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Abstract
1.	 Recent assessments of progress towards global conservation targets have re-
vealed a paucity of indicators suitable for assessing the changing state of ecosys-
tems. Moreover, land managers and planners are often unable to gain timely 
access to the maps they need to support their routine decision-making. This defi-
ciency is partly due to a lack of suitable data on ecosystem change, driven mostly 
by the considerable technical expertise needed to develop ecosystem maps from 
remote sensing data.

2.	 We have developed a free and open-access online remote sensing and environ-
mental modelling application, the Remote Ecosystem Monitoring and Assessment 
Pipeline (Remap; https://remap-app.org), that enables volunteers, managers and 
scientists with little or no experience in remote sensing to generate classifications 
(maps) of land cover and land use change over time.

3.	 Remap utilizes the geospatial data storage and analysis capacity of Google Earth 
Engine and requires only spatially resolved training data that define map classes of 
interest (e.g. ecosystem types). The training data, which can be uploaded or an-
notated interactively within Remap, are used in a random forest classification of up 
to 13 publicly available predictor datasets to assign all pixels in a focal region to 
map classes. Predictor datasets available in Remap represent topographic (e.g. 
slope, elevation), spectral (archival Landsat image composites) and climatic varia-
bles (precipitation, temperature) that are relevant to the distribution of ecosys-
tems and land cover classes.

4.	 The ability of Remap to develop and export high-quality classified maps in a very 
short (<10 min) time frame represents a considerable advance towards globally 
accessible and free application of remote sensing technology. By enabling access 
to data and simplifying remote sensing classifications, Remap can catalyse the 
monitoring of land use and change to support environmental conservation, includ-
ing developing inventories of biodiversity, identifying hotspots of ecosystem di-
versity, ecosystem-based spatial conservation planning, mapping ecosystem loss 
at local scales and supporting environmental education initiatives.
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1  | INTRODUC TION

Maps of land use and land cover change have been a central compo-
nent of environmental management and conservation planning for 
decades (Margules & Pressey, 2000). Land cover maps enable the 
depiction of the distribution of ecosystems and land cover types, 
assessments of biodiversity and identification of areas undergoing 
loss, fragmentation or degradation (Haddad et al., 2015; Potapov 
et al., 2017). As well as supporting spatial conservation planning, in-
cluding mapping threats to nature, they are often used as surrogates 
for species distributions. However, existing methods for mapping 
land cover extent and changes over time are often based on remote 
sensing and rely on expert implementation and comprehensive 
knowledge of space borne or airborne sensor data, analytical meth-
ods and data uncertainties. This “capacity gap” has been a severe 
constraint in obtaining information on the status of the world’s nat-
ural environment and has hindered environmental conservation pro-
grams across a range of spatial scales (Murray et al., 2018; Pereira, 
Brevik, & Trevisani, 2018).

Recent advances in geospatial data access, storage and analysis 
have vastly improved our ability to utilize satellite sensor data ar-
chives in studies of land cover and land cover change (e.g. Gorelick 
et al., 2017; Lewis et al., 2016). Moderate (<30 m) resolution remote 
sensing analyses are now possible at the global extent and have en-
abled the development of complex remote sensing analyses (Gong 
et al., 2013; Hansen et al., 2013; Pekel, Cottam, Gorelick, & Belward, 
2016). At the same time, increases in satellite revisit frequencies, 
reductions in the time between data acquisition and delivery to 
users, and increasing access to data archives have led to the devel-
opment of near real-time alert systems that can rapidly identify land 
cover loss and change in areas where no ground observations can 
be obtained. These systems mainly focus on automatic detection 
and analysis of land cover change for groups of related biomes (e.g. 
forests) and have vastly improved the ability of non-specialists, en-
vironmental managers and policy makers to access and use remote 
sensing data (Asner, Knapp, Balaji, & Páez-Acosta, 2009; Hansen 
et al., 2016; Lucas & Mitchell, 2017).

In this paper, we present a new online geospatial application that 
enables volunteers, managers, students and scientists with little or 
no experience in remote sensing to develop classified maps of land 
cover at the nominal spatial resolution of Landsat data (30 m). The 
Remote Ecosystem Monitoring and Assessment Pipeline (Remap) utilizes 
the geospatial data storage and analysis capacity of Google Earth 
Engine (https://earthengine.google.com), a cloud-based analysis 
platform, to allow users to interactively develop machine learning 
classifications of land cover within an area of interest anywhere in 
the world for which there is sufficient archival Landsat data. The 

Remap application additionally allows monitoring and analysis of land 
cover change by enabling users to map ecosystem distributions at 
two points in time (2003 and 2017), quantify area change in each 
map class, and report the standard distribution size metrics used by 
the International Union for the Conservation of Nature (IUCN) Red 
List of Ecosystems (Keith et al., 2013).

Remap was developed to complement a range of other appli-
cations that support the conservation of biodiversity, including 
GeoCAT (Bachman, Moat, Hill, de la Torre, & Scott, 2011), Global 
Forest Watch (www.globalforestwatch.org), the Map of Life  
(www.mol.org) and r packages such as “redlistr” (Lee & Murray, 
2017) and “rCat” (Moat & Bachman, 2017). Potential uses of Remap 
include mapping the distributions of ecosystem types (Murray et al., 
2018), developing land cover maps for protected areas (Lucas et al., 
2015), assessing the performance of protected areas over multi-
decadal time frames (Green et al., 2013; Murray & Fuller, 2015), and 
identifying areas where degradation or loss of ecosystems has oc-
curred (Bhagwat et al., 2017). Remap was also developed to support 
the global effort to assess the status of all ecosystem types on earth 
under the IUCN Red List of Ecosystems criteria (Keith et al., 2015; 
Rodríguez et al., 2015) and can contribute to monitoring progress 
towards addressing the 2020 Convention on Biological Diversity 
Aichi Targets (CBD 2014). We describe here the rationale for design, 
methodological considerations and analytical framework of Remap, 
and demonstrate its utility and limitations with three case studies 
(see Case Studies).

2  | R e m a p :  REMOTE ECOSYSTEM 
MONITORING & A SSESSMENT PIPELINE

Remap (https://remap-app.org) is a free and open-source web ap-
plication that classifies land cover according to user-supplied train-
ing data and a set of globally available remote sensing datasets as 
predictor variables (Figure 1). We followed six design principles to 
develop Remap:

1.	 Provide the ability to develop high quality maps from remote sensing 
data in a short time frame and without the need for high perfor-
mance computers. Maps can be developed in Remap within a 
few minutes and, because Remap completes classifications online 
by accessing Earth Engine, the only prerequisites are an internet 
connection and web browser.

2.	 Reduce the need to download, pre-process and process remote sens-
ing data for use in environmental mapping. The system offers access 
to 13 publicly available geospatial predictors that represent spec-
tral, topographic and climatic variables that may influence the 

K E Y W O R D S

ecosystem monitoring, Google Earth Engine, image classification, IUCN Red List of 
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distribution of different land cover types. Default predictors were 
selected to enable the development of high quality maps of the 
widest range of land cover types possible, and users are provided 
with options to explore different combinations of predictors in 
the production of their classified map.

3.	 Simplify implementation of machine learning classification ap-
proaches. Remap conducts its classifications using the random for-
est algorithm (Breiman, 2001) with a single execute button. This 
approach allows users to implement a widely used machine 
learning method known to achieve high classification accuracy 
from large numbers of potentially correlated predictor variables 
(Rodriguez-Galiano, Ghimire, Rogan, Chica-Olmo, & Rigol-
Sanchez, 2012).

4.	 Permit the production of maps for at least two time periods to en-
able the quantification of any detectable spatial change. Remap 
can be used to measure the impacts of, for example, deforesta-
tion (Hansen & Loveland, 2012), coastal reclamation (Murray, 
Clemens, Phinn, Possingham, & Fuller, 2014) and many other 
ecological changes that can be reliably observed with Landsat 
sensors.

5.	 Enable estimation of standard spatial metrics used for assessing the 
status of ecosystems. Metrics that are useful for environmental 
conservation, including area, change in area, extent of occur-
rence (EOO) and area of occupancy (AOO), can be calculated by 
users to assess ecosystem change and contribute to global ef-
forts to assess the status of ecosystems.

6.	 Implement free and open access software design principles. Source 
code for Remap is available and we will maintain open access to the 
application (see Data Accessibility).

2.1 | Data

The 13 publicly available gridded datasets that were selected for in-
clusion in Remap (Table 1) met the requirement of (1) full global extent, 
(2) free availability with sufficient open access to be included in the 

Earth Engine public data archive, and (3) sufficiently high spatial reso-
lution to permit identification of ecosystem distributions and common 
land cover classes. The final set of predictors includes spectral vari-
ables and derived indices from archival Landsat sensor data for two 
time periods, climate data (mean annual rainfall and mean annual tem-
perature; Hijmans, Cameron, Parra, Jones, & Jarvis, 2005) and topo-
graphic data (derived from Shuttle Radar Topography Mission data).

To obtain the required global coverage of cloud-free Landsat 
sensor data for two periods, referred to here as “past” (1999–
2003) and “present” (2014–2017), we developed two global 
Landsat image composites from Landsat Archive at-surface re-
flectance products (Table 1). We produced image stacks of all 
Landsat scenes for each period (N1999–2003 = 340,658 images; 
N2014–2017 = 375,674 images) and applied the Earth Engine imple-
mentation of the FMASK cloud masking algorithm (Gorelick et al., 
2017). From these, the median pixel of Landsat Enhanced Thematic 
Mapper (ETM+; bands 2–5) bands 2–5 (visible blue to shortwave 
infrared) and Operational Land Imager (OLI; bands 1–4) was used 
to generate the two 4-band global image composites. From these 
composites, Normalized Differenced Vegetation Index (Pettorelli, 
2013), Normalized Difference Water Index (McFeeters, 1996) 
and several other index layers were generated for use as spectral 
predictors (Table 1). The provision of spectral data for two time 
periods facilitates the estimation of change in land cover extent, 
which is important for monitoring the impact of threatening pro-
cesses such as deforestation (Hansen et al., 2013), fragmentation 
(Haddad et al., 2015), coastal reclamation (Murray et al., 2014), 
aquaculture (Thomas et al., 2017) and water extraction (Tao et al., 
2015). Future versions of Remap will allow users to choose any 
point in time between the launch of Landsat 5 and the present day 
to develop their classifications.

2.2 | User input

Users of Remap generally follow an eight-step procedure to map, as-
sess and monitor ecosystem types or land cover classes (Table 2). 

F IGURE  1 Simplified process chart of Remap: the remote ecosystem monitoring and assessment pipeline. Remap requires spatially 
resolved training data, and estimates class membership of all pixels in a region of interest using global remote sensing predictor layers and 
the random forests classification algorithm. To facilitate observations of land cover change, classifications in Remap can be implemented on 
Landsat data obtained in the year 2003 or data obtained in the year 2017
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Initially, users must decide whether to produce a map using the 
Landsat mosaics produced from the “past” (1999–2003) or “present” 
(2014–2017). Users are then required to define their region of inter-
est interactively (focus region) or to upload a vector file (.kml). This 
enables Remap to clip input data to a region of interest and limit the 
extent of the classification. The maximum size of the region of inter-
est is presently 100,000 km2 due to limitations applied to users of 
Earth Engine (Gorelick et al., 2017). Future versions of Remap may 
increase this size limit, although for larger regions or more com-
plex map classifications, we recommend users directly utilise Earth 
Engine (https://earthengine.google.com).

Spatially resolved training data that define map classes of interest 
are used to assign a class membership to all pixels within a focal re-
gion. Map classes can represent any land cover type, such as ecosys-
tems (e.g. mangrove), land uses (e.g. agriculture), areas of change (e.g. 
deforestation) or artificial surfaces (e.g. urban areas). When developing 
land cover maps, we recommend that users adopt land cover classifi-
cation taxonomies that are internationally recognized and conform to 
International Organisation for Standards (ISO) such as the Food and 
Agricultural Organisation’s (FAO) Land Cover Classification System 
(LCCS). Training data can be acquired interactively by adding training 
points via the user interface with reference to the predictor layers or 
base imagery. External data which identify the location of observa-
tion points and their class membership (.csv file) can also be uploaded. 
Training points may be sourced externally from field observations, ex-
ternal data archives, expert opinion, literature or existing maps. In gen-
eral, classifications with larger numbers of training points will achieve 
higher class accuracies. We recommend users supply a minimum of 50 

points per class to develop an initial map. Remap will provide a warning if 
users initiate the classifier with less than 20 training points in any class.

2.3 | Classification approach

Remap uses a random forest classifier to assign pixels to user-defined 
map classes (Breiman, 2001). With sufficient training data that are 
representative of the classes of interest, Remap implements the clas-
sification on the predictor data and returns a classified image where all 
pixels are assigned to a map class. In many cases, use of the default pre-
dictors (Table 2) has been shown to yield classification accuracies that 
are acceptable to many users. To allow users to assess classification 
accuracy, Remap reports the classification error rate (James, Witten, 
Hastie, & Tibshirani, 2013), which is the percentage of all of the training 
points that were incorrectly classified by the model that was trained 
with all of the training data. Users can tune their classifications to mini-
mise the error rate, either overall or for the class(es) of interest, by pro-
viding more training data for the classifier or by selecting a custom set 
of predictors (Table 2). For any map products produced with Remap, we 
suggest an accuracy assessment is conducted on independent valida-
tion data such as ground-truth data (Congalton & Green, 2008).

2.4 | Ecosystem monitoring and assessment

Once a classified map of acceptable accuracy has been produced, 
Remap can conduct the spatial analyses required to assess Criteria A 
(change in distribution size) and B (range size) of the IUCN Red List 
of Ecosystems (Bland, Keith, Miller, Murray, & Rodríguez, 2017; Keith 

TABLE  1 List of predictor layers available for use in land cover classifications using Remap

Long name Short name Remap default Earth Engine ID

Topographic

Shuttle radar topography mission (SRTM)  
elevation

Elevation ● USGS/SRTMGL1_003

SRTM slope Slope ● USGS/SRTMGL1_003

Climatic

Mean annual temperature Mean Annual Temperature WORLDCLIM/V1/BIO

Annual precipitation Annual Precipitation WORLDCLIM/V1/BIO

Spectral

Normalised difference vegetation index (NDVI) NDVI ● LANDSAT/LC8_SR

Normalised difference water index (NDWI) NDWI ● LANDSAT/LC8_SR

Water band index (WBI) WBI LANDSAT/LC8_SR

Blue band minus Red band (BR) BR LANDSAT/LC8_SR

Normalised difference blue green (BG) BG ● LANDSAT/LC8_SR

Blue band Blue ● LANDSAT/LC8_SR

Green band Green ● LANDSAT/LC8_SR

Red band Red ● LANDSAT/LC8_SR

Near infrared band (NIR) NIR ● LANDSAT/LC8_SR

Short name refers to the name given to each layer in the Remap user interface. Remap default indicates whether the predictor is used in a default clas-
sification. Raw data and metadata information for all predictors used in Remap are available for download from Google Earth Engine.

https://earthengine.google.com
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et al., 2013). To assess Criterion A, Remap computes the area of each 
class by summing the number of pixels in each class. Criterion A re-
quires assessors to estimate change in area over time, which can be 
achieved by repeating the workflow for the second time period. To 
account for potential changes in land cover between the two time pe-
riods, users should develop a new training set or modify the existing 
set to ensure accurate representation of land cover in the second time 
period. Once area estimates are completed for two time periods, as-
sessors can follow the IUCN Red List of Ecosystems guidelines to esti-
mate area change manually (Bland et al., 2017), using GIS software, or 
with the recently developed “redlistr” r package (Lee & Murray, 2017). 
To assess Criterion B of the IUCN Red List of Ecosystems, Remap ap-
plies a minimum convex polygon to a class of interest and reports its 
area, representing the Extent of Occurrence (EOO) of the map class. 
Finally, the Area of Occupancy (AOO) of a map class is calculated by 
applying a 10 × 10 km grid and counting the number of grid cells oc-
cupied by the map class (Bland et al., 2017; Murray et al., 2017).

To support further analyses of the classified map data, users can 
export each classified map as a georeferenced raster file (.tif) for use in 
GIS software. Furthermore, training data can be exported as a.csv file 
with fields “latitude”, “longitude” and “class” suitable for import into a 
GPS unit or other analysis software. Training data can also be saved 
as a JSON file, which is analogous to a ‘save workspace’ function, al-
lowing users to return to their analysis at a later time by uploading 
the JSON file (see Supporting Information Appendix 1 for examples).

3  | C A SE STUDIES

Classifications of remote sensing data enable the measurement and 
monitoring of an wide range of environmentally relevant variables. To 

demonstrate the practical uses of Remap, we developed case studies 
for (1) mapping a single ecosystem type (e.g. Murray, Phinn, Clemens, 
Roelfsema, & Fuller, 2012; Nascimento, Souza-Filho, Proisy, Lucas, & 
Rosenqvist, 2013), (2) generating a comprehensive land cover map 
for a region of interest (e.g. Connette, Oswald, Songer, & Leimgruber, 
2016; Malatesta et al., 2013), and (3) quantifying land cover change 
between two periods (e.g. Olofsson, Holden, Bullock, & Woodcock, 
2016; Sexton, Urban, Donohue, & Song, 2013; Thomas et al., 2017). 
All training data (.csv), Remap workspace files (.JSON) and settings 
(Supporting Information Table S1) used to reproduce these case stud-
ies are available in supplementary material (Supporting Information 
Appendix 1) and can be used in association with tutorials available 
on the Remap website (https://remap-app.org/tutorials).

1.	 Mapping single land cover types or ecosystem types. Mapping the 
distribution and change in mangrove ecosystems has been an 
important focus of ecosystem monitoring programs for decades 
due to their provision of ecosystem services (Mumby et al., 
2004; Spalding et al., 2014) and susceptibility to a wide range 
of threats (Asbridge, Lucas, Ticehurst, & Bunting, 2016; 
Cavanaugh et al., 2014; Duke et al., 2017). In this case study, 
we developed a simple classification of mangroves and non- 
mangrove from a set of 150 training points for a small focal 
region (8301 ha) in the Gulf of Carpentaria, Australia (Figure 2). 
Comparison against base imagery suggests the development of 
an acceptable map of mangroves (Figure 2), confirmed by a 
classification error rate of <1% (Supporting Information Table S1)

2.	 Comprehensive classification of land cover for a focal region. 
Production of land cover maps, which represent all land types in 
a region, is a common objective of remote sensing programs 
(Lucas & Mitchell, 2017). We used Remap to develop a land cover 

TABLE  2 Descriptions of major analysis steps required to develop classified maps in Remap. Analysis step refers to button in the sidebar of 
the Remap user interface

Analysis steps Purpose Options

1 Past-present Select the period for which the classification is 
conducted

Run the classification on either the 2017 (present) 
or 2003 (past) Landsat image mosaic

2 Focus region Define the boundary of the analysis (region of interest) Move vertices or supply by.kml file

3 Build training set Define the map classes to be used in the classification 
and provide georeferenced locations for each class

Uploading a training set (.csv,.kml or.JSON) or train 
interactively using Landsat image mosaics and 
predictor base layers

4 Select predictors Select predictor layers to be used in the classification Custom selection or use default settings (Table 1)

5 Classify Run the random forest classification and return the 
classified map

Remap will provide a warning if the classifier is 
initiated with <20 points in any class

6 Results Obtain map accuracy statistics and area of each map 
class in hectares

7 Assessment Obtain area, AOO and EOO estimates for a single map 
class

8 Export data Export training data or the classified image Export training data as a.csv (for mapping or using 
in a GPS), a.JSON file (for saving the current 
workspace). To download the georeferenced.tif 
file for further analysis, use direct download or 
download to Google drive

https://remap-app.org/tutorials
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map with classes semi-deciduous vine forest, eucalypt woodland 
and human settlement for a focal region in the dry tropics of 
Northern Australia (Figure 3; Supporting Information Figure S1). 
A visual comparison with ecosystem maps produced by the 
state-wide regional ecosystem mapping program, which devel-
ops regulatory land cover maps through manual interpretation 
of aerial photography and Landsat TM and SPOT satellite im-
agery, indicated good agreement between the two mapping 
methods (Figure 3; Neldner, Wilson, Dillewaard, Ryan, & Butler, 
2017; Queensland Department of Natural Resources and Mines 
2017). We provide a second land cover example that covers a 
larger area with more land-cover classes in the Supplementary 

Material (Munaung Island, Myanmar, Supporting Information 
Figure S2).

3.	 Quantifying land cover change. To demonstrate capacity to de-
tect changes in land and water, Remap was applied to the two 
Landsat composite images available (2003) and OLS (2017) 
data acquired over Dubai, United Arab Emirates. The resulting 
maps provide quantitative information on the extent of marine 
ecosystem loss as a result of large-scale coastal reclamation 
projects (Figure 4). Remap’s use for change mapping is also dem-
onstrated with a deforestation example at Roraima, Brazil 
(Figure 1, Supporting Information Figure S3, Supporting 
Information Appendix A).

F IGURE  2 Workflow demonstrating 
the use of Remap to map of a single 
ecosystem type, mangroves of the Gulf of 
Carpentaria, Australia. The panels show 
(a) the Landsat 8 OLI 3-year composite 
base layer from which all Landsat indices 
available in Remap are calculated, (b) the 
Normalized Differenced Water Index 
(NDWI), (c) the Normalized Differenced 
Vegetation Index (NDVI) and (d) the 
final classified map of the distribution of 
mangroves in the region of interest (red 
box)

F IGURE  3 Demonstration of the use of Remap to classify ecosystem types, Mount Stuart, Queensland, Australia. (a) High resolution aerial 
photograph, (b) the 2017 Landsat OLI image composite, (c) training data used to produce the final 3-class map, and (d) the final classified map 
of the distribution of ecosystems in the focal region. Aerial photography in panel (a) copyright 2017 Nearmap Australia Pty Ltd
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4  | DISCUSSION

Remap is a fast, user-friendly approach to developing land cover 
maps from freely available remote sensing data and its outcomes 
can be accepted if the accuracies of classifications meet the ex-
pectations of the users. Our case studies indicate that such ac-
curacies can be achieved in Remap but these depend upon the 
accuracy and amount of training data, and on the a priori deci-
sions made for the mapping process (e.g. the number and diver-
sity of classes to be mapped). By utilizing the geospatial storage 
and analysis capacity of Earth Engine, Remap allows users with no 
prior knowledge in remote sensing and analysis to develop maps 
directly within a web-browser. This enables mapping to be under-
taken in regions by locally responsible individuals and organisa-
tions where computing infrastructure is scarce or the quality of 
Internet connections do not allow the download of remote sens-
ing data for local analyses. Indeed, Remap is particularly useful for 
participatory mapping projects, expert elicitation and engagement 
with a wide-range of environmental stakeholders. As with all soft-
ware, the responsible use of Remap is a matter for each user; we 
strongly recommend reporting independent assessments of map 
accuracy for all products developed in Remap prior to their use for 
decision-making, navigation, environmental reporting or any other 
purpose (Congalton & Green, 2008).

We acknowledge that Remap has several limitations. Most notably, 
the ability of Remap to produce accurate maps is limited by the quality 
of the training data, the accuracy of the predictors and the suitabil-
ity of the predictor set for distinguishing land cover classes. Further 

development of the Remap application will therefore include a greater 
number of relevant predictor data layers, such as climate maxima and 
minima. Future work will also focus on (1) extending the temporal 
length and density of the global image composites to allow for moni-
toring of land use and cover change at higher temporal resolution and 
for users to select of specific time periods for their maps, (2) utilizing 
additional sources of available satellite imagery (e.g. Sentinel 2), (3) 
enhancing analytical capabilities by introducing new analysis tools 
(e.g. image differencing), and (4) adapting the application for use in 
collecting field data and producing maps in mobile devices.

In conclusion, we have developed Remap to make remote sens-
ing accessible to a very wide audience with the aim of broadening 
the use of classified maps in ecosystem monitoring and conserva-
tion programs, and to help support the conservation of natural en-
vironments. We expect Remap to extend the ability of volunteers, 
students, scientists and managers to assess the extent of land cover 
changes and implement conservation actions to reduce the loss of 
natural ecosystems.
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