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Abstract
Aim: Studies	 of	 climate	 change	 impacts	 on	 animal	 distributions	 typically	 consider	
only	the	direct	impacts	of	a	changing	climate,	under	the	assumption	that	future	areas	
of	suitable	climate	will	otherwise	remain	ecologically	suitable.	Here	we	assess	both	
the	direct	 and	 indirect	 impacts	of	 climate	 change	on	 rain	 forest	 ant	 communities,	
where	substantial	shifts	are	projected	to	occur	for	both	climate	and	habitat	types.
Location: Australian	Wet	Tropics	(AWT).
Methods: Generalized	Dissimilarity	Modelling	was	 used	 to	model	 turnover	 in	 the	
composition	of	~300	rain	forest	ant	species	sampled	at	150	sites	across	six	moun‐
tains	spanning	five	degrees	of	latitude.	Ants	were	sampled	within	the	leaf	litter,	on	
the	litter	surface	and	on	tree	trunks.	By	modelling	the	rate	of	turnover	among	sites,	
we	determined	the	current	effective	area	of	similar	ecological	environments	(SEE)	for	
ant	communities	and	consequently	the	expected	change	in	species	persistence	when	
habitat	shifts	under	two	climate	projections	for	the	years	2035,	2055	and	2085.	We	
compared	results	when	SEE	considered	only	the	direct	effects	of	a	changing	climate,	
with	those	when	changes	in	habitat	were	also	included.
Results: The	rain	forest	ant	communities	modelled	will	lose	a	substantial	proportion	
of	SEE	under	both	climate	change	scenarios.	Under	combined	direct	(changes	in	cli‐
mate)	and	indirect	(changes	in	rain	forest	habitat)	impacts	of	climate	change,	>90%	of	
the	communities	in	the	region	were	predicted	to	lose	up	to	half	their	similar	habitats	
compared	with	50%–60%	when	only	considering	direct	climate	change	impacts.	The	
highest	risk	of	reduction	in	area	of	SEE	is	projected	in	drier	inland	areas	of	the	AWT,	
where	profound	compositional	turnover	is	linked	to	dramatic	changes	in	rain	forest	
vegetation,	including	extensive	conversion	into	savanna.
Main conclusions: Our	findings	emphasize	the	importance	of	incorporating	habitat	
suitability	into	future	projections	of	species	turnover	under	a	changing	climate,	par‐
ticularly	for	habitats	where	vegetation	structure	 is	projected	to	undergo	profound	
change.
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1  | INTRODUC TION

Anthropogenic	 climate	 change	 and	 associated	 extreme	 weather	
events	 are	 predicted	 to	 significantly	 alter	 species	 distributions	 and	
subsequently	 the	 composition	 of	 biological	 communities	 (Arribas,	
Abellán,	 Velasco,	 Millán,	 &	 Sánchez‐Fernández,	 2017;	 Huey	 et	 al.,	
2012;	Jenkins	et	al.,	2011;	Thomas,	2010).	Rising	temperatures	might	
cause	metabolic,	 behavioural	 or	 evolutionary	 change	 in	 species,	 or	
drive	dispersal	to	climatically	suitable	areas	(Parmesan,	2006;	Reuman,	
Holt,	&	Yvon‐Durocher,	2014;	Urban,	Tewksbury,	&	Sheldon,	2012).	
Community‐level	responses	are	more	complicated,	as	changing	tem‐
perature	is	likely	to	have	differential	effects	among	species	(Elmendorf	
et	al.,	2012).	Species	 interactions	also	may	change	disrupting	mutu‐
alisms,	 trophic	 interactions,	 competitive	 hierarchies	 and	 ultimately	
species	occurrence	 (Blois,	Zarnetske,	Fitzpatrick,	&	Finnegan,	2013;	
Sentis,	Hemptinne,	&	Brodeur,	2014;	Sorte	&	White,	2013).	Therefore,	
forecasting	changes	in	the	distribution	and	composition	of	biological	
communities	under	future	climates	can	be	extremely	challenging.

The	potential	 decoupling	of	 species	 associations	due	 to	differ‐
ential	climate	change	sensitivity	can	have	particularly	dramatic	 im‐
plications	 if	 vegetation	 and	 its	 associated	 fauna	 are	 differentially	
sensitive	 (Caddy‐Retalic	 et	 al.,	 2018;	 Carvalho,	 Brito,	 Crespo,	 &	
Possingham,	2010;	Garcia,	Cabeza,	Rahbek,	&	Araújo,	2014).	Studies	
of	climate	change	impacts	on	animal	distributions	typically	consider	
only	 the	 direct	 impacts	 of	 a	 changing	 climate,	 under	 the	 assump‐
tion	that	future	areas	of	suitable	climate	will	otherwise	remain	eco‐
logically	 suitable.	However,	 this	would	 not	 be	 the	 case	 if	 changes	
in	 climate	 indirectly	 reduce	habitat	 suitability.	This	might	occur	 as	
a	direct	response	of	vegetation	to	a	changing	climate,	or	indirectly	
through	changes	in,	for	example,	fire	regimes	(Davis,	Higuera,	&	Sala,	
2018;	Regos,	Clavero,	&	D'amen,	Guisan	&	Brotons,	2018).	Changes	
in	 vegetation	 structure	 can	 have	 a	 greater	 effect	 on	microclimate	
than	changes	in	macroclimate	(Williams,	Bolitho,	&	Fox,	2003).

Vegetation	change	would	be	particularly	dramatic	for	fauna	if	it	
rendered	the	habitat	largely	unsuitable.	This	is	especially	relevant	in	
high‐rainfall	regions	of	the	tropics	where	savanna	and	forest	co‐occur	
and	readily	transition	from	one	to	the	other	with	changes	in	climate	
and	fire	regimes	(Dantas,	Hirota,	Oliveira,	&	Pausas,	2016;	Langan,	
Higgins,	&	Scheiter,	2017;	Murphy	&	Bowman,	2012).	Savanna	and	
forest	 support	 highly	 disjunct	 faunas	 (Murphy,	 Andersen,	 &	 Parr,	
2016),	 such	 that	 transition	 from	one	vegetation	 type	 to	 the	other	
results	in	profound	faunal	change.	For	example,	in	northern	Australia	
the	ant	faunas	of	co‐occurring	rain	forest	and	savanna	are	remark‐
ably	distinct	 from	each	other	 (Andersen,	 Ingen,	&	Campos,	2008),	
with	the	rain	forest	fauna	dominated	by	shade‐tolerant,	forest	spe‐
cialists,	in	contrast	to	the	arid‐adapted	taxa	that	dominate	savannas	
(Andersen	et	al.,	2008;	Reichel	&	Andersen,	1996).	If	forest	switches	

to	savanna	under	future	climates,	then	the	habitat	will	be	unsuitable	
for	forest	species	even	if	the	macroclimate	is	suitable	for	them.	The	
critical	 role	of	 the	 future	distribution	of	habitats	upon	which	 spe‐
cies	depend	has	been	largely	overlooked	in	studies	regarding	climate	
change	impacts	on	biodiversity.

Changes	 in	 community	 composition	 can	 be	 modelled	 using	
stacked	species	distribution	models	(SDMs),	but	these	have	a	poor	
record	of	predicting	change	even	when	environmental	correlates	of	
species	occurrences	are	well	known	(D'Amen,	Pradervand,	&	Guisan,	
2015;	Pellissier	et	al.,	2013).	One	reason	for	this	 is	that	SDMs	can	
predict	if	a	species	might	occur	in	a	general	area	that	is	climatically	
suitable,	but	they	are	limited	when	predicting	if	they	will	occur	in	any	
particular	site,	which	may	only	have	a	fraction	of	the	regional	species	
pool,	due	to	biotic	interactions	between	species.	Additionally,	com‐
monly	used	species‐level	modelling	approaches	(Elith	&	Leathwick,	
2009)	 can	 vary	 in	 accuracy.	 For	 example,	 a	 developed	 modelling	
algorithm	 based	 on	 rank‐ordered	 stacking	 of	 SDMs,	 compared	 to	
a	binary	stacking,	can	 reduce	variation	of	error	 in	predicting	com‐
munity	composition	turnover	along	environmental	gradients,	but	it	
still	requires	caution	when	predicting	the	species	diversity	(Del	Toro,	
Ribbons,	Hayward,	&	Andersen,	2018).

An	 alternative	 approach	 to	 predicting	 responses	 of	 biolog‐
ical	 communities	 to	 climate	 change	 is	 Generalized	 Dissimilarity	
Modelling	 (GDM),	 a	 nonlinear	 extension	 of	matrix	 regression	 that	
models	pairwise	biological	dissimilarity	between	sites	as	a	nonlinear	
function	of	pairwise	site	difference	in	environmental	and	geographic	
variables	(Brown,	Cameron,	Yoder,	&	Vences,	2014;	Ferrier,	Manion,	
Elith,	&	Richardson,	2007).	Critically,	by	working	directly	with	spe‐
cies	 assemblages,	 GDM	 can	 account	 for	 biotic	 interactions	which	
are	not	 typically	 included	 in	SDMs.	GDM	extrapolates	patterns	of	
compositional	turnover	beyond	sampled	communities	and	is	partic‐
ularly	well	suited	to	communities	with	high	levels	of	beta	diversity.	
This	 analytical	 method	 can	 accommodate	 almost	 any	 measure	 of	
geographic	or	ecological	separation	as	a	predictor,	including	organ‐
ism‐specific	representations	of	barriers	to	dispersal,	or	cost	of	move‐
ment/gene	flow	through	unfavourable	habitat	(Fitzpatrick,	Keller,	&	
Vellend,	 2015).	GDM	can	 also	 rapidly	 analyse	 datasets	 containing	
very	large	numbers	of	species,	regardless	of	the	number	of	records	
per	 species.	 Furthermore,	 by	 studying	 the	 emergent	 rates	 of	 spa‐
tial	 turnover	along	environmental	gradients	under	current	climatic	
conditions,	GDM	can	be	used	to	predict	the	temporal	rate	and	spa‐
tial	 distribution	of	 turnover	under	 future	 climates	 (Blois,	Williams,	
Fitzpatrick,	Jackson,	&	Ferrier,	2013).	Compared	with	SDMs,	GDM	
can	 predict	 higher	 turnover	 and	 across	 a	 larger	 contiguous	 area	
(Fitzpatrick	et	al.,	2011),	where	problems	such	as	data	limitations	or	
indirect	predictors	such	as	habitat	changes	(Guisan	&	Thuiller,	2005)	
are	likely	to	hinder	the	application	of	SDMs.

K E Y W O R D S

climate	change,	composition	turnover,	ecological	environments,	GDMs,	habitat	condition,	rain	
forest
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Generalized	 Dissimilarity	 Model	 commonly	 accommodates	
variation	 in	 rates	 of	 species	 turnover	 along	 environmental	 gradi‐
ents	 (Fitzpatrick	et	 al.,	 2013;	Maestri,	 Shenbrot,	&	Krasnov,	2017;	
Pennifold	et	al.,	2017),	but,	unless	programmed	to	do	so,	does	not	
account	for	changes	in	habitat.	However,	GDM	analyses	can	produce	
a	variety	of	metrics	to	reveal	and	describe	the	relative	biotic	unique‐
ness	 of	 environments,	 and	 the	 proportion	 of	 those	 environments	
falling	within	different	habitat	classes	 (Jiménez‐Alfaro	et	al.,	2018;	
Johnston,	Elmore,	Mokany,	Lisk,	&	Fitzpatrick,	2017).	Therefore,	 it	
is	important	to	simultaneously	consider	changes	in	both	habitat	and	
climate	within	a	GDM	framework,	which	works	in	multidimensional	
environmental	space,	projected	both	temporally	and	spatially.

Invertebrates	are	often	used	to	monitor	ecological	change	in	ter‐
restrial	ecosystems	because	of	their	critical	roles	in	ecosystem	func‐
tion	and	dominant	contribution	to	faunal	diversity	(McGeoch,	1998).	
Ants	are	particularly	commonly	used	in	environmental	assessments,	

due	 to	 their	 ecological	 dominance	 and	 sensitivity	 to	 environmen‐
tal	 change	 (Andersen,	 Fisher,	 Hoffmann,	 Read,	 &	 Richards,	 2004;	
Andersen	&	Majer,	2004;	Underwood	&	Fisher,	2006).	Patterns	of	
diversity	 and	 composition	 in	 ant	 communities	 are	 strongly	 related	
to	 climatic	 variables	 such	 as	 temperature,	 precipitation	 and	 hu‐
midity	(Diamond	et	al.,	2012;	Dunn	et	al.,	2009;	Kaspari,	Alonso,	&	
O'Donnellkwd,	2000;	Sanders,	Moss,	&	Wagner,	2003).	In	this	study,	
we	apply	GDM	to	a	comprehensive	dataset	for	the	diverse	rain	forest	
ant	communities	of	the	Australian	Wet	Tropics	(AWT)	to	investigate	
potential	impacts	of	future	climate	change	based	on	contemporary	
spatial	patterns	of	compositional	turnover.

Our	specific	aims	are	to:	(a)	identify	environmental	variables	that	are	
most	correlated	with	compositional	dissimilarity	in	rain	forest	ant	com‐
munities	throughout	the	AWT,	using	GDM	combined	with	a	theoretic	
approach;	(b)	use	the	GDM	to	forecast	changes	in	the	area	of	climatically	
suitable	habitat	for	different	ant	community	types;	and	(c)	predictions	to	

F I G U R E  1  The	Australian	Wet	Tropics	
bioregion	with	site	locations.	Dark	shade	
represents	the	extent	of	rain	forest	within	
the	region
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account	for	both	the	direct	effects	of	climate	on	ant	community	changes	
and	the	indirect	effects	of	habitat	loss	on	the	extent	of	suitable	habitat	
for	the	community.	Our	study	will	allow	the	identification	of	areas	in	the	
AWT	that	are	likely	to	be	most	sensitive	to	climate	change	impacts	and	
are	therefore	priorities	for	conservation	management.

2  | METHODS

2.1 | Study sites and compositional data

Mean	 annual	 rainfall	 in	 the	 AWT	 (Figure	 1)	 varies	 from	 about	
1,500‐9,000	mm,	with	75%–90%	occurring	between	November	and	
April	(McDonald	&	Lane,	2000).	Within	the	region,	mean	tempera‐
ture	declines	at	a	rate	of	about	1°C	for	every	200	m	increase	in	el‐
evation	(Shoo,	Williams,	&	Hero,	2005a).	Our	study	was	confined	to	
rain	forest	and	covered	a	range	of	structural	rain	forest	types	from	
complex	mesophyll	vine	forest	in	the	fertile	lowlands	to	upland	sim‐
ple	notophyll	vine	forest	(Adam,	1992;	Hilbert,	2008).

Despite	their	relatively	small	area,	the	AWT	rain	forests	are	rec‐
ognized	as	a	major	biodiversity	hotspot	of	global	significance	due	to	
their	extraordinary	biological	richness	and	biogeographical	unique‐
ness	 (Zachos	 &	 Habel,	 2011).	 However,	 this	 biodiversity	 is	 highly	
threatened	 by	 anthropogenic	 climate	 change	 (Hilbert,	 Ostendorf,	
&	 Hopkins,	 2001;	 Ostendorf,	 Hilbert,	 &	 Hopkins,	 2001;	 Suppiah,	
Macadam,	&	Whetton,	2007;	Thomas,	Cameron,	Green,	&	Bakkenes,	
2004).	The	rain	forests	are	predicted	to	decrease	in	extent	by	60%	
with	a	temperature	rise	of	1°C	combined	with	a	10%	decrease	in	pre‐
cipitation	(Hilbert	et	al.,	2001).	Future	projections	show	significant	
decreases	 in	core	distributional	area	of	all	65	endemic	vertebrates	
(Williams	et	al.,	2003)	and	 in	population	size	of	74%	of	 rain	 forest	
birds	(Shoo,	Williams,	&	Hero,	2005b).	The	insects	of	the	AWT	are	
also	highly	threatened	by	climate	change,	with	predictions	of	the	ex‐
tinction	of	 a	 large	proportion	 (40%)	of	 schizophoran	 flies	 (Wilson,	
2010),	and	88%	reduction	in	population	size	of	flightless	ground	bee‐
tles	(Staunton,	Robson,	Burwell,	Reside,	&	Williams,	2014).

We	used	a	recent	dataset	of	5,204	occurrence	records	of	296	ant	
species	comprehensively	sampled	using	bait	traps	on	the	ground	and	
tree	trunks,	litter	extractions	and	pitfall	trapping	from	150	sites	that	
cover	the	full	latitudinal	and	elevational	range	of	rain	forest	in	the	AWT	
(Nowrouzi	et	al.,	2016).	A	combination	of	techniques	was	used	to	target	
the	distinct	faunas	associated	with	litter	(cryptic	species),	the	litter	sur‐
face	(epigaeic	species)	and	trees	 (arboreal	species)	 (Bruhl,	Gunsalam,	
&	Linsenmair,	1998),	with	high	sampling	 intensity	 to	provide	 reliable	
estimates	of	species	composition	(Ashcroft	et	al.,	2010).	Rarefaction	
curves	 indicated	 that	most	 species	occurring	 in	 the	 region	were	 re‐
corded	 (Nowrouzi	et	al.,	2016).	The	sites	were	distributed	across	six	
mountains,	ranging	from	the	Finnegan	uplands	in	the	north,	to	Mt	Spec	
in	the	south,	over	a	distance	of	approximately	500	km.	All	sites	were	
located	on	granite‐derived	soils	except	for	those	in	the	Atherton	sub‐
region	which	contains	more‐fertile	basaltic	soils	 (McJannet,	Wallace,	
Fitch,	Disher,	&	Reddell,	2008;	Parsons	&	Congdon,	2008).	The	eleva‐
tional	range	of	study	sites	varied	among	subregions,	due	to	differences	
in	 the	 availability	 and	 accessibility	 of	 rain	 forest	 habitats.	 Sampling	

transects	were	separated	by	200	m	elevation	from	the	 lowland	rain	
forests	 to	 the	 upland	 following	 the	 elevation	 contour,	with	 six	 sites	
separated	by	200	m	along	each	transect.	Only	three	sites	were	located	
at	each	of	the	350	m	elevation	transect	at	Mt	Spec	and	100	m	eleva‐
tion	transect	at	Atherton	due	to	limited	rain	forest	cover.	All	ants	were	
sorted	to	species	and	where	possible	named	through	comparison	with	
identified	specimens	held	in	the	CSIRO	Tropical	Ecosystems	Research	
Centre	 in	Darwin.	Unidentified	species	were	assigned	species	codes	
that	apply	only	to	this	study	and	highly	diverse	genera	were	identified	
to	species	group	following	Andersen	(2000).

2.2 | Environmental variables, habitat condition and 
climate projections

We	generated	a	comprehensive	set	of	environmental	variables	includ‐
ing	 bioclimatic	 variables	 (BC01–BC35),	 soil	 and	 topographic	 layers,	
along	with	information	on	litter	depth,	canopy	cover	and	disturbance.	
Bioclimatic	data	were	used	to	represent	the	baseline	climate,	defined	
as	 a	30‐year	 average	 from	1976	 to	2005.	These	data	were	derived	
using	 the	ANUCLIM	6.0	software	 (Xu	&	Hutchinson,	2013)	at	a	9‐s	
resolution,	 approximately	 250‐m	 grids	 (Hutchinson,	 Stein,	 &	 Stein,	
2009).	Soil	properties	were	sourced	from	the	Soil	and	Landscape	Grid	
of	Australia,	which	were	based	on	estimated	values	from	0	to	5	cm	
depth	and	derived	from	the	National	Soil	Attribute	Map	as	compos‐
ite	products	 (http://www.clw.csiro.au/aclep/	soila	ndlan	dscap	egrid	)	as	
well	 as	 from	 the	 Commonwealth	 Scientific	 and	 Industrial	 Research	
Organisation	(CSIRO)	and	the	Terrestrial	Ecosystem	Research	Network	
(TERN),	created	using	terrain	analysis	techniques	developed	by	Gallant	
(2000),	 http://www.asris.csiro.au/arcgi	s/rest/servi	ces/TERN.	 Litter	
depth,	 canopy	cover	and	habitat	disturbance	 (tree	 falls	and	cyclone	
damage)	were	measured	during	sampling	at	the	sites	(Staunton	(2013)).

To	include	the	indirect	effects	of	habitat	suitability	on	the	com‐
munity	changes,	vegetation	data	were	extracted	from	the	National	
Vegetation	 Information	 System	 broad	 vegetation	 subgroups	
(Australian	 Government	 Department	 of	 the	 Environmental	Water	
Resources,	 2007).	Analyses	 of	 future	 changes	 in	 rain	 forest	 vege‐
tation	 were	 based	 on	 a	 method	 of	 habitat	 condition	 assessment	
that	 integrates	 remotely	 sensed	 rain	 forest	 vegetation	 layers	 and	
available	 field‐based	 reference	 data	 to	 assign	 each	 250	 ×	 250	 m	
cell	a	habitat	condition	value	 (h)	 ranging	 from	0	 (totally	unsuitable	
for	 rain	 forest	 species)	 to	 1	 (capable	 of	 supporting	 the	maximum	
number	of	plant	species)	(Harwood	et	al.,	2016).	A	previous	analysis	
has	assigned	habitat	condition	values	to	AWT	rain	forest	currently	
ranging	from	0.001	to	0.715,	and	maximum	values	are	restricted	to	
forests	of	previous	climates,	with	higher	values	occurring	in	moun‐
tain	ranges	dominated	by	complex	notophyll	vine	forests,	and	lowest	
values	occurring	in	low	lands	dominated	by	sclerophyll	open	forest	
and	savanna	woodland	(Figures	2a	and	3a).

Future	projections	of	climatic	data	were	extracted	from	30‐year	
averages	 of	 bioclimatic	 layers	 within	 three	 different	 times,	 2035,	
2055	 and	 2085.	 These	 layers	were	 applied	 as	 splined	 deltas	 over	
the	 9‐s	 resolution	 environmental	 layers.	 We	 used	 the	 Australian	
Climate	 Futures	 Tool	 (http://www.clima	techa	ngein	austr	alia.gov.

http://www.clw.csiro.au/aclep/soilandlandscapegrid
http://www.asris.csiro.au/arcgis/rest/services/TERN
http://www.climatechangeinaustralia.gov.au/en/climate-projections/climate-futures-tool/


     |  1277NOWROUZI et al.

au/en/clima	te‐proje	ction	s/clima	te‐futur	es‐tool/),	 which	 has	 been	
built	on	Climate	Futures	Framework	(Clarke,	Whetton,	&	Hennessy,	
2011;	Whetton,	Hennessy,	 Clarke,	McInnes,	 &	Kent,	 2012)	 to	 se‐
lect	the	climatic	models.	This	tool	 includes	projections	from	global	
and	 regional	 climate	 models	 based	 on	 simulations	 performed	

for	 the	 Intergovernmental	 Panel	 on	 Climate	 Change	 (IPCC)	 Fifth	
Assessment	 Report	 (Pachauri	 et	 al.,	 2014).	We	 selected	 2	 out	 of	
15	global	 climate	models	 that	best	 reproduced	Australian	average	
(1961–1990)	 patterns	 of	 temperature	 and	 rainfall	 (Suppiah	 et	 al.,	
2007):	 (a)	 “mild”	 (Model	 for	 Interdisciplinary	 Research	 on	 Climate	

F I G U R E  2  Current	habitat	condition	
of	the	rain	forest	in	the	AWT	(a)	and	a	
projection	in	future	(b,	MIROC	2085).	
Darker	colour	represents	higher‐condition	
habitats	in	terms	of	capacity	to	support	
the	maximum	number	of	plant	species.	
Site	locations	are	presented	for	clarity

F I G U R E  3  Profile	of	condition	values	for	AWT	rain	forest	habitat	under	the	current	climate	(a)	and	a	2085	projection,	MIROC	(b)

http://www.climatechangeinaustralia.gov.au/en/climate-projections/climate-futures-tool/
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(MIROC)	‐H;	~125	km	resolution)	and	(b)	“harsh”	(Geophysical	Fluid	
Dynamics	 Laboratory	 [GFDL]	2.0;	 ~300	 km	 resolution),	 under	 the	
greenhouse	gas	concentration	RCP8.5	scenario.	Future	projections	
of	rain	forest	condition	were	also	extracted	from	SDMs	of	projected	
rain	forest	vegetation	layers	that	were	derived	using	the	ANUCLIM	
6.0	software	(Xu	&	Hutchinson,	2013)	at	a	9‐s	resolution	and	250‐m	
grids	(Hutchinson	et	al.,	2009),	provided	by	eResearch	Centre,	James	
Cook	University,	Australia.

2.3 | Analyses

2.3.1 | Environmental predictors of compositional 
dissimilarity

We	first	selected	17	out	of	28	environmental	(19	bioclimatic,	six	soil	
and	three	habitat)	variables	using	Pearson	correlation	coefficients	
to	 exclude	 highly	 correlated	 variables	 in	 the	 dataset	 (Table	 A1).	 
We	 then	 assessed	which	 environmental	 variables	 best	 explained	
dissimilarity	 of	 ant	 communities	 across	 the	 sample	 sites	 using	
the	 variable	 selection	 strategy	 detailed	 in	Williams	 et	 al.	 (2010)	
and	GDM	 (Ferrier	 et	 al.,	 2007).	 This	 strategy	 ranks	 the	 variables	
based	on	their	 “explained	deviance”	 in	 the	model	and	selects	 the	
best	predictors	 (which	 reduced	 the	number	of	 variables	 to	9	out	
of	17	 in	 this	 study).	 To	 increase	 the	 certainty	of	 our	 variable	 se‐
lection,	we	also	assessed	 them	by	using	an	 information‐theoretic	
approach	 (Burnham	&	Anderson,	2002).	This	approach	 fits	multi‐
variate	Generalized	Linear	Models	(GLMs)	for	species	composition,	
developed	by	Wang,	Naumann,	Wright,	and	Warton	(2012),	using	
the	nine	selected	predictors.	We	used	a	model	averaging	technique	
that	quantifies	relative	importance	(likelihood)	of	all	possible	mod‐
els	that	can	be	generated	using	the	combinations	of	selected	pre‐
dictor	 variables	 (29	 =	 512	models	 in	 this	 study	 case),	 based	 on	 a	
modified	Akaike	 Information	Criterion	 (AICc).	We	 then	evaluated	
the	 standardized	 effect	 size	 of	 each	 predictor	 variable	 by	 calcu‐
lating	 the	 differences	 between	 observed	 summed	Akaike	weight	
and	mean	summed	Akaike	weight	derived	from	999	null	datasets,	
divided	 by	 the	 standard	 deviation	 of	 summed	 Akaike	weights	 of	
null	datasets.	The	calculations	were	all	executed	using	the	mglmn 
R	 package	 developed	 by	Katabuchi	 and	Nakamura	 (2015).	When	
using	 the	 information‐theoretic	 approach,	we	did	not	directly	 in‐
clude	 geographic	 distance	 as	 a	 variable	 because	 of	 correlation	
between	climatic	variables	(e.g.,	temperature)	and	geographic	loca‐
tion	(e.g.,	latitude	and	elevation).	However,	as	excluding	geographic	
distance	did	not	change	the	impact	of	other	variables	in	the	model,	
we	included	it	as	a	driver	of	composition	turnover	in	the	model	as	
suggested	by	Williams	et	al.	(2010).

2.3.2 | Compositional change under future climates

The	selected	environmental	 factors	were	used	as	covariates	 in	a	
GDM	 fitted	 using	 a	matrix	 of	 pairwise	 dissimilarities	 in	 ant	 spe‐
cies	composition	among	 the	150	 locations	sampled.	Dissimilarity	
was	 calculated	 using	 the	 Sørensen	 index	 (Roberts	 et	 al.,	 2017).	

The	GDM	assumes	that	the	amount	of	change	in	species	composi‐
tion	expected	 for	 any	 location	as	 a	 result	of	 climatic	 change	will	
be	equivalent	to	the	compositional	dissimilarity	currently	observed	
between	that	location	and	another	location	with	a	current	climate	
matching	 that	 projected	 for	 the	 first	 location	 (Ferrier,	Harwood,	
&	Williams,	2012;	Ferrier	et	al.,	2007).	Predictions	of	the	commu‐
nity's	compositional	change	were	obtained	by	using	the	model	to	
transform	future	climate	layers	as	described	below.	Analyses	were	
conducted	using	 the	ecodist and GDM	 R	packages	 (Manion,	 Lisk,	
Ferrier,	 Nieto‐Lugilde,	 &	 Fitzpatrick,	 2015;	 R	Development	 Core	
Team,	2010).

To	 address	 how	 climate	 change	would	 affect	 the	 rain	 forest	
ant	communities	at	different	locations,	GDM	was	used	to	calculate	
the	effective	area	of	similar	ecological	environments	 (SEEs),	 first	
considering	 just	 the	 direct	 impacts	 of	 climate	 change,	 and	 then	
also	incorporating	future	changes	in	vegetation.	SEE	is	a	measure	
of	the	total	area	with	an	environment	similar	to	that	of	a	particular	
location,	 scaled	according	 to	 the	 rate	of	biological	 turnover,	 and	
therefore	suitable	for	the	local	community.	The	GDM	thus	trans‐
forms	maps	 of	 environmental	 predictors	 into	 units	 of	 ecological	
distance	 (ΔE),	which	 are	 logarithmically	 related	 to	 compositional	
similarity	(sij=e−ΔEij )	 (Allnutt	et	al.,	2008;	Ferrier	et	al.,	2012).	We	
then	 used	 the	 stack	 of	 transformed	 grids	 to	 examine	 the	 pre‐
dicted	 compositional	 similarity	 (sij)	 between	 current	 grid	 cells	 (i)	
and	points	 in	 future	 scenarios	 ( j)	 separated	over	 space	and	 time	
(Allnutt	et	al.,	2008).

The	 similarity	 of	 each	 current	 cell	 was	 compared	 to	 10,000	
points	under	future	climate	scenarios	to	calculate	the	change	in	area	
of	SEE	(Ci)	considering	only	the	direct	effects	of	climate	change	on	
the	ant	community	(i.e.,	regardless	of	any	potential	changes	in	rain	
forest	vegetation):

To	incorporate	vegetation	condition	in	SEE	calculations,	we	repeated	
each	calculation	after	layers	estimating	rain	forest	habitat	condition	
(Harwood	 et	 al.,	 2016)	 were	 overlayed	 on	 the	 transformed	 grids	
from	GDM.	Based	on	the	model	of	ant	turnover,	the	effective	area	
of	habitat	that	is	currently	ecologically	similar,	Ai,	was	calculated	for	
each	rain	forest	cell:

To	incorporate	the	current	habitat	suitability	into	direct	impact	of	cli‐
mate	change	on	the	ant	communities,	we	repeated	the	calculations	
by	overlapping	the	layers	of	current	rain	forest	habitat	condition	and	
the	transformed	GDMs	of	the	ant	communities	according	to	future	

(1)Ci=

j=n
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ji
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climate	projections	and	calculated	the	proportional	reduction	in	SEE	
within	the	current	condition	of	rain	forest	habitat	using	the	equation:

To	indicate	the	overall	impact	of	climate	change	on	ant	communities,	
considering	its	direct	impact	combined	with	indirect	effects	through	
changes	in	rain	forest	habitat,	we	overlapped	the	projected	rain	for‐
est	habitat	condition	layers	and	the	transformed	GDMs	according	to	
future	climate	projections	and	calculated	the	proportional	reduction	
in	SEE	within	the	“changing	rain	forest”	using	the	equation:

Similarly,	 we	 calculated	 the	 proportion	 of	 species	 retained	 in	 the	
entire	 rain	 forest	 of	 the	 region	 as	 Pi =	 [A

future	 climate	 &	 habitat	 change/ 
Acurrent]Z	 (using	z,	the	exponent	of	the	species–area	curve,	which	is	
typically	0.25	(Allnutt	et	al.,	2008)	and	therefore	estimate	regional	
species	loss.	Calculations	and	projections	were	conducted	using	the.
NET	GD	Modeller	software	version	3.1	(Manion,	2014)	and	GDM R 
packages	(Manion	et	al.,	2015).

3  | RESULTS

3.1 | Environmental predictors of compositional 
dissimilarity

Nine	 out	 of	 17	 candidate	 explanatory	 variables	 (Table	 A2)	were	
selected	 as	 best	 explaining	 the	 turnover	 in	 species	 composition	
of	 ant	 communities	 using	 both	 GDM	 and	 information‐theoretic	
approaches.	 The	 GDM	 accounted	 for	 25.8%	 of	 the	 deviance	 in	
observed	turnover,	and	 it	 indicated	 that	environmental	and	geo‐
graphic	distances	both	played	important	roles	in	explaining	com‐
positional	dissimilarity	 (see	the	sum	of	the	fitted	coefficients	for	
each	environmental	predictor,	Table	1).	The	greatest	turnover	was	
explained	 by	 the	 gradient	 of	 soil	 bulk	 density	 (BD),	 followed	 by	
mean	temperature	of	coldest	quarter	(MTCQ),	mean	temperature	
of	warmest	 quarter	 (MTWQ),	 geographic	 distance	 and	 tempera‐
ture	seasonality	(TS)	(Table	1).	The	information‐theoretic	approach	
also	suggested	that	turnover	could	be	explained	by	isothermality,	
TS,	 MTWQ,	 MTCQ,	 precipitation	 of	 wettest	 period,	 BD,	 avail‐
able	water	 capacity	of	 soil	 ,	 litter	depth	and	habitat	disturbance	
(Table	2).	 In	 contrast	 to	 the	GDM,	 the	highest	 effect	 sizes	 (>20)	
were	achieved	by	MTWQ	and	MTCQ	when	using	the	information	
theory	(Table	2).

(3)Ci=
Afutureclimate

Acurrent climateandhabitat

(4)Ci=
Afutureclimateandhabitat

Acurrent climateandhabitat

TA B L E  1  Sum	of	the	coefficients	based	on	the	GDM	results,	
ranking	the	relative	strength	of	the	environmental	variables	
contributing	to	dissimilarity	of	ant	species	composition

Variable Coefficient

Geographic

Geographic	distance 0.47

Climatic

Isothermality 0.15

Temperature	seasonality 0.41

Mean	temperature	of	warmest	Quarter 0.52

Mean	temperature	of	coldest	Quarter 0.66

Precipitation	of	wettest	period 0.16

Soil

Bulk	density	of	soil 0.73

Available	water	capacity	of	soil 0.20

Site	context

Litter	depth 0.05

Habitat	disturbance 0.19

Model	explanation 25.78

Values	in	bold	represent	the	greatest	explanatory	variables.

TA B L E  2  Summary	results	of	the	information‐theoretic	approach	for	identifying	predictors	of	ant	species	composition,	showing	(a)	
summed	Akaike	weights	from	observed	data,	(b)	mean	summed	Akaike	weights	from	randomized	data,	(c)	standard	deviation	(SD)	of	summed	
Akaike	weights,	standardized	effect	size	((a‐b)/c)	and	p	values	calculated	from	999	null	models	generated	by	permutation

Environmental variable
(a) Summed Akaike 
weight (observed)

(b) Mean summed Akaike 
weight (null models)

(c) SD of summed Akaike 
weight (null models)

Standardized 
effect size p value

Isothermality 0.44 0.33 0.02 4.8 0.000

TS 0.52 0.33 0.02 11.2 0.000

MTWQ 0.59 0.33 0.01 23.2 0.000

MTCQ 0.59 0.33 0.01 21.2 0.000

PWP 0.57 0.34 0.02 11.4 0.000

BD 0.50 0.33 0.02 9.4 0.000

AWC 0.51 0.33 0.02 8.2 0.000

Litter	depth 0.46 0.33 0.02 6.5 0.000

Habitat	disturbance 0.58 0.33 0.02 14.9 0.000

Abbreviations:	AWC,	available	water	capacity	of	soil;	BD,	bulk	density	of	soil;	MTCQ,	mean	temperature	of	coldest	quarter;	MTWQ,	mean	tempera‐
ture	of	warmest	quarter;	PWP,	precipitation	of	wettest	period;	TS,	temperature	seasonality.
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3.2 | Compositional change under future climates

3.2.1 | Direct effects of climate

Under	a	mild	climate	model	(MIROC),	GDM	predicted	that	the	effec‐
tive	habitat	area	was	largely	maintained	and	even	increased	(particu‐
larly	in	coastal	regions)	up	to	2055	(Figure	4a,b).	However,	by	2085	
the	extent	of	suitable	habitat	for	ant	communities	had	declined	by	
>85%,	 and	50%	of	 the	 rain	 forest	 ants	would	 lose	more	 than	half	
of	their	SEE,	with	the	declines	occurring	primarily	inland	(Figure	4c;	
Table	3).	Under	the	harsher	GFDL	climate	model,	at	least	60%	of	the	
communities	in	the	region	were	predicted	to	lose	more	than	half	of	

their	SEE	by	2085,	with	only	some	coastal	areas	 remaining	essen‐
tially	unchanged	(Figure	5c;	Table	3).

3.2.2 | Incorporating indirect effects of changes in 
habitat suitability

When	changes	 in	habitat	suitability	are	 incorporated,	>90%	of	the	
current	rain	forest,	with	higher	suitability	values	of	0.3–0.65	(Figures	
2a	and	3a),	is	projected	to	transition	to	categories	lower	than	0.2	by	
2085	under	MIROC	(Figures	2b	and	3b).	Our	modelling	indicates	that	
this	will	result	in	almost	all	ant	communities	in	the	region	experienc‐
ing	a	 reduction	 in	 their	 similar	habitats	 (Figures	4	 and	5;	Table	3).	

F I G U R E  4  Effective	area	of	SEE	
(similar	ecological	environment;	C value; 
Equation	3)	for	predicted	ant	species	
composition	in	the	AWT;	based	on	MIROC	
model	within	three	different	times,	2035,	
2055	and	2085	(30	years	averaged	each	
period;	under	RCP8.5	scenario);	a,	b	&	c:	
under	predicted	climate	change	only;	d,	e	
&	f:	under	predicted	climate	and	habitat	
changes.	C	value	=	1,	no	change,	C value 
<1,	decrease	and	>1,	increase	in	area	of	
SEE
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Over	90%	of	ant	communities	were	projected	to	lose	more	than	half	
their	current	SEE	from	(Figures	4f	and	5f;	Table	3).	However,	despite	
the	major	 turnover	of	 ant	 composition	 at	 local	 scales,	 only	9	 (3%)	
species	were	predicted	to	be	lost	from	the	AWT	as	a	region	under	
both	climate	models	when	habitat	suitability	was	incorporated.

4  | DISCUSSION

Our	study	represents	the	first	analysis	of	climate	change	impacts	on	
ant	communities	using	comprehensive	compositional	data	and	mac‐
roecological	models.	 It	 is	 also	 the	 first	 study	 to	 integrate	 climate‐
induced	 changes	 in	 habitat	 suitability	 into	 future	 projections	 of	 a	
diverse	 invertebrate	 group.	 Both	 the	GDM	 and	 information‐theo‐
retic	approaches	indicated	that	temperature	is	the	most	 important	
climatic	driver	of	compositional	change	in	rain	forest	ant	species	in	
either	dry	(lower	temperature)	or	wet	(higher	temperature)	seasons	
of	the	year	in	the	AWT.	This	result	reinforces	results	from	previous	
studies	showing	temperature	to	be	a	primary	driver	of	ant	species	di‐
versity	patterns,	both	at	global	and	regional	scales	(Andersen,	1995;	
Bishop,	Robertson,	Rensburg,	&	Parr,	2014;	Diamond	et	 al.,	 2012;	
Dunn	et	al.,	2009).

After	temperature,	habitat	disturbance	had	the	second	highest	
effect	on	dissimilarity	of	community	composition	according	 to	 the	
information‐theoretic	 models,	 and	 it	 significantly	 contributed	 to	
the	spatial	pattering	 in	the	GDM.	A	common	effect	of	habitat	dis‐
turbance	 is	 simplification	 of	 habitat	 structure	 (Gibb	&	 Parr,	 2013;	
Hoffmann	&	Andersen,	 2003),	 so	 disturbance	 can	 have	 especially	
strong	effects	in	complex	habitats	like	tropical	rain	forest	(Andersen,	
2018).	Climate	change	is	predicted	to	increase	the	frequency	of	ex‐
treme	 weather	 events	 (Williams	 et	 al.,	 2003),	 including	 cyclones,	
which	are	the	major	agent	of	disturbance	in	the	AWT.

Based	on	our	models,	50%–60%	of	the	ant	communities	across	
the	AWT	will	likely	lose	more	than	half	of	their	SEEs	when	consid‐
ering	 just	 the	 direct	 impacts	 of	 climate	 change.	 Regardless	 of	 dif‐
ferences	 among	 the	 climate	models,	 this	 increases	 to	>90%	when	
changes	in	habitat	suitability	are	also	incorporated.	Such	a	finding	is	

consistent	with	the	greater	magnitude	of	projected	changes	 in	ant	
community	assemblages	compared	with	that	of	plants	reported	by	
Caddy‐Retalic	et	al.	 (2018).	Thus,	projections	based	on	only	direct	
effects	 of	 climate	 change	 can	 significantly	 underestimate	 the	 ex‐
pected	changes	in	ant	communities.

Most	 ant	 communities	 currently	 occurring	 in	 the	 AWT's	
coastal	 zone	 are	 projected	 to	 continue	 to	 do	 so	 over	 the	 next	
few	decades.	Coastal	ant	communities	are	expected	to	be	buff‐
ered	 from	 the	 effects	 of	 climate	 change	 in	 the	 near	 future	 due	
to	the	close	proximity	of	their	habitat	to	the	ocean,	which	has	a	
moderating	 influence	on	 temperatures	 (Dowdy,	Abbs,	&	Bhend,	
2015).	However,	a	high	degree	of	turnover	in	ant	composition	is	
expected	 to	occur	by	2085	even	 in	coastal	 areas	due	 to	 the	ef‐
fects	of	rising	temperatures	and	altered	rainfall	patterns	on	rain	
forest	 vegetation.	 Faster	 and	 greater	 impacts	 can	 be	 expected	
inland	of	the	mountain	ranges,	where	changes	in	rainfall	and	tem‐
perature	will	be	more	severe	(Hughes,	2003;	Reside	et	al.,	2013;	
Suppiah	et	al.,	2007;	Welbergen	et	al.,	2015).	Throughout	much	
of	this	region,	rain	forest	is	expected	to	convert	to	savanna,	which	
is	entirely	unsuitable	for	specialist	rain	forest	species.	Our	anal‐
yses	 of	 forest	 conditions	 are	 unable	 to	 differentiate	 changes	 in	
habitat	suitability	due	to	transition	within	rain	forest	from	those	
due	to	the	conversion	of	rain	forest	to	savanna.	However,	up	to	
90%	of	current	rain	forest	in	the	AWT	is	expected	to	convert	to	
sclerophyll	open	forest	and	savanna	woodland	by	2085	(Hilbert,	
Graham,	 &	 Hopkins,	 2007;	 Mokany,	 Westcott,	 Prasad,	 Ford,	 &	
Metcalfe,	2014).

Some	major	uplands	and	mountain	peaks	of	the	AWT,	including	
the	Windsor,	Carbine	and	Atherton	uplands,	have	maintained	com‐
plex	 notophyll	 vine	 forests	 throughout	 the	 Pleistocene	 (Hilbert	
et	 al.,	 2007)	 and	 represent	 key	 refugia	 for	 rain	 forest	 flora	 and	
fauna	(Reside	et	al.,	2013;	Welbergen	et	al.,	2015).	These	uplands	
support	many	 endemic	 ant	 species;	 for	 example,	 11	 ant	 species	
are	known	only	from	Carbine	uplands	(Nowrouzi	et	al.,	2016).	Our	
models	 reinforce	 the	 high	 sensitivity	 of	 these	 uplands	 to	 future	
climate	change	(Hilbert	et	al.,	2001;	Mokany	et	al.,	2014),	particu‐
larly	those	further	inland	such	as	Windsor	and	Carbine.	It	is	highly	

TA B L E  3  Proportion	of	modelled	changes	in	ant	communities’	SEE	throughout	the	AWT,	under	two	climate	projections,	MIROC	(mild)	
and	GFDL	(harsh),	for	the	three	years	(2035,	2055,	2085)

Projections of direct (climate) and indirect 
(habitat) effects of climate change MIROC 2035 MIROC 2055 MIROC 2085 GFDL 2035 GFDL 2055 GFDL 2085

Direct	effects

Proportion	of	area	with	increase	in	SEE	(%) >80% >60% >5% >30 10 >5

Proportion	of	area	with	decline	in	SEE	(%) 0 <10% >85 >35% >55% >85

Proportion	of	area	losing	≤½	of	SEE‐	areas	
with	C	values	>0.5	(%)

0 0 >50 0 0 60

Combined	direct	&	indirect	effects

Proportion	of	area	with	increase	in	SEE	(%) 0 0 0 0 0 0

Proportion	of	area	with	decline	in	SEE	(%) ~100 100 100 ~90 100 100

Proportion	of	area	losing	≤½	of	SEE‐	areas	
with	C	values	>0.5	(%)

0 >60 >90 0 ~50 >90
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unlikely	 that	such	 inland	refugia	will	be	maintained	under	 future	
climates.

Our	 modelling	 indicates	 that	 even	 with	 changing	 rain	 forest	
condition,	 sufficient	 suitable	 habitat	 will	 remain	 at	 the	 regional	
level	to	avoid	high	extinction	rates	even	under	an	extreme	climate	
scenario.	 However,	 our	 analyses	 of	 compositional	 change	 based	
on	SEEs	can	be	considered	conservative	because	 it	does	not	ac‐
count	for	dispersal	limitations.	In	particular,	new	SEEs	on	different	
mountains	might	not	be	accessible	for	some	species,	especially	for	
those	without	winged	reproductive,	such	as	within	Lioponera and 
Pseudoneoponera	 (Peeters	&	 Ito,	2001).	Our	analyses	also	do	not	
account	for	other	factors	that	can	affect	extinction	rate,	such	as	
interactions	 within	 metapopulations	 (Morrison,	 2002)	 and	 allee	
effects	 (Luque,	 Giraud,	 &	 Courchamp,	 2013).	 Additionally,	 our	

models	do	not	consider	the	potential	increased	incidence	of	hab‐
itat	 disturbance	 through	 cyclones,	 which	 will	 potentially	 have	 a	
major	impact	on	rain	forest	suitability,	including	through	increased	
risk	of	weed	invasion	(Turton,	2012).

In	 conclusion,	 our	 study	 has	 demonstrated	 that	 rain	 forest	
ants	in	the	AWT	are	likely	to	be	severely	impacted	under	climate	
change.	 The	 direct	 impact	 of	 a	 changing	 climate	 is	 likely	 to	 be	
substantial,	 as	 has	 been	 concluded	 for	well‐studied	 groups	 such	
as	 birds,	 reptiles,	 mammals,	 frogs,	 butterflies	 and	 dragonflies	
(Bush	et	al.,	2014;	Shoo	et	al.,	2005b;	Williams	&	Pearson,	1997;	
Williams,	Williams,	Alford,	Waycott,	&	Johnson,	2006).	However,	
the	changes	 in	ant	communities	can	be	expected	 to	be	 far	more	
profound	 when	 changes	 in	 habitat	 suitability	 are	 also	 consid‐
ered.	Our	study	shows	that	projections	of	reduction	in	ecological	

F I G U R E  5  Effective	area	of	SEE	
(similar	ecological	environment;	C value; 
Equation	4)	for	predicted	ant	communities’	
composition	in	the	AWT;	based	on	GFDL	
model	within	three	different	times,	2035,	
2055	and	2085	(30	years	averaged	each	
period;	under	RCP8.5	scenario);	a,	b	&	c:	
under	predicted	climate	change	only;	d,	e	
&	f:	under	predicted	climate	and	habitat	
changes.	C	value	=	1,	no	change,	C value 
<1,	decrease	and	>1,	increase	in	area	of	
SEE
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environments	 of	 ant	 communities	 and	 consequent	 species	 turn‐
over	in	the	AWT	would	be	underestimated	by	30%–40%	without	
integrating	the	extent	to	which	their	habitat	will	change	under	a	
changing	climate.	While	these	findings	relate	to	ant	communities,	
they	 suggest	 that	 modelling	 of	 other	 taxonomic	 groups,	 based	
solely	on	direct	effects,	may	similarly	underestimate	the	impacts	
of	 climate	 change.	 The	 integration	 of	 habitat	 changes	 in	 future	
climate	 models	 is	 likely	 to	 substantially	 improve	 projections	 for	
fauna	more	generally.
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TA B L E  A 2  Pearson	correlation	coefficients	(bottom	left	triangle)	and	p	values	(top	right	triangle)	of	the	nine	predictor	variables	selected	
by	the	models

 TS MTWQ. MTCQ. PWP BDW AWC Isothermality Litter depth Disturbance

TS  0.002 0.577 0.656 0.256 0.116 0.000 0.009 0.045

MTWQ −0.26  0.000 0.476 0.859 0.000 0.001 0.000 0.000

MTCQ −0.05 0.78  0.780 0.002 0.587 0.000 0.001 0.000

PWP 0.04 0.06 0.02  0.845 0.016 0.023 0.000 0.000

BDW 0.09 0.01 −0.25 −0.02  0.099 0.010 0.107 0.370

AWC 0.13 −0.29 −0.05 −0.20 −0.14  0.644 0.000 0.110

Isothermality 0.55 0.04 −0.28 0.04 −0.05 −0.01  0.000 0.000

Litter	depth −0.22 −0.34 −0.28 −0.43 −0.13 0.34 0.74  0.000

Disturbance 0.17 0.31 0.52 0.54 −0.07 −0.13 −0.69 −0.58  


