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Abstract
Aim: Studies of climate change impacts on animal distributions typically consider 
only the direct impacts of a changing climate, under the assumption that future areas 
of suitable climate will otherwise remain ecologically suitable. Here we assess both 
the direct and indirect impacts of climate change on rain forest ant communities, 
where substantial shifts are projected to occur for both climate and habitat types.
Location: Australian Wet Tropics (AWT).
Methods: Generalized Dissimilarity Modelling was used to model turnover in the 
composition of ~300 rain forest ant species sampled at 150 sites across six moun‐
tains spanning five degrees of latitude. Ants were sampled within the leaf litter, on 
the litter surface and on tree trunks. By modelling the rate of turnover among sites, 
we determined the current effective area of similar ecological environments (SEE) for 
ant communities and consequently the expected change in species persistence when 
habitat shifts under two climate projections for the years 2035, 2055 and 2085. We 
compared results when SEE considered only the direct effects of a changing climate, 
with those when changes in habitat were also included.
Results: The rain forest ant communities modelled will lose a substantial proportion 
of SEE under both climate change scenarios. Under combined direct (changes in cli‐
mate) and indirect (changes in rain forest habitat) impacts of climate change, >90% of 
the communities in the region were predicted to lose up to half their similar habitats 
compared with 50%–60% when only considering direct climate change impacts. The 
highest risk of reduction in area of SEE is projected in drier inland areas of the AWT, 
where profound compositional turnover is linked to dramatic changes in rain forest 
vegetation, including extensive conversion into savanna.
Main conclusions: Our findings emphasize the importance of incorporating habitat 
suitability into future projections of species turnover under a changing climate, par‐
ticularly for habitats where vegetation structure is projected to undergo profound 
change.
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1  | INTRODUC TION

Anthropogenic climate change and associated extreme weather 
events are predicted to significantly alter species distributions and 
subsequently the composition of biological communities (Arribas, 
Abellán, Velasco, Millán, & Sánchez‐Fernández, 2017; Huey et al., 
2012; Jenkins et al., 2011; Thomas, 2010). Rising temperatures might 
cause metabolic, behavioural or evolutionary change in species, or 
drive dispersal to climatically suitable areas (Parmesan, 2006; Reuman, 
Holt, & Yvon‐Durocher, 2014; Urban, Tewksbury, & Sheldon, 2012). 
Community‐level responses are more complicated, as changing tem‐
perature is likely to have differential effects among species (Elmendorf 
et al., 2012). Species interactions also may change disrupting mutu‐
alisms, trophic interactions, competitive hierarchies and ultimately 
species occurrence (Blois, Zarnetske, Fitzpatrick, & Finnegan, 2013; 
Sentis, Hemptinne, & Brodeur, 2014; Sorte & White, 2013). Therefore, 
forecasting changes in the distribution and composition of biological 
communities under future climates can be extremely challenging.

The potential decoupling of species associations due to differ‐
ential climate change sensitivity can have particularly dramatic im‐
plications if vegetation and its associated fauna are differentially 
sensitive (Caddy‐Retalic et al., 2018; Carvalho, Brito, Crespo, & 
Possingham, 2010; Garcia, Cabeza, Rahbek, & Araújo, 2014). Studies 
of climate change impacts on animal distributions typically consider 
only the direct impacts of a changing climate, under the assump‐
tion that future areas of suitable climate will otherwise remain eco‐
logically suitable. However, this would not be the case if changes 
in climate indirectly reduce habitat suitability. This might occur as 
a direct response of vegetation to a changing climate, or indirectly 
through changes in, for example, fire regimes (Davis, Higuera, & Sala, 
2018; Regos, Clavero, & D'amen, Guisan & Brotons, 2018). Changes 
in vegetation structure can have a greater effect on microclimate 
than changes in macroclimate (Williams, Bolitho, & Fox, 2003).

Vegetation change would be particularly dramatic for fauna if it 
rendered the habitat largely unsuitable. This is especially relevant in 
high‐rainfall regions of the tropics where savanna and forest co‐occur 
and readily transition from one to the other with changes in climate 
and fire regimes (Dantas, Hirota, Oliveira, & Pausas, 2016; Langan, 
Higgins, & Scheiter, 2017; Murphy & Bowman, 2012). Savanna and 
forest support highly disjunct faunas (Murphy, Andersen, & Parr, 
2016), such that transition from one vegetation type to the other 
results in profound faunal change. For example, in northern Australia 
the ant faunas of co‐occurring rain forest and savanna are remark‐
ably distinct from each other (Andersen, Ingen, & Campos, 2008), 
with the rain forest fauna dominated by shade‐tolerant, forest spe‐
cialists, in contrast to the arid‐adapted taxa that dominate savannas 
(Andersen et al., 2008; Reichel & Andersen, 1996). If forest switches 

to savanna under future climates, then the habitat will be unsuitable 
for forest species even if the macroclimate is suitable for them. The 
critical role of the future distribution of habitats upon which spe‐
cies depend has been largely overlooked in studies regarding climate 
change impacts on biodiversity.

Changes in community composition can be modelled using 
stacked species distribution models (SDMs), but these have a poor 
record of predicting change even when environmental correlates of 
species occurrences are well known (D'Amen, Pradervand, & Guisan, 
2015; Pellissier et al., 2013). One reason for this is that SDMs can 
predict if a species might occur in a general area that is climatically 
suitable, but they are limited when predicting if they will occur in any 
particular site, which may only have a fraction of the regional species 
pool, due to biotic interactions between species. Additionally, com‐
monly used species‐level modelling approaches (Elith & Leathwick, 
2009) can vary in accuracy. For example, a developed modelling 
algorithm based on rank‐ordered stacking of SDMs, compared to 
a binary stacking, can reduce variation of error in predicting com‐
munity composition turnover along environmental gradients, but it 
still requires caution when predicting the species diversity (Del Toro, 
Ribbons, Hayward, & Andersen, 2018).

An alternative approach to predicting responses of biolog‐
ical communities to climate change is Generalized Dissimilarity 
Modelling (GDM), a nonlinear extension of matrix regression that 
models pairwise biological dissimilarity between sites as a nonlinear 
function of pairwise site difference in environmental and geographic 
variables (Brown, Cameron, Yoder, & Vences, 2014; Ferrier, Manion, 
Elith, & Richardson, 2007). Critically, by working directly with spe‐
cies assemblages, GDM can account for biotic interactions which 
are not typically included in SDMs. GDM extrapolates patterns of 
compositional turnover beyond sampled communities and is partic‐
ularly well suited to communities with high levels of beta diversity. 
This analytical method can accommodate almost any measure of 
geographic or ecological separation as a predictor, including organ‐
ism‐specific representations of barriers to dispersal, or cost of move‐
ment/gene flow through unfavourable habitat (Fitzpatrick, Keller, & 
Vellend, 2015). GDM can also rapidly analyse datasets containing 
very large numbers of species, regardless of the number of records 
per species. Furthermore, by studying the emergent rates of spa‐
tial turnover along environmental gradients under current climatic 
conditions, GDM can be used to predict the temporal rate and spa‐
tial distribution of turnover under future climates (Blois, Williams, 
Fitzpatrick, Jackson, & Ferrier, 2013). Compared with SDMs, GDM 
can predict higher turnover and across a larger contiguous area 
(Fitzpatrick et al., 2011), where problems such as data limitations or 
indirect predictors such as habitat changes (Guisan & Thuiller, 2005) 
are likely to hinder the application of SDMs.

K E Y W O R D S

climate change, composition turnover, ecological environments, GDMs, habitat condition, rain 
forest
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Generalized Dissimilarity Model commonly accommodates 
variation in rates of species turnover along environmental gradi‐
ents (Fitzpatrick et al., 2013; Maestri, Shenbrot, & Krasnov, 2017; 
Pennifold et al., 2017), but, unless programmed to do so, does not 
account for changes in habitat. However, GDM analyses can produce 
a variety of metrics to reveal and describe the relative biotic unique‐
ness of environments, and the proportion of those environments 
falling within different habitat classes (Jiménez‐Alfaro et al., 2018; 
Johnston, Elmore, Mokany, Lisk, & Fitzpatrick, 2017). Therefore, it 
is important to simultaneously consider changes in both habitat and 
climate within a GDM framework, which works in multidimensional 
environmental space, projected both temporally and spatially.

Invertebrates are often used to monitor ecological change in ter‐
restrial ecosystems because of their critical roles in ecosystem func‐
tion and dominant contribution to faunal diversity (McGeoch, 1998). 
Ants are particularly commonly used in environmental assessments, 

due to their ecological dominance and sensitivity to environmen‐
tal change (Andersen, Fisher, Hoffmann, Read, & Richards, 2004; 
Andersen & Majer, 2004; Underwood & Fisher, 2006). Patterns of 
diversity and composition in ant communities are strongly related 
to climatic variables such as temperature, precipitation and hu‐
midity (Diamond et al., 2012; Dunn et al., 2009; Kaspari, Alonso, & 
O'Donnellkwd, 2000; Sanders, Moss, & Wagner, 2003). In this study, 
we apply GDM to a comprehensive dataset for the diverse rain forest 
ant communities of the Australian Wet Tropics (AWT) to investigate 
potential impacts of future climate change based on contemporary 
spatial patterns of compositional turnover.

Our specific aims are to: (a) identify environmental variables that are 
most correlated with compositional dissimilarity in rain forest ant com‐
munities throughout the AWT, using GDM combined with a theoretic 
approach; (b) use the GDM to forecast changes in the area of climatically 
suitable habitat for different ant community types; and (c) predictions to 

F I G U R E  1  The Australian Wet Tropics 
bioregion with site locations. Dark shade 
represents the extent of rain forest within 
the region
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account for both the direct effects of climate on ant community changes 
and the indirect effects of habitat loss on the extent of suitable habitat 
for the community. Our study will allow the identification of areas in the 
AWT that are likely to be most sensitive to climate change impacts and 
are therefore priorities for conservation management.

2  | METHODS

2.1 | Study sites and compositional data

Mean annual rainfall in the AWT (Figure 1) varies from about 
1,500‐9,000 mm, with 75%–90% occurring between November and 
April (McDonald & Lane, 2000). Within the region, mean tempera‐
ture declines at a rate of about 1°C for every 200 m increase in el‐
evation (Shoo, Williams, & Hero, 2005a). Our study was confined to 
rain forest and covered a range of structural rain forest types from 
complex mesophyll vine forest in the fertile lowlands to upland sim‐
ple notophyll vine forest (Adam, 1992; Hilbert, 2008).

Despite their relatively small area, the AWT rain forests are rec‐
ognized as a major biodiversity hotspot of global significance due to 
their extraordinary biological richness and biogeographical unique‐
ness (Zachos & Habel, 2011). However, this biodiversity is highly 
threatened by anthropogenic climate change (Hilbert, Ostendorf, 
& Hopkins, 2001; Ostendorf, Hilbert, & Hopkins, 2001; Suppiah, 
Macadam, & Whetton, 2007; Thomas, Cameron, Green, & Bakkenes, 
2004). The rain forests are predicted to decrease in extent by 60% 
with a temperature rise of 1°C combined with a 10% decrease in pre‐
cipitation (Hilbert et al., 2001). Future projections show significant 
decreases in core distributional area of all 65 endemic vertebrates 
(Williams et al., 2003) and in population size of 74% of rain forest 
birds (Shoo, Williams, & Hero, 2005b). The insects of the AWT are 
also highly threatened by climate change, with predictions of the ex‐
tinction of a large proportion (40%) of schizophoran flies (Wilson, 
2010), and 88% reduction in population size of flightless ground bee‐
tles (Staunton, Robson, Burwell, Reside, & Williams, 2014).

We used a recent dataset of 5,204 occurrence records of 296 ant 
species comprehensively sampled using bait traps on the ground and 
tree trunks, litter extractions and pitfall trapping from 150 sites that 
cover the full latitudinal and elevational range of rain forest in the AWT 
(Nowrouzi et al., 2016). A combination of techniques was used to target 
the distinct faunas associated with litter (cryptic species), the litter sur‐
face (epigaeic species) and trees (arboreal species) (Bruhl, Gunsalam, 
& Linsenmair, 1998), with high sampling intensity to provide reliable 
estimates of species composition (Ashcroft et al., 2010). Rarefaction 
curves indicated that most species occurring in the region were re‐
corded (Nowrouzi et al., 2016). The sites were distributed across six 
mountains, ranging from the Finnegan uplands in the north, to Mt Spec 
in the south, over a distance of approximately 500 km. All sites were 
located on granite‐derived soils except for those in the Atherton sub‐
region which contains more‐fertile basaltic soils (McJannet, Wallace, 
Fitch, Disher, & Reddell, 2008; Parsons & Congdon, 2008). The eleva‐
tional range of study sites varied among subregions, due to differences 
in the availability and accessibility of rain forest habitats. Sampling 

transects were separated by 200 m elevation from the lowland rain 
forests to the upland following the elevation contour, with six sites 
separated by 200 m along each transect. Only three sites were located 
at each of the 350 m elevation transect at Mt Spec and 100 m eleva‐
tion transect at Atherton due to limited rain forest cover. All ants were 
sorted to species and where possible named through comparison with 
identified specimens held in the CSIRO Tropical Ecosystems Research 
Centre in Darwin. Unidentified species were assigned species codes 
that apply only to this study and highly diverse genera were identified 
to species group following Andersen (2000).

2.2 | Environmental variables, habitat condition and 
climate projections

We generated a comprehensive set of environmental variables includ‐
ing bioclimatic variables (BC01–BC35), soil and topographic layers, 
along with information on litter depth, canopy cover and disturbance. 
Bioclimatic data were used to represent the baseline climate, defined 
as a 30‐year average from 1976 to 2005. These data were derived 
using the ANUCLIM 6.0 software (Xu & Hutchinson, 2013) at a 9‐s 
resolution, approximately 250‐m grids (Hutchinson, Stein, & Stein, 
2009). Soil properties were sourced from the Soil and Landscape Grid 
of Australia, which were based on estimated values from 0 to 5 cm 
depth and derived from the National Soil Attribute Map as compos‐
ite products (http://www.clw.csiro.au/aclep/​soila​ndlan​dscap​egrid​) as 
well as from the Commonwealth Scientific and Industrial Research 
Organisation (CSIRO) and the Terrestrial Ecosystem Research Network 
(TERN), created using terrain analysis techniques developed by Gallant 
(2000), http://www.asris.csiro.au/arcgi​s/rest/servi​ces/TERN. Litter 
depth, canopy cover and habitat disturbance (tree falls and cyclone 
damage) were measured during sampling at the sites (Staunton (2013)).

To include the indirect effects of habitat suitability on the com‐
munity changes, vegetation data were extracted from the National 
Vegetation Information System broad vegetation subgroups 
(Australian Government Department of the Environmental Water 
Resources, 2007). Analyses of future changes in rain forest vege‐
tation were based on a method of habitat condition assessment 
that integrates remotely sensed rain forest vegetation layers and 
available field‐based reference data to assign each 250  ×  250  m 
cell a habitat condition value (h) ranging from 0 (totally unsuitable 
for rain forest species) to 1 (capable of supporting the maximum 
number of plant species) (Harwood et al., 2016). A previous analysis 
has assigned habitat condition values to AWT rain forest currently 
ranging from 0.001 to 0.715, and maximum values are restricted to 
forests of previous climates, with higher values occurring in moun‐
tain ranges dominated by complex notophyll vine forests, and lowest 
values occurring in low lands dominated by sclerophyll open forest 
and savanna woodland (Figures 2a and 3a).

Future projections of climatic data were extracted from 30‐year 
averages of bioclimatic layers within three different times, 2035, 
2055 and 2085. These layers were applied as splined deltas over 
the 9‐s resolution environmental layers. We used the Australian 
Climate Futures Tool (http://www.clima​techa​ngein​austr​alia.gov.

http://www.clw.csiro.au/aclep/soilandlandscapegrid
http://www.asris.csiro.au/arcgis/rest/services/TERN
http://www.climatechangeinaustralia.gov.au/en/climate-projections/climate-futures-tool/
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au/en/clima​te-proje​ction​s/clima​te-futur​es-tool/), which has been 
built on Climate Futures Framework (Clarke, Whetton, & Hennessy, 
2011; Whetton, Hennessy, Clarke, McInnes, & Kent, 2012) to se‐
lect the climatic models. This tool includes projections from global 
and regional climate models based on simulations performed 

for the Intergovernmental Panel on Climate Change (IPCC) Fifth 
Assessment Report (Pachauri et al., 2014). We selected 2 out of 
15 global climate models that best reproduced Australian average 
(1961–1990) patterns of temperature and rainfall (Suppiah et al., 
2007): (a) “mild” (Model for Interdisciplinary Research on Climate 

F I G U R E  2  Current habitat condition 
of the rain forest in the AWT (a) and a 
projection in future (b, MIROC 2085). 
Darker colour represents higher‐condition 
habitats in terms of capacity to support 
the maximum number of plant species. 
Site locations are presented for clarity

F I G U R E  3  Profile of condition values for AWT rain forest habitat under the current climate (a) and a 2085 projection, MIROC (b)

http://www.climatechangeinaustralia.gov.au/en/climate-projections/climate-futures-tool/
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(MIROC) ‐H; ~125 km resolution) and (b) “harsh” (Geophysical Fluid 
Dynamics Laboratory [GFDL] 2.0; ~300  km resolution), under the 
greenhouse gas concentration RCP8.5 scenario. Future projections 
of rain forest condition were also extracted from SDMs of projected 
rain forest vegetation layers that were derived using the ANUCLIM 
6.0 software (Xu & Hutchinson, 2013) at a 9‐s resolution and 250‐m 
grids (Hutchinson et al., 2009), provided by eResearch Centre, James 
Cook University, Australia.

2.3 | Analyses

2.3.1 | Environmental predictors of compositional 
dissimilarity

We first selected 17 out of 28 environmental (19 bioclimatic, six soil 
and three habitat) variables using Pearson correlation coefficients 
to exclude highly correlated variables in the dataset (Table A1).  
We then assessed which environmental variables best explained 
dissimilarity of ant communities across the sample sites using 
the variable selection strategy detailed in Williams et al. (2010) 
and GDM (Ferrier et al., 2007). This strategy ranks the variables 
based on their “explained deviance” in the model and selects the 
best predictors (which reduced the number of variables to 9 out 
of 17 in this study). To increase the certainty of our variable se‐
lection, we also assessed them by using an information‐theoretic 
approach (Burnham & Anderson, 2002). This approach fits multi‐
variate Generalized Linear Models (GLMs) for species composition, 
developed by Wang, Naumann, Wright, and Warton (2012), using 
the nine selected predictors. We used a model averaging technique 
that quantifies relative importance (likelihood) of all possible mod‐
els that can be generated using the combinations of selected pre‐
dictor variables (29  =  512 models in this study case), based on a 
modified Akaike Information Criterion (AICc). We then evaluated 
the standardized effect size of each predictor variable by calcu‐
lating the differences between observed summed Akaike weight 
and mean summed Akaike weight derived from 999 null datasets, 
divided by the standard deviation of summed Akaike weights of 
null datasets. The calculations were all executed using the mglmn 
R package developed by Katabuchi and Nakamura (2015). When 
using the information‐theoretic approach, we did not directly in‐
clude geographic distance as a variable because of correlation 
between climatic variables (e.g., temperature) and geographic loca‐
tion (e.g., latitude and elevation). However, as excluding geographic 
distance did not change the impact of other variables in the model, 
we included it as a driver of composition turnover in the model as 
suggested by Williams et al. (2010).

2.3.2 | Compositional change under future climates

The selected environmental factors were used as covariates in a 
GDM fitted using a matrix of pairwise dissimilarities in ant spe‐
cies composition among the 150 locations sampled. Dissimilarity 
was calculated using the Sørensen index (Roberts et al., 2017). 

The GDM assumes that the amount of change in species composi‐
tion expected for any location as a result of climatic change will 
be equivalent to the compositional dissimilarity currently observed 
between that location and another location with a current climate 
matching that projected for the first location (Ferrier, Harwood, 
& Williams, 2012; Ferrier et al., 2007). Predictions of the commu‐
nity's compositional change were obtained by using the model to 
transform future climate layers as described below. Analyses were 
conducted using the ecodist and GDM R packages (Manion, Lisk, 
Ferrier, Nieto‐Lugilde, & Fitzpatrick, 2015; R Development Core 
Team, 2010).

To address how climate change would affect the rain forest 
ant communities at different locations, GDM was used to calculate 
the effective area of similar ecological environments (SEEs), first 
considering just the direct impacts of climate change, and then 
also incorporating future changes in vegetation. SEE is a measure 
of the total area with an environment similar to that of a particular 
location, scaled according to the rate of biological turnover, and 
therefore suitable for the local community. The GDM thus trans‐
forms maps of environmental predictors into units of ecological 
distance (ΔE), which are logarithmically related to compositional 
similarity (sij=e−ΔEij ) (Allnutt et al., 2008; Ferrier et al., 2012). We 
then used the stack of transformed grids to examine the pre‐
dicted compositional similarity (sij) between current grid cells (i) 
and points in future scenarios ( j) separated over space and time 
(Allnutt et al., 2008).

The similarity of each current cell was compared to 10,000 
points under future climate scenarios to calculate the change in area 
of SEE (Ci) considering only the direct effects of climate change on 
the ant community (i.e., regardless of any potential changes in rain 
forest vegetation):

To incorporate vegetation condition in SEE calculations, we repeated 
each calculation after layers estimating rain forest habitat condition 
(Harwood et al., 2016) were overlayed on the transformed grids 
from GDM. Based on the model of ant turnover, the effective area 
of habitat that is currently ecologically similar, Ai, was calculated for 
each rain forest cell:

To incorporate the current habitat suitability into direct impact of cli‐
mate change on the ant communities, we repeated the calculations 
by overlapping the layers of current rain forest habitat condition and 
the transformed GDMs of the ant communities according to future 

(1)Ci=

j=n
∑

j=1

S
future
ji

j=n
∑

j=1

Scurrent
ji

(2)Ai=

n
∑

j=1

sijhj



     |  1279NOWROUZI et al.

climate projections and calculated the proportional reduction in SEE 
within the current condition of rain forest habitat using the equation:

To indicate the overall impact of climate change on ant communities, 
considering its direct impact combined with indirect effects through 
changes in rain forest habitat, we overlapped the projected rain for‐
est habitat condition layers and the transformed GDMs according to 
future climate projections and calculated the proportional reduction 
in SEE within the “changing rain forest” using the equation:

Similarly, we calculated the proportion of species retained in the 
entire rain forest of the region as Pi =  [A

future climate & habitat change/ 
Acurrent]Z (using z, the exponent of the species–area curve, which is 
typically 0.25 (Allnutt et al., 2008) and therefore estimate regional 
species loss. Calculations and projections were conducted using the.
NET GD Modeller software version 3.1 (Manion, 2014) and GDM R 
packages (Manion et al., 2015).

3  | RESULTS

3.1 | Environmental predictors of compositional 
dissimilarity

Nine out of 17 candidate explanatory variables (Table A2) were 
selected as best explaining the turnover in species composition 
of ant communities using both GDM and information‐theoretic 
approaches. The GDM accounted for 25.8% of the deviance in 
observed turnover, and it indicated that environmental and geo‐
graphic distances both played important roles in explaining com‐
positional dissimilarity (see the sum of the fitted coefficients for 
each environmental predictor, Table 1). The greatest turnover was 
explained by the gradient of soil bulk density (BD), followed by 
mean temperature of coldest quarter (MTCQ), mean temperature 
of warmest quarter (MTWQ), geographic distance and tempera‐
ture seasonality (TS) (Table 1). The information‐theoretic approach 
also suggested that turnover could be explained by isothermality, 
TS, MTWQ, MTCQ, precipitation of wettest period, BD, avail‐
able water capacity of soil , litter depth and habitat disturbance 
(Table 2). In contrast to the GDM, the highest effect sizes (>20) 
were achieved by MTWQ and MTCQ when using the information 
theory (Table 2).

(3)Ci=
Afutureclimate

Acurrent climateandhabitat

(4)Ci=
Afutureclimateandhabitat

Acurrent climateandhabitat

TA B L E  1  Sum of the coefficients based on the GDM results, 
ranking the relative strength of the environmental variables 
contributing to dissimilarity of ant species composition

Variable Coefficient

Geographic

Geographic distance 0.47

Climatic

Isothermality 0.15

Temperature seasonality 0.41

Mean temperature of warmest Quarter 0.52

Mean temperature of coldest Quarter 0.66

Precipitation of wettest period 0.16

Soil

Bulk density of soil 0.73

Available water capacity of soil 0.20

Site context

Litter depth 0.05

Habitat disturbance 0.19

Model explanation 25.78

Values in bold represent the greatest explanatory variables.

TA B L E  2  Summary results of the information‐theoretic approach for identifying predictors of ant species composition, showing (a) 
summed Akaike weights from observed data, (b) mean summed Akaike weights from randomized data, (c) standard deviation (SD) of summed 
Akaike weights, standardized effect size ((a‐b)/c) and p values calculated from 999 null models generated by permutation

Environmental variable
(a) Summed Akaike 
weight (observed)

(b) Mean summed Akaike 
weight (null models)

(c) SD of summed Akaike 
weight (null models)

Standardized 
effect size p value

Isothermality 0.44 0.33 0.02 4.8 0.000

TS 0.52 0.33 0.02 11.2 0.000

MTWQ 0.59 0.33 0.01 23.2 0.000

MTCQ 0.59 0.33 0.01 21.2 0.000

PWP 0.57 0.34 0.02 11.4 0.000

BD 0.50 0.33 0.02 9.4 0.000

AWC 0.51 0.33 0.02 8.2 0.000

Litter depth 0.46 0.33 0.02 6.5 0.000

Habitat disturbance 0.58 0.33 0.02 14.9 0.000

Abbreviations: AWC, available water capacity of soil; BD, bulk density of soil; MTCQ, mean temperature of coldest quarter; MTWQ, mean tempera‐
ture of warmest quarter; PWP, precipitation of wettest period; TS, temperature seasonality.
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3.2 | Compositional change under future climates

3.2.1 | Direct effects of climate

Under a mild climate model (MIROC), GDM predicted that the effec‐
tive habitat area was largely maintained and even increased (particu‐
larly in coastal regions) up to 2055 (Figure 4a,b). However, by 2085 
the extent of suitable habitat for ant communities had declined by 
>85%, and 50% of the rain forest ants would lose more than half 
of their SEE, with the declines occurring primarily inland (Figure 4c; 
Table 3). Under the harsher GFDL climate model, at least 60% of the 
communities in the region were predicted to lose more than half of 

their SEE by 2085, with only some coastal areas remaining essen‐
tially unchanged (Figure 5c; Table 3).

3.2.2 | Incorporating indirect effects of changes in 
habitat suitability

When changes in habitat suitability are incorporated, >90% of the 
current rain forest, with higher suitability values of 0.3–0.65 (Figures 
2a and 3a), is projected to transition to categories lower than 0.2 by 
2085 under MIROC (Figures 2b and 3b). Our modelling indicates that 
this will result in almost all ant communities in the region experienc‐
ing a reduction in their similar habitats (Figures 4 and 5; Table 3). 

F I G U R E  4  Effective area of SEE 
(similar ecological environment; C value; 
Equation 3) for predicted ant species 
composition in the AWT; based on MIROC 
model within three different times, 2035, 
2055 and 2085 (30 years averaged each 
period; under RCP8.5 scenario); a, b & c: 
under predicted climate change only; d, e 
& f: under predicted climate and habitat 
changes. C value = 1, no change, C value 
<1, decrease and >1, increase in area of 
SEE
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Over 90% of ant communities were projected to lose more than half 
their current SEE from (Figures 4f and 5f; Table 3). However, despite 
the major turnover of ant composition at local scales, only 9 (3%) 
species were predicted to be lost from the AWT as a region under 
both climate models when habitat suitability was incorporated.

4  | DISCUSSION

Our study represents the first analysis of climate change impacts on 
ant communities using comprehensive compositional data and mac‐
roecological models. It is also the first study to integrate climate‐
induced changes in habitat suitability into future projections of a 
diverse invertebrate group. Both the GDM and information‐theo‐
retic approaches indicated that temperature is the most important 
climatic driver of compositional change in rain forest ant species in 
either dry (lower temperature) or wet (higher temperature) seasons 
of the year in the AWT. This result reinforces results from previous 
studies showing temperature to be a primary driver of ant species di‐
versity patterns, both at global and regional scales (Andersen, 1995; 
Bishop, Robertson, Rensburg, & Parr, 2014; Diamond et al., 2012; 
Dunn et al., 2009).

After temperature, habitat disturbance had the second highest 
effect on dissimilarity of community composition according to the 
information‐theoretic models, and it significantly contributed to 
the spatial pattering in the GDM. A common effect of habitat dis‐
turbance is simplification of habitat structure (Gibb & Parr, 2013; 
Hoffmann & Andersen, 2003), so disturbance can have especially 
strong effects in complex habitats like tropical rain forest (Andersen, 
2018). Climate change is predicted to increase the frequency of ex‐
treme weather events (Williams et al., 2003), including cyclones, 
which are the major agent of disturbance in the AWT.

Based on our models, 50%–60% of the ant communities across 
the AWT will likely lose more than half of their SEEs when consid‐
ering just the direct impacts of climate change. Regardless of dif‐
ferences among the climate models, this increases to >90% when 
changes in habitat suitability are also incorporated. Such a finding is 

consistent with the greater magnitude of projected changes in ant 
community assemblages compared with that of plants reported by 
Caddy‐Retalic et al. (2018). Thus, projections based on only direct 
effects of climate change can significantly underestimate the ex‐
pected changes in ant communities.

Most ant communities currently occurring in the AWT's 
coastal zone are projected to continue to do so over the next 
few decades. Coastal ant communities are expected to be buff‐
ered from the effects of climate change in the near future due 
to the close proximity of their habitat to the ocean, which has a 
moderating influence on temperatures (Dowdy, Abbs, & Bhend, 
2015). However, a high degree of turnover in ant composition is 
expected to occur by 2085 even in coastal areas due to the ef‐
fects of rising temperatures and altered rainfall patterns on rain 
forest vegetation. Faster and greater impacts can be expected 
inland of the mountain ranges, where changes in rainfall and tem‐
perature will be more severe (Hughes, 2003; Reside et al., 2013; 
Suppiah et al., 2007; Welbergen et al., 2015). Throughout much 
of this region, rain forest is expected to convert to savanna, which 
is entirely unsuitable for specialist rain forest species. Our anal‐
yses of forest conditions are unable to differentiate changes in 
habitat suitability due to transition within rain forest from those 
due to the conversion of rain forest to savanna. However, up to 
90% of current rain forest in the AWT is expected to convert to 
sclerophyll open forest and savanna woodland by 2085 (Hilbert, 
Graham, & Hopkins, 2007; Mokany, Westcott, Prasad, Ford, & 
Metcalfe, 2014).

Some major uplands and mountain peaks of the AWT, including 
the Windsor, Carbine and Atherton uplands, have maintained com‐
plex notophyll vine forests throughout the Pleistocene (Hilbert 
et al., 2007) and represent key refugia for rain forest flora and 
fauna (Reside et al., 2013; Welbergen et al., 2015). These uplands 
support many endemic ant species; for example, 11 ant species 
are known only from Carbine uplands (Nowrouzi et al., 2016). Our 
models reinforce the high sensitivity of these uplands to future 
climate change (Hilbert et al., 2001; Mokany et al., 2014), particu‐
larly those further inland such as Windsor and Carbine. It is highly 

TA B L E  3  Proportion of modelled changes in ant communities’ SEE throughout the AWT, under two climate projections, MIROC (mild) 
and GFDL (harsh), for the three years (2035, 2055, 2085)

Projections of direct (climate) and indirect 
(habitat) effects of climate change MIROC 2035 MIROC 2055 MIROC 2085 GFDL 2035 GFDL 2055 GFDL 2085

Direct effects

Proportion of area with increase in SEE (%) >80% >60% >5% >30 10 >5

Proportion of area with decline in SEE (%) 0 <10% >85 >35% >55% >85

Proportion of area losing ≤½ of SEE‐ areas 
with C values >0.5 (%)

0 0 >50 0 0 60

Combined direct & indirect effects

Proportion of area with increase in SEE (%) 0 0 0 0 0 0

Proportion of area with decline in SEE (%) ~100 100 100 ~90 100 100

Proportion of area losing ≤½ of SEE‐ areas 
with C values >0.5 (%)

0 >60 >90 0 ~50 >90
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unlikely that such inland refugia will be maintained under future 
climates.

Our modelling indicates that even with changing rain forest 
condition, sufficient suitable habitat will remain at the regional 
level to avoid high extinction rates even under an extreme climate 
scenario. However, our analyses of compositional change based 
on SEEs can be considered conservative because it does not ac‐
count for dispersal limitations. In particular, new SEEs on different 
mountains might not be accessible for some species, especially for 
those without winged reproductive, such as within Lioponera and 
Pseudoneoponera (Peeters & Ito, 2001). Our analyses also do not 
account for other factors that can affect extinction rate, such as 
interactions within metapopulations (Morrison, 2002) and allee 
effects (Luque, Giraud, & Courchamp, 2013). Additionally, our 

models do not consider the potential increased incidence of hab‐
itat disturbance through cyclones, which will potentially have a 
major impact on rain forest suitability, including through increased 
risk of weed invasion (Turton, 2012).

In conclusion, our study has demonstrated that rain forest 
ants in the AWT are likely to be severely impacted under climate 
change. The direct impact of a changing climate is likely to be 
substantial, as has been concluded for well‐studied groups such 
as birds, reptiles, mammals, frogs, butterflies and dragonflies 
(Bush et al., 2014; Shoo et al., 2005b; Williams & Pearson, 1997; 
Williams, Williams, Alford, Waycott, & Johnson, 2006). However, 
the changes in ant communities can be expected to be far more 
profound when changes in habitat suitability are also consid‐
ered. Our study shows that projections of reduction in ecological 

F I G U R E  5  Effective area of SEE 
(similar ecological environment; C value; 
Equation 4) for predicted ant communities’ 
composition in the AWT; based on GFDL 
model within three different times, 2035, 
2055 and 2085 (30 years averaged each 
period; under RCP8.5 scenario); a, b & c: 
under predicted climate change only; d, e 
& f: under predicted climate and habitat 
changes. C value = 1, no change, C value 
<1, decrease and >1, increase in area of 
SEE
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environments of ant communities and consequent species turn‐
over in the AWT would be underestimated by 30%–40% without 
integrating the extent to which their habitat will change under a 
changing climate. While these findings relate to ant communities, 
they suggest that modelling of other taxonomic groups, based 
solely on direct effects, may similarly underestimate the impacts 
of climate change. The integration of habitat changes in future 
climate models is likely to substantially improve projections for 
fauna more generally.
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TA B L E  A 2  Pearson correlation coefficients (bottom left triangle) and p values (top right triangle) of the nine predictor variables selected 
by the models

  TS MTWQ. MTCQ. PWP BDW AWC Isothermality Litter depth Disturbance

TS   0.002 0.577 0.656 0.256 0.116 0.000 0.009 0.045

MTWQ −0.26   0.000 0.476 0.859 0.000 0.001 0.000 0.000

MTCQ −0.05 0.78   0.780 0.002 0.587 0.000 0.001 0.000

PWP 0.04 0.06 0.02   0.845 0.016 0.023 0.000 0.000

BDW 0.09 0.01 −0.25 −0.02   0.099 0.010 0.107 0.370

AWC 0.13 −0.29 −0.05 −0.20 −0.14   0.644 0.000 0.110

Isothermality 0.55 0.04 −0.28 0.04 −0.05 −0.01   0.000 0.000

Litter depth −0.22 −0.34 −0.28 −0.43 −0.13 0.34 0.74   0.000

Disturbance 0.17 0.31 0.52 0.54 −0.07 −0.13 −0.69 −0.58  


