inclination angle
for the upstream cut-offs was 30 degrees and for downstream cut-offs was 150 degrees. For some cases
classified as a critical cases, such as when upstream water head reaches 60m or more, or when (k,/k:);

ratio approaches 0.5 or less, the optimum solution must include a depth (d,) for the first cut-offs.

Deep cut-offs downstream significantly reduced exit gradient value, especially when the
inclination angle was more than 90 degrees. In contrast, the upstream cut-offs were adequate in
decreasing uplift pressure, especially when the inclination angle was less than 90 degrees. The widths
(bo +bio) were necessary to provide a sufficient weight for the HWRS to resist external hydrostatic loads
and uplift pressure. Also, these widths played a vital role in optimum design to satisfty HWRS design

requirements (constraints), such as sliding, floatation, overturning and eccentric load conditions.

All design requirements and safety factors were satisfied for all implemented cases. Exit
gradient value was the most critical seepage design variable significantly affecting the obtained
optimum solution. The minimum allowable value of the exit gradient safety factor was achieved for all
implemented cases. This reflects the significance of the exit gradient value. For the same reason, the

eccentric load condition had a crucial role in the obtained optimum solutions.

High upstream water head significantly increased construction cost. Construction cost (per
meter of water head) for small HWRS is cheaper than construction cost of HWRS with a high water
head. On the other hand, the effect of hydraulic conductivity on optimum design of HWRS was
significant. Low hydraulic conductivity and anisotropic ratio substantially augmented minimum

construction cost.
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The evaluation process for S-O methodology demonstrated that the obtained optimum solutions
(designs) of HWRS were the most efficient solutions because all design safety factors and conditions
were satisfied. Furthermore, optimum cost (objective function) was rationally varied with variation of
upstream water head, ks, (k,/kx) values. Additionally, the evaluation results demonstrated that the SVM
technique can be used to develop accurate and efficient surrogate models for complex problems. The
HGA optimization solver based on the direct search process was efficient to satisfy safe design at
minimum cost. Finally, the linked S-O approach is considered an adequate technique to attain the
optimum solution for complex problems related to design of HWRS incorporating the seepage

characteristic effects in the obtained optimum design.

The next chapter focuses on hybridizing the genetic algorithm (GA) to the interior point
algorithm (IPA) to improve performance of the optimization solver based the coupled S-O model. The
advantages of using HGA are discussed and applied to a few illustrative problems presented in Chapter

Five.
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Chapter Five

5 Global Optimum Hydraulic Design of Hydraulic Water Retaining
Structures Constructed On Anisotropic Permeable Soil Utilizing

Interior Point Algorithm Based Hybrid Genetic Algorithm

A similar version of this chapter is under review for publication in the ISH Journal of Hydraulic

Engineering as shown below:

Al-Juboori, Muqdad, and Datta, Bithin (2018) Optimum hydraulic design of concrete gravity dams
Jfounded on anisotropic soils: utilizing interior point algorithm based hybrid genetic algorithm. ISH Journal of

Hydraulic Engineering, Under Review.

5.1 Introduction

This chapter is a continuation of Chapter Four. Similar surrogate models, methods and the same
formulation of the optimization model mentioned in Chapter Four were utilized in this chapter.
However, this chapter focuses on improving performance of the genetic algorithm (GA) optimization
solver based on the linked simulation-optimization (S-O) approach to improve the possibility of

obtaining a global optimum solution.

Due to complexity of the optimization model, including many surrogate models and constraints
incorporated in linked S-O models, attaining the global optimum solution for such problems based on
the GA is difficult. Hence, GA based on the direct search technique is hybridized with the interior point
algorithm (IPA) based on the gradient search technique to find the global optimum solution. The hybrid
genetic algorithm (HGA) optimization solver based the linked S-O technique was utilized to find the
optimum design of the comprehensive model of HWRS constructed on anisotropic soils. The

optimization model minimizes construction cost and provides safe HWRS design.

The optimization task, which involves a large number of decision variables and constraints, is
based on SVM-surrogate model responses and is considered a complex task. Therefore, a powerful
optimization solver must be used to find the global optimum solution. One of the most prominent direct
search optimization solvers is GA, which is an evolutionary solver and effective for complex optimum
decision problems. However, for such complex problems, GA performance may deteriorate, decreasing
the possibility of identifying a global optimal solution (Kolda, Lewis, & Torczon, 2003). Hence, this
study focuses on improving GA performance to attain the global optimum design for HWRS
constructed on permeable anisotropic soils. The proposed procedure involves hybridizing the GA based
direct search technique with a gradient search algorithm, such as the IPA. Efficiency of HGA is tested
by incorporating HGA in the linked S-O approach to find the optimum design of HWRS involving the

97



Chapter Five

effect of anisotropic hydraulic conductivity and related seepage characteristics. Furthermore, this study
compares performance of HGA with performance of standard GA and standard IPA when they are
applied separately. In the following section, the developed methodology is described and obtained

results based on different algorithms are discussed.

5.2 Seepage conceptual model and data generation

The conceptual model includes all relevant parameters and design variables which may affect
HWRS design. As a result, hydraulic effects of each parameter on seepage characteristics could be
determined. Generated data, the conceptual model and the design variables are the same as those utilized
in Chapter Four. However, the properties of the flow domain are different. Hydraulic conductivity is
considered the same for the entire flow domain, as shown in Figure 5.1. This means that there is no
stratification in the flow domain and there is a single value of hydraulic conductivity (k) and anisotropic
ratio (k/k:) for the entire flow domain. Utilized surrogate models in Chapter Four could be used in this
study with minimal modification, considering the new adjustment of hydraulic conductivity. Based on
the surrogate model responses, the optimization model within the S-O approach could select the most

important variables, which provide a safe and the most cost-efficient construction design.

Figure 5.1 Conceptual seepage model

5.3 Support vector machine surrogate model

The support vector machine (SVM) surrogate models developed in Chapter Four were utilized
to predict the seepage responses within the optimization model (see section 4.4). Matlab programing
language was utilized to develop SVM models. Fifteen hundred scenarios of numerically simulated data
were used to train SVM models. Twenty one ensemble surrogate models were built to determine uplift

pressure (PEi, PCi) in front and behind each cut-off, and the exit gradient near the toe of the HWRS.
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5.4 Optimization model

5.4.1 |Interior point algorithm (primal-dual):

The interior point algorithm (IPA) can be used to solve constrained linear and nonlinear
optimization problems involving inequality constraints. The IPA is profoundly and quickly able to find
an optimum solution, even for large scale problems (Lesaja, 2009; Liu, Tso, & Cheng, 2002; Mulligan
& Ahlfeld, 2002). IPA processes many iterations to find the optimal solution from the (pre-defined)

interior point located in the feasible region of the search space.

Concisely, to understand the process of IPA, formulation of the optimization problem must be
transferred from the general (primal) form to the standard form (dual), as shown in Table 5.3. Each
inequality constraint, i.e., g (x), is converted to an equality constraint by adding a slake variable (s;).
Also, a new inequality constraint (s; = 0) is assumed to ensure the slack variable is not less than zero
to satisfy the original inequality constraints (Parkinson, Balling, & Hedengren, 2013). The new and

original equality constraints are converted to standard form sets of equality constraints (¢ (x) = 0).

Table 5.1 Formulation for the interior point algorithm

General form Standard form Barrier function form

Objective function

Mingegn  f(x) MiN,epn f(x)

Inequality constraint

L s.t. =
9:(zb i=12.,m mineg f= 00— ) In(xp)
or C(X) =0 im1
gx)—b—-s5;,=0 i=12,..,m x; =0 st

c(x) =0
s; = 0 (support inequality constraint)

Equality constraint

hi(x)=0 j=m+1,..,k

In the second step, the original and slack variables inequality constraints (x; > 0) are involved
in a barrier function and embedded as a part of the objective function. The barrier function must be
defined in the second derivative. The logarithmic function, shown in Table 5.3, ensures attaining a
positive value of x;, which has the same action as the inequality constraint. The term of the barrier
function goes to (+) infinity when x; approaches zero from the positive side, i.e., from the feasible
region. Additionally, as the objective function minimizes the p value, the barrier term becomes steeper
and sharper (Parkinson et al., 2013). This could guarantee that the x; value becomes a positive value
and the IPA searches in the feasible space. Also, for a small p value there is a critical barrier at zero.
Hence, the IPA avoids breaching this barrier because the potential optimal (or sub-optimal) solution for

IPA is inside the locale search space and it is demanding for IPA to move to the next search space.
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The next step is to integrate equality constraints (c(x) = 0) into the objective function using
Lagrangian multipliers (Eq. (5.1)), and differentiate the resulting equation with respect to x, A, then
make them equal to zero (Eq. (5.2)). Then, the Karsh-Kuhn-Tucker (KKT) conditions for the barrier

problem can be derived.

LX,2) = f(x) — ZIn(xi) + ()2
i=1

(5.1)
VL(X,2) = VF(X) — p Sy —+Ve() A =0
o
t (5.2)
Where A instances is the Lagrangian multiplier vector and its size equals the number of equality
constraints.
let z = % ,then Z X e — pe = 0, where e is the unite vector and Z, X, as shown below.
1
zz 0 O x 0 0
Zk = 0 Zz 0] Xk = 0 xz 0] emxl =
0 0 =z, 0 0 x, 1

Then, the modified version of KKT equations are given in Egs. (5.3) to (5.5):

VL(X,Z,A) =Vf(x) —Z + Vc(x)A=0

(5.3)
ctx) =0 (5.4)
XZe—pe =0 (5.5)

By applying the Newton Raphson method, we can solve these equations to find the search

direction dj , d,% , dZ for the iteration k, then update X, Ak, Zx values for the next new iterations, as

shown in Eq. (5.6):

W, Ve(xe) —I dy Vi(xy) — Z +V A, c(xy)
Ve(x)T 0 0 d | =-— c(xi) (5.6)
Zk 0 Xk d’i Xkae - ll] e

Where W, is given in Eq. (5.7)

wi = V& L0, Ak zi) = Vide (F Q) =z + ¢ ()2 ) (5.7)
A new symmetric equation resulting from the rearrangement of Eq. (5.7) could be easily solved,

as shown in Eq. (5.8) (Lesaja, 2009)

Wi + Xk Ve(xy) dic\ _ (VfOq) +V c(x) A
S (-

Ve(x)T c(xx)
Where Y = X Z,
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It is then easy to find df, d,’} and dZ, and by providing an appropriate step size () it is easy to
move to the next point and explore the search direction using the merit function. Merit function
measures the objective function plus the absolute value of the constraint. The a is accepted if it reduces

the merit function, as shown in Eq. (5.9).

merit = f(x) + vzlc(x)l (5.9
Convergence criteria for the interior point algorithm are satisfied when KKT conditions are

satisfied with a specified tolerance, as shown in Egs. (5.10), (5.11) and (5.12).

max |Vf(X) — z +Vc®) | < €

(5.10)
max [c(X) | £ €tor (5.11)
max [XZe —pe | < €4 (5.12)

By providing a starting point, the algorithm rechecks the constraints and objective function
violation until an optimum solution is satisfied. In conclusion, the obtained optimum solution by IPA
is based on the start point located in the feasible space and gradient of the objective function. However,
if the optimization problem is a complex problem including many constraints and decision variables,
many feasible search regions, which satisfy the constraints, could be identified, but only one includes
the global optimal solution. For such problems, the optimum solution by IPA probably converges in
local minima. Therefore, the IPA provides a local optimal solution and rarely the global solution can be

attained based on IPA.

5.4.2 Genetic algorithm

This section briefly discusses the reasons behind GA deficiency in finding the global optimum
solution for complex problems. Because the optimization theory for GA has been extensively studied,
this chapter disregards the formal description of GA, which can be found in Chapter Four and (Gen &
Cheng, 2000; Haupt & Haupt, 2004; Rao, 2009). The GA has a high possibility to find a global optimum
solution, because the GA examines search domains using a large number of individuals and
simultaneously checks improvement direction of the objective function and constraints. However, for
large scale problems encompassing many decision variables and constraints, convergence of the GA to

the global optimum solution is difficult (Kolda et al., 2003).

The GA solution is based on many iterations of the natural selection process, from the initial
population to last generation. The weakness of the GA is highlighted by understanding that the selection
process of individuals from one generation to next generation is continuously implemented to the genes

with preferable properties. Individuals with a low-grade (score) die out (Dorsey & Mayer, 1995). This
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means that the contribution of all parents to generate the next offspring is not equal. It may be possible
to find a better solution next to low-grade individuals, if they were still surviving. However,

convergence of the GA does not occur with equal possibility of parents to produce the next generation.

Additionally, crossover and mutation ratios are other factors affecting GA performance. When
a high crossover ratio is used, i.e., 0.5 or more, the GA pulls out the majority of individuals to a
particular point. In contrast, the mutation process creates new and different individuals, which may
explore the entire search space and lead the GA to the global optimum solution. However, convergence
of the GA with a high mutation ratio is difficult (MathWorks, 2015). Hence, for the prominent ratio of
cross over (0.6-0.8), the mutation effect to explore the entire space is limited because the number of
newly created individuals is smaller than high-grade individuals. Then, the number of high-grade
individuals significantly grows for the next generations and the majority of populations have the same
properties. Subsequently, tolerance of the objective function and constraint for all individuals are
satisfied and convergence criteria are achieved. Therefore, the objective function at the optimum point
founded by GA may not have a zero gradient, but it satisfies the stopping criteria. As a result, the
crossover and mutation ratio, which are the most important parameters for GA, must be accurately

identified for each problem to attain the global optimum solution.

Other important parameters of the GA, such as population size, fitness scaling function,
selection function, cross over function and mutation function, also affect GA performance. These
parameters depend on optimization task nature and complexity. Therefore, for each problem, GA
parameter combinations must be prudently selected using particular search and feature section methods
to improve GA performance (Haines et al., 2012; Kolahan & Doughabadi, 2012; Koljonen & Alander,
2006; Pereira et al., 2005; Rand et al., 2006). This process is a demanding and time consuming task,
especially for a large population size. From this point, it can be concluded that GA efficiently explores
the most search space, even for complex problems, because it is based on a random and direct search
technique (Dorsey & Mayer, 1995). However, to approach the global optimum solution for a complex
problem using GA there is a requirement to set up several options and parameters of the GA accurately
and efficiently. Hence, for complex problems it is difficult to converge to the global optimum solution
(zero grade point) based on standard GA. In this study, therefore, GA is hybridized with the IPA based

gradient search technique.

5.4.3 Hybrid genetic algorithm (HGA)

The weakness of GA to find the global optimum solution for a complex problem may be
addressed by hybridizing the GA with a gradient search algorithm, such as IPA. Improvement of the
hybrid genetic algorithm (HGA) can be attributed to high efficiency of GA to explore the entire search
space. Also, GA quantifies the best optimum search region from many regions, because GA, in contrast

IPA, has the ability to expeditiously change the properties of the population and explore the entire space,
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especially for the first few generations. Additionally, IPA can efficiently and quickly approach to the
zero gradient local minima of the objective function. Furthermore, the ability of IPA to move from a
search space to another is limited, because the objective function would approach to infinity when IPA

reaches the boundary (constraints) of a specific search space.

In this study, the complexity of the problem arises from many factors. For example, the number
of decision variables is 32, the number of constraints is 70 and the objective function and constraints
are nonlinear. Also, 21 ensemble SVM surrogate models are involved in the objective function and
constraints. The optimization solver evaluates the fitness value and constraint violations based on the
surrogate model responses. Additionally, even though SVM provides high prediction accuracy in the
training and testing phase, the relationship between seepage design variables and design parameters is
complex. As a result, performance of SVM surrogate models is expected to decline with the extreme
data presented by the optimization solvers, which significantly affects convergence of the optimization

solver.

Basically, the HGA process involves normal start of the GA with a random population. After
many generations, the GA converges to the best optimum point in the search space. This point is the
starting point of the local-based gradient search algorithm (IPA). The IPA algorithm searches from a
point to the next point for the best direction that leads to the zero gradient point. Therefore, IPA
efficiently attains the optimum solution for the local search space with a predefined point. Hence, a
combination of random direct search technique based GA with the gradient search technique based IPA

may lead to the global optimum solution.

5.4.4 Formulation of the optimization model

The optimization model is formulated to determine optimum design of HWRS. The best value
of each design/decision variable is selected by the optimization solver to provide safe and economic
design. Safety factors and other hydraulic design requirements represent the constraints of the

optimization model within the S-O model.

Formulation of the optimization model is similar to optimization formulation in Chapter Four.
Constraints and minimum cost objective function are also the same. The optimization model within the
S-O technique explores the effects of the anisotropic ratios. Also, the effect of utilizing HGA is studied
by comparing the obtained optimum solutions of the optimization models based on different

optimization algorithms, such as HGA, GA and IPA.

5.5 Results and discussion

The linked S-O model was implemented to find the optimum solution of HWRS with different
anisotropic ratios ranging from 0.1 to 1.5, as shown in Table 5.3. The value of other variables was left

constant; for example, hydraulic conductivity was 5 m3/day, upstream head, i.e., H, value was 100 m
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and depth of subsoil was constant at 150 m. The remaining variables were considered as decision

variables to be obtained by the optimization solver as an optimum solution.

5.5.1 Optimization solvers efficiency

To determine how HGA enhances and improves optimization results, the S-O technique was
implemented with the specified optimization solvers (GA, HGA and IPA) for different values of
anisotropic ratio. For each optimization solver within the S-O model, and for each single anisotropic
value, the S-O model was implemented twice, utilizing different and random start points. This
arrangement was undertaken to achieve an accurate and objective examination of algorithm
performance for different scenarios. Parameters of GA and IPA are listed in Table 5.2, and the
remaining parameters were left the same as default Matlab settings. Parameters of HGA are the same
for the combination of the two algorithm’s parameters, and are exactly as the same as those shown in

Table 5.2.

Table 5.2 Options and parameter values for GA and IPA

GA parameters IPA parameters
Population Size 500 Max Function 10000
Evaluations

Elite Count 3 Max Iterations 1000
Crossover Fraction 0.65 Optimality Tolerance ~ 1.00E-04
Migration Direction 'both' Function Tolerance 1.00E-04
Function Tolerance 1.00E-04 Step Tolerance 1.00E-04
Constraint Tolerance 1.00E-04 Constraint Tolerance 1.00E-04

Use Parallel true Use Parallel true

The most important result of this study was the objective function values obtained by HGA,
which were significantly less than the objective function value obtained by standard GA. As shown in
Figure.5.2, the two different GA implementations provided less economic design compared with HGA
solutions. The two iterations of HGA provided exactly the same objective function value and optimum
solutions, even when HGA started from a different random starting point. In contrast, the GA optimum
solution for the first time was different to the second time. Performance of GA proved that solutions
resulting from GA were not the global optimum solution. As seen in Table 5.3, the percentage of
improvement of optimum construction cost was a considerable value, which sometimes reached more

than 50 %.
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Figure 5.2 Objective function by HGA and GA

Table 5.3 Objective function values obtained by HGA and GA for different k,/k. ratio

key/kex Objective Objective Improvement Objective Improvement

function function percentage for function percentage for
_HGA TIter1, _GA Tter 1 the first iteration ~ GA TIter 2 the second
2 iteration

0.1 13,333,370.86  17,354,151.09 23.17 16,760,144.36 20.45

0.3  10,258,627.47 14,330,295.53 28.41 15,855,989.49 35.30

0.5 7,753,981.80  14,759,779.64 47.47 18,360,589.05 57.77

0.7 6,030,451.81  17,163,655.36 64.86 16,671,226.89 63.83

0.9 5,618,499.23  12,211,401.29 53.99 9,611,843.27 41.55

1.1 5,367,411.11 9,766,642.65 45.04 14,310,283.98 62.49

1.3 5,205,080.84  13,329,024.09 60.95 12,219,413.38 57.40

1.5 4,991,124.45 9,592,305.68 47.97 9,971,288.64 49.95

However, GA performance could be improved if the the population size is significantly

increased. This test was conducted for the case that includes a 1.5 anisotropic ratio. The standard GA

code based linked S-O technique was applied with two random start points and 5,000 population size

using a relatively high quality process unit (Intel(R) Core™ i7-2600 CPU@ 3.4GHz 3.4GHz, RAM

8.00 GB, 64x-based processor). The results, shown in Table 5.4, demonstrated that new objective

function values obtained by GA were better than when the population size was 500 (Table 5.3).

However, HGA results were still the best. That means, even with large population size, attaining the

global optimum using GA is difficult. Moreover, the time consumed by HGA was considerably less

than time consumed by the standard GA. Therefore, time efficiency is another advantage of using HGA.

The computational time consumed by HGA was approximately 13 times less compared with the time

consumed by the standard GA with high population size. Also, the global optimum solution was not

guaranteed by the GA.
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Table 5.4 Performance efficiency of HGA and GA (ky/k.=1.5)

Population size ~ Objective function Time

Run (GA) $) (Sec.)
Standard First 5000 8.247¢ 6 8543.44
GA Second 5000 7.8603¢ 6. 8413.26
HGA FImSt e 500 4.9911¢6. 652.41
second

The S-O model with the IPA solver was also implemented twice for each case. The IPA did not
present any feasible solution even with different random starting points. However, for the first run of
the case including anisotropic ratio equal to 1.1, the optimum solution by IPA was a feasible solution
and the same as the HGA solution, as shown in Table 5.5. This means there is an opportunity to approach
global optimum solutions by IPA, if [PA starts (initial point) in the same search space of the global
optimum solution. The exit flag (-2) in Table 5.5 means that the relative maximum constraint violation
exceeded the allowable tolerance, whereas the exit flag (+1) means the relative objective function
tolerance, the constraints tolerance and optimality tolerance (less than le -4) were satisfied
(MathWorks, 2015).

Table 5.5 Stopping condition and objective function values of IPA

objective exit objective exit
ky/kx function _ Fla function _ Fla
Iter 1 & Iter 2 &
0.1 13066713 -2 16092694 -2
0.3 7847945 -2 5681176 -2
0.5 5988833 -2 7711078 -2
0.7 6050421 -2 6106638 -2
0.9 5930869 -2 6633099 -2
1.1 5367411 1 5451110 -2
1.3 4887445 -2 5188936 -2
1.5 4948707 -2 5066211 -2

5.5.2 S-O solutions result

As the best optimum solutions are attained by HGA, only these results are considered in the
discussion to find the effect of anisotropic ratio on the optimum solution. Eight different anisotropic

ratios varying from 0.1 to 1.5 were implemented in the linked S-O model.

The majority of optimum solutions were based on input design variables bo, bio, d9 and dio to
provide a safe and cost effective solution, as shown in Table 5.6. In general, with a low anisotropic ratio
(ky/k) the values of bo, big, do and dio were large and gradually decreased with increase of (k,/k;) value.
This is logical and can be attributed to the exit gradient safety factor consequences. The exit gradient
values increase with decrease of anisotropic ratio. Therefore, the optimization solver provided an
efficient depth (dio), which is the most controllable variable in reducing exit gradient value. Also,
inclination angle Bio reached the maximum limit of 150 degrees. Although, it is an expensive alternative

to provide deep cut-offs with maximum inclination angle (see Eq. (4.20)), it was the optimum option to
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attain a safe exit gradient value. A deep downstream cut-off (di9) encompassing inclination angle toward
downstream considerably decreases the exit gradient value. Constructing inclined cut-offs either at the
upstream location with an angle less than 90 degrees or, at the downstream location with an angle more
than 90 degrees, increases the stream path for seeping water. This would reduce seepage characteristics

impacts, particularly exit gradient, for HWRS design.

Table 5.6 Optimum solutions based on HGA

Design ky/kx
variables 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5
bl 0.01 0.01 0.01 0.01 5.48 8.70 9.78 11.35
b2 30.01 30.00 0.01 4.56 3.84 4.45 5.79 6.37
b3 0.01 0.01 0.01 0.01 0.01 0.10 0.91 0.70
b4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
b5 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
b6 21.05 0.01 0.01 0.01 0.01 0.01 0.01 0.01
b7 51.04 22.84 0.01 0.01 0.01 0.01 0.01 0.01
b8 30.01 134.12 0.01 0.01 0.01 0.01 0.01 0.01
b9 150.00 30.01 72.23 50.17 47.67 43.02 38.96 35.77
b10 41.64 41.71 60.00 53.20 46.88 48.38 48.57 55.14
b1l 0.01 0.01 475 0.01 0.01 0.01 1.24 1.26
dl 60.00 60.00 0.01 9.11 7.67 8.70 9.78 11.35
d2 0.01 0.01 0.01 0.01 0.01 0.19 1.81 1.39
d3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
d4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
ds 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
dé6 42.09 0.01 0.01 0.01 0.01 0.01 0.01 0.01
d7 60.00 45.66 0.01 0.01 0.01 0.01 0.01 0.01
ds 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
d9 60.00 60.00 60.00 55.15 47.14 41.77 37.50 35.59
d1o 23.28 23.42 60.00 51.25 46.61 41.88 40.00 35.88
dd 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
B1 140.71 135.11 150.00 148.96 141.41 135.71 131.26 126.85
B2 106.89 106.71 76.15 83.81 83.87 85.29 85.70 86.58
B3 92.34 94.70 113.14 119.49 123.15 127.22 132.67 135.12
B4 86.53 88.34 100.78 106.38 108.32 110.80 113.72 113.77
B5 62.37 54.52 46.31 55.23 57.06 60.11 63.68 68.27
B6 150.00 150.00 150.00 150.00 150.00 150.00 150.00 142.88
B7 147.33 150.00 107.21 142.94 133.49 134.77 140.83 143.44
i 104.05 150.00 30.00 30.00 30.00 30.00 30.00 30.00
B9 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00
B10 150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00

On the other hand, augmentation of bo, big and dy partially contributed to reducing the exit
gradient value, because uplift pressure of a specific point was used with other design variables (bi, d;,
Bi, kv, (kv kx)) to predict the next point uplift pressure. This means that exit gradient value is influenced
also by values of by, big, and dy due to their effects on the uplift pressure behind the last cut-off, which
influences exit gradient value. The values of bo, bio and their thicknesses enhanced stability for HWRS
to satisfy the sliding, overturning and eccentric load requirements. These variables provide sufficient
weight to counterbalance external hydrostatic loads and uplift pressure. Moreover, do decreases uplift
pressure value under by to decrease the floor thickness and construction cost. The inclination angle Bo
reached the minimum boundary 30 degrees, which is the most effective inclination angle to reduce

uplift pressure underneath the HWRS.
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In some optimum solutions, as shown in Table 5.6, there are noticeable contributions related to
d; and b, values, especially for small anisotropic ratios, which are the most critical scenarios. For the
cases (ky/k. = 0.1 to 0.3), the length of d9 and dio within the specified range are not solely adequate to
provide a safe HWRS design. Hence, the d; value significantly reduces the uplift pressure for the rest
of the structure (Figures 5.4 and 5.5) and consequently decreases construction cost. Additionally, an
increase in d; value partially contributed to a decrease in exit gradient value due to d; effects in reducing

uplift pressure under the HWRS.

When the anisotropic ratio increased (>0.5), the load resultant distance e became more
controllable in the optimization process. The e value of the optimum solutions reached the minimum
allowable limit (B/3) to provide safer and cheaper solutions, as shown in Figure 5.3. Therefore, e value
also plays a significant role in safety of HWRS. The sliding constraint has significant effects on optimal
design of HWRS. The minimum allowable value of the sliding safety factor is 1.5, as shown in Table
5.7. For small anisotropic ratio, the seepage characteristics are more critical and exit gradient value is
high. Consequently, for these cases the exit gradient value is more controllable in optimum design of
HWRS. However, when anisotropic ratio decreases, exit gradient value also decreases. This allows
other safety factors, such as the sliding and overturning safety factor, to approach to the minimum

allowable limit. Hence, an economical design could be achieved (Table 5.7, Figure. 5.3).
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Figure 5.3 Load resultant location (e)

Table 5.7 Safety factors for the optimum solution for different ky/kx ratios

ky/kx Exit Resultant  Over Sliding
gradient location turning
0.1 5 155.09 2.09 3.45
0.3 5 112.02 1.99 2.68
0.5 5 54.10 1.81 2.03
0.7 5 36.00 1.62 1.57
0.9 5 34.64 1.59 1.50
1.1 5 34.90 1.59 1.50
1.3 5 35.10 1.59 1.50
1.5 5 36.88 1.60 1.50
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Total construction cost of HWRS decreases with an increase in anisotropic ratio. This may be
attributed to the high construction cost for deep cut-offs due to significant inclined angles. Also, the
huge thickness and length of by and bi¢ considerably increase the construction cost. With high
anisotropic ratio, exit gradient values have less impact on the safety of HWRS design, as the seeping
water movement through soil becomes easier, especially in the vertical direction. Consequently, large
depths of dio and do are not necessary, instead the optimization solver provides sufficient thickness,

which is a cheaper solution, to counterbalance uplift pressure.

5.5.3 Optimum solution evaluations

To evaluate the accuracy of the S-O technique, the obtained optimum solutions were solved
using the seepage numerical modeling code. Agreement of seepage characteristics obtained by the S-O
model with those obtained by the numerical solution reflects the accuracy of the S-O technique.
Evaluation results demonstrated good agreement between the seepage characteristics of the optimum

solutions and the numerical solutions, as shown in Figure 5.4 to Figure 5.12 (5% error bar charts).

However, in some cases there were slight deviations for the uplift pressure and exit gradient
values. These deviations may be attributed to weak learning of SVM surrogate models for unseen or
extreme data. The most optimum solutions presented by HGA were extreme scenarios. For example,
values of b, to bg and d, to dg approached zero. Also, values of d9 and dio reached the upper limit (60
m) and inclination angles o and B 1o reached the boundary limits (30 and 150 degrees), as shown in
Table 5.6. In general, although optimum solutions included an extreme value, SVM surrogate models
base S-O models presented an accurate prediction related to seepage characteristics. Maximum
percentages of error of the predicted uplift pressure were less than (+/- 10%), which are accepted for
such complex problems. On the other hand, the predicted exit gradient values, shown in Figure 5.12,
were in total agreement with the numerical solution results. However, a few cases have noticeable
deviation, as in the first scenarios (anisotropic ratio = 0.1), which might be attributed to weak learning

of the SVM model for the range of values lying on the periphery of training data sets.
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Figure 5.4 Evaluation results for different locations of the uplift pressure (ky/kx =0.1)
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Figure 5.5 Evaluation results for different locations of the uplift pressure (ky/kx =0.3)
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Figure 5.6 Evaluation results for different locations of uplift pressure (ky/kx =0.5)
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Figure 5.6 Evaluation results for different locations of the uplift pressure (ky/kx =0.7)
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Figure 5.7 Evaluation results for different locations of uplift pressure (ky/kx =0.9)
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Figure 5.8 Evaluation results for different locations of uplift pressure (ky/kx =1.1)
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Figure 5.9 Evaluation results for different locations of uplift pressure (ky/kx =1.3)

120
m15 S0 W 1.5 SEEPW

100

80

60

40

Uplift pressure (m)

20

PE1 PC1 PE2 PC2 PE3 PC3 PE4 PC4 PES PC5 PE6 PC6 PE7 PC7 PE8 PC8 PE9 PC9 PE10
Location of the uplift pressure

Figure 5.10 Evaluation results for different locations of uplift pressure (ky/kx =1.5)
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5.6 Conclusion

Attaining global optimum design of HWRS incorporating several constraints, and based on
several seepage characteristic responses of many surrogate models, is an almost unachievable task
without improvement in efficiency of the utilized optimization solvers. This study presented a new
methodology to expeditiously find the global optimum solutions by hybridizing the GA based direct
search method with the IPA based gradient search method. The HGA was applied to find optimum
design of HWRS incorporating the seepage characteristics based on an anisotropic hydraulic
conductivity flow domain. The linked S-O model utilized well trained and tested SVM surrogate model
responses to evaluate the objective function and constraints. Optimization results demonstrated that
efficiency of the HGA was enough to find the global optimum solution compared with standard GA
and IPA. The HGA efficiently provides a more economic and safer HWRS design. The percentage of
improvement in the objective function value (construction cost) was between 20% and 50 %, which is
of substantial value for large scale construction projects. Even though population size of the GA was
increased to 5,000 individuals, optimum solutions from HGA based on 500 individuals was the best.
Also, the computing time efficiency of HGA to find the optimum solution was about 13 times faster

compared to standard GA based on 5,000 populations.

Physically, reducing anisotropic ratio (k/k) significantly increases construction cost due to
augmentation of the seepage characteristics, especially exit gradient value. The optimum solutions for
many cases were based on the six effective variables do, dio, bo, bio, B9 and Bio. The main role of the
widths bio and by with sufficient thickness was to provide an efficient cross section counterbalancing
the significant uplift pressure and hydrostatic forces. The role of dy was to reduce uplift pressure under
the HWRS, especially when B9 reached the minimum value (30 degrees). Additionally, reduction of
uplift pressure due to increasing do significantly reduced the uplift pressure at the end of HWRS; then
the exit gradient value declined. The value of d,o had a direct effect in reducing the exit gradient value,
especially when B9 reached 150 degrees. In general, all HWRS hydraulic design requirements and
safety factors were satisfied. The exit gradient safety factor was the most controllable factor for the
optimum solutions; however, when anisotropic ratio increased the allowable resultant distance (e) and

sliding safety factor were also acting as controllable factors and affecting optimum solutions.

The accuracy of solutions obtained in the evaluation processes demonstrated that the S-O
methodology is applicable for finding the optimum solution of HWRS. Even though most optimum
solutions were extreme scenarios, i.e., lying on the periphery of the training data set, maximum SVM
prediction errors were less than 10%. Accordingly, the linked S-O technique incorporating HGA is a

powerful methodology and can be applied to find global optimum solutions for complex problems.

Future recommendations to address the limitations of this study are: [1] extensively study the

effect of GA and IPA parameters and find the optimum combination of these parameters to improve
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their performance; [2] the training range of training data could be expanded to provide more accurate
responses for extreme data; [3] different machine learning techniques, such as genetic programing (GP)
or fuzzy neural network (FNN), which are expected to provide precise predictions (surrogate model)

for design variable of complex problems should be explored.

The reliability based optimum design is implemented in Chapter Six. The uncertainty in
seepage quantities due to the uncertainty in estimating the hydraulic conductive is incorporated in the
S-O model to quantify the reliability of HWRS design based on the multi-realization optimization

technique.
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6 Reliability Based Optimum Design of Hydraulic Water Retaining
Structure Constructed on Heterogeneous Porous Media: Utilizing
Stochastic Ensemble Surrogate Model Based Coupled Simulation

Optimization Model

A similar version of this chapter is under review for publication in the Journal of Life Cycle

Reliability and Safety Engineering as shown below:

Al-Juboori, Muqdad, and Datta, Bithin (2018) Reliability based optimum design of hydraulic
water retaining structure constructed on heterogeneous porous media. utilizing stochastic ensemble
surrogate model based coupled simulation optimization model. Journal of Life Cycle Reliability and

Safety Engineering, Under Review.

This chapter studies the effects of uncertainty and variation in hydraulic conductivity on the
optimum design of HWRS. Different realizations (random field) of heterogeneous hydraulic
conductivity were sampled from a constant mean and varied standard deviation log-normal distribution.
The objective of this study was to integrate the reliability concept in the linked simulation optimization
(S-0) technique to address uncertainty of the seepage characteristics due to uncertainty of hydraulic
conductivity. The reliability based optimum design (RBOD) framework was implemented utilizing
multiple realization optimization techniques based on GPR stochastic ensemble surrogate models. The
S-O model based RBOD was formulated to find the most cost-effective HWRS design that satisfies a
specified degree of reliability.

6.1 Introduction

Seepage characteristics under hydraulic water retaining structures (HWRS) significantly impact
the hydraulic serviceability and stability of such structures. Seepage quantities are influenced by the
hydraulic conductivity value and its spatial and directional variations. Homogenous isotropic hydraulic
conductivity soils are rarely seen in the field. As Lambe & Whitman (1969, p. 275) reported,
“unfortunately, the soils are generally nonhomogeneous and anisotropic”, even in one single layer there
is no uniform homogenous soil properties (Freeze, 1975). Therefore, in the geotechnical and structural
design codes, uncertainty due to analysis methods, loads and parameter variations have been strongly
considered (ACI Committee American Concrete Institute& International Organization for
Standardization, 2011; European Committee For Standardization, 2004). Uncertainty in soil parameters

arises from different sources, as follows: [1] spatial and direction variations of inherited soil properties
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as a result of the environmental effect on sediment conditions, [2] shortage in the number of required
samples, [3] error in measurement of soil properties and statistical analysis error. Soil properties and
hydraulic conductivity especially have a large covariance 200-300% value, which means uncertainty

level of hydraulic conductivity is high (Baecher & Christian, 2005).

As uncertainty level increases, the expected risk increases, especially for huge projects such as
nuclear power plants and large water retaining structures. Hence, design and safety factors must be
conservative. Therefore, many studies have been conducted to study the effect of uncertainty and soil
properties variations on the reliability of designs (Baroni, Zink, Kumar, Samaniego, & Attinger, 2017;
Christian, Ladd, & Baecher, 1994; Deng, Li, Qi, Cao, & Phoon, 2017; Duncan, 2000; Hicks, Nuttall, &
Chen, 2014; Hicks & Spencer, 2010; Popescu, Deodatis, & Nobahar, 2005). Specifically, for
groundwater and seepage for hydraulic structures most studies have concentrated on stochastic analysis
of seepage characteristics based on different realizations of hydraulic conductivity generated from
different probability distribution functions (PDF) or different sets of mean and standard deviation
(Ahmed, 2012; Griffiths & Fenton, 1993, 1997; Le, Gallipoli, Sanchez, & Wheeler, 2012). The
important conclusion of such studies was that the degree of uncertainty drastically influenced seepage

characteristics, which may negatively affect the design performance and safety.

All traditional techniques used to quantify uncertainty and measure the reliability of design are
based on statistical parameters of involved variables. Reliability in this context refers to actual
performance of the design compared to expected performance. A majority of conducted studies are
based on conventional reliability methods, such as first order reliability method (FORM), first order
second moment (FOSM) method, reliability index method, point estimation methods and the Hasofer-
Lin approach or geometrical reliability method. These methods are based on mean (), variance (6?),
covariance (cov) and probability density function (PDF) of involved parameters or variables and a
particular performance criteria integrated in reliability analysis. Generally, the reliability index or
probability of failure (Py) for a design can be computed based on a certain safety factor criteria and a
particular value of 1, 6. On the other hand, Monte Carlo simulation (MCS) method, which is based on
randomly generated data from specific PDF, p and o, can be used to determine Pr. The MCS method is
based on involving a large number of random data in calculation of a certain safety factor criteria, then
the probability of failure is determined based on the number of unsuccessful samples to the total number

of samples (Baecher & Christian, 2005).

Recently, new techniques have been developed based on numerical simulation to evaluate
reliability. For example: Griffiths and Fenton (2004) used the random finite element method; Zhu,
Wang, Li, Liu, and Cheng (2017) utilized the weighted dynamic response surface method; a non-
intrusive stochastic finite element method was implemented by Jiang, Li, Zhang, and Zhou (2014), and

the multi response surface method was used by Deng et al. (2017). These methods were based on

116



Chapter Six

stochastic simulation of the design based on the random field concept integrated with the finite element
method considering spatial variability of soil parameters. In other studies, the computationally
expensive numerical models were replaced with stochastic response surface models to explore the

reliability of the design (Mollon, Dias, & Soubra, 2009, 2010).

Although satisfying high reliability level of a certain design provides a more reliable design,
this may negatively impact on the efficiency of other aspects, such as the construction cost, etc. Hence,
a number of studies incorporated reliability in the optimization model to improve design and acquire
more information about the impact of reliability on optimum design, considering the uncertainty in
design parameters (Bayer, de Paly, & Biirger, 2010; Singh & Minsker, 2008; Sreekanth & Datta, 2011;
Tee, Khan, Chen, & Alani, 2014; Zhang, Zhang, & Tang, 2011). The majority of these studies
demonstrated that the RBOD approach was a computationally expensive and difficult task, especially
with stochastic noisy constraints and objective functions. Also, only evolutionary optimization solvers
based on the direct search technique, such as the anti-colony optimization (ACO) and genetic algorithm

(GA), could be utilized in similar optimization problems.

In the present study, the reliability based optimum design (RBOD) framework was
implemented using a multiple realization optimization technique. As directly linking the numerical
simulation code to the RBOD model is a demanding task, sets of precisely trained ensemble stochastic
surrogate models were imbedded in the linked S-O technique based RBOD framework. Each surrogate
model imitated the numerical seepage modeling responses based on a particular field of heterogeneous
hydraulic conductivity. Characteristics of each random field were based on certain values of 1 and o of
log-normal PDF. Hence, each surrogate model represented a certain degree of uncertainty of a specific
seepage quantity. The process to quantify the reliability of design within the RBOD framework was
based on determining the number of stochastic responses, satisfying a particular constraint of the total
number of surrogate models (stochastic responses) in the ensemble. For example, for each safety factor,
candidate design with 60 % reliability must satisfy at least 60 % of stochastic safety factors computed
based on stochastic seepage values using many surrogate models. These surrogate models were trained
and tested based on different seepage data sets resulting from the numerical simulation of different

seepage modelling and different scenarios of heterogeneous hydraulic conductivity.

The objective function of the optimization model is the minimum construction cost of HWRS.
Reliability level was formulated as an additional constraint, continually controlling all stochastic
constraints until the desired reliability level is achieved for each single iteration of the optimization
model. Reliability constraints, stochastic constraints and deterministic constraints were simultaneously
evaluated with the objective function to attain the optimum solution. The majority of the constraints

and objective function were based on the ensemble surrogate model responses within the S-O model.
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The optimization task in the present study is considered complex. Hence, the optimization
solver and machine learning technique had to be efficient and accurate enough to provide reliable and
accurate solutions. Therefore, GA was utilized as an optimization solver for this task. The GA is widely
used to solve complex optimization problems in different engineering applications. Additionally, the
Gaussian process regression (GPR) machine learning technique was utilized in S-O models to precisely
imitate numerical model responses under different conditions. Many researchers dealing with
geotechnical and civil engineering problems have demonstrated that GPR precisely predicted certain
responses compared to other machine learning techniques, such as support vector machine and back
propagation neural network (He et al., 2017; Kang et al., 2015; Kang et al., 2017; Li et al., 2017; Pal &
Deswal, 2010; Samui & Jagan, 2013).

This study concentrated on developing the RBOD framework to find optimum HWRS design
at minimum cost, considering a particular level of reliability to address uncertainty in hydraulic
conductivity and seepage quantities. This objective could be established by formulating a constrained
multi-realization optimization model based linked S-O technique utilizing GA optimization solver and
incorporating many stochastic ensemble GPR surrogate models. The minimum cost objective function
and stochastic constraints within the S-O model were based on the responses of ensemble surrogate
models. Reliability constraints were simultaneously integrated into the S-O model and were based on
the ensemble surrogate responses to quantify the reliability of the design. Each surrogate model in the
ensemble model was trained and tested based on large data sets simulated by a numerical seepage
modeling code (SEEP/W) (Krahn, 2012). Predictions of each surrogate model represented one of the
seepage characteristics based on a particular random field involving different realizations of

heterogeneous hydraulic conductivity.

The following sections present and discuss the seepage model and data generation, theory of
GPR, measuring the performance of the developed surrogate models, formulation of the RBOD model,

results and discussion, evaluation of the developed methodology and conclusion.

6.2 Conceptual seepage model and design of experiments

Generally, seepage analysis for heterogeneous hydraulic conductivity of the flow domain based
on the closed form solution is impractical. Furthermore, mathematical seepage analysis for homogenous
isotropic hydraulic conductivity with complex geometry is a convoluted process. However, the
numerical solutions based on the finite element method (FEM) provide precise solutions for complex
problems compared to experimental observations and other numerical method solutions

(Shahrbanozadeh et al., 2015).

Therefore, in the current study, FEM code based-Geo-Studio/SEEP/W software (Krahn, 2012)
was utilized to simulate seepage problems. However, each iteration (run) of the numerical simulation

of seepage modeling with heterogeneous hydraulic conductivity takes a long time. For example,
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simulation time for two randomly selected cases drawn from the hydraulic conductivity field with
standard deviation 2.95, 3.65 m/day was 1:27.34 and 3:25.14 minutes, respectively. These simulations
were conducted utilizing a high speed processor unit (Core™ i5-4570 CPU@ 3.20 GHz, RAM 8.00
GB, 64x-based processor). Consequently, it is time consuming and inefficient to directly link the
numerical model to the optimization model. The justification being that the optimization solver is based
on a direct search evolutionary algorithm, which invokes numerical responses numerous times to
evaluate the constraints and objective function for each individual in each generation of the search
process. This might take many weeks to find the optimum solution for one S-O run (Dhar & Datta,
2009; Mollon et al., 2009, 2010). Additionally, reliability constraints increase complexity of the
problem and the required time for each run of the S-O model because additional iterations are required
to evaluate reliability of the design. Moreover, quantifying the reliability requires responses of many
numerical stochastic simulations encompassing different realizations of the hydraulic conductivity

field. Attaining and incorporating such responses requires a large number of iterations and longer time.

Alternatively, the numerical seepage model can be replaced by expeditious surrogate models.
The surrogate model can be trained and tested based on numerous data sets simulated using the
numerical seepage modeling code. Then the trained surrogate model could efficiently and accurately
predict seepage characteristics even for out of training data sets without a need to use the numerical

simulation model.

The first step to building a surrogate model is to propose a conceptual seepage model for HWRS
integrating the design variables and parameters. Based on the conceptual model shown in Figure 6.1,
input data could be generated. Important design variables influencing seepage quantities were upstream
cut-off (d;), downstream cut-off (d,), total width of HWRS (b), upstream water head (H), and hydraulic

conductivity characteristics.
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Figure 6.1 Conceptual model of HWRS

Input data comprised 150 sets of seepage design variables (di, d,, b, H), randomly generated
utilizing the Halton sequences (HS) method (Loyola, Pedergnana, & Garcia, 2016). The HS provides
more uniform distribution for generated data compared with other methods, such as the Latin hypercube
sampling method (LHS). A sample of random data generated for HWRS width (b), shown in Figure
6.2, demonstrates how the HS method uniformly covers all variable ranges. In contrast, the LHS leaves
some spots without any point and provides many adjacent points in the same place. Therefore, data sets
generated by the HS method are the best distributed data for the machine learning process
(experiments). The proposed ranges of design variables were 0-80 m for d; and d, and 0-150 m for b
and H. These ranges were supposed to cover all expected optimum solutions obtained for different
upstream head value. Furthermore, in the real field, the most constructed HWRS could be seen within

these limits.
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Figure 6.2 Random data sampling using a) HS method b) LHS method for width of HWRS [b (0-150) m]

Heterogeneous hydraulic conductivity was assumed to be a random field sampled from log-
normal distribution. Random field properties were based on a defined mean and standard deviation.
Five standard deviations (0.85, 1.55, 2.25, 2.95 and 3.65) were assumed based on constant mean (2
m/day). Although, there is no explicit relationship between the standard deviation and mean, the
expected values of standard deviation range between (0.5 to 2 p). Hence, using Eq. (6.1), the prescribed
five values of standard deviation can be generated.

Omax—9min )
)

Ex i=13,..9 (6.1)

0i = Omin+ L (

Where 0,y is the minimum value of standard deviation (0.5 m/day), 0,4, is the maximum

value of standard deviation (4 m/day).

A Box-Muller approach (Ross, 2014) was used to generate a log-normal distribution with a
particular value of p and o random field. A subroutine code to generate the distribution was written in
CH#, then linked to the seepage modeling code to define hydraulic conductivity value to each element in
the FEM numerical model. A randomly selected sample of actual hydraulic conductive random field

defined in the FEM models is shown in Figure 6.3, which decidedly matches log-normal distribution.
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Figure 6.3 Log-normal histogram for a sample of (n = 2, 6 = 0.85)

Based on each standard deviation value, a random field of hydraulic conductivity was generated
and incorporated in the numerical seepage model. As unlimited realizations could be generated from a
log-normal distribution with a certain value of standard deviation, each input data set (d;, d,, b, H) was
simulated with four different random realizations (random field) of the same standard deviation value.
Then, the simulated data sets used for training a surrogate model for a particular seepage characteristic
was 600 sets. This procedure ensures that the different numerical responses with different hydraulic
conductivity realizations are recorded and incorporated in surrogate model training data. Figure 6.4
represents different realizations of hydraulic conductivity for the same case and how it affects the exit

gradient value (contour) shown in Figure 6.5.

L 4 -6 midays

Figure 6.4 Different realizations of hydraulic conductivity for same standard deviation value
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Figure 6.5 Effect of different realizations (for same ¢ value) of hydraulic conductivity variation on exit
gradient contour

Accordingly, the varied seepage quantities, such as uplift pressure on the upstream side (Pc)),
downstream uplift pressure (Pe;) and exit gradient (ie) value, were determined by the numerical seepage
modeling code four times for each input data set (case). Furthermore, because exit gradient value is
more critical than other quantities and hydraulic conductivity varies randomly, four points, shown in
Figure 6.1, were selected at which exit gradient values were determined for each simulation.
Determining four values of exit gradient and ensuring each value was within allowable limits ensured
safety for HWRS constructed on a heterogeneous flow domain. Hence, each training data set for a single
surrogate model included one set of input design variables (d;, d2, b, H) and four stochastically varied
sets of output data (Pci, Pey, iei, iey, ies, ies). Therefore, the responses of surrogate models reflect
variation of seepage characteristics obtained from the four scenarios of random hydraulic conductivity.
For each seepage design variable, five surrogate models were trained to imitate different responses,
reflecting the effect of five different hydraulic conductivity random fields drawn from the five log-
normal distributions. As a result, 30 surrogate models were built in this study to develop six ensemble
stochastic surrogate models linked to the optimization model within the RBOD framework. Each
ensemble surrogate model involved five surrogate models, and each represented numerical simulation
responses for different hydraulic conductivity random fields for a particular standard deviation value.

Based on these stochastic responses, reliability of the design could be quantified.

Deterministic surrogate models were developed separately to compare stochastic optimum
solutions with deterministic solutions. Deterministic responses were used to train three surrogate
models (Pci, Pe,, ie) based on expected hydraulic conductivity (¢ = 0, u = 2). Deterministic surrogate
models were incorporated in the deterministic S-O model to find the optimum solution of HWRS for

different head values.
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6.3 Gaussian process regression (GPR) model

Gaussian process regression (GPR) is a stochastic machine learning technique. The Gaussian
process involves generalization of the (joint) multivariate Gaussian, which may include a finite
collection of random variables following Gaussian distribution. GPR uses probabilistic methods to
measure uncertainty of the regression model by defining the distribution of the solution, which likely
follows Gaussian distribution. The GPR technique can explore several relationships between training
data sets using a finite number of parameters. The best relationship is the one which perfectly matches
training data (Rasmussen, 2004). The GPR machine learning technique is selected for current S-O
model because many researchers observed that the performance of GPR is even better than SVM and

ANN models, as discussed in section 2.5.3.

Primarily, the GPR technique is based on the assumption that there is high probability that f(x)
matches f(x') when vector x is adjacent to x'. This relationship (function) can be identified by finding
distribution of data utilizing mean function (m(x)) and covariance function k(x, x"). The covariance
function provides good indication of similarity between x and x’, and measures corresponding
functions’ similarity. By incorporating the Bayesian inference statistical concept, the known (observed)
data set becomes a conditional distribution (posterior probability) based on an unknown distribution
function. The unknown function is based on many random vectors following Gaussian distribution

(Rasmussen, 2004; Shi & Choi, 2011).

6.3.1 Gaussian process for regression

Let us assume the function between input (x) and output (y) can be expressed by two terms:

f(x) the signal term and € noise term, as shown in Eq. (6.2).

y=f(x)+e (6.2)
Where, the noise term follows normal distribution (e~ N (0, 52)), the noise term refers to
randomness of observations. The signal f(x) term is considered a random variable and follows

Gaussian distribution using the Gaussian process, as shown in Eq. (6.3).

fO)~GP(m(x),k(x,x)) , x3 R (6.3)
Where, m(x) is the mean function, which refers to the average of all functions evaluated at point
(x), m(x) = E[ f(x)]. Usually, the prior mean function is taken (0) to make the posterior computations
cheaper and because the information of the prior distribution of the unknown function is insufficient.
k(x,x") refers to the covariance function measuring dependence of function values for different input

points (x and x"), as shown in Eq. (6.4).

k(x,x) =E[( f(x) —m))(f(x") —m(x"))] (6.4)
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The covariance function represents the kernel of the Gaussian by which the correlation between
two points can be obtained. The kernel function may be any function identifying correlation between
two points and can be utilized for D dimension data. Often, the radial basis function (RBF) is used as a
kernel function for GPR. RBF may be varied to increase or reduce correlation between points, providing
desired smoothness. Over fitting and under fitting phenomena can be avoided by modifying the length

scale (%) and signal variance (sz) to provide better fit of the resulting function (Eq. (6.5)).

llx —x'll

k(x,x") = ofexp(— 32

) (6.5)

Theoretically, the function can be represented by a vector of points. Therefore, to find the
function vector, a sample of a large number of points is drawn from the multivariate Gaussian
distribution (prior distribution) with D dimension data at an arbitrary point X,. Then, the covariance
matrix for all points is determined. This matrix represents correlation between all points, as shown
below. Then, by using the prior mean function m(X,) = 0 and the covariance (kernel) matrix, the values
of f(X,) =[f(XD),f(X3), f(X;:) ]can be sampled from multivariate distribution, as shown in Eq.
(6.6).

fd~w (0.k(x. ,x.)) (6.6)
(KGin) k(i) o k()]
K x )= | KOax) kGix) .o k()
Km ) k(ix) o k(i)

If the training data is {X, f(X)} and test (proposed) data set is {X, , (X* )} drawn from
multiverse normal distribution, then f, is the unknown function to be found using the GPR technique.
Using conditional probability, i.e., posterior distribution, the new data sets (function) drawn from
multivariate normal distribution must comply with the observed data set, then condition probability

distribution can be written as given in Eq. (6.7).

[Fl=r (o[ S )

The resulting function vector f(X,) is totally controlled by the observed data set, ignoring the
uncertainty in this data and assuming the observed data is the actual function value. More practically,
the noise term (€) must be included to provide a more generalized function, as indicated earlier in Eq.

(6.2). Therefore, the distribution can be written as:

N_ K(x,x)+ of I K(x,x,) >
[f]_ N<O'<[ K (x.,x) K (x.,x.) )
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Where afz I is scale identity matrix. After some manipulation, the posterior p( f,|y, X, X.) is
considered Gaussian distribution with mean K(x,,x) [K(x,x) + afz I™'y and covariance matrix
[K(x.x.) — K(x,,x )[K(x,x) + afz I171K(x, x,). Then f, can be defined based on the mean function

and kernel function, as shown in Eq. (6.7) (Rasmussen, 2004; Roberts et al., 2013).

The GPR surrogate models were implemented using Matlab. Parameters of the utilized GPR
are shown in Table 6.1. After many iterations of trial and error, we found that the listed parameters

provided a better prediction. The rest of the GPR options were similar to Matlab default options.

Table 6.1 Properties of the GPR technique

Properties Value
1 Prediction method  Exact
2 Kernel function Squared exponential kernel with a

separate length scale per predictor
3 Fit method Exact

4 Basis function Constant

6.3.2 Surrogate model performance

Building a surrogate model to use in the S-O approach is a delicate task. Although surrogate
models provide an expeditious alternative to numerical models, the training and testing phases need to
be established carefully and accurately. Performance of surrogate models must be precisely evaluated
before being used in the S-O approach. Efficiency and accuracy of developed surrogate models increase
robustness of the linked S-O based RBOD technique. The evaluation strategy is based on many
statistical error measures (indices). Each measure is based on different criteria and involves different
statistical variables. In addition to conventional error measures, such as mean square error (MES) (Eq.
(6.12)), standard deviation of error (STD_ERROR) and mean error (M-Error), these measures are
briefly described below, with more information found in (Gupta, Sorooshian, & Yapo, 1999; Moriasi

et al., 2007).

Correlation coefficient (R): this measure provides an indicator to evaluate the linear
relationship between observed and predicted data. The range of R is between -1 and +1. Criteria to

determine R are shown in Eq. (6.8). Value of R greater than 0.5 is acceptable.

R SLi—-9) i—¥)
\/2?:1@1- — 5121 - 7)?

(6.8)

Where § is predicted data; y is observed data; and ¥ ,  refers to mean of observed and predicted data,

respectively.
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Nash-Sutcliffe efficiency (NSE): this normalized coefficient measures residual variance to
measured data variance. The range of NSE is between -co and +1. NSE values between 0 and 1 are
considered accepted and perfect performance of the model is achieved when NSE value attains 1. The

NSE index can be determined using Eq. (6.9).

Z?=1(3A’i - )’i)z

NSE =1 — —
(i —¥)?

(6.9)

Percent bias (PBIAS): is used to provide a perspective of how much the average of predicted
data is larger or smaller than counterpart observed data. Positive values indicate that the model is an
overestimation and negative values indicate the model is an underestimation. The ideal value of PBIAS
is 0. The PBIAS measure criteria is shown in Eq. (6.10).

Yis1(yi —91) x 100

PBIAS = (6.10)
?:1(3’1’)

Root mean square error to standard deviation ratio (RSR): The RSR ratio is a standardized
index error measure. It provides indication of the error ratio to the standard deviation of observed data,
as shown in Eq. (6.11). The RSR value is equal to or greater than zero, and the prefect prediction is

obtained when RSR approaches zero.

RMSE — Z¥i,(vi — 91)?

RSR = =
STDops e v = 9)?

6.11)

T (9 —y)® (6.12)
n

MSE =

All statistical error measures and indices discussed above were used to evaluate developed
surrogate models for training and testing data. All surrogate models satisfied error measure limits. The
majority of surrogate models provided high accuracy predictions and most of index values reached
optimum values. Some surrogate models, especially exit gradient models of high standard deviation
(3.65) cases, provided slightly deviated predictions, but were within ideal ranges. Samples of testing
and training error measures corresponding to each model are listed in Table 6.2. Also, some samples of
graphic training and testing results for different models are shown in Figure 6.6 to Figure 6.11, giving
good inference about performance of the GPR technique to imitate the complex relationship related to

seepage characteristics incorporating uncertainty in some design parameters.
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ie ie, ie, ie, pei pe2

train test train test train test train test train test train test

MSE 0.17 028  0.107 0.121 0.09 0.25 0.14 0.12 3.09 5.69 9.76 8.78

STD-ERROR 0.42 0.53 0327 0344 0.30 0.50 0.37 0.34 1.76 2.35 3.13 2.94

Me-error 0.00 -0.05  0.000 -0.066 0.00 0.05 0.00 -0.04 0.00 0.52 0.00 0.51

NSE 0.54 037  0.696  0.428 0.74 0.73 0.64 0.54 1.00 0.99 0.99 0.98

RSR 0.68 0.80  0.551  0.757 0.51 0.52 0.60 0.68 0.06 0.07 0.12 0.13

PBIAS 0.00 -9.74  0.000 -12.08 0.00 6.83 0.00 -5.77 0.00 1.05 0.00 1.68

R 0.73 0.64  0.830 0.710 0.86 0.88 0.80 0.77 0.99 0.99 0.99 0.99

Train Data: R=0.86032 Tost Data: R=0.88341 _ Train Data: R=0.99813 Test Data: R=0.9974
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6.4 Formulating the reliability based optimization model

The aim of the optimization model is to find the optimum design of HWRS restricted by a
particular level of reliability. As performance criteria of seepage are based on developed surrogate
models, it is more applicable to use the multiple realization technique based on the stochastic S-O model
to find the optimum solutions. The multiple realization ‘stacking’ optimization approach has been used
by many researchers (Chan, 1993; Feyen & Gorelick, 2005; Sreekanth & Datta, 2011). In some
previously conducted multiple realization optimization models, the reliability degree was specified in
advance and the optimization process stopped when post optimality multi-realization criteria reached
the desired level. Similarly, in this study reliability level was specified beforehand and the optimum
design of HWRS satisfied that level of reliability at minimum cost, based on the multi-realization
optimization technique. This can be achieved when the optimum solution satisfies a certain number of
stochastic responses of all safety factors (constraints) of total incorporated responses. This means a
particular reliability value (n/m) could be established within the S-O model by imposing candidate
design to satisfy n stochastic constraints of the total number (m) of constraints based on safety factors
of HWRS design. Each stochastic constraint is based on responses of m surrogate models within the
stochastic ensemble surrogate model. For each safety factor, the reliability value n/m of the optimum
design represents that at least (any) n stochastic constraints of all involved stochastic constraints (m) in
the S-O model must be satisfied. Reliability is considered 100% when m/m of all constraints are

satisfied and considered 50% when 0.5m/m of stochastic constraints are satisfied, etc.

It is also important to note that some stochastic design variables, such as thickness of the floor
upstream and downstream (t;, t2), involved in computation of the objective function are based on
stochastic ensemble surrogate models. Therefore, to provide safe design the maximum values of each

thickness were considered in determining the objective function.

The multiple realization optimization based RBOM using stochastic S-O model was formulated

as:
FlndX: {xl, X2, X3, x4'} = {dl ,dz, b, b*}

Minimize the construction cost of the HWRS:

2
max (t*) + max(t} (6.13)
fOO = ¢ x5 (1)2 D0 e,
s=1
Subject to:
FS_ie = ¢&" (H,dy ,dy, b, kpy,iect) Vi,m (6.14)
FS_ie" > FS,p;e Vim (6.15)
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FS_FLT<= €™ (H,d, ,dy,bky) Y m (6.16)
FS_FLJs = FSypise VM (6.17)
FS_FL? = y™ (H,dy ,dy,b,ky) Y m (6.18)
FS_FLPs = FSypyise VM (6.19)

kyn = Log normal (M,6) Vm, k, € (0,00) (6.20)

Where t{", t7* represents stochastic thickness of the floor at the upstream and downstream sides
(Figure (6.1)), respectively. These thicknesses were determined utilizing (m) stochastic surrogate
models. c f is the cost of constructing the floor per cubic meter ($400/m>); c§ is construction cost of

the cut-off per cubic meter, which is a function of depth of the cut-off, as shown in Eq. (6.21)(similar

to Eq. (3.9) and (3.10)), t. is thickness of the cut-off and is equal to 1.0 m.

c§ =x34+20x2+200x, +400 Vs (6.21)

FS ie™ are m realizations of the exit gradient safety factor determined based on m surrogate
models {€]" ()} and for each location (i) there are m realizations of the exit gradient safety factor. ie.,,
is the critical exit gradient value (1.15). FSe,;; is the minimum allowable exit gradient safety factor,
which was considered 3 in current optimization model because achieving an optimum solution based
on exit gradient safety factor value equal 5 was difficult (Harr, 2012; Khosla et al., 1936). FS FLJ s,
FS FL7 are the stochastic safety factors to impose the weight of upstream and downstream floor of
HWRS to safely counterbalance uplift pressure (Pc;™, Pe,™) (Bligh, 1915; U.S. Army Corps of
Engineers, 1987). The FS_FLY}s , FS_FL were computed by m stochastic surrogate models {€™()},

{y™()}, respectively.

Additionally, as explained in Chapter Three, there were many other stochastic safety factors
based on the stochastic responses of uplift pressure ensemble surrogate models (Pc;™, Pe,™). These
safety factors represent requirements of HWRS design, such as eccentric load condition limits, sliding
and overturning safety factors (Garg, 1987) . Other logical and boundary constraints were utilized to
prevent the optimization solver from presenting illogical and negative values. The total number of
stochastic constraints was 10 and each had to satisfy different realization of seepage quantities. A flow

chart of RBOD using the stochastic S-O model is shown in Figure 6.12.
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Figure 6.12 Illustrative formulation of reliability based stochastic S-O model

The genetic algorithm (GA) also was used for this optimization task because GA is a powerful
optimization solver. The parameter combination of GA was selected by many processes of trial and
error. GA parameters in this study were: population size 2,000; elite count 20; crossover fraction 0.6;
objective function tolerance 1e-6; constraint tolerancele-6; with the remaining GA parameters the same

as default Matlab options.

6.5 Computational efficiency of the S-O model

The optimization task in such formulation is computationally expensive and time consuming,
especially when the GA based direct search technique is utilized incorporating responses of many
stochastic ensemble surrogate models. Furthermore, a large population is required to obtain an almost

global optimum solution by GA. Consequently, optimization processes take longer.

Two strategies were employed to significantly increase linked S-O computational efficiency.
The first was to use parallel processing based on a multicore computation processor. This option in
Matlab distributes computing tasks to multi workers (cores), which doubles computing efficiency. The
second strategy was nested function formulation. Usually, the objective function and constraint codes
are written in two detached files, where the surrogate models are uploaded separately to each code and

then the optimization algorithm continually invokes these codes to separately evaluate the constraints
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and objective function. Such operations are implemented numerous times in the optimization model.
Hence, the optimization model takes a long time to find the optimum solution. In contrast, by employing
a nested function framework, both the constraints and objective function codes are written in the same
file (nested function). Surrogate models are uploaded at one time to the nested function and the resulting
objective function and constraint values are directly utilized by the optimization solver. This strategy

accelerates computational speed by around 100% (MathWorks, 2015).

6.6 Results and discussion

The RBOD framework based on stochastic S-O methodology was applied to illustrative
hypothetical cases to study the effect of reliability on optimum design of HWRS. In these cases, average
hydraulic conductivity (2 m/day) and the five prescribed standard deviations were used to generate
different scenarios of heterogeneous hydraulic conductivity. Upstream head values (H) were 10m, 20m,
40m, 60m, 80m and 100m. The S-O models were implemented with different reliability levels (20%,
40%, 60%, 80% and 100%). The percentage of reliability only reflects the uncertainty of seepage
quantities under HWRS due to uncertainty of heterogeneous hydraulic conductivity. The objective
function of the optimization model was minimum construction cost of HWRS. Constraints represent
the hydraulic requirements and safety factors related to design of hydraulic structures, as discussed in

Chapter Three.

The effect of the reliability on optimum design of HWRS could be clearly seen by comparing
obtained minimum construction costs for different reliability levels, as shown in Figure 6.13. As
logically expected, augmenting the reliability significantly increased construction cost. For instance,
construction cost of HWRS impounded 100 m water head with 100% reliability was around $143
million/m, whereas the cost was $102 million/m with 60% reliability. This infers that considering
reliability substantially affects design of HWRS. Furthermore, ignoring hydraulic conductivity
uncertainty may result in unsafe design, although deterministic safety factors are used. The
deterministic optimum design, based on constant hydraulic conductivity (2m/day), is also presented in
Figure 6.13. In general, the minimum deterministic cost curve was below the 60% reliability curve.
However, only when the head reached 80 m, the deterministic model move above the 60% reliability
curve. This provides general understanding that equivalent reliability of the deterministic design can be
considered as 50 % to 60 %, which is an unsatisfactory reliability level for such an important structure.
Consequently, deterministic safety factors, especially exit gradient, should be at least twice the actual

values actually achieved as per deterministic modeling.

133



Chapter Six

H ili 0,
140 - == Reliability 20%
e Reliability 40%
120 | =t Reliability 60%
Z —X=— Reliability 80%
2100 -
§ {3 Reliability 100%
—--0--- Deterministic
< 80 -
=]
)
]
= 60
=
=
<2 40
-
(%)
S
20 /
44;—//?/
0 Ogus O $

0 20 40 60 80 100

H: Upstream water head (m)

Figure 6.13 Optimum cost of HWRS for different reliability levels and different head values

The optimum lengths for upstream cut-off (d) versus different levels of reliability for different
head values are shown in Figure 6.14. The main role of d, is to directly reduce the uplift pressure under
the floor of HWRS and, indirectly, to reduce exit gradient value. This is because the exit gradient value
proportions to uplift pressure value located before downstream cut-offs. In general, optimum length of
d; decreased with reduced head value. In contrast, optimum length of d; was augmented by increasing
degree of reliability. However, for some values, especially with 100% reliability at H (80, 40) m,
optimum length was less than other reliability levels. This can be explained by considering that the
objective function minimizes construction cost. Therefore, the optimization solver presents minimum
construction cost for each case separately, as long as the decision vector satisfies constraints. On the
other hand, because the surrogate model responses are stochastic responses, it is extremely difficult to
expect the optimum value with different reliability levels. Furthermore, if the optimization solver could
provide an optimum solution that satisfies, for example, three of five (60% reliability) stochastic
constraints, that does not guarantee the optimum solution with 80% reliability is close to the 60%
solution. The justification being that additional stochastic constraint may require a larger value of that
variable, e.g. di, which significantly increases the objective function value. Consequently, the
optimization solver (GA) changes the direction of search and continues with a more promising direction
that provides lesser cost. Moreover, while the objective function is minimum construction cost, the
optimum solution with a certain reliability level does not promise to follow the general trend of the
other reliability levels. For instance, the optimum value for d; at H equal to 80m with reliability 100%
was unexpectedly less than other values. That may be logical if the values of d, b and b* are considered
simultaneously for this case. The value of d», shown in Figure 6.15, for the same case was extremely
larger than other reliability levels because d» is more important to reduce the crucial exit gradient value

to the safe limit.
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On the other hand, optimum value of d,, shown in Figure 6.15, proportionally increased with
an increase in level of reliability. This design variable is the most important variable as it controls exit
gradient value. In reliability results, the majority of violated constraint was due to the exit gradient
safety factor. Therefore, the optimum solution for d, with 100% reliability presents the highest value
for different H values to satisfy all stochastic responses due to uncertainty of heterogeneous hydraulic

conductivity.

Therefore, the optimum solution for each component of the decision vector must be
simultaneously considered with other components in the same case. Thus, the optimization task for such
problems is complex. Obtaining the optimum solution based on different reliability levels, including
stochastic constraints, needs continuous variation of search directions for the optimum solution.
Consequently, with such complex formulation of the stochastic optimization model, the GA efficiently

provided the optimum solutions based on the minimum cost objective function.

There are two aspects possibly affecting the performance of the optimization algorithm. First,
the complexity of the optimization model prevents the GA from finding the global optimum solution
(Dorsey & Mayer, 1995). Increasing the reliability level augments the number of stochastic constraints,
which restricts the GA searching process and decreases the possibility to find a feasible solution.
Second, although in general the training accuracy level of surrogate models was within standard error
limits, such as NASH and R, etc., there was weak prediction in some extreme ranges. Such predictions
may affect the optimization process. Also, this may be attributed to training data which was based on
different realizations of hydraulic conductivity drawn from different values of standard deviation. This
could decrease the efficiency of prediction for some surrogate models and may affect the optimum

solution.
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Figure 6.14 Optimum length of upstream cut-off (d:) for different reliability levels and different head
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Figure 6.15 Optimum length of downstream cut-off (dz) for different reliability levels and different head
values

Figure 6.16 shows optimum values for the total width (b) of HWRS. Optimum length of b is
the lowest value for high reliability for different head values. This can be explained by two reasons.
First, the objective function is minimum cost. Accordingly, the minimum cost scenarios may be
satisfied with any one of five stochastic constraints that provide minimum cost. For example, optimum
width (b) with 20% reliability had more than 100% reliability at H = 80m. Simultaneously, the optimum
depth of downstream cut-off for the same H value with reliability of 100% was much larger than when
reliability was 20%. Therefore, as the objective function is minimum cost, there are many different
scenarios that provide minimum cost regarding different reliability levels. Second, the role of b is to
provide a sufficient weight to counterbalance the uplift pressure on the HWRS and to provide sufficient
width satisfying the sliding, overturning constraints and preventing the eccentric load condition. As the
most critical safety factor was the exit gradient, the b value did not play as much of a critical role in the

optimization process as dz. Hence, the optimization solver decreased the value of b and simultaneously
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increased the value of b*, which provided additional weight coming from upstream water (Figures 6.17,
6.1). However, for high reliability levels (60 %, 80 %, 100 %), the optimum b value increased when H
approached 10 m. This is due to additional weight resulting from upstream water, covering b*, was not
enough to satisfy the uplift pressure and other safety factors. The additional water height was low
because the floor thickness value on the upstream side approached 10 m. As a result, the GA increased

b value to satisfy the required conditions and safety factors.
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Figure 6.16 Optimum length of the total width (b) for different reliability degree and different head value
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Figure 6.17 Optimum length of (b*) for different reliability degree and different head value

The surrogate models’ responses in each ensemble are varied based on the training data set,
which is based on different realizations of hydraulic conductivity. Figure 6.18 demonstrates the varied
ie; responses of the five surrogate models for a hundred randomly selected cases of (di, d2, b, b*, H).
The perdition for each surrogate model was diverse from case to case. For example, in case 41, the
predictions for ie; were (2.89, 3.14, 1.91, 1.56, 1.63), for case 23 (2.10, 1.94, 1.73, 1.54, 1.42) and for
case 80 (0.88, 0.86, 0.91, 0.79, 1.05), which were predicted by (ie; (0.85), ie; (1.55), ie; ( 2.25), ie;
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(2.95), ie1 (3.65)), respectively. The ie; (0.85), for example, refers to the exit gradient surrogate model
(for the first point) trained using data set simulated based on numerical model including heterogeneous
hydraulic conductivity drawn from Log-normal distribution (u = 2, o = 0.85). This concludes that the
performance of the surrogate models is unsystematically varied form cases to case; it might also explain

to some extent the variation of the optimum solution behaviour.
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Figure 6.18 Sample of surrogate model (ie:) prediction from different stochastic surrogate models

6.7 Evaluation of results

Usually, in the deterministic S-O techniques, efficiency of the developed methodology can be
assessed by comparing seepage characteristics of the optimum design obtained by S-O methodology to
seepage characteristics obtained by the numerical seepage modeling for the same optimum solution.
However, in the RBOD optimum solution, each single optimum solution represents a particular level
of reliability and different realizations of hydraulic conductivity. Consequently, the evaluation method
must incorporate the reliability degree and hydraulic conductivity uncertainty for each optimum
solution. As a result, each solution must be evaluated at least 50 times; five times for the five o values
and at least 10 times to integrate different realizations of hydraulic conductivity for each ¢ value to
quantify reliability. Implementing and presenting such a procedure for all results is time consuming and

does not suit time-limited research.

To evaluate the optimum solution, random samples of optimum solutions were selected. The
evaluation process included comparing seepage characteristics of the selected optimum solution with
numerical model seepage characteristics of the same case, incorporating 10 different realizations of

hydraulic conductivity randomly generated based on a particular standard deviation value. Additionally,
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the evaluation was implemented only for exit gradient value, because the exit gradient value is the most

critical variable and is impacted by hydraulic conductivity uncertainty.

Conducted evaluations, shown in Table 6.2, include different samples of optimum solutions
from different reliability levels. The exit gradient value for four locations (points) (ie1, iez, ie3, ie4) were
evaluated for each case. The exit gradient value for each case had to be equal or less than 0.383,
satisfying an exit gradient safety factor of 3 or more. To validate reliability for each optimum solution,
the seepage modeling code was run ten times with new random realizations of hydraulic conductivity
for each new iteration. The number of exit gradient values satisfying the allowable limit for each
location divided by the total number of iterations (10) provided the actual reliability level. Additionally,

standard deviation values were randomly assigned to each case.

Table 6.3 displays evaluation results for four samples of optimum solutions, with violated exit
gradient values highlighted in grey. It is clear that actual reliability level for each optimum design
matched the proposed reliability for the optimum solution. Average actual reliability level of case B
was more than desired reliability (60%). In contrast, average actual reliability of case C was slightly
less than desired reliability (80%). This can be attributed to two reasons. First, hydraulic conductivity
is a completely random field and each new realization of hydraulic conductivity is totally different to
training realizations. Hence, when the number of iterations is increased to 100, for example, more
understanding can be achieved for actual reliability. Second, the number of surrogate models grouped
in the stochastic ensemble surrogate model was five, which may not be enough to efficiently and
accurately quantify reliability level. Furthermore, the allowable error in surrogate model predictions

slightly affected optimum solutions and actual reliability.

In general, the proposed technique to evaluate reliability of the optimum design was validated
and provides good indication and understanding of design reliability. Consequently, the RBOD
framework using stochastic S-O models based on multiple realization optimization technique provides
areliable and optimum solution, significantly matching the actual reliability of the design. Furthermore,
stochastic S-O methodology based on many ensemble surrogate models trained using the GPR
technique is computationally efficient and provides accurate results for reliability based optimum design

of HWRS.
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Table 6.3 Evaluation results for four randomly selected optimum solutions

Case A 6 =295 Rel = 60% Case B 6=2.25 Rel=60%
optimum H dl d2 b optimum H dl d2 b
design design
80 5591 619 7848 10 6.73 5.16 36.33
Iteration iel ie2 ie3 ie4 Iteration iel ie2 ie3 ie4
1 0.25 0.15 0.27  0.39 1 0.53 0.27 0.15 0.18
2 0.3 0.386 032 022 2 0.24 0.22 0.25 0.15
3 0.39 0.25 0.91 0.93 3 0.23 0.25 0.2 0.17
4 0.47 0.24 0.55 0.74 4 0.42 0.17 0.023  0.266
5 0.16 0.32 0.52 094 5 0.09 0.27 0.387 0.18
6 0.14 0.69 0.66 0.05 6 0.098 0.22 0.26 0.18
7 0.74 0.43 043  0.68 7 0.159 0.121 0.64 0.21
8 0.09 0.21 0.19  0.05 8 0.1 0.15 0.329 0.16
9 0.03 0.32 0.27 0.22 9 0.183 0.24 0.23 0.3
10 0.08 0.29 0.06 1.02 10 0.107 0.26 0.28 0.21
Actual 70% 70% 70%  50% Actual 80% 100% 80% 100%
reliability reliability
CaseC ©6=295 Rel=80% CaseD 0=3.65 Rel=80%
optimum H dl d2 b optimum H dl d2 b
design design
100 66.50 89.59  90.77 40 24.95 25.08  94.80
Iteration iel ie2 ie3 ie4 Iteration iel ie2 ie3 ie4
1 0.84 0.56 0.47 0.7 1 0.02 0.25 0.24 0.02
2 0.61 0.42 0.34 0.39 2 1.18 0.72 0.14 0.49
3 0.4 0.3 0.26 0.33 3 0.035 0.13 0.11 0.199
4 0.21 0.32 0.52 0.36 4 0 0.28 0.39 0.11
5 0.04 0.16 0.39 0.27 5 0.89 0.51 0.31 0.26
6 0.05 0.03 0.57 0.56 6 0.13 0.15 0.13 0.15
7 0.23 0.34 0.21 0.28 7 0.19 0.129 0.11 0.22
8 0.29 0.17 0.19 0.23 8 0.12 0.39 0.5 0.41
9 0.16 0.28 0.33 0.17 9 1.28 0.72 0.08 0.05
10 1.23 0.87 0.229  0.18 10 0.1 0.14 0.25 0.8
Actual 70% 70% 60% 70% Actual 70% 60% 80% 70%
reliability reliability

6.8 Conclusion

Incorporating reliability in optimization models is an advanced technique and there are limited
studies dealing with such reliability testing. This may be attributed to complex formulation of the
optimization model, in addition to associated computational burden, particularly when the optimization
model is linked to direct numerical simulation modeling. The uniqueness of the current study was
consideration of uncertainty of seepage characteristics resulting from random field hydraulic
conductivity, representing a fully heterogeneous flow domain under HWRS. This study successfully
and efficiently restricted optimum design of HWRS to a desired reliability level based on many
expeditious stochastic ensemble surrogate models combined with a direct search optimization algorithm

(GA).

The issue of time consuming and computationally expensive optimization problems were
partially addressed utilizing nested function and parallel computing techniques. These preparations
improved model efficiency (solution speed) about four times, compared to the normal model’s

computation speed. The GA solver based multiple realization optimization technique was used in this
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study incorporating many stochastic safety factors (constraints) and minimizing construction cost of
HWRS. Several sets of well-trained surrogate models utilizing the GPR machine learning technique
were grouped in many ensemble stochastic surrogate models to be integrated in the linked stochastic S-
O model. Reliability level was quantified by determining the percentage of successful or violated

scenarios within the RBOD framework.

The developed methodology was implemented for many hypothetical cases impounding
different upstream water head values to find the minimum construction cost of HWRS with varied
reliability levels. Results demonstrated that high reliability value augments construction cost of HWRS.
Furthermore, uncertainty of heterogeneous hydraulic conductivity and related seepage characteristics
strongly affect HWRS design. As the objective function minimizes construction cost based on stochastic
responses of the ensemble surrogate model, some optimum decision vectors (di, d», b, b*) were
irregular, compared to the deterministic trend. Deterministic results based on a constant value (2 m/day)
of hydraulic conductivity compared to stochastic results show that reliability of the deterministic is
located between 50% and 60%. The 50% reliability of design means the opportunity for all stochastic
constraints to violate the limits is high, which may lead to failure of HWRS. As a result, the
deterministic safety factors must be greater than the utilized value to satisfy at least 80% reliability for
all cases. This would be true if we considered that utilized deterministic safety factors addressing

uncertainty in hydraulic conductivity only.

The most important design variable was downstream cut-off depth (d). This variable
substantially controls exit gradient value, which is the most critical seepage characteristic. This was
clear when a comparison was conducted for the number of violated exit gradient values with the desired
reliability level (Table 6.2). Also, the 100% reliability curve for d, was the maximum value for all

implemented cases.

The main role of upstream cut-off (di) was to reduce uplift pressure on the foundation of
HWRS. The b and b* provide a sufficient weight to safely counterbalance uplift pressure values and to
satisfy other design requirements, such as sliding, overturning and eccentric load conditions.
Incorporating the b* value in the optimization model drastically decreases construction cost because
the additional cheap weight resulting from water pressure covering the upstream side of HWRS

decreases required thickness and width of HWRS (Figure.6.1).

The developed surrogate models based on the GPR machine learning technique were evaluated
by many statistical error measures and all built surrogate models provided an accurate prediction
corresponding to different error and performance indices for training and testing phases. This infers that
GPR provides robust surrogate models, even when training data is based on random realizations of

hydraulic conductivity based on different standard deviation values.
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Results of RBOD were evaluated to find efficiency of multiple realization optimization
techniques in quantifying reliability of the design. Results of the evaluation demonstrated that the
proposed methodology can provide an optimum design with a predefined reliability agreeing with actual
reliability level. However, there was a slight deviation of some evaluation results, which could be
overcome by increasing the number of evaluation iterations and number of surrogate models in the
stochastic ensemble surrogate models. Finally, the proposed methodology is applicable to find a
reliability based optimum design of HWRS and it can be applied to find the optimum reliable solution

for similar problems in different disciplines.

To improve the performance of the methodology and overcome some limitations of this study,
it is recommended that future studies incorporate more random realizations of hydraulic conductivity
for each case and separately train each surrogate model corresponding to each set of realizations.
However, this procedure may need a super high speed processor unit as the number of surrogate models
is huge. Also, the optimization solver (GA) performance could be improved by optimizing the GA
parameter using Taguchi method, for example, and hybrid GA with gradient search optimization
techniques. Also, it is recommended to consider uncertainty of some parameters in the design, such as
soil cohesion factor (C), internal friction factor (f) and variables related to the critical exit gradient

value.

Some limitations of this study reported in this chapter are addressed in Chapter Seven. A more
realistic formulation is proposed based on multi-objective multi-realization technique, utilized to
quantify uncertainty in seepage characteristics due to uncertainty in estimation of hydraulic
conductivity. The number of surrogate models incorporated in each stochastic ensemble surrogate
model is also increased. The ‘vectorized’ optimization technique is utilized to increase computational

efficiency of the RBOD based on linked S-O models.
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7 Optimum Design of Hydraulic Water Retaining Structures
Incorporating Uncertainty in Estimating Heterogeneous Hydraulic
Conductivity Utilizing Stochastic Ensemble Surrogate Models within

Multi-Objective Multi-Realization Optimization Model

A similar version of this chapter is submitted and under review for publication in the Journal

of Computational Design and Engineering, as shown below:

Al-Juboori, Muqdad, and Datta, Bithin (2018). Optimum Design of Hydraulic Water Retaining
Structure Incorporating Uncertainty in Estimating Heterogeneous Hydraulic Conductivity Utilizing
Stochastic Ensemble Surrogate Models within Multi-Objective Multi-Realization Optimization

Model. Journal of Computational Design and Engineering, Under Review.

This chapter addresses some study limitations mentioned in Chapter Six. Data sets generated
by the numerical model utilized in the Chapter Six are same for this chapter. However, the number of
surrogate models within the ensemble stochastic surrogate model and the amount of training data for
each surrogate model are different. Also, formulation of the optimization model and optimization solver

are different.

The objective of this chapter is to improve the search technique based the optimization solver
using the non-dominated sorting genetic algorithm (NSGA-II) to find the global optimum solution for
reliability based optimum design (RBOD) by improving the efficiency and formulation of the linked
S-O model. Also, this chapter adequately represents multi-realization of heterogeneous hydraulic
conductivity by increasing the number of surrogate models incorporated in ensemble stochastic
surrogate models. A limitation of this study reported in Chapter six was the difficulties in attaining a
truly optimum solution, especially for high reliability levels (large number of constraints). This issue
can be overcome by modifying formulation of the multi-realization optimization model, utilizing a
multi-objective optimization solver, which helps decrease the number of stochastic constraints and

provides less restrictive search process to find optimum solutions.

7.1 Introduction

The reliability based optimum design (RBOD) technique was utilized in this study to quantify
the uncertainty in estimation of seepage characteristics due to uncertainty in estimation of
heterogeneous hydraulic conductivity (HHC). This included incorporating reliability measures in
minimum cost design of HWRS utilizing the multi-realization optimization technique based on many

stochastic ensemble surrogate models. To improve efficiency and accuracy of the RBOD model and
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direct search optimization solver, a new approach was utilized. This approach was based on the multi-
objective multi-realization optimization (MOMRO) model. The advantage of this approach is that some
stochastic optimization constraints based on many ensemble surrogate models were formulated as a
second objective function to be minimized in the MOMRO model. Stochastic constraints used to impose
the HWRS design to satisfy safe exit gradient values were formulated as a second stochastic objective
function. The multi-objective optimization solver minimizes two stochastic objectives: the exit gradient
and construction cost. Desired reliability levels are implicitly incorporated in objective functions and
explicitly as constraints. This significantly improves search efficiency for the utilized solver, i.e., multi-
objective non-dominated sorting genetic algorithm-II (NSGA-II) and aids in exploring more feasible

candidate solutions in the search space.

A number of GPR surrogate models were trained using numerous data sets resulting from
numerical seepage simulation integrating different random fields of HHC drawn from log-normal
distribution with specified coefficient of variation values (COV) (42.5%, 77.5%, 112.5%, 147.5%,
182.5%). Desired reliability was assigned beforehand and achieved by allowing the optimum solution
to satisfy a certain fraction (ratio) of stochastic constraints and objective functions based on responses
of the developed surrogate models. In addition to impacts of uncertainty in estimating HHC on seepage
quantities, the effect of uncertainty was also considered for other safety factors related to design of

HWRS, such as flotation, overturning, sliding and eccentric loading safety factors.

Incorporation effects of soil parameter uncertainty in an optimization model for a particular
design have rarely been considered in previous geotechnical research or in hydraulic structure studies
as it is a demanding task. Incorporation of reliability in design of HWRS provides a safe design and
more understanding of uncertainty consequences. However, more conservative design results in
inefficient cost of the designed structure. Minimizing construction cost is an important goal in huge
engineering constructions, such as HWRS. More importantly, efficient cost design of HWRS may
significantly reduce total construction cost as a massive amount of construction material and
engineering effort are required for such projects. Hence, in this study, to find a trade-off between these
two opposing aims, i.e., safety and cost, the RBOD framework was utilized to find safe design with the

desired reliability at minimum cost.

The objective of this study was to find a safe, reliable and minimum cost optimum design of
HWRS incorporating uncertainties in estimation of HHC. The RBOD framework was implemented
based on a more efficient and productive approach using the multi-objective multi-realization
optimization (MOMRO) technique. The MOMRO integrated many stochastic responses from well-
trained surrogate models based on GPR machine learning techniques. These stochastic responses
represented the uncertainties in estimation of particular seepage design variables, which were embedded

in stochastic constraints and objective functions of MOMRO. The reliability criterion is quantified by
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imposing reliability constraints by which optimum design satisfies the condition that a specified fraction
of surrogate model responses in the ensemble of surrogate models satisfies imposed design constraints.
Estimated reliability of the design can be based on this ratio of the number of surrogate models
satisfying design criteria to total number of models in the ensemble. Or, the number of predicted
stochastic responses which are to be satisfied can be imposed as an equivalent probability constraints
to reflect the specified reliability of design criteria. The simulation model and formulation of optimal

design model are discussed in the following sections.

7.2 Linked simulation—optimization (S-O) model

The direct linking of numerical seepage modeling based on finite element method (FEM) code
to the RBOD model is often very difficult or an impossible task for many reasons. Model geometry and
boundary condition need to be varied for each new candidate decision vector presented by the

optimization process. The FEM mesh number, properties and location also vary.

Furthermore, direct linking of the numerical model to the RBOD model is a time consuming
task, as the NSGA-II invokes the numerical model numerous times to evaluate objective functions and
constraints for all individual candidate solutions generated by the optimization solver. Numerical
seepage simulation for scenarios/cases, including heterogeneous hydraulic conductivity (HHC), takes
more time than simulation time of scenarios/cases which include only homogenous hydraulic
conductivity. For example, simulation time of a case has a HHC drawn from log-normal distribution (n
=2, COV = 182.5%) was 2.37 minutes. This simulation was implemented on a relatively high speed
processor unit (Intel(R) Core™ i7-2600 CPU@ 3.4GHz 3.4GHz, RAM 8.00 GB, 64x-based
processor). If direct linking of the simulation model to the optimization model is technically possible,
and population size is 1,000 and generation number is 100, the optimization algorithm needs 100,000
iterations to evaluate constraints and objective functions to approach the optimum solution. Then, one
optimization run requires 3,950 hours (based on 2.37 minutes for each iteration), which is an
unproductive process. Direct linking of S-O models had been proposed earlier and a similar conclusion
has been attained by other researchers (Dhar & Datta, 2009; Mollon et al., 2009, 2010). Hence, indirect
linking of the S-O model was adopted in this study by training many efficient surrogate models to

precisely imitate numerical seepage responses.

7.3 Conceptual seepage model and design of experiments

The steps used to generate data were same as those mentioned in Chapter Six. Input design
variables and seepage characteristics were also the same. The number of generated data for input design
variables was 150 random cases. However, as random field HHC was used, the number of simulations
for each input design variable was 20, including 20 different realizations of HHC for each case to cover
a wide range of uncertainty in HHC. Each single realization represented a unique and randomly varied

distribution of hydraulic conductivity values of finite elements in the numerical model. Five log-normal
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distributions with different standard deviations (c) 0.85 m/day, 1.55 m/day, 2.25 m/day, 2.95 m/day,
3.65 m/day (COV 42.5%, 77.5%, 112.5%, 147.5%, 182.5%) and constant mean (pn = 2 m/day) were
proposed to generate different HHC. Therefore, from a particular log-normal distribution, four
realizations were randomly generated and used in numerical seepage simulation for each case of input
variables (di, d», b, H). The Geo-Studio/SEEP/W numerical code (Krahn, 2012) was used to simulate
each case separately. As a result, each input data set was simulated 20 times to generate different
(stochastic) output data sets reflecting uncertainty of seepage characteristics due to random variation of

HHC.

Output data sets encompassed uplift pressure on upstream and downstream sides (Pci, Pe;) and
exit gradient value of four locations (iey, ie, ies, i€4), as shown in Figure 7.1. Exit gradient values were
considered for four points to provide more safety to HWRS design for a heterogeneous flow domain.
For each input data set (di, d», b, H), there were 20 different scenarios of seepage characteristic output
sets (Pci, Pey, iey, iey, ies, ies) associated with 20 different HHC realizations. For each output design
seepage variable, 20 surrogate models were trained and tested to imitate stochastic numerical responses.
For each seepage quantity, the stochastic ensemble surrogate model was developed, containing 20
surrogate models. Therefore, for a single input data set 20 stochastic responses were obtained by the

ensemble surrogate model to be processed in the MOMRO model based on the RBOD technique.
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Figure 7.1 Conceptual model of the HWRS
Similar to Chapter Six, the Box-Muller (Ross, 2014) method was utilized to generate an
uncorrelated random field drawn from log-normal distribution (., o). Examples of different realizations
of random fields for the same characteristic of log-normal distribution are presented in Figures 7.2-Al

and 7.2-A2. Furthermore, the effect of these realizations on exit gradient and uplift pressure
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distributions are presented in Figures 7.2-B1, 7.2-B2 and 7.2-C1, 7.2-C2. These Figures demonstrate a

significant variation of seepage quantities due to different realizations of HHC.
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Figure 7.2 A randomly selected case, including different realizations of HHC (A1, A2) drawn from the same log-
normal distribution (=2, 6=3.65). B1, B2 represent effect of the different realization of HHC (A1, A2) on the exit
gradient distribution. C1, C2 represent effect of the different realization of HHC (A1, Az) on total head distribution
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7.4 Design and evaluation of surrogate models

Similar to Chapter Six, GPR machine learning was used to develop 120 surrogate models
utilized to build six stochastic surrogate models. For each surrogate model, training and testing data
included 150 sets (cases). Source data related to each design variable was divided into training and
testing data sets. Since, it is recommended to put the majority of the data in training part (Alpaydin,
2014), and the testing part does not affect performance of the surrogate model, 90% of source data was
used for training and 10% was used for testing. The generalization ability of GPR surrogate models was
examined by evaluating prediction accuracy of surrogate models outside training data sets. Testing error
should be close to training error and both must be within the prescribed range of error measures.
However, because source data resulted from stochastic numerical simulations, training and testing

results, especially for cases with a high COV random field, were slightly less robust.

Developed GPR surrogate models were trained using Matlab programing language. The
parameters of GPR, listed in Table 7.1, were carefully selected after many trial and error iterations to
satisfy best prediction and less error for training and testing phases. Furthermore, different scenarios of
training/testing data were randomly selected and tested to find the best set of GPR parameters for each

surrogate model. Other parameters were left the same as default Matlab values.

Table 7.1 Parameters of the GPR technique

Properties Value

Prediction method Exact
) Squared exponential kernel with a separate
Kernel function )
length scale per predictor
Fit method Exact

Basis function Constant

The training/testing performance of surrogate models must be accurately evaluated before using
them in the RBOD model. Developed GPR surrogate models were evaluated using many error measures
(see Chapter Six) and statistical evaluation indices. These error measures were applied to all surrogate
models. The majority of surrogate models presented perfect training and testing performance. Although,
testing prediction efficiency of some models was less than the optimum range, predictions of these
models were within acceptable ranges, particularly for exit gradient surrogate models for cases
including high uncertainty (COV = 182.5%, COV = 147.5%). Samples of training and testing results of
developed surrogate models are presented in Table 7.2 and Figures 7.3 to 7.8. These results reflect

accurate training using GPR technique for noisy training data sets influenced by the uncertainty of HHC.
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Table 7.2 Samples of surrogate model training testing error measure

iel (2.95/B) ie2(1.55/C) ie3(1.55/D) ied (2.95/A) pcl(3.65/C) pe2(3.65/B)
train test  train test train test train test train test train test
MSE 0.00 0.03 0.02 0.05 0.05 0.07 0.07 0.06 20.52 12.08 4.16 24.73
STD-
0.00 0.19 0.14 0.22 0.22 0.27 0.27 0.24 4.55 3.52 2.05 4.95
ERROR
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7.5 Multi-objective multi-realization optimization model

Formulation of a multi-realization optimization model based on a single objective function with
numerous stochastic constraints may lead to a sub-optimum solution or infeasible solution. The RBOD
approach required imposition of a large number of explicit constraints which needed to be satisfied as
binding conditions for a feasible solution. Many attempts were made to formulate the RBOD model for
this study with a large number of stochastic surrogate models (120 surrogate models) based stochastic
constraints using a single objective function, but the majority of obtained solutions were infeasible.
Some earlier studies compared performance of multi-objective and single objective optimization
models (Yapo, Gupta, & Sorooshian, 1998; Zakaria, Jamaluddin, Ahmad, & Loghmanian, 2012). These
studies concluded that a multi-objective formulation may provide more efficient solutions than those
obtained by a single objective model. Such conclusions seem to have been based on the premise that if
a large number of constraints are replaced by an objective function not ensuring a certain specified level
at which these constraints need to be satisfied, the computation becomes more flexible and possibly
more efficient. As multi-realization technique based reliability required a large number of stochastic
constraints, the optimal solution search process based on evolutionary algorithms may produce an
infeasible solution. Searching efficiency decreases with increasing number of constraints and
complexity of the problem (Dorsey & Mayer, 1995; Kolda et al., 2003). Furthermore, incorporating a
large number of stochastic constraints makes determining improvement of the searching process
difficult because stochastic constraints for each iteration provide different responses reflecting

uncertainties in design parameters and variables.

Therefore, a new formulation of the RBOD model was adopted in this study to improve the
searching process for such complex optimization tasks. The most important stochastic constraints are
exit gradient constraints as they are significantly influenced by HHC uncertainty and have critical
impacts on HWRS design and safety. These constraints were transformed as a second objective function
to be minimized in addition to the first objective function related to HWRS construction cost. Hence,
the multi-objective optimization formulation was implemented to significantly decrease the number of
constraints and improve searching efficiency. Reliability was included for exit gradient (objective

function) and also implemented for stochastic constraints using a multi-realization technique.

The optimum solution of the multi-objective function is not a single solution. Instead, sets of
the optimum solution are presented. Each coupled solution of consecutive solutions reflects
improvement in the first objective and deterioration in the second. Hence, there is no solution explicitly
better than other solutions and the HWRS designer has many alternatives from which to select the best

optimum HWRS design.
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7.6 Non-dominated sorting genetic algorithm-II (NSGA-II)

In many engineering applications two or more conflicting objectives are possible. Improving
one objective requires sacrifice of other conflicting objectives and vice versa. Hence, it is difficult to
present a single solution of a multi-objective optimization model and instead a set of non-dominated
sorting optimum solutions (Pareto optimum solutions) are generated. The multi-objective formulation
does not result in the optimum solution for each objective function separately as a single objective
function. There are many in between solutions at which perfect performance of the design can be found

(Burke & Kendall, 2005).

The procedure of NSGA-II to attain the Pareto optimal front, the process of obtaining non-
dominated solutions, and selecting optimal sets, are briefly described here. The non-dominated
optimum solution X dominates the solution Y, if X is not worse than Y in all objective functions values
and X is better than Y in one objective. The NSGA-II is a population based search algorithm, similar to
the genetic algorithm (GA) (Gen & Cheng, 2000).

NSGA-II starts with N number of random initial populations, Po. Thereafter, ordinary GA
operations, such as binary tournament selection, crossover and mutation operations, are performed to
generate an offspring population (Q;) of size N. The Ppand Q;are combined to generate 2N populations
and the best non-dominated sorting individuals are used to fill different ranks of Pareto fronts (slots),
one by one. The highest rank non-dominated front is selected first, then the second, etc. As there are
2N individuals and all non-dominated fronts cannot cover more than N individuals all exceeded

individuals are rejected (Zakaria et al., 2012).

The selection process to fill the last slot is slightly different, because it probably has two parts
and all the individuals in this slot have a same rank. Population of the first part is within N size, and the
second part of the population is more than N, which must be deleted, as described in Figure 7.9.
However, instead of an unsystematic process to fill the last slot, the crowding distance measure is used

to select more diverse individuals.
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Figure 7.9 Non-dominated sorting and Pareto front selection process (NSGA-II)

Crowded distance is a second preference (measures) after non-dominated rank. If two solutions
classified for the same Pareto front, then the solution resulting from less crowded area (larger crowding
distance (d;)) is the winner. Determining crowding distance for solution i is based on the two
neighbouring solutions located either side of i in the Pareto front. Distance d; represents average cuboid
side lengths determined based on location of the nearest solutions (i+1, i-1), as shown in Figure 7.10
(Burke & Kendall, 2005). Crowding distance (d]") for solution i for each objective function (f™, m=

1,2,..., M) is given by Eq. (7.1).

dm = 4dm + flr-lr-ll _firill
i

Y fmax — i (7.1)

These processes continue until each front is filled and non-dominated sorting and crowding
distance classification are implemented for the new generations until the stopping criteria is achieved
(Burke & Kendall, 2005). Many researchers have utilized NSGA-II in finding optimum solution trade-
off for competing objective functions, finding that performance of NSGA-II was efficient (Bekele &
Nicklow, 2007; Deb, 2001; Dhar & Datta, 2009; Rajabi-Bahaabadi, Shariat-Mohaymany, Babaei, &
Ahn, 2015; Sreekanth & Datta, 2010, 2014; Yandamuri, Srinivasan, & Murty Bhallamudi, 2006).
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Figure 7.10 Crowding distance selection process to fill the last Pareto

Parameters of the utilized optimization solver (NSGA-II) were specified, as shown in Table
7.3. These parameters were selected based on many attempts of trial and error to find the best parameter
combination. The remainder of parameters were left as default Matlab options. As the range of two
objective functions was significantly different and the option of allowable tolerance for objective
functions was applied simultaneously for the two objective functions, the exit gradient objective

function value was magnified by a scale factor of 1,000 to provide smooth evaluation for both

objectives.

Table 7.3 Utilized NSGA-II parameters for the MOMRO model

Options Value
Population size 1000
Crossover fraction 0.6
Pareto fraction 0.45
Max generations 200
Function tolerance le-3
Constraint tolerance le-3

Crossover function Crossover intermediate

Migration direction Both

7.7 Formulation of the reliability based MOMRO model

The multi-realization optimization technique was based on formulating stochastic constraints
based on the developed ensemble stochastic surrogate models. For each safety factor or condition in the

optimization model there was a single or more ensemble stochastic surrogate model/s encompassing 20
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surrogate model responses of a specified seepage design variable. Desired reliability level was attained
by allowing the optimum solution to satisfy any fraction (n) of the total number (m = 20) of constraints
for all stochastic constraints, where n/m value is equivalent to required reliability level. The multi-
realization optimization technique reflects uncertainty of seepage quantities due to uncertainty of HHC.
For instance, 80% reliability means that the optimum solution satisfies any of 16 stochastic constraints

from 20 total constraints.

The multi-realization technique based reliability measure was also incorporated in objective
functions in the MOMRO model. The second objective function, which minimized exit gradient value,
integrated reliability by incorporating exit gradient stochastic responses in determining the objective
function. As exit gradient was minimized, 20 stochastic exit gradient responses based on ensemble
stochastic surrogate models were determined and sorted in ascending order. The maximum value of all
obtained exit gradient values was selected to be minimized. This is equivalent to 99.9% reliability
because the resulting exit gradient value is the safest estimated as all other stochastic values are less
than the obtained exit gradient. To attain 80% reliability, for example, the optimization solver is
formulated to minimize the fifth maximum value (based on 20 responses) and allow up to four stochastic

responses of exit gradient to be higher than the selected one for objective function value.

As there are four locations to determine exit gradient value (iey, ie», ie3, ie4) the maximum value
for each location was determined and the average of these values was considered as the second objective
function. The same technique was applied to determine the first objective function of minimizing
construction cost of HWRS. Construction cost of HWRS is based on upstream and downstream floor
width and thicknesses (b, t, t2) and the depths of upstream and downstream cut-offs (d;, d»), as shown
in Figure 7.1. Floor thicknesses are based on stochastic responses of uplift pressure ensemble surrogate

models (pci, pe2). Formulation of the optimization model for MOMRO is as shown below:
Find X = {xy, x5, x3, x4} = {d; ,dy, b, b’}

max(m_w)(tln)+ max(m-qw)(t7")

Minimize, X)) =¢ b . +t. Y2, ctd, (7.2)
Minimize, £(X) = max(m_w)(ie}")+max(m_w)(iezm):max(m_w)(ie3’,")+max(m_w)(iefl) (1.3)
ie" = ¢g"(H,dy,dy, b ky) Vi,m (7.4)
Subject to:
Fsfl_ys =13 vm
Fsfi_ys = e (H,d, ,d,,bk,) Vm (7.5)

Fsfl_qs =13 vm
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Fsfi_4s= y™ (H,dy ,dy,bky) VY m (7.6)
b
Ecc™= - ¥Ym
3
2b
Ecc™ < —— vm
3
Mpas™ — Mact™
Ecc™ = \4 7.7
€ Vioad™ m 7.7
Fsver = 1.5 vm
m Mpas™
Fs over — W vm (78)

FsTis =15 Vm

CXb+fxVI™

Fs Slia = T vm (7.9)

Mpas™ = f™(H,b,b*, tT, tT", ky, Ge, Gy, pCVpel* ) Vm (7.10)
Mact™ = f™(H,b,b* tT" tJ ky, Ge, G, et pelt ) Vom (7.11)
Vi™ = f™(H,b,b*tMt" ky, G, G, pc"pel* ) VvV m (7.12)
Hl= f(H,G,) (7.13)

k., = Lognormal (u,6) vm, k€ (0,0)

and reliability constraints are:

Z(r{n logical =Fs an = / = FS(;n allowable v qm
m
g = ZZ”%ogicaz <DR Vgq (7.14)

Where max,,_) is a function sorting stochastic responses ascending and returns (m — w) th
value of the sorted vector. m is the number of stochastic responses (20), w is based on desired reliability
level, e. g., when w is 0 reliability is 99.9% and for w is 4 reliability is 80%, etc. t{*, t5* represents
stochastic thickness values of the floor at upstream and downstream sides, respectively. ¢ ¢ is
construction cost of the floor per cubic meter ($400/m?), c. is construction cost of cut-offs per cubic
meter, which is a function of depth of the cut-off (di,dz), as shown in Eq. (7.15)(same to Eq.(3.9) and
(3.10)), t. is thickness of the cut-off and it equals to 1.0 m.

€ =d3+20d2+200d, +400 Vs (7.15)
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ie/™ is m realizations of exit gradient safety factor determined based on m surrogate models
{e/"()} and for each location (i) there are m realizations of the exit gradient safety factor. F. s}’,’_us,
FF s]!ll_ds are stochastic safety factors to impose weight of the upstream and downstream floors of
HWRS to safely counterbalance uplift pressure (Pc,;™,Pe,™) (Bligh, 1915; U.S. Army Corps of
Engineers, 1987).

The computing of Fsfj_,s, FFsf]_4s are mainly based on developed stochastic surrogate
models Pc;™ {€™() }, Pe,™ {y™()}, respectively. Ecc™ is the design condition to prevent eccentric
load condition on the foundation of the HWRS. Mpas™ is passive momentum obtained from all forces
increasing stability of the HWRS, Mact™ is active momentum obtained from all forces decreasing
stability of the HWRS, Vload™is resultant of all vertical loads influencing HWRS.
Mpas™, Mact™,Vload™are a function to (H,b,b*, tI", t1*, kpy, G, G, pcl", ped) as shown in Eq.
(7.10), Eq. (7.11) and Eq. (7.12). Fs b, is the overturning stochastic safety factor. Fs 7};; is the
stochastic sliding safety factor. C = cohesion resistance soil properties, f=tan® , @ is the internal
friction angle (Tanchev, 2014). The values of f and C were assumed as f= tan®=0.7 and C=20 kPa. Hl
is the resultant of all horizontal load affecting the HWRS (Eq. (7.13)). k,,, are different realizations of

HHC based on different values of COV and it implicitly effects prediction of stochastic seepage

m

quantity. Zq logica

1 is a logical variable to check violation of stochastic constraints associated with a q
number safety factors for m stochastic realizations. DR is desired reliability for all constraints and
objective functions to satisfy a certain reliability level for HWRS design.

Additionally, there are many other logical and boundary constraints utilized to prevent the
optimization solver from presenting illogical and negative values. The RBOD using MOMRO model is

shown in (flow chart) Figure 7.11.
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Figure 7.11 Illustrating formulation of reliability based MOMRO stochastic S-O model

7.8 Computing efficiency

The formulation of reliability using the MOMRO model is computationally expensive and a
time consuming task, even when surrogate models are used instead of the numerical simulation model.
In each iteration of the S-O model, the optimization solver needs to invoke 120 responses of the
developed surrogate model twice to evaluate stochastic objective functions and constraints.
Furthermore, the NSGA-II is based on a large number of evaluations of a huge size of random
populations to attain the global optimum solution. Hence, solving such optimization problem using
traditional techniques takes a long time. One roughly selected optimization case was implemented using
the traditional computing technique based on 1,000 populations. The time required for the run was

14,100 seconds (= 4 hours).

The traditional computing technique is based on writing the constraint code and objective
function code in two separate files. Each file calls on the 120 developed surrogate models for each
iteration. For each iteration of S-O mode, outcomes of objective functions and constraints codes are

passed to the optimization solver after 240 responses are attained based on 120 trained surrogate models.
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This procedure is inefficient as many optimization runs must be accomplished to reach the optimum

solution.

Alternatively, to increase computing efficiency a nested function technique was utilized
(MathWorks, 2015). By using the nested function, both constraint code and objective function code
were written in the same (nested function) file. Stochastic surrogate models are uploaded at one time
and the resulting objective functions and constraints values computed by the nested function are
simultaneously returned as a vector to the optimization solver. The NSGA-II was formulated to adapt

the nested function output. This strategy accelerated and doubled computational speed.

More importantly, in evolutionary optimization algorithms based on random population search
technique the evaluation process for objective functions and constraints are based on one individual in
each iteration and this process continues until all individuals are evaluated. Then, the same procedure
is implemented for the second generation, etc. This process takes a longer time compared to the vector-
process, which could substantially speed up the optimization evaluation process. By utilizing the vector-
process, all individuals are evaluated by the optimization solver at one time to determine the values of
stochastic constraints and objective functions. The evaluation outcome for each iteration is a matrix and
its length is equal to population size. Each column vector represents a certain value of optimization
results, such as a particular constraint or objective function value for all concatenated individuals
(population). The optimization solver evaluates the improvement direction for each element in the
vector. This means the whole population is evaluated at one time, then the improvement direction
determined by selecting high rank individuals in the matrix. This process continues to the next new
generations until stopping criteria is satisfied.

Implementing the vector-process combined with nested function for RBOD using the MOMRO
model resulted in efficient computation time of around 500 seconds. Although formulating optimization
codes based on the vector-process take some time and effort, it was computationally efficient. Also, this
strategy provided more flexibility to make systematic iterations to find the best parameter combinations

to provide optimum results.

7.9 Results and discussion

The MOMRO technique was applied to hypothetical design scenarios/cases to evaluate RBOD
performance based on MOMRO technique. These cases included five different upstream head values
(100 m, 80 m, 60 m, 40 m, 20 m) and each combination was subjected to four different reliability levels
(99.9%, 80%, 60%, 40%). Reliability levels were incorporated explicitly in stochastic constraints and
implicitly in objective functions. Competed objective functions were minimum exit gradient and
minimum construction cost of HWRS. The obtained Pareto-optimum fronts for each head value,
including different scenarios of reliability level, are presented in Figures 7.12 to 7.16. Each Figure

includes wide ranges of optimum solutions for each head value associated with different reliability
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levels. To make an appropriate decision, minimum allowable deterministic safe exit gradient (Harr,
2012; Khosla et al., 1936) values were used to locate safe and feasible optimum solutions, as shown in
Figures 7.12 to 7.16. There are two horizontal lines, which show locations of safe exit gradient factors
5 and 3, considering the critical gradient value is 1.15. Based on these values, the minimum safe exit
gradient could be allocated with different reliability levels. To provide greater safety related to exit
gradient, many possible Pareto optimal solutions were available to be considered with ascending

construction cost, and the HWRS designer could use one of these solutions as per their preference.

The effects of reliability on optimum design of HWRS were significant. Increasing reliability
augmented construction cost. For instance, minimum construction costs for H = 100 m for reliability
levels of 40% ,60%, 80% and 100% to satisfy the exit gradient safety factor of 5 were $112,191,378,
$129,171,757, $162,166,799 and $268,206,048, respectively. Similarly, for the same reliability levels,
construction costs to satisfy the exit gradient of 3 were $59,951,442, $79,158,696, $106,049,766 and
$160,838,745). This means that to increase reliability of the design from 60% to 100%, construction
cost doubles. Consequently, considering reliability in the design of HWRS significantly impacts on
optimum design attributes. Moreover, for high reliability levels, only few applicable (feasible) scenarios
could be obtained from the Pareto optimal front. For example, for H = 100m and the Reliability level is
99.9% considering the exit gradient safety factor of 5 only a few points were found at higher

construction cost ($268,206,048.88).

The deterministic optimum Pareto front related to the expected hydraulic conductivity (2
m/day) was also considered in this study. In general, the deterministic Pareto optimal was located close
to 60% reliability trade-offs. However, some deterministic optimum solutions approached 40%
reliability solutions. The 60% or 40% reliability of the deterministic solutions mean that there is high
probability to find the exit gradient value approaching the critical exit gradient, which might lead to
piping failure. Based on this, we can deduce that the deterministic safety factors of 3 and 5 are
insufficient to provide adequate safety for such important projects (HWRS), and they are inappropriate
to measure safety of seepage design incorporating a certain degree of uncertainty. This is true if we

assume that the prescribed safety factor is used to quantify uncertainty in the HHC only.

For all optimum solutions, slope of the Pareto optimal front became smaller for small exit
gradient values (less than 0.4). Consequently, significant cost was required to decrease exit gradient
value by a small amount. This is because the most controllable design variable related to exit gradient
value is d;, which must be increased to reduce exit gradient value. As the equation used to determine
cut-off construction cost is a function of d, (Eq. (7.15)), when d; is increased construction cost
substantially increases, especially for large d, values. Furthermore, because stochastic responses were

included in the optimization model, and the maximum value of many stochastic exit gradient values
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was minimized, effects of reliability on construction cost were more pronounced when the exit gradient

value (the second objective) approached a very small value or zero.
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Figure 7.13 Optimum Pareto front for different reliability levels (H=80m)
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Figure 7.16 Optimum Pareto front for different reliability levels (H=20m)

One important benefit of using multi-objective optimization in RBOM is the diversity of
provided optimum solutions. The multi-objective optimization solver provides many optimum solutions
for the same objective function values (approximately). These solutions could not be obtained by a
single objective optimization model. These solutions provide more flexible options because some
optimum solutions are more applicable in terms of design requirements, such as field limitation and
construction procedures, etc. Table 7.4 presents a few arbitrarily selected example solutions with the

same objective function values including different optimum solution (X) scenarios.
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Table 7.4 Different optimum solution values for same objective functions values obtained by NSGA-II

Construction Exit
H  Reliability di d; b b*
cost (§) gradient

39,040,057.6  0.021 370 0.50 13998 39.37

20 40%

38,711,633.0  0.021 0.78 3.06 3093 15.17

1,588,280.6 0.365 4.05 501 80.29 18.32
40 40%

1,544,093.7 0.366 4.16 2137 46.74 40.80

33,765,444.3  0.258 448 6593 179.80 80.40
60 40%

33,427,294.7  0.261  61.72 54.47 7896 49.82

28,275,868.8 0374 5834 5227 8558 7791
80 40%

27,327,4042 0374  30.73 65.07 7537 7453

47,623,453.4  0.116  29.58 77.21 2844 21.01
20 99.9%

43,815,973.8  0.117 4577 72.83 21.15 19.56

57,740,766.3  0.342  37.93 80.34 61.05 47.25
60 99.9%

56,752,425.9 0343  71.71 62.54 86.34 46.50

40,547,213.5  0.073 34,53 7333 2375 12.63
20 80.0%

40,367,765.1  0.074  72.09 4134 39.87 29.61

56,079,880.3  0.351  46.49 7794 76.60 66.26
80 60.0%

55,187,390.3  0.351  26.17 80.08 76.11 68.53

72,446,076.0  0.072  61.19 79.87 113.16 68.76
40 60.0%

66,394,331.9  0.072  47.71 82.12 68.76 59.16

93,811,995.8  0.280  65.02 85.18 158.46 71.76
100 40%

93,403,373.0  0.282  56.51 88.54 9246 91.59

Minimum and maximum feasible optimum solutions (considering exit gradient safety factor)
with different reliability levels are listed in Tables 7.5 to 7.9. There was a significant increase in
construction cost versus a small decrease in exit gradient values. Also, it can be concluded from these

results that the design variable d» played a crucial role in reducing exit gradient values.

The main role of the first cut-off depth d; was to reduce uplift pressure under the foundation of
the HWRS. However, an additional role of d; was to reduce exit gradient value because reducing uplift
pressure under HWRS leads to reduction in exit gradient values. The optimum width b was necessary
for the design to satisfy the requirements for overturning criterion, floatation and sliding safety factors,
plus prevent the eccentric load condition. These safety design requirements integrated (b) value directly
in their calculation. The variable b* is the part of the floor on the upstream side of HWRS, which might
be covered by water (Figure 7.1). This variable made a considerable contribution in safety and stability
requirements of HWRS. The water covering b* provided a cheap (costless) weight over the HWRS to
counterbalance active momentums and forces which may weaken stability of the HWRS. Some solution

values of b* approached the b value, as shown in Tables 7.5 to 7.9. This means that the majority of the
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HWRS floor was located on the upstream side. This also reflects the significance of this variable to

satisfy safe and minimum cost design.

Table 7.5 Minimum and maximum feasible solutions for different reliability level (H=100 m)

H Reliability Construction Exit gradient d; d> b b*
cost (3)
. 160,838,745.0 Max.Feasible 0.382 68.998 101.303 94.072  90.217
100% 291,913,182.3 Min.Feasible 0211 98.277 110.000 92960  86.702
80% 106,049,766.4 Max.Feasible 0.383 6437 89.62 97.56 96.01
266,831,321.6 Min.Feasible 0.080  99.65 104.54 97.42 94.04
100 60% 79,158,696.9 Max.Feasible 0.378  60.93 82.19 96.90 82.68
253,417,538.3 Min.Feasible 0.022 9521 105.57  113.05 83.98
0% 59,951,442.0 Max.Feasible 0.381 51.30 78.04 93.07 92.66
184,735,070.3 Min.Feasible 0.050  79.46 101.99 98.36 96.55
88,783,399.4 Max.Feasible 0.381 53.53 87.91 92.23 88.42
Det 177,804,330.1 Min.Feasible 0.006  67.61 104.88  165.85 64.33
Table 7.6 Minimum and maximum feasible solutions for different reliability level (H=80 m)
H Reliability Construction Exit gradient d; d; b b*
cost ($)
100% 102,526,240.8 Max.Feasible 0.382  55.04 91.69 77.43 77.24
268,199,466.1 Min.Feasible 0.067  93.19 109.63 76.67 69.00
80% 60,905,832.2 Max.Feasible 0.382  43.84 80.50 75.16 61.32
208,554,042.6 Min.Feasible 0.016  90.48 100.37 79.83 61.35
%0 0% 38,552,199.4 Max.Feasible 0382  57.18 63.58 76.63 69.80
168,911,916.3 Min.Feasible 0.023  78.94 98.96 102.65 86.93
. 23,489,756.5 Max.Feasible 0.383  31.03 62.07 76.17 73.90
0% 135,258,887.1 Min.Feasible 0.039  68.42 95.94 103.61 66.13
32,862,974.7 Max.Feasible 0.383  58.56 57.37 78.18 68.97
Det 139,701,276.7 Min.Feasible 0.0 57.32 100.20 82.90 49.22
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H Reliability Construction Exit gradient d; d> b b*
cost ($)
100% 42,075,895.5 Max.Feasible 0.381 39.39 72.99 61.92 46.81
188,247,133.9 Min.Feasible 0.002  79.94 102.64 67.92 36.71
80% 14,352,204.0 Max.Feasible 0.383  33.28 52.83 64.91 52.24
150,815,076.3 Min.Feasible 0.001 77.24 95.84 71.02 37.72
60 60% 8,776,368.9 Max.Feasible 0.381 41.81 37.33 62.35 53.75
119,297,688.9 Min.Feasible 0.005  65.41 93.24 70.85 47.82
0% 5,634,374.6 Max.Feasible 0.382  29.68 37.36 77.08 53.21
105,390,868.6 Min.Feasible 0.001 58.99 91.63 66.02 54.75
8,474,313.2 Max.Feasible 0.382 27.84 45.39 58.24 49.15
bet 108,156,829.5 Min.Feasible 0.001 49.83 94.42 63.35 49.13
Table 7.8 Minimum and maximum feasible solutions for different reliability level (H=40 m)
H Reliability Construction Exit gradient d; d> b b*
cost ($)

100% 8,765,797.6 Max.Feasible 0.378  23.70 47.16 60.35 34.15
151,144,025.4 Min.Feasible 0.001 86.85 89.16 63.35 25.76
80% 2,406,236.8 Max.Feasible 0.380 22.71 29.43 44.61 36.62
99,859,421.9 Min.Feasible 0.000  54.83 91.17 93.83 46.15
. 1,803,597.6 Max.Feasible 0.383 17.98 27.50 43.99 43.12
0 00% 80,204,409.8 Min.Feasible 0.043  64.50 81.31 110.50 64.33
0% 1,334,875.1 Max.Feasible 0.380  21.88 21.01 48.75 31.61
67,730,872.9 Min.Feasible 0.027  44.76 83.09 110.75 54.98
1,171,848.0 Max.Feasible 0.383 14.15 22.77 52.09 36.74
Det 84,419,034.7 Min.Feasible 0.001 37.01 89.64 62.92 53.37
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H Reliability Construction Exit gradient d; d> b b*
cost ($)

100% 1,262,284.3 Max.Feasible 0.380 19.86  23.99 27.68 25.03
109,944,596.0 Min.Feasible 0.000 8254  79.20 72.16 34.00
20% 522,344.7 Max.Feasible 0382  9.28 16.35 57.72 48.64
60,149,842.6 Min.Feasible 0.004 3948  81.20 11527  95.03
20 0% 338,708.5 Max.Feasible 0.383 8.88 14.60 30.27 22.13
51,074,387.8 Min.Feasible 0.015 31.85 7834 126.82  41.07
0% 192,408.3 Max.Feasible 0382  7.37 9.83 28.70 27.41
42,940,043.9 Min.Feasible 0.000 4037  73.39 138.01 42.74
252,672.2 Max.Feasible 0382  9.10 11.51 36.87 29.29
bet 92,965,180.5 Min.Feasible 0.001  90.72  48.89 45.62 17.55

7.10 Evaluation of the methodology

Assessing the accuracy of solutions obtained using the proposed methodology is essential to
demonstrate potential applicability and validation of the methodology. Usually, for the deterministic
approach, to determine accuracy of S-O model solutions optimum solutions are subsequently processed
by the numerical simulation model and each single seepage characteristic obtained by the numerical
model is compared with the seepage characteristic predicted as per optimal S-O model solutions. The
RBOD model, however, needs a different evaluation technique to quantify accuracy of the developed
methodology, especially in terms of reliability quantification. Furthermore, evaluation results for the
RBOD do not require measuring the percentage of error for each seepage characteristic individually as
in deterministic evaluation. However, quantifying actual reliability of the optimum solution (design) is
also based on the multi-realization technique to find the number of scenarios providing safe design of

HWRS to the total number of runs based on different realizations of HHC in the numerical model.

Hence, the evaluation method involved implementing numerical seepage simulation for the
selected optimum solution for a specified number of times with different realizations of the HHC. The
ratio of the number of times allowable limit was satisfied for all safety factors to the total number of
iterations equals actual reliability level. Moreover, statistically more accurate actual reliability levels
could be achieved by implementing more iterations. In the present study, for the selected optimum
solution seepage characteristics were simulated using the numerical model ten times for different

realizations of the HHC to measure actual reliability level.

As the seepage design characteristic most impacted by uncertainty of HHC is exit gradient

values at the four specified locations, these values were considered to evaluate desired reliability level
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of the RBOD model. Other seepage quantities, such as upstream and downstream uplift pressures, were

less impacted by uncertainty in HHC.

The evaluation outcomes of four randomly selected optimum solutions demonstrated that the
developed methodology provided reasonable indications to measure reliability level. The exit gradient
values in Tables 7.10 to 7.13 were obtained from numerical seepage simulations for selected cases. The
highlighted exit gradient values are more than the safe allowable exit gradient value (0.382), which was
obtained as a second objective function of the optimum solution. The desired reliability level, objective
function values and optimum solutions are shown in Tables 7.10 to 7.13. The COV for each
implemented case was arbitrarily varied for each case to evaluate performance of the developed

methodology with different COV values.

The average actual reliability (as verified by numerical simulation) in some cases, €. g., case A,
was slightly less than the desired or specified reliability level (99.9 %). In contrast, in other cases, such
as case C, the average of computed actual reliability levels was more than the desired reliability level
(60 %). For other cases, average actual reliability almost matched desired reliability levels, such as in
cases B and D. Hence, the implemented methodology, which quantifies reliability of seepage
predictions under uncertainties, provides acceptable design solutions with potential application to
HWRS design problems in real life cases. However, to ensure more accurate results, the number of

iterations and number of surrogate models incorporated in the RBOD must be increased.

Table 7.10 Evaluation results for case A (COV=147.5%)

Rel. Cost .
Case A _jogy,  —1608387445  © 0382
optimum H di d> b
design 100.0 69.00 101.3 94.07
Iteration ie| i€y ies ie4
1 0.03 0.26 0.29 0.11
2 0.2 0.22 0.21 0.67
3 0.26 0.38 0.33 0.45
4 0.21 0.16 0.26 0.08
5 0.01 0.42 0.48 0.29
6 0.17 0.12 0.17 0.27
7 0.05 0.197 0.19 1.28
8 0.31 0.27 0.131 0.175
9 0.56 0.41 0.17 0.28
10 0.13 0.58 0.54 0.3
Actual 450, 70% 80%  70%
reliability
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Table 7.11 Evaluation results for case B (COV=112.5%)

Rel. Cost .
Case B —80%  —60905832 1e=0.382
optimum H di d> b
design 80.0 43.84 80.5 75.16
Iteration e ie) ies ie4
1 0.62 0.44 0.18 0.2
2 0.16 0.24 0.26 0.22
3 0.09 0.56 0.53 0.132
4 1.08 0.59 0.08 0.43
5 0.33 0.198 0.2 0.21
6 0.17 0.24 0.19 0.44
7 0.7 0.38 0.15 0.15
8 0.17 0.48 0.37 0.25
9 0.12 0.24 0.56 0.54
10 0.25 0.32 0.37 0.23
Actual gn0 900 80%  70%
reliability

Table 7.12 Evaluation results for case C (COV=182.5%)

Rel. Cost .
CaseC _6h0,  =1803597.62 1=0.383
Optimum  H dr dz b
design  40.00 17.98 27.50  43.99
Iteration 11 e ie3 i€
1 0.01 0.22 0.28 0.98
2 0.49 0.33 0.19 0.16
3 0.37 0.37 0.34 0.2
4 0.128 0.32 0.63 0.03
5 0.53 0.52 0.26 0.06
6 0.02 0.21 0.42 0.32
7 0.54 0.45 0.21 0.22
8 0.37 0.219 0.2 0.29
9 0.03 0.18 0.24 0.14
10 0.04 0.95 0.96 0.61
Actual 50 70% 70%  80%
reliability
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Table 7.13 Evaluation results for case D (COV=77.5%)

CaseD  Neb, SN ie03%2
Optimum H di d> b
design 200 9.28 163 57.72
Iteration e ie; ie3 ieq
1 034 028 0.17 0.29
2 0.1  0.09 0.388 0.449
3 0.14 036 049 0.33
4 04 031 017 0.45
5 0.146 0.168 0.24 0.45
6 047 027 0.1 0.4
7 0.06 0.15 026 0.2
8 008 0.15 02 0.34
9 031 0.19 02 0.29
10 022 0.16 027 0.47
Actual —gh0 100%  80% 60%
reliability

7.11 Conclusion

This chapter aimed to finding the safest HWRS design at minimum construction cost,
integrating uncertainty in estimation of seepage quantities due to uncertainties in HHC estimates.
Although formulation of the RBOD based on responses of a large number of surrogate models is a
complex and time consuming task, it was efficiently and successfully implemented based on a new
technique (MOMRO). Formulating RBOD problems as an MOMRO model enhances efficiency of
population based search solvers, e.g., NSGA-II solver, to find Pareto optimum solutions. In contrast to
the single optimization technique, the search process using the MOMRO technique was more efficient
in approaching the global optimum solution. This formulation was based on the multi-realization
‘staking’ technique utilized in constraints and objective functions to incorporate reliability in the RBOD
framework. This was achieved by utilizing 120 well trained surrogate models based on the GPR
technique to build six stochastic ensemble surrogate models imitating stochastic seepage quantities (Pc;,

Pez, iel, iez, i€3, ie4).

Two strategies were adopted in this study to increase computing efficiency of the RBOD. The
first was use of nested function formulation and the second was adaptation of the vector-process
computing technique. These techniques improved computing efficiency of the MOMRO model to
around 35 times faster than the traditional formulation. This procedure simplified the parameter

selection process for the NSGA-II related to consequences of optimization performance.

The proposed methodology was applied for four different reliability levels (40%, 60%, 80%,
99.9%) for hypothetical cases, including five different values of upstream head values (100 m, 80 m,
60 m, 40 m, 20 m). Minimizing the stochastic exit gradient value and construction cost were the two

objective functions in the MOMRO model. Solution results demonstrated that incorporating reliability
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in the optimization model increased safety of HWRS design and strongly affected optimum solutions.
Ignoring uncertainty of hydraulic conductivity may negatively impact on HWRS design. Increasing
specified reliability levels significantly augmented construction cost due to an increase in required

dimensions of cut-offs depths and floor width of HWRS to satisfy the desired reliability level.

The competing trade-offs encompassed numerous alternatives between minimum exit gradient
and minimum construction cost objective functions. The optimum solutions in trade-offs may aid
HWRS designers to make more reliable and informed decisions. With some experience, and these
additional quantified reliability estimates, the rational optimum design can be achieved. Also, safety
factors inherent in the specified safe exit gradient level can help decision making to select solutions at
optimum reliability levels. Furthermore, the MOMRO technique provided, for the same objective
functions values, many different optimum decision vectors (X). These results refer to the robustness of
the MOMRO technique to attain diverse optimum solutions, based on the non-dominated population

direct search technique, which can lead to the global optimum solution.

Evaluation results show that specified reliability levels agreed with the computed actual
reliability levels. Also, the GPR based surrogate models predicted stochastic seepage quantities
accurately and efficiently. However, there were some expected errors in the evaluated results. This may
be attributed to allowable error of developed surrogate models and inadequate number of iterations used

to estimate actual reliability level in the evaluation process.

Finally, historical records (ICOLD, 2016; NPODP, 2015) demonstrate that constructed HWRS
had many failures or unsatisfactory performance related to seepage in the underlying porous medium.
Hence, the proposed methodology based on the MOMRO technique provides a promising procedure to
achieve optimal design considering minimum construction cost and safe exit gradient with quantified
reliability of design. For future studies, to achieve more rigorous reliability, it is recommended to
incorporate other sources of uncertainty arising from surrogate model predictions, construction cost
parameters, upstream water head fluctuations and other related parameters. Also, the deterministic
safety factors utilized in specifying permissible exit gradients considered in the evaluation of the
stochastic optimum solutions must be integrated into reliability quantification related to design of

HWRS.
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8 Summary and conclusion

8.1 Summary

This study aimed to develop methodologies for deriving minimum cost safe optimum design of
HWRS constructed on permeable soils, incorporating the effect of seepage characteristics, based on the
linked simulation-optimization (S-O) technique. With development of numerical methods, such as the
finite element method (FEM) which precisely determines seepage quantity for complex flow domains
and irregular soil properties, there is motivation to incorporate accurate numerical seepage simulation
into optimization models. Hence, the linked S-O model was implemented to identify optimum designs
of HWRS based on numerical seepage models. Earlier seepage approximation and analytical methods
cannot be utilized to find an accurate solution for complex seepage problems. Usually, direct linking of
the S-O model is a challenging task and computationally expensive. Therefore, computational
efficiency is enhanced and computational feasibility of the linked S-O model is ensured by replacing
the computationally expensive numerical model with adequately and accurately trained and tested
surrogate models based on a particular regression machine learning technique. The S-O methodology
was applied to different illustrative problems and performance was evaluated for different design

scenarios related to design of HWRS.

The S-O model was first applied to a simple conceptual seepage model including homogenous
isotropic soil, two end cut-offs and apron. The optimization solver used was the genetic algorithm (GA)
and the surrogate model was based on the artificial neural network (ANN) technique. Parameters of the
ANN and GA models were systematically selected based on results of many design of experiments
using Taguchi method. Consequently, performance of the GA and ANN models was shown to be
improved. Seepage characteristics obtained based on S-O model solutions were evaluated by comparing
seepage characteristics of the optimum solution obtained based on solving the numerical model to those
obtained using the surrogate model linked S-O model. Also, Khosla’s method solution was utilized in
this comparison. The evaluation was based on many error measurement criteria, such as mean square
error (MSE), coefficient of determination (RSQ), SI and bias parameter. Evaluation results
demonstrated that the S-O model is potentially applicable to find an optimum design of HWRS based

on surrogate models.

The next implementation of the S-O model was to find optimum design of HWRS for
comprehensive conceptual seepage scenarios. The comprehensive seepage model included ten varied
depth cut-offs with varied location and inclination angle for each cut-off. The model included non-

homogenous layers. Hydraulic conductivity and anisotropic hydraulic conductivity for each layer were
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different and varied for each numerical simulation. The complexity of the problem and large number of
involved variables required an efficient machine learning technique. Hence, the support vector machine
(SVM) technique was utilized and linked to the hybrid genetic algorithm (HGA) within the S-O model.
The HGA solutions approached global optimum solutions. As there were numerous input design
variables, to identify important relevant variables importance analysis of variables was conducted
before developing the surrogate model for each seepage characteristic. The resulting optimum solution
determined the most important relevant variables, which have a significant contribution compared to
other variables, in providing a safe and minimum cost design. Additionally, the effect of hydraulic
conductivity and anisotropic ratio on optimum design was considered in this model. An adequate

evaluation process was carried out to determine accuracy of the S-O technique.

Furthermore, the S-O methodology was extended to implement reliability based optimum
design (RBOD) based on the multi-realization optimization technique. The uncertainty of seepage
characteristics due to uncertainty in estimating hydraulic conductivity is incorporated in RBOD
framework. Reliability was based on the responses of many surrogate models trained using many
different training data sets to reflect uncertainty in estimating hydraulic conductivity. Hydraulic
conductivity was incorporated as a random field based on log-normal distribution with a specified
standard deviation. The resulting optimum solutions including desired reliability levels were also
evaluated based on the multi-realization technique. Evaluation results show that the developed
methodology is potentially applicable to incorporate uncertainty of seepage quantitative estimation in
optimum design of HWRS. Also, the methodology could be extendable and applicable to different

problems and different engineering applications.

As the RBOD is a computationally expensive and demanding task, especially with a large
number of stochastic constraints based on the multi-realization technique incorporated in the S-O
model, the S-O model based RBOD was formulated based on a different technique - the MOMRO
approach. Based on this approach, exit gradient stochastic constraints were transformed into a second
objective function to be minimized. The reliability measure was incorporated in the objective function
and in the constraints to obtain desired reliability level of minimum cost HWRS design. Evaluation
results demonstrated the applicability of the developed methodology in quantifying safe design and

reliability of the optimum design.

Generally, many techniques were utilized to increase computational efficiency of linked S-O
models. The parallel computing tool available in Matlab can significantly increase computational
efficiency by distributing the computation tasks on many cores of the processor unit. Also, using the
nested function technique in writing constraints and objective functions codes increased computation
efficiency of the S-O model. Moreover, formulating the S-O model in a vectorised system substantially

improved computational efficiency.
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Performance of optimization solvers was improved using many techniques. The Taguchi design
of experiment (DOE) was implemented to select the best parameter combination of the GA to improve
the possibility that the GA solution approaches the global optimum solution. Hybridizing the genetic
algorithm with a gradient search algorithm, i.e., interior point algorithm(IPA), increased efficiency and
speed of the solver to attain global optimum solutions. Additionally, for a complex S-O procedure, such
as those including a large number of stochastic constraints, the use of a multi-objective optimization
solver (NSGA-II) significantly increased computational efficiency and provided more resilience to the
population based direct search technique. Another benefit of using NSGA-II was its ability to provide
diverse scenarios of optimum solutions for the same (approximately) objective function values.
Additional tables and figures related to the design solutions included in this study are attached as part

of the Appendix.

8.2 Conclusion

The S-O model was efficiently and successfully implemented for different optimal design
scenarios and objectives to find the optimum design of HWRS. It was shown to be a potentially efficient
technique to incorporate different design variables pertaining to seepage related to HWRS and to study
the effects of these variables on optimum design of HWRS. The linked S-O model incorporated all
expected design requirements and safety factors related to HWRS. These safety factors were implicitly
formulated in the optimization model as constraints based on responses of surrogate models. Thus,
processing the S-O model with a large number of surrogate models was a challenging task, particularly

for large scale problems.

The S-O technique was extended to incorporate the effect of uncertainty in estimating seepage
quantities due to uncertainty of hydraulic conductivity. This was achieved by utilizing the multi-
realization optimization technique. The reliability of the design was quantified by incorporating
different responses of seepage stochastic surrogate models trained based on different scenarios of
hydraulic conductivity. The desired reliability level was achieved by allowing the optimum solution to
satisfy a specified percentage of all involved probabilistic constraints. This percentage reflects the
probability of optimum design of HWRS to attain the desired reliability in terms of safety. However,
for a high reliability level, at which all stochastic constraints must be satisfied, attaining a feasible
solution was difficult. Hence, the MOMRO formulation was utilized to efficiently quantify reliability
of the optimum design based on the multi-objective optimization solver (NSGA-II). The
implementation of the MOMRO technique included transforming the exit gradient stochastic
constraints to a second objective function to be minimized. Reliability was incorporated in the objective
function and constraints based on the multi-realization technique. Evaluation results of the RBOD
model based on the S-O model demonstrated the robustness of the developed methodology in

quantifying reliability of HWRS design.
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Reliability based design results demonstrated that uncertainty in seepage quantity due to
uncertainty of hydraulic conductivity substantially influenced safety and design reliability of HWRS.
For example, some stochastic exit gradient values resulted in double or more of the deterministic value.
This means that the deterministic safety factors (3 to 5) are not sufficient to provide required safety of
HWRS design for long life design. Also, construction cost curves show that reliability of the
deterministic model was between 60% and 40%. Hence, it is recommended to increase the safety factor

for exit gradient value, particularly to provide more safety against piping failure.

The S-O technique is substantially based on accuracy and efficiency of developed surrogate
models. Therefore, surrogate models must be critically tested and evaluated independent of training
data sets before using them in S-O models. Several error measures were utilized to evaluate all
developed surrogate models integrated in the S-O model. However, accuracy and efficiency of

developed surrogate models depends also on the type of utilized machine learning techniques.

The ANN model is more affected by noise in training data and tends to overfitting learning,
unless sufficient precautions are implemented, such as earlier stopping criteria and using the
regularization algorithm. The ANN model is an expeditious technique, but accuracy of the ANN model
is deteriorated with augmentation of the number of neurons and size of the ANN model. It is
recommended to normalize input and output training data to attain the most efficient surrogate models.
Parameters and options of the ANN model should be systematically selected. The most effective
parameter in the ANN model was the transfer function of hidden and output layers. The SVM and GPR
techniques were more robust than the ANN model, and less impacted by noisy training data. However,
prediction speed of SVM and GPR techniques was relatively less than the ANN model. Therefore, for
complex problems it is a requirement to increase efficiency of surrogate models responses by reducing
involved independent design variables in training surrogate models, or increasing computational
efficiency of the S-O model based on many approaches discussed in this study. Performance of the
SVM was most affected by the kernel function. The second order polynomial kernel was more suitable
for the given training data to build an efficient surrogate model. Similarly, the GPR was most affected
by the kernel function. The “squared exponential kernel with a separate length scale per predictor” GPR

kernel function provided the most accurate predictions.

In general, from results of all implemented models it was found that exit gradient safety factor
was the most important factor in achieving optimum design. The majority of obtained optimum
solutions satisfied the minimum permissible values of exit gradient safety factor. Also, eccentric load
condition played a crucial role in resulting optimum solutions. The remaining safety factors, such as

overturning, sliding and flotation conditions, were satisfied, but had less impact on optimum solutions.

With the prescribed ranges, proposed parameters and boundary conditions of implemented

cases, the important conclusion is that optimum design of HWRS should include two ends cut-offs with
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an apron between them. However, with high upstream water head, or low hydraulic conductivity
anisotropic ratio, or low hydraulic conductivity, more cut-offs and additional aprons may be required
to decrease seepage quantities, such as uplift pressure and exit gradient values. The main role of the
downstream cut-off was to decrease actual exit gradient value. This role is more effective when
inclination angle of the cut-off is toward the downstream (>90 degrees). The main role of the upstream
cut-off was to decrease uplift pressure value on the base of the HWRS; consequently, this partially
contributed to decreasing exit gradient value. The effect of the upstream cut-off in decreasing uplift
pressure was greater inclination angle inclining toward upstream (<90 degrees). The apron (floor) width
aided to increase stability of HWRS. Also, this variable provided the required weight to improve HWRS
resistance to external hydraulic forces and uplift pressure. Incorporating the weight of water (hydrostatic
pressure) at the upstream side in counterbalancing momentum and hydraulic forces corroborated the
safety of HWRS. These observations are based only on illustrative design scenarios considered in this

study and may not be general in nature.

Finally, applying the S-O model and incorporating uncertainty of involved design variables and
parameters can provide more safety for HWRS design at a minimum cost. Furthermore, including all
expected uncertainty scenario in hydraulic conductivity in the design of HWRS would provide more
reliable design representing real conditions and properties of porous media. This would satisfy high

actual reliability level with required safety factors.

8.3 Limitations

All implemented S-O models concentrated only on hydraulic design aspects of HWRS
generally mentioned in the literature. However, beyond hydraulic design of HWRS there are many
pertaining details that should be considered for real life HWRS design, such as service load conditions,
long term effects of generated sediments on the upstream side, uncertainty due to other parameters and
upstream water head, and earthquake and ice load impacts. Furthermore, considering foundation design,
structural design and bearing capacity requirements may provide more reliable design of HWRS. This
may be achieved by combining SEEP/W, SIGMA/W and QUAKE/W components of Geo-Studio
software in one model. However, solution of such models may require high speed processors and a

significant amount of time and effort in future studies.

By increasing the complexity of seepage modeling scenarios some errors or inaccurate
numerical solutions related to seepage characteristics may be observed. This inefficiency is not due to
randomness of hydraulic conductivity, but due to convergence criteria of the complex numerical model.
This shortcoming may occur for any numerical simulation models. Hence, uncertainty of numerical
responses may be addressed by utilizing an adequate number of surrogate models in ensemble models

to provide more precise estimations of seepage characteristics. Also, a combination of seepage
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numerical responses in the ensemble may be based on different numerical modeling, methods and

theories to provide accurate predictions of seepage characteristics.

For evaluation processes, it may be more robust to compare obtained seepage characteristics of
optimum design to experimental observations based on a scaled seepage model. However, for complex
seepage scenarios more attention, effort and time is required to represent a stratified flow domain based

on particular values of hydraulic conductivity with inclined cut-offs, etc.

An obvious challenge of this study was the time required for generating simulated data sets.
For each new input data there is a different flow domain that must be drafted in CAD software
(AutoCAD/dxf extension) and exported to the seepage numerical simulation model to find the seepage
characteristic based on new input data. For an enormous amount of training data sets, generating training
data sets requires a long time, especially for complex seepage scenarios. It would be more efficient for

the S-O model if a suitable technique is used to acquire numerical solutions in a more expeditious way.

8.4 Recommendations for future studies

It is recommended future studies incorporate unsteady state models and its consequences on
optimum design of HWRS, as all scenarios included in this study were implemented for steady state
conditions. Additionally, in regards to uncertainty of hydraulic conductivity, using a correlated
heterogeneous random field with a predefined hydraulic conductivity value for specific points could be
an important aspect to deal with and study different possible scenarios for such cases to determine how
it affects optimum design of HWRS. On the other hand, incorporating the effects of dynamic and
seismic loads and their consequences on hydrostatic forces and HWRS design could be an interesting
direction to consider. This may be achieved by developing many surrogate model responses imitating
seismic load for a certain location. Another interesting direction of study is to include structural design
requirements of HWRS in addition to hydraulic design to find minimum cost design. Also, different
systems of linked S-O models could be developed for improving accuracy and efficiency in modeling
based on different machine learning techniques, such as multi-genes genetic programing(MGGP),
multi-adaptive regression spline(MARS) and other optimization solvers, such as simulated annealing

(SA) or particle swarm optimization (PSO).
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Appendix A

10 Appendix A

Example Formulation of ANN equations (®@E) based on the weights matrix and

biases vector

Step1: normalizing the input data (di, d2, 2b, h) using the following formula:

Y = (ymax — ymin) * (x — xmin)/(xmax — xmin) + ymin (A3.1)

The normalization step is a built in phase of the Matlab training algorithm and a (mapminmax) function
is used within the training algorithm to provide better training and minimize the error between the ANN
response and the target data. Therefore the resulted in weights and biases are corresponded with the
normalized data set. Only to use the generated weights and bias correctly (only in this context), the
normalized data must be utilized to formulation ANN equations (model). In contrast, the developed
ANN models are applied with non-normalized data, because the normalization and de-normalization
phases are the interior process within training stage. Also, based on the training process, the weights

matrix and bias vector is generated.

Step2: multiplying each variable by the weights matrix, then add a bias vector as shown below:

r=4
Hy= by + Z X, X Wi, (A32)

r=1
Hl= -0.124 + 1.406 xX 1+ -0.667xX2+ 1.559xX3+ -0.721xX4
H2= 1.288+ 0.745xX1+ -0.820x X2+ -0.021xX3+ -0.061xX4 .

Hidden layer

H3= 1.131+ 0.663xX1+ -0.664x X2+ 0.076xX3+ -0.253xX4
H4= -2.719 -0.951xX1+ -1.064x X2+ 0.758xX3+ 1.113xX4

Step 3: substituting the result of the second step (#,) as the input of the transfer function according to

the following equation:

1
As = A3.3
* = (1 + EXP(=Hs)) (A3.3)
Al1=1/(1+EXP(-H1))
A2=1/(1+EXP(-H2
i ( ) Transfer function
A3=1/(1+EXP(-H3)) (Logsig )

A4=1/(1+EXP(-H4))
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Step 4: multiplying the outcome vector of last step by the weights matrix of output layer, then add the

bias vector as shown below:

s=4
Ki: bl+ E ASXWiXS (A34)
s=1
K= 2525+ 0.973xA1+ 15.185% A2+ 20.160xA3+ -1.ZSOXA4‘ } Output layer

Step 5: de- normalized data to actual data using the following equation

Xactual = (y -Ymin)(Xmax-Xmin)/(Ymax-Ymin) + Xmin (A35)

Weights and bias tables for the developed ANN models

Table A3.1 Weights and bias factors for the hidden layer of ANN model (@C)

S.calar Scalar weight factors for hidden layer

Neuron bias for
No hidden |y 4 Wi1-2 W1-3 W14

layer (b)
1 -24.802 5.210 5.050 4.722 2.541
2 14.526 -0.313 8.245 -13.369 15.144
3 0.311 -6.070 -2.623 3.811 -0.256
4 -1.172 -4.241 -0.646 -1.463 1.490
5 3.203 -0.703 1.269 1.776 -0.818
6 -5.044 3.518 1.495 4.518 -1.902
7 4.209 1.180 -3.717 4.303 -4.158
8 -1.352 0.012 0.253 0.456 -1.449
9 7.580 3.958 -13.991 5.042 -8.592
10 1.853 0.976 -0.060 -0.118 -0.860
11 8.975 -1.099 -5.878 5.808 -2.655

Table A3.2 Weights and bias factors for the output layer of ANN model (@C)

Scalar Scalar weight factors for hidden layer
Neuro bias for
n No output W2-1 | W2-2 | W23 W2-4 was | W2 W2-7 W2-8 W2- 1 wait0 | wo-11
layer (b) 6 9
0.21 0.01
1 2.452 0.074 | 0.003 | -0.073 | -0.310 1.340 9 -0.137 | -1.500 4 -3.937 -0.124
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Table A3.3 Weights and bias factors for the hidden layer of ANN model (® E)

Scalar
Neuron bias for
No hidden
layer (b)
1 -0.124
2 1.288
3 1.131
4 -2.719

Scalar weight factors for hidden layer

Wi-1

1.406

0.745

0.663

-0.951

W1-2

-0.667

-0.820

-0.664

-1.064

W1-3

1.559

-0.021

0.076

0.758

Wi1-4

-0.721

-0.061

-0.253

1.113

Table A3.4 Weights and bias factors for the output layer of ANN model (© E)

Neuron
No

Scalar weight factors for hidden layer

Scalar
bias for

output W2-1
layer (b)

2.525 0.973

W2-2

15.185

W2-3

-20.160

W2-4

-1.250

Table A3.5 Weights and bias factors for the hidden layer of ANN model (Exit gradient)

Scalar

Neuron bias for
No hidden
layer (b)

1 -5.716

2 -4.591

3 6.800

4 12.820

5 -1.867

Scalar weight factors for hidden layer

Wi1-1

1.172

0.258

-1.678

0.049

-0.297

W1-2

-2.300

0.465

2.492

11.040

-0.688

W1-3

-4.439

-0.125

4.232

0.290

-0.151

Wi1-4

0.518

-3.892

-0.697

-0.518

0.689

Table A3.6 Weights and bias factors for the output layer of ANN model (Exit gradient)

Scalar
Neuron bias for
No output W2-1
layer (b)
1 1.342 2.201

Scalar weight factors for hidden layer

W2-2

-4.692

W2-3

3.929

W2-4 W2-5

-6.948 2.552
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Table B4.1 Variable importance results (PE1)

Table B4.2 Variable importance results (PC1)

Variable Importance
SPSS (beta Matlab (random

(coefficient) forest )
H 100.00 100.00

bl 0.98 0.72

fex1 0.15 0.04

p1 0.08 0.03

kx 2 0.08 0.06

dl 0.06 0.04
layer depthl 0.04 <0.01
dd 0.04 <0.01
layer depth2 0.03 <0.01
kx3 0.02 <0.01

Variable Importance
SPSS (beta Matlab (random
(coefficient) forest)
PEl m 100.00 100.00
dl 1.27 1.14
bl 0.11 0.09
dd 0.04 0.01
kxi 0.03 <0.01
b2 0.03 0.05
kx3 0.02 0.03
b10 0.02 <0.01
d2 0.01 0.02

Table B4.3 Variable importance results (PE2)

Table B4.4 Variable importance results (PC2)

Variable Importance
SPSS (beta Matlab (random
(coefficient) forest )
PC1 100.00 100.00
b2 0.22 0.17
dl 0.02 0.01
d2 0.02 0.02
B2 0.02 0.01
(ky/kooh 0.01 <0.01
p1 0.01 <0.01
kol <0.01 <0.01
dd <0.01 <0.01
bl <0.01 <0.01

Variable Importance
SPSS (beta Matlab (random
(coefficient) forest)
PE2 100.00 100.00
d2 1.28 0.85
dl 0.04 0.02
dd 0.03 <0.01
d10 0.02 0.02
b3 0.01 <0.01
B1 0.01 <0.01
(ky/kx)1 0.01 <0.01
b2 0.01 <0.01
d3 0.01 0.01

Table B4.5 Variable importance results (PE3)

Table B4.6 Variable importance results (PC3)

Variable Importance Variable Importance
SPSS (beta Matlab (random SPSS (beta Matlab (random
(coefficient) forest ) (coefficient) forest )
PC2 100.00 100.00 PE3 100.00 100.00
b3 0.24 0.15 d3 0.61 0.67
B2 0.03 0.02 d4 0.02 <0.01
B3 0.03 0.02 b4 0.01 <0.01
d2 0.02 <0.01 b3 0.01 <0.01
(ky/kx)1 0.02 0.03 d2 0.01 <0.01
d3 0.02 <0.01 (ky/ka ) 0.01 0.01
b5 <0.01 <0.01 b10 0.01 <0.01
layer depth2 <0.01 <0.01 B2 <0.01 <0.01
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Table B4.8 Variable importance results (PC4)

Variable Importance
SPSS (beta Matlab (random
(coefficient) forest )
PC3 100.00 100.00
b4 0.20 0.11
(ky/kx ) 0.02 0.01
B4 0.02 0.03
B3 0.02 <0.01
d4 0.02 0.02
d3 0.02 <0.01
kx 2 <0.01 <0.01
d1o <0.01 <0.01

Variable Importance
SPSS (beta Matlab (random
(coefficient) forest)
PE4 100.00 100.00
d4 0.62 0.58
d3 0.02 0.01
b4 0.01 <0.01
b10 0.01 <0.01
b5 0.01 0.01
ds 0.01 0.01
kext 0.01 <0.01
d10 0.01 <(0.01

Table B4.9 Variable importance results (PES)

Table B4.10 Variable importance results (PC5)

Variable SPSS (beta Matlab (random Variable SPSS (beta Matlab (random

(coefficient) forest ) (coefficient) forest)

PC4 100.00 100.00 PES 100.00 100.00
b5 0.15 0.11 ds 0.67 0.86
(ky/k)n 0.02 0.01 b6 0.03 0.04
d4 0.01 <0.01 d10 0.02 0.01
BS 0.01 0.01 dé 0.02 0.01
ds 0.01 0.01 B4 0.01 0.01

B4 0.01 0.01 d4 0.01 <0.01

Dd <0.01 <0.01 b5 0.01 <0.01

d1o <0.01 0.01 bll 0.01 <0.01
b6 <0.01 <0.01 B6 0.01 0.01

Table B4.11 Variable importance results (PE6)

Table B4.12 Variable importance results (PC6)

Variable Importance
SPSS (beta Matlab (random
(coefficient) forest )
PC5 100.00 100.00
Dd 19.89 17.95
b6 0.25 0.17
(ky/kon 0.03 <0.01
B6 0.03 0.02
d6 0.02 <0.01
BS 0.02 0.01
ds 0.02 0.02
(ky/kx)2 <0.01 0.01
d7 <(0.01 <0.01

Variable Importance
SPSS (beta Matlab (random
(coefficient) forest)
PE6 100.00 100.00
dé 1.53 1.73
dd 0.12 0.11
k1 0.04 0.03
b6 0.04 0.01
b10 0.03 0.05
ds 0.03 0.01
d7 0.02 0.02
d10 0.01 <0.01
d9 0.01 0.02

Table B4.13 Variable importance results (PE7)

Table B4.14 Variable importance results (PC7)

Importance Importance
Variable SPSS (beta Matlab (random Variable SPSS (beta Matlab (random

(coefficient) forest) (coefficient) forest)

PC6 100.00 100.00 PE7 100.00 100.00
b7 0.46 0.29 d7 1.50 1.56
B7 0.05 0.04 dd 0.09 0.04
(ky/kx)1 0.04 0.03 do 0.05 0.03
dé 0.04 0.01 d8 0.05 0.03
B6 0.04 0.01 b7 0.02 0.04

d7 0.03 0.02 B6 0.01 <0.01
Dd 0.02 0.01 d10 0.01 0.02

kx 2 0.02 0.01 bl10 0.01 <0.01

b10 0.01 <0.01 B8 0.01 <0.01
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Table B4.16 Variable importance results (PC8)

Variable Importance Importance
SPSS (beta Matlab (random Variable SPSS (beta Matlab (random

(coefficient) forest ) (coefficient) forest)

PC7 100.00 100.00 PE8 100.00 100.00
b8 0.41 0.29 ds 2.56 1.82
B8 0.05 0.02 dd 0.20 0.13
dg 0.04 0.03 d9 0.10 0.12
p7 0.03 0.01 kex1 0.09 0.10
(ky/ka) 0.03 0.05 (ky/ke)1 0.08 <0.01
d7 0.03 0.02 d10 0.05 0.06
Dd 0.02 0.01 d7 0.04 0.04
d1o <0.01 <0.01 b8 0.04 0.04
B3 <0.01 <0.01 b10 0.03 0.04

Table B4.17 Variable importance results (PE9)

Table B4.18 Variable importance results (PC9)

Variable Importance Variable Importance
SPSS (beta Matlab (random SPSS (beta Matlab (random
(coefficient) forest) (coefficient) forest)
PC8 100.00 100.00 PE9 100.00 100.00
b9 0.54 0.49 d9 12.13 4.50
dg 0.06 0.02 d1o 242 1.31
dd 0.06 <0.01 bll 0.60 0.77
B9 0.03 0.03 kext 0.58 0.35
d9 0.03 0.03 b10 0.53 0.41
B6 0.02 0.01 kx2 0.25 0.07
B8 0.01 0.02 b9 0.24 0.14
b3 0.01 0.01 kx3 0.20 0.05
B1 0.01 <0.01 layer depth2 0.18 0.05

Table B4.19 Variable importance results

(PE10)
Importance
Variable SPSS (beta Matlab
(coefficienty ~ (random
forest)
PC9 100.00 100.00
b10 3.60 1.62
d1o 2.27 3.50
(ky/kooh 0.81 0.39
p10 0.29 0.14
d9 0.23 0.27
bll 0.23 0.18
B9 0.18 0.06
layer depth2 0.05 <0.01
layer depthl 0.04 <0.01

Table B4.20 Variable importance results

(PC10)
Variable Importance
SPSS (beta Matlab (random
(coefficient) forest)
bll 100.00 100.00
PE10 22.51 17.06
d10 24.83 9.51
p10 11.70 3.94
kx 2 9.17 1.85
ki 7.84 1.27
dd 3.08 0.88
kx3 2.13 0.53
layer depthl 1.05 <0.01
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Table B4.21 Variable importance results (Exit

gradient)
Importance
Variable SPSS (beta Matlab
(coefficient) (random
forest)
H 100.00 34.07
(ky/k) 86.58 100.00
kext 28.64 8.17
bll 15.30 5.92
d10 9.33 1.72
kx 2 9.05 2.83
kx3 6.16 0.94
layer depthl 5.77 2.93
b10 2.52 0.43

Table B4.22 Training and testing result for the developed SVM models

model RSQ MSE RSQ MSE function
TRAIN TRAIN TEST TEST

exit model 1 0.96 0.088 0.95 0.086  polynomial 2
exit model 2 0.96 0.08 0.95 0.11 polynomial 2
exit model 3 0.96 0.087 0.954 0.09 polynomial 2
pcl0- model 1 0.95 0.92 0.95 1.06 polynomial 2
pcl0 model 2 0.959 0.92 0.955 0.93 polynomial 2
pel0- model 1 0.987 1.26 0.988 1.06 polynomial 2
pel0 model 2 0.987 1.27 0.988 1.08 polynomial 2
pc9- model 1 0.981 2 0.983 1.68 polynomial 2
pc9 model 2 0.982 1.97 0.981 1.9 polynomial 2
pe9- model 1 0.997 0.55 0.996 0.65 polynomial 2
pe9 model 2 0.997 0.56 0.997 0.59 polynomial 2
pc8- model 1 0.991 2.02 0.991 1.92 polynomial 2
pc8 model 2 0.991 2.05 0.993 1.65 polynomial 2
pe8- model 1 0.998 0.33 0.998 0.4 polynomial 2
pe8 model 2 0.998 0.339 0.0998 0.308  polynomial 2
pc7- model 1 0.995 1.14 0.997 0.82 polynomial 2
pc7 model 2 0.995 1.09 0.996 1.15 polynomial 2
pe7- model 1 0.996 1.13 0.998 0.66 polynomial 2
pe7 model 2 0.996 1.08 0.996 0.93 polynomial 2
pc6 model 1 0.996 1.15 0.996 1.15 polynomial 2
pc6 model 2 0.996 1.19 0.997 0.91 polynomial 2
pe6 model 1 0.999 0.23 0.999 0.16 polynomial 2
pe6 model 2 0.999 0.22 0.999 0.19 polynomial 2
pcS model 1 0.998 0.64 0.997 0.66 polynomial 2
pcS model 2 0.998 0.65 0.997 0.65 polynomial 2
pe5 model 2 0.999 0.199 0.999 0.173  polynomial 2
pcéd model 1 0.998 0.702 0.998 0.702  polynomial 2
pc4 model 2 0.998 0.73 0.998 0.56 polynomial 2
pe4 model 1 0.999 0.25 0.999 0.233  polynomial 2
pe4 model 2 0.999 0.25 0.999 0.25 polynomial 2
pc3 model 1 0.998 0.65 0.998 0.75 polynomial 2
pc3 model 2 0.998 0.66 0.998 0.68 polynomial 2
pe3 model 1 0.999 0.28 0.999 0.407  polynomial 2
pe3 model 2 0.999 0.28 0.999 0.252  polynomial 2
pc2 model 1 0.997 1.18 0.997 1.18 polynomial 2
pc2 model 2 0.997 1.16 0.997 1.33 polynomial 2
pe2 model 1 0.999 0.27 0.999 0.27 polynomial 2
pe2 model 2 0.999 0.26 0.999 0.24 polynomial 2
pcl model 1 0.996 1.96 0.997 1.8 polynomial 2
pclmodel 2 0.996 1.93 0.996 1.89 polynomial 2
pel model 1 0.997 1.63 0.998 1.25 Polynomial 2
pelmodel 2 0.997 1.61 0.997 1.57  Polynomial 2
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Table B4.23 Optimum solution for different value of H

H 20 30 40 50 60 70 80 90 100
bl 0.0 0.0 0.0 0.0 0.0 59 5.0 6.7 7.0
b2 0.0 0.0 0.0 0.2 1.7 3.0 2.5 34 3.5
b3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
b4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
b5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
b6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0
b7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0
b8 0.0 6.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0
b9 4.8 7.8 172 225 285 291 383 397 46.1
bl10 154 348 330 355 364 36,6 400 438 51.6
bll 10.5 101 8.0 4.1 0.8 0.0 0.0 0.0 0.0
dl 0.0 0.0 0.0 0.4 33 59 5.0 6.7 7.0
d2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
d3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
d4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ds 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
d6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0
d7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0
dg 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
d 97 155 336 351 342 333 341 385 450
dio 21.1 201 325 359 385 40.0 420 387 408
pr 300 81.8 920 1022 1119 1174 1256 1319 139.7
B2 300 664 686 712 752 766 775 804 824
g3 30.0 1079 110.1 113.1 116.1 116.1 1183 1209 1232
B4 300 792 821 89 923 934 974 99.8 106.2
B5s 300 81.1 776 744 71.6 696 653 615 592
6 30.0 118.6 1257 134.0 1409 1433 147.8 150.0 150.0
B7 300 963 1333 1373 1428 132.6 1259 1264 126.8
B8 300 150.0 30.0 30.0 30.0 30.0 30.0 30.0 300
g9 300 300 30.0 300 300 30.0 300 30.0 300
10 139.8 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0
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Table B4.24 Evaluation results for different values of H

Appendix B

H=100 H=90 H=80 H=70 H=60 H=50 H=40 H=30 H=20
S0 N.S* SO NS SO NS SO NS SO NS S0 NS SO NS SO NS -0 N.S.
PEIm 9637 9199 87.00 8247 77.68 7422  68.10 6498  59.10  60.00 4937 5000  39.67 40.00 2992 2999  20.14  20.00
PCl 88.57 8618  79.87 7632 7151 6887 6239 6074 5999 5529 5041  49.00 4037 3975 3024 2944 2022 19.61
PE2 87.85 8618  79.13 7628 7074 6885 6163 6072 59.18 5541  49.56 4899 3954 3974 2946 2942 1939  19.60
PC2 8731 8619 7859 7629  70.16  68.84 6110  60.71 5858 5537 4892 4890 3893  39.64 2889 2901 1917 1940
PE3 8595 8619 7739 7628  69.10  68.83 6020 6071 5771 5536 4821 4890 3840  39.63 2853 2899 1883 1939
PC3 8542 8618 7686 7628 6856  68.80  59.66  60.69 57.19 5533  47.68 4879  37.87 3955 2801 2867 1857 1928
PE4 8495 8618 8025 7627  68.14 6879 5926  60.68 5679 5532 4729 4880 3748 3954 2762 2866 1925 1927
PC4 8694 8617 8209 7626  69.66 6875  60.53  60.67 5799 5527 4824 4870 3818 3948 2807 2843 1984 1921
PES 8637 8616 8150 7625  69.12 6874  60.04  60.66 5751 5526  47.84 4869  37.88 3947 2789 2842 1984 1920
PCs 8535 8615 8054 7623 6826  68.69 5925  60.64 5674 5522  47.16  48.61 3727 3943 2735 2822 1960 1918
PE6 86.05 8614 7888 7621 6696  68.68 5998  60.63 5581 5521 47.88 4859 3796 3941  27.04 2821 2057 1937
PC6 85.88 8612 8093 7609  68.13  68.62 5979  60.62 5672 5516  47.64 4852  37.68 3938 2736 28.12  21.28 19.32
PE7 8511 8612 8020 7609 6748  68.62 5912  60.62 5596  55.16  47.03 4852 3721 3938  27.19 2804 2149 1932
PC7 8493 8610 7993 7601 6725  68.55 5891 6058 5582 5509 4683 4848 3697 3933 2681 2783 2138 1930
PES 84.69 8609  79.67 7601 6693  68.54 5860 6058 5554 5509 4647 4844 3654 3933 2567 27.18 2095 19.29
PC8 8443 8606 7870 7598 6673 6847 5850  60.56 5545 5503 4644 4838 3655 3930 2565 27.18 2079 1928
PE9 82.61 8395 7650 7421 6544 6600 57.83 5998 5486 5420 4621 4791 3650 391 2480 27.16 2036 1926
PCY 5323 5384 5163 4892 4660 4525 4128 3996 3872 3431 3232 2825 2577 2227 2023 1892 1787  13.67
PEI10 4254 3976 4120 3721 3726 3567  32.64 3178 3038 2713 2494 2216 1951 1739 1355 1243 1313 11.39
PC10 254 000 235 000 150 000 LIS 000 115 000 115 000 LIS 005 115 032 115 0.57
Exit 023 024 023 022 023 024 023 024 023 022 023 021 023 022 023 027 023 022
gradient
*N.S. is the Numerical Simulation results
Table B4.25 Optimum solutions for different values of kx:
kx 0.1 0.1 0.5 0.9 4.0 7.0 10.0 13.0 17.0 20.0
bl 0.0 0.0 0.0 0.0 0.0 4.5 5.4 5.6 . 5.4
b2 0.1 0.0 0.0 0.0 0.0 2.2 3.0 4.5 2.8 3.1
b3 0.5 0.0 0.0 0.0 0.0 0.0 0.5 0.7 0.4 0.8
b4 0.2 0.0 0.0 0.0 0.0 0.0 0.4 0.6 0.4 0.7
b5 0.6 0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.6 0.7
b6 0.1 0.0 0.0 0.0 0.0 0.0 1.0 3.0 4.6 4.2
b7 0.1 0.0 0.0 0.0 0.0 1.0 1.5 0.8 0.6 0.5
b8 8.2 0.0 0.0 0.0 . 0.0 1.0 12.2 5.2 8.9 8.8
b9 35.7 30.0 29.5 28.7 27.4 23.6 17.9 0.8 7.6 4.5 3.5
bl10 133.6 47.3 46.3 45.3 44.1 38.0 21.8 27.2 26.8 29.5 33.0
bll 9.3 0.4 0.1 1.2 3.9 9.7 4.7 2.6 2.6 2.3
dl 0.0 0.0 0.0 0.0 0.0 4.5 5.4 5.6 5.1 5.4
d2 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.7 0.5 0.8
d3 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.6 0.4 0.8
d4 0.1 0.0 0.0 0.0 0.0 0.0 0.4 0.6 0.4 0.7
d5 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.8 0.8 0.7
de 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.6 0.6 0.5
d7 0.0 0.0 0.0 0.0 0.0 2.0 2.0 1.0 0.6 0.6
d8 0.0 0.0 0.0 0.0 . 0.0 0.0 0.2 0.0 0.3 0.5
do 17.9 60.0 59.1 57.4 54.8 42.0 0.0 1.4 4.0 4.4 4.1
d10 48.4 34.5 33.6 33.2 334 34.0 332 14.1 7.8 7.8 6.9
dd 0.8 0.0 0.0 0.0 . 0.0 0.0 0.0 0.0 0.0 0.0
p1 103.8 101.7 103.5 101.3 101.0 103.0 102.5 99.3 96.1 97.9 98.1
B2 36.9 63.9 64.3 64.9 65.7 69.7 72.8 77.2 81.7 84.6 87.8
p3 38.0 114.5 114.3 114.1 114.1 113.8 109.0 108.1 106.2 104.5 102.6
p4 35.0 83.8 85.4 85.6 84.3 84.1 82.4 82.3 83.3 83.9 87.2
B5 99.9 76.9 76.5 76.1 75.7 75.4 75.6 74.1 71.5 68.6 67.3
p6 81.3 130.6 130.8 130.9 131.2 133.8 126.3 126.1 128.4 129.4 128.0
B7 374 150.0 150.0 149.0 145.6 144.7 100.3 66.5 57.4 304 30.0
B8 41.0 30.0 30.0 30.0 30.0 30.0 108.0 150.0 150.0 150.0 150.0
B9 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 48.8 54.2 51.8
B10 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0
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Table B4.26 Optimum thicknesses for different values of kx;

ke tl t2 - t10 tl11 t12 t13 t14 t15 t16 t17 t18 t19 t20
0.1 417 423 - 405 400 401 396 399 396 398 409 233 183 1.0
05 430 425 - 406 40.1 402 397 400 396 398 409 233 184 1.0
09 419 426 - 407 402 402 398 400 396 398 409 236 17.7 1.0
1.5 421 428 - 409 403 404 399 400 397 398 410 241 182 1.0
4 42,6 435 - 415 409 408 402 40.1 398 399 409 254 193 1.0
7 420 344 - 325 322 318 316 309 302 297 295 274 215 1.0
10 431 353 -- 335 331 326 324 316 298 296 298 261 178 13
13 433 354 - 339 335 329 327 318 303 271 273 224 134 1.1
17 432 333 - 326 321 315 313 305 287 287 263 226 135 1.1
20 421 323 - 301 298 292 290 283 266 268 246 200 128 1.0

Table B.27 Optimum solutions for different values of (ky/kx)1

(ky/k)1 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5
bl 0.01 0.01 0.01 0.01 0.01 0.39 0.01 0.36
b2 7.13 3.97 0.01 0.01 0.78 1.55 0.97 0.19
b3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
b4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
b5 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
b6 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
b7 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
b8 0.01 0.01 1.51 0.01 0.01 0.01 0.01 0.01
b9 77.80 47.37 31.50 27.67 24.65 22.81 22.52 21.97
b10 150.00 140.79 92.12 42.22 38.30 36.27 37.14 41.60
b1l 0.01 0.01 0.01 1.10 4.27 5.72 5.59 7.01
d1 14.25 7.92 0.01 0.01 1.56 3.09 1.93 0.36
d2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
d3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
d4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
ds 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
dé 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
d7 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
ds 0.01 0.01 3.01 0.01 0.01 0.01 0.01 0.01
do 60.00 60.00 60.00 55.32 41.76 35.64 35.52 42.83
d10 14.19 15.94 21.90 29.13 34.84 36.89 38.77 40.36
p1 119.70 113.95 109.83 104.60 103.99 101.50 100.08 102.05
p2 67.99 67.84 65.04 67.41 70.77 74.00 76.23 80.96
p3 100.38 103.38 107.28 109.40 111.58 114.17 118.16 124.31
B4 53.77 68.23 67.15 80.61 84.63 90.65 96.28 150.00
pS 48.48 52.91 58.40 64.29 71.56 78.57 87.91 150.00
B6 140.02 140.66 138.96 135.67 133.58 132.02 139.56 30.00
B7 73.13 78.65 85.41 117.07 132.16 149.40 150.00 30.00
B8 150.00 150.00 133.20 30.00 30.00 30.00 30.00 30.00
B9 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00

B10 150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00

Table B4.28 Optimum thicknesses for different values of (k,/kx)1

(k) tl 2 - t1l t12  t13  t4  t15  tl6  t17  tI8  t19 120
0.1 428 357 - 362 374 378 373 369 368 364 214 111 |1
03 427 412 - 384 384 386 382 375 378 372 230 121 1
0.5 06 417 - 408 420 421 418 409 40.1 40.1 224 146 1
0.7 427 433 - 394 393 391 388 385 385 380 226 173 1
0.9 428 434 - 394 392 388 386 382 382 370 258 200 1
1.1 429 434 - 393 3901 385 383 381 380 367 270 206 1
13 429 436 - 41.1 408 401 399 398 394 387 270 216 1
1.5 29 025 - 41.1 412 412 411 403 400 394 259 203 1
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Appendix B
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Figure B3.1 Cost variation (function) with cut-off depth
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