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Abstract 

The safety of hydraulic water retaining structures (HWRS) is an important issue as many 

instances of HWRS failure have been reported. Failure of HWRS may lead to catastrophic events, 

especially those associated with seepage failures. Therefore, seepage safety factors recommended 

for HWRS design are generally very conservative. These safety factors have been developed based 

on approximation calculations, unreliable assumptions, and ideal experimental conditions, which 

are rarely replicated in real field situations. However, with the development of the numerical 

methods, and high speed processors, more accurate seepage analysis has become possible, even for 

complex flow domains, different scenarios of boundary conditions, and varied hydraulic 

conductivity. On the other hand, because construction of HWRS requires a significant amount of 

construction material and engineering effort, the construction cost efficiency of HWRS is an issue 

that must be considered in design of HWRS. 

This study aims to determine the minimum cost design of HWRS constructed on permeable 

soils, incorporating numerical solutions of a seepage system related to HWRS, utilizing linked a 

simulation–optimization (S-O) model. Due to the complexity and inefficacy of directly linking a 

simulation model to the optimization model, the numerical simulation model was replaced by trained 

surrogate models. These surrogate models can be trained based on numerically simulated data sets. 

Therefore, trained surrogate models expeditiously and accurately provide predicted responses 

relating to seepage characteristics pertaining to HWRS. The optimization model based on the linked 

S-O technique incorporated different safety factors and hydraulic structure design requirements as 

constraints. The majority of these constraints and objective function(s) were affected by the 

responses of predicted seepage characteristics based on the developed surrogate models. 

To improve the safety of HWRS design, the effect of non-homogenous and anisotropic 

hydraulic conductivity were incorporated in the S-O model. Obtained solution results demonstrated 

that considering stratification of the flow domain due to different hydraulic conductivity values or 

anisotropic ratios can significantly change the optimum design of HWRS. Low hydraulic 

conductivity and anisotropic ratios resulted in more critical seepage characteristics. Consequently, 

the minimum construction cost increased due to an increase of dimensions of involved seepage 

protection design variables. 

Furthermore, uncertainty in estimating hydraulic conductivity is incorporated in the S-O 

model. The reliability based optimal design (RBOD) framework based on the multi-realization 

optimization technique was implemented using the S-O model. The uncertainty in seepage quantities 
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due to uncertainty of hydraulic conductivity was represented using many stochastic ensemble 

surrogate models. Each ensemble model included many surrogate models trained in utilizing input–

output data sets simulated with different scenarios of hydraulic conductivity drawn from diverse 

random fields based on different log-normal distributions. Obtained results of this approach 

demonstrated substantial consequences of considering uncertainty in hydraulic conductivity. Also, 

the deterministic safety factors, especially for those pertaining to the exit gradient, were insufficient 

to provide prescribed safety in the long term. 

Although surrogate models are utilized in S-O approaches, each run of the S-O model takes 

a long time as developed S-O models are applied to complex and large scale problems. Hence, 

efficiency of the S-O model was a key factor to successfully implement the methodology. Three 

main techniques were utilized to increase the efficiency of the S-O technique: using parallel 

computing, utilizing nested function technique, and using a vectorised formulation system. These 

strategies substantially boosted efficiency of implementing the S-O model.  

The S-O models were implemented for many hypothetical scenarios for different purposes. 

In general, results demonstrated that optimum design of the seepage protection system relating to 

HWRS design must include two end cut-offs with an apron between them. The dimensions of these 

components were augmented with an increase of upstream water head, and reduction of anisotropic 

ratios or hydraulic conductivity value. The main role of the downstream cut-off was to decrease the 

actual exit gradient value. This impact is more pronounced if the inclination angle of the cut-off is 

toward the downstream side (>90 degrees). The role of the upstream cut-off was to decrease uplift 

pressure values on the HWRS base. Consequently, this partially contributed to decreasing the exit 

gradient value. The effect of the upstream cut-off in reducing the uplift pressure was more when the 

inclination angle was toward the upstream side (<90 degrees). Moreover, the apron (floor) width 

helped to increase the stability of HWRS. This variable provided the required weight to improve 

HWRS resistance to external hydraulic forces and to uplift pressure. Incorporating the weight of 

water (hydrostatic pressure) at the upstream side in counterbalancing momentum and hydraulic 

forces showed improvement in the safety of the HWRS. Also, all conditions and safety factors 

pertaining to HWRS design were satisfied. The exit gradient safety factor was the most important 

critical factor affecting optimum design as obtained optimum solutions satisfied the minimum 

permissible values of the exit gradient safety factor, i.e., at the minimum permissible value. Also, 

the eccentric load condition played a crucial role in resulting optimum solutions. 

Finally, applying the S-O model to obtain reliable and safe design of HWRS at minimum 

cost was successfully implemented for performance evaluation purposes. This technique may be 
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extended to incorporate more complex scenarios in HWRS design where the impact of dynamic and 

seismic load could be incorporated.  The effect of unsteady state seepage system could be another 

interesting direction for future studies. Further, incorporating more sources of the uncertainty 

associated with design parameters could achieve a more accurate estimation of actual safety for the 

HWRS design.  
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1 Introduction 

 

1.1 General Introduction 

Construction of hydraulic water retaining structures (HWRS), such as dams, barrages, 

regulators and weirs, is essential for stable and safe water management and to generate clean energy. 

Future projections of water resources indicate that water availability will significantly decrease for 

several countries around the world (Gerten et al., 2011). This may be attributed to climate change 

and carbon dioxide (greenhouse gas) emissions due to human activities. Building HWRS is a 

beneficial and important solution to reduce the impacts of water scarcity. However, significant 

considerations and hazards must be considered in design of HWRS. The economic cost of building 

such projects is enormous; additionally, failures of HWRS threaten human life and properties on 

downstream. Accordingly, the design and analysis of such structures must involve precise estimation 

and sufficient understanding of the influencing design variables and parameters, especially the 

seepage quantities and their impacts on safety of HWRS. This study presents coupled simulation-

optimization (S-O) approaches to identify the minimum cost HWRS design, incorporating numerical 

seepage analysis and considering the hydraulic design safety factors in S-O models. Furthermore, 

the effects of permeability (hydraulic conductivity) and its uncertainty are integrated in S-O models. 

The numerical seepage simulation is indirectly linked to the optimization model using machine 

learning techniques based on surrogate models. Artificial neural network (ANN), support vector 

machine (SVM) and Gaussian process regression (GPR) machine learning techniques were used to 

develop surrogate models. The genetic algorithm (GA),   hybrid genetic algorithm (HGA) and non-

dominated sorting genetic algorithm II (NSGA-II) were utilized to solve optimization tasks due to 

the complexity and the attribute of each S-O model.  

Hydraulic structures that impound a considerable amount of water (head) and are 

constructed on permeable soil foundation are associated with water seepage impacts. Seepage forces 

threaten hydraulic efficiency and structural stability of hydraulic structures. Seepage failure is 

classified as the second or third most frequent cause of dam failure after overtopping (ICOLD, 2016; 

NPODP, 2015). A critical and dangerous seepage consequence is piping failure. This failure is 

attributed to seepage forces, which move small soil grains and wash them out of the flow domain. 

Unless sufficient precautions are taken, continuous erosion of the soil constituent inevitably happen, 

and leads to piping failure. Furthermore, another consequence of seeping water is pore-water 
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pressure, which applies uplift (upward) pressure on the structure floor (apron) and may result in 

collapse of the floor. 

The hydraulics of seeping water and associated mathematical relationship of seepage 

variables with flow domain characteristics is complex and nonlinear. The complexity arises from 

many factors, such as sub-structure geometry, soil properties and hydraulic conductivity variation 

and uncertainty. An analytical solution may be obtained only for simple and symmetrical cases and 

is often based on assumptions that are not always correct. However, it is difficult to obtain analytical 

solutions for more complex scenarios, which occur in most of existing projects. Therefore, many 

approximation and empirical theories have been proposed to estimate seepage quantities (uplift 

pressure and exit gradient). These theories include Bligh’s creep theory, Lane’s weighted creep 

theory, flow-net method, fragment method and Khosla’s theory. Solutions of these approximate 

theories are acceptable to some extent. Their applications have an associated non-trivial amount of 

error compared to applications that use analytical solutions or experimental modelling, as shown in 

Figure1.1. Additionally, these theories apply to ideal general soil conditions (homogeneous and 

isotropic), which are rarely found in real life cases (Lambe & Whitman, 1969). Also, it is not possible 

to integrate the effects of hydraulic conductivity and uncertainty when utilizing these methods and 

theories. 

 
Figure 1.1 Comparing computed exit gradient by different methods and FEM based numerical 

solutions (Shahrbanozadeh, Barani, & Shojaee, 2015) 

Recently, as a result of development of numerical methods and computerized processes, 

many seepage problems related to HWRS have been accurately simulated and solved by numerical 
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methods, such as finite element method (FEM) and finite difference method (FDM). The FEM and 

FDM are the dominant numerical methods in this field. These methods provide accurate and efficient 

results even for complex problems. Consequently, many software and codes have been developed 

to facilitate numerical simulation of seepage problems, particularly after development of high-speed 

computer processors. These codes can be used to analyse complex seepage problems precisely. 

Furthermore, hydraulic conductivity variation and other soil parameters can be integrated in the 

numerical model to study consequences of soil parameter variation on HWRS design. However, a 

source of weakness of using numerical solutions is that the numerical technique only provides a 

solution for predetermined problems, including pre-defined boundary conditions and geometry of 

the flow domain of hydraulic structures. This means the numerical model may not provide a 

generalized performance equation regarding what can be obtained by analytical solution. 

Considering the above-mentioned arguments, contradicting goals of safety and cost must be 

simultaneously integrated in design of HWRS to attain optimum, safe and economic design based 

on accurate seepage numerical solutions. Hence, the optimization approach can be used to identify 

optimal design of HWRS. As a result, the minimum cost and safest HWRS can be achieved. Directly 

integrating the numerical model with the optimization model to attain an optimum HWRS design is 

computationally inefficient, a computational burden and time consuming task. Also, most 

evolutionary optimization algorithms (solvers) utilize direct search techniques based on a large 

population size. These optimization solvers present many random candidate solutions (individuals) 

and evaluate each single solution based on numerical seepage responses for that solution. This 

optimization process and others continue for many generations until the stopping criteria is met. 

Accordingly, directly linking the optimization model to the simulation model is a complex and 

computationally expensive process. Alternatively, the numerical model could be replaced by an 

approximate machine learning model (surrogate model) that accurately and expeditiously imitates 

numerical model responses. The surrogate model may be trained based on numerically simulated 

data (input and output) sets. There are many machine learning techniques that can be utilized to 

develop a surrogate mode, such as artificial neural network (ANN), support vector machine and 

Gaussian process regression (GPR). 

The aim of this thesis is to develop a linked S-O methodology to produce a safe, reliable 

and economic design of HWRS based on adequately trained surrogate models. These models are 

trained based on numerically simulated data sets. Basically, different scenarios of hydraulic 

conductivity and geometry of the flow domain (number and attributes of cut-offs and apron length) 

are incorporated in S-O models to simulate the effects of these design parameters on optimum design 
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of HWRS. The uncertainty and spatial variation of hydraulic conductivity are considered in optimum 

design of HWRS. Identifying the most important design variable in optimum design is another goal 

of this study. Also, computational efficiency of the developed methodology is a significant aspect 

that must be considered in developing S-O techniques. Induced seepage forces and many safety 

factors and design requirements related to HWRS, such as overturning, sliding safety factors and 

preventing the eccentric load condition, are considered in the S-O approaches. For each S-O model, 

the type of machine learning technique and optimization solver are selected based on prediction 

accuracy and efficiency.   

1.2 Problem Statement  

The relationship between seepage design variables related to HWRS is usually categorized 

as a high degree nonlinearity problem, especially for complex problems (Harr, 1962). Many existing 

hydraulic structures built with high cost suffered from seepage problems, which may lead to failure 

of the structure. Such problems may be attributed to the approximation methods and theories by 

which the seepage related structures were analysed. Furthermore, these theories disregard spatial 

variation and uncertainties in some parameters, such as hydraulic conductivity, which have a 

significant effect on seepage characteristics. Providing a safe exit gradient for HWRS based on 

accurate and reliable analysis reduces actual possibility of piping failure. Also, decrease in the uplift 

pressure impacts provide a safer HWRS design. Moreover, construction of HWRS requires a 

considerable amount of construction materials and engineering effort, resulting in higher 

construction cost. Also, the HWRS safety design requirement must be simultaneously considered in 

HWRS design. Hence, there is a knowledge gap in obtaining optimum design for HWRS, which is 

partially filled by this research via developing a linked S-O model to determine minimum cost and 

safe design of HWRS by integrating numerical responses. These responses are based on trained 

surrogate models adequately trained and validated using numerically simulated data sets. 

1.3 Objectives of the Research  

The main objectives of this research are:  

1. Develop and evaluate a coupled S-O model to obtain optimum design of HWRS founded 

on homogenous isotropic permeable soils and including a variable flat apron (floor) with 

variable length cut-offs. 

2. Develop and evaluate a coupled S-O model to find the optimum design of HWRS founded 

on non-homogenous non-isotopic permeable soil and including variable and multi aprons 

with many cut-offs having variable length and orientation.  
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3. Enhancing the performance of the S-O model by hybridizing the genetic algorithm with the 

interior point algorithm to attain a global optimum solution of multiple cut-offs multi 

aprons seepage flow domain under HWRS constructed on homogenous anisotropic 

permeable soil.  

4. Develop stochastic ensemble surrogate models to incorporate various uncertainties to 

develop reliability based optimum design (RBOD) framework to determine the reliable and 

optimum design of HWRS founded on heterogeneous isotopic permeable soil, and 

including and a flat apron with end cut-offs.  

5. Develop a multi-objective multi-realization optimization model for reliability based 

optimum design framework to find a reliable and optimum design of HWRS founded on 

heterogeneous isotropic permeable soils. 

1.4 Organization of the Thesis 

The thesis contains eight chapters, encompassing the current (Introduction) chapter. The 

introduction chapter provides a brief description of the main effects of seepage quantities on the 

HWRS design. The chapter includes an overview of the utilized methodology to find the optimum 

design and to incorporate the numerical seepage responses based on surrogate models in the S-O 

model. The problem statement and objective of the study are also presented in this chapter.   

Chapter two provides a review of literature starting with earliest methods related to seepage 

analysis of HWRS. Also, important previous studies utilizing numerical methods for seepage 

solution are briefly discussed. The chapter cites previous research which incorporates optimization 

models to improve HWRS design. This chapter also highlights the contribution of machine learning 

techniques in enhancing understanding of relationships between design variables of HWRS. 

Additionally, machine learning technique applications in predicting the future behaviour or 

consequences for a particular design of HWRS are presented. 

Chapter three demonstrates the formulation of the linked S-O approach to determine the 

optimum design of HWRS constructed on homogenous permeable soils, including two end cut-offs 

with apron. The description of generated and simulated data, training surrogate models based on 

ANN and the attributed genetic algorithm optimization solver are presented in this chapter. All 

design requirements of HWRS and related seepage safety factors are considered in formulating the 

S-O model. Obtained results for implemented cases and performance evaluation of the S-O model 

are included in this chapter.   
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Chapter four contains the formulation of the linked S-O model to attain the optimum design 

of HWRS comprising of many cut-offs and aprons between them. The effects of non-homogenous 

anisotropic hydraulic conductivity are incorporated in the S-O model. Development of surrogate 

models was based on the support vector machine (SVM) technique, and the optimization model was 

based on the hybrid genetic algorithm (HGA). The optimum solution obtained via the S-O model 

and evaluation of S-O models are also included in this chapter.  

Chapter five demonstrates the efficiency of hybridizing the genetic algorithm with the 

gradient search algorithm to achieve the global optimum solution within the linked S-O technique. 

Description and formulation of the optimization model are demonstrated in this chapter. The 

conceptual model of seepage includes many cut-offs, many aprons and homogenous anisotropic 

permeable flow domain. The SVM technique was utilized to develop the surrogate models.  The 

safety factors and HWRS design requirements are included, with the results and performance 

evaluation of the S-O model presented in this chapter.  

Chapter six encompasses formulation of  the reliability based optimum design of HWRS. 

This was achieved by developing many ensemble surrogate models to incorporate stochastic 

responses of seepage characteristics due to uncertainties in estimating hydraulic conductivity in the 

linked S-O model. The surrogate models were developed based on the Gaussian progress recession 

(GPR) technique and the optimization solver was the genetic algorithm (GA). Hydraulic 

conductivity was represented as a random field sampled from a log-normal distribution based on 

different standard deviation values. Solution results and performance evaluation of the developed 

methodology are included in this chapter. 

Chapter seven presents a new formulation of the reliability based optimum design utilizing 

the multi-objective, multi-realization optimization model based on the ensemble surrogate models. 

Many ensemble surrogate models were developed to represent the stochastic responses of seepage 

characteristics due to uncertainty in estimation of hydraulic conductivity. The conceptual model 

included an apron between two end cut-offs. Hydraulic conductivity was defined as a random field 

based on log-normal distribution. The results and performance evaluation of the methodology are 

presented in this chapter. 

Chapter eight presents the conclusion of this study and recommendations for future studies.   
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2 Theoretical Background and Literature Review 

  

This chapter covers seepage theory and related equations of seeping water through porous 

media, and presents a review of literature related to seepage analysis and HWRS design. This 

literature review is organized in accordance with techniques utilized in the proposed methodology, 

starting from earliest methods to analyses of seepage, then numerical seepage analysis methods, 

previous studies utilizing the FEM method and previously developed surrogate models. Also, the 

optimization theory and previous studies related to linked simulation optimization approaches are 

described. Additionally, the inadequacy and difficulties of applying the previous methods and 

theories to analysis of seepage under HWRS are presented. The complexity of developing an 

analytical solution for complex seepage models is described in this chapter. Applications of the 

numerical solutions based on FEM in obtaining accurate seepage analysis are included. Also, 

utilization of the previous research for the optimization technique in obtaining optimum design of 

hydraulic structures and for water resource management is discussed. The efficiency of building a 

linked simulation optimization approach is demonstrated with its application in water resource 

management and in ground water to find the optimum design integrating numerical responses based 

on the surrogate models.   

2.1 Earlier Empirical Seepage Analysis Methods for Hydraulic Structures 

2.1.1 Bligh’s and Lane’s Theory 

Bligh (1910) concluded that the weight of the hydraulic structure is the most significant 

factor involving in hydraulic structure stability. However, Bligh (1915) adopted the hydraulic 

gradient and creep theory to explain water movement under a hydraulic structure and compared his 

theory with experimental results. He found that the seepage stream is the shortest and closer path to 

the foundation of the hydraulic structure. This path is called the length of creep (L) at which the 

hydraulic gradient (H.G.) decreases with an increase in (L) according to this equation (H.G. =h/L) 

(Garg, 1987; Khosla, Bose , & Taylor, 1936). 

Where: h= difference between upstream and downstream water level, and 

L= total length of water seepage stream near hydraulic structure foundation. 
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Furthermore, Bligh (1915) assumed empirical exit gradient safety factors relate to different 

soil classes, and he considered the exit gradient is safe compared with these factors. Additionally, 

the uplift pressure hazard could be addressed by designing sufficient thickness of the floor. This 

thickness could be computed by the physical equilibrium of the submerge weight of floor at certain 

points with uplift pressure value at the same point. The computed thickness can be magnified by a 

factor of 1.33 to achieve safer situations (Bligh, 1910, 1915; Garg, 1987). Although Bligh’s theory 

has been utilized to design many hydraulic structures, the theory did not distinguish between 

horizontal and vertical or other directions of seeping water movement. This shortcoming was solved 

by Lane’s weighted creep theory.  

Lane (1935) observed, after a precise investigation of 200 dams around the world, that water 

movement in the horizontal direction was relatively easier than the vertical direction. Consequently, 

he recommended that horizontal creep length must be shortened by a factor of 1/3, whereas vertical 

length could be kept without change. He assumed different safe exit gradient factors for different 

soil types to compare with computed hydraulic exit gradients to obtain safe hydraulic design (Garg, 

1987; Khosla et al., 1936). 

For comparison purposes, recently many researchers have considered solutions of Bligh’s 

and Lane’s methods. They concluded that the obtained values of seepage characteristics based on 

these methods are inaccurate compared to experimental observations or numerical solutions 

(Sedghi‐Asl, Rahimi, & Khaleghi, 2012; Shahrbanozadeh et al., 2015; Tokaldany & Shayan, 2013) 

2.1.2 Khosla’s Theory 

Khosla et al. (1936) used an independent variable technique to develop a method by which 

seepage characteristics under weirs including different seepage features, such as aprons, floor slopes 

and a varied number of cut-offs, could be analysed. Khosla’s theory is based on an analytical solution 

(conformal mapping concept) and experimental data analysis. According to this theory, complex 

sub-structures related to seepage control variables can be split into three categories: end sheet piles 

(cut-offs), intermediate cut-offs and depressed floors. By this method, the uplift pressure values 

could separately be determined at a specific points (key points).  Pressure values must be corrected 

based on the interaction effects between these variables (Garg, 1987; Khosla et al., 1936).  

Moreover, Khosla et al. (1936) derived different exit gradient equations considering many 

design cases, such as flat floor, single cut-off, depressed floor and cut-off at the end of the floor. 

However, Khosla et al. (1936) supposed that exit gradient is affected by end floor condition 

(geometry) only and disregarded other components, such as hydraulic conductivity of porous media 
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(Eq. 2.1). Khosla et al. (1936) recommended that the exit gradient safety factor is: 4 to 5 for gravel, 

5 to 6 for coarse sand and 6 to7 for fine sand. The safety factor is the ratio of the critical exit gradient 

to the computed exit gradient (Delleur, 2006). The exit gradient is computed as given by Eq. (2.1): 

 𝑖𝑒 =
ℎ

𝜋𝑑√𝜆
 (2.1)  

Where 𝑖𝑒 is the exit gradient by Khosla et al. (1936) theory, h is total head, d is length of 

downstream cut-off and 𝜆 is computed by equation 2.2 

 𝜆 =  
√1 +  𝛼1

2 + √1 +  𝛼2
2 

2
  (2.2)  

Where 𝛼1 =
𝑏1

𝑑
, 𝛼2 =

𝑏2

𝑑
   as shown in Figure 2.1 and the factor of safety can be computed 

by F. S =  ic
ie

 , ic =
γsub 

γw
 or ic =

(GS−1)

(1+e)
  .  

Where GS is the specific gravity of the soil, e is void ratio, ic is critical exit gradient, γsub is 

the submerged soil density, γw is weight water density. 

 
Figure 2.1 One cut-off with apron (Khosla et al., 1936) 

 

Furthermore, Khosla’s theory is based on homogenous and isotropic hydraulic conductivity. 

Khosla et al. (1936) considered that the geometry of flow domain is the dominant factor for seepage 

quantities. That is clearly seen in Eq. 2.1 (above). The hydraulic conductivity value is disregarded 

in computing the exit gradient which is illogical to some extent. However, approximation ranges of 

safety factors have been proposed based on the main types of soil. Few researchers have utilized 

Khosla’s for seepage analysis and employed Khosla’s equations in optimization models (Garg, 

Bhagat, & Asthana, 2002;  Singh, 2010). 
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2.2 Approximate Solutions of Seepage  

2.2.1 Fragment Method 

Pavlovsky (1935) developed the approximation fragment method to determine seepage 

characteristics easily and directly under HWRS. In this method, the seepage flow domain was 

divided into a certain number of fragments. An imaginary section was assumed, where the 

equipotential line could be considered a vertical line (Harr, 1962). Therefore, flow rate and 

consequent head could be computed for regular shape regions. The mathematical expression of this 

theory is expressed below as: 

Qm=khm /m (2.3)  

Where: m= 1, 2, 3,…, n, Qm= discharge passed through fragment  

hm = head loss through fragment 

m = dimensionless shape factor depends on the geometry of the fragment  

And when discharge for all fragments is the same    

Q = kh1/1 = kh2/2 = kh3/3……. Khn /n 

Q = k hm/m (2.4)  

Q = K
hm
∑

=
kh

∑ n
m=1 m

 (2.5) 

Where h without a subscript is total head loss. Therefore, by a similar method: 

h =
h 𝐦

∑
 (2.6) 

Consequently, the distribution of pressure head and exit gradient can be estimated as head 

losses have been computed. Also, there are many standards and forms to calculate the shape factor 

for each fragment easily according to the geometry and location of these fragments.  

It could be seen that application of the fragment method is only limited for regular soil 

properties. It is difficult to implement the fragment method for stratified, anisotropic or 

heterogeneous soils due to the variation of hydraulic conductivity value. Also, there are limited 

shape factors and standards, which means that this method cannot cover all expected scenarios of 

the flow domain.  
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Recently, many researchers have utilized the fragment method to determine seepage 

characteristics for the stop during filling in the mining industry (Madanayaka & Sivakugan, 2016; 

Sivakugan & Rankine, 2011; Sivakugan, Rankine, Lovisa, & Hall, 2013). For these studies, the 

solutions using fragment method were compared to numerical simulation and the results 

demonstrated good agreement with the numerical solution. 

2.2.2 Flow Net Method 

Flow net is one of the easiest and most prominent approximation methods used for seepage 

analysis. It depends on many sketching trials of equipotential lines and streamlines. These lines must 

be drawn in such a way that each equipotential line intersects the streamline orthogonally. When an 

imaginary grid of equipotential line and streamline is created, seepage characteristics can be 

determined at each intersection point using Eq. (2.7) (Das, 2008; Lambe & Whitman, 1969; 

Terzaghi, Peck, & Mesri, 1996). 

q = Nf △ q =  kh
Nf
Nd

 (2.7) 

Where: h = total hydraulic head or difference in elevation of water between upstream and 

downstream, Nd = number of potential drops, Nf = number of flow channel, k = soil conductivity 

(L/T), q = discharge (L3/T).  

2.3 Analytical Solution/Conformal Mapping by Schwarz-Christoffel 
Transformation 

The Schwarz-Christoffel transformation is one of the most important transformation 

methods commonly used to derive analytical solutions for groundwater movement or seepage. 

Conformal mapping constitutes geometric transformation of the complex domain to another simple 

domain (plan), while retaining the properties of the complex domain in the new domain. In 

groundwater problems, by using conformal mapping, Laplace’s equation can be solved with related 

boundary conditions and seepage characteristics (Harr, 2012). The basic concept of this mapping 

consists of opening the boundary polygon of the flow domain from a certain point in z(x, y) plan to 

extract this polygon in a straight line aligned with a real axis of t(r, s) plan from - to + on the 

upper half plan. The interior angles of the polygon must be considered in this transformation. The 

new polygon is described as part of a semicircle with one or more vertices at the infinity on the 

upper half t-plan. The transformation equation is given by Eq. (2.8).   
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𝑑𝑧

𝑑𝑡
=  

𝐴

 (𝑎 − 𝑡)
𝛼
𝜋⁄ ∗ (𝑏 − 𝑡)

𝛽
𝜋⁄ ∗ (𝑐 − 𝑡)

𝛾
𝜋⁄ ∗ … .

 (2.8) 

Where A refers to a complex number in z-plan and a, b and c are the real constants 

corresponding to the projection location in z-plane and α, β and γ represent the external angles of 

the polygon. 

A substantial amount of research has been conducted based on this technique. Elganainy 

(1986) determined the exit gradient and seepage flow for a filter constructed between two hydraulic 

structures and at the downstream, using a conformal mapping technique. Elganainy (1987) utilized 

the Schwarz–Christoffel method to derive a mathematical solution (for exit gradient and uplift 

pressure) for new conditions of Nile barrages and the subside weir. Ilyinsky and Kacimov (1991) 

demonstrated the procedure to compute the ground water flow around cut-off walls and to trench. 

The adopted conformal mapping concept conjugated with the variation method. Ilyinsky, Kacimov, 

and Yakimov (1998) reviewed different techniques, inverse method, variation theorems and 

optimization process, to develop an analytical solution for seepage under hydraulic structures.  

Additionally, conformal mapping method has been used by Farouk and Smith (2000) to 

derive the exit gradient and potential seepage equations for hydraulic structures with two 

intermediate filters. Jain (2011) derived mathematical models to determine seepage flow parameters 

underneath a weir with aprons, two cut-offs, finite depth condition and step at down side. Ijam (2011) 

used the Schwarz–Chrisoffel transformation method to obtain an analytical solution for seepage 

flow under hydraulic structures to analyze many variables in the seepage equation, such as cut-off 

wall with variable locations and angles.  

Previous discussion of analytical and approximation methods shows that there are many 

limitations to apply these methods in the S-O model. For example, the analytical solution based on 

conformal mapping can be applied only for simple and symmetrical cases. Solving the integration 

of the transformation equation is a demanding task, especially for non-homogenous anisotropic 

hydraulic conductivity, even for simple geometry. Moreover, the solutions of approximation 

methods have a noticeable amount of error and are limited to a specified range of simple flow 

conditions. In the present study, a comprehensive method is required to describe the seepage 

characteristic for different underground flow conditions, including varied length, number and 

orientation of cut-offs. These different scenarios provide more alternatives to find optimum design 

at minimum cost. Incorporating heterogeneous and non-homogeneous hydraulic conductivity of the 

flow domain must be considered in the utilized seepage analysis technique. Using the traditional 
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approximation and analytical solution for this study is not possible. Hence, numerical method based 

on the finite element method (FEM) is adopted in developing the linked S-O approach.   

2.4 Numerical Solution 

The numerical solution is considered more beneficial than analytical and approximation 

solutions, as complex seepage problems can be solved precisely. Analytical solutions are based on 

many simplified assumptions, such as isotropic, homogeneous soil properties, which are not always 

correct. Moreover, the upstream water level is assumed as horizontal level, and the seepage flow 

domain is mostly considered in a rectangular shape. These assumptions are not necessary for 

numerical methods. The numerical model can be utilized to solve complex seepage problems, 

including different boundary conditions. Hence, several efficient numerical methods such as finite 

difference method (FDM) and FEM are used to solve and simulate a large number of seepage related 

problems (Wang & Anderson, 1995).  

2.4.1 Finite Element Method (FEM) 

The FEM is based on the approximation integration approach to solve differential governing 

Laplace equations (Jain, 2011). FEM solves complex problems with accurate results that is not 

possible using the closed form solution. The results are more accurate and precise if more time and 

effort are spent on the computational process (Rao, 2013). 

   The small panels resulting from subdivision of the flow domain or continuum are called 

finite elements. Each element is connected with an adjacent element by nodal points (nodes), which 

lie on the element boundaries. Variation of any design variable or parameter through the continuum 

is not easy to be determined. Hence, the interpolation model (approximate simple function) is 

assumed to identify seepage variable values for each node. By applying the interpolation model, 

boundary condition and governing equation, the variable value for each node can be calculated 

accurately (Rao, 2013). 

The steps of the FEM process are summarized as: 

1. Subdividing the continuum of the problem into finite elements with a certain number, size 

and shape depending on the problem feature.  

2. Finding the best interpolation model describing boundary conditions and variables 

variation. The interpolation model is mostly derived as a simple polynomial (linear, 

quadratic or cubic). 

3. Deriving the action and deformation element matrix equation. 

4. Formulating a control equation (equilibrium) for the general model. 
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5. Solving the control equation for each node. 

In 1970, FEM was applied for the first time by Neuman and Whiterspoon for steady state 

seepage problems involving anisotropic heterogeneous soil and different boundary conditions. The 

efficiency and accuracy of the FEM solution compared to experimental, analytical and published 

results was demonstrated by Neuman and Whiterspoon (Chen, Huan, & Ma, 2006) 

As FEM provides precise solutions, numerous researchers have utilized FEM to solve 

seepage problems. Lefebvre, Lupien, Pare, and Tournier (1981) used FEM to evaluate different 

scenarios to control and reduce the exit gradient value for embankment dams. Alsenousi  and 

Mohamed (2008) studied the effect of inclined cut-offs for varying distances and angles. 

Heterogeneous and anisotropic underlying soil layers with limited depth were assumed for the 

numerical model. Tatone, Donnelly, Protulipac, and Clark (2009) evaluated the efficiency of 

21000m2 plastic concrete cut-off in a newly constructed dam in northern Ontario. FEM models were 

developed to simulate seepage flow of the dam to be compared to drilling investigations and 

laboratory tests. 

Azizi, Salmasi, Abbaspour, and Arvanaghi (2012) utilized hydraulic design data and the 

structural parameters of a diversion dam to simulate the flow process. SEEP/W based on FEM 

software was used to evaluate hydraulic design parameters. El-Jumaily and AL-Bakry (2013) 

utilized the finite volume method to analyze seepage through permeable soil. Furthermore, he 

studied the effects of anisotropic and non-homogenous soil on uplift pressure and exit gradient.   

Mansuri, Salmasi, and Oghati (2014) determined the effects of positions and angles of cut-

offs on exit gradient, seepage flow and uplift pressure underneath a diversion dam. Moharrami, 

Moradi, Bonab, Katebi, and Moharrami (2014) evaluated the effects of cut-off beneath dams to 

reduce uplift pressure and prevent piping problems. Shahrbanozadeh et al. (2015) adopted a 

complementary numerical method ISO-geometrical analysis (IGA) and FEM to determine the uplift 

pressure and exit gradient value for a hydraulic structure model. They compared the experimental 

results to approximation methods and numerical methods solutions to demonstrate that FEM and 

IGA provide the most accurate solutions.  

This literature review of FEM shows that most researchers focus on evaluating, comparing 

and studying the effect of seepage parameters and simulate a certain seepage system for a particular 

case. Most conducted research shows that FEM provides an efficient and accurate solution for 

complex problems. However, FEM is applicable for pre-defined problems and cannot provide 

generalized equations representing the relationship between seepage variables as in the closed form 
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solution. Therefore, the machine learning technique is utilized to develop surrogate models based 

on many input and output data sets simulated by the FEM numerical method to accurately predict 

numerical responses within inked S-O models. 

2.4.2 SEEP/W numerical seepage modeling and limited validation 

The Geo-Studio SEEP/W software (numerical model) based on FEM was used to find the 

seepage characteristic value for all simulated seepage scenarios in this study. The seepage 

characteristics obtained by SEEP/W were solely utilized to create training data (input-output data 

sets) to train surrogate models, or to evaluate the seepage characteristics of the optimum solution 

obtained by the S-O technique. SEEP/W can efficiently solve different seepage problems, such as 

saturated/ unsaturated cases, steady/ transient states, multilayer system and isotropic / anisotropic / 

heterogeneous hydraulic conductivity, etc. Furthermore, the effect of other geotechnical 

considerations, stresses, loads, boundary conditions and soil parameters can be combined with 

SEEP/W numerical seepage simulation. This is achieved based on integrating the provided Geo-

Studio components, such as SLOP/W, SIGMA/W and QUAKE/W, with the SEEP/W model (Krahn, 

2012). However, it should be noted that the linked simulation-optimization methodology being 

proposed here is not dependent on a particular simulation model. Indeed, it is possible to easily 

replace SEEP/W by an even more robust or efficient simulation model in the future. In that case, 

only surrogate models will require fresh training and validation.  

Many researchers have applied SEEP/W for different problems. Chenaf and Chapuis (2007) 

utilized SEEP/W as a numerical model to validate many approximation equations used to describe 

a seepage system related to a pumping well. Oh and Vanapalli (2010) combined SLOPE/W and 

SEEP/W to study the effect of water infiltration on the stability of homogenous compacted 

embankments. White, Beaven, Powrie, and Knox (2011) used SEEP/W numerical solutions to 

compare with observed depths of drained liquid resulting from field testing of the leachate 

recirculation model for different periods. Chapuis, Chenaf, Bussière, Aubertin, and Crespo (2001) 

conducted a precise validation for SEEP/W solution compared to the analytical solution of different 

seepage problems. 

Additionally, in this study, before utilizing SEEP/W as a numerical solution for seepage 

related to HWRS, the SEEP/W solution is validated with a closed form solution. Many arbitrary 

selected scenarios of a simple model, including one end cut-off (at downstream) and apron were 

solved by the closed form method (Harr, 1962; Khosla et al., 1936) and SEEP/W numerical 

modeling. The evaluation demonstrated that SEEP/W can provide accurate solutions compared to 
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the closed form solution. The mean absolute error (MAE) for the uplift pressure obtained by 

SEEP/W was 0.905 (2.5%) and for exit gradient was 0.041 (4.6%), as shown in Figures 2.2 and 2.3. 

 

 
Figure 2.2 Validation of the SEEP/W solutions (uplift pressure)  

 
Figure 2.3 Validation of the SEEP/W solutions (Exit gradient)  

 

2.5 Meta Model (Surrogate Model)  

The surrogate models in the linked simulation optimization model have been efficiently 

utilized to imitate the numerical model responses for complex and computationally expensive 

problems. Furthermore, meta modeling techniques have been implemented to enhance 

understanding of input design variable effects on the output design variable. Also, meta models are 

used as predictors for future expectations of some variables in a specified design. Developing an 

efficient surrogate (meta) model is based on selecting an adequate machine learning technique and 
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sufficient and uniformly distributed data sets. Many studies have utilized different machine learning 

techniques to develop efficient surrogate models for hydraulic structures and ground water 

applications. The most efficient machine learning techniques are artificial neural network (ANN), 

support vector machine (SVM) and Gaussian process regression (GPR).  

2.5.1 Artificial Neural Network (ANN) 

ANN imitates human brain neurons, which can change responses according to different 

environments and / or actions. In the 1940’s, McCulloch and Pitts designed the first neural network, 

and at the end of this year, Donal Hebb designed the first learning law for ANN. In 1972, Kohonen 

and Anderson developed strength theory between neurons. Between 1958 and 1988 Rosenblatt, 

Block, Minsky, Widrow and Hoff submitted a complementary concept for ANN, such as input layer 

perceptron, connection to associated neurons, fixed weights and other learning rules (Ersayın, 2006; 

Sivanandam, Sumathi, & Deepa, 2006). 

For seepage and ground water problems related to hydraulic structures, ANN has been 

utilized to simulate and identify seepage characteristics. Garcia and Shigidi (2006) utilized ANN as 

an approximation model to compute aquifer transmissivity and hydraulic head values. Ersayın 

(2006) developed an ANN model to predict the phreatic line (seepage path) in an earth fill dam 

(Jeziorsko Dam) in Poland. Szidarovszky, Coppola, Long, Hall, and Poulton (2007) combined 

numerical models with the ANN model (hybrid-ANN numerical) to improve the simulation of 

groundwater characteristics. Kim and Kim (2008) used the ANN method to predict relative crest 

settlement of concrete faced rock fill dams. Predicted results of the utilized methodology showed 

good agreement with conventional methods.  

Joorabchi, Zhang, and Blumenstein (2009) successfully developed ANN models to simulate 

and predict the ground water fluctuation based on many variables, such as water table, tide elevation, 

beach slope and hydraulic conductivity, in five locations on the east coast of Australia. Nourani, 

Sharghi, and Aminfar (2012) used a single ANN model to predict head values for each piezo-metric 

on upstream and downstream of different sections of the Sattarkhan earth fill dam (Iran). Santillán, 

Fraile-Ardanuy, and Toledo (2013) developed an ANN model for seepage analysis beneath a 

hydraulic structure, considering different water head. Al-Suhaili and Karim (2014) presented a 

methodology based on the ANN model to optimize the cost of cut-off walls and floors for small 

hydraulic structures constructed on permeable foundation using genetic algorithm (GA). 

The main shortcoming of using the ANN model is a tendency to overfit unless a sufficient 

amount of data is used for validation and test phases. Also, there are many training algorithms, such 
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as Bayesian regularization and Lievenberg-Marquardt, which can be used to decrease overfitting 

effects. Also, the early stopping and regularization technique significantly improves performance of 

the ANN model. The early stopping strategy monitors training error and validation error. The 

training process is continued while training and validation errors decrease. However, when training 

error decreases and validation error increases (overfitting phenomena), the training process stops 

too soon (early stopping) and the optimum value of weight and biases are saved. The regularization 

technique evaluates performance of the ANN model not only based on the error of predicted data, 

but it tries to minimize the summation of weights and biases to provide smother responses.  

2.5.2 Support Vector Machine 

Originally, Vapnik (1999) developed and discussed the advantages of using optimal 

spreading hyper plane in classification and regression machine learning problems. He showed that 

the generalization ability of the developed technique with fewer support vectors is better. The SVM 

has the ability to overcome the over-training (overfitting) phenomena (Raghavendra.N & Deka, 

2014; Vapnik, 2013). Recently, SVM has been widely used in research in civil engineering and 

hydraulic structure disciplines (Fisher, Camp, & Krzhizhanovskaya, 2016; Mahani, Shojaee, 

Salajegheh, & Khatibinia, 2015; Parsaie, Yonesi, & Najafian, 2015; Ranković, Grujović, Divac, & 

Milivojević, 2014; Su, Chen, & Wen, 2016). Many other researchers have employed SVM for 

different purposes related to water resources and hydrology application (Azamathulla, Ghani, 

Chang, Hasan, & Zakaria, 2010; Bhagwat & Maity, 2012; Cimen, 2008; Eslamian, Gohari, 

Biabanaki, & Malekian, 2008; Goel & Pal, 2009; Han, Chan, & Zhu, 2007; Hipni et al., 2013; Khan 

& Coulibaly, 2006; Lin, Cheng, & Chau, 2006; Misra, Oommen, Agarwal, Mishra, & Thompson, 

2009; Moghaddamnia, Ghafari, Piri, & Han, 2009; Ranković et al., 2014; Samui, 2011; Yu, Chen, 

& Chang, 2006). 

Specifically for  ground water applications, many researchers have used SVM to predict the 

ground water fluctuation and study the seepage characteristic in a specific system for various 

conditions (Behzad, Asghari, & Coppola Jr, 2009; Yoon, Jun, Hyun, Bae, & Lee, 2011). Others have 

utilized SVM to assess the quality of the ground water and quantify the pollution sources (Bashi-

Azghadi, Kerachian, Bazargan-Lari, & Solouki, 2010; Liu, Chang, & Zhang, 2009). Most of these 

studies include comparison of SVM performance to another technique, such as ANN model, and the 

results revealed that SVM prediction is better than ANN. Also, SVM is more likely to capture the 

relationship between input and output data and filter out outliers and noise instances. 
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The majority of previous studies were implemented in predicting/forecasting responses of a 

certain variable based on training data. Different error measures were used to evaluate performance 

of SVM prediction. The key conclusion was that SVM can provide an efficient prediction, especially 

when the proper options of kernel function and box-constraint are setup carefully. For some complex 

problems, developing a SVM was used to enhance understanding of input variable effects on 

prediction responses. However, SVM is rarely linked with the optimization model in civil 

engineering applications. Also, reported studies utilizing SVM as a prediction or a surrogate related 

to HWRS models are scarce. 

2.5.3 Gaussian Process Regression (GPR)  

Originally, Rasmussen (2004) developed the GPR technique. However, there were many earlier 

applications of Gaussian distribution in the machine learning technique. The radial basis function 

network and Gaussian kernel function based on SVM are an initial and simple version of the GPR.   

The GPR machine learning technique is a generalization of the probability distribution. The 

stochastic Gaussian process based on random probability distribution governs the properties of the 

GPR function (f (x)) at a particular point. Hence, the GPR algorithm provides a flexible technique 

based on Bayesian framework to figure out the relationship between given data sets. Many technical 

factors, such as hyper-parameter and uncertainty estimation, make the GPR a robust technique (Sun, 

Wang, & Xu, 2014).  

Few studies have been conducted in different disciplines and engineering applications. The GPR 

technique is utilized for prediction and forecasting purposes (Chen & Ren, 2009; He et al., 2017; 

Kang, Han, Salgado, & Li, 2015; Kang, Xu, Li, & Zhao, 2017; Kim, Lee, & Essa, 2011; Li et al., 

2017; Pal & Deswal, 2010; Samui & Jagan, 2013; Xu & Suzuki, 2011). From these studies, the most 

important conclusion was that GPR is less impacted by noisy training data, and the generalization 

ability of GPR is better than other machine learning techniques, such as SVM and ANN. Although, 

there are many factors which enhance prediction ability and efficiency of the GPR technique 

compared to other techniques, applications of the GPR technique in ground water and hydraulic 

structures are scarce. Furthermore, utilization of GPR as a surrogate model replacing the numerical 

model is extremely limited for different disciplines (Xia, Luo, & Liao, 2011).  

2.5.4 Optimization Theory and the Application in HWRS  

Optimization is a technique utilized to find the best solution, design or maintenance 

engineering system. The objective of optimization is either searching for a minimum or maximum 

value of the objective function, which includes design (decision) variables. Basically, in this study, 
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the optimum solution represents the optimum value for the seepage control design variables. These 

variables, such as upstream and downstream cut-offs, location and orientation of cut-offs and apron 

length, provide minimum cost and safe HWRS design. The constraints of the optimization model 

reflect the design safety factor of HWRS and other design requirements. As the optimization solver 

is based on surrogate model responses to evaluate the objective function value and constraints, 

evolutionary optimization algorithms, such as the genetic algorithm (GA), are utilized for such 

complex problems. Most evolutionary optimization algorithms are based on direct search and natural 

selection techniques. Recently, evolutionary optimization algorithms have been widely utilized, as 

compared to traditional optimization methods. Complex engineering optimization problems can be 

solved using these algorithms, such as GA, simulated annealing, fuzzy optimization and other 

methods (Rao, 2009). These algorithms imitate biological behavior for some creatures, swarming of 

insects and neurobiological system as listed below: 

1.    Genetic algorithm (GA) is based on a direct search technique and natural gene selection. 

GA is effective in identifying the global minimum or maximum.  

2.    Simulated annealing (SA) is based on complete thermal annealing of critically heated 

mutation and is efficient in identifying the global optimum solution. 

3.    Particle swarm optimization is based on the behavior of a colony of living things, such 

as birds, insects and fish. 

4.    Ant colony optimization is based on the behavior of ant colonies. 

In this study, GA, hybird genetic algoritim (HGA) and non-dominated sorting genetic 

algorithm II (NSGA-II) are selected as the optimization algorithms. These algorithms can efficiently 

locate a global optimal solution, especially for nonlinear optimization problems. In general, Many 

researchers from different engineering backgrounds have utlized GA. They conclude that GA 

provies an efficient optimum solution (Al-Suhaili & Karim, 2014; Bornschlegell et al., 2012; 

Cojocaru, Duca, & Gonta, 2013; Datta, Chakrabarty, & Dhar, 2011; Hassan, 2015; Housh, Ostfeld, 

& Shamir, 2012; Innal, Dutuit, & Chebila, 2015; Islam, Buijk, Rais-Rohani, & Motoyama, 2015; 

Rajper & Amin, 2012; Singh, 2010, 2011). 

Particularly in hydraulic structures, different optimization algorithms are utilized to find an 

optimal solution for the design. Yazd, Arabshahi, Tavousi, and Alvani (2015) studied optimum 

geometry of concrete gravity dams at minimum cost using the particle swarm optimization (PSO) 

algorithm. Sustainable and seismic loads are considered in the optimization model. Arman  and 

Ghader (2014) studied the optimum shape of concrete gravity dams by applying a new objective 
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function. This function is the allowable duration under earthquake loads, as this duration gives an 

indication of a specific tension stress value.  

AL-Musawi, Shukur, and Al-Delewy (2006) studied the optimum characteristics for three 

alternatives, cut-off wall, blanket floor and filter trench, to reduce seepage effects. FEM was used 

to analyze and simulate each case of the optimization model based on Lagrange multipliers. 

Optimization results showed that the filter trench attained minimum cost. Singh (2010) used GA to 

minimize construction cost of barrages. Additionally, Singh (2011) used fuzzy numbers to measure 

the uncertainty in seepage analysis under a varied hydraulic head. Singh and Duggal (2015) used 

the hybrid differential evolution multiple particle swarm optimization technique (HDEMPSO) to 

solve the optimization model of the hydraulic structures. Seyedpoor, Salajegheh, and Salajegheh 

(2010) studied optimal design of arch dams using soft computing techniques which included dam-

water-rock interactions. They used FEM simulation model with earthquake load to estimate the 

dynamic behavior of an arch dam. Furthermore, optimization models are applied to minimize 

construction cost. 

2.6 Linked Simulation Optimization (S-O) Model for HWRS design  

The linked simulation optimization (S-O) approach is considered a useful technique for 

complex problems to identify the optimum solution based on numerical simulations. The first 

attempt of this technique in groundwater and water resources was conducted by (Gorelick, 1983) 

followed (Das & Datta, 1999; Wagner & Gorelick, 1986; Willis & Finney, 1988). These authors 

applied the S-O model to identify the contaminate source characteristics in specific aquifers and a 

case study area. Later, as linked S-O provides efficient and accurate solutions, S-O has been applied 

to many problems related to groundwater management in coastal aquifers and identifying source of 

contaminants, which are considered complex and computationally expensive tasks (Ayvaz, 2016; 

Bhattacharjya & Datta, 2009; Bhattacharjya, Datta, & Satish, 2007; Datta et al., 2011; Dhar & Datta, 

2009; Hazrati-Yadkoori & Datta, 2017; Heydari, Saghafian, & Delavar, 2016; Jha & Datta, 2011; 

Shourian, Mousavi, Menhaj, & Jabbari, 2008; Sreekanth & Datta, 2011, 2015a, 2015b). 

Specifically in HWRS design involving seepage effects, few studies have utilized S-O 

techniques. Singh (2010, 2011) formulated an optimization model to find the optimum dimension 

of barrage at minimum cost. The author used Khosla’s theory to obtain seepage characteristics to be 

processed in the optimization algorithm. The limitation of this study was that Kholsa’s theory is only 

applicable for small hydraulic structures and the solution by Khosla’s theory has a noticeable amount 

of error. Also, incorporating the effects of hydraulic conductivity on seepage analysis is not possible 
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using Khosla’s theory. Moreover, Khosla’s theory can be applied for specified components of 

substructures related to seepage under HWRS with many restrictions.  

Hamidian and Seyedpoor (2010); Seyedpoor, Salajegheh, Salajegheh, and Gholizadeh 

(2009); Seyedpoor, Salajegheh, Salajegheh, and Gholizadeh (2011) developed a new methodology 

to find the optimum shape of a concrete dam. Adaptive neuro-fuzzy inference system (ANFIS) and 

simultaneous perturbation stochastic approximation (SPSA) were applied to reduce the 

computational cost of the optimization model. An improved version of particle swarm optimization 

(PSO) was utilized to solve this problem. Al-Suhaili and Karim (2014) implemented an indirect S-

O model based on the ANN model to find the optimum solution of hydraulic structure at minimum 

cost. In their study, the safety factors of HWRS were only considered for exit gradient and uplift 

pressure, disregarding sliding, overturning and eccentric load effects. The utilized method to 

generate training data and description of the data were undecided. Also, the ranges of the 

implemented cases were only applied for small HWRS (total head less than 10 m). 

Hence, studies that have utilized the S-O model for optimum design of HWRS incorporating 

numerical seepage responses are scarce. Furthermore, incorporating the effect of the complex flow 

domain of seepage characteristics on optimum design has not been considered previously. 

Additionally, new formulations of the linked S-O model based on relatively new surrogate models 

(SVM, GPR) to find the optimum design HWRS have not been utilized. Also, integrating the effect 

of hydraulic conductivity or uncertainty of hydraulic conductivity has not been implemented within 

the context of S-O models. 

2.7 Motivation and Scope 

With the developments in numerical seepage simulation and its efficiency in providing an 

accurate solution for different problems integrating a complex seepage flow domain and non-

homogenous and anisotropic soil parameters, there is motivation to advance a methodology based 

on linking the numerical simulation to the optimization model. The benefit of this methodology is 

to integrate accurate seepage simulation models with optimization models, and simultaneously to 

provide the safest and most economic design of HWRS. This methodology could not be 

implemented based on approximation and analytical seepage analysis methods. Also, by this 

methodology, many design safety factors related to HWRS may be incorporated to corroborate the 

safety of the HWRS. 

Furthermore, the soil parameter uncertainty related to seepage characteristics, such as 

hydraulic conductivity which has a wide variation and uncertainty range (COV 200%-300%), may 
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affect HWRS safety. Quantifying the uncertainty in seepage characteristics due to uncertainty in 

estimating hydraulic conductivity was considered and applied based on a reliability based optimum 

design (RBOD) framework using the S-O model to determine the effect of the uncertainty in design 

parameters to the safety and minimum cost design of HWRS. Moreover, improving search efficiency 

of the S-O model related to the RBOD model in obtaining a global optimum solution with a certain 

reliability level was implemented based on multi-objective multi-realization optimization 

(MOMRO) technique. Using such a technique can improve the search process based on direct search 

technique and provide diverse alternatives of optimum solutions, which may approach the global 

optimum solution. Also, some optimum solutions based on the MOMRO technique are more 

applicable in some aspects of HWRS design requirements and field conditions. Furthermore, 

additional motivation is to provide an efficient and applicable combination of accurate numerical 

seepage simulation with an optimization based decision model to identify a feasible optimum 

solution (design). This was achieved by replacing the computationally expensive numerical 

simulation model with the expeditious surrogate model based on machine learning techniques.  

From review of existing literature, it can be concluded that the previously developed 

approximate and analytical seepage analysis methods do not provide a precise solution, as their 

solutions have noticeable errors. In real fields, hydraulic conductivity is rarely seen in uniform, 

homogenous or isotropy conditions. Therefore, considering the variation of hydraulic parameters 

and flow conditions and effects on seepage characteristics is only possible by utilizing numerical 

methods. However, utilizing the numerical model solely provides accurate seepage characteristics 

for a predefined problem, and does not provide an explicit expression describing the relationship 

between the design variables related to seepage under HWRS. 

Accordingly, there is a need to use an efficient methodology to find optimum design of 

HWRS and best combination of seepage control design variables for different conditions 

incorporating accurate seepage analysis and HWRS design requirements. Integrating important 

factors, such as safety and cost, could significantly improve design of HWRS and simultaneously 

provide an efficient cost design. Hence, the linked S-O technique is implemented in this study to 

achieve this goal. Optimum design of HWRS includes providing the best seepage control design 

variables with different upstream water levels and different scenarios of hydraulic conductivity. 

Seepage control design variables encompass optimum depths and orientation of many cut-offs and 

distances (aprons) between cut-offs.  

As there are many (design) decision variables, and the relationship between these is 

nonlinear, and these variables influence the seepage characteristics of the candidate optimum 
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solution, the optimization problem is considered a complex task. Consequently, only the 

evolutionary optimization algorithm could solve such problems with some degree of confidence 

regarding global optimality. Hence, GA is utilized in this study to provide the global optimum 

solution for this problem. 

To successfully and efficiently apply linked S-O techniques in this study, surrogate models 

are developed to imitate the numerical responses of seepage quantities. Identifying optimum design 

of HWRS based on direct linking of numerical model with the optimization model is an inefficient 

and time consuming process because the optimization algorithm (GA) based on direct search 

technique requires a large number of repeated solutions of nonlinear and complex numerical 

operations to seepage characteristics for each iteration. This process may lead to an infeasible 

solution and take a long time. Hence, developing an approximation seepage simulator (surrogate 

model) based on the machine learning technique can provide precise and expeditious responses for 

the S-O model to find the optimum solution. The surrogate model can be trained based on 

numerically simulated data sets encompassing the most effective design variables and seepage 

characteristics.  

The linked S-O model was implemented in different scenarios with different machine 

learning techniques based on the purposes and the complexity of the seepage model related to the 

HWRS. S-O techniques include the developed surrogate models, and the formulation of the 

optimization task are presented in the following chapters. Specifically, in chapter three the S-O 

model based on ANN machine learning technique is implemented for a simple seepage conceptual 

model including two end cut-offs with apron (floor) between them. The chapter includes evaluations 

of the developed methodology and evaluations for developed surrogate models  
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3 Performance Evaluation of Genetic Algorithm and Artificial Neural 

Network Based Linked Simulation-Optimization Model for Optimal 

Design of Hydraulic Water Retaining Structures 

 

A shorter version of this chapter has been published in the Journal of Applied Water 

Engineering and Research.   

Al-Juboori, M & Datta, B. 2018 .Performance evaluation of a Genetic Algorithm based linked 

simulation-optimization model for optimal hydraulic seepage related design of concrete gravity dams. 

Journal of Applied Water Engineering and Research 

The general concepts, theoretical background and literature review related to this chapter are 

covered in chapter two. This chapter highlights the procedure to apply the linked S-O methodology to 

find the optimum design of HWRS. Also, this chapter demonstrates to what extent the predictions of 

the developed surrogate models are trustworthy and applicable to be used instead of the numerical 

model. The findings and conclusion of this chapter are a foundation for the following chapters, which 

include more complex simulation and optimization models. The S-O methodology was applied on a 

simple conceptual model of HWRS including simple seepage scenarios of two cut-offs and one apron 

between them. Hydraulic conductivity is considered as homogenous isotropic. The ANN surrogate 

models are trained based on numerically simulated data sets, and then linked to the optimization solver 

(GA) to find the best seepage control variables and the best dimension of HWRS. The options and 

parameters of ANN and GA were carefully selected to attain ideal performance of these models.  

3.1 Introduction  

In addition to external hydrostatic and dynamic loads, seepage characteristics, such as uplift 

pressure and exit gradient values, resulting from seeping water are also critical design variables 

significantly affecting hydraulic stability of HWRS. Achieving accurate seepage analysis under 

hydraulic structures is a challenging task, especially for complex problems classified as nonlinear 

discontinuous problems (Chapuis et al., 2001; Harr, 1962). The complexity arises from several factors, 

such as the geometry of the flow domain under a hydraulic structure, soil properties, boundary 

conditions and the governing seepage equation, etc. The process of finding optimum economic design 

of HWRS, while incorporating accurate seepage analysis methods is a difficult task. Any feasible 

optimum solution must be based on reasonably accurate prediction of seepage characteristics. Only 

numerical seepage analysis methods, such as FEM, provide precise solutions.  
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Therefore, an alternative approach is utilized to achieve the optimum design based on linking 

the numerical seepage simulation model to the optimization model. Direct linking of the optimization 

model with the computationally demanding numerical simulation model is a computationally inefficient 

and time consuming procedure. The optimization solver (GA) based on direct search technique calls 

the simulation model a huge number of times to evaluate the objective function and constraints. For 

example, SEEP/W code may require one to two minutes to accomplish a run for one candidate solution, 

depending on the mesh size and complexity of the model. If GA starts with a limited population size 

for the first generation, e.g. 200, and the SEEP/W code is used for solving each candidate solution to 

evaluate the objective function, approximately six hours may be required to finish the evaluation of the 

first generation. To achieve the global optimum solution, the population size and number of generations 

need to be much larger. Further, the properties (genetic information) of each individual are modified 

and recombined many times to produce a new offspring by applying the crossover and mutation 

processes. These processes may be repeated several times and the fitness of each new candidate solution 

is evaluated by GA based on the SEEP/W solution to find the global optimum point. Hence, the directly 

linked S-O model needs an extensive computational process. Therefore, obtaining a global optimal 

solution for a particular seepage problem, using high performance processer unit, based on the directly 

linked S-O model may consume many days or even weeks. For instance, Dhar & Datta (2009) 

conducted a directly linked S-O model with a small aquifer system. The run time was 30 days utilizing 

relatively high qualification processors to find the optimum solution.  

In addition to a computationally expensive process, the complexity of the problem decreases 

the adoptability of a robust direct linking of a rigorous numerical solution code within the S-O model. 

Design geometry and boundary conditions of the numerical model are different from case to case. 

Through the optimization process, seepage characteristic values and their locations are continuously 

changed from one numerical seepage simulation to another based on the candidate solution presented 

by GA. Alternatively, for computational efficiency through acceptable approximation of physical 

processes, the numerical model can be replaced with a surrogate model to provide accurate and fast 

approximation responses for different seepage scenarios. Hence, linking the surrogate model to the 

optimization model is computationally efficient compared to direct linking based on the numerical 

model.  

One of the most conspicuous machine learning techniques to develop an efficient surrogate 

model is the ANN model. The ANN surrogate models were trained using many numerically simulated 

data utilizing GEO-STUDIO/ SEEP/W codes (Krahn, 2012). Additionally, the ANN models were 

rigorously tested using out of training data sets to measure the efficiency and predictive ability of the 

models. Within the linked S-O model, the GA calls the surrogate model numerous times iteratively to 

compare the fitness value of the objective function and evaluate the constraints. Furthermore, well 
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trained surrogate models can be used as an approximate seepage simulator and predictive model to 

precisely determine a particular seepage characteristic within the indicated ranges and conditions.  

This chapter concentrates on developing surrogate models based linked S-O techniques to 

achieve optimal hydraulic design of HWRS. The optimization model is formulated to provide optimum 

hydraulic design, considering the safety and cost of HWRS, and integrate precise seepage simulation 

responses. The methodology is evaluated by various scenarios to demonstrate the efficiency and 

potential applicability of the methodology.  

3.2 Numerical Seepage Simulation Model Based on Finite Element Method (FEM) 

The numerical seepage simulation model utilized in this study is a finite element based model, 

SEEP/W, within Geo-studio modeling software (Krahn, 2012). The FEM code is used to solve the 

Laplace equation, as the seepage governing equation. FEM encompasses discretization of seepage flow 

continuum to small elements, defining material properties and physical boundary conditions. All 

equations of FEM are formulated at element nodes. The specified equation parameters are changed at 

each node based on location, properties and boundary condition for each node, which in turn represent 

surrounding elements. The general finite element form of the transient seepage equation is given by Eq. 

(3.1): 

 [𝐾]{𝐻} + [𝑀]{𝐻}, 𝑡 =  {𝑄}  (3.1) 

Where: [K] = the element characteristic matrix; 

[M] = element mass matrix;  

{Q} = element applied flux vector;  

{H} = vector of nodal heads;  

t = time.  

For steady state seepage, the terms {H}, t vanish, then the finite element equation can be 

expressed by Eq. (3.2):  

 

[𝐾]{𝐻}  =  {𝑄} (3.2) 

The Gaussian numerical integration is used in SEEP/W to evaluate an element characteristic 

matrix [K]. For example, the integral form of [K] matrix is given by Eq. (3.3): 

[K] A[B]T[C] [B]dA (3.3) 

Where: [B] = gradient matrix; 
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[C] = element hydraulic conductivity matrix; 

 = thickness of an element; 

A= area of the element. 

3.3 Conceptual Seepage Model  

The conceptual seepage model was proposed for the illustrative HWRS design problem as 

shown in Figure 3.1. The variables and design parameters of this model are assumed based on many 

theoretical and practical considerations. Input variables (d1, d2, b and H) are assumed, as shown in Table 

3.1, to cover wide ranges of expected problems in the real fields. Additionally, Tanchev (2014) 

recommended that the value of H must not be more than 40 m, because permeable soils have low bearing 

capacity values, and it is hard to bear the tremendous amount of hydrostatic pressure.  

Table 3.1 Assumed range of input variables 

 Description Minimum 
value (m) 

Maximum 
value (m) 

d1 Depth of cut-off in upstream side 1 40 
d2 Depth of cut-offs in downstream side 1 40 
b Half width of concrete HWRS (apron) 1 60 
H Upstream water head 1 40 

 

 
Figure 3.1 Conceptual seepage model  

 

Furthermore, to satisfy the unconfined seepage flow condition, the ratio of the thickness of the 

permeable soil layer (T) to the half width of hydraulic structure (b) should be more than one, as shown 

in Figure 3.2 (Harr, 2012). Therefore, the soil layer thickness is assumed 140 m, which is more than 

double the maximum expected value of b (Table 3.2). This step guarantees that the unconfined flow 
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condition is achieved. Similarly, Figure.3.3 shows a strong effect of cut-off depth ratios (s/T) variation 

on the normalized discharge ratios (q/kh) for the (b/T) values less than 0.5 (unconfined flow condition). 

This means the influence of the embedded cut-off length has a significant effect on the unconfined flow 

condition.  

 
Figure 3.2 Comparing effect of soil layer depth to HWRS width on total head ratio (Harr, 1962) 

 

 
Figure 3.3 Effect of the cut-off embedment length on normalized discharge (q/kh) (Harr, 1962) 

 

Moreover, Novak, Moffat, Natully and Narayanan(2007) suggested that major portion of the 

width of a HWRS floor (b*) should be within the upstream side. This length corroborates the stability 

of the HWRS, where upstream hydrostatic downward pressure and weight of floor counterbalance the 

substantial amount of the uplift pressure on the HWRS floor. On the other hand, the homogenous and 
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isotropic flow domain is assumed with the constant hydraulic conductivity value k= 5E-5 m/s, 

representing grained sand soils (Terzaghi et al., 1996). 

3.4 Data Generation  

Training of surrogate models is based on data sets simulated by numerical seepage modeling 

code (SEEP/W). Input data are the independent variables (d1, d2, 2b, H) randomly generated using the 

Latin hypercube sampling (LHS) method (Lin & Tang, 2015). The LHS method is a design of 

experiment (DOE) technique used to generate samples for experiments. This method provides local 

periodic information with equal probability that facilitates the training process to build an efficient 

surrogate model based on the input data and their numerical responses, i.e., the output data. The output 

data is obtained as a solution resulting from numerical seepage modeling for each input set. The most 

important output data are uplift pressure on the floor at the Us cut-off (θC) in kPa, uplift pressure on 

the floor at the downstream (Ds) cut-off (θE) in kPa and the exit gradient value (ie) at the toe of HWRS. 

3.5 ANN Description  

The ANN technique can explore complex, discontinuous and nonlinear relationships between 

data sets. The ANN captures the relationship between training input and output data sets to build an 

efficient surrogate model. Based on the generated data set related to the seepage system under HWRS, 

the ANN was used to build three surrogate models. These models provide accurate predictions of 

seepage characteristics without further utilizing numerical seepage simulation (SEEP/W code). A 

typical and simple ANN consists of input layer, hidden layer(s) and output layer. As shown in Figure 

3.4, circles represent neurons, lines between layers represent weights, squares represent scalar biases, 

and X and Y vectors represent input and output data, respectively (Jain & Kumar, 2006).  

 
Figure3.4 Typical ANN architecture 

 

The ANN tests all input and output data sets and learns, using ANN training rules, how changes 

in input data sets impact output data sets. The objective function of the ANN training algorithm is to 
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minimize the error between predicted and observed data. The ANN algorithm modifies the weights and 

biases several times until the best model is attained based on minimum mean square error (MSE) value, 

shown in Eq. (3.4) (Sivanandam et al., 2006).  

MES  =
∑ (Yg − Yo)

2N
I=1  

N
 

 

(3.4) 

Where: 𝑌𝑔 = target data; 

            𝑌𝑜 = output of the ANN;  

             N = number of scenarios.  

There are three kinds of training processes, supervised, unsupervised (self-learning) and 

reinforcement training (Sivanandam et al., 2006). In this study, feed-forward supervised training based 

on the Lievenberg-Marquardt algorithm was applied with a back propagation error. Matlab programing 

language was utilized to develop ANN models because Matlab is a versatile tool providing many 

options that can be modified to build perfect ANN models. Three ANN models were developed 

individually to approximately simulate each hydraulic seepage characteristic (θC, θE, ie). Generated 

input data sets of the four input variables (d1, d2, 2b and H( and their seepage simulation responses (θC, 

θE, ie) were utilized to build the ANN models. Input data passes through the input layer and training 

operations are performed in the forward direction. Outcomes of the output layer are compared with 

target values. Errors between ANN prediction and target values are distributed back on the weights and 

biases to modify their value. The forward training and back propagation error processes are repeated 

numerous times until the convergence is achieved between output data and target data (Jain & Kumar, 

2006).  

An example of mathematical expression of an ANN which has one hidden layer, s hidden 

neurons, i input variables and m output variables is given by Eq. (3.5):  

Ym = f1 [  ∑Wm s
o    f2  { ∑Ws i 

h   x i + bs  

s

i=1

}

m

j=1

+ bm] 
 

(3.5) 

Where Y m = output of the ANN; 

xi = input variables; 

Wm s
o  = connection weight between (s)th node of hidden layer and (m)th node of output layer;  

Ws i 
h  = connection weight for (i)th input variable and (s) th node of hidden layer; 

f1, f2 = transformation functions;  

b = bias factors. 
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3.5.1 Size of Training Data  

Quantifying the required size for training data to develop an efficient surrogate model is one of 

the most difficult challenges of machine learning techniques. The difficulty arises from complexity of 

the relationship between input and output data, which is different from case to case. Often researchers 

use the trial and error procedure and check MSE or coefficient of determination (RSQ) until the 

developed model presents accurate results. However, Pruett and Hester (2016) increased training data 

sets many times and each time measured standard deviation error of predicted data based on the trained 

surrogate model. They considered that the data set adequate and the training surrogate model became 

efficient when standard deviation of the error is approximately constant. A similar concept was applied 

in this study to find the required data size to train ANN models. Therefore, the initial source data was 

generated and divided into two subsets: 70% for training and 30% for testing. The training/testing data 

sets were randomly selected without replacement from the source data. This process was repeated five 

times to generate five (5-fold) different training/testing data sets. Consequently, five ANN models were 

trained and tested using the 5-fold data. Average standard deviation and standardized error (standard 

deviation divided by the square root of data size) for the five developed models were computed for 

training and testing data. Then, source data was increased gradually and the same procedure was 

repeated for five new ANN models until standard deviation and standardized error did not substantially 

change. Results of the developed ANN models for different data size are presented in Figures 3.5, 3.6 

and 3.7. Obtained  results indicate that the data size of 500 sets (350/150) provides adequate ANN 

models. 

 

 
Figure 3.5 Standardized and standard deviation error for θC ANN model with different training/testing 

data size 

 

70/ 30 140 / 60 210/ 90 280 / 120 350 / 150

Training  standarized error 0.2 0.1 0.7 0.5 0.6
Testing standarized error 0.4 0.1 1.2 1.1 1.0
Taining standar divietion 1.3 0.5 7.7 7.1 8.1
Testing standard devieation 2.3 0.6 11.4 12.0 11.9

0.0

0.2

1.0

5.0

25.0

Er
ro

r  

Size of the data ( training/testing) 
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Figure 3.6 Standardized and standard deviation error for θE ANN models with different training/testing 

data size 
 

 
Figure 3.7 Standardized and standard deviation error for exit gradient ANN model with different 

training/testing data size 

3.5.2 Optimizing ANN performance  

ANN performance is based on several options and parameters, where these parameters can be 

modified to provide accurate and generalized surrogate models. Furthermore, performance of ANN is 

different from task to another task depending on relationship complexity between training data and data 

properties. Key parameters affecting ANN performance are: number of neurons, percentage of training 

to validation data, transfer function of hidden layer(s) and transfer function of the output layer. The 

most commonly utilized transfer functions are logsig, tansig, purelin and radbas (MathWorks, 2018). 

In some previous studies, effective ANN parameters were selected based on the trial and error 

technique or user experience (Hamzaçebi, 2008; Jaddi, Abdullah, & Hamdan, 2013; Khaw, Lim, & 

Lim, 1995). The best model that can provide better data fit is chosen. However, more systematic and 

effective procedures, such as analysis of variance (ANOVA), Taguchi DOE method and other methods, 

have been used to maximize performance of ANN models. 

70/ 30 140 / 60 210/ 90 280 / 120 350 / 150

Training  standarized error 0.4 0.2 0.9 0.6 0.6
Testing standarized error 1.4 0.1 1.2 1.2 1.2
Taining standar divietion 2.4 1.6 9.8 7.9 8.1
Testing standard devieation 7.5 0.7 11.2 13.0 14.9

0.0

0.2

1.0

5.0

25.0

Er
ro

r

Size of the data ( training/testing) 

70/ 30 140 / 60 210/ 90 280 / 120 350 / 150

Training  standarized error 0.009 0.006 0.039 0.037 0.029
Testing standarized error 0.011 0.006 0.045 0.054 0.049
Taining standar divietion 0.057 0.051 0.442 0.477 0.424
Testing standard devieation 0.059 0.048 0.432 0.596 0.602

0.002

0.008

0.040

0.200

1.000

Er
ro

r

Size of the data ( training/testing) 
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The Taguchi DOE method (Cavazzuti, 2012) is one of the best tools utilized to attain optimum 

performance of a certain system (model, experiments, etc.) based on a small number of experiments. 

Based on data analysis, orthogonal array and signal noise ratio (S/N), Taguchi developed an efficient 

DOE method. Briefly, this method quantifies the impacts of effective variables (control variables) and 

noise variables, which have a trivial effect on experiment results. Depending on different performance 

measures, Taguchi successfully developed what he called signal to noise ratio (S/N) measures. These 

measures optimize variable performance and find the effective factors’ combination, by which 

performance of the experiment (model) maximize or minimize the results (Cavazzuti 2012). The most 

prominent measures are larger the better (LTB) and smaller the better (STB), which are used in this 

study and given by Eqs. (3.6) and (3.7). 

Smaller the better equation (STB):  

𝑆/𝑁 = −10 log
1

𝑛
(∑𝑦2)           (3.6) 

Larger the better equation (LTB):  

𝑆/𝑁 = −10 log
1

𝑛
(∑

1

𝑦2
) (3.7) 

Where: y = responses of a certain factor combination in Taguchi DOE; 

            n = number of responses in the factor level combination. 

To find the best parameters’ combination of ANN models, the four factors with four levels of 

16 runs Taguchi DOE (L4^4) were conducted, as shown in Table 3.2. The levels of each factor in 

Taguchi DOE represent the ANN parameters that can be modified in ANN training (Matlab) code for 

each experiment based on the same training/testing data set. Taguchi DOE was individually applied to 

the three seepage characteristics (θC, θE, ie). Taguchi analysis was accomplished using Minitab 

software and the SN ratio for each model was determined based on the RSQ for each experiment, as 

shown in Table 3.2.  
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Table 3.2 Taguchi Orthogonal Array Design L16 (4^4) with S/N ratio  

Run N
o of neuron (A

)  

Training/ 
validation 
ratio (B) 

Transfer 
function of 

hidden 
layer (C)   

Transfer 
function 
of output 
layer (D) 

θC   θE  ie      

Training      
R

SQ
 

SNR Training      
R

SQ
 

SNR Training      
R

SQ
 

SNR 

1 3 50/50 logsig logsig 55 34.80 32 30.10 5 13.97 
2 3 60/40 purelin purelin 95 39.55 81 38.17 39 31.82 

3 3 75/25 tansig tansig 97 39.73 98 39.82 87 38.79 

4 3 90/10 radbas radbas 1 0.00 1 0.00 1 0.00 

5 6 50/50 purelin tansig 94 39.46 94 39.46 72 37.14 

6 6 60/40 logsig radbas 21 26.44 1 0.00 1 0.000 

7 6 75/25 radbas logsig 2 6.02 1 0.00 1 0.00 

8 6 90/10 tansig purelin 99 39.91 99 39.91 94 39.46 

9 9 50/50 tansig radbas 1 0.00 1 0.00 1 0.00 

10 9 60/40 radbas tansig 98 39.82 93 39.37 53 34.48 

11 9 75/25 logsig purelin 99 39.91 99 39.91 96 39.64 

12 9 90/10 purelin logsig 49 33.80 14 22.92 1 0.00 

13 12 50/50 radbas purelin 96 39.64 94 39.46 92 39.27 

14 12 60/40 tansig logsig 40 32.04 1 0.00 1 0.00 

15 12 75/25 purelin radbas 40 32.04 3 9.54 1 0.00 

16 12 90/10 logsig tansig 98 39.82 99 39.91 98 39.82 

 

The Taguchi DOE analysis results for θC model shown in Figure 3.8 demonstrate that factors 

C1, C2 and D2, D3 have a parallel positive effect on S/N ratios of the θC ANN model. As Taguchi 

DOE is an approximation method, additional possible scenarios listed in Table 3.3 were implemented 

to find the best combination. Further experiments were implemented to find the best number of neurons 

between 12 and 9, i.e., level 3 and 4.  The results of conformation experiments demonstrate that the 

model with 11 neurons provides the best fit. The final θC ANN model has 11 neurons, 60/40 training 

to validation ratio, logsig transformation function for the hidden layer and purelin transformation 

function for the output layer. 

Table 3.3 Conformation experiments for different levels of C1, C2, D2 and D3 for θC ANN model 

A B C D SN Training Testing 
RSQ RSQ MSE 

4 2 1 2 54.78 99.6 99.4 102.3 
4 2 1 3 54.74 99.7 99.2 140 
4 2 2 2 55.75 95.2 95.5 641 
4 2 2 3 55.71 94.8 94.0 1045 

 

 



3
6  

Chapter Three  

36 
 

 

Figure 3.8 Main effects SN ratio (larger is better) of the θC ANN model 

 

The same procedure was applied to the θE and ie ANN models and the result of Taguchi 

analysis is shown in Figures 3.9 and 3.10. The θE model has (A1B1C1D2) initial factors’ combination, 

and the final combination is 4 neurons, 50/50 training to validation ratio, logsig transformation function 

for the hidden layer and purelin transformation function for the output layer. Similarly, the best factor 

combination for the ie model is (A1B1C1D3) and the final model has 5 neurons, 50/50 training to 

validation ratio, logsig transformation function for the hidden layer and tansig transformation function 

for the output layer.  

 

Figure 3.9 Main effects SN ratio (larger is better) of the θE ANN model 
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Figure 3.10 Main effects SN ratio (larger is better) of the exit gradient ANN model 

3.5.3 Cross validation  

Measuring the accuracy of the developed surrogate models related to seepage characteristics 

(θC, θE, ie) based on a single scenario of the training/testing data is a fragile technique. Alternatively, 

the multiple training/testing sets (cross validation (CV)) technique provides more understanding and 

precise estimation about prediction accuracy of the developed models for out of training data (Alpaydin, 

2014). The CV process involves randomly dividing source data into K (5 to 10) folds without 

replacement. Each fold encompasses a unique data indexing for training and testing parts and is different 

to other folds. The CV technique ensures that every single point in data is used in the training and testing 

process. The training process was implemented K times. Error measures, such as MSE and RSQ, were 

recorded each run for training and testing sets. The average of measurements provides an accurate 

understanding of the model performance and a reliable prediction for detached data.   

Based on ANN optimum parameters obtained by the Taguchi method, CV was conducted for 

each model. the source data was divided into five folds and new training processes were implemented 

five times with different (training/testing) sets. Results in Table 3.4 show robust predictions of the 

trained models with varied training and testing data sets. Although CV provides perfect understanding 

of model performance, it is a relatively expensive process and results of CV are used only to measure   

efficiency of the developed models. Therefore, after achieving a satisfactory CV results, the final 

models are different to CV models. The final model is trained on high percentage source data to provide 

an accurate prediction.  
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Table 3.4 Cross valuation results for different training / testing sets 

CV- 
Set 

ΘC ΘE  Exit gradient  
Training Testing Training Testing Training Testing 

RSQ MSE RSQ MSE RSQ MSE RSQ MSE RSQ MSE RSQ MSE 
set 1  99.8 27.57 99.4 113.5 99.1 68.16 98.8 148.2 95.1 0.017 93.8 0.006 
set 2 99.7 41.5 99.7 30.17 98.4 142.5 98.3 132.6 97.6 0.008 91.4 0.02 
set 3 99.8 31.8 99.1 94.1 98.5 143.7 98.16 103.4 97.4 0.007 98.1 0.007 
set 4 99.6 51.8 99.7 59.6 99.4 47.77 98.5 145.1 97.8 0.005 91 0.056 
set 5 99.6 53.98 99.6 43.07 99.1 82.25 99.33 45.63 95.9 0.013 96.8 0.006 

average  99.7 41.33 99.5 68.09 98.9 96.87 98.62 115 96.76 0.01 94.22 0.019 

 

3.6 Optimization Model  

The optimization model was formulated to find safe and minimum cost design of HWRS that 

impounds a significant amount of water, considering the effects of seepage characteristics. Additionally, 

the hydraulic design requirements of HWRS were considered in the optimization model, such as 

flotation, sliding and overturning safety factors. The optimization model components are summarized 

as follows: 

3.6.1 Decision vector X 

The decision vector X = [x1, x2, x3... xn] is a set of variables embedded in the objective function 

and/or constraints of the optimization model. Values of X are modified many times by GA until the 

minimum or maximum value of the objective function is achieved and simultaneously all constraints 

are satisfied. In this study, the decision vector (X=[x1, x2, x3, x4, x5, x6]) represents seepage design 

variables of the candidate design. Some of these variables describe the geometry of seepage control 

components and geometry of the HWRS. These variables are incorporated in the objective function and 

constraints, as shown in Eq. (3.8) to Eq. (3.32). The decision variables are defined as shown below:  

x1 = (d1) = Us cut-off length (m); 

x2 = (d2) = Ds cut-off length (m); 

x3 = (2b) = width of hydraulic structure (m);  

x4 = (b*) = portion of the floor at the Us side (m); 

x5 = (t1) = thickness of the HWRS floor at Us (m);  

x6 = (t2) = the thickness of the HWRS floor at Ds (m). 



3
9  

Chapter Three  

39 
 

3.6.2 Objective function f (x) 

The objective function (f (x)) refers to the mathematical description of a certain value in a 

system or design to be minimized or maximized. Mostly, this function includes the decision variables. 

The optimization solver (GA) iterates and modifies the decision variables many times until the optimum 

value of the objective function is achieved. In this study, the objective function minimizes cost of the 

HWRS considering the cost of seepage prevention components. The objective function is shown in Eq. 

(3.8). 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒,   f (x) =C1V1+C2V2 +C3V3 (3.8) 

Where C1 and C2 are costs coefficients related to construction Us and Ds cut-offs per unit 

volume (m3), respectively. C1 and C2 can be expressed by Eqs. (3.9) and (3.10) as a function of the cut-

off depth because construction cost of the cut-off is a critical stage and needs more time and effort with 

augmentation of cut-off depths. Further,  theses functions were formulated  based on the assumption 

that the cost could not represent a linear relationship with cut off depths, as the requirements, tools and  

field conditions  to construct cut-offs less than 10 m (for example) in depth are generally different than 

when the depth of cut off is  greater than 30, etc.  Furthermore, these functions return  high construction 

cost of deep cut-offs, which is undesirable in a minimum cost design optimization. However, it may be 

a feasible and good alternative for some HWRS which retain a high upstream water head value (H). 

However, the cost coefficient functions given by Eqs. 3.9 and 3.10 are only illustrative, and need to be 

carefully defined for each site condition. A typical plot of the costs per unit volume (C1, or C2) are 

shown in the Appendix B, as Figure B3.1. C3 is construction cost of the floor per unit volume and equals 

$400/m3.  

C1 = x1
3+20x1

2 + 200 x1+400 (3.9) 

C2 = x2
3+20x2

2 + 200 x2+400 (3.10) 

 V1 and V2 are volume of Us and Ds cut-offs (m3), respectively, which are given by Eqs. (3.11) 

and (3.12), where ts1, ts2 are thicknesses of the Us and Ds cut-offs (assumed 0.5m), respectively; V3 is 

volume of the floor (m3) given by Eq. (3.13). 

V1=x1 ts1 (3.11) 

V2=x2 ts2 (3.12) 

V3 =
(x5 + x6) x3

2
 (3.13) 

Where x5, x6 are computed utilizing Eqs. (3.14), and (3.15): 

x5 =
1.3 θC

GS − 1
 (3.14) 

x6 =
1.3 θE

GS − 1
  (3.15) 
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The values θC and θE are computed using the trained ANN models, which are linked with the 

optimization model. Hence, ANN models work as a function of (x1, x2 and x3) or (d1, d2, 2b). Therefore, 

the X value is modified for each optimization iteration as a new candidate solution, until the optimum 

solution is achieved. As expression of Eqs. (3.8) to (3.15) are nonlinear and some decision variables 

(x5, x6) are based on complex nonlinear (ANN) surrogate model responses, the objective function and 

some constraints are considered nonlinear. Therefore, using evolutionary optimization algorithms, such 

as GA, is extremely effective to solve such nonlinear optimization tasks.  

3.6.3 Constraints defining simulated impact on the optimum design  

In order to define feasibility of any candidate optimal solution, the impact of decision variable 

values (i.e., depth of cut-offs, distance between cut-offs, floor thickness, etc.) on the candidate optimal 

solution needs to be predicted. Without accurate prediction of these impacts for each candidate design 

solution an optimum solution cannot be obtained. This aspect can be addressed by directly linking a 

numerical simulation model to compute the seepage characteristics, uplift pressure, exit gradient, etc. 

In the proposed methodology, because the optimization algorithm requires numerous runs of the 

numerical simulation model in order to identify an optimum solution, a trained and tested ANN based 

surrogate model was utilized as an approximate simulator and was introduced as a binding set of 

constraints (Eq. (3.16)) of the optimization model. The seepage characteristics are used to evaluate the 

objective function and constraints. Therefore, incorporating surrogate models in the optimization model 

represents an implicit equality constraint. 

(θC, θE, ie) = f(x1, x2, x3, H, k) (3.16) 

Additionally, ANN surrogate models are linked with other constraints because some design 

requirements and safety factors are based on the value of seepage characteristics. The general procedure 

of linking surrogate models with the optimization model is shown in Figure 3.11.  

 
Figure 3.11 General schematic of the linked simulation-optimization model 
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3.6.4 Constraints defining design safety factors related to overturning, sliding, floatation, 

exit gradient and load eccentricity requirements 

Design constraints represent particular conditions or design requirements and the optimal 

design must satisfy all these requirements in terms of permissible safety factors. In addition to 

simulation constraints discussed earlier, two types of constraints were incorporated: i) the design 

requirements to be complied with in terms of safety factors, and ii) the logical constraints, e.g., 

minimum permissible distance between cut-offs. Most of these constraints include the decision vector 

and are classified as nonlinear constraints as discussed below.  

3.6.4.1 Flotation constraints  

The standard stabilization criterion against uplift pressure provided by U.S. Army Corps of 

Engineers (1987) recommends that the uplift pressure safety factor for hydraulic structures with normal 

operation conditions is 1.5, whereas for construction and maintenance conditions with zero water level 

of upstream head (H) is 1.3. These factors were formulated as constraints, where Us uplift pressure (θC) 

must be less than the unit weight of concrete floor plus hydrostatic pressure near the first cut-off. Mostly, 

HWRS are constructed from concrete to efficiently resist external hydrostatic and dynamic pressures, 

and to provide the required weight to counterbalance external loads. The mathematical expressions for 

the two constraints are presented in Eq. (3.17) and (3.18):  

g1(x) = - γC x5- γw (H- x5)+1.5 θc γw ≤ 0 (3.17) 

g2(x)  =  − γc x5 + 1.3 θc γw ≤  0 (3.18) 

Where: 

γC = concrete weight density (25 kN/m3); 

γw = water weight density (9.81 kN/m3); 

H = total water head (m); 

θc = uplift pressure at Us cut-off (kPa).  

Also, Ds uplift pressure (θE) must be less than the unit weight of concrete floor near the second 

cut-off for normal conditions as shown in Eq. (3.19). 

g3(x) =  − γc x6 + 1.3 θE  γw ≤  0 (3.19) 

3.6.4.2 Exit gradient constraint   

The exit gradient (ie) is one of the most crucial design characteristics related to safety of HWRS. 

Physically, ie can be represented by the amount of hydraulic gradient dissipated at the last square of the 

stream-equipotential flow-net divided by length of the square (ie = △h/L). In this study, actual ie value 
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is determined based on SEEP/W solution for each case. The exit gradient safety factor is computed by 

Eq. (3.20):  

F. S =  
ic
 𝐢𝐞 

 (3.20) 

Where ic is the critical exit gradient and given by Eq. (3.21)  

ic =
γsub 

γw
    or      ic =

(GS − 1)

(1 + 𝑒𝑠)
 (3.21) 

Where γsub is submerged soil density; Gs is specific gravity of the soil; es is void ratio of the 

soil.  

Soil properties are assumed mixed grained sand (γsat =21.2 kN/m3), and that results in ic=1.15 

(Terzaghi et al., 1996). Consequently, the minimum allowable safety factor for the exit gradient must 

be between three and five (Harr, 2012; Khosla et al., 1936). Therefore, the constraint is expressed by 

Eq. (3.22), considering the ie safety factor equals five: 

g4(x) = 5 ie- ic ≤ 0 (3.22) 

3.6.4.3 Sliding constraint 

HWRS resistance must be sufficient against sliding and shear forces along the contact surface 

between the HWRS foundation and soil surface or any horizontal joint within the body of HWRS. To 

examine HWRS safety against sliding, two soil parameters must be estimated: cohesion factor (C) and 

internal friction resistance factor (f= tan∅), where ∅ is an internal soil friction angle. Tanchev (2014) 

recommended, for normal load conditions, a sliding safety factor (Ks) of 1.5, which can be determined 

by Eq. (3.23).  

 Ks =
∑Vtan∅ + C B

∑W
 (3.23) 

Where: 

Ks = sliding safety factor; 

 ∑𝑊 = resultant of horizontal forces acting on the HWRS; 

∑𝑉  = resultant of all vertical forces; 

C = cohesion resistance factor; 

B = 2b = width of structures; 

∅ = internal friction angle. 
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The values of f and C are assumed as f= 𝑡𝑎𝑛∅=0.7 and C=20 kPa (Tanchev, 2014), and the 

constraint is expressed as shown in Eq. (3.24). 

g5(x) = 1.5- Ks ≤ 0 (3.24) 

3.6.4.4 The eccentric load condition and overturning constraint     

Overturning stability is another important concept in HWRS design. According to the U.S. 

Army Corps of Engineers (1987) recommendation, the resultant (R) of all acting forces on the HWRS 

force must be located at a distance (e) from the toe of the hydraulic structure for normal conditions. 

This means that R must be located within the middle third of the foundation width (2b). This condition 

corroborates the full compression zone under the hydraulic structure’s foundation and prevents the 

probability of a tension zone, as shown in Figure (3.12). The resultant location (e) is determined by Eq. 

(3.25).  

e =  ∑M
∑V

 (3.25) 

Where: 

∑𝑀 = summation of applied moments (of forces) around the toe; 

∑𝑉 = summation of vertical forces acting on the HWRS.  

The constraints are given by following equations.  

g6(x)=x3 /3-e ≤ 0 (3.26) 

g7(x)=e -2/3×x3  ≤ 0 (3.27) 

Also, Tanchev (2014) recommended that the design safety factor against overturning (Fovt) 

must be more than 1.5 and can be expressed by Eq. (3.28)  

Fovt =
Mpas

Mact
 (3.28) 

Where  

Mpas =passive moments about the toe, which stabilize the HWRS; 

Mact=active moments about the toe, which weaken HWRS overturning stability. The constraint 

is given by Eq. (3.29). 

g8(x)=1.5-Fovt ≤ 0 (3.29) 
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Figure 3.12 Free body diagram of the HWRS 

 

3.6.4.5 Other hydraulic logical constraints  

Most other constraints are logical and geometrical constraints; for instance, all the design 

variables must be in the positive range. Additionally, Tanchev (2014) mentioned that the minimum 

distance between two cut-offs is not less than the summation of cut-offs lengths. Moreover, the cut-off 

length must be less than 1.5 times of the total head. The formulation of these constraints is given by Eq. 

(3.30) to (3.32). 

g9(x) = x1-1.5×h ≤ 0 (3.30) 

g10(x) = x2-1.5×h ≤ 0 (3.31) 

g11(x) = x4-x3  ≤ 0 (3.32) 

3.6.5 Genetic Algorithm (GA) 

GA is a non-traditional optimization algorithm widely utilized due to its efficiency in attaining 

global optimal solutions. Complex engineering optimization problems can be solved using GA. GA is 

an effective global optimization algorithm because GA: [1] has a parallel processing capability, [2] 

utilizes multiple offspring, [3] explores solutions in multi directions, [4] can easily eliminate dead 

directions and continue with more effective directions, [5] changes many parameters instantaneously, 

[6] randomly changes selected solutions and checks whether or not this provides improvements in 

solutions (Bajpai & Kumar, 2010). 

GA randomly generates the initial population (individuals) covering the search design space. 

The fitness value of each individual is evaluated, then the high rank individual has a significant 

contribution to breed new individuals. The new generation is a combination of high rank parents and 
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new offspring (children). Children are generated by making crossover, or mutates for the genes’ 

properties of selected parents. Hence, the new population inherits a large portion of parental 

characteristics. This process continues many times to find the optimum solution and stops when fitness 

value does not improve for new generations (Gen & Cheng, 2000; Haupt & Haupt, 2004; Rao, 2009). 

Furthermore, GA can be used when the objective function or constraints are nonlinear, 

stochastic and have undefined derivatives. Because the objective function and constraints are based on 

ANN models, which is a non-differential function, it is extremely difficult to solve the optimization 

model using traditional optimization methods, which are based on the gradient search technique. 

Therefore, GA is a suitable choice to solve such optimization tasks. In the proposed linked S-O model, 

GA randomly generates many solutions and invokes ANN models many times to compute and evaluate 

the fitness value and constraints for each solution. These processes continue for many generations until 

the optimum solution is achieved.  

3.6.6 Maximizing GA performance 

There are many parameters and functions affecting GA performance. The impacts of these 

parameters must be explored before running GA. Population size, fitness scaling, selection, 

reproduction, migration crossover, mutation, stopping criterion and constraint parameters are the main 

parameters and functions that influence GA performance.  

Many previous researchers used a non-systematic procedure to select GA parameters, such as 

the trial and error method, selecting default options and using their experience. Other researchers did 

not explain why they selected GA parameters in a particular combination (Al-Suhaili & Karim, 2014; 

Bornschlegell et al., 2012; Cojocaru et al., 2013; Datta et al., 2011; Dhar & Datta, 2008; Housh et al., 

2012; Innal et al., 2015; Islam et al., 2015; Rajper & Amin, 2012; Singh, 2010, 2011). However, using 

such scenarios may not lead to ideal GA performance. Furthermore, varying a particular parameter 

individually, without considering other parameters, does not provide an insight into interactions 

between different GA parameters in different levels.    

On the other hand, others systematically analysed and studied the influences of GA parameters 

on GA performance (Haines, Mills, & Filliben, 2012; Kolahan & Doughabadi, 2012; Koljonen & 

Alander, 2006; Pereira et al., 2005; Rand, Riolo, & Holland, 2006). From the review of previous 

research, it can be concluded that the most active parameters are population size, fitness scaling 

function, selection function, cross over fraction, cross over function and mutation function. 

Studying comprehensive interactions between all GA parameters in different levels is a 

complex process and beyond of the scope of this research because extensive effort and time are required. 

Hence, the Taguchi DOE method was applied to provide an efficient parameter combination to 
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maximise GA performance with minimum experiment number (Dao, Abhary, & Marian, 2016; 

Majumdar & Ghosh, 2015).  

The six factors (parameters) mentioned above with five experimental levels were considered in 

Taguchi DOE method L25 (5^6) using Minitab software, as shown in Table 3.5. The Taguchi DOE 

analyses were processed for different head value (10, 20, 30 and 40 m) to determine the GA fitness 

value for each run. To ensure the initial starting point of the GA is same for all DOE runs, Matlab 

optimization toolbox option “Use random states from previous run” was activated, which ensures an 

objective comparison for DOE results.  

Table 3.5 Taguchi DOE for GA parameters with normalized fitness value for different head values  

RUN 
Population 

size 

Fitness 
scaling 
function 

Selection 
function 

Cross 
over 

fraction 

Cross over 
function 

Mutation 
function Normalized fitness value 

A B C D E F 10(m) 20(m) 30(m) 40(m) 

1 50 Rank Stochastic 
uniform 0.3 constraint 

dependent 
Constraint 
dependent 0.911 0.782 1.000 0.723 

2 50 Top Qty 0.2 Reminder 0.45 Scattered Uniform 
Rate  0.01 0.221 0.545 0.839 0.201 

3 50 Top Qty 
0.30 Uniform 0.6 Single point Uniform 

Rate  0.1 0.070 0.378 0.807 0.004 

4 50 Top Qty 
0.40 Roulette 0.75 two point Uniform 

Rate  0.5 0.075 0.384 0.905 0.036 

5 50 Top Qty 0.5 Tournament 0.9 Heuristic 
(1.2) 

Adaptive 
Feasible 0.903 0.026 0.212 0.011 

6 100 Rank Reminder 0.6 two point Adaptive 
Feasible 0.927 0.043 0.655 0.739 

7 100 Top Qty 0.2 Uniform 0.75 Heuristic 
(1.2) 

Constraint 
dependent 0.135 0.862 0.166 0.001 

8 100 Top Qty 
0.30 Roulette 0.9 constraint 

dependent 
Uniform 

Rate  0.01 0.130 0.442 0.868 0.116 

9 100 Top Qty 
0.40 Tournament 0.3 Scattered Uniform 

Rate  0.1 0.114 0.308 0.803 0.020 

10 100 Top Qty 0.5 Stochastic 
uniform 0.45 Single point Uniform 

Rate  0.5 0.041 0.263 0.842 0.010 

11 200 Rank Uniform 0.9 Scattered Uniform 
Rate  0.5 0.023 0.013 0.909 0.003 

12 200 Top Qty 0.2 Roulette 0.3 Single point Adaptive 
Feasible 0.092 0.032 0.010 0.725 

13 200 Top Qty 
0.30 Tournament 0.45 two point Constraint 

dependent 0.000 0.276 0.663 0.998 

14 200 Top Qty 
0.40 

Stochastic 
uniform 0.6 Heuristic 

(1.2) 
Uniform 

Rate  0.01 0.111 0.243 0.633 0.100 

15 200 Top Qty 0.5 Reminder 0.75 constraint 
dependent 

Uniform 
Rate  0.1 0.075 0.102 0.564 0.125 

16 300 Rank Roulette 0.45 Heuristic 
(1.2) 

Uniform 
Rate  0.1 0.924 0.861 0.000 0.697 

17 300 Top Qty 0.2 Tournament 0.6 constraint 
dependent 

Uniform 
Rate  0.5 0.011 0.002 0.910 0.003 

18 300 Top Qty 
0.30 

Stochastic 
uniform 0.75 Scattered Adaptive 

Feasible 1.000 0.978 0.242 0.584 

19 300 Top Qty 
0.40 Reminder 0.9 Single point Constraint 

dependent 0.957 1.000 0.884 0.062 

20 300 Top Qty 0.5 Uniform 0.3 two point Uniform 
Rate  0.01 0.072 0.236 0.815 0.041 

21 400 Rank Tournament 0.75 Single point Uniform 
Rate  0.01 0.085 0.689 0.908 0.131 

22 400 Top Qty 0.2 Stochastic 
uniform 0.9 two point Uniform 

Rate  0.1 0.142 0.421 0.880 0.007 

23 400 Top Qty 
0.30 Reminder 0.3 Heuristic 

(1.2) 
Uniform 
Rate  0.5 0.906 0.000 0.391 0.000 

24 400 Top Qty 
0.40 Uniform 0.45 constraint 

dependent 
Adaptive 
Feasible 0.898 0.862 0.311 0.161 

25 400 Top Qty 0.5 Roulette 0.6 Scattered Constraint 
dependent 0.935 0.934 0.915 1.000 
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The resulting objective function for all experiments are normalized between 0 and 1 before 

starting Taguchi analysis, because there is a major variation in the fitness values for different head 

values, as shown in Table 3.5. A multiple response analysis was conducted for different head values to 

explore general performance of GA for different scenarios. The results showed that the best combination 

of the five factors is A3B2C3D4E5F3, as shown in Figure 3.13. This combination means that the 

population size is 300, the fitness scaling function is Top Qty 0.2, selection function is Uniform, the 

crossover fraction is 0.75, the crossover function is Heuristic (1.2), and the mutation function is Uniform 

Rate 0.1. Other GA parameters were the same as default Matlab options. One interesting inference seen 

from Taguchi results (Figure 3.12) is that increasing the population size does not guarantee improving 

GA performance. In this example problem, performance of GA deteriorated by increasing population 

size to 400 or 500 individuals.   

 

 

 

Figure 3.13 Main effects SN ratio (small is better) for GA parameters 

 

        Evaluation experiments based on Taguchi analysis results were conducted with three runs starting 

at different random initial generations. These experiments can help in measuring GA performance 

improvements with the best parameter combinations for different head values. The results are compared 

with the default Matlab options, as shown in Table 3.6. The comparison demonstrates that the best 

parameter combination significantly improves GA performance to find the optimum solution. The 

average of the minimum cost objective function obtained by the improved version of GA satisfy (on 

average) 17% cost reduction compared to the cost obtained by default GA options for the implemented 

cases.  
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Table 3.6 Comparison of the objective function values obtained by improved GA model and the 
MATLAB default parameter model.  

 Exp. Run H=10m H=20m H=30m H=40m 

Im
pr

ov
ed

 G
A

 1 52182.5 492412.8 2816276.3 10491423.7 

2 51947.4 492672.6 2816192.4 10480348.0 

3 51637.9 492315.5 2817477.8 10497979.9 

D
ef

au
lt 

G
A

 1 61442.42 693504.06 3099718.80 13740084.84 

2 52607.54 636480.18 3908556.00 10826865.39 

3 52451.07 640121.32 3943266.37 12124962.18 

Pe
rc

en
ta

ge
 o

f 
Im

pr
ov

em
en

t 
 

1 15.07 29.00 9.14 23.64 

2 1.25 22.59 27.95 3.20 

3 1.55 23.09 28.55 13.42 

3.7 Results and discussion  

3.7.1 ANN models  

Three ANN models were successfully trained and tested to develop the surrogate models 

for (θC, θE, ie) individually, because each seepage characteristic has different attributes and ranges. 

Based on Taguchi DOE results and CV outcomes, robust ANN models were obtained. Many indicators 

and error coefficients were utilized to evaluate the accuracy of the developed models. In addition to 

MSE and RSQ, scatter index (SI) and bias parameter (Mentaschi, Besio, Cassola, & Mazzino, 2013; 

Moeini & Etemad-Shahidi, 2007) were implemented to measure the error between observed (simulated) 

data and predicted data. All these error indicators provide reliable evaluations of training and testing 

process accuracy for the developed models. The results were reasonable, as shown in Table 3.7.  

Table 3.7 Description of the developed ANN models  

ANN 
model 

Number 
of 

neurons 

Training/ 
validation 

ratio 

Transfer 
function 

of hidden 
layer 

Transfer 
function of 

output 
layer 

Training Testing 

RSQ MSE SI BIAS RSQ MSE SI BIAS 

θC 11 60/40 Logsig purlin 99.7 36.9 0.05 0.54 99.3 89.1 0.06 0.95 

θE 4 50/50 Logsig purlin 98.9 96.8 0.11 -0.53 99.1 67.16 0.09 0.29 

Exit 
gradient 

5 50/50 Logsig tansig 97.5 0.009 0.28 
-

0.007 
97.3 0.004 0.15 -0.004 

 

The trained ANN surrogate models were used as generalized predictive models to determine 

the seepage characteristics of problems having similar ranges of training variables. Groups of ANN 

responses for each characteristic were used to develop the charts shown in Figures 3.14, 3.15 and 3.16 
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to easily determine the seepage characteristic for different scenarios as a percentage of H. These Figures 

reveal a noticeable effect of upstream cut-off depth (d1) on ie values. This effect has been neglected by 

previous theories, such as Khosla’s theory. 

Figure 3.14 Chart for estimating the exit gradient based on the developed ANN model as a fraction of 
total head, α=2b/d1 

 

 
Figure 3.15 Chart for estimating the uplift pressure (θE) based on the developed ANN model as a fraction 

of total head, α=2b/d1 
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Figure 3.16 Chart for estimating the uplift pressure (θC) based on the developed ANN model as a fraction 

of total head, α=2b/d1 
 

Also, seepage characteristics could be determined using the scalar weights, scalar biases and 

transfer functions for each model, which are presented in Tables A 3.1, A 3.2, A 3.3, A 3.4, A 3.5 and 

A 3.6 in Appendix A. A mathematical example for the θE model was implemented and is described in 

the appendix. This example mathematically explains how ANN works based on the obtained weights, 

biases and transformation functions to determine seepage characteristics, and could be applied for any 

programming language.  

Moreover, ANN models were successfully linked to the optimization model to provide an 

accurate seepage simulator. The developed ANN models worked smoothly and efficiently with GA. 

Each S-O run took approximately three minutes, which is an expeditious process to attain an optimum 

solution based on the approximate seepage simulator (ANN) and the GA direct search technique. 

Therefore, the ANN technique is a powerful method and provides accurate responses even with extreme 

points randomly presented by GA. 

3.7.2 Simulation–Optimization model 

The S-O technique was implemented for different H values ranging from 2 m to 40 m. The 

initial chromosomes of GA were randomly generated for each iteration. This ensures inclusion of a 

large portion of the search domain in the optimization process. Consequently, the possibility to attain 

the global optimum solution is increased. Results of the S-O model, including the design variables, 

design parameters, safety factors and optimum construction cost, are presented in Table 3.8. The design 

requirement of the HWRS and all the constraints were satisfied for each optimum solution.  

Referring to Figure 3.17, optimum solutions for different H values show that d1, d2 make a 

considerable contribution in the hydraulic safety of HWRS. Nonetheless, the length of d2 is relatively 

more important than d1, because d2 has a substantial impact on the ie value, which is the critical factor 
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in hydraulic design of HWRS. Approximately, the optimum ratio of (d1/d2) is 0.65 and it increases to 

0.75 with head growth.  

  
Figure 3.17 Optimum solution (d1, d2, 2b, b*, t1, t2) for different head values 

 

On the other hand, the optimum width (2b) of HWRS effectively influences optimum hydraulic 

design of HWRS, because the total width is directly integrated in many safety factors, such as 

overturning, sliding and ie. The optimum ratio of 2b/(d1+d2) changed with head value. This ratio is 0.8 

for H (0-10 m), 1 for H (10-20 m), 0.7 for H (20-30 m) and 0.4 for H (30-40 m). Reduction of the 

optimum HWRS width (2b) could be attributed to increasing floor thicknesses on the Us and Ds sides 

(t1, t2) with head increase, which results in an expensive design. Therefore, the S-O model reduced the 

total width and simultaneously augmented the depth of d1 and d2, which was an efficient and cost 

effective solution to reduce tremendous uplift pressure and exit gradient effects for large H values. 

Moreover, b* considerably contributed to achieving optimum hydraulic design of HWRS. The 

weight of water head above b* (Figure 3.15) counterbalances uplift pressure and enhances the stability 

of HWRS. Hence, the optimum ratio of (b*/2b) ranges from (0.45-0.65) as seen in Figure 3.17. This 

means that the value of b* substantially contributed to the safety of HWRS and provides cheaper 

solutions. Usually, HWRS shape is without b* value. Therefore, replacing the volume of concrete (in 

case of b* = 0) by a sufficient volume of water is extremely cheaper solution when b* is a considerable 

value (0.45-0.65 of 2b).   

Additionally, the values of t1 and t2 also affect optimum design of HWRS, which is logical as 

HWRS are partially based on its weight to resist hydrostatic and uplift pressure. The optimum ratio of 

t1/H is approximately (0.5) and around (0.43) for t2/H. All these design parameters and safety factors 

are integrated within the constraints, objective function and surrogate models. 
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Additionally, referring to Table 3.8, optimum cost can be approximately expressed as an 

exponential function with respect the water head (H), as shown in Eq. (3.33). This implies that 

construction cost for cases with a small H (less than 20 m) is significantly lower than cases with large 

H. For example, optimum cost is around ($490,000) for 20 m head, but when H attains 30 m the cost is 

almost six times that of the first case ($2,815,000). Therefore, the construction cost for HWRS 

exponentially increased with the head augmentation, especially for head values more than 20 m. That 

can be explained by two reasons: first, the construction cost of cut-offs dramatically increased with cut-

off depth of, as the cost of cut-off is a function of its depth, see Eqs. (3.9) and (3.10). Second, when the 

head reached 20m or more, floor thickness values (t1, t2) became higher, which resulted in high 

construction cost. Roughly, the optimum hydraulic design of HWRS must include sufficient floor width 

(2b) ranging from H to 2H, upstream cut-off (d1) ranging from 0.8H to1.25H, downstream cut-off (d2) 

ranging from H to1.5H, upstream portion of the floor (b*) around 0.5(2b), upstream thickness (t1) 

around 0.5H and downstream thickness (t2)  around 0.45H. 

 

HWRScost = 6407 EXP 0.1992 H,       RSQ= 0.98 (3.33) 
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3.7.3 Evaluation 

An objective evaluation of the methodology was conducted to assess the performance of 

developed ANN models and the linked S-O model. Basically, the evaluation processes included 

comparing the predicted seepage characteristics value based on ANN / S-O models to solutions of 

numerical simulation and other methods for the resulting optimum solutions. 

3.7.4 The ANN model evaluation  

Forty different scenarios of d1, d2, 2b and H were randomly generated using LHS. The seepage 

models based on these values are solved/simulated by the developed ANN models, numerical seepage 

code and Khosla’s theory. The evaluations showed a superior match between ANN and SEEP/W results 

for uplift pressure and ie values, as shown in Figures 3.18, 3.19, 3.20 and Table 3.9. The ANN 

predictions did not precisely match Khosla’s solutions as much as the numerical solution. This can be 

assigned to two factors: first, the ANN model was not trained based on Khosla’s solutions. Second, the 

approximation and empirical assumptions utilized in Khosla’s equations affect the accuracy of Khosla’s 

solutions. Furthermore, irregular results were presented by Khosla’s theory for uplift pressure values. 

This could be attributed to Khosla’s empirical correction formula for mutual interference between cut-

offs, which is the last term in Eqs. (3.35) and (3.36). This term provides illogical values and affects the 

uplift pressure value strongly when the ratio of (d1/2b) or (d2/2b) is more than 1. The calculation of ie 

value and uplift pressure (percentages from a total head (H)) by Khosla’s theory are given by Eqs. (3.34) 

to (3.37): 

𝐼𝐸𝐾ℎ𝑜𝑠𝑙𝑎 =
ℎ

𝜋 ∗ ʎ ∗ 𝑑2
  (3.34) 

%∅𝐶𝐾ℎ𝑜𝑠𝑙𝑎 = 100 −
1

𝜋
𝐶𝑂𝑆−1 (

ʎ − 2

ʎ
) + 19√

𝐷

𝑏′
   (
𝑑 + 𝐷

2𝑏
)  (3.35) 

%∅𝐸𝐾ℎ𝑜𝑠𝑙𝑎 =
1

𝜋
𝐶𝑂𝑆−1 (

ʎ − 2

ʎ
) − 19√

𝐷

𝑏′
   (
𝑑 + 𝐷

2𝑏
)  (3.36) 

ʎ =  
√1+𝛼2 +1

2
,    𝛼 =

2𝑏

   𝑑
,  (3.37) 

Where 

b' = distance between two cut-offs (m);  

2b = total width of the floor (m); 

d = depth of the cut-off at which uplift pressure is determined (m);  

D = depth of the cut-off which affects neighbouring pile (m). 
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Figure 3.18 Comparison of ANN solution with SEEP/W and Khosla’s solutions (Exit gradient) 

 

 
Figure 3.19 Comparison of ANN solution with SEEP/W and Khosla’s solutions (θC) 

 

  
Figure 3.20 Comparison of ANN solution with SEEP/W and Khosla’s solutions (θE) 
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3.7.5 S-O model evaluation  

Seepage characteristic values related to optimum solutions obtained by the S-O model were 

evaluated to verify that the surrogate model responses within S-O model are accurate. The optimum 

solutions were solved by the numerical seepage modeling and Khosla’s method. The resulting seepage 

characteristic values obtained by these methods and seepage characteristic of the optimum solution 

given by S-O technique are shown in Figures. 3.20, 3.21, 3.22 and Table 3.9. 

Broadly, S-O solutions totally agreed with SEEP/W solutions for uplift pressure and ie values. 

However, there are minimal deviations for ie and uplift pressure values for a few points. This is expected 

performance for any approximation and surrogate model, and may be attributed to imperfect training of 

the developed ANN models for data located beyond or near the training ranges. For example, for cases 

having H value between 32 and 40 m, the optimum d2 value was more than 40m (Table 3.8), whereas 

the maximum training range for d2 is 40 m.  

Moreover, all ie values attained ultimate allowable value (0.23) to achieve the safety factor 

value (5), which can be clearly observed in Figure 3.22. This means ie values substantially and critically 

impact S-O the optimal solutions and safety of HWRS design. Therefore, the S-O model modifies the 

decision vector to provide ultimate allowable safe ie value. Hence, that might influence efficiency of S-

O solutions for some cases compared to the numerical solution.  

Comparing with Khosla’s solutions, a good match is obtained for most results. Nevertheless, 

there were considerable deviations, as clearly seen in Figures 3.20, 3.21 and 3.22, which could be 

attributed to the same reasons discussed earlier in the context of ANN evaluation. There is a noticeable 

deviation of Khosla’s solution for the large HWRS scenarios (large H value) for uplift pressure value. 

Also, for exit gradient values, Khosla’s solutions present a noticeable error for small HWRS instances 

(low H value). Hence, there are some imprecise solutions and limitations in applying Khosla’s theory.  

Generally, the linked S-O model provided precise and computationally efficient results. 

Therefore, this methodology is potentially applicable for a real life minimum cost optimal design. 

However, it is recommended to adequately expand training data range to obtain accurate solutions using 

trained ANN models for different cases of HWRS design.  
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Figure 3.21 Comparison of seepage characteristics (𝛉𝐂) of the optimum obtained by S-O model, 

Numerical model (SEEP/W) and Khosla’s theory  

   
Figure 3.22 Comparison of seepage characteristics (θE) of the optimum obtained by S-O model, 

Numerical model (SEEP/W) and Khosla’s theory 

 

 
Figure 3.23 Comparison of seepage characteristics (Exit gradient) of the optimum obtained by S-O model, 

Numerical model (SEEP/W) and Khosla’s theory  
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Table 3.9 Evaluation of S-O optimum solutions with SEEP/W and Khosla’s solutions 

 

3.8 Conclusion  

This chapter presents a methodology to develop and validate the linked S-O technique in the 

hydraulic design of HWRS integrating the numerical responses of nonlinear seepage characteristic 

values. The biggest challenges in directly linking the complex optimization model to the numerical 

simulation model is that the method is computationally expensive and time consuming. Therefore, 

efficient ANN surrogate models were built to imitate numerical seepage responses. The developed 

models were successfully and efficiently linked to the optimization model to find the optimum hydraulic 

design of HWRS based on expeditious surrogate model responses. Systematic method is used to find 

the optimum training data size for ANN models. The ANN and GA parameters were carefully selected 

based on Taguchi DOE analysis to improve their performance. This procedure improved GA 

 Assumed data S-O Result SEEP/W result Khosla result 

No d1 d2 2b H θC 
ANN 

ΘE 
ANN 

Exit 
gradient 

ANN 

θC 
SEEPW 

ΘE 
SEEPW 

Exit 
gradient 
SEEPW 

θC 
Khosla 

ΘE 
Khosla 

Exit 
gradient 
Khosla 

1 28.5 14.5 44.78 10.78 5.42 4.01 0.10 4.76 3.65 0.13 3.98 3.62 0.11 
2 30.5 21.5 106.73 79.03 43.71 27.19 0.63 43.82 27.51 0.70 42.96 30.78 0.39 
3 5.5 38.5 77.23 2.98 2.78 0.38 0.02 2.47 1.76 0.02 2.27 1.71 0.02 
4 27.5 35.5 68.38 59.53 35.54 30.07 0.42 35.28 29.54 0.43 35.59 34.79 0.34 
5 20.5 5.5 112.63 63.43 39.22 10.88 0.98 37.33 11.69 1.10 39.83 12.52 0.34 
6 6.5 11.5 32.98 67.33 46.59 30.72 1.18 45.88 30.67 1.26 41.34 33.47 0.92 
7 13.5 28.5 94.93 8.83 5.71 3.90 0.06 6.32 4.12 0.08 5.90 4.11 0.04 
8 14.5 31.5 91.98 38.08 26.39 18.84 0.36 27.08 18.62 0.32 24.83 18.79 0.19 
9 37.5 30.5 47.73 30.28 14.11 12.77 0.25 14.42 13.22 0.23 16.32 11.84 0.22 
10 36.5 32.5 71.33 61.48 30.77 26.94 0.42 32.13 26.79 0.44 25.73 26.05 0.35 
11 9.5 0.5 9.38 47.83 18.20 13.47 5.75 13.38 4.72 6.37 12.85 0.10 3.08 
12 38.5 18.5 6.43 77.08 18.08 22.47 0.48 17.91 17.91 0.72 224.42 -249.16 1.29 
13 35.5 29.5 62.48 22.48 11.06 10.18 0.17 11.35 9.61 0.17 8.88 9.31 0.15 
14 18.5 9.5 100.83 32.23 20.19 8.79 0.46 19.79 8.18 0.45 20.19 8.76 0.19 
15 31.5 10.5 118.53 20.53 11.33 3.24 0.25 10.55 4.73 0.24 11.45 5.42 0.10 
16 8.5 16.5 18.23 16.63 9.89 9.58 0.26 10.85 9.97 0.27 11.42 11.76 0.26 
17 10.5 37.5 74.28 69.28 54.50 41.07 0.51 52.57 39.53 0.54 52.43 40.05 0.37 
18 34.5 8.5 56.58 55.63 21.84 11.91 0.69 22.22 12.97 0.78 21.09 12.63 0.54 
19 25.5 15.5 3.48 53.68 16.81 19.41 0.87 14.73 14.73 0.72 256.34 -275.95 1.09 
20 39.5 1.5 41.83 18.58 2.95 1.01 0.65 5.19 1.66 0.69 5.26 -0.21 0.27 
21 15.5 25.5 24.13 65.38 40.40 38.12 0.70 40.72 38.87 0.71 45.71 31.43 0.69 
22 2.5 12.5 97.88 57.58 50.43 17.75 0.80 49.73 19.42 0.80 49.31 18.11 0.33 
23 26.5 20.5 38.88 36.13 19.14 13.94 0.41 17.40 15.20 0.38 18.82 14.39 0.36 
24 32.5 27.5 59.53 51.73 26.77 21.74 0.43 26.48 22.16 0.42 20.90 21.56 0.35 
25 16.5 33.5 30.03 41.98 28.48 26.16 0.39 27.90 26.53 0.37 30.92 21.65 0.34 
26 22.5 39.5 83.13 6.88 3.85 2.91 0.03 4.51 3.58 0.05 3.81 3.88 0.03 
27 23.5 24.5 35.93 26.38 15.63 11.86 0.28 14.03 12.77 0.26 15.11 11.62 0.25 
28 17.5 4.5 80.18 12.73 7.40 3.12 0.25 7.44 2.38 0.27 7.58 2.69 0.10 
29 21.5 7.5 86.08 24.43 13.77 6.58 0.39 13.73 5.60 0.38 13.93 6.39 0.17 
30 11.5 17.5 89.03 28.33 19.73 11.28 0.37 20.03 10.78 0.32 19.36 10.91 0.17 
31 19.5 36.5 53.63 43.93 29.21 24.71 0.37 28.61 24.88 0.34 28.87 28.34 0.28 
32 4.5 2.5 15.28 4.93 2.20 0.53 0.33 2.82 1.44 0.30 2.65 1.74 0.17 
33 7.5 26.5 27.08 73.18 55.64 48.45 0.81 54.53 48.75 0.81 57.50 52.97 0.72 
34 3.5 6.5 109.68 75.13 64.24 16.43 1.36 62.75 17.56 1.40 63.08 16.30 0.41 
35 0.5 34.5 21.18 49.78 48.32 42.20 0.51 47.35 40.65 0.47 62.85 40.71 0.42 
36 29.5 23.5 103.78 45.88 25.88 17.62 0.41 26.02 16.92 0.39 24.99 18.85 0.22 
37 24.5 3.5 65.43 34.18 16.57 6.82 0.82 16.38 5.53 0.82 16.65 7.05 0.32 
38 12.5 13.5 115.58 71.23 51.85 20.22 0.82 50.03 22.29 0.88 50.51 21.47 0.35 
39 33.5 19.5 12.33 40.03 13.81 12.13 0.53 12.91 12.89 0.42 45.66 -21.35 0.60 
40 1.5 22.5 50.68 14.68 13.58 8.71 0.18 13.01 8.16 0.17 12.41 8.06 0.12 
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performance by 17 % and significantly increased prediction preciseness of ANN models. The cross 

validation technique was implemented to evaluate ANN performance with different training/testing data 

combinations. The cross validation results demonstrated that the developed ANN surrogate models 

provide sufficient accuracy.  

The S-O model was implemented for different H values ranging from 2 m to 40 m to find the 

optimum hydraulic design of a HWRS. In general, the optimum hydraulic design variable values of the 

HWRS can be summarized as: d1/d2 ratio ranges from (0.7-0.8), 2b/(d1+d2) ratio increases with H value 

growth from 0.8 to 1 then drops to 0.7 and 0.4, ( b*/2b) ranges from (0.45-0.65), t1/H is approximately 

0.5, t2/H is 0.43 and the optimum construction cost could be estimated based on H value using the 

equation (HWRScost = 6407 e 0.1992 H). One of the most important inference of the results is that the 

inclusion of b* value in the optimization model significantly reduces construction cost of HWRS. 

The optimum solutions obtained by the S-O model demonstrate that the most important design 

variable is ie (exit gradient). As ie value drastically influences the HWRS design and construction cost, 

it is recommended that future studies quantify uncertainty of the exit gradient safety factor and related 

parameters and variables, and how it affects minimum cost design.  

The optimum solutions presented in this study could be used to select the optimum combination 

of (d1, d2, 2b, b*, t1, t2) for specific (H) value in design HWRS. Additionally, seepage characteristics 

could be directly obtained using the provided charts or by substituting input variables in ANN equations 

(in appendix A). However, application of these techniques is limited by the assumed ranges of the 

design variables. 

Extensive evaluations to the optimum solutions based on ANN predictions were performed by 

comparing the seepage characteristic of the optimum solution obtained by the S-O model to the seepage 

characteristic resulting from numerical simulation of optimum solutions. The S-O and ANN predictions 

demonstrated good agreement with the numerical solutions. Therefore, the proposed methodology is 

potentially applicable to minimum cost and safe optimal hydraulic design of HWRS integrating accurate 

seepage modeling. 

In Chapter Four, the S-O methodology is applied to the comprehensive conceptual seepage 

model. This model included ten cut-offs and varied inclination for each cut-off. The locations of cut-

offs varied also. The SVM surrogate model is utilized in this problem to provide a robust prediction for 

seepage characteristics. Also, the effects of hydraulic conductivity and anisotropic hydraulic 

conductivity are studied in the next chapter. 
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4 Coupled Simulation-Optimization Technique for Optimum Hydraulic 

Design of Hydraulic Water Retaining Structures Constructed on 

Anisotropic and Non-homogenous Permeable Soil   

Parts of this chapter were published, as per following details: 

Al-Juboori, Muqdad, and Datta, Bithin (2018) Linked simulation-optimization model for optimum 

hydraulic design of water retaining structures constructed on permeable soils. International Journal of 

GEOMATE, 14 (44). pp. 39-46. 

Al-Juboori, Muqdad, and Datta, Bithin (2018)  Minimum Cost Design of Hydraulic Water Retaining 

Structure by Using Coupled Simulation Optimization Approach. KSCE Journal of Civil Engineering, in press. 

In this chapter the S-O based methodology is implemented for a comprehensive scenario, 

incorporating different features of hydraulic conductivity and many seepage prevention components 

(cut-offs). The aim of this chapter is to find optimum design of HWRS, the most effective 

variable/parameters in the optimum design of HWRS, and how the variation of hydraulic conductivity 

affects optimum design of HWRS.  

4.1 Introduction 

An obvious concern in designing HWRS is the limitation of seepage prevention components, 

especially for high water head, to provide a safe design. Often seepage prevention components of most 

constructed projects are end cut-offs (upstream and downstream) with an apron between them. Also, 

with limited orientation, lengths and number of cut-offs, and width of the apron, the opportunity to find 

a feasible optimum solution using a linked S-O technique is reduced. On the other hand, including the 

effects of different scenarios of hydraulic conductivity and its anisotropic ratio on the optimum HWRS 

is an important concept that must be considered in optimum design of HWRS. Moreover, studying soil 

stratification based on different values of hydraulic conductivity and its effects on optimum design of 

HWRS is another concept that needs to be considered in optimum HWRS design.    

Hence, a comprehensive conceptual model is proposed. This model includes ten cut-offs 

distributed along the apron of the HWRS. The lengths, orientation of cut-offs and distance between 

them (apron) are considered variables. These variables are used to build surrogate models and within 

the S-O model the optimum value of these variables can be achieved. Based on optimum solutions, 

which provide a safe and minimum cost design of HWRS considering seepage impacts, the most 

important and active sets with their optimum value could be identified.   

On the other hand, seepage characteristics are affected by soil properties. Soil properties in real 

fields vary with different locations and directions and rarely exhibit homogenous isotropic hydraulic 
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conductivity (Lambe & Whitman, 1969). Hence, hydraulic conductivity of the flow domain is proposed 

as a variable value, and is included in three different layers, and anisotropic ratio for each layer is varied 

as well. The depth of each layer is another variable incorporated in the conceptual model. The precise 

values for uplift pressure and exit gradient in non-homogenous anisotropic soils with different boundary 

conditions could only be determined using numerical simulation, specifically the finite element method 

(FEM).  

This chapter concentrates on studying the effect of soil properties on optimum solution, and 

finding the most important and effective seepage control components for optimum design of HWRS. 

The S-O methodology involved formulating the optimization model to minimize construction cost. 

Also, many constraints were proposed to represent the safety factors and design requirements of HWRS. 

The hybrid genetic algorithm (HGA) was based on the support vector machine (SVM) surrogate model 

responses (seepage characteristics) to evaluate the objective function and constraints to select the 

optimum decision variable. The SVM surrogate models were trained and tested by a large amount of 

numerically simulated data sets. The input variables were randomly generated, then numerically 

simulated to determine seepage characteristics (output variables). Additionally, optimum solutions 

obtained using the S-O model were evaluated by numerically simulating the optimal solutions and 

comparing seepage characteristics resulting from the S-O to the numerical solution results. More details 

about the developed S-O approach and related models are covered in the following sections.  

4.2 Seepage conceptual model and data generation 

The first step in developing a surrogate model is to propose a comprehensive conceptual model. 

This model includes all expected parameters and variables affecting design of HWRS. Based on the 

conceptual model, many scenarios of input data could be generated and simulated to find the 

corresponding seepage characteristic (output data) for each scenario. Each scenario represents a specific 

numerical simulation seepage model and includes different features and soil properties. 

The comprehensive numerical model is shown in Figure 4.1. The variables of the 

comprehensive conceptual model are processed through the optimization model to find the most 

important design variables that provide a safe, economic and optimum solution. The geometry of the 

assumed numerical model comprised ten cut-offs (sheet piles) with varied positions, length and 

orientation. Additionally, three subsoil layers were assumed and the principle (horizontal) hydraulic 

conductivity (kx) and anisotropic ratio (ky/kx) varied for each layer and for each case. As a result, the 

contribution of each variable involved in the comprehensive model to the optimal design could be 

explored for different boundary conditions.  

The prescribed range of each design variable and parameter, shown in Table 4.1, was selected 

carefully to satisfy the flow condition and other design requirements, as discussed in Section 3.3. Also, 
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the ranges of hydraulic conductivity and anisotropic ratio were proposed to cover a wide range of 

expected real life hydraulic conductive and anisotropic ratios and were based on many studies and 

experimental data (Beckwith, Baird, & Heathwaite, 2003; Burger & Belitz, 1997; Greenkorn, Johnson, 

& Shallenberger, 1964; Terzaghi et al., 1996).  

 
Figure 4.1 Seepage conceptual model scheme 

 

The second step is to randomly generate numerous and different seepage scenarios, then 

simulate them by the numerical model. In each scenario, the design variables of the numerical model 

were completely different to other scenarios. The input and output variables for each scenario 

represented one data set. The 41 input variables included in the conceptual model were: total upstream 

water head (H), ten cut-off depths (d1, d2 ,… d10), their angles (β1, β2,… β10), distance (width) between 

cut-offs (b1, b2,…. b10), three subsoil layers depths (LD1, LD2, LD3), their hydraulic conductivity in a 

horizontal direction (kx1, kx2, kx3) and their anisotropic ratio (ky/kx)1, (ky/kx)2, (ky/kx)3, respectively.   

Latin hypercube sampling method (LHS) (Cox & Reid, 2000) was used to randomly generate 

data sets within the specified range. Statistical description of the input data is listed in Table 4.1. The 

input data and their corresponding simulated responses (output data) was utilized to train and build 

SVM surrogate models. The output data for each case was obtained by simulating the input data for the 

same case using the numerical simulation model. The most important seepage design characteristics for 

each numerical seepage model were uplift pressure in front (PEi) and behind (PCi) each single cut-off 

(S1, S2, … S10) in addition to the exit gradient (ie) at the toe of the hydraulic structure. Hence, it was 

required to develop 21 surrgate models, one surrgate model for each seepage characteristic.  
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Table 4.1 Statistical description of the generated data 

Input variable Unite Min Max Average Std. 
H m 2 100 50.61 28.11 

b1, b2, …. b11 m 1 120 60.37 34.26 
d1, d2, …. d10 m 0 60 29.98 17.37 

β 1, β 2, … β 10 dgree 30 150 90.4 34.11 
LD1, LD2,LD3 m 5 100 53.67 27.01 

kx1, kx2, kx3 /day3 m 0.01 20 10.04 5.78 
(ky/kx)1, (ky/kx)2, (ky/kx)3 - 0.1 1.5 0.80 0.40 

 

Seepage characteristics varied for each scenario and were affected by different parameters 

(input parameters), such as upstream water head, soil properties, flow geometry, cut-off depths, etc. 

Achiveing adequately trained surrogate models to predict seepage characteristics for complex problems 

provides good understanding of the effects and contribution of each parameter and variable on seepage 

characteristics. As a result, based on surrogate model responses the optimizaiton model could select the 

most important variable which provides safety and most efficient construction cost of HWRS.  

4.3 Variable importance analysis  

Variable importance or feature selection analysis is an important step which must be 

implemented before training surrogate models to select and incorporate active input design variables in 

building required surrogate models to predict a certain seepage characteristic. There are 41 input 

variables (Table 4.1) and 21 output seepage characteristics, and it is unexpected that all input variables 

play a significant role in training the surrogate model of a particular seepage characteristic. Therefore, 

a feature selection technique was utilized to find the most important variables contributing to prediction 

of a particular output variable.  

Using this technique provides two advantages. First, accuracy of the surrogate model increases 

because the training process including many input variables deteriorates training quality of the surrogate 

model. Each input variable produces a specified amount of error. Consequently, with a huge amount of 

predictors (input variables/parameters) accumulate error becomes larger and this may lead to an 

inadequate surrogate model. Additionally, mixing uncontrollable predictors with controllable variables 

substantially affects the training process (Cavazzuti, 2012). Consequently, ill-trained surrogate models 

are produced and prediction accuracy is unsatisfied. Second, surrogate model speed responses, trained 

on large number of input variables, is less compared to the surrogate model trained on a small number 

of input variables. The expeditious responses of surrogate models are considered an important factor to 

successfully develop S-O approaches. The surrogate models would be invoked by the optimization 

solver numerous times to evaluate the related objective function and constraints.  

Variable importance analysis comprises of passing generated data sets used for training 

surrogate models to the feature selection model. Analysis results demonstrate the importance level of 
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each input variable and its contribution in calculation of the output variable. Based on feature selection 

results, surrogate models can be trained using the active and important sets of input variables. The 

variable importance process was conducted for each output seepage characteristic variable to find the 

most relevant input variable. Two techniques were utilized for variable importance analysis: the first is 

based on beta standardized coefficient and the second is based on the random forest (RF) regression, as 

discussed below.  

4.3.1 Variable importance analysis using Beta weight (standardized coefficient)  

The standardised regression coefficient, or beta weight coefficient, was used to find the 

contribution of each predictor (input variable) for the specified dependent variable (output variable). 

Calculation of the standardized coefficient involves converting variables to z-score (matric-free or 

standardized score). This means that all dependent and independent variables have zero mean and one 

variance. Hence, variable importance is measured based on the variation of standard deviation values 

of dependent and independent variables. Consequently, a reliable and objective comparison could be 

achieved to determine actual variable contribution. The greatest absolute value of standardized 

coefficient for a specific input variable means that the variable considerably correlated to the output 

variable (Gail, Krickeberg, Samet, Tsiatis, & Wong, 2007; Pallant, 2007; Schumacker & Lomax, 2004). 

The beta coefficient (𝛽𝑐) for multi-predictors regression model was determined using Eq. (4.1): 

𝛽𝑐 = 𝑏
𝜎𝑥

𝜎𝑦
=
∑(𝑧𝑥 𝑧𝑦)

∑(𝑧𝑥
2)

    
(4.1) 

Where: 

𝜎𝑥𝑗, 𝜎𝑦 = standard deviation of X and Y, respectively; 

𝑏 = unstandardized coefficient from the normal regression model; 

zx , zy = z-score for X and Y variables, respectively, and is determined by the Eq. (4.2).  

𝑍 =
𝑥 − 𝑥̅

𝜎𝑥  
  (4.2) 

 

Also, 𝛽𝑐  could be determined by Pearson product–moment correlation coefficient (𝑟𝑥𝑦) as 

shown in Eq. (4.3). 

 𝛽𝑐 = 𝑟𝑥𝑦 =
𝐶𝑜𝑣 (𝑥, 𝑦)

𝜎𝑥 𝜎𝑦
 (4.3) 

Where: Cove (x,y) is the covariance of x and y,  

For two variables, the standardized beta coefficients 𝛽𝑐1 , 𝛽𝑐2  are given as shown in Eqs. (4.4 

and 4.5).  
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𝛽1  =
𝑟𝑥1 − 𝑟𝑥2𝑟12

1 − 𝑟12
2  (4.4) 

 

𝛽2  =
𝑟𝑥2 − 𝑟𝑥1𝑟12

1 − 𝑟12
2   (4.5) 

4.3.2 Variable importance analysis using Random Forest (RF)  

By developing machine learning techniques and its applications, the random forest (RF) 

technique has played a significant role in solving many complex problems related to machine learning 

techniques and data analysis, such as prediction tasks and variable importance analysis. Basically, 

variable importance analysis via the RF technique is based on the random permutation of a certain 

predictor, then measuring the influences on the target variable. The difference between the permuted 

and non-permuted model responses reflects the importance of that variable (Strobl, Boulesteix, Zeileis, 

& Hothorn, 2007). 

Generally, the RF technique combines many individuals of a classification tree and it is 

important to note that 36.8% of training datasets are not incorporated for any individual tree. This 

percentage is called ‘out of the bag’ (OOB) of the tree. Prediction accuracy of the random forest model 

can be determined based on mean square error (MSE) of OOB datasets, as shown in Eq. (4.6): 

𝑂𝑂𝐵_𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖

𝑛

𝑖=1

− 𝑦𝑖̂,𝑂𝑂𝐵 )
2  (4.6) 

Where: 𝑦𝑖̂,𝑂𝑂𝐵 refers to the average prediction value from all trees for i datasets, which have 

been OOB. Accordingly, Breiman (2001) developed a measure (criterion) based on permuting a 

particular variable, called ‘MSE reduction’ to estimate variable importance, which can be determined 

as shown in Eq. (4.7). 

𝑂𝑂𝐵𝑀𝑆𝐸𝑡 =
1

𝑛𝑂𝑂𝐵,𝑡
∑ (𝑦𝑖

𝑛

𝑖=1 
𝑖∈ 𝑂𝑂𝐵𝑡

− 𝑦𝑖,̂ ,𝑡 )
2 

 (4.7) 

Where ̂  refers to predicted values; 

𝑂𝑂𝐵𝑡 = {i: observation i is OOB for tree t}; 

𝑛𝑂𝑂𝐵,𝑡   = number OOB datasets in tree t. 

This means that variable Xj would not have a significant impact on model prediction if randomly 

permuting Xj in OOB data and would not influence on the value of 𝑂𝑂𝐵𝑀𝑆𝐸𝑡  determined by Eq. (4.8). 
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𝑂𝑂𝐵𝑀𝑆𝐸𝑡(𝑋𝑗 𝑝𝑒𝑟𝑚𝑢𝑡𝑒𝑑) =
1

𝑛𝑂𝑂𝐵,𝑡
∑ (𝑦𝑖

𝑛

𝑖=1 
𝑖∈ 𝑂𝑂𝐵𝑡

− 𝑦𝑖,̂ ,𝑡 (𝑋𝑗 𝑝𝑒𝑟𝑚𝑢𝑡𝑒𝑑))
2 

 (4.8) 

Therefore, measuring permutation for Xj variable in tree t using the difference 

[𝑂𝑂𝐵𝑀𝑆𝐸𝑡(𝑋𝑗 𝑝𝑒𝑟𝑚𝑢𝑡𝑒𝑑) − 𝑂𝑂𝐵𝑀𝑆𝐸𝑡] provides a significant understanding of Xj variable 

importance. When the difference approaches zero, this reflects that the variable is not integrated in any 

tree split, which means the contribution of this variable is negligible (Genuer, Poggi, & Tuleau-Malot, 

2010; Grömping, 2009). 

After accomplishing the feature selection analysis, results were listed from the first and second 

method in Tables B4.1 to B4.21 (Appendix B). Approximately, the two methods provide the same sets 

of controllable variables for each seepage characteristic. The highest rank input variables were chosen 

as active variables to be incorporated in training data. Variables with an importance index between (100 

to ≈ 0.01) were considered effective variables. Even though there were few variables with a low variable 

importance index, they were incorporated in training surrogate model. Incorporating such variables, 

from physical meaning, may have some effect and can provide an efficient surrogate model. Also, the 

feature selection methods may have some uncertainty or approximation in the obtained results.   

4.3.3 Variable importance results and discussion 

As seen from variable importance results (Tables B4.1 to B4.21) the controllable variable, its 

sequences and ranks are different for each dependent variable. For example, the controllable variable 

related to PE2 is different to PE3. This variation may be attributed to noise in provided data and close 

resulting ranks for the most controllable variables. Hence, it is more systematic and efficient to provide 

the same sequential input variables for training the surrogate model to predict the values of PCi or PEi. 

This particularly helps provide more uniform formulation and programing code of the linked S-O 

approach for such a complex model. Therefore, in addition to the rank of each independent variable, 

the number of appearance of each independent variable is also considered for different locations of PCi 

or PEi values. This also provides a good indicator of variable importance to select a variable to be in 

the most controllable factors, as shown in Tables 4.2 and 4.3.  
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Table 4.2 Appearance of the important variables in the PEi model 

PE1 PE2 PE3 PE4 PE5 PE6 PE7 PE8 PE9 PE10 
H PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 
b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 
β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 
- d1 d2 d3 d4 d5 d6 d7 d8 d9 
- β1 β2 β3 β4 β5 β6 β7 β8 β9 
- (ky/kx)1 (ky/kx)1 (ky/kx)1 (ky/kx)1 (ky/kx)1 (ky/kx)1 (ky/kx)1 - (ky/kx)1 

kx1 kx1 - - - - - - - - 
kx2 - - kx 2 - - kx 2 - - - 

layer 
depth1 - - - - - - - - layer 

depth1 
layer 

depth2 - layer 
depth2 

- - - - - - layer 
depth2 

- - - - - (ky/kx)2 - - (ky/kx)2 - 
 

Table 4.3 Appearance of the important variables in the PCi model 

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 
PE1  PE2 PE3 PE4 PE5 PE6 PE7 PE8 PE9 PE10 
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 
- d1 d2 d3 d4 d5 d6 d7 - - 
d2 d3 d4 d5 d6 d7 d8 d9 d10 - 
b1 b2 b3 b4 b5 b6 b7 b8 b9 - 
b2 b3 b4 b5 b6 - - - - - 
β1 β2 - β4  β6 - - - β10 

(ky/kx)1 (ky/kx)1 (ky/kx)1 - - - - (ky/kx)1  (ky/kx)1 

kx1 - - kx1 - kx1 - kx1 kx1 kx1 

- - - - - - - - (ky/kx)2 (ky/kx)2 

- - - - - - - - layer 
depth2 

layer 
depth2 

- layer 
depth1 - - layer 

depth1 
- - - - - 

 

Consequently, the widespread controllable variables of PEi and PCi related to cut-off (Si) are 

shown in Table 4.4. These results were selected based on quantifying importance rankings and the most 

repetitive variables related to the dependent variable (PCi or PEi) for the ten cut-offs. Therefore, a 

comprehensive combination of independent variables was utilized to be the predictors of PEi or PCi 

variables. Predictors of the exit gradient variable, mentioned in Table B4.21, were selected based on 

results of variable importance analysis. The dependent variables PE10, PC10, PE1 and PC1 have a 

special location; therefore, the variable combination is slightly different to other dependent variables of 

the same class.  
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Table 4.4 Final combination of predictors for each seepage characteristic 
 PE1 PE2 to E9 PE10 PC1 PC2 to PC9 PC10 

1 b1 bi b10 b1 bi b10 
2 d1 di-1 b11 b2 bi+1 b11 
3 β1 di d9 d1 di-1 d9 
4 DL1 β i-1 d10 d2 di d10 
5 DL2 β i β9 β1 di+1 β10 
6 kx1 DL1 β10 DL1 βi DL1 
7 (ky/kx)1 DL2 DL1 DL2 DL1 DL2 
8 kx2 kx1 DL2 kx1 DL2 kx1 
9 (ky/kx)2 (ky/kx)1 kx1 (ky/kx)1 kx1 (ky/kx)1 

10 H kx2 (ky/kx)1 kx2 (ky/kx)1 kx2 
11 - (ky/kx)2 kx2 (ky/kx)2 kx2 (ky/kx)2 
12 - Pci-1 (ky/kx)2 pe1 (ky/kx)2 Pe10 
13 - - Pc9 - pei - 

 

Variable importance analysis significantly decreases the number of input variables for each 

model. For example, input variables for the PEi surrogate model is 12 and for PCi is 13, which are less 

than the total number (41) of independent variables for each dependent variable. After feature selection 

is conducted and the most important variables in each model are identified, the surrogate model could 

be trained based on these results.   

4.4 Support Vector Machine surrogate model 

The support vector machine (SVM) is one of the most popular machine learning techniques and 

has recently been implemented for different nonlinear and complex engineering problems. The SVM is 

a regression and classification technique that provides generalized responses and is less affected by the 

overfitting phenomena (Alpaydin, 2014).  

The SVM algorithm selects from training data sets an efficient hyperplane, by which a good 

separation can be achieved. As long as the boundary (margin) of the hyperplane is far from the center 

of the hyperplane, good prediction ability of the SVM model can be attained (Figure 4.2). The multi-

objective optimization task of the SVM algorithm concentrates on defining the best data sets that 

provide an efficient classification and maximize margin widths of the hyperplane. Therefore, SVM is 

less constrained by training data and prediction ability for unseen data sets is robust (Alpaydin, 2014; 

Kramer, 2016).  
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Figure 4.2 Linear separation support vector (two classes) 

A normal vector W= (w, .., wd)T ∈ Rd and a point x0 on the hyperplane could be used to describe 

the hyperplane A as:  𝐀 = { 𝑥 ∈ 𝑅𝑑: 𝑤𝑇𝑥 + 𝑤0 = 0}. Then, assuming there are two classes +1 /-1 and 

sample X = {xt,rt}, where rt = +1 if xt ∈ C1 and rt = -1 if xt ∈ C2 , as shown in Eq. (4.9a) and (4.9b): 

 (𝑊𝑇𝑥𝑡 + 𝑤0) ≥ +1   𝑓𝑜𝑟   𝑟
𝑡 = +1  (4.9a) 

(𝑊𝑇𝑥𝑡 +𝑤0) ≤ −1   𝑓𝑜𝑟   𝑟𝑡 = −1  (4.9b) 

Eq. (4.8) and Eq. (4.9) can be written as Eq. (4.10):  

𝑟𝑡(𝑊𝑇𝑥𝑡 +𝑤0) ≥ +1     (4.10) 

So, according to Eq. (4.10), the instances must not be located on the hyperplane (≥ +0) only, 

but also must be at a distance (≥ +1) away to provide better separation. Then, the best separating 

hyperplane is the one which has maximum margin    𝒎 =
1

||𝑤||
+

1

||𝑤||
=

2

||𝑤||
 or the minimum 

norm 1
2
||𝑤||

2
; therefore, the optimization task can be formulated as shown below:  

 

Minimize: 1
2
||𝑤||

2
 

 
Subject to:  𝑟𝑡(𝑊𝑇𝑥𝑡 + 𝑤0) ≥ +1,   ∀𝑡 

 

 

This optimization problem can be solved by finding W and 𝑤0 to define the optimal hyperplane 

having an efficient margin m and the decision boundary, which is called support vectors (Alpaydin, 

2014; Kramer, 2016). This optimization task can be solved by using Lagrange multipliers, as shown in 

Eqs. (4.11 to 4.14). 
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𝐿𝑝 =
1

2
 ||𝑤||

2
− ∑𝛼𝑡 [ 𝑟𝑡(𝑊𝑇𝑥𝑡 +𝑤0) − 1] 

𝑁

𝑡=1

 (4.11) 

𝐿𝑝 =
1

2
 ||𝑤||

2
− ∑𝛼𝑡𝑟𝑡 (𝑊𝑇𝑥𝑡 + 𝑤0) − 1] +∑𝛼𝑡

𝑁

𝑖=1

  

𝑁

𝑡=1

 (4.12) 

 
𝜕𝐿𝑝

𝜕𝑊
  = 0 →     𝑊 =∑𝛼𝑡𝑟𝑡𝑥𝑡  

𝑡=1

 (4.13) 

 
𝜕𝐿𝑝

𝜕𝑤0
  = 0 →     ∑𝛼𝑡𝑟𝑡 = 0 

𝑡=1

 (4.14) 

 
Substitute Eq. (4.13 and 4.14) in Eq. (4.11) then:  
 

𝐿𝑑 = −
1

2
(𝒘𝑻𝒘) − 𝒘𝑻

1

2
∑ 

𝑁

𝑡=1

𝛼𝑡𝑟𝑡𝑥𝑡 − 𝑤0∑𝛼𝑡𝑟𝑡  +∑𝛼𝑡
𝑁

𝑡=1

𝑁

𝑡=1

   (4.15) 

 

= −
1

2
(𝒘𝑻𝒘) + ∑𝛼𝑡

𝑁

𝑡=1

        (4.16) 

 

𝐿𝑑 = −
1

2
∑ ∑ 

𝑠=1𝑡=1

𝛼𝑡𝛼𝑠𝑟𝑡𝑟𝑠 𝑥𝑡 𝑇𝑥𝑠 +∑𝛼𝑡
𝑁

𝑡=1

 (4.17) 

 

So, Ld is maximized with respect to 𝛼𝑡 only and subjected to the constraints ∑ 𝛼𝑡𝑟𝑡 = 0 𝑡=1 , 

and 𝛼𝑡 ≥ 0 , ∀𝑡. By solving the Eq. (4.17) using the quadratic programing method, the value  𝛼𝑡 is equal 

to zero for most cases and sets of 𝑥𝑡that have 𝛼𝑡 > 0 are support vectors. Additionally, W is the 

weighted sum of instances selected as support vectors. Therefore, sets of vectors located on the margin 

satisfy 𝑟𝑡(𝑊𝑇𝑥𝑡 +𝑤0) = 1. Then, 𝑤0 can be easily determined from any support vector using 𝑤0 =

 𝑟𝑡 −𝑊𝑇𝑥𝑡. The majority of training instances have 𝛼𝑡 = 0 at which 𝑟𝑡(𝑊𝑇𝑥𝑡 + 𝑤0) ≥ 1. These sets 

are located away from the decision boundary and rarely affect hyperplane parameters. Therefore, SVM 

algorithm is influenced by the training vector located close to boundaries (Alpaydin, 2014; Kramer, 

2016). 

The SVM technique was utilized to build surrogate models to imitate the numerical responses 

of seepage within the S-O model. Matlab programing language was utilized to develop surrogate models 

because Matlab is a versatile tool including many options that can be modified to build efficient SVM 

surrogate models. Twenty one models were built to determine the uplift pressure in front and behind 

each cut-off and exit gradient near the toe of the HWRS. These models were trained based on 1,500 

scenarios of numerically simulated data.  

For each uplift pressure dependent variable, two different SVM models were built and trained 

on different training/testing data sets randomly selected from source data, as shown in Table B4.22. A 
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basic version of the ensemble surrogate model based on an average of the two models was developed. 

This procedure provides a more robust and accurate prediction. Also, any uncertainty arising from 

source data or surrogate model prediction could be reduced by using the ensemble surrogate model. For 

exit gradient three different models were developed.  

Seventy five percent of  the simulated data was utilized for training and 25% was used for 

testing. Predictors for each model were selected based on variable importance results. The coefficient 

of determination for RSQ and MSE for the training and testing phases are listed in Table B4.22. 

Parameters for each SVR model were carefully selected after several iterations of trial and errors until 

best RSQ and less MSE value were achieved. The most influencing parameters on SVM performance 

were type of kernel function, box constraint and epsilon. The kernel function used in this study was 

second order polynomial, which provided precise predictions compared to other kernels.   

4.5  Optimization model  

A constrained optimization model was formulated as an S-O model to determine optimum 

design of HWRS. The optimization model includes a large number of decision variables (32) and 

several constraints. Also, the optimization solver evaluates the objective function and constraint values 

based on 21 ensemble surrogate model responses. This makes the optimization problem a complex task. 

Safety factors and other hydraulic design requirements represent imposed constraints of the 

optimization model within the S-O model. The best value of each design/decision variable was selected 

by the optimization algorithm to provide a safe and economic design. Therefore, for such optimization 

tasks, the hybrid genetic algorithm (HGA) was used. The HGA is a combination of two optimization 

algorithms: GA and interior point algorithm (IPA), as discussed in the next chapter. The HGA provided 

a global optimum solution and has the ability to deal with a complex problem.  

Matlab programing language was used to implement the optimization model. The parameters 

of GA were: population size 2,000, elite count 10 and crossover fraction 0.8, function tolerance1e-6, 

constraint tolerance1e-3 and the remaining GA options were left to default Matlab options. The 

parameters of the IPA were: max function evaluations 10,000, max iterations 1,000, optimality 

tolerance 1.00E-04, function tolerance 1.00E-04, step tolerance 1.00E-04 and constraint tolerance 

1.00E-04. 

4.5.1 Formulation of the optimization model    

The goal of the optimization model is to find the optimum decision vector X, providing the minimum 

construction cost objective function (𝑓(𝑋)) and safe HWRS design, which satisfies all design 

requirements, i.e., the optimization constraints. The decision vector represents the most important 

design variables of the HWRS model. Design variables from x1 to x11 represent width between cut-offs 

(b1, b2…b11), the variables from x12 to x22 represent depth of cut-offs (d1 ,d1,…d10) and variables from 

x23 to x32 represent inclination angles for cut-offs ( β1, β 2,… β 10) (Figure 4.1). The objective function 
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represents construction cost of HWRS considering the substructure components related to seepage 

design. The objective function includes the decision vector and some design parameters. Formulation 

of the optimization model includes the following steps: 

 

                                        Find the decision vector  𝑋 =  

{
 
 
 
 

 
 
 
 
𝑥1
𝑥2
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𝑥32}
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𝑏11
𝑑1
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𝛽10}

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

Which minimizes the cost objective function shown in Eq. (4.18) 

𝑓(𝑋) = 𝑐𝑓∑ 𝑇𝑖 𝑥𝑖

11

𝑥=1

+   𝑐𝑐 𝑡𝑐 ∑   𝑥𝑖

21

𝑥=12

      ∀ 𝑇, 𝑥   (4.18) 

Where: 𝑐𝑓  = cost of constructing the body of the HWRS ($500);  𝑡𝑐 = thickness of the cut-off, 

which is constant (1 m); Ti= thickness of each width between cut-offs (b1, b2 … b11), for example T2 = 

(t2+t3)/2 ,etc. Thickness value (ti) is determined based on uplift pressure values PCi or PEi as shown in 

Eq. (4.19).  

ti =
1.3 (PCi or PEi)

GS − 1
     ∀ 𝑖, PCi, PEi (4.19) 

𝑐𝑐  = construction cost of cut-offs, which is a function of depth(d) and inclination angle (β), as 

shown in Eq. (4.20). It may be difficult to drive an inclined cut-off; therefore, the cost function 

incrported  angle values to reflect increase in associated cost. Practically, there is no specific techniques 

to implement deep inclined cut-offs. However, a complementary version of Trench Cutter Machine 

(TCM) may be able to construct a deep inclined cut-offs in future. Such machines include ultrasonic 

measuring devices and computerized technology used for constructing complex trench systems 

(BAUER Group, 2016; O’Brien, Dann, Hunter, & Schwermer, 2005) 

𝑐𝑐
𝑖  = 0.05di2+200 di +0.0698 βi2- 12.558 βi +565.93 ∀ 𝑖, β, d (4.20) 



Chapter Four 

73 
 

The PCi and PEi values are based on candidate decision variables, which are randomly 

presented by the HGA solver. The decision variable values are modified in each optimization iteration 

as a candidate solution until the optimum solution is achieved. As a consequence, the objective function 

of this problem is classified as  nonlinear because the expressions in Eqs. (18) to (20) are nonlinear, and 

some of the constraint values are based on nonlinear numerical surrogate model responses based on 

SVM model.  

The decision vector is subject to the constraints similar to the sets of constraints presented in 

chapter two. These constraints were applied in the comprehensive design model in this chapter. The 

difference in this model is that there are many values of uplift pressure to be considered for the flotation 

safety factor and other specified safety factors. Because of the complexity of the problem, the portion 

(b*) of the floor on upstream side has not been considered in this chapter. Involving this variable in the 

optimization model makes the formulation of the optimization task more complex. The other logical 

and boundary constraints are also applied for each variable as discussed in chapter two. 

4.6 Results and discussion 

Many synthetic instances were proposed and implemented using the linked S-O model to find 

the influences of different hydraulic parameters and variables on the optimum solution. The important 

variables, such as upstream water head, hydraulic conductivity for the first layer and anisotropic for the 

first layer, were selected to find their effects on the optimum solution. Also, an evaluation phase was 

applied to measure efficiency and accuracy of the developed methodology to attain the optimum 

solution. Hence, the following results and discussion is categorized based on the effects of the variables 

or parameters through the S-O model.   

4.6.1 Head variation effects  

The linked S-O was implemented for different head values ranging from 20 m to 100 m. Other 

parameters were kept constant, such as hydraulic conductivity for all layers (kx = 5 m/day), anisotropic 

ratio ((ky/kx)1 = 1) and depth of soil layers (50 m). The obtained optimum solutions can figure out the 

vital variables of all the provided design (decision) variables. This means that the optimization solver 

selects the design variables that provide safe and cost efficient design of HWRS for the optimum 

solution.  

In general, the resulting optimum solutions demonstrated that contribution of variables b1 to b8 

and d2 to d8 in the safety of HWRS was insignificant, as shown in Figures 4.3, 4.4 and Table B4.23. 

The optimum value for these variables approached to zero. In contrast, values b9, b10, b11, d9 and d10 had 

a vital role in the optimum design of HWRS. These variables, for most implemented cases, presented 

considerable values and were relatively varying with the variation of head values. The function of d9 is 

to reduce PC9 and PE10 uplift pressure and exit gradient value. More importantly, the function of d10 

is to directly reduce exit gradient value, which is the most critical seepage characteristic. The function 
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of b9 and b10 is to provide a sufficient weight for stability of the HWRS, reduce the uplift pressure and 

provide sufficient width to counterbalance overturning and sliding forces. 

Other important variables were β9 and β10, which are related to d9 and d10, respectively. The 

values of other inclination angles (β1 to β8) had a trivial value because the value of d1 to d8 approached 

zero. The optimum value of β10 is150 degrees. This is logical, as making the inclination angle of the 

last cut-off toward downstream (>90 degrees) substantially decreased exit gradient value. This can be 

attributed to the augmentation of the streamline length of seeping water, particularly when β10 reached 

150 degrees. Thus, time and travel distance of seeping water would increase, which can reduce exit 

gradient value. The optimum value of β9 was 30 degrees in all implemented cases. Such inclination 

angle can reduce uplift pressure under b10. This aids to decrease the construction cost of HWRS. 

Furthermore, since predicting exit gradient value (using surrogate model) is based on PC10 value (Table 

B4.21), decreasing PE10 value by reducing β9 value aids to reduce the exit gradient value also. 

Additionally, β9 with a value less than 90 degrees contributes to reducing the exit gradient value, 

because small β9 value (<90 degrees) increases seeping water stream length.  

Approximately, it seems that effective and general optimum design of HWRS must include two 

upstream and downstream cut-offs and the width (b10) between them, plus the width (b9) on the upstream 

side. These widths are necessary to provide sufficient weight for the HWRS to resist the external 

hydrostatic loads and uplift pressure, and the width plays a vital role in the optimum design to satisfy 

HWRS design requirements (constraints), such as the sliding, overturning and eccentric load conditions. 

The downstream cut-off must have an inclination angle up to 150 degrees toward downstream. The 

upstream cut-off must have an inclination angle 30 degrees toward upstream. 

 
Figure 4.3 Optimum width between cut-offs of the implemented cases for different head values 
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Figure 4.4 Optimum cut-off depths for the implemented cases for different head values 

 

For the implemented cases, with high head value (> 60 m), the depth of first cut-off (d1) makes 

a contribution to the optimum design of these cases (Figure 4.4). The optimization solver increased d1 

to minimize construction cost, because d1 is effective in reducing uplift pressure at the downstream side 

of the HWRS and this aids to reduce the cross section of HWRS and cost of the HWRS. Also, 

construction cost of deep cut-offs (> 40 m) is less cost efficient (Eq. (4.20)). Therefore, the optimization 

solver increased the depth of the first cut-off, which is a cheaper option for optimum design of HWRS. 

Hence, the function of d1 is to reduce high uplift pressure, which could not be solely faced by d9, d10, b9 

and b10.  

On the other hand, all the optimum solutions satisfied the safety factors and requirements of 

HWRS design. For all implemented cases, the optimum solution attained the minimum allowable value 

of the exit gradient safety factor (5), as shown in Table 4.5. This reflects the significance of the exit 

gradient safety factor in HWRS design and how the exit gradient safety factor affects the construction 

cost of HWRS because exit gradient value is mainly controlled by the depth and inclination angle of 

the last cut-off (d10, β10), which are indispensable and expensive components to reduce the exit gradient 

value. 

Table 4.5 Safety factors for different values of H 

H Exit gradient 
safety factor 

e 
value 

Overturning 
safety factor 

Sliding 
safety 
factor 

100 5 36.11 1.60 1.50 
90 5 31.52 1.59 1.50 
80 5 28.60 1.59 1.50 
70 5 24.90 1.59 1.50 
60 5 22.46 1.64 1.74 
50 5 20.79 1.69 1.96 
40 5 19.44 1.77 2.30 
30 5 19.61 1.86 3.09 
20 5 10.28 1.81 2.76 
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The minimum allowable e distance was achieved for all obtained optimum solutions, as can be 

seen in Figure 4.5 and Table 4.5. This reflects the important contribution of this safety factor in HWRS 

stability and the crucial effect of this factor in attaining the optimum solution. Achieving the minimum 

allowable e value reveals that the optimization model provides a safe and cost efficient solution. The e 

value is the location of the resultant force R (Chapter Three).  

 
Figure 4.5 Optimum location of load resultant (R) for different values of head  

 

Moreover, in some implemented instances (H > 60) the sliding and overturning safety factors 

approached the minimum allowable safety factors (Table 4.5). This refers to the extensive hydrostatic 

horizontal and uplift pressure created due to high upstream water head. The sliding and overturning 

safety factors ensure that the optimum solution satisfies, at least, the minimum allowable value of these 

safety factors. This could be attained by increasing the weight of the HWRS, which could be achieved 

by increasing the thickness and width of the HWRS floor. Hence, the HGA optimization solver based 

on the direct search process was efficient to satisfy safe design at minimum cost. 

As clearly seen, all constraints have significant interactions and restrictions for decision 

variables. This means the search process for optimum solution of such a problem is complex and 

computationally expensive. Therefore, each run of the S-O model took approximately three hours, 

including the parallel computing technique based on Matlab programing language. Hence, the direct 

link of numerical simulation to the optimization model (if that was a case) is an inefficient method with 

a huge number of evaluations for the objective function and prescribed constraints.  

The total construction cost curve, shown in Figure 4.6, demonstrates that construction cost 

increased dramatically with head augmentation. Approximately, the average construction cost per meter 

of upstream water head per meter width is: $24,000 for H between 10 m to 40 m, $40,000 for H between 

50 m to 70 m, and $50,000 for H between 80m to 100m. This implies that construction cost of a single 
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impounding H equal to 40 m. This may be attributed to the high construction cost value for deep cut-

offs with large inclination angle (Eq. (4.20)) to provide a safe exit gradient for the high value of H.   

 
Figure 4.6 Minimum cost optimum design of HWRS for different values of head 

 

Figure 4.6 shows optimum thickness values for different locations along the width of HWRS 

versus different H values. The t19 and t20, for example, represent floor thicknesses before and after cut-

off S10. The values of t1 to t15 are not presented in the figure, because these values are approximately 

constant and similar to t16. This is logical, considering widths (b1 to b8) and cut-offs depths (d1 to d8) 

between these thicknesses are almost zero (Table B4.23). Mainly, significant variation could be seen at 

t17, t18, t19 and t20. This reflects the effects of seepage control components (cut-offs and width of the 

floor) at these locations in reducing uplift pressure, and the required thickness. To prevent the 

optimization solver from presenting inapplicable thicknesses, the minimum allowable thickness is 

restricted to 1 m. Therefore, for all the implemented cases, the value of t20 was 1 at which uplift pressure 

approached zero. 

 
Figure 4.7 Optimum floor thickness of HWRS for different values of head 
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simulation of optimum solutions, which were processed as input variables for the simulation model. 

The results of evaluation revealed high agreement of S-O solutions with numerical solutions, as shown 

in Figures 4.7 to 4.12 and Table B4.24. However, there was a slight deviation for predicted uplift 

pressure and exit gradient values in some cases. This deviation can be attributed to weak learning of 

SVM for unseen or extreme data. The majority of optimum solutions included extreme values. For 

example, b2 to b8 and d1 to d8 values approached zero (minimum value). Also, inclination angles for S9 

and S10 reached 30 degrees (the minimum value) and 150 degrees (the maximum value), respectively. 

Although the optimum solution included extreme values, SVM models based the S-O approach 

precisely predicted uplift pressure and exit gradient values.  

In general, for all implemented cases, average of mean absolute error (MAE) of the predicted 

uplift pressure was 1.01, which is acceptable for such complex problems. The MAE for predicted exit 

gradient values was 1.1e-3. However, few predicted exit gradient values had noticeable error. 

Additionally, the bar charts below demonstrate accuracy of predicted uplift pressure and exit gradient. 

These bar charts include 5% (+/- 2.5%) error indications. Hence, the evaluation results demonstrate the 

efficiency of the developed methodology in achieving optimum design of HWRS considering minimum 

cost and safety requirements in the design. 

 
Figure 4.8 Evaluation results for different locations of uplift pressure (H=100 m) 
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Figure 4.9 Evaluation results for different locations of uplift pressure (H=80 m) 

 

 
Figure 4.10 Evaluation results for different locations of uplift pressure (H=60 m) 

 

 
Figure 4.11 Evaluation results for different locations of uplift pressure (H=40 m) 
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Figure 4.12 Evaluation results for different locations of uplift pressure (H=20 m) 

 

   
Figure 4.13 Comparison of exit gradient of the optimum design to the numerical solution   
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the high pressure zone (upstream) to the low pressure zone (downstream). Consequently, pore-water 

pressure underneath HWRS and exit gradient values decrease. Thus, deep cut-offs and significant width 

between cut-offs are not needed. 

Similarly, when the anisotropic ratio (ky/kx)1 is large with specified hydraulic conductivity (kx1 

= 5), the seeping water motion in the vertical direction becomes faster and the exit gradient value 

becomes smaller compared to the exit gradient value obtained for small values of (ky/kx)1 ratio. Hence, 

for high values of (kx)1 and (ky/kx)1, the optimum value of d9, d10, b9 and b10, which are the most effective 

variables, decreased and consequently the optimal cost declined.  

 
Figure 4.14 Minimum cost for optimum design of HWRS for different values of kx1 

 
Figure 4.15 Minimum cost for optimum design of HWRS for different values of (ky/kx)1 
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this outcome with the example problems presented here, is that soil properties of the second and third 

layers have more influence on seepage characteristics than the first layer, as they have smaller (ky/kx)1 

and kx1 values than values of (ky/kx)1 and kx1 for the first layer. Hence, the seepage characteristics did not 

change with variation in hydraulic conductivity; therefore, the optimum solution was almost same. This 

results in a more or less constant construction cost with varied soil properties of the first layer and 

constant soil properties of the second and third layers. 

The resulting optimum design of HWRS for the implemented cases satisfied all safety factors 

and design requirements. For small values of (ky/kx)1 and kx1, the exit gradient safety factor and safe 

eccentric distance played a crucial role in the optimum solution, compared to other safety factors. This 

is evident as these safety factors reached the maximum or minimum allowable limit to satisfy design 

requirements, while the optimum design attained minimum construction cost. Tables 4.6, 4.7 and 

Figures 4.15, 4.16 demonstrate the safety factor variations for different values of (ky/kx)1 and kx1, 

respectively. However, with augmentation of kx1 and (ky/kx)1, exit gradient and eccentric distance had 

less impact on safety factors in the optimum solutions. Consequently, the sliding and overturning safety 

factor approached the minimum allowable limits and had more influence with increasing (ky/kx)1 and kx1 

values. The reason is that the seepage characteristic decreases with an increase in (ky/kx)1 and kx1 values, 

and that aids to satisfy the minimum allowable limits of all safety factors.  

Table 4.6 Safety factors for the implemented cases for different kx1 

kx1 Exit gradient 
safety factor 

e 
value 

Overturning 
safety factor 

Sliding 
safety 
factor 

0.10 5.00 28.75 1.83 2.38 
0.50 5.00 27.95 1.82 2.33 
0.90 5.00 27.17 1.81 2.30 
1.50 5.00 25.94 1.79 2.25 
4.00 5.00 21.84 1.72 2.04 
7.00 5.00 19.39 1.61 1.50 
10.00 5.00 19.11 1.59 1.50 
13.00 5.00 19.37 1.59 1.50 
17.00 5.00 20.02 1.60 1.50 
20.00 5.00 21.01 1.61 1.50 

 



Chapter Four 

83 
 

 
Figure 4.16 Resultant(R) location for different values kx1   

 

Table 4.7 Safety factors for the implemented cases for different (ky/kx)1 

(ky/kx)1 Exit 
gradient 
safety 
factor 

e 
value 

Overturning 
safety 
factor 

Sliding 
safety 
factor 

0.1 5.0 91.4 2.0 6.5 
0.3 5.0 64.1 1.9 5.7 
0.5 5.0 41.7 1.9 3.8 
0.7 5.0 23.9 1.8 2.2 
0.9 5.0 22.7 1.7 2.1 
1.1 5.0 22.3 1.7 2.0 
1.3 5.0 22.1 1.7 2.1 
1.5 5.0 23.7 1.8 2.2 

 

 
Figure 4.17 Resultant (R) location for different (ky/kx)1 values 
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Also, there is a significant contribution for d9 associated with the minimum value of β9 to decrease uplift 

pressure beneath b10, which represents a large portion of the HWRS floor.  

Additionally, the optimization solver particularly increased d10 and β10 values to satisfy the safe 

exit gradient value, even it is a more expensive option (Eq. 4.20). These variables were more effective 

at reducing exit gradient value, which is the most critical safety factor. Also, increasing these values, 

particularly provides an effective and minimum cost alternative. Augmentations of these values 

lengthened the seeping water stream line; consequently, the exit gradient value particularly, and other 

seepage characteristics were decreased. Hence, the optimum value of β10 equalled 150 degrees, which 

is the maximum specified limit for this variable. For the same reason, the inclination angle of cut-offs 

at upstream (β9) approached the minimum allowable limit (30 degrees) for all implemented cases, as 

shown in Tables B4.25 and B4.27.  

Simultaneously, to corroborate stability of HWRS and satisfy related safety factors, the required 

optimum width of HWRS was provided by b9 and b10. Furthermore, the uplift pressure on the 

downstream side decreased with total width augmentation, contributing to reducing the exit gradient 

value. Therefore, the values of b9 and b10 mainly provide an efficient cross section and weight to resist 

external loads and uplift pressure, and partially reduce the uplift pressure and exit gradient value.  

 
Figure 4.18 Optimum width between cut-offs of HWRS for different values  kx1 
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Figure 4.19 Optimum cut-off depths of HWRS for different values kx1 

 

 
Figure 4.20 Optimum width between cut-offs of HWRS for different values (ky/kx)1 

 

 
Figure 4.21 Optimum cut-off depths for different values (ky/kx)1 
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uplift pressure. This value with the provided d9, d10, b9 and b10 can provide a safe and minimum cost 

design. 
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In a few cases, including high value kx1, the value of d9, d10 declined and the value of d1 

increased, as shown in Figure 4.18. For these cases, the exit gradient safety factor became less 

controllable and the optimization solver searched for a cheaper alternative. Therefore, the optimization 

solver decreased the more costly and significant depth of d9, d10 and slightly increased the depth of d1. 

This solution provides the most cost efficient and safe HWRS design.  

4.6.2.1 Evaluate optimum solutions for different values of (ky/kx)1 and kx1  

The same procedure utilized to evaluate optimum solutions of the implemented cases with 

different head values was used to evaluate optimum solutions resulting due to the variation of kx1 and 

(ky/kx)1 values. The evaluations demonstrated that the developed surrogate models based on the SVM 

technique within the S-O model provided accurate predictions of seepage characteristics for the 

optimum solutions located within the training range. However, prediction accuracy of surrogate models 

was slightly less for a few extreme optimum solutions (out of training ranges). In general, maximum 

error percentages of predicted seepage characteristics compared to numerical seepage simulation 

solutions were less than ±10 %. The MAE of predicted uplift pressure at specified locations compared 

to numerical solutions for different values of (ky/kx)1 and kx1 is presented in Tables 4.7 and 4.8. Also, the 

MEA for exit gradient value of implemented cases with different values of kx1 was (0.0272) and was 

(0.0386) for the implemented cases with different values of (ky/kx)1. However, there were slight 

deviations for a few cases in predicted exit gradient values compared to the numerical solutions (Figures 

4.39 and 4.40), which may be attributed to imprecise learning of the exit gradient surrogate model for 

out of training data sets.  

In general, performance of the utilized surrogate models within the S-O model was within 

acceptable ranges. The predicted uplift pressure and exit gradient values for these cases were precise 

and within safe limits. Also, the evaluation process demonstrates that the SVM technique can be used 

to develop accurate and efficient surrogate models for complex problems, including many design 

variables. Some evaluation results are represented in Figures 4.22 to 4.41, including five (±2.5%) 

percentage error. 

Table 4.8 Mean absolute error for predicted uplift pressure at specified locations of HWRS for different 
(kx)1  

kx1 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 4 6 8 10 

MAE 
(m) 5.39 5.18 5.39 5.22 5.33 4.44 4.89 3.07 4.66 4.47 3.86 3.70 2.43 2.18 1.14 3.38 2.61 
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Table 4.9 Mean absolute error for predicted uplift pressure at specified locations of HWRS for different 
(ky/kx)1  

(ky/kx)1 0.1 0.2 0.3 0.4 0.6 0.8 1 1.2 1.4 1.5 

MAE(m) 0.74 5.85 5.37 2.03 2.28 2.25 1.71 0.62 0.80 2.27 

  

 
Figure 4.22 Evaluation results for different locations of uplift pressure (kx1=0.1 m/day) 

                                          *  N.S. =Numerical solutions (SEEPW)  

 

 
Figure 4.23 Evaluation results for different locations of uplift pressure (kx1=0.1 m/day) 
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Figure 4.24 Evaluation results for different locations of uplift pressure (kx1=0.1 m/day) 

 
Figure 4.25 Evaluation results for different locations of uplift pressure (kx1=0.1 m/day) 

 

 
Figure 4.26 Evaluation results for different locations of uplift pressure (kx1=0.1 m/day) 
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Figure 4.27 Evaluation results for different locations of uplift pressure (kx1=0.1 m/day) 

 
Figure 4.28 Evaluation results for different locations of uplift pressure (kx1=0.1 m/day) 

 

 
Figure 4.29 Evaluation results for different locations of uplift pressure (kx1=0.1 m/day) 
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Figure 4.30 Evaluation results for different locations of uplift pressure (kx1=0.1 m/day) 

 
Figure 4.31 Evaluation results for different locations of uplift pressure (kx1=0.1 m/day) 

 

 
Figure 4.32 Evaluation results for different locations of uplift pressure ((ky/kx)1=0.1) 
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Figure 4.33 Evaluation results for different locations of uplift pressure ((ky/kx)1=0.3) 

 
Figure 4.34 Evaluation results for different locations of uplift pressure ((ky/kx)1=0.5) 

 

 
Figure 4.35 Evaluation results for different locations of uplift pressure ((ky/kx)1=0.7) 
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Figure 4.36 Evaluation results for different locations of uplift pressure ((ky/kx)1=0.9) 

 
Figure 4.37 Evaluation results for different locations of the uplift pressure ((ky/kx)1=1.1) 

 

 
Figure 4.38 Evaluation results for different locations of uplift pressure ((ky/kx)1=1.3) 
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Figure 4.39 Evaluation results for different locations of uplift pressure ((ky/kx)1=1.5) 

 
Figure 4.40 Exit gradient evaluation results for different values of (kx1) 

 

 
Figure 4.41 Exit gradient evaluation results for different values of (ky/kx)1 
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HWRS. Also, this chapter focuses on identifying the most effective and optimum design variable 

combination to produce an efficient optimum design of HWRS.  

Twenty one ensemble surrogate models were developed based on the SVM technique utilizing 

1,500 numerically simulated data sets. The simulated data was generated based on a comprehensive 

conceptual model including many cut-offs, many widths between cut-offs and varied inclination angle 

for each cut-off. Before training the surrogate models, variable importance analysis was implemented 

using beta standardized coefficient and random forest techniques. This significantly decreased the 

number of the incorporated input variables related to each seepage characteristic. Hence, expeditious 

and accurate surrogate models were developed. These surrogate models were successfully linked to the 

HGA. Based on the surrogate model responses, HGA evaluated the objective function and constraints, 

which represent the design requirements and safety factors related to HWRS.  

In general, the obtained optimum solution of the implemented cases demonstrated that there 

were many unnecessary design variables, such as b1 to b8, d1 to d8 and related inclination angles. This 

means that the optimum solution for most implemented cases must include upstream and downstream 

cut-offs, upstream apron (width) b9 and an apron (b10) between cut-offs. The optimum inclination angle 

for the upstream cut-offs was 30 degrees and for downstream cut-offs was 150 degrees. For some cases 

classified as a critical cases, such as when upstream water head reaches 60m or more, or when (ky/kx)1 

ratio approaches 0.5 or less, the optimum solution must include a depth (d1) for the first cut-offs.  

Deep cut-offs downstream significantly reduced exit gradient value, especially when the 

inclination angle was more than 90 degrees. In contrast, the upstream cut-offs were adequate in 

decreasing uplift pressure, especially when the inclination angle was less than 90 degrees. The widths 

(b9 +b10) were necessary to provide a sufficient weight for the HWRS to resist external hydrostatic loads 

and uplift pressure. Also, these widths played a vital role in optimum design to satisfy HWRS design 

requirements (constraints), such as sliding, floatation, overturning and eccentric load conditions. 

All design requirements and safety factors were satisfied for all implemented cases. Exit 

gradient value was the most critical seepage design variable significantly affecting the obtained 

optimum solution. The minimum allowable value of the exit gradient safety factor was achieved for all 

implemented cases. This reflects the significance of the exit gradient value. For the same reason, the 

eccentric load condition had a crucial role in the obtained optimum solutions.  

High upstream water head significantly increased construction cost. Construction cost (per 

meter of water head) for small HWRS is cheaper than construction cost of HWRS with a high water 

head. On the other hand, the effect of hydraulic conductivity on optimum design of HWRS was 

significant. Low hydraulic conductivity and anisotropic ratio substantially augmented minimum 

construction cost.  
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The evaluation process for S-O methodology demonstrated that the obtained optimum solutions 

(designs) of HWRS were the most efficient solutions because all design safety factors and conditions 

were satisfied. Furthermore, optimum cost (objective function) was rationally varied with variation of 

upstream water head, kx1, (ky/kx)1 values. Additionally, the evaluation results demonstrated that the SVM 

technique can be used to develop accurate and efficient surrogate models for complex problems. The 

HGA optimization solver based on the direct search process was efficient to satisfy safe design at 

minimum cost. Finally, the linked S-O approach is considered an adequate technique to attain the 

optimum solution for complex problems related to design of HWRS incorporating  the seepage 

characteristic effects in the obtained optimum design.  

The next chapter focuses on hybridizing the genetic algorithm (GA) to the interior point 

algorithm (IPA) to improve performance of the optimization solver based the coupled S-O model. The 

advantages of using HGA are discussed and applied to a few illustrative problems presented in Chapter 

Five. 
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5 Global Optimum Hydraulic Design of Hydraulic Water Retaining 

Structures Constructed On Anisotropic Permeable Soil Utilizing 

Interior Point Algorithm Based Hybrid Genetic Algorithm 

 

A similar version of this chapter is under review for publication in the ISH Journal of Hydraulic 

Engineering as shown below:  

Al-Juboori, Muqdad, and Datta, Bithin (2018) Optimum hydraulic design of concrete gravity dams 

founded on anisotropic soils: utilizing interior point algorithm based hybrid genetic algorithm. ISH Journal of 

Hydraulic Engineering, Under Review. 

5.1 Introduction  

This chapter is a continuation of Chapter Four. Similar surrogate models, methods and the same 

formulation of the optimization model mentioned in Chapter Four were utilized in this chapter. 

However, this chapter focuses on improving performance of the genetic algorithm (GA) optimization 

solver based on the linked simulation-optimization (S-O) approach to improve the possibility of 

obtaining a global optimum solution.  

Due to complexity of the optimization model, including many surrogate models and constraints 

incorporated in linked S-O models, attaining the global optimum solution for such problems based on 

the GA is difficult. Hence, GA based on the direct search technique is hybridized with the interior point 

algorithm (IPA) based on the gradient search technique to find the global optimum solution. The hybrid 

genetic algorithm (HGA) optimization solver based the linked S-O technique was utilized to find the 

optimum design of the comprehensive model of HWRS constructed on anisotropic soils. The 

optimization model minimizes construction cost and provides safe HWRS design.  

The optimization task, which involves a large number of decision variables and constraints, is 

based on SVM-surrogate model responses and is considered a complex task. Therefore, a powerful 

optimization solver must be used to find the global optimum solution. One of the most prominent direct 

search optimization solvers is GA, which is an evolutionary solver and effective for complex optimum 

decision problems. However, for such complex problems, GA performance may deteriorate, decreasing 

the possibility of identifying a global optimal solution (Kolda, Lewis, & Torczon, 2003). Hence, this 

study focuses on improving GA performance to attain the global optimum design for HWRS 

constructed on permeable anisotropic soils. The proposed procedure involves hybridizing the GA based 

direct search technique with a gradient search algorithm, such as the IPA. Efficiency of HGA is tested 

by incorporating HGA in the linked S-O approach to find the optimum design of HWRS involving the 
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effect of anisotropic hydraulic conductivity and related seepage characteristics. Furthermore, this study 

compares performance of HGA with performance of standard GA and standard IPA when they are 

applied separately. In the following section, the developed methodology is described and obtained 

results based on different algorithms are discussed.  

5.2 Seepage conceptual model and data generation  

The conceptual model includes all relevant parameters and design variables which may affect 

HWRS design. As a result, hydraulic effects of each parameter on seepage characteristics could be 

determined. Generated data, the conceptual model and the design variables are the same as those utilized 

in Chapter Four. However, the properties of the flow domain are different. Hydraulic conductivity is 

considered the same for the entire flow domain, as shown in Figure 5.1. This means that there is no 

stratification in the flow domain and there is a single value of hydraulic conductivity (kx) and anisotropic 

ratio (ky/kx) for the entire flow domain. Utilized surrogate models in Chapter Four could be used in this 

study with minimal modification, considering the new adjustment of hydraulic conductivity. Based on 

the surrogate model responses, the optimization model within  the S-O approach could select the most 

important variables, which provide a safe and the most cost-efficient construction design.    

 

 
Figure 5.1 Conceptual seepage model 

 

5.3 Support vector machine surrogate model 

The support vector machine (SVM) surrogate models developed in Chapter Four were utilized 

to predict the seepage responses within the optimization model (see section 4.4). Matlab programing 

language was utilized to develop SVM models. Fifteen hundred scenarios of numerically simulated data 

were used to train SVM models. Twenty one ensemble surrogate models were built to determine uplift 

pressure (PEi, PCi) in front and behind each cut-off, and the exit gradient near the toe of the HWRS. 
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5.4 Optimization model 

5.4.1 Interior point algorithm (primal-dual): 

The interior point algorithm (IPA) can be used to solve constrained linear and nonlinear 

optimization problems involving inequality constraints. The IPA is profoundly and quickly able to find 

an optimum solution, even for large scale problems (Lesaja, 2009; Liu, Tso, & Cheng, 2002; Mulligan 

& Ahlfeld, 2002). IPA processes many iterations to find the optimal solution from the (pre-defined) 

interior point located in the feasible region of the search space.  

Concisely, to understand the process of IPA, formulation of the optimization problem must be 

transferred from the general (primal) form to the standard form (dual), as shown in Table 5.3. Each 

inequality constraint, i.e., g (x), is converted to an equality constraint by adding a slake variable (si). 

Also, a new inequality constraint (𝑠𝑖 ≥ 0) is assumed to ensure the slack variable is not less than zero 

to satisfy the original inequality constraints (Parkinson, Balling, & Hedengren, 2013). The new and 

original equality constraints are converted to standard form sets of equality constraints (c (x) = 0). 

Table 5.1 Formulation for the interior point algorithm  

General form Standard form Barrier function form 

Objective function 

               𝑚𝑖𝑛𝑥∈𝑅𝑛     𝑓(𝑥) 

Inequality constraint 
    𝑔𝑖(x) ≥ 𝑏       i = 1, 2, … ,m 

or 

   𝑔𝑖(x) − b − 𝑠𝑖 = 0       i = 1, 2, … ,m 

 

   𝑠𝑖 ≥ 0   (support inequality constraint) 
Equality constraint 

     h𝑗(x) = 0       j = m + 1,… , k 
 

 

  𝑚𝑖𝑛𝑥∈𝑅𝑛       𝑓(𝑥) 

s.t. 

𝑐(x) = 0 

𝑥𝑖 ≥ 0 

 

 

 

 

  𝑚𝑖𝑛𝑥∈𝑅𝑛    𝑓 = 𝑓(𝑥) − 𝜇 ∑ ln( 𝑥𝑖)

𝑚

𝑖=1

 

s.t. 
                    𝑐(x) =0 

 

In the second step, the original and slack variables inequality constraints (𝑥𝑖 ≥ 0) are involved 

in a barrier function and embedded as a part of the objective function. The barrier function must be 

defined in the second derivative. The logarithmic function, shown in Table 5.3, ensures attaining a 

positive value of xi, which has the same action as the inequality constraint. The term of the barrier 

function goes to (+) infinity when xi approaches zero from the positive side, i.e., from the feasible 

region. Additionally, as the objective function minimizes the µ value, the barrier term becomes steeper 

and sharper (Parkinson et al., 2013). This could guarantee that the xi value becomes a positive value 

and the IPA searches in the feasible space. Also, for a small µ value there is a critical barrier at zero. 

Hence, the IPA avoids breaching this barrier because the potential optimal (or sub-optimal) solution for 

IPA is inside the locale search space and it is demanding for IPA to move to the next search space. 
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The next step is to integrate equality constraints (𝑐(x) = 0) into the objective function using 

Lagrangian multipliers (Eq. (5.1)), and differentiate the resulting equation with respect to x, λ, then 

make them equal to zero (Eq. (5.2)). Then, the Karsh-Kuhn-Tucker (KKT) conditions for the barrier 

problem can be derived.  

𝐿(𝑋, 𝜆) = 𝑓(𝑥) − 𝜇 ∑ln( 𝑥𝑖) +   𝑐(x) 𝜆

𝑚

𝑖=1

 
 

(5.1) 

∇𝐿(𝑋, 𝜆) = ∇𝑓(𝑋) − 𝜇 ∑
1

𝑥𝑖
+∇𝑐(x) 𝜆  𝑚

𝑖=1  =0 
 

(5.2) 

Where 𝜆 instances is the Lagrangian multiplier vector and its size equals the number of equality 

constraints. 

let 𝑧 = µ

 𝑥
 , then 𝑍 𝑋 𝑒 −  µ𝑒 = 0 , where e is the unite vector and Z, X, as shown below. 

𝑍𝑘 = [

𝑧1 0 0
0 𝑧2 0
0 0 𝑧𝑛

]      𝑋𝑘 = [

𝑥1 0 0
0 𝑥2 0
0 0 𝑥𝑛

]    𝑒𝑚×1 = [  

1
..
.
1

] 

Then, the modified version of KKT equations are given in Eqs. (5.3) to (5.5):  

∇𝐿(𝑋, 𝑍, 𝜆) = ∇𝑓(𝑥) − Z + ∇𝑐(x)𝜆=0 
 

(5.3) 

𝑐(𝑥) = 0 
 

(5.4) 

𝑋𝑍 𝑒 − µ 𝑒 = 0 
 

(5.5) 
By applying the Newton Raphson method, we can solve these equations to find the search 

direction 𝑑𝑘𝑋 , 𝑑𝑘𝜆 , 𝑑𝑘𝑍 for the iteration k, then update xk, λk, Zk values for the next new iterations, as 

shown in Eq. (5.6): 

[

𝑊𝑘 𝛻𝑐(𝑥𝑘) −𝐼

𝛻𝑐(𝑥𝑘)
𝑇 0 0

𝑍𝑘 0 𝑋𝑘 

]     (

𝑑𝑘
𝑥

𝑑𝑘
𝜆

𝑑𝑘
𝑧

)   = −(

∇𝑓(𝑥𝑘) − 𝑍𝑘 +∇ 𝜆𝑘 𝑐(𝑥𝑘)

𝑐(𝑥𝑘)
𝑋𝑘𝑍𝑘𝑒 − µ𝑗  𝑒

) (5.6) 

Where 𝑊𝑘 is given in Eq. (5.7) 

𝑤𝑘 = 𝛻𝑥𝑥
2    𝐿(𝑥𝑘 , 𝜆𝑘 , 𝑧𝑘) = 𝛻𝑥𝑥

2  (𝑓(𝑥𝑘) − 𝑧𝑘 +   𝑐 (𝑥𝑘)
𝑇𝜆𝑘 ) ) (5.7) 

A new symmetric equation resulting from the rearrangement of Eq. (5.7) could be easily solved, 

as shown in Eq. (5.8) (Lesaja, 2009) 

[
𝑊𝑘 + ∑𝑘 𝛻𝑐(𝑥𝑘)

𝛻𝑐(𝑥𝑘)
𝑇 0

]     (
𝑑𝑘
𝑥

𝑑𝑘
𝜆)   = − (

∇𝑓(𝑥𝑘) + ∇  𝑐(𝑥𝑘) 𝜆𝑘
𝑐(𝑥𝑘)

)      (5.8) 

Where ∑ = 𝑋𝑘
−1𝑍𝑘𝑘  
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It is then easy to find 𝑑𝑘𝑋 , 𝑑𝑘𝜆 and 𝑑𝑘𝑍, and by providing an appropriate step size (α) it is easy to 

move to the next point and explore the search direction using the merit function. Merit function 

measures the objective function plus the absolute value of the constraint. The α is accepted if it reduces 

the merit function, as shown in Eq. (5.9).  

𝑚𝑒𝑟𝑖𝑡 = 𝑓(𝑥) + 𝜈∑|𝑐(𝑥)|  (5.9) 

Convergence criteria for the interior point algorithm are satisfied when KKT conditions are 

satisfied with a specified tolerance, as shown in Eqs. (5.10), (5.11) and (5.12).  

max |∇𝑓(𝑋) −  z  + ∇ 𝑐(x)  | ≤   𝜖𝑡𝑜𝑙 
 

(5.10) 

  max |𝑐(x) | ≤   𝜖𝑡𝑜𝑙    
 

(5.11) 

  max |𝑋𝑍𝑒 − µ𝑒 | ≤   𝜖𝑡𝑜𝑙 
 

(5.12) 

By providing a starting point, the algorithm rechecks the constraints and objective function 

violation until an optimum solution is satisfied. In conclusion, the obtained optimum solution by IPA 

is based on the start point located in the feasible space and gradient of the objective function. However, 

if the optimization problem is a complex problem including many constraints and decision variables, 

many feasible search regions, which satisfy the constraints, could be identified, but only one includes 

the global optimal solution. For such problems, the optimum solution by IPA probably converges in 

local minima. Therefore, the IPA provides a local optimal solution and rarely the global solution can be 

attained based on IPA. 

5.4.2 Genetic algorithm 

This section briefly discusses the reasons behind GA deficiency in finding the global optimum 

solution for complex problems. Because the optimization theory for GA has been extensively studied, 

this chapter disregards the formal description of GA, which can be found in Chapter Four and (Gen & 

Cheng, 2000; Haupt & Haupt, 2004; Rao, 2009). The GA has a high possibility to find a global optimum 

solution, because the GA examines search domains using a large number of individuals and 

simultaneously checks improvement direction of the objective function and constraints. However, for 

large scale problems encompassing many decision variables and constraints, convergence of the GA to 

the global optimum solution is difficult (Kolda et al., 2003). 

The GA solution is based on many iterations of the natural selection process, from the initial 

population to last generation. The weakness of the GA is highlighted by understanding that the selection 

process of individuals from one generation to next generation is continuously implemented to the genes 

with preferable properties. Individuals with a low-grade (score) die out (Dorsey & Mayer, 1995). This 
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means that the contribution of all parents to generate the next offspring is not equal. It may be possible 

to find a better solution next to low-grade individuals, if they were still surviving. However, 

convergence of the GA does not occur with equal possibility of parents to produce the next generation.  

Additionally, crossover and mutation ratios are other factors affecting GA performance. When 

a high crossover ratio is used, i.e., 0.5 or more, the GA pulls out the majority of individuals to a 

particular point. In contrast, the mutation process creates new and different individuals, which may 

explore the entire search space and lead the GA to the global optimum solution. However, convergence 

of the GA with a high mutation ratio is difficult (MathWorks, 2015). Hence, for the prominent ratio of 

cross over (0.6-0.8), the mutation effect to explore the entire space is limited because the number of 

newly created individuals is smaller than high-grade individuals. Then, the number of high-grade 

individuals significantly grows for the next generations and the majority of populations have the same 

properties. Subsequently, tolerance of the objective function and constraint for all individuals are 

satisfied and convergence criteria are achieved. Therefore, the objective function at the optimum point 

founded by GA may not have a zero gradient, but it satisfies the stopping criteria. As a result, the 

crossover and mutation ratio, which are the most important parameters for GA, must be accurately 

identified for each problem to attain the global optimum solution. 

Other important parameters of the GA, such as population size, fitness scaling function, 

selection function, cross over function and mutation function, also affect GA performance. These 

parameters depend on optimization task nature and complexity. Therefore, for each problem, GA 

parameter combinations must be prudently selected using particular search and feature section methods 

to improve GA performance (Haines et al., 2012; Kolahan & Doughabadi, 2012; Koljonen & Alander, 

2006; Pereira et al., 2005; Rand et al., 2006). This process is a demanding and time consuming task, 

especially for a large population size. From this point, it can be concluded that GA efficiently explores 

the most search space, even for complex problems, because it is based on a random and direct search 

technique (Dorsey & Mayer, 1995). However, to approach the global optimum solution for a complex 

problem using GA there is a requirement to set up several options and parameters of the GA accurately 

and efficiently. Hence, for complex problems it is difficult to converge to the global optimum solution 

(zero grade point) based on standard GA. In this study, therefore, GA is hybridized with the IPA based 

gradient search technique.  

5.4.3 Hybrid genetic algorithm (HGA)  

The weakness of GA to find the global optimum solution for a complex problem may be 

addressed by hybridizing the GA with a gradient search algorithm, such as IPA. Improvement of the 

hybrid genetic algorithm (HGA) can be attributed to high efficiency of GA to explore the entire search 

space. Also, GA quantifies the best optimum search region from many regions, because GA, in contrast 

IPA, has the ability to expeditiously change the properties of the population and explore the entire space, 
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especially for the first few generations. Additionally, IPA can efficiently and quickly approach to the 

zero gradient local minima of the objective function. Furthermore, the ability of IPA to move from a 

search space to another is limited, because the objective function would approach to infinity when IPA 

reaches the boundary (constraints) of a specific search space.   

In this study, the complexity of the problem arises from many factors. For example, the number 

of decision variables is 32, the number of constraints is 70 and the objective function and constraints 

are nonlinear. Also, 21 ensemble SVM surrogate models are involved in the objective function and 

constraints. The optimization solver evaluates the fitness value and constraint violations based on the 

surrogate model responses. Additionally, even though SVM provides high prediction accuracy in the 

training and testing phase, the relationship between seepage design variables and design parameters is 

complex. As a result, performance of SVM surrogate models is expected to decline with the extreme 

data presented by the optimization solvers, which significantly affects convergence of the optimization 

solver.  

Basically, the HGA process involves normal start of the GA with a random population. After 

many generations, the GA converges to the best optimum point in the search space. This point is the 

starting point of the local-based gradient search algorithm (IPA). The IPA algorithm searches from a 

point to the next point for the best direction that leads to the zero gradient point. Therefore, IPA 

efficiently attains the optimum solution for the local search space with a predefined point. Hence, a 

combination of random direct search technique based GA with the gradient search technique based IPA 

may lead to the global optimum solution.  

5.4.4 Formulation of the optimization model  

The optimization model is formulated to determine optimum design of HWRS. The best value 

of each design/decision variable is selected by the optimization solver to provide safe and economic 

design. Safety factors and other hydraulic design requirements represent the constraints of the 

optimization model within the S-O model.  

Formulation of the optimization model is similar to optimization formulation in Chapter Four. 

Constraints and minimum cost objective function are also the same. The optimization model within the 

S-O technique explores the effects of the anisotropic ratios. Also, the effect of utilizing HGA is studied 

by comparing the obtained optimum solutions of the optimization models based on different 

optimization algorithms, such as HGA, GA and IPA.  

5.5 Results and discussion  

The linked S-O model was implemented to find the optimum solution of HWRS with different 

anisotropic ratios ranging from 0.1 to 1.5, as shown in Table 5.3. The value of other variables was left 

constant; for example, hydraulic conductivity was 5 m3/day, upstream head, i.e., H, value was 100 m 
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and depth of subsoil was constant at 150 m. The remaining variables were considered as decision 

variables to be obtained by the optimization solver as an optimum solution. 

5.5.1 Optimization solvers efficiency 

To determine how HGA enhances and improves optimization results, the S-O technique was 

implemented with the specified optimization solvers (GA, HGA and IPA) for different values of 

anisotropic ratio. For each optimization solver within the S-O model, and for each single anisotropic 

value, the S-O model was implemented twice, utilizing different and random start points. This 

arrangement was undertaken to achieve an accurate and objective examination of algorithm 

performance for different scenarios. Parameters of GA and IPA are listed in Table 5.2, and the 

remaining parameters were left the same as default Matlab settings. Parameters of HGA are the same 

for the combination of the two algorithm’s parameters, and are exactly as the same as those shown in 

Table 5.2.  

Table 5.2 Options and parameter values for GA and IPA 

GA parameters IPA parameters 
Population Size 500 Max Function 

Evaluations 
10000 

Elite Count 3 Max Iterations 1000 
Crossover Fraction 0.65 Optimality Tolerance 1.00E-04 
Migration Direction 'both' Function Tolerance 1.00E-04 
Function Tolerance 1.00E-04 Step Tolerance 1.00E-04 

Constraint Tolerance 1.00E-04 Constraint Tolerance 1.00E-04 
Use Parallel true Use Parallel true 

  

The most important result of this study was the objective function values obtained by HGA, 

which were significantly less than the objective function value obtained by standard GA. As shown in 

Figure.5.2, the two different GA implementations provided less economic design compared with HGA 

solutions. The two iterations of HGA provided exactly the same objective function value and optimum 

solutions, even when HGA started from a different random starting point. In contrast, the GA optimum 

solution for the first time was different to the second time. Performance of GA proved that solutions 

resulting from GA were not the global optimum solution. As seen in Table 5.3, the percentage of 

improvement of optimum construction cost was a considerable value, which sometimes reached more 

than 50 %.  



Chapter Five 

105 
 

 
Figure 5.2 Objective function by HGA and GA   

 

Table 5.3 Objective function values obtained by HGA and GA for different ky/kx ratio  

ky/kx Objective 
function 

_HGA_Iter 1, 
2 

Objective 
function 

_GA_Iter 1 

Improvement 
percentage for 

the first iteration 

Objective 
function 

_GA_Iter 2 

Improvement 
percentage for 

the second 
iteration 

0.1 13,333,370.86 17,354,151.09 23.17 16,760,144.36 20.45 
0.3 10,258,627.47 14,330,295.53 28.41 15,855,989.49 35.30 
0.5 7,753,981.80 14,759,779.64 47.47 18,360,589.05 57.77 
0.7 6,030,451.81 17,163,655.36 64.86 16,671,226.89 63.83 
0.9 5,618,499.23 12,211,401.29 53.99 9,611,843.27 41.55 
1.1 5,367,411.11 9,766,642.65 45.04 14,310,283.98 62.49 
1.3 5,205,080.84 13,329,024.09 60.95 12,219,413.38 57.40 
1.5 4,991,124.45 9,592,305.68 47.97 9,971,288.64 49.95 

 

However, GA performance could be improved if the the population size is significantly 

increased. This test was conducted for the case that includes a 1.5 anisotropic ratio. The standard GA 

code based linked S-O technique was applied with two random start points and 5,000 population size 

using a relatively high quality process unit (Intel(R) Core™ i7-2600 CPU@ 3.4GHz_3.4GHz, RAM 

8.00 GB, 64x-based processor). The results, shown in Table 5.4, demonstrated that new objective 

function values obtained by GA were better than when the population size was 500 (Table 5.3). 

However, HGA results were still the best. That means, even with large population size, attaining the 

global optimum using GA is difficult. Moreover, the time consumed by HGA was considerably less 

than time consumed by the standard GA. Therefore, time efficiency is another advantage of using HGA. 

The computational time consumed by HGA was approximately 13 times less compared with the time 

consumed by the standard GA with high population size. Also, the global optimum solution was not 

guaranteed by the GA.  
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Table 5.4 Performance efficiency of HGA and GA (ky/kx=1.5)  

 Run Population size 
(GA) 

Objective function 
($) 

Time 
(Sec.) 

Standard 
GA 

First 5000 8.247e 6 8543.44 
Second 5000 7.8603e 6. 8413.26 

HGA First & 
second 500 4.9911e 6. 652.41 

 

The S-O model with the IPA solver was also implemented twice for each case. The IPA did not 

present any feasible solution even with different random starting points. However, for the first run of 

the case including anisotropic ratio equal to 1.1, the optimum solution by IPA was a feasible solution 

and the same as the HGA solution, as shown in Table 5.5. This means there is an opportunity to approach 

global optimum solutions by IPA, if IPA starts (initial point) in the same search space of the global 

optimum solution. The exit flag (-2) in Table 5.5 means that the relative maximum constraint violation 

exceeded the allowable tolerance, whereas the exit flag (+1) means the relative objective function 

tolerance, the constraints tolerance and optimality tolerance (less than 1e -4) were satisfied 

(MathWorks, 2015).  

Table 5.5 Stopping condition and objective function values of IPA 

ky/kx 
objective 
function _ 

Iter 1 

exit 
Flag 

objective 
function _ 

Iter 2 

exit 
Flag 

0.1 13066713 -2 16092694 -2 
0.3 7847945 -2 5681176 -2 
0.5 5988833 -2 7711078 -2 
0.7 6050421 -2 6106638 -2 
0.9 5930869 -2 6633099 -2 
1.1 5367411 1 5451110 -2 
1.3 4887445 -2 5188936 -2 
1.5 4948707 -2 5066211 -2 

5.5.2 S-O solutions result  

As the best optimum solutions are attained by HGA, only these results are considered in the 

discussion to find the effect of anisotropic ratio on the optimum solution. Eight different anisotropic 

ratios varying from 0.1 to 1.5 were implemented in the linked S-O model. 

The majority of optimum solutions were based on input design variables b9, b10, d9 and d10 to 

provide a safe and cost effective solution, as shown in Table 5.6. In general, with a low anisotropic ratio 

(ky/kx) the values of b9, b10, d9 and d10 were large and gradually decreased with increase of (ky/kx) value. 

This is logical and can be attributed to the exit gradient safety factor consequences. The exit gradient 

values increase with decrease of anisotropic ratio. Therefore, the optimization solver provided an 

efficient depth (d10), which is the most controllable variable in reducing exit gradient value. Also, 

inclination angle β10 reached the maximum limit of 150 degrees. Although, it is an expensive alternative 

to provide deep cut-offs with maximum inclination angle (see Eq. (4.20)), it was the optimum option to 
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attain a safe exit gradient value. A deep downstream cut-off (d10) encompassing inclination angle toward 

downstream considerably decreases the exit gradient value. Constructing inclined cut-offs either at the 

upstream location with an angle less than 90 degrees or, at the downstream location with an angle more 

than 90 degrees, increases the stream path for seeping water. This would reduce seepage characteristics 

impacts, particularly exit gradient, for HWRS design.    

Table 5.6 Optimum solutions based on HGA 

Design 
variables 

ky/kx 
0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 

b1 0.01 0.01 0.01 0.01 5.48 8.70 9.78 11.35 
b2 30.01 30.00 0.01 4.56 3.84 4.45 5.79 6.37 
b3 0.01 0.01 0.01 0.01 0.01 0.10 0.91 0.70 
b4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
b5 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
b6 21.05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
b7 51.04 22.84 0.01 0.01 0.01 0.01 0.01 0.01 
b8 30.01 134.12 0.01 0.01 0.01 0.01 0.01 0.01 
b9 150.00 30.01 72.23 50.17 47.67 43.02 38.96 35.77 

b10 41.64 41.71 60.00 53.20 46.88 48.38 48.57 55.14 
b11 0.01 0.01 4.75 0.01 0.01 0.01 1.24 1.26 
d1 60.00 60.00 0.01 9.11 7.67 8.70 9.78 11.35 
d2 0.01 0.01 0.01 0.01 0.01 0.19 1.81 1.39 
d3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
d4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
d5 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
d6 42.09 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
d7 60.00 45.66 0.01 0.01 0.01 0.01 0.01 0.01 
d8 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
d9 60.00 60.00 60.00 55.15 47.14 41.77 37.50 35.59 

d10 23.28 23.42 60.00 51.25 46.61 41.88 40.00 35.88 
dd 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
β1 140.71 135.11 150.00 148.96 141.41 135.71 131.26 126.85 
β2 106.89 106.71 76.15 83.81 83.87 85.29 85.70 86.58 
β3 92.34 94.70 113.14 119.49 123.15 127.22 132.67 135.12 
β4 86.53 88.34 100.78 106.38 108.32 110.80 113.72 113.77 
β5 62.37 54.52 46.31 55.23 57.06 60.11 63.68 68.27 
β6 150.00 150.00 150.00 150.00 150.00 150.00 150.00 142.88 
β7 147.33 150.00 107.21 142.94 133.49 134.77 140.83 143.44 
β8 104.05 150.00 30.00 30.00 30.00 30.00 30.00 30.00 
β9 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 
β10 150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00 
 

On the other hand, augmentation of b9, b10 and d9 partially contributed to reducing the exit 

gradient value, because uplift pressure of a specific point was used with other design variables (bi, di, 

βi, kx, (ky/ kx)) to predict the next point uplift pressure. This means that exit gradient value is influenced 

also by values of b9, b10, and d9 due to their effects on the uplift pressure behind the last cut-off, which 

influences exit gradient value. The values of b9, b10 and their thicknesses enhanced stability for HWRS 

to satisfy the sliding, overturning and eccentric load requirements. These variables provide sufficient 

weight to counterbalance external hydrostatic loads and uplift pressure. Moreover, d9 decreases uplift 

pressure value under b10 to decrease the floor thickness and construction cost. The inclination angle β9 

reached the minimum boundary 30 degrees, which is the most effective inclination angle to reduce 

uplift pressure underneath the HWRS. 
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In some optimum solutions, as shown in Table 5.6, there are noticeable contributions related to 

d1 and b2 values, especially for small anisotropic ratios, which are the most critical scenarios. For the 

cases (ky/kx = 0.1 to 0.3), the length of d9 and d10 within the specified range are not solely adequate to 

provide a safe HWRS design. Hence, the d1 value significantly reduces the uplift pressure for the rest 

of the structure (Figures 5.4 and 5.5) and consequently decreases construction cost. Additionally, an 

increase in d1 value partially contributed to a decrease in exit gradient value due to d1 effects in reducing  

uplift pressure under the HWRS.  

When the anisotropic ratio increased (>0.5), the load resultant distance e became more 

controllable in the optimization process. The e value of the optimum solutions reached the minimum 

allowable limit (B/3) to provide safer and cheaper solutions, as shown in Figure 5.3. Therefore, e value 

also plays a significant role in safety of HWRS. The sliding constraint has significant effects on optimal 

design of HWRS. The minimum allowable value of the sliding safety factor is 1.5, as shown in Table 

5.7. For small anisotropic ratio, the seepage characteristics are more critical and exit gradient value is 

high. Consequently, for these cases the exit gradient value is more controllable in optimum design of 

HWRS. However, when anisotropic ratio decreases, exit gradient value also decreases. This allows 

other safety factors, such as the sliding and overturning safety factor, to approach to the minimum 

allowable limit. Hence, an economical design could be achieved (Table 5.7, Figure. 5.3).  

 
Figure 5.3 Load resultant location (e) 

 

Table 5.7 Safety factors for the optimum solution for different ky/kx ratios  

ky/kx Exit 
gradient  

Resultant 
location  

Over 
turning  

Sliding  

0.1 5 155.09 2.09 3.45 
0.3 5 112.02 1.99 2.68 
0.5 5 54.10 1.81 2.03 
0.7 5 36.00 1.62 1.57 
0.9 5 34.64 1.59 1.50 
1.1 5 34.90 1.59 1.50 
1.3 5 35.10 1.59 1.50 
1.5 5 36.88 1.60 1.50 

0

50

100

150

200

250

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

A
ni

so
tro

pi
c

Anisotropy ratio

1/3 B total

2/3 B total

  Resultant location (e)



Chapter Five 

109 
 

 

Total construction cost of HWRS decreases with an increase in anisotropic ratio. This may be 

attributed to the high construction cost for deep cut-offs due to significant inclined angles. Also, the 

huge thickness and length of b9 and b10 considerably increase the construction cost. With high 

anisotropic ratio, exit gradient values have less impact on the safety of HWRS design, as the seeping 

water movement through soil becomes easier, especially in the vertical direction. Consequently, large 

depths of d10 and d9 are not necessary, instead the optimization solver provides sufficient thickness, 

which is a cheaper solution, to counterbalance uplift pressure.  

5.5.3 Optimum solution evaluations 

To evaluate the accuracy of the S-O technique, the obtained optimum solutions were solved 

using the seepage numerical modeling code. Agreement of seepage characteristics obtained by the S-O 

model with those obtained by the numerical solution reflects the accuracy of the S-O technique. 

Evaluation results demonstrated good agreement between the seepage characteristics of the optimum 

solutions and the numerical solutions, as shown in Figure 5.4 to Figure 5.12 (5% error bar charts).  

However, in some cases there were slight deviations for the uplift pressure and exit gradient 

values. These deviations may be attributed to weak learning of SVM surrogate models for unseen or 

extreme data. The most optimum solutions presented by HGA were extreme scenarios. For example, 

values of b2 to b8 and d2 to d8 approached zero. Also, values of d9 and d10 reached the upper limit (60 

m) and inclination angles β 9 and β 10 reached the boundary limits (30 and 150 degrees), as shown in 

Table 5.6. In general, although optimum solutions included an extreme value, SVM surrogate models 

base S-O models presented an accurate prediction related to seepage characteristics. Maximum 

percentages of error of the predicted uplift pressure were less than (+/- 10%), which are accepted for 

such complex problems. On the other hand, the predicted exit gradient values, shown in Figure 5.12, 

were in total agreement with the numerical solution results. However, a few cases have noticeable 

deviation, as in the first scenarios (anisotropic ratio = 0.1), which might be attributed to weak learning 

of the SVM model for the range of values lying on the periphery of training data sets.  
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Figure 5.4 Evaluation results for different locations of the uplift pressure (ky/kx =0.1) 

 

 
Figure 5.5 Evaluation results for different locations of the uplift pressure (ky/kx =0.3) 

 

 
Figure 5.6 Evaluation results for different locations of uplift pressure (ky/kx =0.5) 
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Figure 5.6 Evaluation results for different locations of the uplift pressure (ky/kx =0.7) 

 
Figure 5.7 Evaluation results for different locations of uplift pressure (ky/kx =0.9) 

 

 
Figure 5.8 Evaluation results for different locations of uplift pressure (ky/kx =1.1) 
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Figure 5.9 Evaluation results for different locations of uplift pressure (ky/kx =1.3) 

 

 
Figure 5.10 Evaluation results for different locations of uplift pressure (ky/kx =1.5) 

 

 
Figure 5.11 Exit gradient evaluation for different anisotropic ratios 
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5.6 Conclusion 

Attaining global optimum design of HWRS incorporating several constraints, and based on 

several seepage characteristic responses of many surrogate models, is an almost unachievable task 

without improvement in efficiency of the utilized optimization solvers. This study presented a new 

methodology to expeditiously find the global optimum solutions by hybridizing the GA based direct 

search method with the IPA based gradient search method. The HGA was applied to find optimum 

design of HWRS incorporating the seepage characteristics based on an anisotropic hydraulic 

conductivity flow domain. The linked S-O model utilized well trained and tested SVM surrogate model 

responses to evaluate the objective function and constraints. Optimization results demonstrated that 

efficiency of the HGA was enough to find the global optimum solution compared with standard GA 

and IPA. The HGA efficiently provides a more economic and safer HWRS design. The percentage of 

improvement in the objective function value (construction cost) was between 20% and 50 %, which is 

of substantial value for large scale construction projects. Even though population size of the GA was 

increased to 5,000 individuals, optimum solutions from HGA based on 500 individuals was the best. 

Also, the computing time efficiency of HGA to find the optimum solution was about 13 times faster 

compared to standard GA based on 5,000 populations.  

Physically, reducing anisotropic ratio (ky/kx) significantly increases construction cost due to 

augmentation of the seepage characteristics, especially exit gradient value. The optimum solutions for 

many cases were based on the six effective variables d9, d10, b9, b10, β9 and β10. The main role of the 

widths b10 and b9 with sufficient thickness was to provide an efficient cross section counterbalancing 

the significant uplift pressure and hydrostatic forces. The role of d9 was to reduce uplift pressure under 

the HWRS, especially when β9 reached the minimum value (30 degrees). Additionally, reduction of 

uplift pressure due to increasing d9 significantly reduced the uplift pressure at the end of HWRS; then 

the exit gradient value declined. The value of d10 had a direct effect in reducing the exit gradient value, 

especially when β10 reached 150 degrees. In general, all HWRS hydraulic design requirements and 

safety factors were satisfied. The exit gradient safety factor was the most controllable factor for the 

optimum solutions; however, when anisotropic ratio increased the allowable resultant distance (e) and 

sliding safety factor were also acting as controllable factors and affecting optimum solutions.  

The accuracy of solutions obtained in the evaluation processes demonstrated that the S-O 

methodology is applicable for finding the optimum solution of HWRS. Even though most optimum 

solutions were extreme scenarios, i.e., lying on the periphery of the training data set, maximum SVM 

prediction errors were less than 10%. Accordingly, the linked S-O technique incorporating HGA is a 

powerful methodology and can be applied to find global optimum solutions for complex problems.  

Future recommendations to address the limitations of this study are: [1] extensively study the 

effect of GA and IPA parameters and find the optimum combination of these parameters to improve 
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their performance; [2] the training range of training data could be expanded to provide more accurate 

responses for extreme data; [3] different machine learning techniques, such as genetic programing (GP) 

or fuzzy neural network (FNN), which are expected to provide precise predictions (surrogate model) 

for design variable of complex problems should be explored. 

The reliability based optimum design is implemented in Chapter Six. The uncertainty in 

seepage quantities due to the  uncertainty in estimating the hydraulic conductive is incorporated in the 

S-O model to quantify the reliability of HWRS design based on the multi-realization optimization 

technique.  
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6 Reliability Based Optimum Design of Hydraulic Water Retaining 

Structure Constructed on Heterogeneous Porous Media: Utilizing 

Stochastic Ensemble Surrogate Model Based Coupled Simulation 

Optimization Model 

 

A similar version of this chapter is under review for publication in the Journal of Life Cycle 

Reliability and Safety Engineering as shown below:  

Al-Juboori, Muqdad, and Datta, Bithin (2018) Reliability based optimum design of hydraulic 

water retaining structure constructed on heterogeneous porous media: utilizing stochastic ensemble 

surrogate model based coupled simulation optimization model. Journal of Life Cycle Reliability and 

Safety Engineering, Under Review.  

This chapter studies the effects of uncertainty and variation in hydraulic conductivity on the 

optimum design of HWRS. Different realizations (random field) of heterogeneous hydraulic 

conductivity were sampled from a constant mean and varied standard deviation log-normal distribution. 

The objective of this study was to integrate the reliability concept in the linked simulation optimization 

(S-O) technique to address uncertainty of the seepage characteristics due to uncertainty of hydraulic 

conductivity. The reliability based optimum design (RBOD) framework was implemented utilizing 

multiple realization optimization techniques based on GPR stochastic ensemble surrogate models. The 

S-O model based RBOD was formulated to find the most cost-effective HWRS design that satisfies a 

specified degree of reliability.  

6.1 Introduction  

Seepage characteristics under hydraulic water retaining structures (HWRS) significantly impact 

the hydraulic serviceability and stability of such structures. Seepage quantities are influenced by the 

hydraulic conductivity value and its spatial and directional variations. Homogenous isotropic hydraulic 

conductivity soils are rarely seen in the field. As Lambe & Whitman (1969, p. 275) reported, 

“unfortunately, the soils are generally nonhomogeneous and anisotropic”, even in one single layer there 

is no uniform homogenous soil properties (Freeze, 1975). Therefore, in the geotechnical and structural 

design codes, uncertainty due to analysis methods, loads and parameter variations have been strongly 

considered (ACI Committee American Concrete Institute& International Organization for 

Standardization, 2011; European Committee For Standardization, 2004). Uncertainty in soil parameters 

arises from different sources, as follows: [1] spatial and direction variations of inherited soil properties 
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as a result of the environmental effect on sediment conditions, [2] shortage in the number of required 

samples, [3] error in measurement of soil properties and statistical analysis error. Soil properties and 

hydraulic conductivity especially have a large covariance 200-300% value, which means uncertainty 

level of hydraulic conductivity is high (Baecher & Christian, 2005).  

As uncertainty level increases, the expected risk increases, especially for huge projects such as 

nuclear power plants and large water retaining structures. Hence, design and safety factors must be 

conservative. Therefore, many studies have been conducted to study the effect of uncertainty and soil 

properties variations on the reliability of designs (Baroni, Zink, Kumar, Samaniego, & Attinger, 2017; 

Christian, Ladd, & Baecher, 1994; Deng, Li, Qi, Cao, & Phoon, 2017; Duncan, 2000; Hicks, Nuttall, & 

Chen, 2014; Hicks & Spencer, 2010; Popescu, Deodatis, & Nobahar, 2005). Specifically, for 

groundwater and seepage for hydraulic structures most studies have concentrated on stochastic analysis 

of seepage characteristics based on different realizations of hydraulic conductivity generated from 

different probability distribution functions (PDF) or different sets of mean and standard deviation 

(Ahmed, 2012; Griffiths & Fenton, 1993, 1997; Le, Gallipoli, Sanchez, & Wheeler, 2012). The 

important conclusion of such studies was that the degree of uncertainty drastically influenced seepage 

characteristics, which may negatively affect the design performance and safety.  

All traditional techniques used to quantify uncertainty and measure the reliability of design are 

based on statistical parameters of involved variables. Reliability in this context refers to actual 

performance of the design compared to expected performance. A majority of conducted studies are 

based on conventional reliability methods, such as first order reliability method (FORM), first order 

second moment (FOSM) method, reliability index method, point estimation methods and the Hasofer-

Lin approach or geometrical reliability method. These methods are based on mean (μ), variance (σ2), 

covariance (cov) and probability density function (PDF) of involved parameters or variables and a 

particular performance criteria integrated in reliability analysis. Generally, the reliability index or 

probability of failure (Pf) for a design can be computed based on a certain safety factor criteria and a 

particular value of μ, σ. On the other hand, Monte Carlo simulation (MCS) method, which is based on 

randomly generated data from specific PDF, μ and σ, can be used to determine Pf. The MCS method is 

based on involving a large number of random data in calculation of a certain safety factor criteria, then 

the probability of failure is determined based on the number of unsuccessful samples to the total number 

of samples (Baecher & Christian, 2005).  

Recently, new techniques have been developed based on numerical simulation to evaluate 

reliability. For example: Griffiths and Fenton (2004) used the random finite element method; Zhu, 

Wang, Li, Liu, and Cheng (2017) utilized the weighted dynamic response surface method; a non-

intrusive stochastic finite element method was implemented by Jiang, Li, Zhang, and Zhou (2014), and 

the multi response surface method was used by Deng et al. (2017). These methods were based on 
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stochastic simulation of the design based on the random field concept integrated with the finite element 

method considering spatial variability of soil parameters. In other studies, the computationally 

expensive numerical models were replaced with stochastic response surface models to explore the 

reliability of the design (Mollon, Dias, & Soubra, 2009, 2010).  

Although satisfying high reliability level of a certain design provides a more reliable design, 

this may negatively impact on the efficiency of other aspects, such as the construction cost, etc. Hence, 

a number of studies incorporated reliability in the optimization model to improve design and acquire 

more information about the impact of reliability on optimum design, considering the uncertainty in 

design parameters (Bayer, de Paly, & Bürger, 2010; Singh & Minsker, 2008; Sreekanth & Datta, 2011; 

Tee, Khan, Chen, & Alani, 2014; Zhang, Zhang, & Tang, 2011). The majority of these studies 

demonstrated that the RBOD approach was a computationally expensive and difficult task, especially 

with stochastic noisy constraints and objective functions. Also, only evolutionary optimization solvers 

based on the direct search technique, such as the anti-colony optimization (ACO) and genetic algorithm 

(GA), could be utilized in similar optimization problems. 

In the present study, the reliability based optimum design (RBOD) framework was 

implemented using a multiple realization optimization technique. As directly linking the numerical 

simulation code to the RBOD model is a demanding task, sets of precisely trained ensemble stochastic 

surrogate models were imbedded in the linked S-O technique based RBOD framework. Each surrogate 

model imitated the numerical seepage modeling responses based on a particular field of heterogeneous 

hydraulic conductivity. Characteristics of each random field were based on certain values of μ and σ of 

log-normal PDF. Hence, each surrogate model represented a certain degree of uncertainty of a specific 

seepage quantity. The process to quantify the reliability of design within the RBOD framework was 

based on determining the number of stochastic responses, satisfying a particular constraint of the total 

number of surrogate models (stochastic responses) in the ensemble. For example, for each safety factor, 

candidate design with 60 % reliability must satisfy at least 60 % of stochastic safety factors computed 

based on stochastic seepage values using many surrogate models. These surrogate models were trained 

and tested based on different seepage data sets resulting from the numerical simulation of different 

seepage modelling and different scenarios of heterogeneous hydraulic conductivity.  

The objective function of the optimization model is the minimum construction cost of HWRS. 

Reliability level was formulated as an additional constraint, continually controlling all stochastic 

constraints until the desired reliability level is achieved for each single iteration of the optimization 

model. Reliability constraints, stochastic constraints and deterministic constraints were simultaneously 

evaluated with the objective function to attain the optimum solution. The majority of the constraints 

and objective function were based on the ensemble surrogate model responses within the S-O model.  
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The optimization task in the present study is considered complex. Hence, the optimization 

solver and machine learning technique had to be efficient and accurate enough to provide reliable and 

accurate solutions. Therefore, GA was utilized as an optimization solver for this task. The GA is widely 

used to solve complex optimization problems in different engineering applications. Additionally, the 

Gaussian process regression (GPR) machine learning technique was utilized in S-O models to precisely 

imitate numerical model responses under different conditions. Many researchers dealing with 

geotechnical and civil engineering problems have demonstrated that GPR precisely predicted certain 

responses compared to other machine learning techniques, such as support vector machine and back 

propagation neural network (He et al., 2017; Kang et al., 2015; Kang et al., 2017; Li et al., 2017; Pal & 

Deswal, 2010; Samui & Jagan, 2013). 

This study concentrated on developing the RBOD framework to find optimum HWRS design 

at minimum cost, considering a particular level of reliability to address uncertainty in hydraulic 

conductivity and seepage quantities. This objective could be established by formulating a constrained 

multi-realization optimization model based linked S-O technique utilizing GA optimization solver and 

incorporating many stochastic ensemble GPR surrogate models. The minimum cost objective function 

and stochastic constraints within the S-O model were based on the responses of ensemble surrogate 

models. Reliability constraints were simultaneously integrated into the S-O model and were based on 

the ensemble surrogate responses to quantify the reliability of the design. Each surrogate model in the 

ensemble model was trained and tested based on large data sets simulated by a numerical seepage 

modeling code (SEEP/W) (Krahn, 2012). Predictions of each surrogate model represented one of the 

seepage characteristics based on a particular random field involving different realizations of 

heterogeneous hydraulic conductivity.  

The following sections present and discuss the seepage model and data generation, theory of 

GPR, measuring the performance of the developed surrogate models, formulation of the RBOD model, 

results and discussion, evaluation of the developed methodology and conclusion.   

6.2 Conceptual seepage model and design of experiments 

Generally, seepage analysis for heterogeneous hydraulic conductivity of the flow domain based 

on the closed form solution is impractical. Furthermore, mathematical seepage analysis for homogenous 

isotropic hydraulic conductivity with complex geometry is a convoluted process. However, the 

numerical solutions based on the finite element method (FEM) provide precise solutions for complex 

problems compared to experimental observations and other numerical method solutions 

(Shahrbanozadeh et al., 2015).  

Therefore, in the current study, FEM code based-Geo-Studio/SEEP/W software (Krahn, 2012) 

was utilized to simulate seepage problems. However, each iteration (run) of the numerical simulation 

of seepage modeling with heterogeneous hydraulic conductivity takes a long time. For example, 
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simulation time for two randomly selected cases drawn from the hydraulic conductivity field with 

standard deviation 2.95, 3.65 m/day was 1:27.34 and 3:25.14 minutes, respectively. These simulations 

were conducted utilizing a high speed processor unit (Core™ i5-4570 CPU@ 3.20 GHz, RAM 8.00 

GB, 64x-based processor). Consequently, it is time consuming and inefficient to directly link the 

numerical model to the optimization model. The justification being that the optimization solver is based 

on a direct search evolutionary algorithm, which invokes numerical responses numerous times to 

evaluate the constraints and objective function for each individual in each generation of the search 

process. This might take many weeks to find the optimum solution for one S-O run (Dhar & Datta, 

2009; Mollon et al., 2009, 2010). Additionally, reliability constraints increase complexity of the 

problem and the required time for each run of the S-O model because additional iterations are required 

to evaluate reliability of the design. Moreover, quantifying the reliability requires responses of many 

numerical stochastic simulations encompassing different realizations of the hydraulic conductivity 

field. Attaining and incorporating such responses requires a large number of iterations and longer time.  

Alternatively, the numerical seepage model can be replaced by expeditious surrogate models. 

The surrogate model can be trained and tested based on numerous data sets simulated using the 

numerical seepage modeling code. Then the trained surrogate model could efficiently and accurately 

predict seepage characteristics even for out of training data sets without a need to use the numerical 

simulation model.  

The first step to building a surrogate model is to propose a conceptual seepage model for HWRS 

integrating the design variables and parameters. Based on the conceptual model shown in Figure 6.1, 

input data could be generated. Important design variables influencing seepage quantities were upstream 

cut-off (d1), downstream cut-off (d2), total width of HWRS (b), upstream water head (H), and hydraulic 

conductivity characteristics.  
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Figure 6.1 Conceptual model of HWRS 

 

Input data comprised 150 sets of seepage design variables (d1, d2, b, H), randomly generated 

utilizing the Halton sequences (HS) method (Loyola, Pedergnana, & García, 2016). The HS provides 

more uniform distribution for generated data compared with other methods, such as the Latin hypercube 

sampling method (LHS). A sample of random data generated for HWRS width (b), shown in Figure 

6.2, demonstrates how the HS method uniformly covers all variable ranges. In contrast, the LHS leaves 

some spots without any point and provides many adjacent points in the same place. Therefore, data sets 

generated by the HS method are the best distributed data for the machine learning process 

(experiments). The proposed ranges of design variables were 0-80 m for d1 and d2 and 0-150 m for b 

and H. These ranges were supposed to cover all expected optimum solutions obtained for different 

upstream head value. Furthermore, in the real field, the most constructed HWRS could be seen within 

these limits. 
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Figure 6.2 Random data sampling using a) HS method b) LHS method for width of HWRS [b (0-150) m] 

 

Heterogeneous hydraulic conductivity was assumed to be a random field sampled from log-

normal distribution. Random field properties were based on a defined mean and standard deviation. 

Five standard deviations (0.85, 1.55, 2.25, 2.95 and 3.65) were assumed based on constant mean (2 

m/day). Although, there is no explicit relationship between the standard deviation and mean, the 

expected values of standard deviation range between (0.5 to 2 μ). Hence, using Eq. (6.1), the prescribed 

five values of standard deviation can be generated.  

𝜎𝑖 = 𝜎𝑚𝑖𝑛+ 𝑖 (
𝜎𝑚𝑎𝑥−𝜎𝑚𝑖𝑛 

5 × µ
) , 𝑖 = 1,3, … 9  (6.1) 

Where  𝜎𝑚𝑖𝑛 is the minimum value of standard deviation (0.5 m/day),  𝜎𝑚𝑎𝑥  is the maximum 

value of standard deviation (4 m/day).  

A Box-Muller approach (Ross, 2014) was used to generate a log-normal distribution with a 

particular value of μ and σ random field. A subroutine code to generate the distribution was written in 

C#, then linked to the seepage modeling code to define hydraulic conductivity value to each element in 

the FEM numerical model. A randomly selected sample of actual hydraulic conductive random field 

defined in the FEM models is shown in Figure 6.3, which decidedly matches log-normal distribution. 
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Figure 6.3 Log-normal histogram for a sample of (μ = 2, σ = 0.85) 

 

Based on each standard deviation value, a random field of hydraulic conductivity was generated 

and incorporated in the numerical seepage model. As unlimited realizations could be generated from a 

log-normal distribution with a certain value of standard deviation, each input data set (d1, d2, b, H) was 

simulated with four different random realizations (random field) of the same standard deviation value. 

Then, the simulated data sets used for training a surrogate model for a particular seepage characteristic 

was 600 sets. This procedure ensures that the different numerical responses with different hydraulic 

conductivity realizations are recorded and incorporated in surrogate model training data. Figure 6.4 

represents different realizations of hydraulic conductivity for the same case and how it affects the exit 

gradient value (contour) shown in Figure 6.5. 

  

Figure 6.4 Different realizations of hydraulic conductivity for same standard deviation value  
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Figure 6.5 Effect of different realizations (for same σ value) of hydraulic conductivity variation on exit 
gradient contour  

Accordingly, the varied seepage quantities, such as uplift pressure on the upstream side (Pc1), 

downstream uplift pressure (Pe2) and exit gradient (ie) value, were determined by the numerical seepage 

modeling code four times for each input data set (case). Furthermore, because exit gradient value is 

more critical than other quantities and hydraulic conductivity varies randomly, four points, shown in 

Figure 6.1, were selected at which exit gradient values were determined for each simulation. 

Determining four values of exit gradient and ensuring each value was within allowable limits ensured 

safety for HWRS constructed on a heterogeneous flow domain. Hence, each training data set for a single 

surrogate model included one set of input design variables (d1, d2, b, H) and four stochastically varied 

sets of output data (Pc1, Pe2, ie1, ie2, ie3, ie4). Therefore, the responses of surrogate models reflect 

variation of seepage characteristics obtained from the four scenarios of random hydraulic conductivity. 

For each seepage design variable, five surrogate models were trained to imitate different responses, 

reflecting the effect of five different hydraulic conductivity random fields drawn from the five log-

normal distributions. As a result, 30 surrogate models were built in this study to develop six ensemble 

stochastic surrogate models linked to the optimization model within the RBOD framework. Each 

ensemble surrogate model involved five surrogate models, and each represented numerical simulation 

responses for different hydraulic conductivity random fields for a particular standard deviation value. 

Based on these stochastic responses, reliability of the design could be quantified.  

Deterministic surrogate models were developed separately to compare stochastic optimum 

solutions with deterministic solutions. Deterministic responses were used to train three surrogate 

models (Pc1, Pe2, ie) based on expected hydraulic conductivity (σ = 0, μ = 2). Deterministic surrogate 

models were incorporated in the deterministic S-O model to find the optimum solution of HWRS for 

different head values.  
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6.3 Gaussian process regression (GPR) model  

Gaussian process regression (GPR) is a stochastic machine learning technique. The Gaussian 

process involves generalization of the (joint) multivariate Gaussian, which may include a finite 

collection of random variables following Gaussian distribution. GPR uses probabilistic methods to 

measure uncertainty of the regression model by defining the distribution of the solution, which likely 

follows Gaussian distribution. The GPR technique can explore several relationships between training 

data sets using a finite number of parameters. The best relationship is the one which perfectly matches 

training data (Rasmussen, 2004). The GPR machine learning technique is selected for current S-O 

model because many researchers observed that the performance of GPR is even better than SVM and 

ANN models, as discussed in section 2.5.3. 

Primarily, the GPR technique is based on the assumption that there is high probability that 𝑓(𝑥) 

matches 𝑓(𝑥′) when vector 𝑥 is adjacent to 𝑥′. This relationship (function) can be identified by finding 

distribution of data utilizing mean function (𝑚(𝑥))  and covariance function 𝑘(𝑥, 𝑥′). The covariance 

function provides good indication of similarity between 𝑥 and 𝑥′, and measures corresponding 

functions’ similarity. By incorporating the Bayesian inference statistical concept, the known (observed) 

data set becomes a conditional distribution (posterior probability) based on an  unknown distribution 

function. The unknown function is based on many random vectors following Gaussian distribution 

(Rasmussen, 2004; Shi & Choi, 2011). 

6.3.1 Gaussian process for regression  

Let us assume the function between input (x) and output (y) can be expressed by two terms: 

f(x) the signal term and 𝜖 noise term, as shown in Eq. (6.2).  

𝑦 = 𝑓(𝑥) + 𝜖 (6.2) 

Where, the noise term follows normal distribution (𝜖~ 𝒩 (0, 𝜎𝜖2)), the noise term refers to 

randomness of observations. The signal 𝑓(𝑥) term is considered a random variable and follows 

Gaussian distribution using the Gaussian process, as shown in Eq. (6.3). 

𝑓(𝑥)~𝒢𝒫(𝑚(𝑥), 𝑘(𝑥, 𝑥′))   ,     x ∋  ℝ (6.3) 

Where, m(x) is the mean function, which refers to the average of all functions evaluated at point 

(x), 𝑚(𝑥) = 𝔼[ 𝑓(𝑥)]. Usually, the prior mean function is taken (0) to make the posterior computations 

cheaper and because the information of the prior distribution of the unknown function is insufficient. 

𝑘(𝑥, 𝑥′) refers to the covariance function measuring dependence of function values for different input 

points (x and 𝑥′), as shown in Eq. (6.4). 

𝑘(𝑥, 𝑥′) = 𝔼[ ( 𝑓(𝑥) − 𝑚(𝑥))( 𝑓(𝑥′) − 𝑚(𝑥′))] (6.4) 
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The covariance function represents the kernel of the Gaussian by which the correlation between 

two points can be obtained. The kernel function may be any function identifying correlation between 

two points and can be utilized for ⅅ dimension data. Often, the radial basis function (RBF) is used as a 

kernel function for GPR. RBF may be varied to increase or reduce correlation between points, providing 

desired smoothness. Over fitting and under fitting phenomena can be avoided by modifying the length 

scale (ƛ) and signal variance (𝜎𝑓2) to provide better fit of the resulting function (Eq. (6.5)). 

𝑘(𝑥, 𝑥′) =  𝜎𝑓
2exp ( − 

‖𝑥  −𝑥′‖

2 ƛ2
) (6.5) 

Theoretically, the function can be represented by a vector of points. Therefore, to find the 

function vector, a sample of a large number of points is drawn from the multivariate Gaussian 

distribution (prior distribution) with ⅅ dimension data at an arbitrary point 𝑋∗. Then, the covariance 

matrix for all points is determined. This matrix represents correlation between all points, as shown 

below. Then, by using the prior mean function 𝑚(𝑋∗) = 0 and the covariance (kernel) matrix, the values 

of 𝑓(𝑋∗) = [ 𝑓(𝑋1∗), 𝑓(𝑋2∗), 𝑓(𝑋𝑛∗)  ]𝑇can be sampled from multivariate distribution, as shown in Eq. 

(6.6).  

𝑓(𝑋∗)~𝒩 (0, 𝑘(𝑋∗ , 𝑋∗ ))    (6.6) 

    𝑘(𝑋∗ , 𝑋 ) =       

[
 
 
 
 

 

 𝑘(𝑥1
∗, 𝑥1 )  𝑘(𝑥1

∗, 𝑥2 ) …  𝑘(𝑥1
∗, 𝑥𝑛 )

 𝑘(𝑥2
∗, 𝑥1 )  𝑘(𝑥2

∗, 𝑥2 ) …  𝑘(𝑥2
∗, 𝑥𝑛 )

⋮

 𝑘(𝑥𝑛
∗ , 𝑥1 )

⋮

 𝑘(𝑥𝑛
∗ , 𝑥2 )

⋱              ⋮

⋯  𝑘(𝑥𝑛
∗ , 𝑥𝑛 )]

 
 
 
 

   

If the training data is {X, 𝑓(𝑋)} and test (proposed) data set is {𝑋∗ , (𝑋∗ )} drawn from 

multiverse normal distribution, then 𝑓∗  is the unknown function to be found using the GPR technique. 

Using conditional probability, i.e., posterior distribution, the new data sets (function) drawn from 

multivariate normal distribution must comply with the observed data set, then condition probability 

distribution can be written as given in Eq. (6.7). 

    [
𝑓∗
𝑓
] = ~𝒩 ( 0, (  [ 

𝐾(𝑥 𝑥 ) 𝐾(𝑥 𝑥∗)

𝐾(𝑥∗𝑥 ) 𝐾(𝑥∗𝑥∗)
]))   (6.7)  

The resulting function vector 𝑓(𝑋∗) is totally controlled by the observed data set, ignoring the 

uncertainty in this data and assuming the observed data is the actual function value. More practically, 

the noise term (𝜖) must be included to provide a more generalized function, as indicated earlier in Eq. 

(6.2). Therefore, the distribution can be written as: 

[
𝑦
𝑓] = ~𝒩 ( 0, (  [ 

𝐾(𝑥, 𝑥) + 𝜎𝑓
2 𝑰 𝐾(𝑥, 𝑥∗)

𝐾(𝑥∗, 𝑥) 𝐾(𝑥∗, 𝑥∗)
])) 
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Where 𝜎𝑓2 𝑰 is scale identity matrix. After some manipulation, the posterior  𝑝( 𝑓∗|𝑦, 𝑋, 𝑋∗) is 

considered Gaussian distribution with mean  𝐾(𝑥∗, 𝑥) [𝐾(𝑥, 𝑥) + 𝜎𝑓2 𝑰]−𝟏𝒚 and covariance matrix 

[𝐾(𝑥∗𝑥∗) − 𝐾(𝑥∗, 𝑥 )[𝐾(𝑥, 𝑥) + 𝜎𝑓
2 𝑰]−𝟏𝐾(𝑥, 𝑥∗). Then 𝑓∗ can be defined based on the mean function 

and kernel function, as shown in Eq. (6.7) (Rasmussen, 2004; Roberts et al., 2013). 

The GPR surrogate models were implemented using Matlab. Parameters of the utilized GPR 

are shown in Table 6.1. After many iterations of trial and error, we found that the listed parameters 

provided a better prediction. The rest of the GPR options were similar to Matlab default options.  

Table 6.1 Properties of the GPR technique 

 Properties  Value 

1 Prediction method  Exact 

2 Kernel function Squared exponential kernel with a 

separate length scale per predictor 

3 Fit method Exact  

4 Basis function  Constant  

 

6.3.2 Surrogate model performance  

Building a surrogate model to use in the S-O approach is a delicate task. Although surrogate 

models provide an expeditious alternative to numerical models, the training and testing phases need to 

be established carefully and accurately. Performance of surrogate models must be precisely evaluated 

before being used in the S-O approach. Efficiency and accuracy of developed surrogate models increase 

robustness of the linked S-O based RBOD technique. The evaluation strategy is based on many 

statistical error measures (indices). Each measure is based on different criteria and involves different 

statistical variables. In addition to conventional error measures, such as mean square error (MES) (Eq. 

(6.12)), standard deviation of error (STD_ERROR) and mean error (M-Error), these   measures are 

briefly described below, with more information found in (Gupta, Sorooshian, & Yapo, 1999; Moriasi 

et al., 2007).  

Correlation coefficient (R): this measure provides an indicator to evaluate the linear 

relationship between observed and predicted data. The range of R is between -1 and +1. Criteria to 

determine R are shown in Eq. (6.8). Value of R greater than 0.5 is acceptable.  

𝑅 =
∑ (𝑦̂𝑖 − 𝑦̅̂) (𝑦𝑖 − 𝑦̅)
𝑛
𝑖=1

√∑ (𝑦̂𝑖 − 𝑦̅̂)
2(𝑦𝑖 − 𝑦̅)

2𝑛
𝑖=1  

 (6.8) 

Where 𝑦̂ is predicted data; y is observed data; and 𝑦̅ , 𝑦̅̂ refers to mean of observed and predicted data, 

respectively.  
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Nash-Sutcliffe efficiency (NSE): this normalized coefficient measures residual variance to 

measured data variance. The range of NSE is between -ꚙ and +1. NSE values between 0 and 1 are 

considered accepted and perfect performance of the model is achieved when NSE value attains 1. The 

NSE index can be determined using Eq. (6.9).  

𝑁𝑆𝐸 = 1 − [
∑ (𝑦̂𝑖 − 𝑦𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)
2𝑛

𝑖=1

] (6.9) 

Percent bias (PBIAS): is used to provide a perspective of how much the average of predicted 

data is larger or smaller than counterpart observed data. Positive values indicate that the model is an 

overestimation and negative values indicate the model is an underestimation. The ideal value of PBIAS 

is 0. The PBIAS measure criteria is shown in Eq. (6.10).  

𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑦𝑖 − 𝑦̂𝑖) × 100
𝑛
𝑖=1

∑ (𝑦𝑖)
𝑛
𝑖=1

 (6.10) 

Root mean square error to standard deviation ratio (RSR): The RSR ratio is a standardized 

index error measure. It provides indication of the error ratio to the standard deviation of observed data, 

as shown in Eq. (6.11). The RSR value is equal to or greater than zero, and the prefect prediction is 

obtained when RSR approaches zero.  

𝑅𝑆𝑅 =  
𝑅𝑀𝑆𝐸

𝑆𝑇𝐷𝑜𝑏𝑠
= 
 √∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

√∑ (𝑦𝑖 − 𝑦̅)
2𝑛

𝑖=1

 (6.11) 

  

𝑀𝑆𝐸 =
∑ (𝑛
𝑖=1  𝑦̂𝑖 − 𝑦𝑖)

2

𝑛
        (6.12) 

All statistical error measures and indices discussed above were used to evaluate developed 

surrogate models for training and testing data. All surrogate models satisfied error measure limits. The 

majority of surrogate models provided high accuracy predictions and most of index values reached 

optimum values. Some surrogate models, especially exit gradient models of high standard deviation 

(3.65) cases, provided slightly deviated predictions, but were within ideal ranges. Samples of testing 

and training error measures corresponding to each model are listed in Table 6.2. Also, some samples of 

graphic training and testing results for different models are shown in Figure 6.6 to Figure 6.11, giving 

good inference about performance of the GPR technique to imitate the complex relationship related to 

seepage characteristics incorporating uncertainty in some design parameters. 
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Table 6.2 Samples of surrogate model training testing error measures 
 

ie1 ie2 ie2 ie2 pc1 pe2 

train test train test train test train test train test train test 

MSE 0.17 0.28 0.107 0.121 0.09 0.25 0.14 0.12 3.09 5.69 9.76 8.78 

STD-ERROR 0.42 0.53 0.327 0.344 0.30 0.50 0.37 0.34 1.76 2.35 3.13 2.94 

M-error 0.00 -0.05 0.000 -0.066 0.00 0.05 0.00 -0.04 0.00 0.52 0.00 0.51 

NSE 0.54 0.37 0.696 0.428 0.74 0.73 0.64 0.54 1.00 0.99 0.99 0.98 

RSR 0.68 0.80 0.551 0.757 0.51 0.52 0.60 0.68 0.06 0.07 0.12 0.13 

PBIAS 0.00 -9.74 0.000 -12.08 0.00 6.83 0.00 -5.77 0.00 1.05 0.00 1.68 

R 0.73 0.64 0.830 0.710 0.86 0.88 0.80 0.77 0.99 0.99 0.99 0.99 

 

 
Figure 6.6 Training-testing R index for the 

surrogate model (ie3) (STD=2.25 m/day) 

 
Figure 6.7 Training-testing R index for the 
surrogate model (ie4) (STD = 2.25 m/day) 

 

 
Figure 6.8 Training-testing R index for the 

surrogate model (PC1) for (STD=2.25 m/day) 

 
Figure 6.9 Training-testing R index the 

surrogate model (PE2) (STD = 2.25 m/day) 
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Figure 6.10 ie2 surrogate model prediction for 

test data (STD = 2.95 m/day) 

 
Figure 6.11 ie1 surrogate model prediction for 

test data (STD = 2.95 m/day) 
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6.4 Formulating the reliability based optimization model  

The aim of the optimization model is to find the optimum design of HWRS restricted by a 

particular level of reliability. As performance criteria of seepage are based on developed surrogate 

models, it is more applicable to use the multiple realization technique based on the stochastic S-O model 

to find the optimum solutions. The multiple realization ‘stacking’ optimization approach has been used 

by many researchers (Chan, 1993; Feyen & Gorelick, 2005; Sreekanth & Datta, 2011). In some 

previously conducted multiple realization optimization models, the reliability degree was specified in 

advance and the optimization process stopped when post optimality multi-realization criteria reached 

the desired level. Similarly, in this study reliability level was specified beforehand and the optimum 

design of HWRS satisfied that level of reliability at minimum cost, based on the multi-realization 

optimization technique. This can be achieved when the optimum solution satisfies a certain number of 

stochastic responses of all safety factors (constraints) of total incorporated responses. This means a 

particular reliability value (n/m) could be established within the S-O model by imposing candidate 

design to satisfy n stochastic constraints of the total number (m) of constraints based on safety factors 

of HWRS design. Each stochastic constraint is based on responses of m surrogate models within the 

stochastic ensemble surrogate model. For each safety factor, the reliability value n/m of the optimum 

design represents that at least (any) n stochastic constraints of all involved stochastic constraints (m) in 

the S-O model must be satisfied. Reliability is considered 100% when m/m of all constraints are 

satisfied and considered 50% when 0.5m/m of stochastic constraints are satisfied, etc.  

It is also important to note that some stochastic design variables, such as thickness of the floor 

upstream and downstream (t1, t2), involved in computation of the objective function are based on 

stochastic ensemble surrogate models. Therefore, to provide safe design the maximum values of each 

thickness were considered in determining the objective function.  

The multiple realization optimization based RBOM using stochastic S-O model was formulated 

as:  

Find 𝑋 = {𝑥1,  𝑥2, 𝑥3, 𝑥4,}  =   { 𝑑1  , 𝑑2 , 𝑏, 𝑏∗} 

Minimize the construction cost of the HWRS: 

𝑓(𝑋) = 𝑐𝑓  𝑥3   
max  (𝑡1

𝑚) + max (𝑡2
𝑚)

2
  + 𝑡𝑐∑  𝑐𝑠

𝑐 𝑥𝑠

2

𝑠=1

 
          (6.13) 

Subject to: 

𝐹𝑆−𝑖𝑒𝑖
𝑚 =   𝜀𝑖

𝑚 (𝐻, 𝑑1  , 𝑑2 , 𝑏, 𝑘𝑚, 𝑖𝑒𝑐𝑟𝑡)         ∀ 𝑖, 𝑚     (6.14) 

𝐹𝑆_ 𝑖𝑒𝑖
𝑚 ≥ 𝐹𝑆𝑒𝑥𝑖𝑡        ∀ 𝑖, 𝑚     (6.15) 
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𝐹𝑆−𝐹𝐿𝑈𝑆
𝑚 =   𝜖𝑚 (𝐻, 𝑑1  , 𝑑2 , 𝑏, 𝑘𝑚)      ∀  𝑚    (6.16) 

𝐹𝑆−𝐹𝐿𝑈𝑆
𝑚 ≥ 𝐹𝑆𝑢𝑝𝑙𝑖𝑓𝑡   ∀ 𝑚   (6.17) 

𝐹𝑆−𝐹𝐿𝐷𝑆
𝑚 = 𝛾𝑚 (𝐻, 𝑑1  , 𝑑2 , 𝑏, 𝑘𝑚)     ∀  𝑚         (6.18) 

𝐹𝑆−𝐹𝐿𝐷𝑆
𝑚 ≥ 𝐹𝑆𝑢𝑝𝑙𝑖𝑓𝑡   ∀ 𝑚 (6.19) 

𝑘𝑚 = 𝐿𝑜𝑔 𝑛𝑜𝑟𝑚𝑎𝑙 (𝑀, 𝛿)     ∀ 𝑚  ,     𝑘𝑚 ⋳ (0,∞) 
     (6.20) 

Where 𝑡1𝑚, 𝑡2𝑚 represents stochastic thickness of the floor at the upstream and downstream sides 

(Figure (6.1)), respectively. These thicknesses were determined utilizing (m) stochastic surrogate 

models.  𝑐 𝑓  is the cost of constructing the floor per cubic meter ($400/m3);  𝑐𝑠𝑐 is construction cost of 

the cut-off per cubic meter, which is a function of depth of the cut-off, as shown in Eq. (6.21)(similar 

to Eq. (3.9) and (3.10)),   𝑡𝑐 is thickness of the cut-off and is equal to 1.0 m.  

 𝑐𝑠
𝑐 = 𝑥𝑠

3 + 20 𝑥𝑠
2 + 200 𝑥𝑠  + 400      ∀ 𝑠     (6.21) 

𝐹𝑆 𝑖𝑒𝑖
𝑚 are m realizations of the exit gradient safety factor determined based on m surrogate 

models {𝜀𝑖𝑚( )} and for each location (i) there are m realizations of the exit gradient safety factor.  𝑖𝑒𝑐𝑟𝑡 

is the critical exit gradient value (1.15). 𝐹𝑆𝑒𝑥𝑖𝑡 is the minimum allowable exit gradient safety factor, 

which was considered 3 in current optimization model because achieving an optimum solution based 

on exit gradient safety factor value equal 5 was difficult (Harr, 2012; Khosla et al., 1936). 𝐹𝑆 𝐹𝐿𝑈𝑆
𝑚  , 

𝐹𝑆 𝐹𝐿𝐷𝑆
𝑚  are the stochastic safety factors to impose the weight of upstream and downstream floor of 

HWRS to safely counterbalance uplift pressure (Pc1𝑚, Pe2𝑚) (Bligh, 1915; U.S. Army Corps of 

Engineers, 1987). The 𝐹𝑆−𝐹𝐿𝑈𝑆𝑚  , 𝐹𝑆−𝐹𝐿𝐷𝑆𝑚  were computed by m stochastic surrogate models {𝜖𝑚( )}, 

{𝛾𝑚( )}, respectively. 

Additionally, as explained in Chapter Three, there were many other stochastic safety factors 

based on the stochastic responses of uplift pressure ensemble surrogate models (Pc1𝑚, Pe2𝑚). These 

safety factors represent requirements of HWRS design, such as eccentric load condition limits, sliding 

and overturning safety factors (Garg, 1987) . Other logical and boundary constraints were utilized to 

prevent the optimization solver from presenting illogical and negative values. The total number of 

stochastic constraints was 10 and each had to satisfy different realization of seepage quantities. A flow 

chart of RBOD using the stochastic S-O model is shown in Figure 6.12.  
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Figure 6.12 Illustrative formulation of reliability based stochastic S-O model 

 

The genetic algorithm (GA) also was used for this optimization task because GA is a powerful 

optimization solver. The parameter combination of GA was selected by many processes of trial and 

error. GA parameters in this study were: population size 2,000; elite count 20; crossover fraction 0.6; 

objective function tolerance 1e-6; constraint tolerance1e-6; with the remaining GA parameters the same 

as default Matlab options.  

6.5 Computational efficiency of the S-O model  

The optimization task in such formulation is computationally expensive and time consuming, 

especially when the GA based direct search technique is utilized incorporating responses of many 

stochastic ensemble surrogate models. Furthermore, a large population is required to obtain an almost 

global optimum solution by GA. Consequently, optimization processes take longer.  

Two strategies were employed to significantly increase linked S-O computational efficiency. 

The first was to use parallel processing based on a multicore computation processor. This option in 

Matlab distributes computing tasks to multi workers (cores), which doubles computing efficiency. The 

second strategy was nested function formulation. Usually, the objective function and constraint codes 

are written in two detached files, where  the surrogate models are uploaded separately to each code and 

then the optimization algorithm continually invokes these codes to separately evaluate the constraints 
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and objective function. Such operations are implemented numerous times in the optimization model. 

Hence, the optimization model takes a long time to find the optimum solution. In contrast, by employing 

a nested function framework, both  the constraints and objective function codes are written in the same 

file (nested function). Surrogate models are uploaded at one time to the nested function and the resulting 

objective function and constraint values are directly utilized by the optimization solver. This strategy 

accelerates computational speed by around 100% (MathWorks, 2015).  

6.6 Results and discussion  

The RBOD framework based on stochastic S-O methodology was applied to illustrative 

hypothetical cases to study the effect of reliability on optimum design of HWRS. In these cases, average 

hydraulic conductivity (2 m/day) and the five prescribed standard deviations were used to generate 

different scenarios of heterogeneous hydraulic conductivity. Upstream head values (H) were 10m, 20m, 

40m, 60m, 80m and 100m. The S-O models were implemented with different reliability levels (20%, 

40%, 60%, 80% and 100%). The percentage of reliability only reflects  the uncertainty of seepage 

quantities under HWRS due to uncertainty of heterogeneous hydraulic conductivity. The objective 

function of the optimization model was minimum construction cost of HWRS. Constraints represent 

the hydraulic requirements and safety factors related to design of hydraulic structures, as discussed in 

Chapter Three. 

The effect of  the reliability on optimum design of HWRS could be clearly seen by comparing 

obtained minimum construction costs for different reliability levels, as shown in Figure 6.13. As 

logically expected, augmenting the reliability significantly increased construction cost. For instance, 

construction cost of HWRS impounded 100 m water head with 100% reliability was around $143 

million/m, whereas the cost was $102 million/m with 60% reliability. This infers that considering 

reliability substantially affects design of HWRS. Furthermore, ignoring hydraulic conductivity 

uncertainty may result in unsafe design, although deterministic safety factors are used. The 

deterministic optimum design, based on constant hydraulic conductivity (2m/day), is also presented in 

Figure 6.13. In general, the minimum deterministic cost curve was below the 60% reliability curve. 

However, only when the head reached 80 m, the deterministic model move above the 60% reliability 

curve. This provides general understanding that equivalent reliability of the deterministic design can be 

considered as 50 % to 60 %, which is an unsatisfactory reliability level for such an important structure. 

Consequently, deterministic safety factors, especially exit gradient, should be at least twice the actual 

values actually achieved as per deterministic modeling.  
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Figure 6.13 Optimum cost of HWRS for different reliability levels and different head values 

 

The optimum lengths for upstream cut-off (d1) versus different levels of reliability for different 

head values are shown in Figure 6.14. The main role of d1 is to directly reduce the uplift pressure under 

the floor of HWRS and, indirectly, to reduce exit gradient value. This is because the exit gradient value 

proportions to uplift pressure value located before downstream cut-offs. In general, optimum length of 

d1 decreased with reduced head value. In contrast, optimum length of d1 was augmented by increasing 

degree of reliability. However, for some values, especially with 100% reliability at H (80, 40) m, 

optimum length was less than other reliability levels. This can be explained by considering that the 

objective function minimizes construction cost. Therefore, the optimization solver presents minimum 

construction cost for each case separately, as long as the decision vector satisfies constraints. On the 

other hand, because the surrogate model responses are stochastic responses, it is extremely difficult to 

expect the optimum value with different reliability levels. Furthermore, if the optimization solver could 

provide an optimum solution that satisfies, for example, three of five (60% reliability) stochastic 

constraints, that does not guarantee the optimum solution with 80% reliability is close to the 60% 

solution. The justification being that additional stochastic constraint may require a larger value of that 

variable, e.g. d1, which significantly increases the objective function value. Consequently, the 

optimization solver (GA) changes the direction of search and continues with a more promising direction 

that provides lesser cost. Moreover, while the objective function is minimum construction cost, the 

optimum solution with a certain reliability level does not promise to follow the general trend of the 

other reliability levels. For instance, the optimum value for d1 at H equal to 80m with reliability 100% 

was unexpectedly less than other values. That may be logical if the values of d2, b and b* are considered 

simultaneously for this case. The value of d2, shown in Figure 6.15, for the same case was extremely 

larger than other reliability levels because d2 is more important to reduce the crucial exit gradient value 

to the safe limit. 
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On the other hand, optimum value of d2, shown in Figure 6.15, proportionally increased with 

an increase in level of reliability. This design variable is the most important variable as it controls exit 

gradient value. In reliability results, the majority of violated constraint was due to the exit gradient 

safety factor. Therefore, the optimum solution for d2 with 100% reliability presents the highest value 

for different H values to satisfy all stochastic responses due to uncertainty of heterogeneous hydraulic 

conductivity. 

Therefore, the optimum solution for each component of the decision vector must be 

simultaneously considered with other components in the same case. Thus, the optimization task for such 

problems is complex. Obtaining the optimum solution based on different reliability levels, including 

stochastic constraints, needs continuous variation of search directions for the optimum solution. 

Consequently, with such complex formulation of the stochastic optimization model, the GA efficiently 

provided the optimum solutions based on the minimum cost objective function.  

There are two aspects possibly affecting  the performance of the optimization algorithm. First, 

the complexity of the optimization model prevents the GA from finding the global optimum solution 

(Dorsey & Mayer, 1995). Increasing the reliability level augments the number of stochastic constraints, 

which restricts the GA searching process and decreases the possibility to find a feasible solution. 

Second, although in general the training accuracy level of surrogate models was within standard error 

limits, such as NASH and R, etc., there was weak prediction in some extreme ranges. Such predictions 

may affect the optimization process. Also, this may be attributed to training data which was based on 

different realizations of hydraulic conductivity drawn from different values of standard deviation. This 

could decrease the efficiency of prediction for some surrogate models and may affect the optimum 

solution.  
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Figure 6.14 Optimum length of upstream cut-off (d1) for different reliability levels and different head 

values  

 
Figure 6.15 Optimum length of downstream cut-off (d2) for different reliability levels and different head 

values  

Figure 6.16 shows optimum values for the total width (b) of HWRS. Optimum length of b is 

the lowest value for high reliability for different head values. This can be explained by two reasons. 

First, the objective function is minimum cost. Accordingly, the minimum cost scenarios may be 

satisfied with any one of five stochastic constraints that provide minimum cost. For example, optimum 

width (b) with 20% reliability had more than 100% reliability at H = 80m. Simultaneously, the optimum 

depth of downstream cut-off for the same H value with reliability of 100% was much larger than when 

reliability was 20%. Therefore, as the objective function is minimum cost, there are many different 

scenarios that provide minimum cost regarding different reliability levels. Second, the role of b is to 

provide a sufficient weight to counterbalance the uplift pressure on the HWRS and to provide sufficient 

width satisfying the sliding, overturning constraints and preventing the eccentric load condition. As the 

most critical safety factor was the exit gradient, the b value did not play as much of a critical role in the 

optimization process as d2. Hence, the optimization solver decreased the value of b and simultaneously 
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increased the value of b*, which provided additional weight coming from upstream water (Figures 6.17, 

6.1). However, for high reliability levels (60 %, 80 %, 100 %), the optimum b value increased when H 

approached 10 m. This is due to additional weight resulting from upstream water, covering b*, was not 

enough to satisfy the uplift pressure and other safety factors. The additional water height was low 

because the floor thickness value on the upstream side approached 10 m. As a result, the GA increased 

b value to satisfy the required conditions and safety factors.  

 
Figure 6.16 Optimum length of the total width (b) for different reliability degree and different head value  

 

 
Figure 6.17 Optimum length of (b*) for different reliability degree and different head value  

 

The surrogate models’ responses in each ensemble are varied based on the training data set, 

which is based on different realizations of hydraulic conductivity. Figure 6.18 demonstrates the varied   

ie1 responses of the five surrogate models for a hundred randomly selected cases of (d1, d2, b, b*, H). 

The perdition for each surrogate model was diverse from case to case.  For example, in case 41, the 

predictions for ie1 were (2.89, 3.14, 1.91, 1.56, 1.63), for case 23 (2.10, 1.94, 1.73, 1.54, 1.42) and for 

case 80 (0.88, 0.86, 0.91, 0.79, 1.05), which were predicted by (ie1 (0.85), ie1 (1.55), ie1 ( 2.25), ie1 
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(2.95), ie1 (3.65)), respectively. The ie1 (0.85), for example, refers to the exit gradient surrogate model 

(for the first point) trained using data set simulated based on numerical model including heterogeneous 

hydraulic conductivity drawn from Log-normal distribution (μ = 2, σ = 0.85). This concludes that the 

performance of the surrogate models is unsystematically varied form cases to case; it might also explain 

to some extent the variation of the optimum solution behaviour. 

 
Figure 6.18 Sample of surrogate model (ie1) prediction from different stochastic surrogate models  

 

6.7 Evaluation of results  

Usually, in the deterministic S-O techniques, efficiency of the developed methodology can be 

assessed by comparing seepage characteristics of the optimum design obtained by S-O methodology to 

seepage characteristics obtained by the numerical seepage modeling for the same optimum solution. 

However, in the RBOD optimum solution, each single optimum solution represents a particular level 

of reliability and different realizations of hydraulic conductivity. Consequently, the evaluation method 

must incorporate the reliability degree and hydraulic conductivity uncertainty for each optimum 

solution. As a result, each solution must be evaluated at least 50 times; five times for the five σ values 

and at least 10 times to integrate different realizations of hydraulic conductivity for each σ value to 

quantify reliability. Implementing and presenting such a procedure for all results is time consuming and 

does not suit time-limited research.  

To evaluate the optimum solution, random samples of optimum solutions were selected. The 

evaluation process included comparing seepage characteristics of the selected optimum solution with 

numerical model seepage characteristics of the same case, incorporating 10 different realizations of 

hydraulic conductivity randomly generated based on a particular standard deviation value. Additionally, 
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the evaluation was implemented only for exit gradient value, because the exit gradient value is the most 

critical variable and is impacted by hydraulic conductivity uncertainty.  

Conducted evaluations, shown in Table 6.2, include different samples of optimum solutions 

from different reliability levels. The exit gradient value for four locations (points) (ie1, ie2, ie3, ie4) were 

evaluated for each case. The exit gradient value for each case had to be equal or less than 0.383, 

satisfying an exit gradient safety factor of 3 or more. To validate reliability for each optimum solution, 

the seepage modeling code was run ten times with new random realizations of hydraulic conductivity 

for each new iteration. The number of exit gradient values satisfying the allowable limit for each 

location divided by the total number of iterations (10) provided the actual reliability level. Additionally, 

standard deviation values were randomly assigned to each case.  

Table 6.3 displays evaluation results for four samples of optimum solutions, with violated exit 

gradient values highlighted in grey. It is clear that actual reliability level for each optimum design 

matched the proposed reliability for the optimum solution. Average actual reliability level of case B 

was more than desired reliability (60%). In contrast, average actual reliability of case C was slightly 

less than desired reliability (80%). This can be attributed to two reasons. First, hydraulic conductivity 

is a completely random field and each new realization of hydraulic conductivity is totally different to 

training realizations. Hence, when the number of iterations is increased to 100, for example, more 

understanding can be achieved for actual reliability. Second, the number of surrogate models grouped 

in the stochastic ensemble surrogate model was five, which may not be enough to efficiently and 

accurately quantify reliability level. Furthermore, the allowable error in surrogate model predictions 

slightly affected optimum solutions and actual reliability. 

In general, the proposed technique to evaluate reliability of the optimum design was validated 

and provides good indication and understanding of design reliability. Consequently, the RBOD 

framework using stochastic S-O models based on multiple realization optimization technique provides 

a reliable and optimum solution, significantly matching the actual reliability of the design. Furthermore, 

stochastic S-O methodology based on many ensemble surrogate models trained using the GPR 

technique is computationally efficient and provides accurate results for reliability based optimum design 

of HWRS.  
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Table 6.3 Evaluation results for four randomly selected optimum solutions 

Case A σ = 2.95 Rel = 60% 
optimum 
design 

H d1 d2 b 
 

80 55.91 61.9 78.48 
Iteration ie1 ie2 ie3 ie4 

1 0.25 0.15 0.27 0.39 
2 0.3 0.386 0.32 0.22 
3 0.39 0.25 0.91 0.93 
4 0.47 0.24 0.55 0.74 
5 0.16 0.32 0.52 0.94 
6 0.14 0.69 0.66 0.05 
7 0.74 0.43 0.43 0.68 
8 0.09 0.21 0.19 0.05 
9 0.03 0.32 0.27 0.22 
10 0.08 0.29 0.06 1.02 

Actual 
reliability 

70% 70% 70% 50% 
 

Case B σ = 2.25 Rel =60% 
optimum 
design 

H d1 d2 b 
 

10 6.73 5.16 36.33 
Iteration ie1 ie2 ie3 ie4 

1 0.53 0.27 0.15 0.18 
2 0.24 0.22 0.25 0.15 
3 0.23 0.25 0.2 0.17 
4 0.42 0.17 0.023 0.266 
5 0.09 0.27 0.387 0.18 
6 0.098 0.22 0.26 0.18 
7 0.159 0.121 0.64 0.21 
8 0.1 0.15 0.329 0.16 
9 0.183 0.24 0.23 0.3 

10 0.107 0.26 0.28 0.21 
Actual 

reliability 
80% 100% 80% 100% 

 

 

Case C σ = 2.95 Rel =80% 
optimum 
design 

H d1 d2 b 
 

100 66.50 89.59 90.77 
Iteration ie1 ie2 ie3 ie4 

1 0.84 0.56 0.47 0.7 
2 0.61 0.42 0.34 0.39 
3 0.4 0.3 0.26 0.33 
4 0.21 0.32 0.52 0.36 
5 0.04 0.16 0.39 0.27 
6 0.05 0.03 0.57 0.56 
7 0.23 0.34 0.21 0.28 
8 0.29 0.17 0.19 0.23 
9 0.16 0.28 0.33 0.17 
10 1.23 0.87 0.229 0.18 

Actual 
reliability 

70% 70% 60% 70% 

Case D σ = 3.65 Rel =80% 
optimum 
design 

H d1 d2 b 
 

40 24.95 25.08 94.80 
Iteration ie1 ie2 ie3 ie4 

1 0.02 0.25 0.24 0.02 
2 1.18 0.72 0.14 0.49 
3 0.035 0.13 0.11 0.199 
4 0 0.28 0.39 0.11 
5 0.89 0.51 0.31 0.26 
6 0.13 0.15 0.13 0.15 
7 0.19 0.129 0.11 0.22 
8 0.12 0.39 0.5 0.41 
9 1.28 0.72 0.08 0.05 
10 0.1 0.14 0.25 0.8 

Actual 
reliability 

70% 60% 80% 70% 
 

 

6.8 Conclusion 

Incorporating reliability in optimization models is an advanced technique and there are limited 

studies dealing with such reliability testing. This may be attributed to complex formulation of the 

optimization model, in addition to associated computational burden, particularly when the optimization 

model is linked to direct numerical simulation modeling. The uniqueness of the current study was 

consideration of uncertainty of seepage characteristics resulting from random field hydraulic 

conductivity, representing a fully heterogeneous flow domain under HWRS. This study successfully 

and efficiently restricted optimum design of HWRS to a desired reliability level based on many 

expeditious stochastic ensemble surrogate models combined with a direct search optimization algorithm 

(GA).  

The issue of time consuming and computationally expensive optimization problems were 

partially addressed utilizing nested function and parallel computing techniques. These preparations 

improved model efficiency (solution speed) about four times, compared to the normal model’s 

computation speed. The GA solver based multiple realization optimization technique was used in this 
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study incorporating many stochastic safety factors (constraints) and minimizing construction cost of 

HWRS. Several sets of well-trained surrogate models utilizing the GPR machine learning technique 

were grouped in many ensemble stochastic surrogate models to be integrated in the linked stochastic S-

O model. Reliability level was quantified by determining the percentage of successful or violated 

scenarios within the RBOD framework.  

The developed methodology was implemented for many hypothetical cases impounding 

different upstream water head values to find the minimum construction cost of HWRS with varied 

reliability levels. Results demonstrated that high reliability value augments construction cost of HWRS. 

Furthermore, uncertainty of heterogeneous hydraulic conductivity and related seepage characteristics 

strongly affect HWRS design. As the objective function minimizes construction cost based on stochastic 

responses of the ensemble surrogate model, some optimum decision vectors (d1, d2, b, b*) were 

irregular, compared to the deterministic trend. Deterministic results based on a constant value (2 m/day) 

of hydraulic conductivity compared to stochastic results show that reliability of the deterministic is 

located between 50% and 60%. The 50% reliability of design means the opportunity for all stochastic 

constraints to violate the limits is high, which may lead to failure of HWRS. As a result, the 

deterministic safety factors must be greater than the utilized value to satisfy at least 80% reliability for 

all cases. This would be true if we considered that utilized deterministic safety factors addressing 

uncertainty in hydraulic conductivity only.  

The most important design variable was downstream cut-off depth (d2). This variable 

substantially controls exit gradient value, which is the most critical seepage characteristic. This was 

clear when a comparison was conducted for the number of violated exit gradient values with the desired 

reliability level (Table 6.2). Also, the 100% reliability curve for d2 was the maximum value for all 

implemented cases.  

The main role of upstream cut-off (d1) was to reduce uplift pressure on the foundation of 

HWRS. The b and b* provide a sufficient weight to safely counterbalance uplift pressure values and to 

satisfy other design requirements, such as sliding, overturning and eccentric load conditions. 

Incorporating the b* value in the optimization model drastically decreases construction cost because 

the additional cheap weight resulting from water pressure covering the upstream side of HWRS 

decreases required thickness and width of HWRS (Figure.6.1).  

The developed surrogate models based on the GPR machine learning technique were evaluated 

by many statistical error measures and all built surrogate models provided an accurate prediction 

corresponding to different error and performance indices for training and testing phases. This infers that 

GPR provides robust surrogate models, even when training data is based on random realizations of 

hydraulic conductivity based on different standard deviation values.  



Chapter Six 

142 
 

Results of RBOD were evaluated to find efficiency of multiple realization optimization 

techniques in quantifying reliability of the design. Results of the evaluation demonstrated that the 

proposed methodology can provide an optimum design with a predefined reliability agreeing with actual 

reliability level. However, there was a slight deviation of some evaluation results, which could be 

overcome by increasing the number of evaluation iterations and number of surrogate models in the 

stochastic ensemble surrogate models. Finally, the proposed methodology is applicable to find a 

reliability based optimum design of HWRS and it can be applied to find the optimum reliable solution 

for similar problems in different disciplines.  

To improve the performance of the methodology and overcome some limitations of this study, 

it is recommended that future studies incorporate more random realizations of hydraulic conductivity 

for each case and separately train each surrogate model corresponding to each set of realizations. 

However, this procedure may need a super high speed processor unit as the number of surrogate models 

is huge. Also, the optimization solver (GA) performance could be improved by optimizing the GA 

parameter using Taguchi method, for example, and hybrid GA with gradient search optimization 

techniques. Also, it is recommended to consider uncertainty of some parameters in the design, such as 

soil cohesion factor (C), internal friction factor (f) and variables related to the critical exit gradient 

value.  

Some limitations of this study reported in this chapter are addressed in Chapter Seven. A more 

realistic formulation is proposed based on multi-objective multi-realization technique, utilized to 

quantify uncertainty in seepage characteristics due to uncertainty in estimation of hydraulic 

conductivity. The number of surrogate models incorporated in each stochastic ensemble surrogate 

model is also increased. The ‘vectorized’ optimization technique is utilized to increase computational 

efficiency of the RBOD based on linked S-O models.  
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7 Optimum Design of Hydraulic Water Retaining Structures 

Incorporating Uncertainty in Estimating Heterogeneous Hydraulic 

Conductivity Utilizing Stochastic Ensemble Surrogate Models within 

Multi-Objective Multi-Realization Optimization Model 

A similar version of this chapter is submitted and under review for publication in the Journal 

of Computational Design and Engineering, as shown below:  

Al-Juboori, Muqdad, and Datta, Bithin (2018). Optimum Design of Hydraulic Water Retaining 

Structure Incorporating Uncertainty in Estimating Heterogeneous Hydraulic Conductivity Utilizing 

Stochastic Ensemble Surrogate Models within Multi-Objective Multi-Realization Optimization 

Model. Journal of Computational Design and Engineering, Under Review.  

This chapter addresses some study limitations mentioned in Chapter Six. Data sets generated 

by the numerical model utilized in the Chapter Six are same for this chapter. However, the number of 

surrogate models within the ensemble stochastic surrogate model and the amount of training data for 

each surrogate model are different. Also, formulation of the optimization model and optimization solver 

are different.  

The objective of this chapter is to improve the search technique based the optimization solver 

using the non-dominated sorting genetic algorithm (NSGA-II) to find the global optimum solution for 

reliability based optimum design (RBOD) by improving  the efficiency and formulation of the linked 

S-O model. Also, this chapter adequately represents multi-realization of heterogeneous hydraulic 

conductivity by increasing the number of surrogate models incorporated in ensemble stochastic 

surrogate models. A limitation of this study reported in Chapter six was the difficulties in attaining a 

truly optimum solution, especially for high reliability levels (large number of constraints). This issue 

can be overcome by modifying formulation of the multi-realization optimization model, utilizing a 

multi-objective optimization solver, which helps decrease the number of stochastic constraints and 

provides less restrictive search process to find optimum solutions. 

7.1 Introduction 

The reliability based optimum design (RBOD) technique was utilized in this study to quantify 

the uncertainty in estimation of seepage characteristics due to uncertainty in estimation of 

heterogeneous hydraulic conductivity (HHC). This included incorporating reliability measures in 

minimum cost design of HWRS utilizing the multi-realization optimization technique based on many 

stochastic ensemble surrogate models. To improve efficiency and accuracy of the RBOD model and 
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direct search optimization solver, a new approach was utilized. This approach was based on the multi-

objective multi-realization optimization (MOMRO) model. The advantage of this approach is that some 

stochastic optimization constraints based on many ensemble surrogate models were formulated as a 

second objective function to be minimized in the MOMRO model. Stochastic constraints used to impose 

the HWRS design to satisfy safe exit gradient values were formulated as a second stochastic objective 

function. The multi-objective optimization solver minimizes two stochastic objectives:  the exit gradient 

and construction cost. Desired reliability levels are implicitly incorporated in objective functions and 

explicitly as constraints. This significantly improves search efficiency for the utilized solver, i.e., multi-

objective non-dominated sorting genetic algorithm-II (NSGA-II) and aids in exploring more feasible 

candidate solutions in the search space. 

A number of GPR surrogate models were trained using numerous data sets resulting from 

numerical seepage simulation integrating different random fields of HHC drawn from log-normal 

distribution with specified coefficient of variation values (COV) (42.5%, 77.5%, 112.5%, 147.5%, 

182.5%). Desired reliability was assigned beforehand and achieved by allowing the optimum solution 

to satisfy a certain fraction (ratio) of stochastic constraints and objective functions based on responses 

of  the developed surrogate models. In addition to impacts of uncertainty in estimating HHC on seepage 

quantities, the effect of uncertainty was also considered for other safety factors related to design of 

HWRS, such as flotation, overturning, sliding and eccentric loading safety factors. 

Incorporation effects of soil parameter uncertainty in an optimization model for a particular 

design have rarely been considered in previous geotechnical research or in hydraulic structure studies 

as it is a demanding task. Incorporation of reliability in design of HWRS provides a safe design and 

more understanding of uncertainty consequences. However, more conservative design results in 

inefficient cost of the designed structure. Minimizing construction cost is an important goal in huge 

engineering constructions, such as HWRS. More importantly, efficient cost design of HWRS may 

significantly reduce total construction cost as a massive amount of construction material and 

engineering effort are required for such projects. Hence, in this study, to find a trade-off between these 

two opposing aims, i.e., safety and cost, the RBOD framework was utilized to find safe design with the 

desired reliability at minimum cost.  

The objective of this study was to find a safe, reliable and minimum cost optimum design of 

HWRS incorporating uncertainties in estimation of HHC. The RBOD framework was implemented 

based on a more efficient and productive approach using the multi-objective multi-realization 

optimization (MOMRO) technique. The MOMRO integrated many stochastic responses from well-

trained surrogate models based on GPR machine learning techniques. These stochastic responses 

represented the uncertainties in estimation of particular seepage design variables, which were embedded 

in stochastic constraints and objective functions of MOMRO. The reliability criterion is quantified by 
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imposing reliability constraints by which optimum design satisfies the condition that a specified fraction 

of surrogate model responses in the ensemble of surrogate models satisfies imposed design constraints. 

Estimated reliability of the design can be based on this ratio of the number of surrogate models 

satisfying design criteria to total number of models in the ensemble. Or, the number of predicted 

stochastic responses which are to be satisfied can be imposed as an equivalent probability constraints 

to reflect the specified reliability of design criteria. The simulation model and formulation of optimal 

design model are discussed in the following sections. 

7.2 Linked simulation–optimization (S-O) model 

The direct linking of numerical seepage modeling based on finite element method (FEM) code 

to the RBOD model is often very difficult or an impossible task for many reasons. Model geometry and 

boundary condition need to be varied for each new candidate decision vector presented by the 

optimization process. The FEM mesh number, properties and location also vary.  

Furthermore, direct linking of the numerical model to the RBOD model is a time consuming 

task, as the NSGA-II invokes the numerical model numerous times to evaluate objective functions and 

constraints for all individual candidate solutions generated by the optimization solver. Numerical 

seepage simulation for scenarios/cases, including heterogeneous hydraulic conductivity (HHC), takes 

more time than simulation time of scenarios/cases which include only homogenous hydraulic 

conductivity. For example, simulation time of a case has a HHC drawn from log-normal distribution (µ 

= 2, COV = 182.5%) was 2.37 minutes. This simulation was implemented on a relatively high speed 

processor unit (Intel(R) Core™ i7-2600 CPU@ 3.4GHz_3.4GHz, RAM 8.00 GB, 64x-based 

processor). If direct linking of the simulation model to the optimization model is technically possible, 

and population size is 1,000 and generation number is 100, the optimization algorithm needs 100,000 

iterations to evaluate constraints and objective functions to approach the optimum solution. Then, one 

optimization run requires 3,950 hours (based on 2.37 minutes for each iteration), which is an 

unproductive process. Direct linking of S-O models had been proposed earlier and a similar conclusion 

has been attained by other researchers (Dhar & Datta, 2009; Mollon et al., 2009, 2010). Hence, indirect 

linking of the S-O model was adopted in this study by training many efficient surrogate models to 

precisely imitate numerical seepage responses. 

7.3 Conceptual seepage model and design of experiments  

The steps used to generate data were same as those mentioned in Chapter Six. Input design 

variables and seepage characteristics were also the same. The number of generated data for input design 

variables was 150 random cases. However, as random field HHC was used, the number of simulations 

for each input design variable was 20, including 20 different realizations of HHC for each case to cover 

a wide range of uncertainty in HHC. Each single realization represented a unique and randomly varied 

distribution of hydraulic conductivity values of finite elements in the numerical model. Five log-normal 
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distributions with different standard deviations (σ) 0.85 m/day, 1.55 m/day, 2.25 m/day, 2.95 m/day, 

3.65 m/day (COV 42.5%, 77.5%, 112.5%, 147.5%, 182.5%) and constant mean (μ = 2 m/day) were 

proposed to generate different HHC. Therefore, from a particular log-normal distribution, four 

realizations were randomly generated and used in numerical seepage simulation for each case of input 

variables (d1, d2, b, H). The Geo-Studio/SEEP/W numerical code (Krahn, 2012) was used to simulate 

each case separately. As a result, each input data set was simulated 20 times to generate different 

(stochastic) output data sets reflecting uncertainty of seepage characteristics due to random variation of 

HHC. 

Output data sets encompassed uplift pressure on upstream and downstream sides (Pc1, Pe2) and 

exit gradient value of four locations (ie1, ie2, ie3, ie4), as shown in Figure 7.1. Exit gradient values were 

considered for four points to provide more safety to HWRS design for a heterogeneous flow domain. 

For each input data set (d1, d2, b, H), there were 20 different scenarios of seepage characteristic output 

sets (Pc1, Pe2, ie1, ie2, ie3, ie4) associated with 20 different HHC realizations. For each output design 

seepage variable, 20 surrogate models were trained and tested to imitate stochastic numerical responses. 

For each seepage quantity, the stochastic ensemble surrogate model was developed, containing 20 

surrogate models. Therefore, for a single input data set 20 stochastic responses were obtained by the 

ensemble surrogate model to be processed in the MOMRO model based on the RBOD technique. 

 
Figure 7.1 Conceptual model of the HWRS 

Similar to Chapter Six, the Box-Muller (Ross, 2014) method was utilized to generate an 

uncorrelated random field drawn from log-normal distribution (μ, σ). Examples of different realizations 

of random fields for the same characteristic of log-normal distribution are presented in Figures 7.2-A1 

and 7.2-A2. Furthermore, the effect of these realizations on exit gradient and uplift pressure 
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distributions are presented in Figures 7.2-B1, 7.2-B2 and 7.2-C1, 7.2-C2. These Figures demonstrate a 

significant variation of seepage quantities due to different realizations of HHC.  

A1

 

A2

 
B1

 

B2

 
C1

 

C2

 
Figure 7.2 A randomly selected case, including different realizations of HHC (A1, A2) drawn from the same log-
normal distribution (µ=2, σ=3.65). B1, B2 represent effect of the different realization of HHC (A1, A2) on the exit 

gradient distribution. C1, C2 represent effect of the different realization of HHC (A1, A2) on total head distribution 
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7.4 Design and evaluation of surrogate models  

Similar to Chapter Six, GPR machine learning was used to develop 120 surrogate models 

utilized to build six stochastic surrogate models. For each surrogate model, training and testing data 

included 150 sets (cases). Source data related to each design variable was divided into training and 

testing data sets. Since, it is recommended to put the majority of the data in training part (Alpaydin, 

2014), and the testing part does not affect performance of the surrogate model, 90% of source data was 

used for training and 10% was used for testing. The generalization ability of GPR surrogate models was 

examined by evaluating prediction accuracy of surrogate models outside training data sets. Testing error 

should be close to training error and both must be within the prescribed range of error measures. 

However, because source data resulted from stochastic numerical simulations, training and testing 

results, especially for cases with a high COV random field, were slightly less robust.  

Developed GPR surrogate models were trained using Matlab programing language. The 

parameters of GPR, listed in Table 7.1, were carefully selected after many trial and error iterations to 

satisfy best prediction and less error for training and testing phases. Furthermore, different scenarios of 

training/testing data were randomly selected and tested to find the best set of GPR parameters for each 

surrogate model. Other parameters were left the same as default Matlab values.  

 

Table 7.1 Parameters of the GPR technique 

Properties Value 

Prediction method Exact 

Kernel function 
Squared exponential kernel with a separate 

length scale per predictor 

Fit method Exact 

Basis function Constant 

 

The training/testing performance of surrogate models must be accurately evaluated before using 

them in the RBOD model. Developed GPR surrogate models were evaluated using many error measures 

(see Chapter Six) and statistical evaluation indices. These error measures were applied to all surrogate 

models. The majority of surrogate models presented perfect training and testing performance. Although, 

testing prediction efficiency of some models was less than the optimum range, predictions of these 

models were within acceptable ranges, particularly for exit gradient surrogate models for cases 

including high uncertainty (COV = 182.5%, COV = 147.5%). Samples of training and testing results of 

developed surrogate models are presented in Table 7.2 and Figures 7.3 to 7.8. These results reflect 

accurate training using GPR technique for noisy training data sets influenced by the uncertainty of HHC. 
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Table 7.2 Samples of surrogate model training testing error measure 

 ie1 (2.95/B) ie2(1.55/C) ie3(1.55/D) ie4 (2.95/A) pc1(3.65/C) pe2(3.65/B) 

 train test train test train test train test train test train test 

MSE 0.00 0.03 0.02 0.05 0.05 0.07 0.07 0.06 20.52 12.08 4.16 24.73 

STD-

ERROR 
0.00 0.19 0.14 0.22 0.22 0.27 0.27 0.24 4.55 3.52 2.05 4.95 

M-error 0.00 0.01 0.00 0.03 0.00 0.06 0.00 0.02 0.00 -0.73 0.00 -1.35 

NSE 1.00 0.71 0.93 0.67 0.81 0.74 0.81 0.70 0.97 0.99 0.99 0.98 

RSR 0.00 0.54 0.26 0.57 0.43 0.51 0.44 0.55 0.16 0.11 0.08 0.16 

PBIAS 0.00 3.66 0.00 5.51 0.00 11.11 0.00 5.32 0.00 -1.64 0.00 -3.24 

R 0.99 0.88 0.96 0.82 0.90 0.87 0.91 0.84 0.98 0.99 0.99 0.99 

 

 

 

 

 
Figure 7.3 ie4 surrogate model prediction for test data 

(σ=2.95-D*) 

 
Figure 7.4 Pc1 surrogate model prediction for test 

data (σ=3.65-D) 

 
Figure 7.5 Training-testing R index for the surrogate 

model (ie4) (σ=2.25-C ) 

 

*The letters (A, B, C and D) refer to the four different realizations of source data used to train surrogate 
models, e. g. A refers to the first realization and B refers to the second realization, etc.  
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Figure 7.6 Training- testing R index for the surrogate 
model (ie2) (σ=3.65-B) 

 
Figure 7.7 ie2 surrogate model training performance 

(σ=2.95-A) 

 
Figure 7.8 Pc1 surrogate model training performance 

(σ=2.95-D) 
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7.5 Multi-objective multi-realization optimization model  

Formulation of a multi-realization optimization model based on a single objective function with 

numerous stochastic constraints may lead to a sub-optimum solution or infeasible solution. The RBOD 

approach required imposition of a large number of explicit constraints which needed to be satisfied as 

binding conditions for a feasible solution. Many attempts were made to formulate the RBOD model for 

this study with a large number of stochastic surrogate models (120 surrogate models) based stochastic 

constraints using a single objective function, but the majority of obtained solutions were infeasible. 

Some earlier studies compared performance of multi-objective and single objective optimization 

models (Yapo, Gupta, & Sorooshian, 1998; Zakaria, Jamaluddin, Ahmad, & Loghmanian, 2012). These 

studies concluded that a multi-objective formulation may provide more efficient solutions than those 

obtained by a single objective model. Such conclusions seem to have been based on the premise that if 

a large number of constraints are replaced by an objective function not ensuring a certain specified level 

at which these constraints need to be satisfied, the computation becomes more flexible and possibly 

more efficient. As multi-realization technique based reliability required a large number of stochastic 

constraints, the optimal solution search process based on evolutionary algorithms may produce an 

infeasible solution. Searching efficiency decreases with increasing number of constraints and 

complexity of the problem (Dorsey & Mayer, 1995; Kolda et al., 2003). Furthermore, incorporating a 

large number of stochastic constraints makes determining improvement of the searching process 

difficult because stochastic constraints for each iteration provide different responses reflecting 

uncertainties in design parameters and variables.  

Therefore, a new formulation of the RBOD model was adopted in this study to improve the 

searching process for such complex optimization tasks. The most important stochastic constraints are 

exit gradient constraints as they are significantly influenced by HHC uncertainty and have critical 

impacts on HWRS design and safety. These constraints were transformed as a second objective function 

to be minimized in addition to the first objective function related to HWRS construction cost. Hence, 

the multi-objective optimization formulation was implemented to significantly decrease the number of 

constraints and improve searching efficiency. Reliability was included for exit gradient (objective 

function) and also implemented for stochastic constraints using a multi-realization technique.  

The optimum solution of the multi-objective function is not a single solution. Instead, sets of 

the optimum solution are presented. Each coupled solution of consecutive solutions reflects 

improvement in the first objective and deterioration in the second. Hence, there is no solution explicitly 

better than other solutions and the HWRS designer has many alternatives from which to select the best 

optimum HWRS design.  
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7.6 Non-dominated sorting genetic algorithm-II (NSGA-II)  

In many engineering applications two or more conflicting objectives are possible. Improving 

one objective requires sacrifice of other conflicting objectives and vice versa. Hence, it is difficult to 

present a single solution of a multi-objective optimization model and instead a set of non-dominated 

sorting optimum solutions (Pareto optimum solutions) are generated. The multi-objective formulation 

does not result in the optimum solution for each objective function separately as a single objective 

function. There are many in between solutions at which perfect performance of the design can be found 

(Burke & Kendall, 2005). 

The procedure of NSGA-II to attain the Pareto optimal front, the process of obtaining non-

dominated solutions, and selecting optimal sets, are briefly described here. The non-dominated 

optimum solution X dominates the solution Y, if X is not worse than Y in all objective functions values 

and X is better than Y in one objective. The NSGA-II is a population based search algorithm, similar to 

the genetic algorithm (GA) (Gen & Cheng, 2000).  

NSGA-II starts with N number of random initial populations, P0. Thereafter, ordinary GA 

operations, such as binary tournament selection, crossover and mutation operations, are performed to 

generate an offspring population (Qt) of size N. The P0 and Qt are combined to generate 2N populations 

and the best non-dominated sorting individuals are used to fill different ranks of Pareto fronts (slots), 

one by one. The highest rank non-dominated front is selected first, then the second, etc. As there are 

2N individuals and all non-dominated fronts cannot cover more than N individuals all exceeded 

individuals are rejected (Zakaria et al., 2012).  

The selection process to fill the last slot is slightly different, because it probably has two parts 

and all the individuals in this slot have a same rank. Population of the first part is within N size, and the 

second part of the population is more than N, which must be deleted, as described in Figure 7.9. 

However, instead of an unsystematic process to fill the last slot, the crowding distance measure is used 

to select more diverse individuals.  
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Figure 7.9 Non-dominated sorting and Pareto front selection process (NSGA-II) 

 

Crowded distance is a second preference (measures) after non-dominated rank. If two solutions 

classified for the same Pareto front, then the solution resulting from less crowded area (larger crowding 

distance (di)) is the winner. Determining crowding distance for solution i is based on the two 

neighbouring solutions located either side of i in the Pareto front. Distance di represents average cuboid 

side lengths determined based on location of the nearest solutions (i+1, i-1), as shown in Figure 7.10 

(Burke & Kendall, 2005). Crowding distance (𝑑𝑖 𝑚) for solution i for each objective function (𝑓       𝑚 ,  m = 

1, 2,…, M) is given by Eq. (7.1).  

𝑑𝑖 
𝑚 = 𝑑𝑖 

𝑚 +
𝑓𝑖+1       
𝑚 − 𝑓𝑖−1       

𝑚

𝑓𝑚𝑎𝑥       
𝑚 − 𝑓𝑚𝑖𝑛       

𝑚  
 

(7.1) 

 

These processes continue until each front is filled and non-dominated sorting and crowding 

distance classification are implemented for the new generations until the stopping criteria is achieved 

(Burke & Kendall, 2005). Many researchers have utilized NSGA-II in finding optimum solution trade-

off for competing objective functions, finding that performance of NSGA-II was efficient (Bekele & 

Nicklow, 2007; Deb, 2001; Dhar & Datta, 2009; Rajabi-Bahaabadi, Shariat-Mohaymany, Babaei, & 

Ahn, 2015; Sreekanth & Datta, 2010, 2014; Yandamuri, Srinivasan, & Murty Bhallamudi, 2006). 
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Figure 7.10 Crowding distance selection process to fill the last Pareto 

 

Parameters of the utilized optimization solver (NSGA-II) were specified, as shown in Table 

7.3. These parameters were selected based on many attempts of trial and error to find the best parameter 

combination. The remainder of parameters were left as default Matlab options. As the range of two 

objective functions was significantly different and the option of allowable tolerance for objective 

functions was applied simultaneously for the two objective functions, the exit gradient objective 

function value was magnified by a scale factor of 1,000 to provide smooth evaluation for both 

objectives.  

Table 7.3 Utilized NSGA-II parameters for the MOMRO model 

Options Value 

Population size 1000 

Crossover fraction 0.6 

Pareto fraction 0.45 

Max generations 200 

Function tolerance 1e-3 

Constraint tolerance 1e-3 

Crossover function Crossover intermediate 

Migration direction Both 

 

7.7 Formulation of the reliability based MOMRO model  

The multi-realization optimization technique was based on formulating stochastic constraints 

based on the developed ensemble stochastic surrogate models. For each safety factor or condition in the 

optimization model there was a single or more ensemble stochastic surrogate model/s encompassing 20 
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surrogate model responses of a specified seepage design variable. Desired reliability level was attained 

by allowing the optimum solution to satisfy any fraction (n) of the total number (m = 20) of constraints 

for all stochastic constraints, where n/m value is equivalent to required reliability level. The multi-

realization optimization technique reflects uncertainty of seepage quantities due to uncertainty of HHC. 

For instance, 80% reliability means that the optimum solution satisfies any of 16 stochastic constraints 

from 20 total constraints.  

The multi-realization technique based reliability measure was also incorporated in objective 

functions in the MOMRO model. The second objective function, which minimized exit gradient value, 

integrated reliability by incorporating exit gradient stochastic responses in determining the objective 

function. As exit gradient was minimized, 20 stochastic exit gradient responses based on ensemble 

stochastic surrogate models were determined and sorted in ascending order. The maximum value of all 

obtained exit gradient values was selected to be minimized. This is equivalent to 99.9% reliability 

because the resulting exit gradient value is the safest estimated as all other stochastic values are less 

than the obtained exit gradient. To attain 80% reliability, for example, the optimization solver is 

formulated to minimize the fifth maximum value (based on 20 responses) and allow up to four stochastic 

responses of exit gradient to be higher than the selected one for objective function value.  

As there are four locations to determine exit gradient value (ie1, ie2, ie3, ie4) the maximum value 

for each location was determined and the average of these values was considered as the second objective 

function. The same technique was applied to determine the first objective function of minimizing 

construction cost of HWRS. Construction cost of HWRS is based on upstream and downstream floor 

width and thicknesses (b, t1, t2) and the depths of upstream and downstream cut-offs (d1, d2), as shown 

in Figure 7.1. Floor thicknesses are based on stochastic responses of uplift pressure ensemble surrogate 

models (pc1, pe2). Formulation of the optimization model for MOMRO is as shown below:  

Find 𝑋 = {𝑥1,  𝑥2, 𝑥3, 𝑥4,}  =   { 𝑑1  , 𝑑2 , 𝑏, 𝑏∗} 

     Minimize,          𝑓1(𝑋) = 𝑐𝑓  𝑏  
max(𝑚−𝜔)(𝑡1

𝑚)+ max(𝑚−𝜔)(𝑡2
𝑚)

2
  + 𝑡𝑐 ∑   𝑐𝑠

𝑐 𝑑𝑠
2
𝑠=1  (7.2) 

   Minimize,        𝑓2(𝑋) =   
max(𝑚−𝜔)(𝑖𝑒1

𝑚)+max(𝑚−𝜔)(𝑖𝑒2
𝑚)+max(𝑚−𝜔)(𝑖𝑒3

𝑚)+max(𝑚−𝜔)(𝑖𝑒4
𝑚) 

4
 (7.3) 

𝑖𝑒𝑖
𝑚 =   𝜀𝑖

𝑚 (𝐻, 𝑑1  , 𝑑2 , 𝑏, 𝑘𝑚)         ∀ 𝑖, 𝑚 (7.4) 

Subject to: 

𝐹𝑠𝑓𝑙−𝑢𝑠
𝑚 ≥ 1.3         ∀ 𝑚  

𝐹𝑠𝑓𝑙−𝑢𝑠
𝑚 =   𝜖𝑚 (𝐻, 𝑑1  , 𝑑2 , 𝑏, 𝑘𝑚)      ∀  𝑚 (7.5) 

𝐹𝑠𝑓𝑙−𝑑𝑠
𝑚 ≥ 1.3         ∀ 𝑚  
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𝐹𝑠𝑓𝑙−𝑑𝑠
𝑚 =   𝛾𝑚 (𝐻, 𝑑1  , 𝑑2 , 𝑏, 𝑘𝑚)     ∀  𝑚 (7.6) 

𝐸𝑐𝑐𝑚 ≥ 
𝑏

3
        ∀ 𝑚  

𝐸𝑐𝑐𝑚  ≤  
 2 𝑏

3
         ∀ 𝑚  

𝐸𝑐𝑐𝑚 =
𝑀𝑝𝑎𝑠𝑚 −𝑀𝑎𝑐𝑡𝑚

𝑉𝑙𝑜𝑎𝑑𝑚
        ∀ 𝑚 (7.7) 

𝐹𝑠 𝑜𝑣𝑒𝑟
𝑚  ≥ 1.5          ∀ 𝑚  

𝐹𝑠 𝑜𝑣𝑒𝑟
𝑚 =

𝑀𝑝𝑎𝑠𝑚

𝑀𝑎𝑐𝑡𝑚
         ∀ 𝑚 (7.8) 

𝐹𝑠 𝑠𝑙𝑖𝑑 
𝑚  ≥ 1.5      ∀ 𝑚  

𝐹𝑠 𝑠𝑙𝑖𝑑
𝑚 =

𝐶 × 𝑏 + 𝑓 × 𝑉𝑙 𝑚

𝐻𝑙 
     ∀ 𝑚 (7.9) 

𝑀𝑝𝑎𝑠𝑚 =   𝑓𝑚(𝐻, 𝑏 , 𝑏∗, 𝑡1
𝑚, 𝑡2

𝑚, 𝑘𝑚, 𝐺𝑐 , 𝐺𝑤 , 𝑝𝑐1
𝑚, 𝑝𝑒2

𝑚  )     ∀  𝑚 (7.10) 

𝑀𝑎𝑐𝑡𝑚 =   𝑓𝑚(𝐻, 𝑏 , 𝑏∗, 𝑡1
𝑚, 𝑡2

𝑚, 𝑘𝑚, 𝐺𝑐 , 𝐺𝑤 , 𝑝𝑐1
𝑚, 𝑝𝑒2

𝑚  )     ∀  𝑚 (7.11) 

𝑉𝑙 𝑚 =   𝑓𝑚(𝐻, 𝑏 , 𝑏∗, 𝑡1
𝑚, 𝑡2

𝑚, 𝑘𝑚, 𝐺𝑐 , 𝐺𝑤 , 𝑝𝑐1
𝑚, 𝑝𝑒2

𝑚  )     ∀  𝑚 (7.12) 

𝐻𝑙 =     𝑓(𝐻, 𝐺𝑤 ) (7.13) 

𝑘𝑚 = 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 (𝜇, 𝜎)     ∀ 𝑚  ,     𝑘𝑚 ∈ (0,∞) 

 
 

and reliability constraints are: 

  𝑍𝑞   𝑙𝑜𝑔𝑖𝑐𝑎𝑙
𝑚 = 𝐹𝑠 𝑞 

𝑚  ≥ /  ≤ 𝐹𝑠𝑞
𝑚 𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒          ∀ 𝑞,𝑚  

𝑔(𝑥)𝑞 = ∑𝑍   𝑙𝑜𝑔𝑖𝑐𝑎𝑙
𝑚

𝑚

 ≤ 𝐷𝑅      ∀ 𝑞 (7.14) 

 

Where max(𝑚−𝜔) is a function sorting stochastic responses ascending and returns (𝑚 −𝜔) th 

value of the sorted vector. 𝑚 is the number of stochastic responses (20), 𝜔  is based on desired reliability 

level, e. g., when 𝜔 is 0 reliability is 99.9% and for 𝜔 is 4 reliability is 80%, etc. 𝑡1𝑚, 𝑡2𝑚 represents 

stochastic thickness values of the floor at upstream and downstream sides, respectively.  𝑐 𝑓 is 

construction cost of the floor per cubic meter ($400/m3), 𝑐𝑐  is construction cost of cut-offs per cubic 

meter, which is a function of depth of the cut-off (d1,d2), as shown in Eq. (7.15)(same to Eq.(3.9) and 

(3.10)),  𝑡𝑐  is thickness of the cut-off and it equals to 1.0 m. 

 𝑐𝑠
𝑐 = 𝑑𝑠

3 + 20 𝑑𝑠
2 + 200 𝑑𝑠  + 400      ∀ 𝑠      (7.15) 
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𝑖𝑒𝑖
𝑚 is m realizations of exit gradient safety factor determined based on m surrogate models 

{𝜀𝑖𝑚( )} and for each location (i) there are m realizations of the exit gradient safety factor.  𝐹𝑠𝑓𝑙−𝑢𝑠𝑚 , 

𝐹𝐹𝑠𝑓𝑙−𝑑𝑠
𝑚  are stochastic safety factors to impose weight of the upstream and downstream floors of 

HWRS to safely counterbalance uplift pressure (Pc1𝑚,Pe2𝑚) (Bligh, 1915; U.S. Army Corps of 

Engineers, 1987). 

The computing of 𝐹𝑠𝑓𝑙−𝑢𝑠𝑚 , 𝐹𝐹𝑠𝑓𝑙−𝑑𝑠𝑚  are mainly based on developed stochastic surrogate 

models Pc1𝑚 { 𝜖𝑚( ) } , Pe2𝑚 {𝛾𝑚( )}, respectively. 𝐸𝑐𝑐𝑚 is the design condition to prevent eccentric 

load condition on the foundation of the HWRS. 𝑀𝑝𝑎𝑠𝑚 is passive momentum obtained from all forces 

increasing stability of the HWRS, 𝑀𝑎𝑐𝑡𝑚 is active momentum obtained from all forces decreasing 

stability of the HWRS, 𝑉𝑙𝑜𝑎𝑑𝑚is resultant of all vertical loads influencing HWRS. 

𝑀𝑝𝑎𝑠𝑚, 𝑀𝑎𝑐𝑡𝑚, 𝑉𝑙𝑜𝑎𝑑𝑚are a function to (𝐻, 𝑏 , 𝑏∗, 𝑡1𝑚, 𝑡2𝑚, 𝑘𝑚, 𝐺𝑐 , 𝐺𝑤 , 𝑝𝑐1𝑚, 𝑝𝑒2𝑚) as shown in Eq. 

(7.10), Eq. (7.11) and Eq. (7.12).  𝐹𝑠 𝑜𝑣𝑒𝑟𝑚  is the overturning stochastic safety factor. 𝐹𝑠 𝑠𝑙𝑖𝑑 𝑚  is the 

stochastic sliding safety factor. C = cohesion resistance soil properties, f= 𝑡𝑎𝑛∅ , ∅ is the internal 

friction angle (Tanchev, 2014). The values of f and C were assumed as f= 𝑡𝑎𝑛∅=0.7 and C=20 kPa. 𝐻𝑙 

is the resultant of all horizontal load affecting the HWRS (Eq. (7.13)). 𝑘𝑚 are different realizations of 

HHC based on different values of COV and it implicitly effects prediction of stochastic seepage 

quantity. 𝑍𝑞   𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑚  is a logical variable to check violation of stochastic constraints associated with a q 

number safety factors for m stochastic realizations. 𝐷𝑅 is desired reliability for all constraints and 

objective functions to satisfy a certain reliability level for HWRS design.  

Additionally, there are many other logical and boundary constraints utilized to prevent the 

optimization solver from presenting illogical and negative values. The RBOD using MOMRO model is 

shown in (flow chart) Figure 7.11.  
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Figure 7.11 Illustrating formulation of reliability based MOMRO stochastic S-O model 

 

7.8 Computing efficiency  

The formulation of reliability using the MOMRO model is computationally expensive and a 

time consuming task, even when surrogate models are used instead of the numerical simulation model. 

In each iteration of the S-O model, the optimization solver needs to invoke 120 responses of the 

developed surrogate model twice to evaluate stochastic objective functions and constraints. 

Furthermore, the NSGA-II is based on a large number of evaluations of a huge size of random 

populations to attain the global optimum solution. Hence, solving such optimization problem using 

traditional techniques takes a long time. One roughly selected optimization case was implemented using 

the traditional computing technique based on 1,000 populations. The time required for the run was 

14,100 seconds (≈ 4 hours).  

The traditional computing technique is based on writing the constraint code and objective 

function code in two separate files. Each file calls on the 120 developed surrogate models for each 

iteration. For each iteration of S-O mode, outcomes of objective functions and constraints codes are 

passed to the optimization solver after 240 responses are attained based on 120 trained surrogate models. 



Chapter Seven 

159 
 

This procedure is inefficient as many optimization runs must be accomplished to reach the optimum 

solution. 

Alternatively, to increase computing efficiency a nested function technique was utilized 

(MathWorks, 2015). By using the nested function, both constraint code and objective function code 

were written in the same (nested function) file. Stochastic surrogate models are uploaded at one time 

and the resulting objective functions and constraints values computed by the nested function are 

simultaneously returned as a vector to the optimization solver. The NSGA-II was formulated to adapt 

the nested function output. This strategy accelerated and doubled computational speed. 

More importantly, in evolutionary optimization algorithms based on random population search 

technique the evaluation process for objective functions and constraints are based on one individual in 

each iteration and this process continues until all individuals are evaluated. Then, the same procedure 

is implemented for the second generation, etc. This process takes a longer time compared to the vector-

process, which could substantially speed up the optimization evaluation process. By utilizing the vector-

process, all individuals are evaluated by the optimization solver at one time to determine the values of 

stochastic constraints and objective functions. The evaluation outcome for each iteration is a matrix and 

its length is equal to population size. Each column vector represents a certain value of optimization 

results, such as a particular constraint or objective function value for all concatenated individuals 

(population). The optimization solver evaluates the improvement direction for each element in the 

vector. This means the whole population is evaluated at one time, then the improvement direction 

determined by selecting high rank individuals in the matrix. This process continues to the next new 

generations until stopping criteria is satisfied.  

Implementing the vector-process combined with nested function for RBOD using the MOMRO 

model resulted in efficient computation time of around 500 seconds. Although formulating optimization 

codes based on the vector-process take some time and effort, it was computationally efficient. Also, this 

strategy provided more flexibility to make systematic iterations to find the best parameter combinations 

to provide optimum results. 

7.9 Results and discussion 

 The MOMRO technique was applied to hypothetical design scenarios/cases to evaluate RBOD 

performance based on MOMRO technique. These cases included five different upstream head values 

(100 m, 80 m, 60 m, 40 m, 20 m) and each combination was subjected to four different reliability levels 

(99.9%, 80%, 60%, 40%). Reliability levels were incorporated explicitly in stochastic constraints and 

implicitly in objective functions. Competed objective functions were minimum exit gradient and 

minimum construction cost of HWRS. The obtained Pareto-optimum fronts for each head value, 

including different scenarios of reliability level, are presented in Figures 7.12 to 7.16. Each Figure 

includes wide ranges of optimum solutions for each head value associated with different reliability 
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levels. To make an appropriate decision, minimum allowable deterministic safe exit gradient (Harr, 

2012; Khosla et al., 1936) values were used to locate safe and feasible optimum solutions, as shown in 

Figures 7.12 to 7.16. There are two horizontal lines, which show locations of safe exit gradient factors 

5 and 3, considering the critical gradient value is 1.15. Based on these values, the minimum safe exit 

gradient could be allocated with different reliability levels. To provide greater safety related to exit 

gradient, many possible Pareto optimal solutions were available to be considered with ascending 

construction cost, and the HWRS designer could use one of these solutions as per their preference. 

The effects of reliability on optimum design of HWRS were significant. Increasing reliability 

augmented construction cost. For instance, minimum construction costs for H = 100 m for reliability 

levels of 40% ,60%, 80% and 100% to satisfy the exit gradient safety factor of 5 were $112,191,378, 

$129,171,757, $162,166,799 and $268,206,048, respectively. Similarly, for the same reliability levels, 

construction costs to satisfy the exit gradient of 3 were $59,951,442, $79,158,696, $106,049,766 and 

$160,838,745). This means that to increase reliability of the design from 60% to 100%, construction 

cost doubles. Consequently, considering reliability in the design of HWRS significantly impacts on 

optimum design attributes. Moreover, for high reliability levels, only few applicable (feasible) scenarios 

could be obtained from the Pareto optimal front. For example, for H = 100m and the Reliability level is 

99.9% considering the exit gradient safety factor of 5 only a few points were found at higher 

construction cost ($268,206,048.88).  

The deterministic optimum Pareto front related to the expected hydraulic conductivity (2 

m/day) was also considered in this study. In general, the deterministic Pareto optimal was located close 

to 60% reliability trade-offs. However, some deterministic optimum solutions approached 40% 

reliability solutions. The 60% or 40% reliability of the deterministic solutions mean that there is high 

probability to find the exit gradient value approaching the critical exit gradient, which might lead to 

piping failure. Based on this, we can deduce that the deterministic safety factors of 3 and 5 are 

insufficient to provide adequate safety for such important projects (HWRS), and they are inappropriate 

to measure safety of seepage design incorporating a certain degree of uncertainty. This is true if we 

assume that the prescribed safety factor is used to quantify uncertainty in the HHC only.  

For all optimum solutions, slope of the Pareto optimal front became smaller for small exit 

gradient values (less than 0.4). Consequently, significant cost was required to decrease exit gradient 

value by a small amount. This is because the most controllable design variable related to exit gradient 

value is d2, which must be increased to reduce exit gradient value. As the equation used to determine 

cut-off construction cost is a function of d2 (Eq. (7.15)), when d2 is increased construction cost 

substantially increases, especially for large d2 values. Furthermore, because stochastic responses were 

included in the optimization model, and the maximum value of many stochastic exit gradient values 
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was minimized, effects of reliability on construction cost were more pronounced when the exit gradient 

value (the second objective) approached a very small value or zero. 

 
Figure 7.12 Optimum Pareto front for different reliability levels (H=100m) 

 

 
Figure 7.13 Optimum Pareto front for different reliability levels (H=80m) 
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Figure 7.14 Optimum Pareto front for different reliability levels (H=60m) 

 

 
Figure 7.15 Optimum Pareto front for different reliability levels (H=40m) 
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Figure 7.16 Optimum Pareto front for different reliability levels (H=20m) 
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Table 7.4 Different optimum solution values for same objective functions values obtained by NSGA-II 

H Reliability 
Construction 

cost ($) 

Exit 

gradient 
d1 d2 b b* 

20 40% 
39,040,057.6 0.021 3.70 0.50 139.98 39.37 

38,711,633.0 0.021 0.78 3.06 30.93 15.17 

40 40% 
1,588,280.6 0.365 4.05 5.01 80.29 18.32 

1,544,093.7 0.366 4.16 21.37 46.74 40.80 

60 40% 
33,765,444.3 0.258 4.48 65.93 179.80 80.40 

33,427,294.7 0.261 61.72 54.47 78.96 49.82 

80 40% 
28,275,868.8 0.374 58.34 52.27 85.58 77.91 

27,327,404.2 0.374 30.73 65.07 75.37 74.53 

20 99.9% 
47,623,453.4 0.116 29.58 77.21 28.44 21.01 

43,815,973.8 0.117 45.77 72.83 21.15 19.56 

60 99.9% 
57,740,766.3 0.342 37.93 80.34 61.05 47.25 

56,752,425.9 0.343 71.71 62.54 86.34 46.50 

20 80.0% 
40,547,213.5 0.073 34.53 73.33 23.75 12.63 

40,367,765.1 0.074 72.09 41.34 39.87 29.61 

80 60.0% 
56,079,880.3 0.351 46.49 77.94 76.60 66.26 

55,187,390.3 0.351 26.17 80.08 76.11 68.53 

40 60.0% 
72,446,076.0 0.072 61.19 79.87 113.16 68.76 

66,394,331.9 0.072 47.71 82.12 68.76 59.16 

100 40% 
93,811,995.8 0.280 65.02 85.18 158.46 71.76 

93,403,373.0 0.282 56.51 88.54 92.46 91.59 

 

Minimum and maximum feasible optimum solutions (considering exit gradient safety factor) 

with different reliability levels are listed in Tables 7.5 to 7.9. There was a significant increase in 

construction cost versus a small decrease in exit gradient values. Also, it can be concluded from these 

results that the design variable d2 played a crucial role in reducing exit gradient values.  

The main role of the first cut-off depth d1 was to reduce uplift pressure under the foundation of 

the HWRS. However, an additional role of d1 was to reduce exit gradient value because reducing uplift 

pressure under HWRS leads to reduction in exit gradient values. The optimum width b was necessary 

for the design to satisfy the requirements for overturning criterion, floatation and sliding safety factors, 

plus prevent the eccentric load condition. These safety design requirements integrated (b) value directly 

in their calculation. The variable b* is the part of the floor on the upstream side of HWRS, which might 

be covered by water (Figure 7.1). This variable made a considerable contribution in safety and stability 

requirements of HWRS. The water covering b* provided a cheap (costless) weight over the HWRS to 

counterbalance active momentums and forces which may weaken stability of the HWRS. Some solution 

values of b* approached the b value, as shown in Tables 7.5 to 7.9. This means that the majority of the 
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HWRS floor was located on the upstream side. This also reflects the significance of this variable to 

satisfy safe and minimum cost design.  

Table 7.5 Minimum and maximum feasible solutions for different reliability level (H=100 m) 

H Reliability 
Construction 

cost ($) 
Exit gradient d1 d2 b b* 

100 

100% 
160,838,745.0 Max.Feasible 0.382 68.998 101.303 94.072 90.217 

291,913,182.3 Min.Feasible 0.211 98.277 110.000 92.960 86.702 

80% 
106,049,766.4 Max.Feasible 0.383 64.37 89.62 97.56 96.01 

266,831,321.6 Min.Feasible 0.080 99.65 104.54 97.42 94.04 

60% 
79,158,696.9 Max.Feasible 0.378 60.93 82.19 96.90 82.68 

253,417,538.3 Min.Feasible 0.022 95.21 105.57 113.05 83.98 

40% 
59,951,442.0 Max.Feasible 0.381 51.30 78.04 93.07 92.66 

184,735,070.3 Min.Feasible 0.050 79.46 101.99 98.36 96.55 

Det. 
88,783,399.4 Max.Feasible 0.381 53.53 87.91 92.23 88.42 

177,804,330.1 Min.Feasible 0.006 67.61 104.88 165.85 64.33 
 

Table 7.6 Minimum and maximum feasible solutions for different reliability level (H=80 m) 

H Reliability 
Construction 

cost ($) 
Exit gradient d1 d2 b b* 

80 

100% 
102,526,240.8 Max.Feasible 0.382 55.04 91.69 77.43 77.24 

268,199,466.1 Min.Feasible 0.067 93.19 109.63 76.67 69.00 

80% 
60,905,832.2 Max.Feasible 0.382 43.84 80.50 75.16 61.32 

208,554,042.6 Min.Feasible 0.016 90.48 100.37 79.83 61.35 

60% 
38,552,199.4 Max.Feasible 0.382 57.18 63.58 76.63 69.80 

168,911,916.3 Min.Feasible 0.023 78.94 98.96 102.65 86.93 

40% 
23,489,756.5 Max.Feasible 0.383 31.03 62.07 76.17 73.90 

135,258,887.1 Min.Feasible 0.039 68.42 95.94 103.61 66.13 

Det. 
32,862,974.7 Max.Feasible 0.383 58.56 57.37 78.18 68.97 

139,701,276.7 Min.Feasible 0.0 57.32 100.20 82.90 49.22 
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Table 7.7 Minimum and maximum feasible solutions for different reliability level (H=60 m) 

H Reliability 
Construction 

cost ($) 
Exit gradient d1 d2 b b* 

60 

100% 
42,075,895.5 Max.Feasible 0.381 39.39 72.99 61.92 46.81 

188,247,133.9 Min.Feasible 0.002 79.94 102.64 67.92 36.71 

80% 
14,352,204.0 Max.Feasible 0.383 33.28 52.83 64.91 52.24 

150,815,076.3 Min.Feasible 0.001 77.24 95.84 71.02 37.72 

60% 
8,776,368.9 Max.Feasible 0.381 41.81 37.33 62.35 53.75 

119,297,688.9 Min.Feasible 0.005 65.41 93.24 70.85 47.82 

40% 
5,634,374.6 Max.Feasible 0.382 29.68 37.36 77.08 53.21 

105,390,868.6 Min.Feasible 0.001 58.99 91.63 66.02 54.75 

Det. 
8,474,313.2 Max.Feasible 0.382 27.84 45.39 58.24 49.15 

108,156,829.5 Min.Feasible 0.001 49.83 94.42 63.35 49.13 

 

Table 7.8 Minimum and maximum feasible solutions for different reliability level (H=40 m) 

H Reliability 
Construction 

cost ($) 
Exit gradient d1 d2 b b* 

40 

100% 
8,765,797.6 Max.Feasible 0.378 23.70 47.16 60.35 34.15 

151,144,025.4 Min.Feasible 0.001 86.85 89.16 63.35 25.76 

80% 
2,406,236.8 Max.Feasible 0.380 22.71 29.43 44.61 36.62 

99,859,421.9 Min.Feasible 0.000 54.83 91.17 93.83 46.15 

60% 
1,803,597.6 Max.Feasible 0.383 17.98 27.50 43.99 43.12 

80,204,409.8 Min.Feasible 0.043 64.50 81.31 110.50 64.33 

40% 
1,334,875.1 Max.Feasible 0.380 21.88 21.01 48.75 31.61 

67,730,872.9 Min.Feasible 0.027 44.76 83.09 110.75 54.98 

Det. 
1,171,848.0 Max.Feasible 0.383 14.15 22.77 52.09 36.74 

84,419,034.7 Min.Feasible 0.001 37.01 89.64 62.92 53.37 
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Table 7.9 Minimum and maximum feasible solutions for different reliability level (H=20 m) 

H Reliability 
Construction 

cost ($) 
Exit gradient d1 d2 b b* 

20 

100% 
1,262,284.3 Max.Feasible 0.380 19.86 23.99 27.68 25.03 

109,944,596.0 Min.Feasible 0.000 82.54 79.20 72.16 34.00 

80% 
522,344.7 Max.Feasible 0.382 9.28 16.35 57.72 48.64 

60,149,842.6 Min.Feasible 0.004 39.48 81.20 115.27 95.03 

60% 
338,708.5 Max.Feasible 0.383 8.88 14.60 30.27 22.13 

51,074,387.8 Min.Feasible 0.015 31.85 78.34 126.82 41.07 

40% 
192,408.3 Max.Feasible 0.382 7.37 9.83 28.70 27.41 

42,940,043.9 Min.Feasible 0.000 40.37 73.39 138.01 42.74 

Det. 
252,672.2 Max.Feasible 0.382 9.10 11.51 36.87 29.29 

92,965,180.5 Min.Feasible 0.001 90.72 48.89 45.62 17.55 

 

7.10 Evaluation of the methodology 

Assessing the accuracy of solutions obtained using the proposed methodology is essential to 

demonstrate potential applicability and validation of the methodology. Usually, for the deterministic 

approach, to determine accuracy of S-O model solutions optimum solutions are subsequently processed 

by the numerical simulation model and each single seepage characteristic obtained by the numerical 

model is compared with the seepage characteristic predicted as per optimal S-O model solutions. The 

RBOD model, however, needs a different evaluation technique to quantify accuracy of the developed 

methodology, especially in terms of reliability quantification. Furthermore, evaluation results for the 

RBOD do not require measuring the percentage of error for each seepage characteristic individually as 

in deterministic evaluation. However, quantifying actual reliability of the optimum solution (design) is 

also based on the multi-realization technique to find the number of scenarios providing safe design of 

HWRS to the total number of runs based on different realizations of HHC in the numerical model.  

Hence, the evaluation method involved implementing numerical seepage simulation for the 

selected optimum solution for a specified number of times with different realizations of the HHC. The 

ratio of the number of times allowable limit was satisfied for all safety factors to the total number of 

iterations equals actual reliability level. Moreover, statistically more accurate actual reliability levels 

could be achieved by implementing more iterations. In the present study, for the selected optimum 

solution seepage characteristics were simulated using the numerical model ten times for different 

realizations of the HHC to measure actual reliability level.  

As the seepage design characteristic most impacted by uncertainty of HHC is exit gradient 

values at the four specified locations, these values were considered to evaluate desired reliability level 
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of the RBOD model. Other seepage quantities, such as upstream and downstream uplift pressures, were 

less impacted by uncertainty in HHC.  

The evaluation outcomes of four randomly selected optimum solutions demonstrated that the 

developed methodology provided reasonable indications to measure reliability level. The exit gradient 

values in Tables 7.10 to 7.13 were obtained from numerical seepage simulations for selected cases. The 

highlighted exit gradient values are more than the safe allowable exit gradient value (0.382), which was 

obtained as a second objective function of the optimum solution. The desired reliability level, objective 

function values and optimum solutions are shown in Tables 7.10 to 7.13. The COV for each 

implemented case was arbitrarily varied for each case to evaluate performance of the developed 

methodology with different COV values. 

The average actual reliability (as verified by numerical simulation) in some cases, e. g., case A, 

was slightly less than the desired or specified reliability level (99.9 %). In contrast, in other cases, such 

as case C, the average of computed actual reliability levels was more than the desired reliability level 

(60 %). For other cases, average actual reliability almost matched desired reliability levels, such as in 

cases B and D. Hence, the implemented methodology, which quantifies reliability of seepage 

predictions under uncertainties, provides acceptable design solutions with potential application to 

HWRS design problems in real life cases. However, to ensure more accurate results, the number of 

iterations and number of surrogate models incorporated in the RBOD must be increased.  

Table 7.10 Evaluation results for case A (COV=147.5%) 

Case A Rel. 
=100% 

Cost 
=160838744$  ie=0.382 

optimum 
design 

H d1 d2 b 
100.0 69.00 101.3 94.07 

Iteration ie1 ie2 ie3 ie4 
1 0.03 0.26 0.29 0.11 
2 0.2 0.22 0.21 0.67 
3 0.26 0.38 0.33 0.45 
4 0.21 0.16 0.26 0.08 
5 0.01 0.42 0.48 0.29 
6 0.17 0.12 0.17 0.27 
7 0.05 0.197 0.19 1.28 
8 0.31 0.27 0.131 0.175 
9 0.56 0.41 0.17 0.28 

10 0.13 0.58 0.54 0.3 
Actual 

reliability 90% 70% 80% 70% 
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Table 7.11 Evaluation results for case B (COV=112.5%) 

Case B Rel. 
=80% 

Cost 
=60905832 

 ie=0.382 

optimum 
design 

H d1 d2 b 
80.0 43.84 80.5 75.16 

Iteration ie1 ie2 ie3 ie4 
1 0.62 0.44 0.18 0.2 
2 0.16 0.24 0.26 0.22 
3 0.09 0.56 0.53 0.132 
4 1.08 0.59 0.08 0.43 
5 0.33 0.198 0.2 0.21 
6 0.17 0.24 0.19 0.44 
7 0.7 0.38 0.15 0.15 
8 0.17 0.48 0.37 0.25 
9 0.12 0.24 0.56 0.54 
10 0.25 0.32 0.37 0.23 

Actual 
reliability 80% 70% 80% 70% 

 

Table 7.12 Evaluation results for case C (COV=182.5%) 

Case C Rel. 
=60% 

Cost 
=1803597.62 

 ie=0.383 

Optimum 
design  

H d1 d2 b 
40.00 17.98 27.50 43.99 

Iteration ie1 ie2 ie3 ie4 
1 0.01 0.22 0.28 0.98 
2 0.49 0.33 0.19 0.16 
3 0.37 0.37 0.34 0.2 
4 0.128 0.32 0.63 0.03 
5 0.53 0.52 0.26 0.06 
6 0.02 0.21 0.42 0.32 
7 0.54 0.45 0.21 0.22 
8 0.37 0.219 0.2 0.29 
9 0.03 0.18 0.24 0.14 

10 0.04 0.95 0.96 0.61 
Actual 

reliability 70% 70% 70% 80% 
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Table 7.13 Evaluation results for case D (COV=77.5%) 

Case D Rel. 
=80% 

Cost 
=522344.7 

 ie=0.382 

Optimum 
design  

H d1 d2 b 
20.0 9.28 16.3 57.72 

Iteration ie1 ie2 ie3 ie4 
1 0.34 0.28 0.17 0.29 
2 0.1 0.09 0.388 0.449 
3 0.14 0.36 0.49 0.33 
4 0.4 0.31 0.17 0.45 
5 0.146 0.168 0.24 0.45 
6 0.47 0.27 0.1 0.4 
7 0.06 0.15 0.26 0.2 
8 0.08 0.15 0.2 0.34 
9 0.31 0.19 0.2 0.29 

10 0.22 0.16 0.27 0.47 
Actual 

reliability 80% 100% 80% 60% 

7.11 Conclusion 

This chapter aimed to finding the safest HWRS design at minimum construction cost, 

integrating uncertainty in estimation of seepage quantities due to uncertainties in HHC estimates. 

Although formulation of the RBOD based on responses of a large number of surrogate models is a 

complex and time consuming task, it was efficiently and successfully implemented based on a new 

technique (MOMRO). Formulating RBOD problems as an MOMRO model enhances efficiency of 

population based search solvers, e.g., NSGA-II solver, to find Pareto optimum solutions. In contrast to 

the single optimization technique, the search process using the MOMRO technique was more efficient 

in approaching the global optimum solution. This formulation was based on the multi-realization 

‘staking’ technique utilized in constraints and objective functions to incorporate reliability in the RBOD 

framework. This was achieved by utilizing 120 well trained surrogate models based on the GPR 

technique to build six stochastic ensemble surrogate models imitating stochastic seepage quantities (Pc1, 

Pe2, ie1, ie2, ie3, ie4). 

Two strategies were adopted in this study to increase computing efficiency of the RBOD. The 

first was use of nested function formulation and the second was adaptation of the vector-process 

computing technique. These techniques improved computing efficiency of the MOMRO model to 

around 35 times faster than the traditional formulation. This procedure simplified the parameter 

selection process for the NSGA-II related to consequences of optimization performance.  

The proposed methodology was applied for four different reliability levels (40%, 60%, 80%, 

99.9%) for hypothetical cases, including five different values of upstream head values (100 m, 80 m, 

60 m, 40 m, 20 m). Minimizing the stochastic exit gradient value and construction cost were the two 

objective functions in the MOMRO model. Solution results demonstrated that incorporating reliability 
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in the optimization model increased safety of HWRS design and strongly affected optimum solutions. 

Ignoring uncertainty of hydraulic conductivity may negatively impact on HWRS design. Increasing 

specified reliability levels significantly augmented construction cost due to an increase in required 

dimensions of cut-offs depths and floor width of HWRS to satisfy the desired reliability level.  

The competing trade-offs encompassed numerous alternatives between minimum exit gradient 

and minimum construction cost objective functions. The optimum solutions in trade-offs may aid 

HWRS designers to make more reliable and informed decisions. With some experience, and these 

additional quantified reliability estimates, the rational optimum design can be achieved. Also, safety 

factors inherent in the specified safe exit gradient level can help decision making to select solutions at 

optimum reliability levels. Furthermore, the MOMRO technique provided, for the same objective 

functions values, many different optimum decision vectors (X). These results refer to the robustness of 

the MOMRO technique to attain diverse optimum solutions, based on the non-dominated population 

direct search technique, which can lead to the global optimum solution.  

Evaluation results show that specified reliability levels agreed with the computed actual 

reliability levels. Also, the GPR based surrogate models predicted stochastic seepage quantities 

accurately and efficiently. However, there were some expected errors in the evaluated results. This may 

be attributed to allowable error of developed surrogate models and inadequate number of iterations used 

to estimate actual reliability level in the evaluation process.  

Finally, historical records (ICOLD, 2016; NPODP, 2015) demonstrate that constructed HWRS 

had many failures or unsatisfactory performance related to seepage in the underlying porous medium. 

Hence, the proposed methodology based on the MOMRO technique provides a promising procedure to 

achieve optimal design considering minimum construction cost and safe exit gradient with quantified 

reliability of design. For future studies, to achieve more rigorous reliability, it is recommended to 

incorporate other sources of uncertainty arising from surrogate model predictions, construction cost 

parameters, upstream water head fluctuations and other related parameters. Also, the deterministic 

safety factors utilized in specifying permissible exit gradients considered in the evaluation of the 

stochastic optimum solutions must be integrated into reliability quantification related to design of 

HWRS.  
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8 Summary and conclusion  

 

8.1 Summary  

This study aimed to develop methodologies for deriving minimum cost safe optimum design of 

HWRS constructed on permeable soils, incorporating the effect of seepage characteristics, based on the 

linked simulation-optimization (S-O) technique. With development of numerical methods, such as the 

finite element method (FEM) which precisely determines seepage quantity for complex flow domains 

and irregular soil properties, there is motivation to incorporate accurate numerical seepage simulation 

into optimization models. Hence, the linked S-O model was implemented to identify optimum designs 

of HWRS based on numerical seepage models. Earlier seepage approximation and analytical methods 

cannot be utilized to find an accurate solution for complex seepage problems. Usually, direct linking of 

the S-O model is a challenging task and computationally expensive. Therefore, computational 

efficiency is enhanced and computational feasibility of the linked S-O model is ensured by replacing 

the computationally expensive numerical model with adequately and accurately trained and tested 

surrogate models based on a particular regression machine learning technique. The S-O methodology 

was applied to different illustrative problems and performance was evaluated for different design 

scenarios related to design of HWRS. 

The S-O model was first applied to a simple conceptual seepage model including homogenous 

isotropic soil, two end cut-offs and apron. The optimization solver used was the genetic algorithm (GA) 

and the surrogate model was based on the artificial neural network (ANN) technique. Parameters of the 

ANN and GA models were systematically selected based on results of many design of experiments 

using Taguchi method. Consequently, performance of the GA and ANN models was shown to be 

improved. Seepage characteristics obtained based on S-O model solutions were evaluated by comparing 

seepage characteristics of the optimum solution obtained based on solving the numerical model to those 

obtained using the surrogate model linked S-O model. Also, Khosla’s method solution was utilized in 

this comparison. The evaluation was based on many error measurement criteria, such as mean square 

error (MSE), coefficient of determination (RSQ), SI and bias parameter. Evaluation results 

demonstrated that the S-O model is potentially applicable to find an optimum design of HWRS based 

on surrogate models. 

The next implementation of the S-O model was to find optimum design of HWRS for 

comprehensive conceptual seepage scenarios. The comprehensive seepage model included ten varied 

depth cut-offs with varied location and inclination angle for each cut-off. The model included non-

homogenous layers. Hydraulic conductivity and anisotropic hydraulic conductivity for each layer were 
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different and varied for each numerical simulation. The complexity of the problem and large number of 

involved variables required an efficient machine learning technique. Hence, the support vector machine 

(SVM) technique was utilized and linked to the hybrid genetic algorithm (HGA) within the S-O model. 

The HGA solutions approached global optimum solutions. As there were numerous input design 

variables, to identify important relevant variables importance analysis of variables was conducted 

before developing the surrogate model for each seepage characteristic. The resulting optimum solution 

determined the most important relevant variables, which have a significant contribution compared to 

other variables, in providing a safe and minimum cost design. Additionally, the effect of hydraulic 

conductivity and anisotropic ratio on optimum design was considered in this model. An adequate 

evaluation process was carried out to determine accuracy of the S-O technique. 

Furthermore, the S-O methodology was extended to implement reliability based optimum 

design (RBOD) based on the multi-realization optimization technique. The uncertainty of seepage 

characteristics due to uncertainty in estimating hydraulic conductivity is incorporated in RBOD 

framework. Reliability was based on the responses of many surrogate models trained using many 

different training data sets to reflect uncertainty in estimating hydraulic conductivity. Hydraulic 

conductivity was incorporated as a random field based on log-normal distribution with a specified 

standard deviation. The resulting optimum solutions including desired reliability levels were also 

evaluated based on the multi-realization technique. Evaluation results show that the developed 

methodology is potentially applicable to incorporate uncertainty of seepage quantitative estimation in 

optimum design of HWRS. Also, the methodology could be extendable and applicable to different 

problems and different engineering applications. 

As the RBOD is a computationally expensive and demanding task, especially with a large 

number of stochastic constraints based on the multi-realization technique incorporated in the S-O 

model, the S-O model based RBOD was formulated based on a different technique - the MOMRO 

approach. Based on this approach, exit gradient stochastic constraints were transformed into a second 

objective function to be minimized. The reliability measure was incorporated in the objective function 

and in the constraints to obtain desired reliability level of minimum cost HWRS design. Evaluation 

results demonstrated the applicability of the developed methodology in quantifying safe design and 

reliability of the optimum design.   

Generally, many techniques were utilized to increase computational efficiency of linked S-O 

models. The parallel computing tool available in Matlab can significantly increase computational 

efficiency by distributing the computation tasks on many cores of the processor unit. Also, using the 

nested function technique in writing constraints and objective functions codes increased computation 

efficiency of the S-O model. Moreover, formulating the S-O model in a vectorised system substantially 

improved computational efficiency.  
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Performance of optimization solvers was improved using many techniques. The Taguchi design 

of experiment (DOE) was implemented to select the best parameter combination of the GA to improve 

the possibility that the GA solution approaches the global optimum solution. Hybridizing the genetic 

algorithm with a gradient search algorithm, i.e., interior point algorithm(IPA), increased efficiency and 

speed of the solver to attain global optimum solutions. Additionally, for a complex S-O procedure, such 

as those including a large number of stochastic constraints, the use of a multi-objective optimization 

solver (NSGA-II) significantly increased computational efficiency and provided more resilience to the 

population based direct search technique. Another benefit of using NSGA-II was its ability to provide 

diverse scenarios of optimum solutions for the same (approximately) objective function values. 

Additional tables and figures related to the design solutions included in this study are attached as part 

of the Appendix.  

8.2 Conclusion  

The S-O model was efficiently and successfully implemented for different optimal design 

scenarios and objectives to find the optimum design of HWRS. It was shown to be a potentially efficient 

technique to incorporate different design variables pertaining to seepage related to HWRS and to study 

the effects of these variables on optimum design of HWRS. The linked S-O model incorporated all 

expected design requirements and safety factors related to HWRS. These safety factors were implicitly 

formulated in the optimization model as constraints based on responses of surrogate models. Thus, 

processing the S-O model with a large number of surrogate models was a challenging task, particularly 

for large scale problems. 

The S-O technique was extended to incorporate the effect of uncertainty in estimating seepage 

quantities due to uncertainty of hydraulic conductivity. This was achieved by utilizing the multi-

realization optimization technique. The reliability of the design was quantified by incorporating 

different responses of seepage stochastic surrogate models trained based on different scenarios of 

hydraulic conductivity. The desired reliability level was achieved by allowing the optimum solution to 

satisfy a specified percentage of all involved probabilistic constraints. This percentage reflects the 

probability of optimum design of HWRS to attain the desired reliability in terms of safety. However, 

for a high reliability level, at which all stochastic constraints must be satisfied, attaining a feasible 

solution was difficult. Hence, the MOMRO formulation was utilized to efficiently quantify reliability 

of the optimum design based on the multi-objective optimization solver (NSGA-II). The 

implementation of the MOMRO technique included transforming the exit gradient stochastic 

constraints to a second objective function to be minimized. Reliability was incorporated in the objective 

function and constraints based on the multi-realization technique. Evaluation results of the RBOD 

model based on the S-O model demonstrated the robustness of the developed methodology in 

quantifying reliability of HWRS design.  
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Reliability based design results demonstrated that uncertainty in seepage quantity due to 

uncertainty of hydraulic conductivity substantially influenced safety and design reliability of HWRS. 

For example, some stochastic exit gradient values resulted in double or more of the deterministic value. 

This means that the deterministic safety factors (3 to 5) are not sufficient to provide required safety of 

HWRS design for long life design. Also, construction cost curves show that reliability of the 

deterministic model was between 60% and 40%. Hence, it is recommended to increase the safety factor 

for exit gradient value, particularly to provide more safety against piping failure.  

The S-O technique is substantially based on accuracy and efficiency of developed surrogate 

models. Therefore, surrogate models must be critically tested and evaluated independent of training 

data sets before using them in S-O models. Several error measures were utilized to evaluate all 

developed surrogate models integrated in the S-O model. However, accuracy and efficiency of 

developed surrogate models depends also on the type of utilized machine learning techniques.  

The ANN model is more affected by noise in training data and tends to overfitting learning, 

unless sufficient precautions are implemented, such as earlier stopping criteria and using the 

regularization algorithm. The ANN model is an expeditious technique, but accuracy of the ANN model 

is deteriorated with augmentation of the number of neurons and size of the ANN model. It is 

recommended to normalize input and output training data to attain the most efficient surrogate models. 

Parameters and options of the ANN model should be systematically selected. The most effective 

parameter in the ANN model was the transfer function of hidden and output layers. The SVM and GPR 

techniques were more robust than the ANN model, and less impacted by noisy training data. However, 

prediction speed of SVM and GPR techniques was relatively less than the ANN model. Therefore, for 

complex problems it is a requirement to increase efficiency of surrogate models responses by reducing 

involved independent design variables in training surrogate models, or increasing computational 

efficiency of the S-O model based on many approaches discussed in this study. Performance of the 

SVM was most affected by the kernel function. The second order polynomial kernel was more suitable 

for the given training data to build an efficient surrogate model. Similarly, the GPR was most affected 

by the kernel function. The “squared exponential kernel with a separate length scale per predictor” GPR 

kernel function provided the most accurate predictions. 

In general, from results of all implemented models it was found that exit gradient safety factor 

was the most important factor in achieving optimum design. The majority of obtained optimum 

solutions satisfied the minimum permissible values of exit gradient safety factor. Also, eccentric load 

condition played a crucial role in resulting optimum solutions. The remaining safety factors, such as 

overturning, sliding and flotation conditions, were satisfied, but had less impact on optimum solutions. 

With the prescribed ranges, proposed parameters and boundary conditions of implemented 

cases, the important conclusion is that optimum design of HWRS should include two ends cut-offs with 
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an apron between them. However, with high upstream water head, or low hydraulic conductivity 

anisotropic ratio, or low hydraulic conductivity, more cut-offs and additional aprons may be required 

to decrease seepage quantities, such as uplift pressure and exit gradient values. The main role of the 

downstream cut-off was to decrease actual exit gradient value. This role is more effective when 

inclination angle of the cut-off is toward the downstream (>90 degrees). The main role of the upstream 

cut-off was to decrease uplift pressure value on the base of the HWRS; consequently, this partially 

contributed to decreasing exit gradient value. The effect of the upstream cut-off in decreasing uplift 

pressure was greater inclination angle inclining toward upstream (<90 degrees). The apron (floor) width 

aided to increase stability of HWRS. Also, this variable provided the required weight to improve HWRS 

resistance to external hydraulic forces and uplift pressure. Incorporating the weight of water (hydrostatic 

pressure) at the upstream side in counterbalancing momentum and hydraulic forces corroborated the 

safety of HWRS. These observations are based only on illustrative design scenarios considered in this 

study and may not be general in nature.  

Finally, applying the S-O model and incorporating uncertainty of involved design variables and 

parameters can provide more safety for HWRS design at a minimum cost. Furthermore, including all 

expected uncertainty scenario in hydraulic conductivity in the design of HWRS would provide more 

reliable design representing real conditions and properties of porous media. This would satisfy high 

actual reliability level with required safety factors. 

8.3 Limitations  

All implemented S-O models concentrated only on hydraulic design aspects of HWRS 

generally mentioned in the literature. However, beyond hydraulic design of HWRS there are many 

pertaining details that should be considered for real life HWRS design, such as service load conditions, 

long term effects of generated sediments on the upstream side, uncertainty due to other parameters and 

upstream water head, and earthquake and ice load impacts. Furthermore, considering foundation design, 

structural design and bearing capacity requirements may provide more reliable design of HWRS. This 

may be achieved by combining SEEP/W, SIGMA/W and QUAKE/W components of Geo-Studio 

software in one model. However, solution of such models may require high speed processors and a 

significant amount of time and effort in future studies.  

By increasing the complexity of seepage modeling scenarios some errors or inaccurate 

numerical solutions related to seepage characteristics may be observed. This inefficiency is not due to 

randomness of hydraulic conductivity, but due to convergence criteria of the complex numerical model. 

This shortcoming may occur for any numerical simulation models. Hence, uncertainty of numerical 

responses may be addressed by utilizing an adequate number of surrogate models in ensemble models 

to provide more precise estimations of seepage characteristics. Also, a combination of seepage 
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numerical responses in the ensemble may be based on different numerical modeling, methods and 

theories to provide accurate predictions of seepage characteristics. 

For evaluation processes, it may be more robust to compare obtained seepage characteristics of 

optimum design to experimental observations based on a scaled seepage model. However, for complex 

seepage scenarios more attention, effort and time is required to represent a stratified flow domain based 

on particular values of hydraulic conductivity with inclined cut-offs, etc.  

An obvious challenge of this study was the time required for generating simulated data sets. 

For each new input data there is a different flow domain that must be drafted in CAD software 

(AutoCAD/dxf extension) and exported to the seepage numerical simulation model to find the seepage 

characteristic based on new input data. For an enormous amount of training data sets, generating training 

data sets requires a long time, especially for complex seepage scenarios. It would be more efficient for 

the S-O model if a suitable technique is used to acquire numerical solutions in a more expeditious way. 

 

8.4 Recommendations for future studies 

It is recommended future studies incorporate unsteady state models and its consequences on 

optimum design of HWRS, as all scenarios included in this study were implemented for steady state 

conditions. Additionally, in regards to uncertainty of hydraulic conductivity, using a correlated 

heterogeneous random field with a predefined hydraulic conductivity value for specific points could be 

an important aspect to deal with and study different possible scenarios for such cases to determine how 

it affects optimum design of HWRS. On the other hand, incorporating the effects of dynamic and 

seismic loads and their consequences on hydrostatic forces and HWRS design could be an interesting 

direction to consider. This may be achieved by developing many surrogate model responses imitating 

seismic load for a certain location. Another interesting direction of study is to include structural design 

requirements of HWRS in addition to hydraulic design to find minimum cost design. Also, different 

systems of linked S-O models could be developed for improving accuracy and efficiency in modeling 

based on different machine learning techniques, such as multi-genes genetic programing(MGGP), 

multi-adaptive regression spline(MARS) and other optimization solvers, such as simulated annealing 

(SA) or particle swarm optimization (PSO). 
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10 Appendix A 

Example Formulation of ANN equations (ΘE) based on the weights matrix and 

biases vector 

Step1:  normalizing the input data (d1, d2, 2b, h) using the following formula:  

Y =  (ymax − ymin) ∗ (x − xmin)/(xmax − xmin)  +  ymin (A3.1) 

The normalization step is a built in phase of the Matlab training algorithm and a (mapminmax) function 

is used within the training algorithm to provide better training and minimize the error between the ANN 

response and the target data. Therefore the resulted in weights and biases are corresponded with the 

normalized data set.  Only to use the generated weights and bias correctly (only in this context), the 

normalized data must be utilized to formulation ANN equations (model).  In contrast, the developed 

ANN models are applied with non-normalized data, because the normalization and de-normalization 

phases are the interior process within training stage. Also, based on the training process, the weights 

matrix and bias vector is generated.  

Step2: multiplying each variable by the weights matrix, then add a bias vector as shown below:   

𝐻𝑠 =  𝑏𝑠 + ∑ 𝑋𝑟

𝑟=4

𝑟=1 

 ×  𝑊𝑠×𝑟 (A3.2) 

H1 = -0.124 + 1.406 ×X 1 + -0.667×X2+ 1.559×X3+ -0.721×X4 

H2= 1.288+ 0.745×X1+ -0.820× X2+ -0.021×X3+ -0.061×X4 

H3= 1.131+ 0.663×X1+ -0.664× X2+ 0.076×X3+ -0.253×X4 

H4= -2.719 -0.951×X1+ -1.064× X2+ 0.758×X3+ 1.113×X4 

Step 3: substituting the result of the second step (𝐻𝑠) as the input of the transfer function according to 

the following equation: 

As =  
1

(1 + EXP(−Hs))
            (A3.3) 

  

A1=1/(1+EXP(-H1)) 

A2=1/(1+EXP(-H2)) 

A3=1/(1+EXP(-H3)) 

A4=1/(1+EXP(-H4)) 

Hidden layer  

Transfer function 

(Logsig ) 
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Step 4: multiplying the outcome vector of last step by the weights matrix of output layer, then add the 

bias vector as shown below:  

𝐾𝑖 =  𝑏𝑖 + ∑ 𝐴𝑠

𝑠=4

𝑠=1  

 ×  𝑊𝑖×𝑠 
 

(A3.4) 

 

 

Step 5: de- normalized data to actual data using the following equation  

xactual  = (y -ymin)(xmax-xmin)/(ymax-ymin) + xmin  (A3.5) 

 

Weights and bias tables for the developed ANN models 

Table A3.1 Weights and bias factors for the hidden layer of ANN model (ΘC)   

Neuron 
No 

Scalar 
bias for 
hidden 

layer (b) 

Scalar weight factors for hidden layer 

W1-1 W1-2 W1-3 W1-4 

1 -24.802 5.210 5.050 4.722 2.541 

2 14.526 -0.313 8.245 -13.369 15.144 

3 0.311 -6.070 -2.623 3.811 -0.256 

4 -1.172 -4.241 -0.646 -1.463 1.490 

5 3.203 -0.703 1.269 1.776 -0.818 

6 -5.044 3.518 1.495 4.518 -1.902 

7 4.209 1.180 -3.717 4.303 -4.158 

8 -1.352 0.012 0.253 0.456 -1.449 

9 7.580 3.958 -13.991 5.042 -8.592 

10 1.853 0.976 -0.060 -0.118 -0.860 

11 8.975 -1.099 -5.878 5.808 -2.655 

 

Table A3.2 Weights and bias factors for the output layer of ANN model (ΘC) 

Neuro
n No 

Scalar 
bias for 
output  

layer (b) 

Scalar weight factors for hidden layer 

W2-1 W2-2 W2-3 W2-4 W2-5 W2-
6 W2-7 W2-8 W2-

9 W2-10 W2-11 

1 2.452 0.074 0.003 -0.073 -0.310 1.340 0.21
9 -0.137 -1.500 0.01

4 -3.937 -0.124 

 

 

 

K= 2.525+ 0.973×A1+ 15.185×A2+ -20.160×A3+ -1.250×A4 Output layer  
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Table A3.3 Weights and bias factors for the hidden layer of ANN model (Θ E) 

Neuron 
No 

Scalar 
bias for 
hidden 

layer (b) 

Scalar weight factors for hidden layer 

W1-1 W1-2 W1-3 W1-4 

1 -0.124 1.406 -0.667 1.559 -0.721 

2 1.288 0.745 -0.820 -0.021 -0.061 

3 1.131 0.663 -0.664 0.076 -0.253 

4 -2.719 -0.951 -1.064 0.758 1.113 

 

Table A3.4 Weights and bias factors for the output layer of ANN model (Θ E) 

Neuron 
No 

Scalar 
bias for 
output  

layer (b) 

Scalar weight factors for hidden layer 

W2-1 W2-2 W2-3 W2-4 

1 2.525 0.973 15.185 -20.160 -1.250 

 

Table A3.5 Weights and bias factors for the hidden layer of ANN model (Exit gradient) 

Neuron 
No 

Scalar 
bias for 
hidden 

layer (b) 

Scalar weight factors for hidden layer 

W1-1 W1-2 W1-3 W1-4 

1 -5.716 1.172 -2.300 -4.439 0.518 

2 -4.591 0.258 0.465 -0.125 -3.892 

3 6.800 -1.678 2.492 4.232 -0.697 

4 12.820 0.049 11.040 0.290 -0.518 

5 -1.867 -0.297 -0.688 -0.151 0.689 

 

Table A3.6 Weights and bias factors for the output layer of ANN model (Exit gradient) 

Neuron 
No 

Scalar 
bias for 
output  

layer (b) 

Scalar weight factors for hidden layer 

W2-1 W2-2 W2-3 W2-4 W2-5 

1 1.342 2.201 -4.692 3.929 -6.948 2.552 
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11 Appendix B 

Table B4.1 Variable importance results (PE1)  Table B4.2 Variable importance results (PC1)  

Variable Importance 
SPSS (beta 
(coefficient) 

Matlab (random 
forest ) 

H 100.00 100.00 
b1 0.98 0.72 
kx1 0.15 0.04 
β1 0.08 0.03 

kx 2 0.08 0.06 
d1 0.06 0.04 

layer depth1 0.04 < 0.01 
dd 0.04 < 0.01 

layer depth2 0.03 < 0.01 
kx3 0.02 < 0.01 

 

Variable Importance 
SPSS (beta 
(coefficient) 

Matlab (random 
forest ) 

PE1 m 100.00 100.00 
d1 1.27 1.14 

(ky/kx)1 0.12 0.12 
b1 0.11 0.09 
dd 0.04 0.01 
kx1 0.03 < 0.01 
b2 0.03 0.05 

kx3 0.02 0.03 
b10 0.02 < 0.01 
d2 0.01 0.02 

 

 

Table B4.3 Variable importance results (PE2)  Table B4.4 Variable importance results (PC2)  

Variable Importance 

SPSS (beta 
(coefficient) 

Matlab (random 
forest ) 

PC1 100.00 100.00 
b2 0.22 0.17 
d1 0.02 0.01 
d2 0.02 0.02 
β2 0.02 0.01 

(ky/kx)1 0.01 < 0.01 
β1 0.01 < 0.01 
kx1 < 0.01 < 0.01 
dd < 0.01 < 0.01 
b1 < 0.01 < 0.01 

 

Variable Importance 
SPSS (beta 
(coefficient) 

Matlab (random 
forest ) 

PE2 100.00 100.00 
d2 1.28 0.85 
d1 0.04 0.02 
dd 0.03 < 0.01 

d10 0.02 0.02 
b3 0.01 < 0.01 
β1 0.01 < 0.01 

(ky/kx)1 0.01 < 0.01 
b2 0.01 < 0.01 
d3 0.01 0.01 

 

 

Table B4.5 Variable importance results (PE3) Table B4.6 Variable importance results (PC3) 

Variable Importance 
SPSS (beta 
(coefficient) 

Matlab (random 
forest ) 

PC2 100.00 100.00 
b3 0.24 0.15 
β2 0.03 0.02 
β3 0.03 0.02 
d2 0.02 < 0.01 

(ky/kx)1 0.02 0.03 
d3 0.02 < 0.01 
b5 < 0.01 < 0.01 

layer depth2 < 0.01 < 0.01 
 

Variable Importance 
SPSS (beta 
(coefficient) 

Matlab (random 
forest ) 

PE3 100.00 100.00 
d3 0.61 0.67 
d4 0.02 < 0.01 
b4 0.01 < 0.01 
b3 0.01 < 0.01 
d2 0.01 < 0.01 
(ky/kx)1 0.01 0.01 
b10 0.01 < 0.01 
β2 < 0.01 < 0.01 
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Table B4.7 Variable importance results (PE4) Table B4.8 Variable importance results (PC4) 

Variable Importance 
SPSS (beta 
(coefficient) 

Matlab (random 
forest ) 

PC3 100.00 100.00 
b4 0.20 0.11 

(ky/kx)1 0.02 0.01 
β4 0.02 0.03 
β3 0.02 < 0.01 
d4 0.02 0.02 
d3 0.02 < 0.01 

kx 2 < 0.01 < 0.01 
d10 < 0.01 < 0.01 

 

Variable Importance 
SPSS (beta 
(coefficient) 

Matlab (random 
forest ) 

PE4 100.00 100.00 
d4 0.62 0.58 
d3 0.02 0.01 
b4 0.01 < 0.01 

b10 0.01 < 0.01 
b5 0.01 0.01 
d5 0.01 0.01 
kx1 0.01 < 0.01 
d10 0.01 < 0.01 

 

Table B4.9 Variable importance results (PE5) Table B4.10 Variable importance results (PC5) 

Variable 
Importance 

SPSS (beta 
(coefficient) 

Matlab (random 
forest ) 

PC4 100.00 100.00 
b5 0.15 0.11 

(ky/kx)1 0.02 0.01 
d4 0.01 < 0.01 
β5 0.01 0.01 
d5 0.01 0.01 
β4 0.01 0.01 
Dd < 0.01 < 0.01 
d10 < 0.01 0.01 
b6 < 0.01 < 0.01 

 

Variable 
Importance 

SPSS (beta 
(coefficient) 

Matlab (random 
forest ) 

PE5 100.00 100.00 
d5 0.67 0.86 
b6 0.03 0.04 

d10 0.02 0.01 
d6 0.02 0.01 
β4 0.01 0.01 
d4 0.01 < 0.01 
b5 0.01 < 0.01 

b11 0.01 < 0.01 
β6 0.01 0.01 

 

 

Table B4.11 Variable importance results (PE6) Table B4.12 Variable importance results (PC6) 

Variable Importance 
SPSS (beta 
(coefficient) 

Matlab (random 
forest ) 

PC5 100.00 100.00 
Dd 19.89 17.95 
b6 0.25 0.17 

(ky/kx)1 0.03 < 0.01 
β6 0.03 0.02 
d6 0.02 < 0.01 
β5 0.02 0.01 
d5 0.02 0.02 

(ky/kx)2 < 0.01 0.01 
d7 < 0.01 < 0.01 

 

Variable Importance 
SPSS (beta 
(coefficient) 

Matlab (random 
forest ) 

PE6 100.00 100.00 
d6 1.53 1.73 
dd 0.12 0.11 
kx1 0.04 0.03 
b6 0.04 0.01 

b10 0.03 0.05 
d5 0.03 0.01 
d7 0.02 0.02 

d10 0.01 < 0.01 
d9 0.01 0.02 

 

 

Table B4.13 Variable importance results (PE7) Table B4.14 Variable importance results (PC7) 

Variable 
Importance 

SPSS (beta 
(coefficient) 

Matlab (random 
forest ) 

PC6 100.00 100.00 
b7 0.46 0.29 
β7 0.05 0.04 

(ky/kx)1 0.04 0.03 
d6 0.04 0.01 
β6 0.04 0.01 
d7 0.03 0.02 
Dd 0.02 0.01 

kx 2 0.02 0.01 
b10 0.01 < 0.01 

 

Variable 
Importance 

SPSS (beta 
(coefficient) 

Matlab (random 
forest ) 

PE7 100.00 100.00 
d7 1.50 1.56 
dd 0.09 0.04 
d6 0.05 0.03 
d8 0.05 0.03 
b7 0.02 0.04 
β6 0.01 < 0.01 
d10 0.01 0.02 
b10 0.01 < 0.01 
β8 0.01 < 0.01 
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Table B4.15 Variable importance results (PE8) Table B4.16 Variable importance results (PC8) 

Variable Importance 
SPSS (beta 
(coefficient) 

Matlab (random 
forest ) 

PC7 100.00 100.00 
b8 0.41 0.29 
β8 0.05 0.02 
d8 0.04 0.03 
β7 0.03 0.01 

(ky/kx)1 0.03 0.05 
d7 0.03 0.02 
Dd 0.02 0.01 
d10 < 0.01 < 0.01 
β3 < 0.01 < 0.01 

 

Variable 
Importance 

SPSS (beta 
(coefficient) 

Matlab (random 
forest ) 

PE8 100.00 100.00 
d8 2.56 1.82 
dd 0.20 0.13 
d9 0.10 0.12 
kx1 0.09 0.10 

(ky/kx)1 0.08 < 0.01 
d10 0.05 0.06 
d7 0.04 0.04 
b8 0.04 0.04 

b10 0.03 0.04 
 

 

 

Table B4.17 Variable importance results (PE9)  Table B4.18 Variable importance results (PC9)  

Variable Importance 
SPSS (beta 
(coefficient) 

Matlab (random 
forest ) 

PC8 100.00 100.00 
b9 0.54 0.49 
d8 0.06 0.02 
dd 0.06 < 0.01 
β9 0.03 0.03 
d9 0.03 0.03 
β6 0.02 0.01 
β8 0.01 0.02 
b3 0.01 0.01 
β1 0.01 < 0.01 

 

Variable Importance 
SPSS (beta 
(coefficient) 

Matlab (random 
forest ) 

PE9 100.00 100.00 
d9 12.13 4.50 
d10 2.42 1.31 
b11 0.60 0.77 
kx1 0.58 0.35 
b10 0.53 0.41 
kx2 0.25 0.07 
b9 0.24 0.14 
kx3 0.20 0.05 

layer depth2 0.18 0.05 
 

 

Table B4.19 Variable importance results 
(PE10)  

Table B4.20 Variable importance results 
(PC10)  

Variable 

Importance 

SPSS (beta 
(coefficient) 

Matlab 
(random 
forest ) 

PC9 100.00 100.00 
b10 3.60 1.62 
d10 2.27 3.50 

(ky/kx)1 0.81 0.39 
β10 0.29 0.14 
d9 0.23 0.27 
b11 0.23 0.18 
β9 0.18 0.06 

layer depth2 0.05 < 0.01 
layer depth1 0.04 < 0.01 

 

Variable Importance 
SPSS (beta 
(coefficient) 

Matlab (random 
forest ) 

b11 100.00 100.00 
PE10 22.51 17.06 
d10 24.83 9.51 
β10 11.70 3.94 
kx 2 9.17 1.85 
kx1 7.84 1.27 
dd 3.08 0.88 

(ky/kx)1 2.61 0.97 
kx3 2.13 0.53 

layer depth1 1.05 < 0.01 
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Table B4.22 Training and testing result for the developed SVM models 

model RSQ 
TRAIN 

MSE 
TRAIN 

RSQ 
TEST 

MSE 
TEST 

function 

exit model  1 0.96 0.088 0.95 0.086 polynomial  2 
exit model  2 0.96 0.08 0.95 0.11 polynomial  2 
exit model  3 0.96 0.087 0.954 0.09 polynomial  2 

pc10- model   1 0.95 0.92 0.95 1.06 polynomial  2 
pc10  model  2 0.959 0.92 0.955 0.93 polynomial  2 
pe10- model   1 0.987 1.26 0.988 1.06 polynomial  2 
pe10  model  2 0.987 1.27 0.988 1.08 polynomial  2 
pc9- model   1 0.981 2 0.983 1.68 polynomial  2 
pc9  model  2 0.982 1.97 0.981 1.9 polynomial  2 
pe9- model   1 0.997 0.55 0.996 0.65 polynomial  2 
pe9  model  2 0.997 0.56 0.997 0.59 polynomial  2 
pc8- model   1 0.991 2.02 0.991 1.92 polynomial  2 
pc8  model  2 0.991 2.05 0.993 1.65 polynomial  2 
pe8- model   1 0.998 0.33 0.998 0.4 polynomial  2 
pe8  model  2 0.998 0.339 0.0998 0.308 polynomial  2 
pc7- model   1 0.995 1.14 0.997 0.82 polynomial  2 
pc7  model  2 0.995 1.09 0.996 1.15 polynomial  2 
pe7- model   1 0.996 1.13 0.998 0.66 polynomial  2 
pe7  model  2 0.996 1.08 0.996 0.93 polynomial  2 
pc6 model   1 0.996 1.15 0.996 1.15 polynomial  2 
pc6  model  2 0.996 1.19 0.997 0.91 polynomial  2 
pe6 model   1 0.999 0.23 0.999 0.16 polynomial  2 
pe6  model  2 0.999 0.22 0.999 0.19 polynomial  2 
pc5 model   1 0.998 0.64 0.997 0.66 polynomial  2 
pc5  model  2 0.998 0.65 0.997 0.65 polynomial  2 
pe5  model  2 0.999 0.199 0.999 0.173 polynomial  2 
pc4 model   1 0.998 0.702 0.998 0.702 polynomial  2 
pc4  model  2 0.998 0.73 0.998 0.56 polynomial  2 
pe4 model   1 0.999 0.25 0.999 0.233 polynomial  2 
pe4  model  2 0.999 0.25 0.999 0.25 polynomial  2 
pc3 model   1 0.998 0.65 0.998 0.75 polynomial  2 
pc3  model  2 0.998 0.66 0.998 0.68 polynomial  2 
pe3 model   1 0.999 0.28 0.999 0.407 polynomial  2 
pe3  model  2 0.999 0.28 0.999 0.252 polynomial  2 
pc2 model   1 0.997 1.18 0.997 1.18 polynomial  2 
pc2  model  2 0.997 1.16 0.997 1.33 polynomial  2 
pe2 model   1 0.999 0.27 0.999 0.27 polynomial  2 
pe2  model  2 0.999 0.26 0.999 0.24 polynomial  2 
pc1 model   1 0.996 1.96 0.997 1.8 polynomial  2 
pc1model  2 0.996 1.93 0.996 1.89 polynomial  2 
pe1 model   1 0.997 1.63 0.998 1.25 Polynomial  2 
pe1model  2 0.997 1.61 0.997 1.57 Polynomial  2 

Table B4.21 Variable importance results (Exit 
gradient) 

Variable 

Importance 

SPSS (beta 
(coefficient) 

Matlab 
(random 
forest ) 

H 100.00 34.07 
(ky/kx)1 86.58 100.00 

kx1 28.64 8.17 
b11 15.30 5.92 
d10 9.33 1.72 
kx 2 9.05 2.83 
kx3 6.16 0.94 

layer depth1 5.77 2.93 
b10 2.52 0.43 
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Table B4.23 Optimum solution for different value of H 

H 20 30 40 50 60 70 80 90 100 
b1 0.0 0.0 0.0 0.0 0.0 5.9 5.0 6.7 7.0 
b2 0.0 0.0 0.0 0.2 1.7 3.0 2.5 3.4 3.5 
b3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
b4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
b5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
b6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 
b7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 
b8 0.0 6.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 
b9 4.8 7.8 17.2 22.5 28.5 29.1 38.3 39.7 46.1 
b10 15.4 34.8 33.0 35.5 36.4 36.6 40.0 43.8 51.6 
b11 10.5 10.1 8.0 4.1 0.8 0.0 0.0 0.0 0.0 
d1 0.0 0.0 0.0 0.4 3.3 5.9 5.0 6.7 7.0 
d2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
d3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
d4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
d5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
d6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 
d7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 
d8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
d9 9.7 15.5 33.6 35.1 34.2 33.3 34.1 38.5 45.0 
d10 21.1 20.1 32.5 35.9 38.5 40.0 42.0 38.7 40.8 
β1 30.0 81.8 92.0 102.2 111.9 117.4 125.6 131.9 139.7 
β2 30.0 66.4 68.6 71.2 75.2 76.6 77.5 80.4 82.4 
β3 30.0 107.9 110.1 113.1 116.1 116.1 118.3 120.9 123.2 
β4 30.0 79.2 82.1 86.9 92.3 93.4 97.4 99.8 106.2 
β5 30.0 81.1 77.6 74.4 71.6 69.6 65.3 61.5 59.2 
β6 30.0 118.6 125.7 134.0 140.9 143.3 147.8 150.0 150.0 
β7 30.0 96.3 133.3 137.3 142.8 132.6 125.9 126.4 126.8 
β8 30.0 150.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 
β9 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 
β10 139.8 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 
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Table B4.24 Evaluation results for different values of H 
 

H=100 H=90 H=80 H=70 H=60 H=50 H=40 H=30 H=20  

S-O N. S.*  S-O N. S.  S-O N. S.  S-O N. S.  S-O N. S.  S-O N. S.  S-O N. S.  S-O N. S.  S-O N. S.  

PE1 m 96.37 91.99 87.00 82.47 77.68 74.22 68.10 64.98 59.10 60.00 49.37 50.00 39.67 40.00 29.92 29.99 20.14 20.00 

PC1 88.57 86.18 79.87 76.32 71.51 68.87 62.39 60.74 59.99 55.29 50.41 49.00 40.37 39.75 30.24 29.44 20.22 19.61 

PE2 87.85 86.18 79.13 76.28 70.74 68.85 61.63 60.72 59.18 55.41 49.56 48.99 39.54 39.74 29.46 29.42 19.39 19.60 

PC2 87.31 86.19 78.59 76.29 70.16 68.84 61.10 60.71 58.58 55.37 48.92 48.90 38.93 39.64 28.89 29.01 19.17 19.40 

PE3 85.95 86.19 77.39 76.28 69.10 68.83 60.20 60.71 57.71 55.36 48.21 48.90 38.40 39.63 28.53 28.99 18.83 19.39 

PC3 85.42 86.18 76.86 76.28 68.56 68.80 59.66 60.69 57.19 55.33 47.68 48.79 37.87 39.55 28.01 28.67 18.57 19.28 

PE4 84.95 86.18 80.25 76.27 68.14 68.79 59.26 60.68 56.79 55.32 47.29 48.80 37.48 39.54 27.62 28.66 19.25 19.27 

PC4 86.94 86.17 82.09 76.26 69.66 68.75 60.53 60.67 57.99 55.27 48.24 48.70 38.18 39.48 28.07 28.43 19.84 19.21 

PE5 86.37 86.16 81.50 76.25 69.12 68.74 60.04 60.66 57.51 55.26 47.84 48.69 37.88 39.47 27.89 28.42 19.84 19.20 

PC5 85.35 86.15 80.54 76.23 68.26 68.69 59.25 60.64 56.74 55.22 47.16 48.61 37.27 39.43 27.35 28.22 19.60 19.18 

PE6 86.05 86.14 78.88 76.21 66.96 68.68 59.98 60.63 55.81 55.21 47.88 48.59 37.96 39.41 27.14 28.21 20.57 19.37 

PC6 85.88 86.12 80.93 76.09 68.13 68.62 59.79 60.62 56.72 55.16 47.64 48.52 37.68 39.38 27.36 28.12 21.28 19.32 

PE7 85.11 86.12 80.20 76.09 67.48 68.62 59.12 60.62 55.96 55.16 47.03 48.52 37.21 39.38 27.19 28.04 21.49 19.32 

PC7 84.93 86.10 79.93 76.01 67.25 68.55 58.91 60.58 55.82 55.09 46.83 48.48 36.97 39.33 26.81 27.83 21.38 19.30 

PE8 84.69 86.09 79.67 76.01 66.93 68.54 58.60 60.58 55.54 55.09 46.47 48.44 36.54 39.33 25.67 27.18 20.95 19.29 

PC8 84.43 86.06 78.70 75.98 66.73 68.47 58.50 60.56 55.45 55.03 46.44 48.38 36.55 39.30 25.65 27.18 20.79 19.28 

PE9 82.61 83.95 76.50 74.21 65.44 66.00 57.83 59.98 54.86 54.20 46.21 47.91 36.50 39.11 24.80 27.16 20.36 19.26 

PC9 53.23 53.84 51.63 48.92 46.60 45.25 41.28 39.96 38.72 34.31 32.32 28.25 25.77 22.27 20.23 18.92 17.87 13.67 

PE10 42.54 39.76 41.20 37.21 37.26 35.67 32.64 31.78 30.38 27.13 24.94 22.16 19.51 17.39 13.55 12.43 13.13 11.39 

PC10 2.54 0.00 2.35 0.00 1.50 0.00 1.15 0.00 1.15 0.00 1.15 0.00 1.15 0.05 1.15 0.32 1.15 0.57 

Exit 
gradient 

0.23 0.24 0.23 0.22 0.23 0.24 0.23 0.24 0.23 0.22 0.23 0.21 0.23 0.22 0.23 0.27 0.23 0.22 

*N.S. is the Numerical Simulation results 

 

Table B4.25 Optimum solutions for different values of kx1 

kx 0.1 0.1 0.5 0.9 1.5 4.0 7.0 10.0 13.0 17.0 20.0 
b1 0.0 0.0 0.0 0.0 0.0 0.0 4.5 5.4 5.6 5.1 5.4 
b2 0.1 0.0 0.0 0.0 0.0 0.0 2.2 3.0 4.5 2.8 3.1 
b3 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.7 0.4 0.8 
b4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.6 0.4 0.7 
b5 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.6 0.7 
b6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 1.0 3.0 4.6 4.2 
b7 0.1 0.0 0.0 0.0 0.0 0.0 1.0 1.5 0.8 0.6 0.5 
b8 8.2 0.0 0.0 0.0 0.0 0.0 1.0 12.2 5.2 8.9 8.8 
b9 35.7 30.0 29.5 28.7 27.4 23.6 17.9 0.8 7.6 4.5 3.5 

b10 133.6 47.3 46.3 45.3 44.1 38.0 21.8 27.2 26.8 29.5 33.0 
b11 9.3 0.4 0.1 1.2 1.5 3.9 9.7 4.7 2.6 2.6 2.3 
d1 0.0 0.0 0.0 0.0 0.0 0.0 4.5 5.4 5.6 5.1 5.4 
d2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.7 0.5 0.8 
d3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.6 0.4 0.8 
d4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.6 0.4 0.7 
d5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.8 0.8 0.7 
d6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.6 0.6 0.5 
d7 0.0 0.0 0.0 0.0 0.0 0.0 2.0 2.0 1.0 0.6 0.6 
d8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.3 0.5 
d9 17.9 60.0 59.1 57.4 54.8 42.0 0.0 1.4 4.0 4.4 4.1 

d10 48.4 34.5 33.6 33.2 33.4 34.0 33.2 14.1 7.8 7.8 6.9 
dd 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
β1 103.8 101.7 103.5 101.3 101.0 103.0 102.5 99.3 96.1 97.9 98.1 
β2 36.9 63.9 64.3 64.9 65.7 69.7 72.8 77.2 81.7 84.6 87.8 
β3 38.0 114.5 114.3 114.1 114.1 113.8 109.0 108.1 106.2 104.5 102.6 
β4 35.0 83.8 85.4 85.6 84.3 84.1 82.4 82.3 83.3 83.9 87.2 
β5 99.9 76.9 76.5 76.1 75.7 75.4 75.6 74.1 71.5 68.6 67.3 
β6 81.3 130.6 130.8 130.9 131.2 133.8 126.3 126.1 128.4 129.4 128.0 
β7 37.4 150.0 150.0 149.0 145.6 144.7 100.3 66.5 57.4 30.4 30.0 
β8 41.0 30.0 30.0 30.0 30.0 30.0 108.0 150.0 150.0 150.0 150.0 
β9 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 48.8 54.2 51.8 
β10 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 
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Table B4.26 Optimum thicknesses for different values of kx1 

kx1 t1 t2 -- t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 

0.1 41.7 42.3 -- 40.5 40.0 40.1 39.6 39.9 39.6 39.8 40.9 23.3 18.3 1.0 
0.5 43.0 42.5 -- 40.6 40.1 40.2 39.7 40.0 39.6 39.8 40.9 23.3 18.4 1.0 
0.9 41.9 42.6 -- 40.7 40.2 40.2 39.8 40.0 39.6 39.8 40.9 23.6 17.7 1.0 
1.5 42.1 42.8 -- 40.9 40.3 40.4 39.9 40.0 39.7 39.8 41.0 24.1 18.2 1.0 

4 42.6 43.5 -- 41.5 40.9 40.8 40.2 40.1 39.8 39.9 40.9 25.4 19.3 1.0 
7 42.0 34.4 -- 32.5 32.2 31.8 31.6 30.9 30.2 29.7 29.5 27.4 21.5 1.0 

10 43.1 35.3 -- 33.5 33.1 32.6 32.4 31.6 29.8 29.6 29.8 26.1 17.8 1.3 
13 43.3 35.4 -- 33.9 33.5 32.9 32.7 31.8 30.3 27.1 27.3 22.4 13.4 1.1 
17 43.2 33.3 -- 32.6 32.1 31.5 31.3 30.5 28.7 28.7 26.3 22.6 13.5 1.1 
20 42.1 32.3 -- 30.1 29.8 29.2 29.0 28.3 26.6 26.8 24.6 20.0 12.8 1.0 

Table B.27 Optimum solutions for different values of (ky/kx)1 

(ky/kx)1 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 
b1 0.01 0.01 0.01 0.01 0.01 0.39 0.01 0.36 
b2 7.13 3.97 0.01 0.01 0.78 1.55 0.97 0.19 
b3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
b4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
b5 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
b6 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
b7 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
b8 0.01 0.01 1.51 0.01 0.01 0.01 0.01 0.01 
b9 77.80 47.37 31.50 27.67 24.65 22.81 22.52 21.97 
b10 150.00 140.79 92.12 42.22 38.30 36.27 37.14 41.60 
b11 0.01 0.01 0.01 1.10 4.27 5.72 5.59 7.01 
d1 14.25 7.92 0.01 0.01 1.56 3.09 1.93 0.36 
d2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
d3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
d4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
d5 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
d6 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
d7 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
d8 0.01 0.01 3.01 0.01 0.01 0.01 0.01 0.01 
d9 60.00 60.00 60.00 55.32 41.76 35.64 35.52 42.83 
d10 14.19 15.94 21.90 29.13 34.84 36.89 38.77 40.36 
β1 119.70 113.95 109.83 104.60 103.99 101.50 100.08 102.05 
β2 67.99 67.84 65.04 67.41 70.77 74.00 76.23 80.96 
β3 100.38 103.38 107.28 109.40 111.58 114.17 118.16 124.31 
β4 53.77 68.23 67.15 80.61 84.63 90.65 96.28 150.00 
β5 48.48 52.91 58.40 64.29 71.56 78.57 87.91 150.00 
β6 140.02 140.66 138.96 135.67 133.58 132.02 139.56 30.00 
β7 73.13 78.65 85.41 117.07 132.16 149.40 150.00 30.00 
β8 150.00 150.00 133.20 30.00 30.00 30.00 30.00 30.00 
β9 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 

β10 150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00 

Table B4.28 Optimum thicknesses for different values of (ky/kx)1 

(ky/kx)1 t1 t2 -- t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 

0.1 42.8 35.7 -- 36.2 37.4 37.8 37.3 36.9 36.8 36.4 21.4 11.1 1 
0.3 42.7 41.2 -- 38.4 38.4 38.6 38.2 37.5 37.8 37.2 23.0 12.1 1 
0.5 42.6 41.7 -- 40.8 42.0 42.1 41.8 40.9 40.1 40.1 22.4 14.6 1 
0.7 42.7 43.3 -- 39.4 39.3 39.1 38.8 38.5 38.5 38.0 22.6 17.3 1 
0.9 42.8 43.4 -- 39.4 39.2 38.8 38.6 38.2 38.2 37.0 25.8 20.0 1 
1.1 42.9 43.4 -- 39.3 39.1 38.5 38.3 38.1 38.0 36.7 27.0 20.6 1 
1.3 42.9 43.6 -- 41.1 40.8 40.1 39.9 39.8 39.4 38.7 27.0 21.6 1 
1.5 42.9 42.5 -- 41.1 41.2 41.2 41.1 40.3 40.0 39.4 25.9 20.3 1 
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Figure B3.1   Cost variation (function) with cut-off depth 
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