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Abstract: Assessments of risk to biodiversity often rely on spatial distributions of species and ecosystems.
Range-size metrics used extensively in these assessments, such as area of occupancy (AOO), are sensitive
to measurement scale, prompting proposals to measure them at finer scales or at different scales based
on the shape of the distribution or ecological characteristics of the biota. Despite its dominant role in red-
list assessments for decades, appropriate spatial scales of AOO for predicting risks of species’ extinction or
ecosystem collapse remain untested and contentious. There are no quantitative evaluations of the scale-
sensitivity of AOO as a predictor of risks, the relationship between optimal AOO scale and threat scale, or
the effect of grid uncertainty. We used stochastic simulation models to explore risks to ecosystems and species
with clustered, dispersed, and linear distribution patterns subject to regimes of threat events with different
frequency and spatial extent. Area of occupancy was an accurate predictor of risk (0.81<|r|<0.98) and
performed optimally when measured with grid cells 0.1-1.0 times the largest plausible area threatened by an
event. Contrary to previous assertions, estimates of AOO at these relatively coarse scales were better predictors
of risk than finer-scale estimates of AOO (e.g., when measurement cells are <1% of the area of the largest
threat). The optimal scale depended on the spatial scales of threats more than the shape or size of biotic
distributions. Although we found appreciable potential for grid-measurement errors, current IUCN guidelines
JSor estimating AOO neutralize geometric uncertainty and incorporate effective scaling procedures for assessing
risks posed by landscape-scale threats to species and ecosystems.

Keywords: IUCN Red List of Ecosystems, IUCN Red List of Threatened Species, landscape modeling, risk
assessment, spatial scale, species distribution, threatening process

Ampliacion de Rangos de Distribuciéon ante Amenazas para Predicciones Robustas de los Riesgos para la
Biodiversidad

Resumen: La evaluacion de los riesgos para la biodiversidad generalmente depende de la distribucion
espacial de las especies y los ecosistemas. Las medidas del rango de extension, como el drea de ocupacion
(ADO), que se utilizan ampliamente en estas valoraciones son sensibles a la escala de medicion, lo que genera
propuestas para medirlas a escalas mads finas o a diferentes escalas con base en la forma de distribucion o
en las caracteristicas ecologicas de la biota. A pesar de su papel dominante en las valoraciones de listas rojas
durante décadas, las escalas espaciales apropiadas del ADO para predecir el riesgo de extincion de las especies
o el colapso de un ecosistema sigue siendo polémico y sin ser probado. No bay evaluaciones cuantitativas de la
sensibilidad de escala del ADO como pronostico de los riesgos, la relacion entre la escala optima del ADO y la
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escala de la amenaza, o el efecto de incertidumbre de cuadricula. Utilizamos modelos de simulacion estocdstica
para explorar los riesgos para los ecosistemas y las especies con patrones de distribucion agrupada, dispersa
y linear sujetos a regimenes de eventos amenazantes con frecuencias y extensiones espaciales diferentes. El
drea de ocupacion fue un pronosticador preciso del riesgo (0.81<|r|<0.98) y actuo optimamente cuando
se midio con celdas de cuadricula de 0.1 -1.0 veces la mayor drea plausible amenazada por un evento.
Contrario a aseveraciones previas, los estimados del ADO a estas escalas relativamente burdas fueron mejores
pronosticadores del riesgo que los estimados del ADO a escalas mds finas (p. ej. cuando las celdas de medicion
son <1% del drea de la mayor amenaza). La escala optima dependio de las escalas espaciales de las amenazas
mds que de la forma o el tamavio de las distribuciones bioticas. Aunque encontramos un potencial apreciable
para los errores de medida de celda, las pautas actuales de la UICN para la estimacion del ADO neutralizan la
incertidumbre geométrica e incorporan procedimientos efectivos de modificacion de escala para la valoracion
de los riesgos presentados por las amenazas a escala de paisaje para las especies y los ecosistemas.

Palabras Clave: distribucion de especies, escala espacial, Lista Roja de la UICN de Ecosistemas, Lista Roja de la
UICN de Especies Amenazadas, modelado de paisajes, proceso amenazante, valoracion de riesgo
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Introduction

As life on Earth erodes unabated, a reliable understanding
of the risks to biodiversity becomes ever more impera-
tive to inform effective conservation action. The spatial
extent of biological distributions (range size) is widely
recognized as a key predictor of risks across multiple lev-
els of biological organization (Mace et al. 2008; Gaston &
Fuller 2009; Keith et al. 2013). Accordingly, the Interna-
tional Union for Conservation of Nature JUCN) Red List
criteria for assessing risks to both species and ecosystems
incorporate simple range-size metrics to identify what is
most at risk. The evidence used to assess many red-listed
species (57%) and ecosystems (38%) is based on range-
size data, either entirely or in combination with other
factors. Yet the reliance on general range-size metrics
has been repeatedly questioned on the basis that they
do not represent detailed, taxon-specific spatial patterns
in habitat (e.g., Cardoso et al. 2011; Gigante et al. 2016;
Ocampo-Pefuela et al. 2016).

Despite the dominant role of range-size metrics in red-
list assessments since the 1990s, the factors that influence
their performance as predictors of risk to biodiversity
have not been evaluated systematically. We empirically

assessed the performance of area of occupancy (AOO),
the most contentious of the standard range-size metrics
for predicting risks to biodiversity (Simaika & Samways
2010; Cardoso et al. 2011; Gigante et al. 2016). First,
we reviewed the theoretical basis for range-size metrics
in red-list criteria. We then used simulation models to
explore the sensitivity of estimates of AOO to geometric
uncertainty; the ability of AOO estimated at a given spatial
scale to predict risks to biodiversity across a range of
distribution types and threat regimes; how the predic-
tive performance of AOO varies with the spatial scale at
which it is estimated; and whether there is an optimal
scale for estimating AOO that maximizes its predictive
performance, taking into account the spatial properties
of both biological distributions and threat regimes. Our
analyses represent the first comprehensive assessment
of scale-sensitivity in AOO as a predictor of risks to
biodiversity.

Theoretical Basis of Range-Size Metrics in Red-List Criteria

Range size metrics are founded on empirical and the-
oretical generalizations about insurance effects or risk
spreading (e.g., Loreau et al. 2003; Gaston & Fuller 2009;
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Keith et al. 2013). Elements of biodiversity are more
likely to persist and continue functioning if their dis-
tribution is large or dispersed relative to the footprint
of the threats they face. Large or dispersed distributions
therefore buffer species, ecosystems, and other elements
of biodiversity from threats by spreading risks spatially
across multiple locations. Conversely, elements of biodi-
versity that are restricted within small distributions are
more prone to elimination by a small number of threat
events. These insurance effects and their relationships
are crucial to understanding the relative risks faced by
different elements of biodiversity (Gaston & Fuller 2009).

The spatial interaction between threat and biota will
determine the impact on biodiversity at organizational
levels from species (Polaina et al. 2016) to ecosystems
(Etter et al. 2011). Most threats to biodiversity are spa-
tially explicit and autocorrelated, which affects por-
tions of landscapes and seascapes in nonrandom spatial
patterns (Sanderson et al. 2002; Halpern et al. 2008;
Vorosmarty et al. 2010). For example, processes such
as land conversion, chemical spills, biological invasions,
disease outbreaks, fires, and other disturbances (Salafsky
et al. 2008) all have characteristic nonrandom patterns of
spatial expression that interact with the distribution of
biodiversity, which is, itself, spatially structured (Evans
et al. 2011).

Generic protocols for assessing risks to biodiversity,
such as the IUCN Red List criteria for species IUCN 2001;
Mace et al. 2008) and ecosystems (Keith et al. 2013; IUCN
2016), employ standard spatial metrics to identify spatial
symptoms associated with different levels of relative risk.
The protocols in their entirety comprise ensembles of
criteria (A-E) designed to allow qualitative evaluation of
different symptoms of risk (Mace et al. 2008; Keith et al.
2013). The main spatial component (criterion B in both
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100000 Table 1 footnote explanation of

standard distance units.

protocols) focuses on small range sizes of species and
ecosystems that may predispose them, respectively, to
high risks of extinction and collapse. Two spatial metrics
are employed in red-list protocols (Gaston 1994; I[UCN
Standards and Petitions Subcommittee 2016): extent of
occurrence (EOO) (i.e., the area within the outermost
geographic limits of the distribution), estimated using
a minimum convex polygon enclosing all occurrences,
and AOO (i.e., the area within the outermost limits over
which a species or ecosystem actually occurs), estimated
using a count of occupied grid cells of standard dimen-
sions. Species and ecosystems are evaluated, in part, by
comparing their estimated EOOs and AOOs with fixed
thresholds that delineate ordinal categories of risk (criti-
cally endangered, endangered, vulnerable, and least con-
cern). The inclusion of these simple spatial metrics and
standard methods for their use reflects the importance of
parsimony and generality as fundamental design princi-
ples in the development of IUCN Red List criteria (Keith
et al. 2015). The two metrics are complementary in mea-
suring different aspects of range size that may limit the
persistence of biota (Gaston & Fuller 2009).

Estimates of EOO and AOO vary depending on the
methods of estimation (Gaston & Fuller 2009). The sensi-
tivity of EOO to exclusions of outlying occurrences and
discontinuities is well known, whereas AOO is particu-
larly sensitive to the scale of measurement (Keith et al.
2000; Hartley & Kunin 2003; Nicholson et al. 2009). The
shape of scale-area relationships (Fig. 1) is a function of
occurrence saturation and spatial clustering. For species
or ecosystems that fully occupy a landscape at some
fine spatial resolution (e.g., distribution in a contiguous
matrix; Fig. 2b), the AOO is independent of scale at
any coarser range of scales within the landscape (.e.,
scale-area slope = 0). For those that occupy a single
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Figure 2. Simulated landscape showing 6 species or ecosystem distribution types (see Table 1): (a) single patch,
(b) semicontinuous matrix, (c) simple linear, (d) sinuous linear, (e) many points, and (f) sparse points. Circles
show example threat regimes comprising infrequent events (1-10 within the duration of the risk-assessment time
JSrame) of medium size (radius 50-100 units) that were used in simulations. The grid-cell dimensions are 100

standard distance units (see Methods and Table 1 footnote).

point at some fine scale (e.g., distribution in a single
small patch; Fig. 2a), the AOO increases predictably as
measurement scales become coarser (scale-area slope =
1). Real biological distributions lie between these theo-
retical limits, and scale-area slope ranges from O to 1,
depending on the degree of saturation, dispersion, and
clustering at different scales, the causes of which may be
abiotic (Porter & Kearney 2009) or biotic (Bulleri et al.
2016). Clustering may also be sensitive to sampling bias
(Sheth et al. 2011), especially when access to habitat is
limited.

If applied to risk assessments without standardization,
such a range of measurement scales creates serious in-
consistencies in red-list assessment outcomes. When es-
timated at fine grains, AOO will be small and more likely
to meet thresholds delimiting high threat categories than
if estimated at coarse grains. Conversely, coarse-grain es-
timates of AOO are likely to underestimate threat status
(Nicholson et al. 2009). A second, less widely appreciated
source of error involves uncertainty related to registration
of the origin of the geometric reference grid used to es-
timate AOO—grids with different origins could produce
different estimates of AOO depending on how they over-
lap with the same mapped biological distribution JUCN
Standards and Petitions Subcommittee 2016).

To minimize these methodological inconsistencies
among assessments, guidelines for red-list assessments

of both species and ecosystems specify standard grains
(grid cell sizes) for estimating AOO (IUCN Standards and
Petitions Subcommittee 2003; Bland et al. 2016). Alterna-
tive approaches to this problem involve adjustments to
thresholds or measurement grains depending on charac-
teristics of the species or ecosystems under assessment.
Concerns that the estimates of AOO resulting from stan-
dard grain sizes may not distinguish different types of dis-
tribution pattern (such as distributions along coastlines
and across fragmented habitats) have led some authors
to suggest that finer scales of measurement are needed
to represent the detail of different biological distribution
patterns according to species biology or habitat geome-
try: Simaika and Samways (2010), Cardoso et al. (2011),
and Gigante et al. (2016). Authors of each of these studies
claim that AOO measured at recommended scales under-
or overestimate risks, but none attempt to quantify risks
or explore how the spatial features of threats influence
risks through their interactions with those of biological
distributions. Such analyses are essential to resolve the
performance of AOO as a predictor of risk and to quantify
how this performance depends on scale. However, we
know of no studies that quantify the relationship between
AOO estimated at a range of scales and risks to biodiver-
sity. Similarly, we found no published studies that eval-
uated the effect of geometric uncertainty (variations in
grid origin) on estimates of AOO.

Conservation Biology
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Table 1. Six types of species or ecosystem distribution used in simulations with mean (minimum and maximum) values of area of occupancy (A00)
expressed as the number of the smallest simulated grid cells in the landscape (1 x 1 standard unit).

AOO mean and range®
Type* (standard units®)

Examples of ecosystem type and species’ habitat

1 Single patch 65926, (10230—174590)

2 Matrix (semicontinuous)

38336, (12190—86420)
56526, (22630—127740)
34010, (22880—59420)
2448, (1480—3680)

3 Simple linear

4 Sinuous linear

5 Many points (micropatches)
6 Sparse points (micropatches)

1383750, (1089680—1628550)

lake, wetland, oceanic island, mountain top

grassland plains, lowland forests, tundra, submarine abyssal
plains

straight coastlines and streamlines, continental shelves

cave systems, meandering streams, complex coastlines

rocky outcrops, island archipelagos, insular wetlands

as above but with few widely scattered outcrops, islands,
wetlands

“Five replicates per type were selected from a uniform distribution between maximum and minimum values.
bSpatial dimensions of the simulated landscape are 500 x 500 standard distance units. Standard units can be multiplied by a constant to
represent real distances and areas (e.g., if 1 standard unit = 20 m, the landscape is 10 x 10 km).

We used a spatially explicit simulation model (Murray
et al. 2017), applicable to both species and ecosystems,
to explore the performance of AOO as a predictor of
risks to biodiversity with varied distribution patterns sub-
ject to a range of threat regimes across varied spatial
scales. We generated a suite of exemplar biological dis-
tribution patterns and characterized their scale-area rela-
tionships to provide context for interpreting simulation
outcomes. We then exposed each distribution to threat
regimes that varied in the size and frequency of individual
threat events.

Methods

We simulated a landscape with 6 distribution patterns
designed to represent the range of variation in spatial oc-
cupancy that is commonly encountered in nature among
species and ecosystems (Table 1 & Fig. 2). This enlarged
upon 3 distribution types proposed by Gigante et al.
(2016). The spatial dimensions of the simulated land-
scape were set at 500 x 500 standard distance units.
These standard units can be multiplied by a constant
to represent real distances and areas (e.g., if 1 standard
unit = 20 m, the landscape is 10 x 10 km). For each dis-
tribution type, we simulated 5 replicates from a uniform
distribution within a specified range of distribution sizes
(see Supporting Information for the resulting 30 distri-
butions). Four of our distribution types were designed
to have similar AOOs at the finest scale of measurement
(i.e., based on cells with dimensions of 1 x 1 standard
unit), and replicates were thus selected from the same
range of sizes (Table 1).

To provide context for interpreting our results, we
characterized scale-area relationships by calculating
AOO based on the summed area of grid cells intersected
by each distribution; the dimensions of grid cells in-
creased in a roughly geometric series across 3 orders
of magnitude (1, 2.5, 5, 10, 25, 50, 100, 250, 500 units).
The shapes of scale-area relationships varied markedly
between distribution types (Fig. 1). The most saturated
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distribution (matrix) had a slope of approximately zero,
the theoretical minimum value, indicating that AOO re-
mained relatively independent of measurement scale.
Conversely, the least saturated distribution (sparse point)
had a slope approaching the theoretical maximum value
of 1 because cell sizes became large enough to cover en-
tire patches. The scale-area relationship for many points
was similar, but slope values were less extreme. The dis-
tribution with the most variation across scales (sparse
points) had a low slope (~0) at fine scales and a max-
imal slope (~1) at coarse scales. The 2 linear distribu-
tions (simple and sinuous) had similar scale-area relation-
ships overall but diverged slightly at intermediate scales
(Fig. 1). The 4 distributions that had similar AOOs at the
finest scale (single patch, simple and sinuous linear, and
many points) diverged at coarser scales, and their rank-
order varied with scale.

We used the methods of Akcakaya and Root (2007) to
explore uncertainty in estimates of AOO due to variation
in the grid origin (geometric uncertainty). We calculated
AOO for each distribution type based on grids with cell
dimensions of 100 x 100 standard units. We randomly
moved the location of the origin by a distance of up to
100 standard units in both dimensions and recalculated
AOO for each of 1,000 iterations.

Finally, we used simulated circular footprints of threat
events to estimate the risk of extinction or collapse for
each distribution type. We assumed a threat eliminated
the species or ecosystem everywhere the threat foot-
print intersected the distribution and that dispersal did
not lead to recolonization during the life of the sim-
ulation. We applied 9 different threat regimes to the
landscape based on factorial combinations of size and
frequency. Thus, threat regimes were simulated in 3 size
categories—small (events of radius 20-50 standard units),
medium (radius 50-100 standard units), large (radius
100-200 standard units)—and 3 frequency categories—
infrequent (1-10 events), occasional (11-50 events), and
frequent (51-100 events). In each case, we ran the
model for 2000 iterations, drawing the number of events
from a uniform distribution across the range specified
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for each threat regime (combination of threat size and
frequency). Thus, the total number of simulations was
540,000 (6 distribution types x 5 distribution sizes x 9
threat regimes x 2000 iterations) (Fig. 2 has an example
iteration). We calculated the probability (risk) of extinc-
tion or collapse for each combination of distribution type
and threat regime as the ratio of the number of itera-
tions in which distributions were completely covered by
threat events to the total number of iterations (2000).
To examine the efficacy of AOO as a predictor of risk
across different spatial scales, we calculated Spearman
rank correlation coefficients between AOO and risk, for
each combination of AOO measurement scale and threat
regime.

The simulated distribution types encompass a wide
range of realistic cases summarized in Table 1. For ex-
ample, a unique lake ecosystem and its endemic fish
species threatened by water extraction would be rep-
resented by the single-patch distribution exposed to a
large frequent threat regime. Mammalian predators in an
extensive savanna ecosystem threatened by poaching and
trophic disruption would be represented by the matrix
distribution exposed to small frequent threat regimes.
A fringing coral reef ecosystem and its endemic species
threatened by oil spills or polluted runoff would be rep-
resented by the simple-linear distribution exposed to a
medium infrequent threat regime. To illustrate relation-
ships between risk and AOO in a realistic landscape, we
examined scenarios in which 1 standard unit = 20 and
100 m. At these scales, the events we simulated corre-
sponded to a wide but realistic range of sizes, from 0.5 to
1260 km?, consistent with the spatial footprints of a wide
range of threat events reviewed by Murray et al. (2017).
The largest simulated threats approximated the extent

0 (left) and endangered (right)
ecosystems at 10-km grid cell size.

of documented examples such as meteorite strikes and
unregulated mines.

The modeled parameter space of distribution types and
threat regimes produced risk estimates spanning the full
range from O to 1, inclusive of the most and least threat-
ened real species and ecosystems.

Results

Geometric Uncertainty

There was substantial uncertainty in estimated AOO for
all 6 distribution types due to variation in the location
of the grid origin (Fig. 3). The difference between min-
imum and maximum estimates generally increased with
the mean AOO. Proportionately, estimates of AOO could
be up to 73% larger (single patch) or 63% smaller (sparse
points) than the mean value. Moreover, the statistical
distribution of AOO estimates differed depending on the
pattern and extent of a biological distribution. For exam-
ple, for species or ecosystems occupying sparse points
(Fig. 3), there was a long tail of overestimates above
the mean and minimum estimates. For those occupying
many points (Fig. 3), mean AOO tended to be evenly po-
sitioned between the minimum and maximum estimates,
although AOO estimates could be skewed either way for
other distribution types. To illustrate the consequences
of this uncertainty for outcomes of red-list assessments,
we interpreted the distribution types as ecosystem types
and defined 1 standard distance unit as 100 m. In that
scenario, the range of AOO estimates for 11 of the 30
simulated distributions spanned thresholds that delimited
different categories of risk.

Conservation Biology
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Figure 4. Relationship between risk of extinction or ecosystem collapse and area of occupancy estimated from
grid cells with dimensions of 100 standard distance units (see Methods or Table 1 footnote) for 6 distribution types
(Table 1 and Fig. 2) exposed to 9 different threat regimes based on factorial combinations of frequency
(infrequent, occasional, frequent) and size (small, medium, large). See Methods for details. Each panel bas a

different y-axis scale.

Scale Effects on Risk

Risks depended on AOO, the spatial pattern of distribu-
tion of biota, and the spatial properties of the threats
(Fig. 4). Risks were greater for distributions with smaller
AOQO; distributions with different shapes but similar AOO
often exhibited similar risk under the same threat regime.
Thus, distribution shape, independent of size, did not
have a major influence on risk.

Risks to biodiversity were greater when both the size
and frequency of threat events were larger but were more
sensitive to frequency than size (Fig. 4). Risks were high-
est under a regime of frequent large threats, followed by
regimes of occasional large threats and frequent medium
threats. The lowest risks occurred under a regime of in-
frequent small threats, followed by regimes of occasional
small threats and infrequent medium threats.
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The risk of extinction or collapse was inversely related
to AOO (Fig. 4); however, the strength of this relationship
varied depending on the size and frequency of threat
events and scale of AOO measurement (Fig. 5a). For 7
of the 9 threat regimes, AOO was a very strong pre-
dictor of risk (0.81<|7]<0.98). Predictive performance
was strongest for medium-sized threat events of occa-
sionally frequent occurrence (Fig. 5a). Even when risks
were almost uniformly low (small infrequent threats) or
uniformly high (large frequent threats), AOO was a rea-
sonable predictor of relative risks (0.44< || <0.57).

The performance of AOO as a predictor of relative risk
varied nonlinearly with its measurement scale. For all 9
threat regimes, AOO performed best when measured at
grid cell sizes in the range of 25 x 25 to 100 x 100 stan-
dard units (625-10,000 standard units?). Performance
declined rapidly when AOO was measured at coarser
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Figure 5. Performance of area of
occupancy (AOO) at different scales of
measurement as a predictor of risk of
species extinction or ecosystem collapse.
Predictive performance (y-axis) is
measured by Spearman rank correlation
coefficients between estimated AOO and
risk. Measurement scale is represented by
(a) area of grid cells in standard distance
units and (b) area of grid cells relative to
the spatial extent of the largest possible
threat event in each of the simulated threat
regimes (see Methods for details) (shading,
approximate range of measurement scales
for optimal predictive performance). The
proportional shaded zone in (b) is a
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scales than the optimal range and more gradually when
measured at finer scales (Fig. 5a). Within the optimal
range, grid cells of 10,000 standard units? performed best
for several threat regimes, including occasional large, in-
frequent large, infrequent medium, and infrequent small
(Fig. 5a2). The AOO was very marginally a better predictor
of risk when measured with cells of 2,500 standard units>
for regimes of frequent or occasional small threats than
when measured with cells of 10,000 standard units?.
For a scenario in which 1 standard unit = 100 m, the
extent of our landscape was 50 x 50 km (2500 km?), and
the area affected by individual threat events varied from
12.6 to 1260 km? across all simulations. In this scenario,
AOO best predicted relative risk across most of the 30

rounded approximation of the absolute
values in (a).

biological distributions when measured with 10 x 10
km grid cells. The AOO was a poor predictor of risk
when cells were smaller than 2.5 x 2.5 km and larger
than 10 x 10 km. When 1 standard unit = 20 m, the
extent of our landscape was 10 x 10 km, the area affected
by individual threat events varied from 0.5 to 50 km?,
and AOO performed best as a predictor of risk when
measured with 2 x 2 km grid cells and poorly when cells
were smaller than 0.5 x 0.5 km and larger than 2 x 2 km.

In general, AOO performed optimally as a predictor of
risk when measured with grid cells that are similar to, or
slightly smaller than (one-tenth), the area affected by the
largest plausible threat event, but its performance waned
when the scale was much finer or coarser (Fig. 5b). This
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rule of thumb was largely insensitive to the frequency
of threat events within the range of values explored (1-
100 events per 50 years for ecosystems and 1-100 events
per 10 years or three generation lengths, whichever was
longer, for species).

Discussion

Area of Occupancy, Risk Assessment, and Spatial Scaling

Our results confirm the value of AOO as an indicator
of risks to biodiversity and for the first time show how
the performance of AOO as a risk indicator varies with
the spatial scale at which it is estimated and, most im-
portantly, the spatial features of threat regimes. When
AOO is measured using cells of 2 x 2 to 10 x 10 km, it
produces good predictions of risk in the face of threat
events that varied from <1 to >1,000 km? in area. This
range encompasses realistic scenarios of land conversion,
chemical spills, biological invasions, disease outbreaks,
fires, and other disturbance regimes (Murray et al. 2017).
The size of threat footprints therefore appear to be critical
in determining the optimal measurement scale for AOO
to be used in risk assessments, and this underscores the
need to improve spatial data sets on threats to biodiversity
(Joppa et al. 2016).

Although fine-grain estimates of AOO offer more
precise estimates of the area occupied by a species or
ecosystem, they are not the optimal scale for estimating
risks of species extinction or ecosystem collapse as
measures of risk-spreading or insurance effects. Very
coarse-grain estimates of AOO also perform poorly as
predictors of risk. Area of occupancy performed best
for this purpose when estimates were based on grid cell
sizes that were commensurate with (i.e., approximately
0.1-1 times the size of) the spatial extent of events that
threatened the persistence of species and ecosystems.

The threshold values of AOO that delineated ordinal
categories of threat in [IUCN Red Lists were set with mea-
surement scales that implied consideration of landscape-
scale threats. Consequently, the respective application
guidelines recommend standard scales (2 x 2 km and 10
x 10 km grid cells for species and ecosystems, respec-
tively) for estimating AOO (IUCN Standards and Petitions
Subcommittee 2003; Bland et al. 2016). Without this spa-
tial scaling, estimates of AOO will be inconsistent with
the thresholds specified in criterion B and may result in
overestimation or underestimation of risk (i.e., the red-
list category). Spatial scaling in criterion B, like temporal
scaling based on generation length in criterion A of the
IUCN Red List of Threatened Species (Mace et al. 2008),
is therefore an essential standardization step for valid ap-
plication of the criteria to different taxa and data types.

The use of coarse-grain estimates of AOO such as those
recommended by IUCN for risk assessment may seem
counterintuitive because large grid cells may include a
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high proportion of unoccupied habitat or unsuitable area.
Much of the previous criticism directed at the application
of AOO in IUCN Red List criteria is founded on mistaken
beliefs that more precise estimates of area occupied are
better indicators of risk than coarse-grain estimates. This
has led to calls for use of finer-grained AOO estimates than
those recommended in IUCN guidelines and adjustments
to AOO thresholds based on taxonomic groups or habitat
geometry (Simaika & Samways 2010; Cardoso et al. 2011;
Gigante et al. 2016). Gaston and Fuller (2009) note “sig-
nificant confusion in the literature over the measurement
and interpretation of geographic ranges, and ... that
[spatial metrics used in red listing] should not be regarded
as more or less accurate ways of measuring range size.”
The evidence from our risk analyses should help resolve
confusion between the application of AOO on one hand
as a measure of occupied habitat in biogeographic analy-
sis and on the other hand as an indicator of risk in red-list
assessments. Relatively coarse-grain estimates commen-
surate with landscape-scale threats and IUCN Red List (cti-
terion B) thresholds are appropriate for risk assessment,
whereas a range of scales, including fine-grain scales may
be appropriate for bioegeographic analyses.

The use of different AOO measurement scales and
thresholds for red-list assessment of different species,
habitats and ecosystems, as suggested for example by
Gigante et al. (2016), is problematic for 2 reasons. First,
the performance of AOO as a risk indicator depends on
the spatial scale of threats more than on the pattern
of distribution. Proposals to adjust thresholds based on
taxonomic groups or habitat geometry therefore ignore
a key consideration (threats) in setting the relativity of
AOO measurement scale and thresholds. Furthermore,
the identity of threats (and hence their spatial properties)
vary between locations and through time. To ensure gen-
erality and sensitivity to pervasive threat types, the IUCN
Red List criteria embody a calibration of AOO measure-
ment scale and thresholds that reflects landscape- and
seascape-scale threats (Keith et al. 2015). Examples in-
clude land-use change driven by regional socioeconomic
factors, chemical spills, disease outbreaks, exploitation
of biota or habitats driven by regional markets, distur-
bances such as wildland fires, or tropical storms that may
affect areas of a few square kilometers up to thousands
of square kilometers in a small number of events (Murray
et al. 2017).

Second, use of different AOO thresholds for different
species or ecosystems runs counter to parsimony, one
of the fundamental design principles for development of
TIUCN Red List criteria for both species and ecosystems
(Mace et al. 2008; Keith et al. 2015). An approach based
on variable scales of measurement would introduce a
significant additional source of uncertainty into red-list
assessments because different assessors may reach dif-
ferent conclusions about which scales and thresholds
should be applied to particular cases. Regan et al. (2002)
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defined this type of uncertainty as “vagueness” because
the boundary between 2 or more categories (e.g., linear
vs. area distributions) can never be specified with ab-
solute precision. Inconsistencies stemming from vague-
ness could be reduced through explicit user guidelines,
but the current system that applies a single standard
measurement scale to fixed thresholds for all species or
ecosystems avoids them altogether.

Dealing with Uncertainty

Our results suggest that variation in AOO estimates due to
geometric uncertainty (uncertainty in the location of the
origin of a grid used to estimate AOO) can be apprecia-
ble and may differ depending on the pattern and extent
of a biological distribution. This can affect the outcome
of red-list assessments, typically by underestimating the
risk category. Different red-list outcomes could be as-
signed in one-third of our small sample of distributions,
depending on the location of the grid origin. Compared
with other sources of uncertainty (Regan et al. 2002),
however, geometric uncertainty is easily dealt with. The
IUCN guidelines for both species and ecosystems rec-
ommend that the estimate of AOO to be used in red-list
assessments should be the minimum value produced by
any placement of the grid. For simple distributions, a
near-optimal grid position can be determined by eye. For
more complex distributions Akcakaya and Root (2007)
produced software to calculate the correct AOO from
points. In Supporting Information, we provide a general-
ized R script that produces estimates from spatial distribu-
tion data. Sampling bias can also be an appreciable source
of scale sensitivity in range-size estimation. Sheth et al.
(2011), for example, found that dispersion and symme-
try of the interspecific distribution of proportional bias
in AOO estimates decreases as AOO increases. Although
an investigation of sampling bias was beyond the scope
of our study, our model could be adapted to explore
the effect of detectability or spatially structured access
constraints on the location of observed occurrences.

Learning About Real Landscapes From Simulations

The use of simulations enabled us to quantify risks of
species extinction and ecosystem collapse across con-
trasting scenarios (Burgman et al. 1993). It is unlikely
that any data set of real species or ecosystems could
support such a direct and powerful comparison of ob-
served and predicted risks. Nonetheless, it is prudent to
examine assumptions and question how well our simu-
lated landscapes represent real ones. For example, we did
not model dispersal. However, adding dispersal among
unaffected patches would not change any of the ex-
tinction risks unless we also modeled extinction from
causes other than the disturbance we are simulating,
which would have increased the complexity of the model
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beyond what is required to answer the stated questions.
Thus, the critical assumption we make is that dispersal, if
any, occurs in affected patches and will not lead to recol-
onization. In effect, disturbances we simulated were sim-
ilar to habitat loss such that restoration of the habitat to a
state in which recolonization is possible takes longer than
3-5 generations for species or 50 years for ecosystems,
which are the time frames of IUCN assessments. This is
a reasonable assumption for many of the anthropogenic
threats considered in red-list assessments. When recolo-
nization is significant (typically over longer time frames),
extinction risks are less strongly influenced by interac-
tions between the pattern of clustering in the distribution
and spatial autocorrelation in the threat (Vuilleumier et al.
2007).

Certain spatial attributes of the species distributions
and threats we simulated (square grid cells, circular
threats, uniform severity of threats within their footprint)
were abstractions of reality and may appear simplistic.
However, they were designed to uncover general rela-
tionships among range size, measurement scale, and ex-
tinction risk and to make robust recommendations about
applications of the red-list criteria. Additional model com-
plexity may enable more specific conclusions about par-
ticular types of distribution and threat but involves trade-
offs in the breadth of general scenarios that could be
explored and a clear overview of the major relationships.
Our simulated distribution types spanned a range of vari-
ation that should encompass most distributions of real
species and ecosystems (see Table 1 and examples in
Methods). Our simulated threats involve simplified spa-
tial footprints that could be expanded to consider other
threat types with different patterns of spatial expression.
Nonetheless, the key properties of extent and frequency
of threat events are likely to be important irrespective of
the shape of threat events. Furthermore, recent research
has shown that relationships between AOO and extinc-
tion risk are relatively robust to types of threat footprints
and to random versus clustered patterns of occurrence, al-
though edge effects produce different responses (Murray
etal. 2017). We therefore expect our general conclusions
about the scale-sensitivity of AOO as a predictor of risk
and the importance of threats in defining the optimal
scales for measuring AOO to be robust when more com-
plex distribution patterns and threats are analyzed.

Policy Implications

Our study provides empirical evidence that AOO is a
strong predictor of risks to biodiversity for biota with
a wide range of distribution types including patches,
matrices, and linear patterns. The spatial characteristics
of threats emerged as key to scaling estimates of AOO
to optimize its performance for predicting risks to biodi-
versity and underscores a policy imperative to improve
spatial data on threats (Joppa et al. 2016). These insights
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from simple modeling should help resolve long-standing
confusion about concepts, sources of uncertainty, and
standardization procedures in red-list methods. Consis-
tent application of these methods underpins the relia-
bility of meta-analyses that form a crucial basis for future
development and implementation of conservation policy.
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