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Abstract

Ciguatera is a human illness caused by ingestion of toxic dinoflagellates. It is 

endemic to tropical regions, but has expanded globally, facilitated by increased 

tourism to the tropics and the distribution of frozen fish from the tropics. Fish 

sourced from the Great Barrier Reef (GBR) and Queensland (Qld) coastal 

waters are the primary source of ciguatera in Australia, however, environmental 

drivers of ciguatera remain poorly understood. The main causative 

dinoflagellate genus, Gambierdiscus, produce ciguatoxins that bioaccumulate 

through marine food webs. Gambierdiscus species are frequently found on 

macroalgal substrates and usually co-occur with other benthic dinoflagellates, 

such as Prorocentrum and Ostreopsis. Gambierdiscus species have been 

recorded in the GBR (17 ºS, 20 – 25 ºS, 27ºS) and very recently have been 

recorded as far south as Merimbula (37 ºS), New South Wales (NSW). Eco-

physiological drivers for population range expansions are unknown, but 

increasing sea surface temperatures (SSTs) might facilitate range expansion 

south. Climate change scenarios predict an increase in frequency and intensity 

of warmer than average periods and environmental disturbances, which will 

impact coral reef health. The response of Gambierdiscus and the flow-on effect 

on ciguatera incidence under predicted climate change conditions are unknown 

for Qld. The main objective of this thesis was to contribute to the current state of

knowledge on ciguatera in Qld, Australia. The focus was on the potential effect 

of climate, i.e. increased SSTs and environmental stressors, specifically 

changes in salinity, on the occurrence of ciguatera and the potential for range 
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expansion of Gambierdiscus populations southward into colder coastal marine 

habitats. 

Warmer SSTs associated with climatic events, such as El Niño and the Pacific 

Decadal Oscillation (PDO) have been linked to increases in ciguatera incidence 

for several island nations in the South Pacific region. Coral bleaching is often 

triggered by warmer SSTs, while disturbances from cyclones and crown-of-

thorns starfish (Acanthaster planci) outbreaks frequently co-occur, providing 

new substrates for macroalgae and associated benthic dinoflagellates to 

colonise. The effect of altered climate and environmental disturbances on the 

occurrence of ciguatera in Qld has not been explored previously. A desk study 

was conducted on ciguatera cases reported in an Australian government 

publicly accessible health database. Data were analysed and related to records 

of climate and environmental disturbances during the same period. Ciguatera 

cases were higher in the PDO warm phase than in the cool phase, and coral 

bleaching significantly lowered incidence of ciguatera cases in the year of 

bleaching. The large range of latitude on Qld east coast (10 – 28 ºS) made 

identification of clear links between ciguatera outbreaks and El Niño and other 

disturbance events difficult to identify. Thus, drivers of Gambierdiscus 

population responses to environmental changes need to be identified.

Macroalgal substrate preferences of Gambierdiscus, in terms of phyla and the 

chemical and structural defences of macroalgae against colonisation of 

Gambierdiscus remain unclear. Abundances of Gambierdiscus have been 

reported in the northern and southern regions of the GBR, but not in the central 

GBR. Field surveys conducted for at inshore and mid-shelf reef sites in the 
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central GBR investigated benthic dinoflagellate abundances and preferences of 

Gambierdiscus for different macroalgal substrates, based on thallus form and 

grazing pressures. There appeared to be no macroalgal substrate preference of

Gambierdiscus, but abundance of Gambierdiscus varied with sites. In the 

absence of substrate preference and with the propensity of macroalgae to 

colonise substrates, benthic dinoflagellates are likely to expand populations 

southward into new geographic regions. 

Temperature and salinity can physiologically challenge survival of benthic 

dinoflagellates and thus expansion of geographic range. On the GBR, inshore 

reefs experience more variable temperatures and salinities relative to reefs 

further offshore, and such variations are often influenced by environmental 

disturbances. In the central GBR, field surveys found that Gambierdiscus co-

occur with high abundances of Prorocentrum and Ostreopsis, however, it 

remains unclear whether mixed benthic dinoflagellate assemblages have a 

positive effect on growth of Gambierdiscus populations in periods of 

environmental stress. Fully factorial experiments were conducted to investigate 

firstly, the effect of temperature and salinity on two strains of G. carpenteri 

isolated from GBR waters (NQAIF116 and NQAIF380); and secondly, the effect 

of salinity and the presence of a mixed benthic dinoflagellate assemblage on 

the population growth of the inshore G. carpenteri strain, NQAIF116. NQAIF116

showed a greater potential for range expansion southward into colder estuarine 

environments. Range expansion, however, would not lead to an increase in 

incidence of ciguatera unless the benthic dinoflagellates were taken up by 

resident fish populations, a possibility which requires further research.
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It is thought that the summer occurrence of G. carpenteri in southern waters off 

Merimbula, NSW was caused by transport of the dinoflagellate by the East 

Australian Current (EAC), which can reach further south in a warmer climate. 

Temperature and salinity changes could affect the biochemical profile of 

Gambierdiscus species transported into more southern waters, potentially 

affecting their nutritional qualities, such as their long-chain polyunsaturated fatty

acids (LC-PUFAs) which are essential components in marine food webs. Large-

scale cultures of G. carpenteri, Prorocentrum lima and Ostreopsis sp. were set 

up to investigate whether temperature and salinity, which appeared to drive 

population growth in small-scale cultures, would affect nutritional profiles of 

these dinoflagellates. Culture nutrient status was kept replete for nitrate and 

phosphate. Growth and nutrient uptake rates of dinoflagellates were measured 

every second day in cultures with replete levels of nitrate and phosphate. 

Temperature and salinity changes had negligible effects on Total Fatty Acids 

(FA), Saturated Fatty Acids (SFA), Monounsaturated Fatty Acids (MUFA) and 

Polyunsaturated Fatty Acids (PUFA) in G. carpenteri, P. lima and Ostreopsis sp.

This suggests that benthic dinoflagellates remain a good source of essential 

LC-PUFAs even in conditions of changed temperature and salinity. Population 

growth rate of P. lima (a species that has been implicated in diarrhetic shellfish 

poisoning) is temperature and salinity tolerant. This could have implications for 

oyster beds in NSW. Population growth rate of Ostreopsis was salinity-tolerant, 

but affected slightly by temperature, while population growth rate of G. 

carpenteri was temperature-tolerant, but negatively affected by lower salinity. 

This has implications for the potential of ciguatoxin transfer, the rate of which is 
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considered high in offshore waters, but relatively low in inshore and estuary 

waters. This suggests that a useful extension of the present research would be 

to investigate toxin production in dinoflagellates under temperature and salinity 

stress.

As predicted climate change conditions will impact on coral reef health, 

generating more substrate on the GBR for macroalgae and associated benthic 

dinoflagellate assemblages to colonise. The principle aim of research in this 

thesis was to better understand potential drivers of ciguatera occurrence and 

the effect of predicted climate change on the potential range expansion of 

benthic dinoflagellates into new geographic regions. This was achieved by 

investigating ocean-scale and decadal-scale environmental changes and 

environmental disturbances with respect to a unique, long-term dataset on 

reported ciguatera cases for Qld (chapter 3), evaluating distribution and 

substrate preferences of potentially harmful benthic dinoflagellates (chapter 4), 

investigating responses to temperature and salinity changes on population 

growth of dinoflagellates (chapter 5) and investigating nutritional value of 

benthic dinoflagellates at a lower salinity and temperature, as a novel approach 

to evaluate potential uptake of ciguatoxins into marine food webs (chapter 6). 

These findings have improved our understanding of the influence of ocean-

scale climatic processes in predicting ciguatera occurrence, and data suggest a 

potential for southward geographic expansion of ciguatera occurrence into more

southern coastal environments as climate changes.
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Chapter 1: Introduction

Chapter One: Introduction1

1.1 Aim and Structure of this thesis

The objective of this research was to contribute significantly to the current state 

of knowledge and understanding of ciguatera in Queensland, Australia. The 

research investigated key factors relating to climate change that influence the 

occurrence and frequency of ciguatera in the Great Barrier Reef. The aims of 

this research were to:

 Determine the present state of knowledge on ciguatera research in 

Queensland (Qld);

 Determine whether ciguatera incidence in Qld is linked to climatic 

periods and environmental disturbances;

 Determine the occurrence and likely substrate preference of ciguatera-

causing benthic dinoflagellates in the central Great Barrier Reef 

(GBR);

 Investigate environmental tolerances of benthic dinoflagellates 

isolated from the GBR to determine potential for range expansion 

under changed climatic conditions; and

1 This chapter is adapted from
Heimann, K. and Sparrow, L. (2015) Chapter 37: Ciguatera – tropical reef fish poisoning. In: 
Kim, S.-K. [ed] Handbook of Marine Microalgae Biotechnology Advances. Elsevier, London, pp. 
547-558

Both authors contributed equally to the development of the book chapter.

The chapter has been updated to reflect the current state of knowledge in the field and has 
been modified to fit the thesis flow.
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 Investigate the effect of temperature and salinity on the nutritional 

profile and growth potential of benthic dinoflagellates isolated from the 

GBR and to infer potential for southward geographic expansion of 

these dinoflagellates.

Chapters 2 – 6 have been prepared for publication, with an introduction specific 

for each chapter. Therefore, only a brief introduction to ciguatera, its importance

and major knowledge gaps are presented in chapter 1.

1.2 General Introduction

Ciguatera has been recorded in tropical regions since the 16th century (Lewis, 

1986b; Rhodes et al., 2010) and is now considered the most-reported seafood-

associated illness worldwide (Arena et al., 2004; Friedman et al., 2008; Stinn et 

al., 2000). It is induced by the consumption of tropical fish, which have 

accumulated ciguatoxins through their diet. Ciguatoxins are derived from 

Gambierdiscus spp, benthic toxic dinoflagellates found in assemblages with 

other benthic toxic dinoflagellates, most frequently Prorocentrum and 

Ostreopsis species. It is hypothesized that benthic toxic dinoflagellates are 

taken up by fish grazing on macroalgal substrates (Randall, 1958; Rongo and 

van Woesik, 2011). The toxins are then bio-converted to more potent forms and

trophically transferred to mesopredators, such as mackerel and coral trout that 

are often targeted by fishing for human consumption (Heimann et al., 2011; 

Lewis et al., 1991; Tester et al., 2013).
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1.2.1 Symptoms of ciguatera

Ciguatera produces a range of gastrointestinal, neurological and cardiovascular 

symptoms in humans. Diagnosis is complicated by variation in severity of illness

(depending on the individual affected and the dose of toxin), timing of onset of 

symptoms (usually 1 to 48 hours after consuming fish), absence of a set 

sequence of symptoms experienced, and regional variation in symptoms

(Botana, 2000). The debilitating effects of neurological symptoms can persist for

short periods or can extend over months or even years. The symptoms can be 

retriggered by later consumption of seafood, as well as consumption of non-

seafood based-foods, such as chicken, peanuts and alcohol (Donati, 2006). The

most frequently reported neurological symptoms include headache, sweating, 

fatigue, pruritus (intense itching), paraesthesia (tingling of the oral region and/or

body extremities), arthralgia (joint and muscle pain), sensation of temperature 

cold-hot reversal and paresis (muscular paralysis) (Donati, 2006). Nausea, 

vomiting, diarrhea and abdominal cramps are commonly reported 

gastrointestinal symptoms, while cardiovascular symptoms include low blood 

pressure and an erratic pulse (Donati, 2006).

Variability of ciguatera incidence in the Caribbean and Pacific regions (Dickey 

and Plakas, 2010) has been attributed to several factors. Geographical 

differences in symptoms of ciguatera might reflect the region-specific 

differences in toxin profiles (Lewis, 2001) of the 16 species of Gambierdiscus 

(G. toxicus, G. pacificus, G. australes, G. polynesiensis, G. belizeanus, G. 

caribaeus, G. carpenteri, G. ruetzleri, G. balechii, G. lapillus, G. honu, G. 

carolinianus, G. excentricus, G. scabrosus, G. silvae, G. cheloniae – see 
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Appendix A). Gastrointestinal symptoms are the most commonly reported 

symptoms in the Caribbean (Figure 1.1A). By contrast, neurological symptoms 

are more common in the Pacific region (Figure 1.1B). This suggests that in 

addition to toxin dose, the ciguatoxin type affects the symptoms of ciguatera.

1.2.2 Ciguatera incidence

Nowadays, increased affordability of international travel and a growing 

consumer demand for tropical reef fish in temperate and sub-tropical regions 

(Figure 1.2), has led to a worldwide risk of ciguatera with estimates of 500,000 

people being affected annually (Arena et al., 2004; Dickey and Plakas, 2010; 

Donati, 2006). In tropical regions, estimated annual incidence of ciguatera can 

be highly variable: some island nations report more than 100 cases/ 10,000 

people, while others report incidences lower than 10 cases/ 10,000 people

(Lewis, 1986b; Skinner et al., 2011; Tester et al., 2010). Although an overall 

60% increase of ciguatera incidence in the Pacific was recorded between 1998 

and 2008, variation between Pacific islands remains (Skinner et al., 2011). 

Some regions, such as French Polynesia and Tokelau, have had relatively 

stable annual incidence of ciguatera over the years. Other regions, such as the 

Cook Islands, have experienced great variation in incidences: one case/100,000

for 1983-1993 to 1436/100,000 for 1998-2008 (Skinner et al., 2011). Hotspots 

for ciguatera (Figure 1.2) include French Polynesia, Kiribati, Vanuatu and the 

US Virgin Islands (Chinain et al., 2010; Skinner et al., 2011; Tester et al., 2010).

In Australia, frequent local occurrences of ciguatera has led to coastal areas in 

the Gulf of Carpentaria, Northern Territory being recognised as local hotspots

(Lucas et al., 1997), while in Queensland (Qld), Platypus Bay, Fraser Island is a
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Figure 1.1 Percentage of (A) gastrointestinal symptoms and (B) neurological symptoms 
(mean ± SE; except Madagascar with 5% error as only a single case study) in reported 
ciguatera cases. (Arena et al., 2004; Barkin, 1974b; Baumann et al., 2010; Gillespie et al., 
1986; Harvey, 1997; Morris et al., 1982; Neville and Warren, 2003; Ng and Gregory, 2000; 
Ting et al., 1998)
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globally known hotspot after Spanish mackerel sourced from the area and sent 

to the Sydney Fish Markets was linked to an outbreak in Sydney, New South 

Wales (NSW) (Lehane and Lewis, 2000). In Qld, an annual incident rate of 

three cases / 10,000 population was estimated based on a telephone survey 

conducted in 1985 within Cairns, northern Qld and Maryborough, southern Qld

(Capra and Cameron, 1985). At the time, this estimate was comparable with the

ciguatera incidence rate in the Pacific. While recent questionnaires in the Pacific

have identified that the incidence rate has increased by 66% (Skinner et al., 

2011), the prevalence of ciguatera in Qld has not been reviewed recently.

Figure 1.2 Frequency and occurrence of ciguatera hot spots (black triangles), reported ciguatera
cases outside tropical regions (orange-red band) associated with travellers (grey circles) and 
fish exports (black circles), Gambierdiscus spp. isolates within tropical regions (white squares) 
and range expansions into temperate regions (green squares), (for additional description and 
references, see supplementary Table S1.1, Appendix A).

1.2.3 Economic constraints and considerations

Ciguatera management practices globally remain limited to restrictions and 

bans on commercial purchase or capture of commonly implicated fish species, 
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as preventative solutions have not yet been developed. These solutions could 

include an affordable and reliable test kit for detection of ciguatoxins in captured

fish and monitoring systems for ciguatera-causing dinoflagellates. Existing 

management practices have limited the development of local marine fisheries 

on Caribbean and Pacific islands dependent on the export trade (Anderson and 

Lobel, 1987; Olsen et al., 1984). Economic losses induced by ciguatera can 

impact at national, regional and local levels through a) the loss of faith in the 

primary industry and/or export restriction for certain fish species, b) effects on 

tourism in known ciguatera hot spots, and c) reduced income (Bagnis et al., 

1990; Botana, 2000; Lewis, 1986a; Lewis, 1986b). The local economy of the 

Pacific island nation of Kiribati was severely impacted after the loss of their 

export trade with Hong Kong due to an outbreak of ciguatera from their 

exported fish. This resulted in a loss of AU$250,000 annual income (Laurent et 

al., 2005). In Qld, Australia, Spanish mackerel and coral trout support 

commercially important fisheries and are known to accumulate ciguatoxins, 

however, the economic impact of ciguatera on these fisheries has not been 

explored. The Sydney Fish Markets (SFM), the largest fish market in the 

southern hemisphere, has imposed restrictions and bans on fish species and 

locations associated with high risk of ciguatera since a major outbreak of 

ciguatera in 1987. Restrictions prohibit the sale of certain fish at the SFM, 

particularly Spanish mackerel, supplied from Platypus Bay, Fraser Island, Qld. 

Since 2014 an increase in reported ciguatera cases in southern Qld has 

coincided with the migration of Spanish mackerel into these coastal waters. The

first reports of ciguatera incidence in adjoining northern NSW was associated 

with the migration of Spanish mackerel from southern Qld tropical waters into 
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the temperate northern NSW waters (Farrell et al., 2016a; Farrell et al., 2016b). 

To truly reflect ciguatera-associated economic losses and health costs, a much 

greater, in-depth understanding of distribution and seasonality patterns, 

prevalence and incidence of ciguatera is required.

1.2.4 Occurrence of ciguatera

Annual reported ciguatera cases are often estimated from health and hospital 

records. Mild cases, however, are often not recognized and gastrointestinal 

symptoms experienced are frequently misdiagnosed as influenza or general 

food poisoning. Furthermore, affected travelers returning to temperate regions 

are often misdiagnosed as medical practitioners there are unfamiliar with this 

tropical illness. It has been estimated that fewer than 10 – 20% of ciguatera 

cases are actually reported to medical authorities in tropical regions (Arena et 

al., 2004; Lewis, 2006). Other factors that influence under-reporting include 

geographic isolation, inadequate access to medical and technical infrastructure

(Anderson and Lobel, 1987; Kaly et al., 1991), and preferential use of traditional

medicines (Kumar-Roiné et al., 2011). Reporting of ciguatera cases in Qld, 

Australia, is mandatory for medical staff and is collated and managed as part of 

the Australian government health database. These data are analysed in chapter

2 and compared with previous studies conducted between 1976 and 1995

(Gillespie et al., 1986; Harvey, 1997).

The health database was used in previous studies to investigate ciguatera 

distribution trends in Qld with the focus of the study being the origin (i.e. catch 

location) of fish implicated in reported ciguatera cases. Spanish mackerel 
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(Scombridae) and coral trout (Serranidae) have been frequently implicated in 

reported ciguatera cases since 1965, when relevant records were first kept

(Gillespie et al., 1986). These earlier studies identified that serranids were more

frequently implicated north of Rockhampton (23 °S), while scombrids were 

associated with ciguatera mostly south of this latitude (Gillespie et al., 1986; 

Harvey, 1997). Not all reports of ciguatera, however, included the fish species 

and/or origin of the fish, which may bias apparent distribution trends across Qld.

Ciguatera occurrence based on the location of reported cases is likely to be 

documented more reliably on the health database. By contrast, identifying the 

origin and species of fish responsible for the ciguatera case is far more 

problematic. The health database has not previously been used to investigate 

potential spatial patterns of origin of fish responsible for ciguatera cases and 

regional location of reported cases in Qld. Diet and movement patterns of fish 

implicated in ciguatera in Qld often differ. Scombridae are predatory and 

migratory, serranids are predatory and sedentary reef fish (Begg and Hopper, 

1997; Beukers-Stewart and Jones, 2004; St John et al., 2001). The potential 

vectors that transfer ciguatoxins into the diet of these mesopredators, and other 

fish species frequently implicated in ciguatera in Qld are unknown. Chapter 2, 

therefore, investigates regional distribution and spatial patterns of fish often 

implicated in ciguatera and as well as location of reported cases in Qld. Diets of 

fish families frequently implicated in ciguatera are also investigated and 

compared with the diets of fish families similarly implicated in the Pacific and 

Caribbean, to provide a broader understanding of potential vectors.
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In the Pacific region, occurrence of ciguatera and Gambierdiscus populations 

have been positively linked to warmer sea surface temperatures (SSTs) during 

warm climate periods, such as El Niño and the Pacific Decadal Oscillation 

(PDO) (Hales et al., 1999; Llewellyn, 2010). The intensity of El Niño periods is 

thought to be influenced by the ocean-scale PDO, which oscillates between 

warmer than average (warm phase) to cooler than average (cool phase) cycles 

every 25 – 30 years (Chavez et al., 2003; Rongo and van Woesik, 2011). 

Warmer SSTs can also trigger coral bleaching, which provides new substrates 

for macroalgae and associated benthic dinoflagellates to colonise. Larger size 

of Gambierdiscus populations have been reported 13 – 17 months after warmer

SSTs were recorded (Chateau-Degat et al., 2005), and within two to three 

months following coral bleaching events (Bagnis and Rougerie, 1992; Turquet 

et al., 2001). Environmental disturbances, including cyclones, storms and 

Acanthaster planci outbreaks also provide new substrates (dead coral surfaces)

for increased abundance of macroalgae colonised by Gambierdiscus 

populations. Climate change conditions are predicted to increase the frequency 

of warmer climatic periods, with a greater risk of coral bleaching and occurrence

and intensity of other environmental disturbances (Hoegh-Guldberg and Bruno, 

2010; Hughes et al., 2017). It is likely that ciguatera incidence will increase 

under predicted climate change scenarios. Although reported ciguatera 

incidence was linked to warmer periods during the PDO, this relates primarily to

the most recent PDO warm phase between 1976 and approximately 1998

(Llewellyn, 2010). The effect of the PDO, El Niño and environmental 

disturbances on ciguatera has not previously been investigated in Qld. 

Therefore a desk study was carried out (chapter 3) to evaluate whether 
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fluctuations in reported ciguatera cases were associated with such phenomena.

Chateau-Degat et al. (2005) identified a timeline of approximately 13 – 17 

months between warmer SSTs and increases in abundance of Gambierdiscus, 

with a further three months before increased incidence of ciguatera. It is 

therefore possible that ciguatera occurrence is lower in the year of coral 

bleaching. Whether delays are associated with preferences of Gambierdiscus 

for particular macroalgal substrates is unknown on the GBR.

1.2.5 Ciguatera-causing dinoflagellates

The principal dinoflagellate taxon responsible for ciguatera, the genus 

Gambierdiscus, occurs primarily on macroalgal substrates within benthic 

dinoflagellate assemblages that are often dominated by Prorocentrum and/or 

Ostreopsis species. Grazing fish species have been traditionally implicated as 

vectors in the uptake of ciguatoxins (Cruz-Rivera and Villareal, 2006; Hales et 

al., 1999; Heil et al., 2004), however, a recent feeding trial demonstrated the 

uptake of Gambierdiscus and bioaccumulation of ciguatoxins in the filter-feeding

bivalves, Tridacna maxima (Roué et al., 2016). The potentially important role of 

benthic invertebrates in the trophic transfer of ciguatoxins has been raised 

previously (Cruz-Rivera and Villareal, 2006; Heimann et al., 2011; Lewis, 2006),

but has received little attention. It is suggested that larger invertebrates, such as

sea urchins and some crustaceans may inadvertently graze on benthic 

dinoflagellates. Such inadvertent ingestion has similarly been hypothesised for 

grazing fish. Other invertebrates, such as certain types of benthic zooplankton 

are likely to graze directly on benthic dinoflagellates (Figure 1.3). It is unknown 

whether substrate preference is related to macroalgal palatability of dominant 

grazers, such as remnant, unpalatable macroalgae remaining after grazing by 
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fish species, or whether substrate choice is to avoid direct benthic zooplankton 

predation.

Figure 1.3 Schematic diagram of potential grazing vectors and potential trophic transfer 
routes of ciguatoxins (Heimann et al., 2011).

The sporadic and patchy distribution of Gambierdiscus populations on 

macroalgal substrates is thought to be governed by a complex interplay 

between factors affecting dinoflagellate growth (environmental and physico-

chemical parameters) and predation/ grazing pressure. Gambierdiscus is not an

obligate epiphyte, but has varied degrees of motility depending on availability 

and identity of macroalgal substrata (Parsons et al., 2011; Rains and Parsons, 

2015). Motility may provide an advantage during periods of environmental 

stress (e.g. changes in salinity, temperature and light intensity), allowing 

Gambierdiscus cells to move between substrata and depth to minimise stress. 
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The size and distribution of Gambierdiscus populations on macroalgae vary 

among and within reefs, and among macroalgal species within a reef (Cruz-

Rivera and Villareal, 2006). At present, ciguatera research focuses on sampling 

substrata with high abundances of Gambierdiscus. Such high abundances may 

reflect low grazing pressure on the dinoflagellates due to low herbivore 

abundance and thus potentially low rates of ciguatoxin transfer through marine 

food webs. Macroalgal palatability varies widely, with grazing preferences for 

algae by some fish and sea urchin species documented on the GBR (Mantyka 

and Bellwood, 2007; Rasher et al., 2013; Seymour et al., 2013). Potential 

substrate preferences of benthic dinoflagellates in relation to thallus form or 

grazing pressure on the GBR are unknown. As abundances of benthic 

dinoflagellates, including Gambierdiscus have not been recorded in the central 

GBR, field surveys were conducted (chapter 4) to investigate benthic 

dinoflagellates abundances and potential macroalgal substrate preferences of 

these dinoflagellates at inshore and mid-shelf reefs. There appeared to be 

within-reef specific preferences of dinoflagellates for macroalgal substrata, 

suggesting that environmental factors affect dinoflagellate abundance more 

strongly than type and availability of macroalgal substrates. In the absence of a 

macroalgal substrate preference, benthic dinoflagellates have the potential to 

expand into cooler coastal habitats, where macroalgae often dominate reef 

benthos.

Tropical coral reefs are dynamic ecosystems and temporary or permanent shifts

in dominance from coral to macroalgal substrata have been attributed to 

environmental disturbances such as cyclones, A. planci outbreaks and coral 
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bleaching events triggered by SSTs (Cheal et al., 2010; Diaz-Pulido and 

McCook, 2002a). On the GBR freshwater influxes often follow cyclones and 

storms, resulting in reduced salinities sometimes < 10 in coastal habitats, such 

as estuaries and river mouths (Devlin et al., 2001). Freshwater plumes can 

cause osmotically-induced coral bleaching on inshore reefs extending 

sometimes as far off the coast as mid-shelf reefs (Devlin et al., 2001). Although 

environmental disturbances can lead to more frequent occurrence of ciguatera 

poisoning (chapter 3), the effect of temperature and salinity stressors on the 

growth of benthic dinoflagellate populations on the GBR is unknown.

Warmer SSTs experienced through climate change potentially create range 

expansions of dinoflagellate populations, not only within tropical regions but 

also from tropical to sub-tropical and even colder marine habitats (Heimann et 

al., 2011; Kohli et al., 2014). The expansion of Gambierdiscus populations into 

temperate regions has been recorded since 2003 (Figure 1.2). Recently, 

Gambierdiscus carpenteri was recorded in southern NSW waters off Merimbula

(Kohli et al., 2014; Rhodes et al., 2014). The East Australian Current (EAC), 

which has been strengthened under climate change conditions, (Heimann et al.,

2011) is the likely vehicle for this range expansion. It has been demonstrated 

that the EAC provides seasonal replenishment of reef fish populations from 

southern Qld to more southerly estuarine environments during the Austral 

summer (Booth et al., 2007). There is evidence that tropical reef fish are 

acclimating to cooler temperatures in these southern habitats and thereby 

surviving as permanent populations (Figueira and Booth, 2010). However, it is 

unknown whether G. carpenteri populations are also persisting in NSW 
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coastline. It is also unknown whether species occurring in temperate regions 

produce toxins and which factors regulate toxin production. It is therefore 

important to identify and understand responses of ciguatera-causing 

dinoflagellates to environmental drivers as these drivers are likely to govern any

range expansion into temperate regions. Along with G. carpenteri, other benthic

dinoflagellates of unknown origin were documented in southern NSW waters

(Kohli et al., 2014). There has been little focus, however, on the influence of 

benthic dinoflagellate assemblages on Gambierdiscus populations and their 

potential importance for survival under changing climatic conditions. In chapter 

5, the effects of temperature and lower salinities were investigated on 

population growth of two strains of G. carpenteri isolated from GBR waters. One

strain was from an inshore habitat and the other from a more stable marine 

environment, similar to offshore habitats. Differences in population growth 

responses to temperature and salinity changes between the two strains suggest

that habitat of origin may influence ability to persist in changing environmental 

conditions (Sparrow et al., 2017). As Gambierdiscus co-occurs predominantly 

with Prorocentrum and Ostreopsis species on substrates in the central GBR 

(investigated in chapter 4), the effect of mixed benthic dinoflagellate 

assemblages on growth rates of G. carpenteri at lower salinities was also 

investigated. Salinity had a significant effect on the survival of G. carpenteri, 

which increased with lower salinities for the inshore isolate. These data suggest

a likely potential for southward range expansion of benthic dinoflagellates into 

colder coastal environments, including estuaries.
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In Merimbula, southern NSW, G. carpenteri populations occur from January to 

May, however, the presence of the species did not result in visible benthic 

dinoflagellate blooms during this period (Kohli et al., 2014). This observation 

suggests that environmental conditions in southern NSW either limit growth 

(prevent blooms) or that populations are actively grazed by resident fish 

species. While ciguatoxins bioaccumulate in marine food webs, it is unknown 

whether macroalgal substrates with large population sizes of benthic 

dinoflagellates are targeted by grazing fish compared to less populated 

macroalgal substrates. Planktonic dinoflagellates and diatoms are a primary 

source of essential long-chain polyunsaturated fatty acids (LC-PUFAs) in 

marine food webs (Carreón-Palau et al., 2013; Kelly and Scheibling, 2012; Litz 

et al., 2010), however, there is a paucity of research on the nutritional value of 

benthic dinoflagellates (Usup et al., 2008). Particularly important for healthy 

human diets are the essential fatty acids, eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA) (Fernandes et al., 2014; Huynh and Kitts, 2009; 

Sargent et al., 1999). As these fatty acids cannot be biosynthesized by 

vertebrates, they must be taken up in the diet (Carreón-Palau et al., 2013; Li et 

al., 2012). The nutritional qualities of benthic dinoflagellates could be affected 

by temperature and salinity changes. As small-scale experiments determined 

that temperature and salinity affected growth rates of G. carpenteri populations 

(chapter 5), large-scale cultures of G. carpenteri, Prorocentrum lima and 

Ostreopsis sp. were raised to investigate whether lower temperature and 

salinity would affect biochemical profiles (chapter 6). To simulate bloom 

conditions, cultures were supplemented with nitrate and/or phosphate when 

needed and their growth rates and nutrient uptake rates were monitored. 
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Population growth of G. carpenteri was reduced by lower salinity. Population 

growth of Ostreopsis sp. was reduced by lower temperature. In comparison, 

population growth of P. lima was not affected by temperature or salinity. This 

suggests that potential for southward range expansion into cooler coastal 

habitats is likely to differ among benthic dinoflagellates, with P. lima capable of 

adapting to a wider range of coastal habitats compared to G. carpenteri and 

Ostreopsis. While estuaries and riverine environments appear to be unsuitable 

for colonies of G. carpenteri and Ostreopsis to populate in the tropics, 

populations have been recorded in these environments in southern NSW

(Heimann et al., 2011; Kohli et al., 2014). Whether these benthic dinoflagellates 

have been transported from the southern GBR to NSW by the EAC, as has 

occurred for some reef fish, and are adapting to local climatic and 

environmental conditions is still unclear and needs further research.

In summary, the present state of knowledge is reviewed in chapter 2, whilst 

research relating to the focus of the thesis is presented in chapters 3 – 6. 

Research outcomes are synthesised and future areas of research focus are 

identified in the general discussion (chapter 7).

This thesis focused on research gaps in the occurrence of ciguatera in 

Queensland, Australia relative to: 

 climate change and oceanic ecosystem trends; 

 investigation into macroalgal substrate preference of benthic toxic 

dinoflagellate assemblages in the central Great Barrier Reef; 
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 population growth responses of GBR-isolates of Gambierdiscus carpenteri

to temperature and salinity, including the potential role of co-occurring 

benthic dinoflagellates to shape responses under adverse conditions 

associated with climate change; and 

 impact of temperature and salinity on nutritional quality (essential LC-

PUFA, critical for marine food webs), nutrient uptake rates and growth of 

benthic dinoflagellates.

Brief descriptions of the aims for each chapter are provided below.

The objective of chapter two was to evaluate the present state of knowledge on 

ciguatera in Qld, Australia. Therefore, the aims of chapter two were to:

 investigate regional distribution patterns of reported ciguatera cases;

 identify fish families frequently implicated in reported cases;

 investigate spatial trends in fish families implicated in reported ciguatera 

cases;

 analyse the reported diets of fish families frequently implicated in ciguatera

outbreaks to identify potential key vectors in the trophic transfer of 

ciguatoxins; and

 compare a 20-year study (1976 – 1995) of ciguatera incidence with current

accessible data for 1996 – 2012.

18



Chapter 1: Introduction

The objective of chapter three was to evaluate whether fluctuations in the 

occurrence of ciguatera in Qld, Australia are associated with climatic periods or 

environmental disturbances, through a unique study of reported cases covering 

a 37-year period. Therefore, the aims of chapter three were to:

 determine whether El Niño and/or the PDO affects the frequency of 

ciguatera incidence;

 evaluate the effect of environmental disturbances on ciguatera incidence;

 determine whether coral bleaching interacts with warmer climate periods 

in relation to incidence of ciguatera.

Chapter four focused on improving current knowledge of benthic toxic 

dinoflagellate population size and structure on macroalgal substrates in the 

central Great Barrier Reef. Therefore, the aims of chapter four were to:

 investigate potential seasonal or temporal trends in the occurrence of 

benthic toxic dinoflagellates; 

 investigate grazing and macroalgal morphology as potential drivers in the 

distribution of benthic toxic dinoflagellates.

Chapter three determined that ciguatera incidence increases in the warm PDO 

phase, but incidence is low in the actual year of coral bleaching, suggesting 

environmental stressors, such as temperature and salinity may affect growth of 

the relevant dinoflagellates. The objective of chapter five was to investigate 

growth responses of two strains of G. carpenteri and its associated 

dinoflagellate assemblage to changes in temperature and salinity. This 
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knowledge is critical to determine potential range expansion under changed 

climatic conditions. Therefore, the aims of chapter five were to:

 investigate population growth of two strains of G. carpenteri in lower 

salinities at three temperatures, typical of environmental conditions in 

coastal waters and on coral reefs; and 

 investigate effects of mixed benthic dinoflagellate assemblage structure on

population growth and survival of G. carpenteri in lower salinities.

Ciguatera requires ingestion of Gambierdiscus spp, which may well be 

governed by “tastiness” of the prey. As small-scale experiments demonstrated 

potential for range expansion, chapter six investigates the effect of temperature 

and salinity on the nutritional value of benthic toxic dinoflagellates (particularly 

content of essential LC-PUFA). This knowledge is essential in predicting the 

likelihood of ciguatera range expansion to cooler southern Australian climates. 

Therefore, the aim of chapter six was to:

 determine the effect of temperature and salinity on biochemical profiles 

and growth potential of G. carpenteri and its associated dinoflagellate 

assemblage.
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Chapter 2: Ciguatera spatial patterns and occurrence in Qld

Chapter Two: Spatial patterns and occurrence of 

ciguatera in relation to commercially important 

fisheries in Queensland, Australia (1976 – 2012)2     

2.1 Abstract

Ciguatera is an illness caused by ingestion of ciguatoxins in fish, which affects 

coastal communities in tropical regions. It is predicted that ciguatera incidence 

in tropical regions will increase under climate change conditions, while coastal 

populations in colder regions may be increasingly at risk of ciguatera due to 

extended migration patterns of fish with accumulated ciguatoxins under climate 

change-induced weather conditions. Ciguatera is frequently reported in 

Queensland (Qld) Australia, however, the full impact of ciguatera on coastal 

populations has not been explored. In this study, the Qld Health Department 

database for foodborne diseases was used to investigate geographical 

distribution, potential seasonality of ciguatera cases and to identify fish families 

frequently implicated in ciguatera cases. The diet of fish families most often 

associated with ciguatera for Qld, the Pacific and Caribbean regions was 

identified using a publicly accessible fish database. Reported cases and fish 

families implicated in ciguatera showed regional variation in Qld. Occurrence of 

ciguatera was lower in isolated, less populated communities in central and far 

north Qld, while the larger number of reported cases in south-east Qld between 

1996 and 2010 appeared to drive temporal occurrence. Seasonal peak during 

2  The paper was written in its entirety by Leanne Sparrow with editorial input by 
Kirsten Heimann, Leone Bielig, Angela Capper and David Blair.
The work is presented as submitted, except for changing the formatting to match 
that of the rest of this thesis.
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the Austral wet season was driven by Scombridae, with 75% of cases reported 

for this fish family observed in this season. By contrast, Serranidae were only 

implicated in cases reported north of 25 °S, which may be habitat-associated. 

Fish prey and benthic crustaceans were major dietary components of 

mesopredators, such as scombrids and serranids, which were often associated 

with ciguatera throughout the tropical regions, including Qld. Lower number of 

reported cases with distance from the highly populated south-east may be 

skewed by under-reporting, which may also effect distribution patterns of fish 

families frequently implicated by ciguatera. It is therefore important to implement

a questionnaire that can obtain qualitative and quantitative data to provide a 

more accurate understanding of the impact of ciguatera, while ecological 

research would contribute knowledge to potentially significant prey in complex 

food webs that leads to accumulation of high ciguatoxin concentrations in 

mesopredators.

2.2 Introduction

Humans can be affected by ciguatera poisoning when they consume fish that 

have accumulated ciguatoxins through their diet. Ciguatoxins are derived 

primarily from the benthic dinoflagellate, Gambierdiscus, which often co-occurs 

with other benthic dinoflagellates mostly on macroalgal substrates, but also on 

coral and sand (Faust, 1995; Litaker et al., 2009; Morton and Faust, 1997). 

Warmer sea surface temperatures (SSTs) have been linked to increases in 

abundance of Gambierdiscus populations and consequent increases in 

ciguatera poisoning in humans (Chateau-Degat et al., 2005; Llewellyn, 2010). 

Furthermore, Gambierdiscus species are less tolerant of lower temperatures at 
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higher latitudes (Kibler et al., 2012; Xu et al., 2014), similar to the thermal 

tolerance of corals with latitude recorded for corals on the Great Barrier Reef 

(GBR) (Berkelmans et al., 2012), and foraminifera along the Queensland (Qld) 

coastline, Australia (Momigliano and Uthicke, 2013). As the GBR and Qld 

coastlines extend more than 12 and 18° of latitude, respectively, it is predicted 

that Gambierdiscus populations will be less tolerant of cooler temperatures at 

higher latitudes and thus, ciguatera occurrence could decline at higher latitudes 

along the Qld coastline.

Misdiagnosis of ciguatera illness is the primary factor for under-reporting, 

exacerbated by geographic isolation and inadequate access to medical 

infrastructure in remote tropical regions (Anderson and Lobel, 1987; Kaly et al., 

1991). This can lead to vast differences in estimates of numbers of cases, as 

observed among island nations in the Pacific region (Lewis, 1986b; Skinner et 

al., 2011). In Qld, only temporal patterns of ciguatera poisoning, based on 

annual reported cases, have been documented, although it was suggested that 

under-reporting appeared to increase with distance from metropolitan south-

east Qld (Gillespie et al., 1986). Regional distribution of ciguatera poisoning has

not previously been investigated in Qld. Instead, distribution patterns of 

ciguatera for Qld focussed on the origin of fish implicated in ciguatera cases, 

with emphasis on scombrids and serranids (Gillespie et al., 1986; Harvey, 

1997).
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It was first hypothesised by Randall (1958) that grazing fish inadvertently uptake

Gambierdiscus while grazing on macroalgae. Recent research supports this 

general hypothesis with the discovery of ciguatoxins in grazing Acanthuridae 

(surgeonfish) and Labridae (parrotfish) (Chinain et al., 2010). Dinoflagellates, 

however, are a rich source of essential fatty acids (Carreón-Palau et al., 2013; 

Kelly and Scheibling, 2012; Wilson et al., 2001), it is unclear whether 

macroalgae colonised by benthic dinoflagellates are directly targeted by grazing

fish. Although grazing fish species are a variable component of the diet in many 

Pacific Island nations, mesopredators are a common group of fish implicated in 

ciguatera (Baumann et al., 2010; Morris et al., 1982; Rongo and van Woesik, 

2011; Stinn et al., 2000). By contrast, only mesopredators have caused 

ciguatera in Qld. The main reason for this is that few people in Qld target and 

eat grazing reef fish in Qld. The main targets of reef fishing in tropical Qld are 

Serranidae (coral trout and grouper) and Scombridae (mackerel), both 

frequently implicated in reported ciguatera cases (Gillespie et al., 1986; Harvey,

1997). Although it is assumed that ciguatoxins bioaccumulate through marine 

food webs by trophic transfer, from grazing fish, such as surgeon- and 

parrotfish, to mesopredators, this link has not been confirmed.

In Qld, recreational, commercial and charter fishing combined have been 

estimated at an annual gross value between AU$43 and 60 million (Innes et al., 

2014a; Jones et al., 2007; Thébaud et al., 2014). Most commercially targeted 

fish in Qld are sourced from the GBR and are known sources of ciguatera. 

Although serranids and scombrids continue to be frequently associated with 

ciguatera in Qld, these species remain important fisheries to the Qld economy.
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(Innes et al., 2014a; Thébaud et al., 2014). Management practices in Qld are 

currently dependent on bans, restrictions and conservation legislation to reduce 

the risk of ciguatera occurrence. Particular species of tropical snappers 

(Lutjanidae) are known carriers of ciguatoxins and are considered high-risk of 

causing ciguatera poisoning in humans in Qld. For this reason, the Qld 

Department of Agriculture and Fisheries (DAF) imposed a ban on the keeping 

or sale of red bass (Lutjanus bohar), paddletail (L. gibbus) and chinamanfish 

(Symphorus nematophorus) (Gillespie et al., 1988). Fisheries restrictions that 

may also reduce the risk of ciguatera poisoning, including maximum length 

limits for certain species. Furthermore, bans on sale of certain fish species (e.g. 

Spanish mackerel) from particular locations in Qld and from certain locations in 

the Pacific have been implemented by the Sydney Fish Market (SFM), New 

South Wales (34°S), the largest fish market in the southern hemisphere. These 

restrictions on sale of certain species from certain locations were in response to

an outbreak of ciguatera that affected 63 people in Sydney due to consumption 

of Spanish mackerel sourced from Qld coastal waters in Platypus Bay, Fraser 

Island (25 °S) (Capra and Cameron, 1990). A Humphead Maori wrasse 

(Labridae), which was sourced from GBR waters, was the cause of a ciguatera 

outbreak in Victoria (37 °S) in 1997 (Ng and Gregory, 2000), and Maori Wrasse 

have also been implicated in three ciguatera incidents in Qld prior to 1984

(Gillespie et al., 1986). This is a sought-after fish species in the Pacific region, 

but is now protected from fishing in Qld waters as an iconic species on the GBR

under Australian and Qld state conservation legislation.
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Spatial management zones, fish bans and weight limits can affect the rate and 

distribution patterns of ciguatera incidents. It is therefore critical to ensure best 

management practices can be applied to minimise the socio-economic risk of 

ciguatera to Qld fisheries. Literature to date on the status of ciguatera in Qld, 

however, lacks the spatial resolution to identify Qld-wide patterns of ciguatera 

distribution, particularly in terms of ciguatera cases and, to a lesser extent, 

spatial sources of implicated fish (e.g. Gillespie 1988, Harvey 1997). It is 

important to define the spatial distribution of cases and sources of ciguatera, 

since the potential for increases in SSTs in the future due to climate change 

raise the prospect of such distributions changing, specifically becoming more 

prevalent at higher latitudes. The aims of this study were to review the current 

state of knowledge on ciguatera occurrence in Qld between 1996 and 2012, 

and investigate seasonal and regional patterns of distribution of ciguatera based

on case locations as well as the origin of fish implicated in these cases. Current 

knowledge was compared with available data on annual reported cases and 

origin of implicated fish from an earlier 20-year study (1976 – 1995) (Harvey, 

1997); data by Gillespie 1965 – 1984 (Gillespie et al., 1986) could not be 

included because data records prior to 1976 were not reliable and annual 

reported cases of ciguatera were not detailed prior to 1976.

2.3 Methods

In Australia, hospital and health records are collated into a database maintained

by the Australian Government Department of Health. As reporting of ciguatera 

cases is only mandatory in Qld, occurrence and distribution of ciguatera has not

been investigated in any other Australian state. Due to the length of  the Qld 
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coastline, distribution of ciguatera cases was subdivided  between northern and 

southern Qld areas and further sub-divided into five zones as defined by Harvey

(1997) (Figure 2.1). Distribution patterns of ciguatera cases in previous studies 

had access to the origin of fish implicated in the particular ciguatera case in 

Figure 2.1 Map of Queensland (Qld), Australia. Yeppoon lies at the boundary between 
northern and southern Qld (23°S); the metropolitan south-east region is shown. Five 
regional zones (as derived by Harvey 1997) are indicated: zone (1) south of 26°S; (2) 
north of 26°S to 23°S (north of Yeppoon); (3) north of 23°S to 20°S (south of Bowen); (4) 
north of 20°S to 17°S (south of Cairns); (5) north of 17°S. Number of cases reported in 
each zone during the study period between 1996 to 2010 shown in brackets below zone 
number, and figures shown in brackets on right of fish symbol in each zone indicates 
number of reported cases based on locality of fish capture in the period 2001 – 2012 and 
in the period 1976 – 1995 (Harvey 1997), respectively.
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45% of cases (Table 2.1). In the present study, origin of fish implicated in any 

particular ciguatera case was recorded for only 22% of cases reported between 

1996 and 2012, which indicates that greater care in recording connected data 

was taken in earlier recordings of ciguatera incidence. By contrast, location of 

the ciguatera case itself was available for 94% of cases reported (Table 2.1) 

and was, therefore, used to investigate regional distribution patterns of cases.

Table 2.1 A comparison of studies on ciguatera occurrence in Qld where reported cases 
included the regional case location and where implicated fish were caught.

No. cases
reported

Current study
1996 – 2012

Gillespie et al
(1988)

1965 – 1984

Hervey (1997)
1976 – 1995

Total – Qld 385 527 925

Case location 
included

363 - -

(%) (94)
Fish location 
included

86 258 418

(%) (22) (49) (45)

Southern Qld 67 218 262 
(%) (78) (84) (63)

Northern Qld 19 40 156 
(%) (22) (16) (37)

Location – no 
data

299 269 507

(%) (78) (51) (55)

This study utilised publicly available databases. The Ozfoodnet Working Group 

database produced quarterly information on the reported cases of foodborne 

diseases in Australia, including ciguatera, for the period, 2001 - 2012. These 

data were supplemented with information from Queensland Health for the 

period, 1996 – 2000, however, information on fish implicated in reported 

ciguatera cases for Qld, within the study period, could only be obtained from 
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2001 onwards. When available, records detailed the identities of the fish 

species consumed, location (origin) of fish, and source, i.e. whether fish were 

caught recreationally or purchased in restaurants, fish shops or supermarkets.

Fishbase (Froese and Pauly, 2010) incorporates records of fish associated with 

ciguatera incidents or analysed for ciguatoxins. For the South Pacific, the 

database incorporated relevant information provided by the Secretariat of the 

Pacific Community (SPC, previously known as the South Pacific Commission), 

for the year 1990. The origin, geographic distribution and frequency of 

occurrences of ciguatera cases were detailed, when known. All fish species 

implicated in ciguatera cases according to both databases were identified to 

family level along with their common names (Table 2.2). Dietary analysis of fish 

families associated with ciguatera in Qld were limited in Fishbase (Froese and 

Pauly, 2010), so studies from the Pacific and Caribbean regions were 

incorporated for a broader understanding of potentially important marine taxa in 

the trophic transfer of ciguatoxins to mesopredators.

Table 2.2 List of fish families implicated with reported human ciguatera cases in 
Queensland (Qld), Australia. The common names, as used in Qld, Australia are listed.

Fish Family Common Name
Carangidae Trevally, jack, pompano, scad, amberjack
Carcharhinidae Requiem shark
Haemulidae Grunts, sweetlips
Labridae Wrasse
Lethrinidae Emperor bream, emperor, sea bream
Lutjanidae Snapper, red snapper
Mugilidae Mullet
Pomatomidae Bluefish, tailor
Sciaenidae Jewfish
Scombridae Mackerel, tuna, bonito
Serranidae Coral trout, grouper, cod, sea bass
Sphyraenidae Barracuda
Terapontidae Grunter, tigerperch
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Uranoscopidae Stargazer

2.4 Results

2.4.1 Distribution of reported ciguatera cases in Queensland

Although a general decline in the occurrence of reported ciguatera cases was 

observed with northward distance from metropolitan south-east Qld, it was 

noted that the lowest frequency was recorded in Zone 3, in central Qld (Figure 

2.1). Basing ciguatera occurrence on locality of fish capture, however, showed 

no latitudinal trend for the current or previous (1976 – 1995) study period. An 

infrequent occurrence of reported ciguatera by incidence and by locality of fish 

capture in Zone 3 was consistent over the 37-year period (Figure 2.1). Annually 

reported data available between 1996 and 2010, and based on case location, 

showed a general declined northward from Zone 1, apart from the lowest 

frequency of ciguatera in central Qld (Figure 2.2).

Despite massive inter-annual variability of case numbers, reported cases of 

ciguatera poisoning in humans per year declined markedly over the 37-year 

period of 1976-2012 in Qld (Fig. 2.2), from a high of almost 100 cases in 1979 

to a low of 4 in 2012 (Fig. 2.2). Some regional differences in ciguatera 

frequency between 1996 and 2010 were observed, with most cases occurring in

Zones 1 and 2 (Figure 2.2). Reported cases in the south-east region (Zone 1) 

dominated cases numerically for the whole of Qld. Within the remaining zones, 

reported cases were more frequent in zones two and four prior to 2005, but 

more frequent in Zone 5 after 2005 (Figure 2.2). The reported ciguatera cases 

30



Chapter 2: Ciguatera spatial patterns and occurrence in Qld

in south-east Qld (Zone 1) drives temporal trends for all of Qld combined, likely 

due to the much larger human population in Zone 1.

Figure 2.2 The frequency of reported cases of ciguatera poisoning in humans in 
Queensland (Qld), Australia over a 37-year period, 1976 – 2012 (adapted from Harvey 
1997). Reported cases/ year are shown for the 20-year case study (Harvey 1997) and the 
17-year period of the current study.

2.4.2 Diversity of fish families implicated in reported ciguatera, Qld

From 2001 until 2012, 90% of reported ciguatera cases listed the fish species 

associated with the case. To investigate trends in these data, they have been 

grouped into fish families. Number of fish families implicated in reported 

ciguatera cases was slightly higher (n = 10) in the previous study from 1976 to 

1995 (Harvey, 1997) than in the current study (n = 8) (Figure 2.3). Scombridae 

and Serranidae have remained the most frequently implicated fish families in 

ciguatera poisoning of humans in Qld. By contrast, Carangidae appear to have 
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increased in frequency from approximately 3% to 16% between the studies 

(Figure 2.3). For this reason, the implicated fish families investigated further are 

Scombridae, Serranidae and Carangidae, with remaining fish families grouped 

together due to low occurrences.

Figure 2.3 Percent of fish families implicated with reported ciguatera cases in 
Queensland for the period 1976 – 1995 (Harvey 1997) and for the period 2001-2012 
(current study).

2.4.3 Seasonality of fish families implicated in reported ciguatera, Qld

Data for seasonal trends on which fish families were implicated in ciguatera 

cases were available only for the current study (2001-2012). The frequency of 

reported cases was higher in months associated with the Austral wet season, 

with 65% of cases reported in the wet season between November and April 

(Figure 2.4A and B). It is suggested that seasonality of cases was driven by 

capture of Scombridae, with 75% of cases that implicated this fish family being 

reported in the Austral wet season (Figure 2.4C). On a monthly basis, 
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Scombridae was frequently associated in the months of the wet season except 

for December (Figure 2.4A). The other fish families showed less seasonality in 

Figure 2.4 Percent monthly distribution of reported ciguatera cases in Queensland (Qld) 
for implicated fish families, Scombridae, Serranidae, Carangidae and remaining families 
during the current study, 2001 – 2012 (A). The percent seasonal distribution for reported 
ciguatera cases in Qld based on the Austral tropical wet season (November - April) and 
dry season (May – October) for the current study 1996-2012 (B); and associated with fish 
families (2001 – 2012): Scombridae (C); Serranidae (D); Carangidae (E); and remaining 
families (F).

their contribution to cases between the tropical wet and dry seasons (Figure 

2.4C – E), although there was a slightly greater frequency during the wet 

season. Scombridae were implicated in reported cases for all months of the 

year, except September, while other fish families were not identified in four of 

the months during the study period (Figure 2.4A). The month with the highest 

frequency of cases occurred within the wet season for all fish families. 

Serranidae was most frequently associated with reported cases in February 

(5%) and November (4%) when Carangidae were not. In March, Carangidae 
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were most often reported with ciguatera cases while remaining families were 

most frequent in cases in December when Scombrids were infrequent (Figure 

2.4A).

2.4.4 Regional trends of fish families implicated in reported ciguatera, Qld

The regional importance of fish families implicated in ciguatera cases in Qld 

was evaluated by the five zones (Fig. 2.1), as well as by northern and southern 

Qld areas, latitude 23 °S being the boundary between them (Figure 2.1). 

Scombridae were most commonly implicated in reported cases of ciguatera in 

southern Qld (52% of cases), although no regional (zonal) distribution trend was

observed for this family (Figure 2.5A and B). Frequency of Serranidae 

implicated in reported ciguatera cases increased regionally, from south to north 

(Fig. 2.5A). In the south, Serranidae was not implicated in Zone 1, yet 

constituted 60% of implicated fish taxa in the far north, Zone 5 (Figure 2.5A), 

and 52% of fish implicated in the combined northern Qld zones (Figure 2.5C). 

Carangidae was also implicated at increasing rates from south to north increase

from Zones 1 to 3, but was then absent from Zones 4 and 5 in ciguatera (Figure

2.5A). Carangidae was the most frequently implicated fish family in reported 

ciguatera cases in Zone 3, and this was the only zone in which Scombridae was

not implicated in ciguatera. Remaining families were recorded only in Zones 1 

and 4, but were the dominant (47% of cases) family implicated in the south-east

region (Zone 1) (Figure 2.5A).

Locality of fish capture was not identified in reported cases prior to 2005, except

for one incident involving three people in 2003. Between 2005 and 2012, locality
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of fish capture was provided for 52% of reported cases (Supplementary Table 

S2.2, Appendix B). Although almost 50% of reported ciguatera cases were 

associated with a known source of fish (purchased or recreationally caught) 

only 31% included details of the locality of fish capture. Ciguatera cases 

associated with purchased fish declined from Zone 1 in the south (45%) to Zone

5 in the north (5%) (Figure 2.6A, B). Ciguatera cases associated with 

recreationally caught fish also showed a declining trend from southern to 

northern zones, being high in Zone 2 (~57%) and low in Zone 5 (~10%), but 

absent from Zones 1 and 3 (Figure 2.6A). The numbers of ciguatera cases were

heavily biased (81%) toward purchased fish in the south (Fig. 2.6B) but were 

more evenly balanced in the north among purchased fish (44%) and 

recreationally caught fish (56%) (Figure 2.6C).

Figure 2.5 Percent distribution of reported ciguatera cases in the five Queensland (Qld) 
zones (see Figure 1) for the period 2001 – 2012 associated with: fish families, 
Scombridae, Serranidae and remaining families (A inserts: associated with fish families 
in southern Qld (Zones 1 and 2) (B) and in northern Qld (C).
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As the southern area appeared to have a major influence on ciguatera 

occurrence for the whole of Qld (Figure 2.2) and differences between zones 

within the southern Qld area were evident (Figures 2.2, 2.5A and 2.6A), the 

southern area (Zones 1 and 2) was further divided into 3 sub-zones (South-East

(Zone 1), Hervey Bay (Zone 2a), Upper Southern (Zone 2b); Fig. 2.7). The 

proportion of ciguatera cases declined from southern to northern sub-zones 

(Figure 2.7A). In the south-east sub-zone, only fish from purchased sources 

were implicated in ciguatera cases, with remaining families and Scombridae 

most often identified (Figure 2.7A and B). By contrast, recreationally caught fish 

were the primary sources of reported ciguatera cases in Hervey Bay, and the 

main vector was Scombridae, at 70% (Figure 2.7A and C). Serranidae was the 

only fish family associated with ciguatera cases in the Upper Southern Zone 2b 

(Figure 2.7D). The southern end of the GBR Marine Park is within this Upper 

Southern Zone 2b (Figure 2.1), and has suitable coral reef habitat for serranids. 

This highlighted the important transition of dominant vectors of ciguatera 

between the Hervey Bay and Upper Southern sub-zones.

2.4.5 Dietary composition of fish families of high ciguateric risk

Composition of the diet of fish associated with ciguatera cases was investigated

to determine whether likely vectors in the transfer of ciguatoxins through marine

food webs to mesopredators could be identified. In Fishbase (Froese and Pauly 

2010), limited data was available on the diet of fish reported with ciguatera in 

Qld. Thus, dietary information for such fish from the Pacific and Caribbean 

regions were examined. This allowed identification of the six most frequent fish 

families associated with ciguatera cases throughout the tropical region: 

Serranidae, Scombridae, Lutjanidae, Sphyraenidae, 
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Figure 2.6 Percent of reported ciguatera cases in the five Queensland (Qld) zones (see 
Figure 2.1) for the period 2001 – 2012 associated with source of fish as purchased 
(restaurant, fish market or supermarket) or recreationally caught (and consumed) (A); 
Source of fish in southern Qld (zones 1 and 2) (B); and in northern Qld (zones 3 – 5) (C).

Carangidae and Acanthuridae (Supplementary Figure S2.1, Appendix C). 

Benthic crustaceans and fish were identified as major components of the diets 

of these families – with the exception of Acanthuridae where algae were the 

main dietary component identified (by Fishbase) (Figure 2.8A – C). The 

dominance of fish prey in the diet of Scombridae in Qld was similar to the diet of

Scombridae in the Caribbean (Figure 2.8A and C). Fishbase (Froese and Pauly,

2010) contained only one study of diet of Serranidae in Qld (Figure 2.8A), which

showed that fish and benthic crustaceans are major prey, which differed to 

results for this family in the Pacific and Caribbean, where other invertebrates, 

particularly molluscs, were an important minor component of serranid diets 

(Figure 8B and C). Carangidae and Lutjanidae were also frequently implicated 
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in ciguatera cases in Qld (Figure 2.3), and their diets consisted of a range of 

fish and invertebrates (Figure 2.8A – C).

Figure 2.7 Percent of reported ciguatera cases in three southern sub-zones (see Figure 
2.1) for the period 2001 – 2012: associated with purchased or recreationally caught fish 
(A); associated with fish families, Scombridae, Serranidae and Remaining families in the 
South-east area (B); Hervey Bay area (C); and Upper Southern area (D).

2.5 Discussion

Ciguatera is a tropical illness that directly impacts populations along 2,788 km 

of Queensland (Qld) coastline, Australia. The metropolitan south-east region 

supports 3.2 million people, or approximately 70% of the Qld population

(Queensland-Treasury, 2015). The remaining Qld coastal population of just 1.4 

million people inhabits the remaining ~ 2,500 km of Qld coastline, mostly 

concentrated in small to medium-sized coastal cities. Within Pacific island 

communities, reported ciguatera cases decrease with distance from islands that

have metropolitan areas (Anderson and Lobel, 1987; Kaly et al., 1991). This 

decrease is a consequence of increased under-reporting of ciguatera cases 
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Figure 2.8 Diet composition of six fish families most frequently implicated with ciguatera 
(sourced from fishbase.org). These are shown for (A) Queensland; (B) the Pacific; and 
(C) the Caribbean. The number of fish sampled is shown above the columns. In the 
Pacific (B) region, the diet composition for Epinephelus merra was reported in more than 
one study and is denoted by [a].
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with geographic isolation from and distance to public health facilities (Anderson 

and Lobel, 1987; Chateau-Degat et al., 2007; Kaly et al., 1991). This study also 

demonstrated that the highest number of reported ciguatera cases was closest 

to large cities in the south-east of Qld, with the lowest occurrence in the central 

and far north regions of Qld, where isolated pockets of populations occur 

between large uninhabited areas of National and State parks. In the 1980s, 

under-reporting of ciguatera cases in Qld was thought to increase with distance 

from the metropolitan south-east region (Gillespie et al., 1986; Gillespie et al., 

1988). These studies by Gillespie and colleagues, between 1965 and 1987 

included data for a possible 2,100 cases in northern Qld not reported, (Gillespie 

et al., 1986; Gillespie et al., 1988). Whether the regional differences in ciguatera

cases observed in the present study was affected by an increased under-

reporting of ciguatera with distance from the metropolitan south-east region, 

remains unknown. The number of ciguatera cases identified via telephone 

surveys in the Caribbean was 43 – 45% higher than hospital records suggested

(Olsen et al., 1984; Tester et al., 2010). In Qld, a telephone survey conducted in

1985 (Capra and Cameron, 1985) estimated >50% more cases than 

documented in health records within the same period (Harvey, 1997). Lewis et 

al. (1988) suggested that extensive questionnaires are needed to provide a 

more accurate estimate of prevalence and distribution of ciguatera in Qld. A 

questionnaire is a simple method that can gather substantial quantitative and 

qualitative data, including lifestyle preferences, fish species availability and 

source of fish species in ciguatera cases. More such questionnaires will help to 

improve current knowledge and understanding of ciguatera. Such knowledge 

40



Chapter 2: Ciguatera spatial patterns and occurrence in Qld

can be used to develop better management practices and support the Qld 

public and the Qld fishing industry.

In French Polynesia, reported cases of ciguatera were more frequent during the

tropical wet season compared to the dry season (Chateau-Degat et al., 2007). 

Similarly, in this study, a seasonal peak of ciguatera occurrence in the Austral 

wet season was apparent. Seasonality of ciguatera cases in Florida, USA and 

Puerto Rico, was associated with migration patterns of barracuda (Lawerence 

et al., 1980; Tosteson et al., 1988). In Qld, several mackerel species, including 

Spanish mackerel migrate annually into southern waters during the wet season 

months (Begg and Hopper, 1997), a time when monthly occurrence of ciguatera

cases also peaked, particularly in December, January and March. It is likely that

migration of Spanish mackerel was a driver in the high incidence of ciguatera in 

Qld during the Austral wet season. Chateau-Degat et al. (2005) identified a 

three-month lag between peak abundances of Gambierdiscus, the causative 

dinoflagellate of ciguatera, and increases in ciguatera cases in humans.

Gillespie et al. (1985) observed a peak in Gambierdiscus abundance in 

September for two consecutive years on Flinders Reef, located off the south-

east Qld coast. In the present study, reported cases of ciguatera were low in 

September, and this was the only month in which scombrids were not 

implicated in ciguatera. This was also approximately three months prior to 

monthly increases in ciguatera, which peaked in January, in association with the

highest monthly occurrence of ciguatera caused by scombrids. It is 

hypothetically feasible that fish eaten by mackerel within south-east coastal 
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waters are grazing on macroalgae hosting high abundances of Gambierdiscus 

populations that occurred in September.

Exports of frozen reef fish, as well as bans and restrictions on sale of particular 

fish species, can also obscure seasonality of ciguatera cases (Sparrow and 

Heimann, 2016). Similarly, for example, a ban on the commercial sale of 

barracuda in the major cities of Puerto Rico resulted in a rise of ciguatera cases

caused mainly by grouper, while barracuda, caught by local fishermen, 

continued to be the main cause of ciguatera in coastal towns (Escalona de 

Motta et al., 1986). Ciguatera associated with Carangidae in the present study 

increased to from 3% to 16% compared to  previous studies between 1965 and 

1995 (Gillespie et al., 1986; Harvey, 1997). At the same time, there was a 10% 

decline in ciguatera associated with Scombridae in the present study compared 

to the study by Harvey (1997) between 1976 and 1995, and by > 30% 

compared to the study by Gillespie et al. (1986) between 1965 and 1984. 

Scombrids continue to be caught recreationally in the Hervey Bay Zone 2a, a 

known ciguatera hotspot, and were the principal fish family implicated in 

ciguatera cases in this location. The decline in frequency of ciguatera caused by

Scombridae and the associated rise in in cases caused by Carangidae may be 

a consequence of people avoiding eating scombrids from the area following a 

public awareness and education program conducted in 1980 (Gillespie et al., 

1988). This decline may also be related to improved access to media reports on

ciguatera outbreaks associated with Spanish mackerel. Further research 

through questionnaires could determine the effect of the education program on 
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public awareness and whether such knowledge was transferred to subsequent 

generations.

The variety of fish species locally available and dietary preferences of island 

residents are thought to influence which fish species are most frequently 

implicated in ciguatera cases in humans (Chateau-Degat et al., 2007; 

Lawerence et al., 1980). Serranids are often associated with ciguatera cases in 

tropical regions (Baumann et al., 2010; Chinain et al., 2010; Morris et al., 1982).

Unlike scombrids, they are often closely associated with coral reefs. A north-

south difference in the distribution of ciguatera associated with serranids and 

scombrids, may well be related to availability of coral reef habitat. Gillespie et al.

(1986) and Harvey (1997) both noted that incidence of ciguatera associated 

with these two fish families seemed to shift  at 23 °S. The study between 1996 

and 2010 also showed a strong delineation between serranid-associated and 

scombrid-associated cases of ciguatera for northern and southern Qld, 

respectively. In this currentstudy, serranids caused 100% of ciguatera cases in 

the upper southern sub-zone, suggesting the shift in relative abundance from 

serranid- to scombrid-associated ciguatera as one moves south may extend to 

25 °S. The southern end of the GBR Marine Park is located in this southern 

sub-zone. This may affect the availability of coral reef habitat for serranids. The 

habitat association for serranids with coral reefs, and the north-south migration 

patterns of Scombrids, likely influence local availability of these two families of 

fish in northern and southern Qld areas and, thereby, influence availability in the

human diet.

43



Chapter 2: Ciguatera spatial patterns and occurrence in Qld

Other factors that could influence decisions of people to eat particular types of 

fish include source (purchased or recreationally caught), culture, weather 

conditions and availability of fish. In Florida and the US Virgin Islands, 

purchased fish was frequently the source of ciguatera incidence (Lawerence et 

al., 1980; Morris et al., 1982; Stinn et al., 2000). The present study documented 

that purchased fish was often associated with ciguatera, particularly in southern 

Qld. The study further demonstrated a decreasing trend of contribution of 

purchased fish to ciguatera cases from southern to northern Qld. This trend 

may relate to the lower number of reported cases in northern Qld, greater 

accessibility and preference for recreational fishing per capita in northern Qld, 

or greater duration of suitable weather for recreational fishing. Knowledge of the

sources of ciguatoxic fish can help to identify hotspots of ciguatera cases and 

thus improve management practices (e.g. bans, education programs).

In French Polynesia and Rarotonga, Cook Islands, where herbivorous fish are a

major component of human diet, direct links between grazers and reported 

ciguatera cases have been observed (Chinain et al., 2010; Rongo and van 

Woesik, 2013). In Qld, reported ciguatera cases were caused by 

mesopredators, predominantly Scombridae, Serranidae and Carangidae. Fish 

and benthic crustaceans were identified as major prey of mesopredators 

frequently linked to reported ciguatera cases in Qld. Whether fish prey varies 

greatly among mesopredators, and whether these mesopredators target the 

high ciguateric risk herbivores identified by Chinain et al. (2010) and Rongo and

van Woesik (2013) cannot be ascertained without further research.

44



Chapter 2: Ciguatera spatial patterns and occurrence in Qld

In conclusion, the higher incidence of ciguatera cases in the south of Qld 

appears to be caused by the high population density of humans in the south-

east. The spatial and temporal patterns of ciguatera incidence may also be 

related to migration patterns of Scombridae, particularly, Spanish mackerel. The

occurrence of ciguatera in Qld was more frequent during the Austral wet season

when coral reefs are often subjected to by warmer SSTs and environmental 

disturbances, such as cyclones, and coral bleaching. These conditions can 

provide new substrates (dead coral surfaces) that can be colonised by algae 

(both turfs and macrophytes) and thus potentially facilitate increases in the size 

of benthic dinoflagellate populations. This can result in a flow-on effect of 

increased incidence of ciguatoxins in fish, as recently documented in 

Rarotonga, Cook Islands (Rongo and van Woesik, 2013). Under predicted 

climate-change scenarios, coral reefs are likely to experience increased 

frequency and intensity of environmental disturbances (Cheal et al., 2017; 

Hoegh-Guldberg and Bruno, 2010; Hughes et al., 2003), which may further 

increase the risk of ciguatera in Qld. In addition, under climate change 

conditions, the strengthened East Australian Current (EAC) delivers warmer 

SSTs further south, potentially affecting a southward range expansion of 

Gambierdiscus species along the eastern Australian coastline. This would 

potentially bring ciguatera into the vicinity of larger human coastal populations

(Booth et al., 2007; Kohli et al., 2014). Ciguatera outbreaks associated with 

Spanish mackerel caught in coastal waters off northern NSW were recorded 

between 2014 and 2016 (Farrell et al., 2016a). The effects of changing climate 

conditions on ciguatera distribution need to be further researched, in light of this
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likely southward extension of ciguatera outbreaks into more southern 

geographic regions outside of Qld in Australia.
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Chapter Three: The effect of the Pacific Decadal 

Oscillation, El Niño events and environmental 

disturbances on ciguatera occurrence in Queensland, 

Australia, from 1976 to 2012

3.1 Abstract

An increase in ciguatera incidence within the Pacific region has been linked to 

environmental disturbances caused by cyclones, crown-of-thorns starfish 

(Acanthaster planci) outbreaks and mass coral bleaching events. Increased 

incidence of ciguatera has also recently been linked to climatic variations, 

specifically the Pacific Decadal Oscillation (PDO) and El Niño periods. The 

effect of the PDO, El Niño events and environmental disturbances on ciguatera 

occurrence has not yet been investigated for Queensland (Qld) Australia. In this

study, the Qld Health Department database for foodborne diseases was used to

investigate the frequency of reported ciguatera cases in Qld between 1976 and 

2012. Both long-term (~ 1.5 to 2 decades) and short term (2-5 year) variations 

in the frequency of ciguatera cases were detected in Qld.  Rates of reported 

ciguatera cases in the warm phase of the PDO (mean 46 cases per year from 

1977 to 1995) were two-fold higher than for the cool phase of the PDO (mean 

23 cases per year from 1999 to 2003). Short-term variations of ciguatera cases 

in Qld appeared to be most often associated with distinct but not significant 

spikes in frequency a few years after El Niño events. The climatic model that 

explained the highest amount of variance in the occurrence of ciguatera in Qld 

incorporated a long-term PDO effect and a short-term effect from coral 
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bleaching on the Great Barrier Reef (GBR) and a short-term decline in 

frequency of ciguatera cases in Qld, followed by a rapid increase in frequency 

of ciguatera cases ~ 2 years later. Differences in the frequency of coral 

bleaching and cyclones occur regionally in Qld. This raises the possibility that 

fluctuations in ciguatera could vary regionally on the GBR. Future research on 

the drivers of ciguatera outbreaks in Qld requires multi-decadal, region-specific 

sampling of abundance of ciguatoxic, benthic dinoflagellates, co-ordinated with 

regional-scale questionnaires on the incidence of ciguatera in human 

populations.

3.2 Introduction

Ciguatera is a tropical illness caused by the consumption of tropical reef fish 

that have accumulated ciguatoxins through trophic transfer, primarily derived 

from the dinoflagellate genus, Gambierdiscus (Argyle et al., 2016; Chinain et 

al., 1999b; Kohli et al., 2014; Litaker et al., 2009). Tourism-associated travel 

and consumer demand for tropical fish exports have extended the impact of 

ciguatera into temperate regions (Arena et al., 2004; Boada et al., 2010; Mattei 

et al., 2014; Wong et al., 2005). It is predicted that climate change will increase 

ciguatera occurrence in tropical regions and perhaps cause range expansion of 

Gambierdiscus into temperate marine habitats (Parsons et al., 2012; Tester et 

al., 2013). Such range expansions could result in bioaccumulation of 

ciguatoxins in local fish populations and flow-on effect of ciguatera outbreaks in 

formerly temperate regions. The first known range expansion of Gambierdiscus 

populations was into sub-tropical coastal waters off North Carolina, USA, with a 

subsequent record of resident fish implicated in locally reported ciguatera cases
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(Morris et al., 1990). Gambierdiscus populations have recently expanded their 

range into the Canary Islands (Fraga et al., 2011), the Mediterranean (Aligizaki 

and Nikolaidis, 2008), Korea (Jeong et al., 2012), Japan (Nishimura et al., 

2014), New Zealand (Rhodes et al., 2014) and temperate Australia (New South 

Wales) (Kohli et al., 2014).

In tropical regions, environmental disturbances are predicted to increase in 

frequency and intensity under climate change, which will likely impact coral reef 

health (Cheal et al., 2017; Hoegh-Guldberg and Bruno, 2010; Hughes et al., 

2003). Environmental disturbances, including coral bleaching, cyclones and 

Acanthaster planci (crown-of-thorns starfish) outbreaks provide new substrata 

for algae (both turfs and macrophytes) to colonise, which support increases in 

local population sizes and also potential range expansion of their associated 

benthic dinoflagellate assemblages, including Gambierdiscus (Chinain et al., 

1999b; Kohler and Kohler, 1992; Rongo and van Woesik, 2013). Increased 

Gambierdiscus populations have been recorded after coral bleaching events

(Bagnis and Rougerie, 1992; Turquet et al., 2001), however, reports of 

subsequent increase of ciguatera cases in humans are inconsistent. The 

frequency of cyclones in the Caribbean (Gingold et al., 2014), as well as 

cyclones and A. planci outbreaks in the Pacific (Chinain et al., 2010; Rongo and

van Woesik, 2013), have been linked to increased occurrence of ciguatera, 

however, little information is available on Gambierdiscus populations following 

cyclones and A. planci outbreaks. In Queensland (Qld), Australia, prior to the 

2016 mass coral bleaching event (Hughes et al. 2017), the impact of coral 

bleaching on live coral cover across the Great Barrier Reef (GBR) was relatively
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small, compared to the effects of A. planci and cyclones, which were the 

principal cause of coral mortality for almost three decades (Cheal et al., 2017; 

De’ath et al., 2012). The severity of environmental disturbances on coral reefs 

has varied between the northern, central and southern regions of the GBR. 

Prior to the 2016 coral bleaching event, there was minimal impact of coral 

bleaching in the northern GBR region. Cyclones were the major cause of coral 

loss in central and southern GBR (Cheal et al., 2017; De’ath et al., 2012), with 

additional loss of coral in central GBR due to A. planci outbreaks (De’ath et al., 

2012; Sweatman et al., 2011). However, it is unknown if these environmental 

disturbances have been associated with increases in ciguatera at a state- or 

regional-scale in Qld.

Ciguatera occurrence in tropical regions has been positively associated with 

warmer sea surface temperatures (SSTs) (Chateau-Degat et al., 2007; Kibler et

al., 2012; Litaker et al., 2009; Llewellyn, 2010), which are influenced by ocean-

scale climatic systems, such as the Pacific Decadal Oscillation (PDO). Chavez 

et al. (2003) observed that since 1900, the PDO oscillated between a warm and

cool phase approximately every 25 years, with associated large-scale 

fluctuations in the abundance of schooling fish species like anchovies and 

sardines. As ciguatera poisoning involves transfer of ciguatoxins through marine

food webs to mesopredators, known to feed on schooling fish species (Begg 

and Hopper, 1997; Beukers-Stewart and Jones, 2004; Chinain et al., 1999b; St 

John et al., 2001), it is perhaps not surprising that annual reported ciguatera 

cases were linked to the PDO (Llewellyn, 2010), providing that similar 

correlated climate responses are realised by tropical species of schooling fish. 

Warmer SSTs during El Niño periods have also been linked to significant 
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increases in reported ciguatera cases for several South Pacific island nations

(Hales et al., 1999; Llewellyn, 2010; Rongo and van Woesik, 2011). The onset 

of El Niño periods have been predicted using the Southern Oscillation Index 

(SOI), which is measuresf the difference in atmospheric pressure between 

Easter Island in the eastern Pacific and Darwin, Australia near South-East Asia

(Wyrtki et al., 1976). El Niño periods have been linked to warmer than average 

SSTs, with the opposite phase (La Niña) associated with cooler than average 

SSTs. It is thought that El Niño periods occurred more frequently during the 

warm PDO phase, while La Niña periods have been considered  more frequent 

in the cool PDO phase (Rongo et al., 2009).

Coral bleaching is triggered when warmer SSTs reach above the upper thermal 

limits of corals. Which often occurred during El Niño periods, with the frequency 

and severity predicted to increase with climate change. Regions of cooler and 

warmer SSTs were observed in the South Pacific, and appeared to align with El

Niño and La Niña periods (Hales et al., 1999). Regional differences in SSTs 

may hence potentially affect the regional variability in ciguatera cases reported 

in the Pacific (Hales et al., 1999; Lewis, 1986b; Skinner et al., 2011). In 

Australia, ciguatera is caused from fish sourced within tropical and sub-tropical 

waters along the ~2,800 km Qld coastline (see Chapter 2). 

In Qld, cyclones, A. planci outbreaks and mass coral bleaching events impact 

live coral cover on the Great Barrier Reef (GBR), with severity and frequency of 

environmental disturbances predicted to increase according to current climate 
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models. The role that environmental disturbances may play in ciguatera 

outbreaks in Qld remains unknown. While ocean-scale climatic systems such as

the PDO and SOI have been linked to frequency of reported ciguatera cases in 

the South Pacific region, the potential impact on ciguatera frequency in Qld has 

not previously been investigated. The aims of this study were to investigate the 

potential effects of (1) climatic cycles (long-term changes in SST caused by the 

PDO and short-term changes in SST caused by El Niño periods); and (2) 

environmental disturbances (cyclones, A. planci outbreaks, mass coral 

bleaching), on the frequency of reported ciguatera cases in Qld, Australia over 

the period 1976 to 2012. This study is unique in that it analyses a 37-year, 

continual dataset on ciguatera frequency spanning over both phases of the 

PDO (warm and cool), including the transition between phases in the mid-

1990s.

3.3 Methods

3.3.1 Study area

The eastern coast of Australia lies on the western boundary of the South Pacific

Ocean. Queensland (Qld) is located on the east coast of Australia and extends 

from Cape York (10°S) in the north to Coolangatta (28°S) in southern Qld 

(Figure 3.1). The Great Barrier Reef (GBR) is over 2,000 km long, borders most

of the Qld Pacific coastline and covers an area of 345,000 km2, consisting of > 

3,000 individual reefs, islands, and cays (De’ath et al., 2012). The GBR is the 

source of many target fish for commercial fisheries in Qld (Innes et al., 2014b; 

Thébaud et al., 2014). The sparsely populated coastline adjoining the far 

northern GBR has minimal impact on the health of the coral reef ecosystem.
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Human population along the extensive Qld coastline is spatially variable. 

Population density is highest in south-east Qld (3.2 million people). South-east 

Qld extends from Noosa to Coolangatta and west to Toowoomba (Figure 3.1), 

and supports approximately 70% of the Qld population (Queensland-Treasury, 

2015), but does not directly adjoin the GBR. The remaining population is 

sparsely distributed, with regional centres ranging from 67,400 people in 

Gladstone to approximately 200,000 people in Townsville and Cairns; and small

populations outside of regional centres, such as 2,721 people in Cooktown, 

north of Cairns. As number of inhabitants per region influences estimated 

incidence rates, data are presented as the number of reported cases.

To evaluate whether any regional correlations exist between reported ciguatera 

cases and environmental disturbances, Qld was divided into northern, central 

and southern regions (Figure 3.1). Regional ciguatera occurrence was based on

the location of reported cases, which was available for the period, 1996 – 2010. 

As coral bleaching can be triggered by warmer SSTs and low salinities, El Niño 

periods were included to identify differences between thermal and osmotically-

induced coral bleaching.

3.3.2 Reported ciguatera cases in Queensland

In Australia, hospital and health records are collated into a database maintained

by the Australian Government Department of Health. Queensland is the only 

Australian state where reporting of ciguatera is mandatory: other Australian 
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Figure 3.1 Map of Queensland (Qld), Australia, with the Great Barrier Reef (GBR) Marine 
Park outlined. Three Qld regions: north; central; and south with total number of cyclones
(total number of severe tropical cyclones, category 4 and 5) that impacted each region 
between 1976 and 2102.

states record only large outbreaks and severe cases, where medical attention 

has been sought in hospitals (Ng and Gregory, 2000). This study utilised a 

publicly available database, the Ozfoodnet Working Group, which produced 

quarterly reports on foodborne diseases in Australia, including ciguatera, for the

period 2001 - 2012. These data were supplemented with information from 
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Queensland Health for the period 1996 – 2000 and the work of Harvey (1997), 

who used available health records 1976-1995. Data prior to 1976 obtained by

Gillespie et al. (1986) were excluded, as yearly occurrences of reported cases 

were not available, but were based on percent frequency of symptoms.

3.3.3 Climatic cycles

Yearly averages for the Pacific Decadal Oscillation (PDO) were calculated from

monthly data on sea surface temperatures (SSTs) anomalies obtained from the

Joint Institute for the Study of the Atmosphere and Ocean (JISAO); Washington,

USA (http://jisao.washington.edu). The PDO was also categorised as negative

(cool) or positive (warm), following  Rongo et al. (2009).  The SOI is based on

pressure  anomalies  between  Tahiti  and  Darwin.  Monthly  data  from  the

Australian  Bureau  of  Meteorology  (www.bom.gov.au)  were  accessed  to

calculate  yearly  averages.  As  the  Southern  Oscillation  Index  (SOI)  predicts

periodic climatic events, including El Niño events, it was used to represent such

events in the investigation of the temporal distribution of ciguatera cases in Qld.

To further investigate any links between El Niño-Southern Oscillation (ENSO)

cycles and reported ciguatera cases, years were also classified categorically as

El Niño, La Niña, and neutral, based on which category was in effect during the

Austral wet season (November – April). Categories were assigned based on the

wet season as El Niño periods coincided most frequently with the wet season,

as  did  most  environmental  disturbances  (mass  coral  bleaching,  cyclones,

commencement of A. planci outbreaks).
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3.3.4. Environmental disturbances

Data on environmental disturbances for the study period, 1976 – 2012 were

sourced  from literature  and  Qld  governmental  agencies.  The  occurrence  of

environmental disturbances and associated impacts on Qld and the GBR are

summarised (Table 3.1), following a similar approach to  Chinain et al. (2010)

and  Rongo and van Woesik  (2013).  Specifically,  information  on mass coral

bleaching events  was taken from the  Australian  Institute  of  Marine  Science

(www.aims.gov.au) and literature  (Jones and Berkelmans, 2014; Oliver et al.,

2009); data on cyclones that impacted the Qld coast, including the GBR were

taken from the Australian Bureau of Meterology (www.bom.gov.au). A total of

63 cyclones impacted the Qld coast  over  the 37-year  study period,  with  55

cyclones being ≤ category three. There was no observable trend due to the high

frequency  of  low-impact  cyclones  (≤  category  three),  therefore,  only

observations for severe cyclones (category four and five) are described.

Data for A. planci  outbreaks were sourced from the literature, which recorded

four outbreaks on the GBR; 1962 -1976, 1979 – 1991, 1993 -  2005, and 2009 –

current (Figure 3.2). There was an absence of a discernible effect between A.

planci outbreaks and yearly reported ciguatera cases in Qld due to: the average

14-year duration of outbreaks; multiple outbreaks during the study period; and

because north and southwards migration of outbreaks across the GBR could

not be regionally evaluated given the paucity of yearly monitoring data.
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Table  3.1  A  summary  of  natural  disturbances  (cyclones,  mass  coral  bleaching  and
crown-of-thorns  starfish  (Acanthaster  planci) outbreaks)  as  well  as  their  impact  on
Queensland (Qld) coastal populations and the Great Barrier Reef (GBR), between 1976
and 2012. Cyclone data (including point of impact on the coast, wind data, damage and
flooding) and cyclone severity based on category, taken from the Australian Bureau of
Meteorology (www.bom.gov.au). Records for A. planci outbreaks were taken from Moran
et al. (1988), De’ath et al. (2012) and Wooldridge and Brodie (2015). Information on coral
bleaching  events  was  taken  from  the  Australian  Institute  of  Marine  Science
(www.aims.gov.au), Jones and Berkelmans (2014) and Oliver et al. (2009).

Year
Environmental

disturbance
Cyclone
severity

Description of impact

1976 A. planci outbreak 
ends; 

Acanthaster planci outbreak (1962 – 1976), 
commenced at Green Island, off Cairns and 
moved southwardsc.

Cyclones:
David

3 David: hit north of St. Lawrence, wind speeds up 
to 175 km/h and wave height up to 8.9m. 
Extensive damage to Heron Is., 30 homes 
unroofed in Yeppoon and flooding extended down 
to Moreton Bay, Brisbane.

Alan 2 Alan: hit near Bloomfield River Mission, caused 
widespread flooding inland.

Beth 3 Beth: hit near Bundaberg, 200 homes unroofed, 
two aircraft damaged and flash flooding in 
Maryborough-Bundaberg area.

Dawn 1 Dawn: travelled off the coast, north to south, 
crossed Fraser Island. Two homes unroofed in 
North Mackay, uprooted trees on Heron Island 
and flash flooding in Proserpine and Bundaberg.

1977 Cyclones:
Keith

1 Keith: first hit east of Cairns and then at Cape 
Cleveland, south of Townsville. Caused extensive 
damage to tropical rainforest over the Graham 
Range, wind and rain caused extensive loss to 
banana and sugar crops. Two deaths.

Otto 2 Otto: formed in the Gulf of Carpentaria, moved 
into the Coral Sea near Cape Tribulation before 
and hit again near Bowen, wave height up to 
6.3m. Worsened existing flooding between Cairns 
and Ingham, caused $6 million (at 1977) crop and 
property damage, and destroyed 1200 m of 
esplanade at Cairns.

1978 Cyclone:
Hal

3 Hal: formed in the Gulf of Carpentaria and crossed
land into the Coral Sea north of Cape Tribulation, 
wind speeds up to 140 km/h. No structural 
damage.

1979 A. planci outbreak 
started; 

Acanthaster planci outbreak reported on reefs in 
the Cairns area from 1979 to 1982a, commenced 
at Green Island, off Cairns; moved southwards 
into central Great Barrier Reef (GBR) 560 km, 
northward movement into north GBR 150 km 
ended 1984b

Cyclones:
Peter

2 Peter: formed in the Gulf of Carpentaria and 
crossed land into the Coral Sea near Cooktown. 
Mt Bellenden Ker, 70 km south of Cairns recorded
1140 mm in 24 hours, caused flooding from 
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Year
Environmental

disturbance
Cyclone
severity

Description of impact

Cooktown to Tully, estimated $10 million (at 1979)
damage and two deaths.

Greta 2 Greta: formed in the Gulf of Carpentaria and 
crossed land in the Cape York Peninsula, hit again
at Princess Charlotte Bay. Flooding extended 
south of Cairns, no significant damage reported.

Gordon 1 Gordon: impacted Frederick Reef in the Coral 
Sea, winds up to 83 km/h. Weakened to a tropical 
low and hit south of Proserpine, caused some 
beach erosion.

Severe cyclone:
Kerry

4 Kerry: hit across the Whitsunday Islands, winds up
to 252 km/h recorded over the Coral Sea, heavy 
rainfalls but no damage or flooding.

1980 Mass coral 
bleaching; A. planci 
outbreak active;

Mass coral bleaching event minor, up to 10% coral
cover bleached.                                                  

Cyclones:
Paul

2 Paul: formed as a tropical low in the Gulf of 
Carpentaria and moved southward overland, 
caused severe flooding down the Don River 
through Bowen, destroyed two homes and several
million dollars (at 1980) damage to the market 
garden industry. Entered the Coral Sea south of 
Mackay, near Sarina, upgraded to a cyclone 
northeast of Yeppoon, continued a southeast path 
away from the coast.

Ruth 2 Ruth: formed in the Coral Sea and did not cross 
the coast, but concurrent extreme high tides 
resulted in rough seas and heavy swells, caused 
extensive beach erosion in southeast Qld.

Severe cyclone: 
Simon 4

Simon: hit north of Yeppoon then turned back to 
sea and again hit at Sandy Cape, Fraser Island, 
winds up to 140 km/h, caused erosion to 
shorelines from Yeppoon to Bundaberg, minor 
structural damage at Gladstone, yacht blown 
ashore at Lady Elliot Island and a RAAF helicopter
crashed on Fraser Island, no deaths.

1981 A. planci outbreak 
active; 

Cyclones:
Eddie 3

Eddie: hit Princess Charlotte Bay, caused minor 
flooding in north-eastern coastal rivers.  

Cliff 2 Cliff: hit at Bundaberg, winds up to 110 km/h, 
caused wind damage to cane crops and several 
homes. Minor flooding, beach erosion from 
Bundaberg to Coolangatta, southeast Qld and one
death.

Freda 3 Freda: Formed in the Gulf of Carpentaria crossed 
land, caused minor flooding in northern coastal 
rivers. Upgraded to a cyclone after it crossed into 
the Coral Sea near Cooktown, moved 380 km 
offshore and caused gales on offshore islands, 
capsized a 10 m fishing trawler but no deaths or 
significant damage.

1982 Mass coral A. planci outbreaks reported on reefs in the 
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Year
Environmental

disturbance
Cyclone
severity

Description of impact

bleaching; A. planci 
outbreak active;

Princess Charlotte Bay area from 1982 to 1984a. 
Mass coral bleaching event heavy, above 50% 
coral cover bleached.      

Cyclone:
Dominic

1 Dominic: formed in the Gulf of Carpentaria, 
weakened to a tropical low as it crossed the Cape 
York Peninsula into the Coral Sea. Hit again north 
of Cooktown, no structural damage or flooding.

1983 A. planci outbreak 
active; Severe 
cyclone:            
Elinor

4

Elinor: weakened as it moved towards the coast 
and hit near Carmila, south of Mackay. Wind 
speed up to 128 km/h at Marion Reef, northeast of
Mackay, caused minor damage to the central 
coastline and adjacent islands.

1984 A. planci outbreak 
active;

Grace: formed in the Coral Sea northeast of 
Townsville and moved south passing near Willis 
Island, Lihou and Frederick Reefs, Cato Island 
without crossing the coast, caused minor beach 
erosion in southeast Qld.

Cyclones:
Grace

3

Ingrid 1 Ingrid: formed approximately 100 km south of 
Willis Island, wind speed up to 111 km/h and 
caused minor flooding between Cairns and 
Mackay.

Jim 1 Jim: hit near Cape Grenville, moved west across 
land and entered the Gulf of Carpentaria, no 
damage reported on the east coast.

Kathy 1 Kathy: hit near Pascoe River, Cape York, no 
damage reported. Moved across land into the Gulf
of Carpentaria, three fishing trawlers forced 
aground, one death and numerous dugongs and 
green sea turtles carried inland up to 8km.

1985 A. planci outbreak 
active;

A. planci outbreak status surveyed March 1985 to 
January 1986a: active outbreaks on 17 reefs in 
central GBR with live coral cover at low levels (1 - 
10%). A total of 3395 A. planci recorded on 19 
reefs; off Mackay active outbreaks on 4 reefs with 
moderate to severe coral mortality; 169 A. planci 
recorded on 10 reefs. Live coral cover at moderate
to high levels (10 - 50%) in central GBR (on reefs 
not impacted by outbreaks) and north GBR 
(except between Cooktown and Lizard Island, live 
coral cover was low to moderate, 1 - 30%, with 
algal covered coral observed on many reefs). No 
recent A. planci outbreaks observed in south GBR
or in far north GBR, in the Cape Grenville area 
(extensive algal covered coral observed on 2 reefs
that had no prior evidence of A. planci outbreaks). 

Cyclones:
Pierre

1 Pierre: formed approximately 160 km east of 
Cooktown, moved south and hit in Shoalwater 
Bay, north of Yeppoon, caused minor damage and
flooding. Wind speed up to 102 km/h at Hayman 
Island, Whitsundays region.

Tanya 2 Tanya: hit in Princess Charlotte Bay, Cape York 
Peninsula, wind speed up to 93 km/h, caused 
minor damage to vegetation.
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Year
Environmental

disturbance
Cyclone
severity

Description of impact

1986 A. planci outbreak 
active;

Winifred: formed approximately 450 km north of 
Cairns and hit south of Innisfail, wind speed up to 
176 km/h, caused damage up to $150 million (at 
1986), including crop losses estimated at $90 
million and three deaths.

Cyclones:
Winifred

2

Manu 1 Manu: hit at Cooktown, wind speeds up to 74 
km/h, no damage reported.

1987 Mass coral 
bleaching; A. planci 
outbreak active

Mass coral bleaching event moderate, 10 - 50% 
coral cover bleached.

1988 A. planci outbreak 
active; 

Cyclone:
Charlie 2

Charlie: hit at Upstart Bay, south of Ayr, wind 
speed up to 115 km/h, caused minor structural 
damage, moderate damage to sugar cane crops.

1989 A. planci outbreak 
active; 

Cyclones:
Aivu

3

Aivu: hit in the Burdekin River delta, near Home 
Hill, wind speed up to 118 km/h at Holmes Reef, 
about 240 km east, northeast of Cairns. Damage 
estimated at $90 million (at 1989), caused severe 
flooding between Townsville and Mackay, 
destroyed several beachfront properties, and one 
death.

Meena 1 Meena: hit in the Cape York Peninsula, wind 
speed up to 93 km/h, no damage reported.

1990 A. planci outbreak 
active; 

Cyclones:
Nancy 1

Nancy: off the coast at Brisbane, wind speeds up 
to 100 km/h, caused flash flooding south of 
Brisbane and four deaths.

Ivor 2 Ivor: hit the Cape York Peninsula, moved 
westward into the Gulf of Carpentaria and re-
crossed the Peninsula north of Cairns, again hit 
south of Townsville and then near Mackay. Wind 
speed up to 125 km/h, caused minor damage and 
severe flooding.

Joy 2 Joy: hit at Townsville, wind speed up to 167 km/h, 
severe damages in Port Douglas and in the 
Mackay region; also, resulted in flooding from the 
Fitzroy River in southern Qld, freshwater plume 
lasting approximately 13 days, caused 30 - 90% 
coral mortality at inshore Keppel reefs up to 2.3 m 
depth. Keppel reefs recovered after 10-15 yearse.

1991 A. planci outbreak 
ended

A. planci outbreak (1979 - 1991), commenced at 
Green Island, off Cairns and moved southwards 
into central GBR 560 km by end of outbreak in 
1991; second set moved northward into north 
GBR 150 km, ended 1984. Southward outbreak 
followed similar path to outbreak from 1962-1976, 
35 reefs impacted by both outbreaks with an 
average time of 14.68 years between outbreaksb.

1992 Mass coral Mass coral bleaching event light, up to 10% coral 

60



Chapter 3: Effect of PDO and environmental disturbances on ciguatera

Year
Environmental

disturbance
Cyclone
severity

Description of impact

bleaching; cover bleached.
Cyclones:

Fran
2 Fran: hit near the Town of Seventeen Seventy, 

passed over Fraser Island after it turned back to 
Coral Sea. Crop losses in Bundaberg, flooding 
and minor damage in southeast Qld estimated at 
$2.5 million (at 1992).

Nina 1 Nina: formed in the Gulf of Carpentaria, crossed 
the Cape York Peninsula into the Coral Sea and 
continued to the Solomon Islands. No damage 
reported.

1993 A. planci outbreak 
started

1994 Mass coral 
bleaching; A. planci 
outbreak active; 

Cyclone:
Rewa

2

Mass coral bleaching event light, up to 10% coral 
cover bleached.                                                   
Rewa: Erratic path in the Pacific, approached Qld 
coast just south of Mackay and tracked south 
parallel to the Queensland coast. Heavy rain in 
Brisbane, one death.

1995 A. planci outbreak 
active

1996 A. planci outbreak 
active; Celeste: formed north of Townsville, moved close 

to Bowen then moved seaward. 18 houses 
damaged in Bowen.  

Cyclones:
Celeste

2

Dennis 1 Dennis: formed in the Gulf of Carpentaria, crossed
the Cape York Peninsula into the Coral Sea, no 
damage reported.

Ethel 1 Ethel: formed in the Gulf of Carpentaria, crossed 
the Cape York Peninsula into the Coral Sea at 
Cape Grenville, hit again near Cape Melville and 
back to the Gulf of Carpentaria, minor damage to 
vegetation.

1997 A. planci outbreak 
active;

Cyclones:
Gillian

1 Gillian: weakened to a tropical low before it hit 
near Townsville, no reported damage.

Ita 1 Ita: hit southeast of Townsville, minor damage and
flooding.

Justin 2 Justin: hit northwest of Cairns, returned to sea 
north of Townsville, caused damage between 
Cairns and Townsville, two deaths, estimated 
$150 million (at 1997) loss to agricultural industry.

1998 Mass coral 
bleaching; A. planci 
outbreak active; 

Mass coral bleaching event heavy, above 50% 
coral cover bleached, impacted 21% offshore and 
74% inshore reefs from 654 reefs surveyed. Good 
recovery, < 5% of reefs suffered high mortality of 
corals, except in the Palm Island area, up to 72% 
mortality.

Cyclone:
Nathan

1 Nathan: tracked southeast parallel to northern 
Cape York Peninsula coast, moved out to sea, no 
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Year
Environmental

disturbance
Cyclone
severity

Description of impact

damage reported.
Severe cyclone: 

Katrina 4
Katrina: Erratic path in the Coral Sea, within 500 
km off the coast at Cairns and tracked southeast 
parallel to coast, returned to Coral Sea north of 
Rockhampton, no damage reported on Qld coast.

1999 A. planci outbreak 
active; Cyclone: 

Rona

2

Rona: hit north of Cow Bay, Cape York Peninsula,
caused major damage between Cape Kimberley 
and Cape Tribulation, flooding between Cairns 
and Townsville, wave height above 6.3m at Low 
Isles, northeast of Cairns.

2000 A. planci outbreak 
active;

Cyclones:
Steve

2 Steve: hit north of Cairns and moved overland 
towards the Gulf of Carpentaria, no report of 
damage.

Tessi 2 Tessi: hit 75 km northwest of Townsville, caused 
minor damage and landslide.

Vaughan 2 Vaughan: west of coast, north of Cairns but did 
not hit, caused heavy rainfall.

2001 A. planci outbreak 
active;

Cyclone:
Abigail

1 Abigail: hit north of Cairns, minor flooding and 
some damage.

2002 Mass coral 
bleaching; A. planci 
outbreak active

Mass coral bleaching event heavy, above 50% 
coral cover bleached, 54% of 641 reefs surveyed, 
impacted nearly 41% offshore, 72% inshore reefs. 
Good recovery, < 5% of reefs suffered high 
mortality of corals, except in the Bowen area, up 
to 70% mortality.

2003 A. planci outbreak 
active;

Cyclone:
Erica

1 Erica:  low moved off the coast near the 
Whitsunday Islands, caused some damage in 
Cairns as moved offshore and upgraded to a 
cyclone in the Coral Sea.

2004 A. planci outbreak 
active;

Cyclone:
Fritz

1 Fritz: hit near Cape Melville, no damage reported 
and cyclone continued over land to the Gulf of 
Carpentaria.

2005 A. planci outbreak 
ended;  

A. planci outbreak (1993 - 2005), commenced at 
Michaelmas Cay, movement north and south in 
the GBR.   

Severe cyclone:
Ingrid 5

Ingrid: hit south of Lockhart River, Cape York 
Peninsula, no damage reported, cyclone 
continued over land to the Gulf of Carpentaria.

2006 Mass coral 
bleaching;

Mass coral bleaching event moderate, 10 - 50% 
coral cover bleached, heavy in south GBR reefs, 
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Year
Environmental

disturbance
Cyclone
severity

Description of impact

especially the Keppel Islands with up to 98% 
corals bleached, caused nearly 39% mortality of 
corals on reef flats, 32% on reef slopes.

Cyclones:
Jim

1 Jim: formed 370 km east of Innisfail and moved 
into the Coral Sea, caused flooding in the north 
with gale force winds as far south as the 
Whitsunday Islands and at Lihou Reef, Coral Sea. 

Larry 3 Larry: hit near Innisfail, caused flooding and 
extensive damage to infrastructure, crops and 
approximately 10, 000 homes. Damage estimated 
above $500 million (at 2006).

Monica 3 Monica: hit south of Lockhart River, Cape York 
Peninsula with no damage reported, cyclone 
continued over land to the Gulf of Carpentaria.

2007 No environmental disturbances recorded

2008 Mass coral 
bleaching

Heavy rain caused flooding, resulted in freshwater
influx and osmotic-induced mass coral bleaching 
event

2009 A. planci outbreak 
started;

Cyclone:
Ellie

1 Ellie: hit north of Cardwell, wind speed up to 75 
km/h, caused flooding between Cardwell and 
Bowen.

Severe cyclone:
Hamish 5

Hamish: formed 300km east of Princess Charlotte 
Bay and tracked south-southeasterly parallel to 
the coast, wind speed up to 215 km/h. The 
Whitsunday Islands, Heron, Lady Elliot and Fraser
Islands were evacuated, fishing trawler capsized 
in the Swains Reef, caused severe damage to 
over 500 km of coral reefs in central and southern 
GBR, live coral reduced to 10% on some reefs 
and macroalgal blooms reported, bulk carrier off 
Stradbroke Island damaged, caused oil slick on 
southeast Qld beaches.

2010 A. planci outbreak 
active;

Cyclones:
Olga

1 Olga: downgraded to a tropical low and hit the 
coast 80 km south of Cairns, no damage reported.

Ului 3 Ului: crossed the Whitsunday Islands region and 
hit near Airlie Beach, wind speed up to 215 km/h, 
caused damage to trees, sugarcane crops, 
structural damage and numerous boats damaged 
or destroyed.

2011 Mass coral 
bleaching; A. planci 
outbreak active;

Mass coral bleaching event due to freshwater 
influx, included flooding in south Qld from the 
Fitzroy River with freshwater plumes lasting up to 
18 days; caused almost 100% loss of live coral 
cover up to 8m depth on inshore Keppel reefse.    

Cyclones:
Zelia

2 Zelia: formed approximately 750 km offshore, 
northeast of Cairns, tracked southeasterly towards
Norfolk Island and remained in the Coral Sea, no 
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Year
Environmental

disturbance
Cyclone
severity

Description of impact

damage reported.
Anthony 2 Anthony: hit near Bowen, wind speed up to 

95km/h, no damage reported.
Severe cylone:

Yasi
5 Yasi: hit near Mission Beach, one of most 

powerful cyclones recorded to affect Qld, 
communities in direct line and low lying areas 
were evacuated, caused damage to communities 
from Cairns to Proserpine, banana and sugarcane
crop losses, property, infrastructure and tree 
damage, 150 homes destroyed, one death. 
Damage estimated at $3.5 billion (at 2011).

2012 A. planci outbreak 
active;

A. planci outbreak (2009 - current), initiation zone 
between Cairns and Cooktown, movement 
southwards. Between 1985 and 2012 live coral 
cover over the GBR declined from 28% to 13.8%; 
loss of live coral cover attributed to: 48% by 
tropical cyclones; 42% by A. planci outbreaks; and
10% by coral bleaching. Cyclones and A. planci 
outbreaks severely impacted live coral cover in 
southern GBR; far north GBR recorded increase in
live coral cover with least impact from 
disturbances. Majority of loss in live coral cover in 
the GBR occurred since 1998d.  

Cyclone:
Jasmine

1 Jasmine: tropical low moved off Cape York 
Peninsula, caused minor tree damage and heavy 
rains before upgraded to a cyclone and continued 
easterly into the Coral Sea.

a (Moran et al., 1988); b (Moran et al., 1992); c (Brodie and Waterhouse, 2012); d (De’ath et al., 
2012); e (Jones and Berkelmans, 2014)

3.3.5 Time lag series

To investigate links between reported ciguatera cases and environmental 

disturbances or ocean-scale climatic systems, a time lag of one and two years 

was applied based on the time lag (16 – 20 months) identified by Chateau-

Degat et al. (2005), and based on yearly reporting of ciguatera cases

(Llewellyn, 2010; Rongo and van Woesik, 2011).
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3.3.6 Data analysis

To test for a link and potential interactions between climate and ciguatera, 

generalised linear models (GLMs) were used, including SOI, PDO, and potential

interactions. An intercept-only model with no effects was also tested. The 

response variable was modelled with a negative binomial error structure, using 

the R function “glm.nb” in library MASS (Venables and Ripley, 2002), after tests 

of residuals of Poisson GLMs yielded highly significant evidence of over-

dispersion. The model set included models with zero lag time (ciguatera cases 

in each year were modelled as a function of climate variables in the same year),

a lag time of one year (ciguatera cases in each year were modelled as function 

of climate variables in the preceding year), and a lag time of two years. The 

models considered both categorical and ordinal climate measures (categorical 

El Niño/La Niña with PDO phase, categorical El Niño/La Niña with yearly 

average PDO index, yearly average SOI with PDO phase, and yearly average 

SOI with yearly average PDO index). This yielded a total of 37 models 

(Supplementary Figure S3.1, Appendix D). For each nested subset of models 

(for instance, all models including categorical SOI and PDO at lag zero are 

nested within the model in which those two variables have main and interaction 

effects), likelihood ratio tests were used to find the best-from-subset model, 

using the threshold of P<0.05 as the standard to favour a more complex model 

over a simpler one. Then, because these best-from-subset models are not 

nested with respect to each other (for instance, the best model for models using

categorical SOI and PDO variables at lag zero are not nested within the models 

using the same variables at lag one, nor are they nested within models using 

ordinal SOI or PDO variables), The Akaike Information Criterion (AIC) was used
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to compare them with each other to obtain an overall best model. For this 

second analysis, Akaike weights were used to estimate model selection 

uncertainty: the Akaike weight of a model is an estimate of the probability that 

that model is actually the best one among the set being compared.

To test for an additional effect of coral bleaching, over and above climatic 

effects, the best ciguatera frequency model from the above analyses was used 

to assess whether including bleaching (lag zero, one, or two years, and with 

and without interactions with climatic variables) yielded a better model for 

ciguatera frequency. As in the previous analysis, AIC was used to compare 

these models with one another, since the alternative bleaching models (due to 

their different time lags) were not nested.

The goodness-of-fit of the best-fitting model was tested in various ways. In 

addition to standard linear model diagnostics (residuals versus predicted 

values, versus explanatory variables, versus time, etc.), over-dispersion was 

tested by comparing the model deviance with a chi-squared distribution (as per 

the preliminary analysis with Poisson error structures). Temporal autocorrelation

was also tested by examining whether there was significant autocorrelation in 

model residuals at any time lag, using the R function acf (R-Core-Team., 2015).
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3.4 Results

3.4.1 Climatic systems

For all model subsets that included PDO phase (positive or negative), the best-

from-subset model was always the model with an effect of PDO phase only 

(Supplementary Figure S3.1). For all model subsets that included PDO index 

instead of PDO phase, the best-from-subset model was always the model with 

no effects of either PDO or SOI (i.e., the intercept-only model: Supplementary 

Figure S3.1). Thus, there were only four distinct best-from-subset models to 

compare: PDO phase at lag – zero, PDO phase at lag – one, PDO phase at lag 

– two, and intercept-only. Model selection by AIC indicated that, of these four 

models, the PDO phase models had comparable levels of support for all time 

lags (Table 3.2), with the PDO phase at lag – two the estimated best model with

54% support, followed by the PDO phase at lag – zero, with 33% support. The 

intercept-only model had only 3% support.

Table 3.2 Model selection comparing the best-from-subset models (Supplementary 
Figure S3.1) with one another. AIC is Akaike’s Information Criterion; AIC is the 
difference between the AIC of the indicated model and that of the estimated best model 
(i.e., the estimated best model, by definition, has AIC=0); and wAIC is the Akaike weight: 
a measure of the probability that the indicated model is the true best model for the 
system.

Model AIC AIC wAIC

PDO phase only 
(lag 2)

325.5 0 0.54

PDO phase only 
(lag 0)

326.5 1.01 0.33

PDO phase only 
(lag 1)

328.7 3.21 0.11

Constant (intercept 
only)

331.4 5.9 0.03
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For the three PDO-phase models, the estimate of the effect of PDO was similar,

with the number of ciguatera cases estimated to be 85% higher during the 

positive than the negative PDO phase for the (estimated best-fitting) PDO 

phase at lag – two model; 78% higher for the PDO phase at lag – zero model, 

and 62% higher for the PDO phase at lag – one model. As PDO phase at lag – 

two was the best climate-based model, it was selected to compare models 

incorporating coral bleaching history within the study period.

Table 3.3 Model selection comparing the best climate-based model with alternatives that 
incorporate bleaching history. AIC is Akaike’s Information Criterion; AIC is the 
difference between the AIC of the indicated model and that of the estimated best model 
(i.e., the estimated best model, by definition, has AIC=0); and wAIC is the Akaike weight: 
a measure of the probability that the indicated model is the true best model for the 
system.

Model AIC AIC wAIC

PDO phase (lag 2) +
Bleaching (lag 0)

322.0 0 0.54

PDO phase (lag 2) x
Bleaching (lag 0)

324.0 2.0 0.20

PDO phase (lag 2) 325.5 3.5 0.09

PDO phase (lag 2) +
Bleaching (lag 1)

327.1 5.1 0.04

PDO phase (lag 2) +
Bleaching (lag 2)

327.4 5.4 0.04

PDO phase (lag 2) x
Bleaching (lag 2)

327.5 5.5 0.03

Bleaching (lag 0) 327.5 5.5 0.03

PDO phase (lag 2) x
Bleaching (lag 1)

329.0 7.0 0.02

Constant (intercept 
only)

331.4 9.4 <0.01

Bleaching (lag 1) 332.7 10.7 <0.01

Bleaching (lag 3) 333.4 11.4 <0.01
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Model selection by AIC indicated that, of all possible models including PDO 

phase at lag – two and bleaching, the best model had an effect of PDO phase 

at lag – two, with bleaching at lag – zero, and no interaction (Table 3.3). This 

model had 54% support. The second-best model (with 20% support) had the 

same explanatory variables, but included an interaction. The third best model 

was the PDO phase at lag – two from the first analysis (9% support). All other 

models had <5% support. The effect of coral bleaching on ciguatera cases was 

negative, with ciguatera frequency being 40% less prevalent during coral 

bleaching years than non-bleaching years.

A 2 test against the model deviance indicated that the PDO-phase models and

the PDO-bleaching models all fit adequately (P>0.29 and P=0.27, respectively).

Moreover, there was no statistically significant temporal autocorrelation in the

residuals,  at  any  lags,  indicating  that  the  explanatory  variables  adequately

accounted for the temporal structure in the data.

3.4.2 Environmental disturbances impacting Queensland coast and reefs 

from 1976 to 2012

Queensland (Qld) coast and reefs were impacted by disturbances in all years 

over the 37-year period, except for 2007 (Table 3.1). In the 37-year study 

period, the number of cyclones decreased southwards from the north region, 

but a higher number of severe tropical cyclones impacted the coast in the 

central region (Figure 3.1). Seven severe cyclones (category four and five) 

impacted the Qld coast with category five cyclones only recorded since 2005 

(Table 3.1). Coral bleaching was triggered by warmer than average SSTs 
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associated with El Niño periods, except in 1980 (no reliable records on the 

cause) and in 2008-2009 and 2010-2011, when flooding and mass coral 

bleaching induced by low salinity was recorded (Figure 3.2).

Figure 3.2 The frequency of reported cases of ciguatera incidence in Queensland (Qld), 
Australia over a 37-year period, 1976 – 2012 (combined with Harvey 1997). Reported 
cases/ year are shown for the 20-year study of Harvey 1997 and the 17-year period of the 
current study. Star shapes and arrows indicate Acanthaster planci outbreaks. The two 
oscillations of the PDO are shown by a blue shaded area for the cool phase (1976; 1999-
2003) and a red area (1977 – 1995) to indicate a warm phase. Coral bleaching due to warm
water events indicated by white rectangles and coral bleaching due to freshwater influx 
indicated by ~. El Niño years obtained from the Australian Government Bureau of 
Meteorology (www.bom.gov.au).

3.4.3 Ciguatera occurrence at a regional-scale

Environmental disturbances often impact at a regional-scale and therefore 

ciguatera occurrence may vary by region. In the period between 1996 and 

2010, the frequency and type of environmental disturbance differed between the

three Qld regions (Figure 3.3). Coral bleaching and a severe cyclone in 1998 
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Figure 3.3 Reported ciguatera cases in the north, central and southern regions of 
Queensland (Qld), Australia 1996 – 2010 and impact of environmental disturbances: El 
Niño; coral bleaching (coral bleaching due to freshwater influx indicated by ~); severe 
cyclones (category indicated by number).

affected the central and southern regions of the GBR, with an increase in 

ciguatera occurrence observed one and two years after, respectively (Figure 

3.3). Similarly, in 2002, an increase in ciguatera occurrence was observed one 

year after coral bleaching affected central and southern regions. Coral 

bleaching was not recorded for the northern region until 2006, following a 

severe cyclone the previous year. The occurrence of ciguatera in the north 

increased in the year following the cyclone and again after coral bleaching in 

2006 (Figure 3.3). By contrast, the central and southern regions were less 

affected by coral bleaching in 2006, and a decline in ciguatera incidence was 

observed in the following years. A severe cyclone affected all regions of the 

GBR in 2009, with an increase in ciguatera occurrence observed in each region 

the following year. Heavy seasonal rainfalls between 2008 and 2010 also 
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triggered low salinity-induced coral bleaching in the central and southern 

regions (Figure 3.3). It is noted that although reported ciguatera cases 

increased generally the year after a cyclone impacted a region, it frequently 

coincided with other environmental disturbances, and therefore, the individual 

effects of cyclones and other environmental disturbances are often difficult to 

identify.

3.5 Discussion

Many factors contribute to fluctuations in the reported occurrence of ciguatera, 

including extent of public awareness, medical treatment sought and reported, 

government regulations and fish migrational patterns (Sparrow and Heimann, 

2016). Climatic variations like the PDO, SOI, and El Nino and environmental 

disturbances like cyclones, coral bleaching events, however, appear to have an 

over-riding influence on frequency of ciguatera cases in Qld. The unique 37-

year study has demonstrated a significantly higher occurrence of reported 

ciguatera cases in Qld during the PDO warm phase (1977 – 1998). Assuming a 

typical 20 – 25 year period for each PDO phase, the transition from the current 

cool phase may occur in the next six years (2018-2023) or may even be starting

now, in 2017. The results thus suggest that the occurrence of reported cases of 

ciguatera in Qld is likely to increase soon, particularly during 2018-2023. 

Indeed, an increase of reported ciguatera cases in 2013 and 2014 in Qld

(OzFoodNet-Working-Group, 2013a, 2013b, 2014a, 2014b, 2014c), followed by 

the third global mass coral bleaching event in 2015-2016 (Hughes et al., 2017), 

suggests strongly that a shift between PDO phases from cool to warm may be 

imminent.
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3.5.1 Influence of climatic variations on ciguatera

The PDO, SOI and El Niño are climatic variations that can produce ocean-scale

temperatures warmer than average SSTs in the Pacific Ocean, and have been 

linked to increased ciguatera incidence (Hales et al., 1999; Llewellyn, 2010; 

Rongo et al., 2009). In the period from 1973 to 1996 (~the warm PDO phase 

-1977 – 1998), several Pacific islands had a significant relationship between 

annual ciguatera incidence and the PDO, at different lag times from zero to two 

years (Llewellyn, 2010). While positive relationships were observed between 

annual reported ciguatera cases and the warm PDO phase for Tokelau (zero-

time lag), American Samoa (one-year time lag), Kiribati (two-year time lag), Fiji 

and Vanuatu (one and two-year time lag), a negative relationship between 

ciguatera occurrence and the warm phase of the PDO was observed for New 

Caledonia at all time lags. By contrast, in Rarotonga, southern Cook Islands, 

the cool phase of the PDO between 1998 and 2008 was associated with 

increased occurrence of ciguatera from 1994 to 2010 with a two-year lag

(Rongo and van Woesik, 2011). Similar to situation in the south Pacific islands, 

the present study showed a strong relationship between frequency of ciguatera 

cases and the warm phase of the PDO with a two-year lag time. The PDO alone

with zero-, one-year- and two-year lag times were the best models, while no 

effect observed for models with SOI or El Niño alone.  This differed to other 

studies that indicated a significant link between ciguatera cases and the SOI 

and El Niño (Llewellyn, 2010; Rongo and van Woesik, 2011). Ciguatera 

reported in Rarotonga showed a significant relationship to the SOI from 1992 to 

2008, at one- and two-year lag times, and cases increased during El Niño 

periods in the warm PDO phase (Rongo and van Woesik, 2011). Llewellyn 
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(2010) also showed that the relationship between frequency of ciguatera and El 

Niño was similar to the PDO, while the SOI showed reversed relationships 

compared to the PDO for New Caledonia and Vanuatu. The warm phase of the 

PDO and frequency of ciguatera were positively related for the Pacific islands 

between latitudes 3 and 18 °S, while New Caledonia at 21 °S a decline in 

frequency of ciguatera was reported for the warm phase of the PDO. Similarly, 

ciguatera frequency was higher for the Pacific Islands between 3 – 15 °S during

El Niño periods, but negatively related to ciguatera for French Polynesia and 

New Caledonia at 18 – 21 °S. The opposite relationship was reported for the 

effect of SOI (Llewellyn, 2010). Differences between the relationship of 

ciguatera frequency and climatic systems in the Pacific Islands may relate to 

regional differences in water circulation in the south Pacific, with circulation 

varying between El Niño and La Niña periods (Hales et al., 1999; Llewellyn, 

2010; Rongo et al., 2009). The SSTs in Qld coastal waters have a latitudinal 

gradient (Heimann et al., 2011). It is likely that the SOI and El Niño had little 

effect in this study relative to the PDO, due to the regional difference in SSTs, 

as the Qld coastline extends from ~11 – 28 °S.

3.5.2 Effect of the PDO on coral bleaching history and its subsequent 

effect on frequency of ciguatera

Coral bleaching is triggered at levels of temperature and salinity similar to those

that trigger growth of the ciguatera-causing benthic dinoflagellate, 

Gambierdiscus (Kibler et al., 2012; Sparrow et al., 2017). Increases in 

Gambierdiscus populations (Bagnis and Rougerie, 1992; Turquet et al., 2001) 

and incidence of ciguatera have,  however, have been recorded 1-2 years after 

coral bleaching (Rongo and van Woesik, 2013). Whether ciguatera occurrence 
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is related to coral bleaching, independently of other environmental disturbances 

(cyclones, A. planci outbreaks), however, has received little attention. This 

study investigated the effect of coral bleaching on ciguatera occurrence in Qld, 

using the best climatic model accounting for the effect of the PDO at a two-year 

lag time. This model showed strong support for a decline in reported ciguatera 

cases years of coral bleaching. Death of coral provides additional substrate for 

settlement of algae and consequent recovery of Gambierdiscus populations on 

their preferred substrate, the algae.  It is likely that Gambierdiscus populations 

would decline during periods of coral bleaching, as the thermal stress 

thresholds of the dinoflagellate and corals are similar. Recovery of 

Gambierdiscus populations have been documented between four and 17 

months following warmer SSTs (Chateau-Degat et al., 2005; Turquet et al., 

2001). The decline of Gambierdiscus during bleaching years was also observed

at Rarotonga, Cook Islands (Rongo and van Woesik, 2013). While recovery of 

Gambierdiscus following periods of low salinity appears to depend on co-

occurring benthic dinoflagellates (Sparrow et al., 2017), further research is 

needed to understand ecological and physiological responses to low salinity-

induced coral bleaching events. On the GBR, low salinity-induced coral 

bleaching severely affected inshore reefs in the southern region, causing almost

100% mortality in 2011. Whether benthic dinoflagellates recover after periods of

low salinity could be determined with reef-specific research.

3.5.3 Regional differences in major environmental disturbances

The frequency of disturbances and the severity of cyclones is predicted to 

increase under climate change conditions (Cheal et al., 2017; Hoegh-Guldberg, 

1999; Hughes et al., 2003). Recently, environmental disturbances have been 
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shown to impact the diversity and abundance of fish assemblages, which 

declined with reduced structural complexity of coral reef habitats (Charbonnel et

al., 2002; Cheal et al., 2017; Pratchett et al., 2011; Russ et al., 2015; Russ and 

Leahy, 2017). Cyclones can cause severe structural and biological disturbance 

to coral reefs, which may result in major loss of habitat, while coral bleaching 

and A. planci outbreaks have minimal impact on habitat complexity in the short-

term, and therefore have less impact on available shelter and food resources for

fish assemblages (Charbonnel et al., 2002; Cheal et al., 2017). Disturbances 

associated with coral bleaching, cyclones and A. planci outbreaks vary with 

latitude in frequency and intensity on the GBR, resulting in regional variations in

the impact from different environmental disturbances (De’ath et al., 2012). At a 

regional-scale in Qld, the present study indicated a potential increase in 

frequency of ciguatera, 1-2 years after a severe cyclone, with ciguatera cases in

the central and southern Qld regions most frequently impacted by coral 

bleaching and severe cyclones.

The loss of structural complexity of reef habitats in the central and southern 

GBR regions due to cyclones also resulted in large losses of mesopredators 

and smaller fish species, although abundances of grazing fish increased (Cheal 

et al., 2017). In Pacific island communities, increases in ciguatera cases were 

observed following increased abundance of grazing fish (Chinain et al., 2010; 

Rongo and van Woesik, 2013). Such fish are commonly consumed by Pacific 

Islanders and can increase in abundance following environmental disturbances 

to coral reefs. However, mesopredatory fish remain the major source of 

ciguatera cases in the tropics (Baumann et al., 2010; Morris et al., 1982; Stinn 
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et al., 2000) and the only group of fish implicated in Qld (Gillespie et al., 1986; 

Harvey, 1997). As disturbances, particularly cyclones, impact coral reef health 

and fish assemblages it is likely that disturbances may also disrupt the transfer 

of ciguatoxins through marine food webs. To determine the effect of 

environmental disturbances on the occurrence of ciguatera in Qld, regional 

questionnaires are needed in conjunction with regional and reef-specific 

research on critical ciguatera stages in marine food webs.

Figure 3.4 The frequency of reported ciguatera cases in Queensland (Qld), Australia 
(1976 – 2012, see Figure 3.1) and in the Caribbean between 1980 and 2005 (Caribbean 
Epidemiology Centre, 2008). The two oscillations of the PDO are shown by a blue shaded
area for the cool phase (1974-1976; 1999-2003); a red area (1977 – 1995) to indicate a 
warm phase is unshaded; and the transition period between the two PDO phases is 
unshaded.

The frequency of ciguatera cases is driven by available benthic surfaces to host

Gambierdiscus populations, abundance and diversity of grazing fish and 

invertebrates, as well as cultural and regional fish dietary choices. Ocean-scale 

climatic variations and environmental disturbances can affect the drivers of 

77



Chapter 3: Effect of PDO and environmental disturbances on ciguatera

ciguatera, and result in yearly fluctuations of reported cases, while available fish

and invertebrate prey can influence the likely transfer of ciguatoxins through 

marine food webs. Abundance shifts in marine schooling fish species have 

been linked to the oscillation of the PDO phases, with higher sardine 

abundances in the warm phase and higher anchovy abundances in the cool 

phase (Chavez et al., 2003). In Qld, ciguatera cases are frequently associated 

with mesopredators, particularly Spanish mackerel and coral trout (Gillespie et 

al., 1986), for which Clupeidae are a major dietary component (Begg and 

Hopper, 1997; Beukers-Stewart and Jones, 2004; St John et al., 2001). There 

is, however, a scarcity of information on the distribution and abundance of 

schooling fish species on the GBR, and further research is needed to determine

their importance in the trophic transfer of ciguatoxins. By contrast, in the 

Caribbean, the reverse was observed with higher frequency of ciguatera 

incidence during a cool, anchovy phase of the PDO (Figure 3.4). Barracuda 

have been frequently associated with ciguatera cases in Florida, USA and 

Puerto Rico (Escalona de Motta et al., 1986; Lawerence et al., 1980), and are 

known to predate anchovies (Schultze, 1983). It is, therefore, hypothesised that 

the trophic structure in marine food webs may play an integral role in the 

occurrence of ciguatera. To understand the influence of the PDO and other 

climatic systems on the frequency of reported ciguatera cases in the Pacific and

the Caribbean, further research on abundance of schooling fish species, their 

dietary importance and relevance in the trophic transfer of ciguatoxins is 

essential. Multi-decadal research is important to identify critical stages in 

ciguatoxic marine food webs, the impact of climatic systems and environmental 

disturbances, and model sustainable solutions to support fisheries.
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Chapter Four: Seasonal abundance of benthic toxic 

dinoflagellates in the central Great Barrier Reef3

4.1 Abstract

Ciguatera is a tropical illness that has expanded its geographic range through 

international travel, frozen tropical fish exports and the expansion of ciguatera-

causing dinoflagellates into temperate coastal marine habitats. The drivers in 

the distribution of Gambierdiscus spp. and co-occurring dinoflagellates on their 

macroalgal substrates were investigated in this study. While macroalgal 

palatability and dinoflagellate associations were inconclusive, macroalgal thalli 

structure was identified as an important driver in the heterogenic distribution of 

Gambierdiscus populations. Higher Gambierdiscus densities were not always 

associated with fish-palatable macroalgal substrates. At mid-reef sites, 

Gambierdiscus populations were only found on flattened macroalgal substrates 

that were palatable to gastropods. Although there was no trend in substrate 

association, site-specific conditions appeared to play a role. It seems likely that 

grazing pressure and feeding technique play potential roles in the transfer of 

ciguatoxins within marine food webs. This needs further investigation to identify 

environmental and ecological factors that influence the composition and 

distribution of macroalgae and thereby the potential expansion of ciguatera-

causing dinoflagellates into new coastal marine habitats. This research is 

3 This chapter is adapted from:
Sparrow, L. and Heimann, K. (2016) Key environmental factors in the management of 
ciguatera. Journal of Coastal Research, 75:1007-1011.

The abstract, methods and results are presented as submitted, with the remainder of the 
chapter expanded to reflect the current state of knowledge in the field and modified to fit the 
thesis flow.
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essential in developing ciguatera monitoring tools as marine fisheries are an 

integral part of the economy, diet and lifestyle of coastal populations throughout 

the world.

4.2 Introduction

Ciguatera is an illness induced when people consume contaminated reef fish. 

Marine fish species in tropical and subtropical regions bioconvert and trophically

accumulate ciguatoxins derived from dinoflagellates of the genus 

Gambierdiscus. Between 50,000 and 500,000 people are affected annually 

worldwide (Arena et al., 2004; Chinain et al., 2010). Ciguatera incidence rates 

for tropical island nations have been based on reported ciguatera cases and/or 

questionnaires (Azziz-Baumgartner et al., 2012; Chateau-Degat et al., 2007; 

Lawerence et al., 1980; Skinner et al., 2011). When rates exceed 1,000 cases / 

100,000 in a local population, the locality is referred to as a ciguatera hotspot. 

The islands of French Polynesia have consistently recorded such high rates, 

despite temporal fluctuations (Chinain et al., 2010; Skinner et al., 2011).

Variability in estimated ciguatera incidence rates is a function of factors in the 

probability of consuming contaminated fish. Variations in incidence rates can be

triggered by factors such as seasonal migrations of predatory fish e.g. mackerel

and barracuda. However other factors such as government bans and 

restrictions are likely to decrease incidence and the interaction of such factors 

can result in relatively stable rates (Figure 3.1). Affordable tourism-associated 

travel and increased demands for tropical fish exports are factors that affect 

incidence rates but also contribute to geographic expansion of ciguatera
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(Heimann and Sparrow, 2015). Disturbance events, both natural and 

anthropogenic are influential factors (Figure 4.1) that can trigger temporary and 

permanent expansions of ciguatera-causing dinoflagellates, including 

Gambierdiscus spp.

Figure 4.1 Schematic diagram of factors which interact to maintain roughly stable 
ciguatera incidence rates (left). Larger fluctuations in incidence rates are a response to 
influential factors (double arrow on right) that impact on the stable state.

Gambierdiscus spp. are found on coral reefs, frequently associated with 

macroalgae as a substrate and co-occur with other benthic dinoflagellates 

including Prorocentrum spp., Ostreopsis spp., and Coolia spp. Coral reefs are 

dynamic ecosystems where large-scale disturbance events such as cyclones, 

crown-of-thorns (Acanthaster planci) outbreaks and coral bleaching can lead to 

temporary or permanent phase shifts from coral- to macroalgal-dominated reefs

(Heimann et al., 2011), which is thought to be followed by the range expansion 

of benthic dinoflagellates.

The colonisation of dead coral surfaces by algal turfs was recorded after coral 

bleaching events in Mayotte Island, Indian Ocean and in French Polynesia. A 
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lag of two to four months occurs before algal turfs were colonised by 

Gambierdiscus populations as accompanied by substantial increases in 

abundances (Bagnis and Rougerie, 1992; Turquet et al., 2001). By contrast, 

Gambierdiscus populations surveyed three months after a cyclone impacted 

Sudbury Reef, GBR, were only one-tenth the size of populations that were 

recorded three years prior to the cyclone (Lewis et al., 1986); unfortunately no 

information on macroalgal substratum abundance and diversity was provided. 

This variability in Gambierdiscus population responses to disturbance events 

may be related to the impact of the disturbance on the habitat complexity, as 

has been shown for reef-associated fish (Pratchett et al., 2011). Habitat 

destruction may displace existing Gambierdiscus populations along with their 

macroalgal substrata, thereby requiring more time for populations to re-

establish prior to opportunistic increases associated with new surfaces. On the 

other hand, coral bleaching preserves structural habitat complexity and provides

new surfaces for algae to colonise. Consequently, Gambierdiscus can readily 

transfer to new macroalgal surfaces.

The distribution and abundance of Gambierdiscus populations is thought to 

relate to preferences for their macroalgal substrata. Substratum preference 

studies have been based on taxonomic diversity and defence mechanisms to 

deter grazing by roving herbivorous fish in field surveys (Ballantine et al., 1985; 

Bomber et al., 1988a; Bomber et al., 1988b; Faust, 1995) and laboratory 

experiments (Nakahara et al., 1996; Parsons et al., 2011). Heterogenic 

distribution of Gambierdiscus populations have often been documented 

between and among macroalgal genera as well as within and between reefs
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(Ballantine et al., 1985; Taylor, 1985). This patchy distribution on macroalgal 

substrates within reefs may simply be an artefact from recent grazing 

behaviours of roving herbivorous fish, which may inadvertently create localised 

disturbance of macroalgae, resulting in the redistribution of benthic 

dinoflagellates to the next closest macroalgal substrate.

Roving herbivorous fish differ in the range of macroalgae they find palatable.  

While generalist grazers, such as Siganidae (rabbitfish) find a diverse range of 

macroalgal species palatable, others, such as Scaridae  (parrotfish), are more 

selective (Mantyka and Bellwood, 2007; Rasher et al., 2013). Grazing selectivity

studies have shown that palatability of macroalgae may also vary within fish 

families. Scaridae generally have a high preference for the green alga 

Halimeda spp. Scarus schlegeli and Chlorurus sordidus engage in low to 

medium levels of grazing on brown algae, Dictyota, Padina, Sargassum and 

Turbinaria, taxa which were avoided by other scarids in the same genera

(Mantyka and Bellwood, 2007; Rasher et al., 2013). Chinain et al. (2010) noted 

that several fish associated with reported ciguatera cases in French Polynesia, 

including the scarids Scarus spp. and Chlorurus microrhinos, avoided grazing 

on calcareous red algae. However, highest densities of Gambierdiscus were 

found on the calcareous red alga, Jania sp. (Chinain et al., 2010). This suggests

that palatability may play a role in the uptake of Gambierdiscus spp. Scaridae 

have been frequently associated with ciguatera incidence in the Pacific (Clua et 

al., 2011), however, there is limited information on grazing pressure relative to 

the distribution of Gambierdiscus populations on macroalgal substrates. While 

herbivorous fish are thought to be the major vectors in the transfer of 
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ciguatoxins into marine food webs, the importance of invertebrate herbivores, 

also potential grazers of benthic dinoflagellates, remains under-investigated

(Cruz-Rivera and Villareal, 2006; Lewis, 2006). Cruz-Rivera and Villareal (2006)

reviewed Gambierdiscus toxicus abundance on a range of macroalgae and 

tested their palatability among grazers, including fish and meso- and micro- 

invertebrate grazers. The picture becomes even more complex given that light 

intensities and water dynamics also appear to impact on macroalgae-

Gambierdiscus associations.

The optimal growth rates for several Gambierdiscus spp. are at irradiances ≥ 

231 µmol photons m-1. s-1 (Kibler et al., 2012; Villareal and Morton, 2002).

Villareal and Morton (2002) proposed that thallus structure of macroalgal 

substrata may provide optimal light intensities through shading of 

Gambierdiscus toxicus. This research hypothesised that the type of reef, such 

as fringing reefs, cays, inshore and outer reef systems; as well as the position 

on a reef, such as reef flat, crest or lagoon, obviously also relates to light 

intensities received and water dynamics. It appears that in sheltered positions, 

such as lagoons and reef flats, benthic dinoflagellates, including Gambierdiscus

spp. may associate with flattened or terete thalli more than other substrates. By 

contrast, in high energy locations, such as reef crests and windward side of 

reefs, leathery thalli may be the only available substrate.

On the Great Barrier Reef (GBR), cyclones can result in extensive flood plumes 

with nutrient-rich waters triggering trophic blooms. Coral bleaching events are a 

consequence of warmer sea surface temperatures that can also lead to 
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population growth of Gambierdiscus spp. and co-occurring benthic 

dinoflagellates (Heimann et al., 2011). Positive correlations have been shown 

between warmer sea surface temperatures and the increase in ciguatera 

incidence (Hales et al., 1999; Llewellyn, 2010; Tester et al., 2010), as have the 

frequency and intensity of large-scale disturbance events (Rongo and van 

Woesik, 2011).

Climate change affects weather patterns, extending warmer sea surface 

temperatures and strengthening ocean currents into temperate waters, which 

promote temporary and permanent range expansion of ciguatera-causing 

dinoflagellates into new coastal habitats (Heimann et al., 2011). However, 

reasons for the patchy distribution of Gambierdiscus spp. and co-occurring 

benthic dinoflagellates on macroalgal substrates are still poorly understood.

This study hypothesised that the patchy distribution is likely driven by predation 

as well as thallus structure of macroalgal substrata. The aims of this study were 

to investigate potential macroalgal substratum associations in the distribution of 

benthic dinoflagellates.

4.3 Methods

Two separate surveys were conducted in the central GBR during 2008 – 2009. 

One survey was conducted in Nelly Bay, Magnetic Island (Figure 4.2), with 

samples collected monthly as weather conditions permitted. Nelly Bay is on the 

south-eastern side of Magnetic Island and has a sub-tidal fringing reef.
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Figure 4.2 The location of survey sites on the fringing reef at Nelly Bay, Magnetic Island 
and on Orpheus and Pelorus Islands, as well as two mid-reef sites, in the central Great 
Barrier Reef, Australia.

The second survey was based at Orpheus Island Research Station (OIRS) and 

was conducted on three separate 10-day periods in November 2008, March and

August 2009, to represent seasonal differences between the Austral wet and 

dry seasons (Heimann et al., 2010). Data from four of the sites collected in 

August 2009, as part of the Austral dry season, are reported here: two mid-shelf

reefs: Lodestone and Keeper Reefs; and two inshore-reefs: Pioneer Bay on 

Orpheus Island and Pelorus Island (Figure 4.2). The fringing reef at Pioneer 

Bay had an extensive inter-tidal reef flat, while the fringing reef at Pelorus Island

86



Chapter 4: Seasonal abundance of benthic dinoflagellates in the Central GBR

was sub-tidal, remaining submerged at low-tide. Benthic toxic dinoflagellates 

were collected from their macroalgal substrates, which were sampled and 

processed as described by Heimann et al. (2010). All benthic dinoflagellate cell 

counts were standardised as mean abundance per wet weight (g) of macroalgal

substratum sampled and to number of macroalgal samples collected.

To determine if benthic dinoflagellates had an association between macroalgal 

substrata, macroalgae were firstly investigated by thalli structure, with three 

categories: flattened; leathery; or terete. Secondly, by palatability of macroalgae

between grazers: fish; urchins; crustaceans; gastropods; mesograzers; and sea

turtles (Cruz-Rivera and Villareal, 2006).

4.4 Results

Total abundance of benthic dinoflagellates at Nelly Bay, Magnetic Island, was 

variable over the months surveyed with the highest abundance in May 2008 

(1914 cells/g wet weight (ww)-substrate) followed by a decrease in June to 96 

cells/g. ww-substrate (Figure 4.3A). Higher benthic dinoflagellates abundance at

1406 cells/g ww-substrate also occurred in October 2009 (Figure 4.3A).

Composition of the benthic dinoflagellates community was comparable within all

months sampled at Nelly Bay and was dominated by the dinoflagellate, 

Ostreopsis spp. (Figure 4.3A). Although Gambierdiscus spp. were a minor 

component of the benthic dinoflagellates community, an increase in abundance 

was observed in August 2008.
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The total abundance of benthic dinoflagellates at Pioneer Bay for August 2009 

(Orpheus Island Research Station (OIRS) based survey) was comparable to the

total abundance for Nelly Bay in August 2008 (Figure 4.3A and D). Total benthic

dinoflagellates abundances were significantly different between the mid-reefs, 

Lodestone and Keeper Reefs (T-testdf28; p<0.05); as well as between inshore-

reefs (T-testdf28; p<0.05) at Pioneer Bay and Pelorus Island (Figure 4.3D). 

Similar to Nelly Bay, Gambierdiscus spp. were a minor component of the 

benthic dinoflagellates community; however, by contrast, Prorocentrum spp. 

dominated (Figure 4.3A and D).

There was no clear seasonal trend in substratum association for benthic 

dinoflagellates when based on macroalgae thalli structure for Nelly Bay (Figure 

4.3B). Flattened macroalgal substrates were more frequently associated with 

higher benthic dinoflagellates abundances at Lodestone Reef and Pioneer Bay 

for August 2009 (Figure 4.3E). Benthic dinoflagellates abundances were higher 

on terete macroalgal substrates at Keeper Reef and Pelorus Island, which was 

similar to benthic dinoflagellates associations observed at Nelly Bay in August 

2008 (Figure 4.3B and E).
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Figure 4.3 Mean abundances of benthic toxic dinoflagellates observed in two surveys: 
monthly seasonal survey at Nelly Bay, Magnetic Island, 2008 - 2009 (A-C); and the 
Orpheus Island Research Station-based survey, August 2009 (D-F). For both surveys, 
mean benthic toxic dinoflagellate abundances are shown: for community composition (A 
and D); with preference for macroalgal growth morphologies (B and E); and for known 
palatability of grazers on surveyed macroalgal substrata (C and F). Mean abundances 
were standardised to macroalgal substrata by wet weight (g ww) and number of samples.

Benthic dinoflagellates abundances were often associated with macroalgae 

known to be palatable to crustaceans, urchins and sea turtles as well as fish in 

all months surveyed at Nelly Bay (Figure 4.3C). In comparison, macroalgal 

substrata palatable to fish and urchins had the least benthic dinoflagellates 

abundances associated at both Lodestone and Keeper Reefs (Figure 4.3F). 

Higher benthic dinoflagellates abundances were associated with macroalgal 
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substrata known to be palatable to gastropods at Lodestone and Keeper Reefs 

as well as Pelorus Island. Macroalgal substrata known to be palatable to 

mesograzers recorded highest benthic dinoflagellates abundances at 

Lodestone Reef but were low or absent at other reefs (Figure 4.3F). At Pioneer 

Bay, higher benthic dinoflagellates abundances occurred on macroalgal 

substrates known to be grazed by urchins as well as fish and crustaceans 

(Figure 4.3F).

Table 4.1 Mean abundances of Gambierdiscus cells (number of cells/g ww of sample) 
relative to macroalgal growth morphologies and known grazer palatability (Cruz-Rivera 
and Villareal, 2006) at Nelly Bay, Magnetic Island in 2008 and 2009.

2008 2009
May June July August July October November December

Fish
Flattened
Leathery

Terete

17.67
11.72

23.96

135.14

118.49 4.44 6.88
6.50
26.09

197.60

37.35
Urchins

Flattened
Leathery

Terete
2.88

17.67 23.96 118.49 5.92 6.88

4.22

197.60

37.35
Crustaceans

Flattened
Leathery

Terete

17.67 23.96

135.14

4.44 2.30

26.09

42.74

37.35
Gastropods

Flattened
Leathery

Terete

68.34

135.14

1.72

27.75
Mesograzers

Flattened
Leathery

Terete 1.81 6.61 3.41
Sea Turtles

Flattened
Leathery

Terete

17.67

135.14 26.09 37.35

Gambierdiscus cells were absent in June 2008 at Nelly Bay (Table 4.1) and the 

lowest abundances were recorded in May 2008, however showing the highest 

benthic dinoflagellates abundance (Figure 4.3B and Table 4.1). In May 2008, 

Gambierdiscus cells were only recorded on leathery macroalgae that were 
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palatable to urchins (Table 4.1). By contrast, benthic dinoflagellates cells were 

more frequently associated with flattened macroalgae known to be palatable to 

fish, crustaceans and sea turtles (Figure 4.3B and C) (Cruz-Rivera and Villareal,

2006).

Higher abundances of Gambierdiscus cells were associated with flattened 

macroalgal substrata known to be grazed by gastropods (Cruz-Rivera and 

Villareal, 2006) in July 2008 and by fish and urchins in July and December 2009

(Table 4.1). In August 2008 and November 2009, higher abundance of 

Gambierdiscus cells were associated with terete macroalgal substrates known 

to be grazed by fish, crustaceans, gastropods and sea turtles (Cruz-Rivera and 

Villareal, 2006). This was similar to frequent high benthic dinoflagellates 

abundances with terete substrates in August 2008, but contrasted with 

November 2009 when terete was least colonised by benthic dinoflagellates 

(Figure 4.3B and Table 4.1).

Highest abundance of Gambierdiscus cells within the OIRS-based survey was 

recorded at Lodestone Reef and was associated with terete macroalgal 

substrata known to be palatable to crustaceans and sea turtles (Table 4.2)

(Cruz-Rivera and Villareal, 2006). Higher Gambierdiscus spp. abundances were

associated with terete macroalgal substrates compared with highest benthic 

dinoflagellates abundances associated with flattened macroalgal substrata at 

Lodestone Reef and Pioneer Bay (Figure 4.3E and Table 4.2). Macroalgal 

substrata known to be palatable to urchins (Cruz-Rivera and Villareal, 2006) 

was least colonised by Gambierdiscus cells at Lodestone and Keeper Reefs but
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were colonised in association with terete and leathery macroalgal substrata at 

Pioneer Bay (Table 4.2). High benthic dinoflagellates and Gambierdiscus 

abundances were recorded for macroalgal substrata known to be palatable to 

gastropods (Cruz-Rivera and Villareal, 2006) at both mid-reefs. However, 

Gambierdiscus cells were recorded on flattened macroalgae only known to be 

gastropod palatable (Table 4.2) (Cruz-Rivera and Villareal, 2006).

Table 4.2 Mean abundances of Gambierdiscus cells (number of cells/g ww of sample) 
relative to macroalgal growth morphologies and known grazer palatability (Cruz-Rivera 
and Villareal, 2006) at mid- and inshore-reefs during the OIRS based survey.

Mid-reefs Inshore-reefs
Lodestone

Reef
Keeper Reef Pioneer Bay Pelorus Island

Fish
Flattened
Leathery

Terete
8.93

35.04
1.59
26.33

3.12
10.13
16.72

11.16

138
Urchins

Flattened
Leathery

Terete
8.93
4.01

1.59
13.87

3.12
18.69
20.29

9.33

2.31
Crustaceans

Flattened
Leathery

Terete 50.56 46.49 6.04

5.39

Gastropods
Flattened
Leathery

Terete

29.38

20.22

23.38

34.93 6.04
Mesograzers

Flattened
Leathery

Terete
8.93

26.52
1.59

Sea Turtles
Flattened
Leathery

Terete 50.56 63.84 6.04

8.09

4.5 Discussion

It is generally hypothesised that herbivorous fish grazing on macroalgae 

inadvertently transfer Gambierdiscus spp. and co-occurring benthic 

dinoflagellates into marine fish food webs, with their toxins then being bio-

92



Chapter 4: Seasonal abundance of benthic dinoflagellates in the Central GBR

converted into ciguatoxins and bioaccumulated into larger predatory fish

(Heimann et al., 2011). However, links in the transfer of ciguatoxins from 

Gambierdiscus populations into marine fish food webs in the GBR remain 

unclear. This study identified potential key parameters in the distribution of 

Gambierdiscus populations in the central GBR.

The hypothesis that fish grazing on macroalgae transfer ciguatoxins into fish 

food webs implies that Gambierdiscus populations are uniformly distributed on 

macroalgal substrata. In this study, benthic dinoflagellate populations, and in 

particular Gambierdiscus spp, had a heterogenic distribution on macroalgal 

substrates. Previous field surveys have shown similar heterogeneity in 

Gambierdiscus spp. distribution on macroalgal substrata (Ballantine et al., 1985;

Chinain et al., 1999b; Gillespie et al., 1985). Distribution patterns for 

Gambierdiscus spp. or benthic dinoflagellate assemblages based on macroalgal

palatability were inconclusive in this study. Instead, distribution patterns 

suggested site-specific conditions may play a role. This may be due to a 

number of factors relative to abundance and diversity of herbivores at a site. 

Diversity of herbivorous fish rather than abundance was shown to minimise 

macroalgal growth and maintain coral dominance on reefs (Rasher et al., 2013).

A higher diversity of herbivorous fish at a reef is likely to be attracted by a 

broader range of macroalgal species palatable to them. Thereby, grazing may 

potentially lower diversity of macroalgae as available substrates for benthic 

dinoflagellates, however, this is also dependent on whether the herbivorous fish

are general or selective grazers. High abundance of generalist grazers such as 

Siganidae (rabbitfish) may reduce the diversity of macroalgal substrata 
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available for benthic dinoflagellates. In comparison, high abundance of 

specialised or highly selective herbivores, such as Scaridae (parrotfish), could 

result in an increased diversity of macroalgal substrata as grazing is targeted to 

a limited range of macroalgal species. Therefore, grazing pressure and 

macroalgal palatability combined could hypothetically dictate availability of 

macroalgal substrates available for Gambierdiscus spp. and co-occurring 

benthic dinoflagellates (Figure 4.4).

Figure 4.4 Schematic diagram of macroalgal substrate abundance and diversity for 
benthic dinoflagellates based on palatability of macroalgae against grazing pressures by 
herbivorous fish.

Grazing selectivity by herbivores may vary depending on availability of their 

preferred macroalgae. It was noted that when A. planci were in low abundance, 

they were selective coral predators and prefer to feed on Acropora spp. (De'ath 

and Moran, 1998). However, when an A. planci  outbreak occurred on a reef, 

the high abundance necessitates that the sea star be less selective, feeding on 

numerous coral genera (De'ath and Moran, 1998; Kayal et al., 2012). Similarly, 
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it is argued that highly selective herbivores are likely to change to a more 

generalised diet in a scenario of high abundance combined with high diversity of

herbivores. This scenario is likely to increase grazing pressure at a reef, 

necessitating the grazing of less palatable or even previously avoided 

macroalgal species by both general and the previously highly selective 

herbivores. In such scenarios, the limited availability of macroalgal substrata for 

benthic dinoflagellates may result in the association with other benthic surfaces,

such as sediments and coral rubble. In this study, macroalgal substrata 

palatable to fish, urchin and crustaceans were frequently dominant at Nelly Bay,

Magnetic Island, which is characterised by inshore stands of Sargassum spp. 

(Sparrow pers. obs.). Herbivory exclusion experiments showed macroalgal 

composition changed in response to grazing pressures (Diaz-Pulido and 

McCook, 2002a; McClanahan et al., 2002). Exclusion of larger herbivorous fish 

conducted at Orpheus Island resulted in an increase in abundance and 

dominance of leathery macroalgae of the genus, Sargassum. which were 

grazed immediately once the exclusions were removed (Hughes et al., 2007). 

Similarly, Sargassum dominance at Nelly Bay may suggest low grazing 

pressure or absence of larger herbivorous fish (Figure 4.4). Abundance of 

herbivorous fish are known to be higher at mid-reef sites compared to inshore 

reefs (Russ, 1984). In this study, macroalgae palatable to fish and sea urchins 

were located inshore at Nelly Bay and Pioneer Bay, while gastropod, 

mesograzer and sea turtle palatable macroalgal substrates were located at mid-

reefs. Within the time of this study, Loeffler et al. (2015) demonstrated that 

grazing by herbivorous fish negatively affected Gambierdiscus populations but 

the study has limited applicability due to the broad categories chosen for fish, 
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such as herbivore, piscivores, invertivore. Predation by grazers other than 

herbivorous fish is thought to contribute in the transfer of ciguatoxins into fish 

food webs (Cruz-Rivera and Villareal, 2006; Heimann et al., 2011), leading to 

the patchy distribution of benthic dinoflagellates on macroalgal substrates. The 

higher abundances of Gambierdiscus populations found on flattened macroalgal

substrates at the mid-reefs, Lodestone and Keeper Reefs in this study were 

only palatable to gastropods. This may indicate high herbivorous fish but low 

gastropod abundance at mid-reefs (Klumpp and Pulfrich, 1989). In Nelly Bay, 

higher Gambierdiscus densities were found on macroalgal substrates palatable 

to crustaceans, urchins and gastropods, as well as fish and varied between 

months. This pattern of Gambierdiscus distribution and abundance may indicate

non-selective grazing, leaving only remnants of macroalgal stands for sampling.

Further field and laboratory experiments are needed to investigate the impact of

fish and invertebrate grazing on the distribution of Gambierdiscus and co-

occurring benthic dinoflagellates on macroalgae. This is essential in identifying 

key vectors in the transfer of ciguatoxins into fish food webs.

In laboratory experiments, Gambierdiscus spp. displayed different degrees of 

motility and attachment to a range of individual macroalgal substrates

(Nakahara et al., 1996; Parsons et al., 2011; Rains and Parsons, 2015). The 

behaviour between motile and attached cells may be another factor that affects 

the heterogenic distribution of Gambierdiscus spp. It is proposed that grazers 

are more likely to disperse Gambierdiscus cells that are highly motile on 

palatable macroalgal substrates, while a higher degree of attachment to 

macroalgal substrates is likely to increase uptake of Gambierdiscus cells by 
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grazers. Herbivorous fish encompass a range of feeding techniques, including 

scrapers, excavators, detritivores, croppers and farmers (Charbonnel et al., 

2002), which can vary not just between fish families, but also species (Tebbett 

et al., 2017). Standing Gambierdiscus population sizes may be influenced by 

grazing technique. Indeed, Loeffler et al. (2015) demonstrated that grazing 

pressure effects Gambierdiscus spp. populations, although piscivore and 

invertivore fish were also prominent. Acanthuridae (surgeonfish) and Scaridae 

form part of the diet in Rarotonga, Cook Islands and are frequently associated 

with ciguatera incidence (Rongo and van Woesik, 2013). Acanthurids were 

observed to increase in abundance following disturbances and observed to 

target filamentous turf algae (Rongo and van Woesik, 2013). Particularly, the 

acanthurid, Ctenochaetus striatus, a common detritivore on Rarotonga, is 

considered a high-risk ciguatera species; while Acanthurus nigrofuscus is a 

common cropper and considered one of several acanthurids to be low-risk. Both

acanthurids preferentially target turf algae, however, only abundance of C. 

striatus was positively correlated with reported ciguatera cases (Rongo and van 

Woesik, 2013). Tebbett et al. (2017) demonstrated that acanthurid, C. striatus 

targeted the sediment matrix within the turf algae, while A. nigrofuscus only 

cropped the turf algal filaments. This suggests that benthic dinoflagellates, 

particularly Gambierdiscus spp., are likely to be found within the matrix rather 

than on the turf algal filaments above the matrix.

In Queensland (Qld), Australia, acanthurids, C. striatus and A. nigrofuscus as 

well as several parrotfish are commonly found on the GBR, with abundances 

and diversity increasing from inshore to outer reefs (Hoey and Bellwood, 2008; 
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Russ, 1984). These fish species have not been implicated in reported ciguatera 

cases in Qld because they do not form part of the western diet. In contrast to 

Rarotonga, Cook Islands, Serranidae, (including grouper and coral trout, 

Plectropomus spp.) and Scombridae (mackerel) are frequently associated with 

reported ciguatera cases in Qld, Australia (Gillespie et al., 1986; Harvey, 1997). 

Therefore, on the GBR, it is suggested that serranids and scombrids would 

predate acanthurids, particularly C. striatus, as potential ciguatoxin vectors. 

Dietary studies for serranids on the GBR (Beukers-Stewart and Jones, 2004; 

Kingsford, 1992; St John, 1999, 2001; St John et al., 2001) indicate that 

diversity of fish predated was greater in Plectropomus leopardus compared to 

Cephalopholis spp. (Figure 4.5A and B). While acanthurids were a minor 

component of the diet for P. leopardus (Figure 4.5A), these grazers were absent

from the diets for Cephalopholis spp. (Figure 4.5B) Acanthurids were an 

important component of the diet for C. argus in the Red Sea, however, only A. 

nigrofuscus were targeted (Shpigel and Fishelson, 1989); which was considered

low risk for ciguatera in Rarotonga. The diet of scombrid species on the GBR 

also appear to have an absence of acanthurids with Clupeidae (sardines, 

herrings and anchovies) mainly targeted (Begg and Hopper, 1997). To 

determine if C. striatus or other grazers are a key vector of ciguatoxin transfer in

marine food webs on the GBR, further studies are needed that target the high-

risk for ciguatera fish on the GBR, serranids and scombrids. In addition, it is 

suggested that understanding fish feeding techniques and associations is 

essential to identify key vectors in the transfer of ciguatoxins into marine food 

webs. Substrate associations for Gambierdiscus spp. are likely to remain 
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inconclusive without research on fish species, particularly region-specific high-

risk for ciguatera poisoning, as observed by Rongo and van Woesik (2013).

Gambierdiscus population densities were also found to vary between 

macroalgal thalli structures, which differed between sites. Higher densities of 

benthic dinoflagellates were associated with flattened substrates at inshore-

reefs, terete substrates at mid-reefs and varied between months in Nelly Bay, 

Magnetic Island. This study is the first to investigate substrate association by 

macroalgal thalli structure, which has flow-on effects in addition to herbivory 

pressures. Associations with thalli structure may be a response to regulation 

required for irradiance levels depending on reef characteristics. Flattened thalli 

structure enables shading from high irradiance for benthic dinoflagellates

(Villareal and Morton, 2002), which may occur on shallow inter-tidal reef flats, 

such as in our study at Pioneer Bay, Orpheus Island and on mid-reefs that are 

shallow or partially exposed at low tides, observed at Lodestone Reef. In 

comparison, association with terete thalli structure at inter-tidal, submerged 

reefs on Pelorus Island and at Keeper Reef in our study may enable more 

variable regulation of irradiance associated with fluctuating levels of water depth

during the day. Nelly Bay is an inter-tidal submerged inshore reef with stands of 

Sargassum spp. present near-shore. This may reduce the effects of turbulence 

for macroalgae with flattened thalli structure, such as Dictyota dichotoma, 

Padina spp. and Lobophora spp., which were observed within and beneath the 

Sargassum spp. stands. The variation in monthly association with different thalli

structure at Nelly Bay may be promoted by low grazing pressure, which is 

associated with the proliferation of Sargassum spp. (Hughes et al., 2007). Low 
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grazing pressure may in turn enable substrate selectivity to be driven by 

environmental factors that influence growth of macroalgae, such as nutrients, 

temperature and freshwater inputs.

Large-scale disturbance events have been shown to positively correlate with 

increases in ciguatera incidence (Llewellyn, 2010; Rongo and van Woesik, 

2011). The impact of small-scale disturbances on the distribution and 

abundances of benthic dinoflagellates, in particularly Gambierdiscus spp., such 

as fishing, wave action from boat traffic and competition for space on reefs are 

poorly understood. Competition for space between corals and macroalgae is 

well known (McCook, 2001), however, competition between macroalgal thalli 

structures have not been explored, such as growth rates, overshadowing and 

abrasive action. The influence of these factors on macroalgal composition is 

likely to have a flow-on effect to the distribution of benthic dinoflagellates.

Gambierdiscus spp. are frequently observed to co-occur on macroalgal 

substrates with other benthic dinoflagellates (Heimann et al., 2011), however, 

the role of species-specific interactions, such as allelopathy are poorly 

understood (see chapter five). This study showed that higher Gambierdiscus 

populations were not always associated with the same macroalgal thalli 

structure for other benthic dinoflagellate populations. In Pioneer Bay, higher 

Gambierdiscus abundances were on terete macroalgal substrates, which were 

least colonised by other benthic dinoflagellate populations. Highest benthic 

dinoflagellate abundance was on flattened macroalgal substrates in May 2008 

at Nelly Bay, however, Gambierdiscus cells were only recorded on leathery 
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Figure 4.5 Average percentage frequency of dietary components for Serranidae, (A) 
Plectropomus leopardus and (B) Cephalopholis spp. (Beukers-Stewart and Jones, 2004; 
Kingsford, 1992; St John, 1999, 2001; St John et al., 2001).

macroalgal substrates there. Allelopathic interactions have been shown to 

influence composition of temperate bloom-forming toxic dinoflagellates

(Hakanen et al., 2014). The dominance of Ostreopsis spp. in Nelly Bay and 
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Prorocentrum spp. at mid-shelf and inshore reefs during the OIRS-based survey

conducted August 2009, were also observed by Skinner et al. (2013), with 

similar benthic dinoflagellate dominance patterns, although generally higher 

abundances were observed in this study. Lower abundances reported by

Skinner et al. (2013) may potentially be an artefact of the limited range of 

macroalgal species sampled or an underestimation due to loss from using a 

larger mesh sieve (38 µm). Other studies have also noted that use of sieves 

with pore size of > 20 µm can result in underestimating abundance of benthic 

dinoflagellate genera (Bomber et al., 1989; Grzebyk et al., 1994). Production of 

mucilage by benthic dinoflagellates is thought to assist in attachment to 

substrates, as free-swimming Gambierdiscus spp. have sometimes been 

observed to remain attached by a mucilage thread (Nakahara et al., 1996). 

Toxins within the mucilage produced by Gambierdiscus sp. are thought to inhibit

the growth of co-occurring diatoms (Bomber, 1990). Toxin-containing exuded 

mucilage may deter micro- or meso-grazers, such as crustaceans that co-occur 

with benthic dinoflagellates on macroalgal substrates. Alternatively, this may 

reduce grazing pressure on their host macroalgal substrate, similar to coral 

symbionts, which reduce predation from A. planci on its coral host (Pratchett, 

2001).

In summary, the heterogenic distribution of Gambierdiscus spp. populations 

may be driven by several biological factors, including grazing pressures, feeding

techniques of grazing fish, including detritivores and invertivores, as well as the 

potential role of co-occurring benthic dinoflagellates against predation for the 

macroalgal host as well as the dinoflagellates themselves. In this context, 
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disturbance events and climatic conditions can influence macroalgal succession

and range expansion of macroalgae and Gambierdiscus populations (Boada et 

al., 2010; Hallegraeff, 2010; Kohli et al., 2014).

Range expansions of Gambierdiscus populations in tropical regions following 

large-scale disturbance events have been correlated with increases in ciguatera

incidence (Chateau-Degat et al., 2005). The thallus structure and palatability of 

macroalgal substrates have an important role in the distribution and abundance 

of Gambierdiscus populations. To understand the significant role these factors 

play in ciguatoxin transfers in marine food webs, it is essential to explore the 

role of herbivory pressures, herbivorous fish and invertebrate diversity and 

abundances, competition and allelopathic interactions on macroalgal 

composition and abundance.

Changed weather patterns under current climate warming conditions have 

promoted the expansion of Gambierdiscus populations into temperate coastal 

habitats (Hallegraeff, 2010; Kibler et al., 2015). There is concern that 

colonisation by Gambierdiscus spp. into temperate coastal habitats will be 

followed by ciguatoxins accumulating in local fish populations and fisheries. It is 

therefore, essential to continue investigating key factors that influence 

distribution of Gambierdiscus populations and key vectors in the transfer of 

ciguatoxins into fish food webs. Without this, monitoring of reported ciguatera 

cases and implementing fisheries management strategies, such as bans and 

restrictions, will not prevent the likely impact from the continued geographic 

expansions by Gambierdiscus spp. and potential expansion of ciguatera.
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Chapter Five: Temperature and salinity tolerance of two

strains of Gambierdiscus carpenteri, isolated from the 

central Great Barrier Reef4

5.1 Abstract

Increases in reported incidence of ciguatera fish poisoning (hereafter ciguatera) 

have been linked to warmer sea temperatures that are known to trigger coral 

bleaching events. The drivers that trigger blooms of ciguatera-causing 

dinoflagellates on the Great Barrier Reef (GBR) are poorly understood. This 

study investigated the effects of increased temperatures and lowered salinities, 

often associated with environmental disturbance events, on the population 

growth of two strains of the potentially ciguatera-causing dinoflagellate, 

Gambierdiscus carpenteri (NQAIF116 and NQAIF380). Both strains were 

isolated from the central GBR with NQAIF116 being an inshore strain and 

NQAIF380 an isolate from a stable environment of a large coral reef aquarium 

exhibit in ReefHQ, Townsville, Australia. Species of Gambierdiscus are often 

found as part of a mixed assemblage of benthic toxic dinoflagellates on 

macroalgal substrates. The effect of assemblage structure of dinoflagellates on 

the growth of Gambierdiscus populations has, however, not been explored. The

study, therefore investigated the growth of G. carpenteri within mixed 

assemblages of benthic dinoflagellates. Population growth was monitored over 

4 This chapter is adapted from:
Sparrow, L., Momigliano, P., Russ, G. R., and Heimann, K. (2017) Effects of temperature, 
salinity and composition of the dinoflagellate assemblage on the growth of Gambierdiscus 
carpenteri isolated from the Great Barrier Reef. Harmful Algae 65:52-60.

The chapter has been modified to fit the thesis flow.
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a period of 28 days under three salinities (16, 26 and 36) and three temperature

(24, 28 and 34°C) conditions in a fully crossed experimental design. 

Temperature and salinity had a significant effect on population growth. Strain 

NQAIF380 exhibited significantly higher growth at 28°C compared to strain 

NQAIF116, which had highest growth at 24°C. When strain NQAIF116 was co-

cultured with the benthic dinoflagellates, Prorocentrum lima and Ostreopsis sp., 

inhibitory effects on population growth were observed at a salinity of 36. In 

contrast, growth stimulation of G. carpenteri (strain NQAIF116) was observed at

a salinity of 26 and particularly at 16 when co-cultured with Ostreopsis-

dominated assemblages. Range expansion of ciguatera-causing dinoflagellates 

could lead to higher frequency of reported ciguatera illness in populated 

temperate Australian regions, outside the tropical range of the GBR. Therefore, 

our findings on salinity and temperature tolerance of two strains of G. carpenteri

indicates potential adaptability to different local environmental conditions. These

are baseline data for future investigations into the potential southward range 

expansion of ciguatera-causing dinoflagellates originating from the GBR.

5.2 Introduction

Ciguatera is a human illness induced by the consumption of fish that have 

accumulated ciguatoxins through their diet. Ciguatoxin analogues are produced 

by benthic toxic dinoflagellates of the genus Gambierdiscus, potentially being 

bio-converted into more potent ciguatoxins after consumption by fish (Heimann 

et al., 2011; Lewis et al., 1991; Tester et al., 2013). Species of Gambierdiscus 

frequently co-occur with other benthic dinoflagellates, including Prorocentrum 

and Ostreopsis, the latter two species often being dominant, and these 
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assemblages commonly utilise macroalgae as a substrate, but are also known 

to colonise other benthic surfaces including coral and sand (Faust, 1995; 

Morton and Faust, 1997; Parsons et al., 2011; Tester et al., 2014). It is 

hypothesised that Gambierdiscus spp. are inadvertently consumed by 

herbivorous fish grazing on macroalgae (Heimann et al., 2011; Randall, 1958). 

Environmental disturbances such as coral bleaching, cyclones and storms 

impact coral reefs and are often followed by increases in macroalgal cover

(Diaz-Pulido et al., 2009). The duration of macroalgal dominance on reefs may 

be exacerbated by predicted climate change and other anthropogenic 

disturbances including pollution and overfishing (Hughes et al., 2010; Welsh 

and Bellwood, 2015).

The warmer sea surface temperatures (SSTs) associated with increased 

ciguatera incidence (Hales et al., 1999; Llewellyn, 2010; Tester et al., 2010) are 

within the range of temperatures experimentally documented for optimal growth 

of Caribbean and Pacific strains of Gambierdiscus species (Kibler et al., 2012). 

Warmer SSTs and reduced salinities are primary triggers of coral bleaching

(Hoegh-Guldberg, 1999; Hoegh-Guldberg and Bruno, 2010). Temperature-

triggered coral bleaching induces the loss of endosymbiotic dinoflagellates, 

which results in pigment loss in corals compared to loss of coral tissue due to 

coral bleaching triggered by reduced salinity (Kerswell and Jones, 2003). 

Substantial freshwater inputs from storms and cyclones can produce short-lived

pockets of reduced salinities in shallow, protected areas on reefs (Hoegh-

Guldberg and Smith, 1989); while reduced salinities associated with flood 

plumes impact coastal and inshore reefs (Kerswell and Jones, 2003). Flood 
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plumes generated by cyclones and storms during wet seasons on the Great 

Barrier Reef (GBR) have been reported 150 – 200 km offshore, where lowered 

salinities between 26 to <10 may be short lived over a few days or persist for up

to three weeks (Devlin et al., 2001). It is also hypothesised that the spatial 

magnitude of coral bleaching events triggered by warmer SSTs is influenced by 

the strength of El Niño periods (Hoegh-Guldberg, 1999). The degree of mortality

caused by coral bleaching dictates the duration of macroalgal dominance

(Graham et al., 2015). Macroalgal outbreaks and benthic phase shifts on coral 

reefs may be an important facilitator in the growth and spatial expansion of 

Gambierdiscus, and thus, potentially, ciguatera outbreaks.

The duration of macroalgal dominance is also influenced by the frequency, 

severity and combined effects of environmental disturbances. Jamaican reefs in

the Caribbean have experienced long-term macroalgal dominance following the 

combined effects of hurricanes, overfishing and the mass die off of the grazing 

sea urchin Diadema antillarum (Hughes, 1994). Subsequent increases in 

benthic dinoflagellate populations, including Gambierdiscus spp. have been 

observed, which may increase the occurrence of ciguatera (Chateau-Degat et 

al., 2005), but no ciguatera cases were reported following a bloom of 

Gambierdiscus toxicus subsequent to coral bleaching at the Mayotte reefs in 

the Indian Ocean (Turquet et al., 2001). Indeed, drivers of toxin production have

yet to be determined for known toxic Gambierdiscus spp. Although high 

concentrations of ciguatoxins and maitotoxins can build up in cultures over long 

time frames, the typical low or undetectable concentrations of toxin produced by

cultured Gambierdiscus cells in short-duration experiments limits exploration of 
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the effect of transient environmental disturbances and key ecological drivers on 

toxin production, negatively affecting prediction of risk of ciguatera incidence.

Temperature and salinity were identified as potential key ecological drivers in 

the population growth of Gambierdiscus  by Kibler et al. (2012) who established 

that tolerance ranges varied between eight Gambierdiscus species. This may 

reflect local thermal adaptation, as Caribbean species preferred warmer 

temperatures compared to temperate species from North Carolina, USA. In 

Australia, Gambierdiscus carpenteri and co-occurring benthic toxic 

dinoflagellates have been found at locations throughout the GBR (Murray et al., 

2014). There is, however, little understanding of the response of endemic 

Gambierdiscus populations to temperature and salinity changes that are 

commonly experienced on reefs in the GBR.

Ocean currents have been a primary vector route for reef fish and other marine 

species from tropical regions to warm temperate marine habitats (Booth et al., 

2007). Fish larvae have been transported from the tropics northwards into 

temperate regions by the Gulf Stream in North America (Kibler et al., 2015). In 

Australia, tropical species have been transported to temperate marine habitats 

by the Leeuwin Current along the west coast and from the GBR on the east 

coast by the East Australian Current (EAC) (Booth et al., 2007; Figueira and 

Booth, 2010). Seasonal occurrences of juvenile tropical fish has been observed 

off the New South Wales (NSW) coast for more than a decade (Figueira et al., 

2009). Strengthening of the EAC during the Austral summer promotes the 
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seasonal transport of tropical fish into temperate waters as far south as 

Merimbula (36°S, 149°E) in southern NSW (Figueira and Booth, 2010). Recent 

records of G. carpenteri and co-occurring benthic toxic dinoflagellates in 

Merimbula also suggests that the EAC was a likely primary transport 

mechanism from GBR tropical waters (Heimann et al., 2011; Kohli et al., 2014; 

Murray et al., 2014). In comparison to the dominance of coral reefs in tropical 

regions, rocky coastlines and macroalgal forests dominate temperate marine 

habitats, which may provide suitable substrates for colonisation by benthic toxic 

dinoflagellates. The current expansion of bio-geographic boundaries for 

ciguatera-causing dinoflagellates is likely to continue under predicted climate 

developments (Heimann et al., 2011; Kibler et al., 2015; Tester et al., 2013). It 

is therefore essential to understand temperature and salinity tolerances, as 

these are drivers governing the distribution and abundance of ciguatera-causing

dinoflagellates. This may be critical in the evaluation of temperate marine fish 

species likely to be at higher ciguateric risk.

A positive correlation between SSTs and population size of Gambierdiscus spp.

have been demonstrated consistently over decades (Bomber et al., 1988a; 

Chinain et al., 1999b; Kibler et al., 2012; Llewellyn, 2010). In 1994, larger 

populations of Gambierdiscus spp. were recorded seven months after 

temperature-triggered coral bleaching in Tahiti, French Polynesia; these higher 

cell densities continued to be recorded for 24 months following the bleaching 

event (Chinain et al., 1999b). Lewis et al. (1986) reported a decrease in 

Gambierdiscus populations three months after a cyclone over Sudbury Reef, off

Cairns, Australia. Colonization of dead coral substrates from coral bleaching or 
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cyclones have been reported to occur through a succession of macroalgal 

species (Cheal et al., 2010; Diaz-Pulido and McCook, 2002b; Hughes et al., 

2007). Initial colonization by filamentous algal turfs generally occurred within the

first month in the GBR, French Polynesia and the Indian Ocean following an 

environmental disturbance (Bagnis and Rougerie, 1992; Diaz-Pulido and 

McCook, 2002b; Turquet et al., 2001; Walsh, 1983). Surveys in the Society 

Archipelago, French Polynesia and Mayotte, Indian Ocean reported the 

subsequent increase in Gambierdiscus populations (>150-fold higher (60,463 

cells g-1 algae at Mayotte)) in the two – three months following, (Bagnis and 

Rougerie, 1992; Turquet et al., 2001). The influence of environmental drivers 

that trigger population increases of Gambierdiscus spp. and co-occurring 

benthic dinoflagellates on coral reefs remain, however, contradictory. Growth 

studies on Gambierdiscus by Morton et al. (1992) showed preference for lower 

salinities, which contrasted with studies by Kibler et al. (2012) reporting reduced

growth at salinities lower than 20. Lower salinities during the wet season were 

speculated to affect seasonality in Gambierdiscus populations (Bomber et al., 

1988a; Gillespie et al., 1985), however, the interaction of salinity and 

temperature remains unexplored.

Stable co-existence of Gambierdiscus spp., Ostreopsis spp. and Prorocentrum 

spp. could be a result of positive interspecific interactions, such as allelopathy. 

Early laboratory studies established allelopathic interactions in benthic 

dinoflagellates through supplementing culture media of one species with filtered

exudate from another species and in bi-algal cultures (Bomber, 1990). As in 

planktonic dinoflagellates, positive allelopathic interactions are thought to favour
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benthic dinoflagellates by deterring grazing and improving nutrient resource 

allocation (García-Portela et al., 2016; Gross, 2003). Inhibitory effects on growth

using filtered-exudates have been documented for G. toxicus, Prorocentrum 

spp., Ostreopsis spp. and Coolia monotis (García-Portela et al., 2016; Monti 

and Cecchin, 2012; Sugg and VanDolah, 1999). Growth of co-occurring diatoms

were also inhibited by G. toxicus (Bomber, 1990), however, Monti and Cecchin 

(2012) reported that the filtrate from O. ovata had no effect on the growth of the 

diatom, Coscinodiscus granii. Although inhibitory effects were most frequently 

observed, Bomber (1990) reported stimulatory effects between species of 

Prorocentrum. Interestingly, although benthic dinoflagellates frequently 

associate with macroalgal substrates, Accoroni et al. (2015) documented 

inhibitory effects on the growth of O. ovata in bi-algal cultures and filtrates from 

three macroalgae, Dictyota dichotoma, Ulva rigida and Rhodymenia 

pseudopalmata. The few studies that have reported allelopathic experiments 

with benthic dinoflagellates were conducted in culture conditions, where 

temperature and salinity were constant. Kibler et al. (2012), however, reported 

broad temperature (15-33⁰C) and salinity (<14 – >41) tolerances for eight 

species of Gambierdiscus potentially reflecting their biogeographic origins. The 

impact of lower salinities and warmer temperatures on interspecific interactions,

such as allelopathy in mixed benthic dinoflagellate assemblages have not been 

previously explored.

This study aimed to examine the interaction of temperature and salinity on the 

population growth of two strains of G. carpenteri, isolated from an inshore 

location of the central Great Barrier Reef and from the waters of the ReefHQ 
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aquarium, Townsville. It was hypothesised that populations of the inshore G. 

carpenteri strain would have higher growth rates at lower temperatures and 

salinities than the G. carpenteri strain isolated from the regulated aquarium 

environment. Fluctuation of inshore environmental stressors should also affect 

assemblage structure of benthic dinoflagellates. Therefore, this study also 

aimed to investigate the potential interspecific interactions of a mixed 

assemblage consisting of P. lima and Ostreopsis sp. at different salinities on the

population growth of G. carpenteri, NQAIF 116 isolated from an inshore habitat 

at Pallarenda, Townsville. Simulation of likely adverse environmental conditions 

in experiments with mixed assemblages will improve our understanding of co-

habiting benthic dinoflagellate responses. This will also provide an insight into 

key ecological drivers for population growth and capacity for range expansion.

5.3 Methods

5.3.1 Cell cultures

The cultures of Gambierdiscus carpenteri NQAIF116, was established from a 

sample collected on macroalgae at the mouth of Three Mile Creek, Pallarenda 

(19°S, 146°E), in the central Great Barrier Reef, (Murray et al., 2014) Australia. 

Cultures of Gambierdiscus sp. (NQAIF380, hereafter identified as G. 

carpenteri), Prorocentrum lima (NQAIF379) and Ostreopsis sp. (NQAIF382) 

were established from water samples collected in the coral reef exhibit at 

ReefHQ aquarium, Townsville. All cultures were isolated and established at the 

North Queensland Algal Identification and Culturing Facility (NQAIF) at James 

Cook University, Townsville, Australia by the collection curator, Mr. Stanley 
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Hudson. Cultures were maintained in K medium at 24°C and a salinity of 36 in a

temperature and light controlled Contherm phytoplankton growth chamber with 

a 12:12 hour light:dark cycle. Cultures were acclimated at 28°C over a period of 

eight days (equivalent to two cell divisions for Gambierdiscus species) prior to 

inoculation for treatments at 28 and 34°C. To simulate changes in salinity on 

reefs in the Austral wet season (see introduction), cultures were not acclimated 

to lower salinities prior to treatments.

5.3.2 Culture identification

Both cultures (NQAIF116 and NQAIF380) were unambiguously identified as 

strains of G. carpenteri. The culture NQAIF116 was characterized by Murray et 

al. (2014) using both calcofluor white staining and epifluorescence microscopy

(Murray et al., 2014) and via phylogenetic reconstruction using the near 

complete 18S rRNA gene and the D8-D10 region of the 28S rRNA gene.

To determine the identity of the second strain (NQAIF380), we obtained the D8-

D10 region of the 28S rRNA gene and constructed a phylogeny using a 

subsample of 37 sequences employed by Murray et al. (2014) representing 15 

clades of the genus Gambierdiscus sensu lato—i.e including the globular 

species which have recently been moved to the genus Fukuyoa (Gómez et al., 

2015). Deoxyribose nucleic acid (DNA) was extracted using a modified Chelex® 

protocol (Walsh et al., 1991) as outlined in Momigliano et al. (2013). A 929 bp 

long fragment of DNA including the D8/D10 region of the 28S rRNA gene was 

amplified using the primer pair FD8 and RB (Chinain et al., 1999a), using the 

same PCR conditions as per Murray et al. (2014). The amplified fragment was 

sequenced with the FD8 and RB primers by a commercial service (Macrogen 
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Inc. Seoul, Korea). A maximum likelihood tree was estimated using the software

PHYML 3.1 (Guindon et al., 2010), using five random starting trees and tree 

improvement using the best of nearest neighbour interchange (NNI) and 

subtree pruning and regrafting (NPR) for tree improvement. We used the 

substitution model TrN+G with four gamma categories (alpha=0.46), which was 

selected using the software jModelTest2 (Darriba et al., 2012). Branch support 

was estimated by analysing 1000 bootstrap datasets.

5.3.3 Experimental treatments

To investigate the effect of temperature and salinity on population growth for 

two strains of Gambierdiscus carpenteri (NQAIF116 and NQAIF380), a factorial 

experimental design was chosen. Four replicate 24-well tissue culture plates 

were prepared at each temperature (24, 28 and 34°C) and for each salinity (16, 

26 and 36), eight wells per plate were randomly selected (n=32 per treatment). 

In analogy to tissue culture approaches and to methods outlined in Holland et 

al. (2013), each well of the 24-well tissue culture plates contained 2mL K 

medium (without silicate), and each well was inoculated with groups of 4-10 

cells of each G. carpenteri strain (as growth for G. carpenteri was inconsistent 

with <4 cells per well), using the capillary capturing technique on an inverted 

microscope (Olympus CKX41, Olympus, Sydney, Australia) at x 200 final 

magnification.

The second experimental treatment was designed to investigate the hypothesis 

that a mixed assemblage of benthic dinoflagellates has a positive effect on 

population growth of G. carpenteri from inshore habitats, which experience 

114



Chapter 5: Effect of temperature and salinity on GBR-derived G. carpenteri

naturally fluctuating salinities. To investigate the effect of salinity and a mixed 

assemblage of benthic dinoflagellates on the growth of inshore G. carpenteri 

strain NQAIF116, four replicate 24-well tissue culture plates were prepared at 

24°C and for each salinity (16, 26 and 36), three wells per plate were randomly 

selected. Controls (wells with monoculture of inshore G. carpenteri strain 

NQAIF116) and treatments (NQAIF116 in mixed assemblages of P. lima, 

NQAIF379 and Ostreopsis sp. NQAIF382) were prepared to demonstrate an 

effect of a mixed assemblage on the growth of NQAIF116. To investigate the 

potential effect of a dominant dinoflagellate in mixed assemblages, the 

treatment was further partitioned to P. lima- or Ostreopsis sp.-dominated 

assemblages. As described above, the wells in each of the four replicate 24-

well tissue culture plates contained 2mL K medium (without silicate) and were 

inoculated using the capillary capturing technique on the inverted microscope at

x 200 final magnification. Cell densities at inoculation varied and the mean 

number of cells per dinoflagellate showed that in the treatments, inoculation 

proportions favoured P. lima NQAIF379 (Table 5.1).

Table 5.1 The mean inoculation cell densities for mixed assemblage experiments with 
control (monoculture of NQAIF116) and treatment (mixed assemblage of NQAIF116, 
NQAIF379 and NQAIF382)

 Control  Treatment
Salinity 36 26 16  36 26 16

Gambierdiscus carpenteri 10 12 10  8 9 7
NQAIF116        

Prorocentrum lima     22 22 30
NQAIF379        

Ostreopsis sp.     5 5 6
NQAIF382        

For all experimental treatments, direct cell counts of the small aggregates of the

entire well were used to measure population growth for all dinoflagellate 
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populations. Cell aggregates typically did not exceed 50-60 cells/ aggregate. 

Counts were conducted on day zero (one day after inoculation) and every fourth

day over a period of 28 days on an inverted microscope at 40x final 

magnification for Gambierdiscus species and at 200x final magnification for P. 

lima and Ostreopsis sp. As mixed assemblage experiments investigated the cell

to cell effect similar to García-Portela et al. (2016) on the population growth G. 

carpenteri NQAIF116, cell numbers for P. lima and Ostreopsis sp., with and 

without G. carpenteri NQAIF116, were converted to relative abundance (% 

contribution to assemblage). Cell counts were conducted until day 8 or after 

cells exceeded 250, and then relative abundance was estimated. In addition, 

24-well tissue culture plates were sealed with parafilm to avoid salinity changes 

due to evaporative water loss among wells on a culture plate. Salinity was 

checked in randomly selected wells at the end of the experiment to verify 

nominal salinities were retained. Relative population growth rate (r) and 

doubling time (k) were determined using formulae described in (Wood et al., 

2005b).

5.3.4 Statistical Analysis

The effects of treatments (temperature, salinity) on population growth of G. 

carpenteri over the 28-day period was assessed by a two-way ANOVA with an 

orthogonal factorial design. To investigate the effect of temperature and salinity 

on growth of NQAIF116 and NQAIF380, the experimental design had nine 

treatments (3 temperatures, 3 salinities), each with a total of 32 replicate wells 

per treatment (8 replicate wells per salinity on each of the four 24-well plates at 

each temperature). An experimental design with 12 replicate wells (3 replicates 

per plate per treatment on four 24-well plates each) per treatment was used to 
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investigate the effect of a mixed assemblage of benthic dinoflagellates (P. lima 

and Ostreopsis sp.) and salinity on NQAIF116. Statistical results are presented 

in the supplementary materials Table S5.1, Appendix E.

5.4 Results

5.4.1 Culture identification

A 929 fragment of the D8-D10 region of the 28S rRNA gene was obtained from 

culture NQAIF380. This sequence was identical to the sequence obtained by 

Murray et al (2014) from the strain of G. carpenteri, NQAIF116. The strain 

grouped with 100% bootstrap support within the G. carpenteri clade, providing 

unambiguous species-level identification (Supplementary Fig. S5.1, Appendix 

F).

5.4.2 Effects of temperature and salinity

Population growth of the inshore G. carpenteri NQAIF116 strain was near 

identical for 24 and 28°C at salinities of 36 and 26 (Fig. 5.1 A-B), while G. 

carpenteri NQAIF380 isolated from the environmentally stable ReefHQ coral 

reef exhibit, showed higher growth at 28°C at these two salinities (Fig. 5.1 D-E).

Both strains, NQAIF116 and NQAIF380, had negative growth at a temperature 

of 34°C (all salinities) and at a salinity of 16 (all temperatures) (Fig. 5.1 A-F, 

Table 5.2). Both strains had highest mean population growth rates and cell 

divisions day-1 in salinities of 36 at temperatures of 24 and 28°C (Table 5.2) and

G. carpenteri NQAIF380 had the highest average cell count of 417 cells/well on 

day 28 at 28°C (Fig. 5.1D). There was, however, no significant interaction 

between the effect of temperature and salinity when growth was positive 

(ANOVA p>0.05). 
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Population growth rates and cell divisions day-1 for NQAIF116 were higher 

compared to NQAIF380 at 24°C at salinities of 36 and 26 (Table 5.2). Mortality 

occurred at 34°C for G. carpenteri NQAIF116 populations on day 12 at salinities

of 36 and 26. At a salinity of 16, however, populations of inshore NQAIF116 

strain stabilised by day 28 (Fig. 5.1C), suggestive of potential recovery.

Temperature and salinity had a significant effect on the positive mean 

population growth of G. carpenteri strain, NQAIF380 (ANOVA df1, 124 p<0.05) at 

24 and 28°C (Fig. 5.1D-E). This contrasted with the inshore G. carpenteri strain,

NQAIF116 where temperature did not have a significant effect on positive 

growth (ANOVA df1, 124 p>0.05). Population growth rates and cell divisions.day-1 

for NQAIF380 were higher at 28°C compared to 24°C at salinities of 36 and 26 

(Table 5.2). At a salinity of 16, NQAIF380 populations at 34°C survived until day

16, which was 4-8 days longer than for populations maintained at salinities of 26

and 36 (Fig. 5.1D-F).

Table 5.2 Population growth rate (r) and divisions.day-1 (k) for Gambierdiscus carpenteri 
NQAIF116 and NQAIF380 at 24, 28 and 34°C and in the mixed assemblage (NQAIF116+) at
24°C in 36, 26 and 16 salinity.

  NQAIF116 NQAIF380 NQAIF116+
°C Salinity r k r k r k

36 0.11 ±0.01 0.17 ±0.02 0.08 ±0.00 0.11 ±0.01 0.09 ±0.01 0.13 ±0.01
24 26 0.07 ±0.02 0.10 ±0.03 0.01 ±0.01 0.02 ±0.01 0.11 ±0.01 0.16 ±0.01

16 -0.03 ±0.01 -0.04 ±0.01 -0.03 ±0.01 -0.04 ±0.01 -0.02 ±0.02 -0.02 ±0.03

36 0.10 ±0.01 0.14 ±0.01 0.12 ±0.01 0.17 ±0.02   

28 26 0.06 ±0.01 0.09 ±0.02 0.07 ±0.02 0.10 ±0.03   

16 -0.04 ±0.00 -0.05 ±0.00 -0.02 ±0.02 -0.03 ±0.03   
36 -0.03 ±0.02 -0.05 ±0.02 -0.02 ±0.01 -0.03 ±0.01   

34 26 -0.05 ±0.01 -0.07 ±0.01 -0.01 ±0.01 -0.01 ±0.01   
16 -0.03 ±0.00 -0.05 ±0.01 -0.01 ±0.00 -0.02 ±0.01   
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Figure 5.1 Effect of temperature and salinity on the growth of two strains of 
Gambierdiscus carpenteri. Growth is shown as the mean number of cells/well (±SE), n = 
32. A-C: NQAIF116 at 36 salinity (A), 26 salinity (B) and 16 salinity (C) and D-F: NQAIF380 
at 36 salinity (D), 26 salinity (E) and 16 salinity (F). Note, error bars that are not visible do 
not exceed size of the symbols. Regression lines for the time-series data are shown.

5.4.3 Effect of mixed dinoflagellate assemblages on the growth of inshore 

strain of G. carpenteri, NQAIF116

Salinity and presence of a mixed assemblage had a significant effect on the 

growth of G. carpenteri NQAIF116 (ANOVAdf 1, 66 p<0.05). Mean population 

growth of NQAIF116 at a salinity of 36 was inhibited by the presence of a mixed

assemblage of dinoflagellates (Fig. 5.2A), irrespective of assembly dominance, 

with inhibition strongest in P. lima-dominated assemblages (Fig. 5.2A). At a 
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salinity of 26, presence of the mixed assemblage had no measurable effect on 

the growth of G. carpenteri (Fig. 5.2B), but the relative population growth rate 

and divisions.day-1 of NQAIF116 increased in a mixed assemblage (Table 5.2). 

Growth of G. carpenteri was severely reduced at a salinity of 16 in both the 

presence and absence of the mixed assemblage (Fig. 5.2C), but G. carpenteri 

showed a ~80-fold increase in growth in the presence of Ostreopsis-dominated 

assemblages, while Prorocentrum-dominated assemblages did not improve 

growth performance (Fig. 5.2C).

5.5 Discussion

On the east coast of Australia, ciguatera is prevalent on the Great Barrier Reef 

(GBR) (Lewis, 2006). Under predicted climate change scenarios, occurrence of 

coral bleaching events and risk of ciguatera are anticipated to increase with 

warmer SSTs (Llewellyn, 2010; Walther et al., 2002). The causative organisms 

of ciguatera, Gambierdiscus spp. have recently been documented throughout 

the GBR, with G. carpenteri (NQAIF116) occurring in the central GBR (Murray 

et al., 2014). Freshwater influxes from storms, cyclones and flood plumes affect 

coastal habitats and inshore coral reefs by causing changes in temperature and

salinity within the ranges chosen for this study. Currently, the genus of 

Gambierdiscus is experiencing reclassification and new species are being 

identified (Fraga et al., 2016; Kretzschmar et al., 2017; Smith et al., 2016). To 

date, 16 species of Gambierdiscus (includes new species and G. yasumotoi, 

which has been moved to a new genus Fukuyoa) have been identified globally, 

with species demonstrating a variable response to environmental stressors, 
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such as temperature, salinity, and light (Kibler et al., 2012). In our experimental 

design, 

Figure 5.2 The effect of mixed benthic toxic dinoflagellate assemblage dominance on the 
growth of Gambierdiscus carpenteri (NQAIF116) at different salinities and 24 °C. Growth 
is shown as the mean number of cells/well (±SE), n = 32. Growth of G. carpenteri was 
measured with P. lima-dominated and Ostreopsis-dominated mixed assemblages and in 
Gambierdiscus monocultures (control).

mother cultures were maintained at 24 °C, and acclimated to 28 °C for eight 

days, prior to inoculation for 28 and 34 °C. So a temperature shift of a maximum

of 6 °C was experienced by the 34 °C and 4 °C for the 28 °C experimental 

cultures. In shallow protected reef environments, where these benthic 

dinoflagellates occur, temperature shifts of this magnitude are readily observed 

to occur over just a day or two, typically resulting in bleaching responses of 

corals. As expected for an organism isolated from an inshore environment, 

population growth of G. carpenteri NQAIF116 was comparable at 28 and 24°C 

for salinities of 36 and 26. At a salinity of 16, several cells survived at all three 

temperatures, but no increase in population size was observed. This response 
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to the different combinations of temperature and salinity scenarios suggests that

NQAIF116 is tolerant to prevalent coastal conditions and has the potential to 

colonize temporary macroalgal substrates that often follow coral bleaching 

events (Cheal et al., 2010; Johns et al., 2014). The adaptability to a broad range

of habitat conditions is thought to contribute to the global distribution of this 

species (Xu et al., 2016). It is these characteristics that would make NQAIF116 

a likely candidate for range expansions southward on the East Australian coast 

into warm-temperate regions, such as those documented in the seasonal 

occurrence of G. carpenteri populations in southern NSW, Australia (Kohli et al.,

2014). Similar to Symbiodinium sp. isolated from a mid-reef coral at Heron 

Island, which did not survive at 32°C (Rosic et al., 2011), G. carpenteri 

NQAIF380 did not survive 34°C, irrespective of salinity.

During tropical wet seasons, freshwater influxes frequently occur inshore, but 

occasionally extend to shallow coral reefs and cays up to 200 km from shore, 

with plumes persisting for up to 3 weeks (Devlin et al., 2001). Freshwater 

influxes from rivers due to cyclones and storms can lower salinities to the levels 

used here (Hoegh-Guldberg and Smith, 1989). Populations of G. carpenteri 

NQAIF380 isolated from an environmentally controlled coral reef aquarium 

exhibit of ReefHQ, Townsville, Australia showed tolerance to a decline in 

salinity from 36 to 26 at 28°C only, which suggests a narrow temperature 

optimum, suggestive of less variable temperatures and salinities often 

associated with mid- and outer-shelf GBR reefs (Fallon et al., 2003). Taking 

28°C and a salinity of 26 as conditions often encountered in estuarine 

environments, growth rates of both G. carpenteri strains were comparable and 
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population sizes were smaller than at a salinity of 36 at the same temperature. 

This supports the scenario proposed by Kibler et al. (2015) of smaller G. 

carpenteri populations in coastal environments with variable environmental 

conditions, such as in mangroves and estuaries. Compared to the steady 

decline of NQAIF380 populations at a salinity of 16, NQAIF116 appeared to 

stabilise with time at this salinity at all three temperatures, including 34°C. 

Different responses to temperature and salinity changes shown by the two 

strains of G. carpenteri may be indicative of local adaptation to different 

environmental conditions. Xu et al. (2016) suggested that geographic origin 

influences tolerance to environmental parameters, as Gambierdiscus 

carolinianus that originated from North Carolina tolerated lower temperatures 

compared to a G. carolinianus strain from St Thomas, U.S. Virgin Islands. Both 

strains of G. carpenteri in this study were isolated from a similar latitude in the 

central GBR, however, each showed different responses to the environmental 

parameters. This suggests that, in addition to the influence of geographic origin 

suggested by Xu et al. (2016), the local environmental conditions of the original 

habitat from which the strains were isolated, i.e. estuaries, inshore reefs, or 

mouth or rivers and creeks, such as G. carpenteri, NQAIF116, can also 

influence their physiological acclimation potential, tolerance and population 

growth. Low growth in response to environmental stressors, such as warmer 

temperatures and changes in salinity can be explained by higher metabolic 

costs and potential for photoinhibition (Rosic et al., 2011). Changes in salinity 

are likely to initiate osmolyte production (von Alvensleben et al., 2016) and fine-

tuning of expression of various heat shock proteins (HSPs) (Rosic et al., 2011), 

with both survival strategies incurring metabolic cost (Kibler et al., 2012). For 
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example, reduced salinity could cause a cell’s internal K+/Na+ pump to be more 

frequently engaged to modify cell size and/or turgor (von Alvensleben et al., 

2016). Variable expression of HSPs has been well studied in corals due to 

concerns over consequences of increased SSTs (Rosic et al., 2011). 

Regulation of HSP expression patterns have been described for a variety of 

environmental stressors (Rosic et al., 2011). Increased production of Hsp70 at 

26 and 29°C was shown for the endosymbiotic dinoflagellate, Symbiodinium sp.

(isolated from the coral Acropora millepora at Heron Island, GBR), but levels 

decreased at 32°C. In contrast, Hsp90 was down-regulated at all warmer 

temperatures. Rosic et al. (2011) reported genetic similarity with other 

dinoflagellates for Hsp70, including Prorocentrum minimum, and for Hsp90, 

including Alexandrium tamarense. It is likely that HSPs may also have an 

important role in the response of benthic dinoflagellates to local environmental 

stressors, such as freshwater plumes, river runoff and coral bleaching events. It 

is suggested that the down-regulation of Hsp90 is important for organisms to 

acclimate to local and variable environmental conditions (Rosic et al., 2011). In 

our study, G. carpenteri NQAIF116 showed similar population growth rates 

between 36 and 26 salinities at 24 and 28°C, as well as strong decline at 34°C 

but not complete mortality even at a salinity of 16. It would be very interesting to

profile HSP expression patterns in response to salinity and temperature 

changes, with both stressors in isolation as well as combined (the latter will 

more closely resemble natural conditions).

Temperature has been identified as a key driver of population size and 

distribution of Gambierdiscus populations (Chateau-Degat et al., 2005; Kibler et 
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al., 2015). Fluctuations in salinity from freshwater inputs, however, often co-

occur with high temperatures that trigger coral bleaching. The GBR spans more 

than 12° latitude with a thermal latitudinal gradient documented for corals

(Berkelmans, 2002) and foraminifera (Momigliano and Uthicke, 2013). Recent 

studies have shown a thermal latitudinal gradient of tolerance in some 

Gambierdiscus species in the Caribbean to North Carolina, USA (Kibler et al., 

2012; Xu et al., 2016). Further investigations are required to understand the 

impact of climate change scenarios on the distribution and abundance of 

Gambierdiscus species on the GBR and for revealing the existence of thermal 

latitudinal gradients of tolerance on distributions of G. carpenteri and other 

Gambierdiscus species on the GBR.

Species of Gambierdiscus are typically found on macroalgal substrates as part 

of the benthic dinoflagellate assemblage, which is often dominated by 

Prorocentrum spp and Ostreopsis spp (Morton and Faust, 1997). There have 

only been a few studies that investigated interspecific interactions, such as 

allelopathy on population growth of benthic dinoflagellates. Inhibitory effects 

were reported between co-occurring benthic dinoflagellates, including inhibition 

of G. toxicus by cell-free filtrates and in bi-algal cultures with Prorocentrum spp. 

or Ostreopsis spp. (Bomber, 1990; García-Portela et al., 2016; Sugg and 

VanDolah, 1999). The contribution of interspecific interactions on the 

abundance and distribution of Gambierdiscus spp. under environmental stress, 

such as lower salinities from freshwater plumes or heavy rains from cyclones, 

have not been previously investigated. This study observed that a mixed 

assemblage of P. lima and Ostreopsis sp. also had an inhibitory effect on the 
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population growth of G. carpenteri NQAIF116 at 24°C at a salinity of 36, with 

the strongest inhibitory effect elicited by P. lima-dominated assemblages, while 

at a salinity of 26 there was no significant effect. At a salinity of 16, overall 

growth rate was reduced substantially, but Ostreopsis-dominated assemblages 

showed increased growth of G. carpenteri NQAIF116. Our results are not in 

accordance with suggestions raised in some other studies suggesting that 

allelochemicals are produced under environmental stress to outcompete other 

organisms for resources (Monti and Cecchin, 2012; Sugg and VanDolah, 1999).

Interestingly in this context, cell densities affected allelopathic outcomes in 

mixed populations of the dinoflagellate Scrippsiella trochoidea, with population 

growth stimulated by cell-free filtrates of Prorocentrum donghaiense at low cell 

densities (1.9x104 cells mL-1) but inhibited by filtrates obtained from high cell 

densities cultures (1.9x105 cell mL-1) (Wang and Tang, 2008). This suggests 

that cell densities of benthic dinoflagellates in a mixed assemblage can 

significantly impact on allelopathic outcomes for Gambierdiscus and our data 

suggest that under stressful conditions Ostreopsis sp.-dominated assemblages 

may improve tolerance of Gambierdiscus spp. to environmental stressors, such 

as lower salinities. Further ecological studies are, however, needed to 

understand the reasoning for the frequent occurrence of mixed benthic 

dinoflagellate assemblages when inhibitory effects have most often been 

reported. Dominance profiles in mixed benthic dinoflagellate assemblages on 

inshore reefs, central GBR are variable. Ostreopsis spp. dominated mixed 

assemblages at Nelly Bay, Magnetic Island (19°S, 146°E), however, 

Prorocentrum spp. were dominant within mixed assemblages of inshore reefs 

on Orpheus and Pelorus Islands (18°S, 146°E) (Skinner et al., 2013; Sparrow 
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and Heimann, 2016). In line with this laboratory study, generally lower numbers 

of Gambierdiscus spp. were observed on inshore reefs at Orpheus and Pelorus 

Island compared to Nelly Bay (Sparrow and Heimann, 2016). The results 

suggest that environmental stressors, such as salinity and temperature, as well 

as the dominant dinoflagellate species in mixed benthic dinoflagellate 

assemblages, may affect growth and/or survival of Gambierdiscus spp. 

populations on inshore reefs in the central GBR. This highlights the interaction 

between identity and abundance of benthic toxic dinoflagellates as a potential 

key driver in the distribution and abundance of Gambierdiscus populations.

Accoroni et al. (2015) recently documented allelopathic interactions between 

Ostreopsis ovata and species of macroalgae, which implies that allelopathic 

interactions may also influence the suitability of macroalgal substrates for 

benthic toxic dinoflagellates and thus could potentially affect geographic 

expansion of such dinoflagellates. Further exploration into interspecies 

interactions, such as allelopathy between benthic dinoflagellates and their 

macroalgal substrates may identify causal factors in substrate preferences.

In summary, this study shows that prior environmental history of G. carpenteri 

strains influences temperature and salinity tolerances, with NQAIF116 

originating from a highly variable environment being more tolerant than 

NQAIF380, isolated from a controlled aquarium environment. This has 

implications for the potential of range expansions under predicted climate 

change scenarios and potential spread of ciguatera beyond its hitherto known 

natural boundaries. Furthermore, dominance profiles of mixed assemblages 

affected growth of G. carpenteri NQAIF116 at 24°C with P. lima-dominated 
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assemblages having a stronger inhibitory effect at all salinities. In contrast 

Ostreopsis-dominated mixed assemblages rescued growth of G. carpenteri 

NQAIF116 at a salinity of 16. The mixed assembly results indicate that 

interspecies interactions change under environmental stress and this 

information should be integrated into future studies of allelopathic interactions in

benthic toxic dinoflagellate assemblages.
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Chapter Six: Effect of temperature and salinity on 

growth, nutrient uptake and biochemical profile of 

benthic dinoflagellates isolated from the central Great 

Barrier Reef

6.1 Abstract

Ciguatera, tropical reef fish poisoning, is the most commonly reported seafood-

associated illness and is caused by ciguatoxin-producing dinoflagellates 

Gambierdiscus spp. through bioaccumulation and bioconversion of the toxins in 

marine food webs. Gambierdiscus spp. are found together with the benthic 

toxin-producing dinoflagellates Prorocentrum and Ostreopsis. Recently, 

populations of G. carpenteri have been recorded from coastal waters in New 

South Wales, Australia, representing a substantial range expansion southward. 

The aim of this study was to determine the effect of lower temperature and 

salinity on population growth, nutrient uptake rates and fatty acid profiles of G. 

carpenteri, P. lima and Ostreopsis sp. isolated from the Great Barrier Reef 

(GBR). Cultures were grown at 24 and 28 °C and at salinities of 36 and 26 over 

a period of 28 days. To maximise biomass for fatty acid analysis, cultures were 

kept nutrient-replete. Population growth and nutrient uptake rates of G. 

carpenteri were reduced significantly at a salinity of 26 at both temperatures. 

Nutrient uptake rates increased for P. lima at the lower salinity at 28 °C, with no 

effect of temperature or salinity on population growth. By contrast, low 

temperature (24 °C) reduced population growth but increased nutrient uptake in 

Ostreopsis sp. at both salinities investigated. The effect of reduced temperature 
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and salinity on fatty acid profiles, indicators of food quality, was investigated. A 

principal component analysis showed separation of species based on the sum 

of saturated fatty acids and polyunsaturated fatty acids (Σ PUFA). Low salinity 

(26) was positively associated with Σ PUFA for Ostreopsis sp., but Σ PUFA 

content was lowest at a salinity of 26 at 24 °C for G. carpenteri. By contrast, 

fatty acid profiles for P. lima were variable in response to temperature and 

salinity changes. Population growth was reduced by a lower temperature for 

Ostreopsis sp. and G. carpenteri, by lower salinity, but resulted in higher 

nutritional values in relation to eicosapentaenoic acid and docosahexaenoic 

acid. Further studies are required on the physiological responses of 

dinoflagellates to non-favourable temperature and salinity conditions, including 

responses such as nutrient uptake rates, osmolyte production and essential 

fatty acid profiles. Such information will improve the understanding for 

successful establishment of benthic dinoflagellate assemblages, potential 

proliferation and likely uptake into marine food webs in southern temperate 

coastal habitats. The data presented in this study contribute baseline response 

information of tropical, toxic benthic dinoflagellates, critical for developing 

geographical range-expansion models for these species.

6.2 Introduction

Ciguatera is the most commonly reported seafood-induced illness worldwide

(Arena et al., 2004; Tester et al., 2013) and is caused by consumption of fish 

that have accumulated ciguatoxins through their diet. Ciguatoxins are derived 

from dinoflagellates of the genus Gambierdiscus, which co-occur with the 

benthic dinoflagellates Prorocentrum and Ostreopsis, frequently present in high 
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abundances (Morton and Faust, 1997; Morton et al., 1992; Sparrow et al., 

2017). As benthic dinoflagellate assemblages are usually found on macroalgal 

substrates, it has been hypothesised that ciguatoxins enter marine food webs 

mainly via consumption of algae by grazing fish (Randall, 1958). Consumption 

of these grazing fish by mesopredators, such as coral trout, barracuda and 

mackerel, result in accumulation of ciguatoxin higher in the food chain

(Heimann et al., 2011; Lewis et al., 1991; Tester et al., 2013).

Occurrence of ciguatera in Australia has been associated with fish sourced from

Queensland (Qld) coastal waters, including the Great Barrier Reef (GBR). In 

2014 - 2016, however, five ciguatera outbreaks occurred south of Queensland, 

from locally caught Spanish mackerel within the South West Rocks coastal 

region (29 – 32 °S) in northern New South Wales (NSW) (Farrell et al., 2016a). 

The strengthened East Australian Current (EAC) during the Austral summer 

has, for more than 10 years, facilitated transfer of reef fish larvae from the 

southern GBR between January and May each year, into coastal marine 

habitats off the NSW coastline (Booth et al., 2007; Figueira and Booth, 2010). 

Whether Spanish mackerel caught in northern NSW consumed ciguatoxins 

derived from Gambierdiscus populations in local (i.e. NSW) marine food webs is

unknown. Populations of Gambierdiscus carpenteri, Prorocentrum spp. and 

Ostreopsis sp. have, however, been recorded along the NSW coastline from 

Camden Haven River (32°S), in central NSW to Merimbula and Wonboyn River 

(37°S) in southern NSW (Ajani et al., 2013; Kohli et al., 2014). It is thought that 

the EAC also facilitated the southward geographic range expansion of benthic 

dinoflagellates from the GBR (Heimann et al., 2011; Kohli et al., 2014; Sparrow 
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and Heimann, 2016), as Gambierdiscus populations have been recorded 

seasonally at Merimbula during the Austral summer (Kohli et al., 2014), similar 

to records of the seasonal occurrence of reef fish (Booth et al., 2007). The 

tolerance of benthic dinoflagellates to a broad range of temperatures and 

salinities indicates an acclimation potential to temperate coastal environments

(Kibler et al., 2012; Sparrow et al., 2017; Xu et al., 2016). The effect of 

environmental factors like temperature and salinity, however, on nutrient uptake

and nutritional value, of benthic dinoflagellates is unknown.

Nutrients may be assimilated not only for growth, but also for physiological 

maintenance (such as cell growth, division, photosynthesis and metabolism). 

Tropical and temperate coastal marine habitats often experience periodic 

eutrophic conditions due to nutrient influx from anthropogenic and 

environmental disturbances (Ajani et al., 2011; Devlin and Brodie, 2005; Scanes

et al., 2007; von Alvensleben et al., 2016). On the GBR, periodic pulses of 

water supply nutrients either by freshwater plumes in coastal habitats or by 

upwelling to mid-shelf and outer-shelf reefs, which occur infrequently during the 

Austral summer wet season (Andrews and Gentien, 1982; Devlin and Brodie, 

2005). GBR waters are therefore, frequently oligotrophic but irregularly affected 

by an influx of nutrients (nitrogen from nitrate or ammonium and phosphorus 

from inorganic phosphate). Oligotrophic periods can cause a delay in the uptake

of nitrate by some microalgae from one to 24 hours (Malerba et al., 2015), 

which could critically affect the assimilation of available nutrients by benthic 

dinoflagellates. Populations of tropical benthic dinoflagellates, transported 

southward by the EAC, may need to acclimate to higher ambient nutrient 
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concentrations and greater frequency of nutrient supply in more temperate 

waters.

The southward range expansion of Gambierdiscus into coastal NSW waters has

the potential to increase the risk of ciguatera cases in temperate regions. In 

addition, as Gambierdiscus frequently co-occurs with toxin-producing 

Prorocentrum lima and Ostreopsis sp., which are associated with shellfish 

poisonings, responses of these associated dinoflagellates to lower 

temperatures and salinities should also be evaluated. Oyster farming operates 

along most of the NSW coastline and P. lima abundances are closely monitored

as part of the NSW shellfish monitoring programs (Ajani et al., 2013). Despite 

this, the ecophysiological responses of P. lima to temperature and salinity 

variations remain poorly understood in Australia. As toxin transfer requires 

ingestion of the dinoflagellates, knowledge on the effects of temperature and 

salinity changes to their nutritional value is essential. Fatty acid profiles, an 

index of food quality, have been determined in one study on the benthic 

dinoflagellates, Ostreopsis ovata, Coolia monotis and Amphidinium sp. (Usup et

al., 2008). Nutrient levels affect dinoflagellate population densities and are also 

essential for the production of osmolytes in response to lower salinity (von 

Alvensleben et al., 2016). Temperature, which alters membrane fluidity, and 

salinity, which potentially affects membranes through turgor changes, have 

been shown to affect fatty acid content and profiles in microalgae used as feed 

in aquaculture (Renaud and Parry, 1994; Renaud et al., 2002). Essential fatty 

acids in marine ecosystems are derived from primary producers, being pelagic 

and benthic microalgae. Dinoflagellates and diatoms are a major component of 
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primary producers, and thereby, are important sources of essential fatty acids in

pelagic and benthic ecosystems (Carreón-Palau et al., 2013; Kelly and 

Scheibling, 2012; Litz et al., 2010; Wilson et al., 2001). The omega (ω)-3 

essential LC-PUFAs, DHA and EPA and the ω-6 fatty acid, arachidonic acid 

(AA), are considered vital to human health (Huerlimann et al., 2014). 

Vertebrates must obtain these through diet, as they cannot be biosynthesized

(Carreón-Palau et al., 2013; Fernandes et al., 2014; Li et al., 2012). High levels 

of EPA (20:5ω-3) and palmitoleic acid (16:1ω-7) are indicative of diatom origins.

Dinoflagellates typically contain higher levels of DHA (22:6ω-3) and stearidonic 

acid (18:4ω-3) (Kelly and Scheibling, 2012; Li et al., 2012; Puccinelli et al., 

2016); and presence of AA (20:4 ω-6) is often associated with macroalgae in 

benthic environments (Carreón-Palau et al., 2013; Wilson et al., 2001). The 

effect of temperature and salinity on fatty acid profiles (nutritional value) and 

nutrient uptake rates (osmolyte production) in benthic dinoflagellate 

assemblages are poorly investigated.

The purpose of this study was to determine the effect of lower temperature and 

salinity (such as might be associated with environmental disturbances on the 

GBR and/or transport southward by the EAC) on population growth, nutrient 

uptake rates and fatty acid profiles in the benthic dinoflagellates, 

Gambierdiscus carpenteri, Prorocentrum lima and Ostreopsis sp. isolated from 

the GBR. Such information is important in determining trophic impacts and the 

likely potential for southward geographical range expansion of Gambierdiscus, 

as well as the potential for bloom formation of benthic dinoflagellates.
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6.3 Methods

6.3.1 Algal culture conditions

Gambierdiscus carpenteri (NQAIF 380), Prorocentrum lima (NQAIF 379) and 

Ostreopsis sp. (NQAIF 382) were isolated from water samples collected in the 

coral reef exhibit at the ReefHQ aquarium, Australia (Sparrow et al., 2017). 

Monocultures were established from the isolates and maintained (24 and 28°C 

with a 12:12 h photoperiod and 29 – 65 μmol m2 s-1 irradiance) at the North 

Queensland Algal Identification/Culturing Facility (NQAIF) culture collection 

(James Cook University, Townsville, Australia) by the culture collection curator 

Stan Hudson. One-litre batch cultures were grown in 2 L Erlenmeyer flasks in K 

medium without sodium metasilicate nonahydrate and substituting sodium β-

glycerophosphate with sodium dihydrogenphosphate monohydrate to an 

equivalent final concentration of phosphate (Keller et al., 1987). To generate 

sufficient biomass for fatty acid analysis, cultures were re-fertilized with nitrate 

(~55 mg L-1) and phosphate (1.38 mg L-1) when depleted during the 28-day 

experimental period.

Modified K medium (as above) was prepared at salinities of 36 and 26 in filtered

GBR offshore seawater (fSW, Whatman GF/C 1.2 µm). Cultures were 

inoculated and sampled aseptically in a laminar flow (AES Environmental Pty 

Ltd fitted with a HEPA filter). For inoculation, mother cultures were concentrated

by gravity filtration through a 20 µm mesh filter. Depending on species and 

growth behaviour, replicate cultures (n=3) were inoculated with cell densities 

between ~518 for G. carpenteri, ~2171 for Ostreopsis sp. and ~2988 cells. mL-1 

for P. lima. Replicate mother cultures (1 L, n = 3) were maintained at 28 and 24 
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°C and acclimatized to salinities of 36 and 26 for three generations, over a 

period of three months. Mother cultures for each treatment were combined and 

concentrated, as outlined above, to the required biomass for inoculation of 

treatment and control cultures.

6.3.2 Estimation of culture cell concentrations and media nutrient 

concentrations

Cell densities were calculated at inoculation and harvest based on cell counts 

using a Sedgewick Rafter counting chamber on a Leica microscope at 400x 

magnification. Medium nitrate (NO3
-), nitrite (NO2

-) and phosphate (PO4
3-) 

concentrations were determined every second day and following addition of 

NO3
- and/or PO4

3-, as described in von Alvensleben et al. (2013). Addition of 

nutrients depended on uptake for each culture and species.

Total nitrogen uptake (TN) was calculated as:

TN [mg.cell−1 ]=t x¿ (1)

TN uptakerate [ pg .cell−1 . day−1 ]=(TNC t ×1000×1000×1000)/ t28 (2)

Total phosphate uptake rate (TP) was calculated as:

TPuptakerate [ pg .cell−1 . day−1 ]=( t x−t yC t
×1000×1000×1000)/t 28 (3)

Relative population growth (r) and cell division per day (k) were calculated 

following Wood et al. (2005a):
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r=( lnC t−lnC0) /(t28−t 0) (4)

k= r
ln2

 (5)

where, Ct is cell density at harvest; C0 is cell density at inoculation; t0 and t28 are 

initial and final culture time points (days); tx and ty are consecutive time points 

during the culture period (days).

6.3.3 Fatty acid analysis

Biomass samples for biochemical analyses were harvested from cultures by 

settling the entire biomass on ice. The biomass pellets were freeze-dried (Virtis 

benchtop 2K, VWR) and stored in air-tight vials under nitrogen at 4 °C until 

further analysis.

Fatty acids were extracted from freeze-dried samples in a single-step extraction

and transesterification procedure adapted from Carvalho and Malcata (2005) 

and Cohen et al. (1988), as described in von Alvensleben et al. (2015), followed

by GC-MS analysis. Briefly, 2 mL of freshly prepared methylation reagent 

(methanol:acetylchloride, 95:5 (v/v)) and 300 µL internal standard 

(nonadecanoic acid, (cat # 72332‐1G‐F), Sigma Aldrich, Australia), 0.2 mg L-1 in

methanol) was added to approximately 5 mg (± 0.1 mg) dry biomass in Teflon-

capped glass vials. Samples were heated at 100 °C for 1 h and allowed to cool, 

after which 1 mL of hexane was added. To ensure complete partitioning of the 

formed fatty acid methyl esters (FAMEs) into the hexane layer, samples were 

heated again at 100 °C for 1 min to form a single methanol/hexane phase. One 

mL of de-ionized water was then added to the cooled sample to facilitate phase 

137



Chapter 6: Effect of temperature and salinity on dinoflagellates nutritional value

separation. The hexane phase containing the FAMEs was collected and filtered 

through a 0.2 µm PTFE syringe filter prior to injection on the GC column. All 

solvents were HPLC grade. Butylated-hydroxy-toluene (BHT) (0.01 %) was 

added as an antioxidant during the extraction.

Fatty acid analysis was carried out in scan-mode on an Agilent 7890 GC (DB-23

capillary column with a 0.15 µm cyanopropyl stationary phase, 60 m x 0.25 mm 

inner diameter) equipped with a flame ionisation detector (FID) and connected 

to an Agilent 5975C electron ionisation (EI) turbo mass spectrometer (Agilent 

Technologies, Australia). Fatty acid quantification was determined by 

comparison of peak areas with authentic external standards (Sigma Aldrich) 

and was corrected for recovery of internal standard (C19:0). Total fatty acid 

content was determined as the sum of all FAMEs.

6.3.4 Statistical analyses

Data were analysed via three-way ANOVAs, with α set to 0.05 to determine 

statistical significance (Statistica v13.2, Statsoft). Homogeneity of variances and

normality were confirmed using the Levene’s test and Q-Q plots, respectively. 

Missing data, due to sample pooling for Ostreopsis sp. (e.g. fatty acid profiling 

required large amounts of biomass (dry weight)) and loss of some replicates 

during lyophilisation for G. carpenteri and P. lima, limited factorial analysis of 

fatty acid profiles. Hence data on Ostreopsis sp. was not incorporated into 

statistical analyses. Also, some replicates were lost in the lyophilisation process

of the biomass (G. carpenteri 28 °C, at a salinity of 26 and 24 °C for both 

salinities, and P. lima 28 °C and a salinity of 26, where only two of the three 

replicates remained). Thus, the effect of salinity on fatty acid profiles was 
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investigated for P. lima at 24 °C, the effect of temperature for P. lima at a 

salinity of 36 and the effect of species for P. lima and G. carpenteri at 28 °C and

a salinity of 36, as these samples had three replicates.

To characterize species-specific responses to salinity and temperature, 

principal component analyses (PCAs) were conducted (Statistica v13.2, 

Statsoft). For the first PCA, analysis was based on population growth rates, total

nitrogen and phosphate uptake rates and in the other PCA, sums of MUFA, 

PUFA, and SFA. Species were selected as the supplementary variable, 

temperature as an active variable and salinity as a grouping variable. Ward’s 

hierarchical cluster analyses using squared Euclidean distances were 

conducted for objective description of physiological and biochemical clusters.

6.4 Results

6.4.1 Growth responses of benthic dinoflagellates to temperature and 

salinity changes

To investigate likely responses to exposure to inshore environmental conditions 

of P. lima (NQAIF379), G. carpenteri (NQAIF380) and Ostreopsis sp. (NQAIF 

382), the effect of lower salinity and temperature was examined in a 28-day fully

factorial time-course experiment conducted at 28 °C and salinities of 36 

(control) and 26, and 24 °C for both salinities. Inoculation densities for the slow-

growing G. carpenteri (0.5 x 106 cells L-1) were limited by achievable population 

densities in mother cultures used for inoculation, which might be a consequence

of larger cell size (3- or 4-fold) compared to Ostreopsis sp. and P. lima.
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Figure 6.1 Final cell densities (cells L-1 on day 28) of benthic dinoflagellate cultures: 
NQAIF379, Prorocentrum lima; NQAIF380, Gambierdiscus carpenteri; NQAIF382, 
Ostreopsis sp. grown at 28°C and 24°C in salinities of 36 and 26. n=3. Standard error is 
shown.

For this reason, final population size achieved by G. carpenteri cannot be 

directly compared to those achieved by P. lima and Ostreopsis sp. (Fig. 6.1). As

inoculation densities of P. lima and Ostreopsis sp. were comparable (2.9 and 

2.2 x 106 cells L-1), final population sizes achieved under the growth conditions 

can be compared. Final population sizes for P. lima and Ostreopsis sp. were 

very similar for 28 °C cultures at both salinities, but low temperature (24 °C) 

resulted in significantly lower population sizes of Ostreopsis sp., while this was 

not affected by salinity (Fig. 6.1). No temperature or salinity effect was observed

for final population size of P. lima (Fig. 6.1). By contrast, final population size of 

G. carpenteri were negatively affected by the lower salinity, while temperature 

had no effect (Fig. 6.1).
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A three-way ANOVA on the effect of temperature, salinity and species on 

population growth rates and doubling times indicated a significant effect of 

salinity, while temperature and species were not significant (Table 6.1). A 

significant interaction of temperature*species and salinity*species on population

growth rate was also determined, while there was no significant interaction 

effect of temperature*salinity and temperature*salinity*species (Table 6.1). A 

Tukey’s post hoc analysis showed a significant interaction effect of temperature 

with species (Table 6.1) for G. carpenteri with P. lima and Ostreopsis at a 

salinity of 26 (Supplementary Table S6.1, Appendix G). Salinity affected 

population growth rates of G. carpenteri significantly (Table 6.2) and a Tukey’s 

post hoc test showed a significant interaction of salinity*species for G. 

carpenteri at a salinity of 36 with P. lima at 28 °C and Ostreopsis at 24 °C at a 

salinity of 26; and at 28 °C for P. lima at a salinity of 36 with Ostreopsis sp. and 

a salinity of 26 (Supplementary Table S6.1, Appendix G).

6.4.2 Nutrient uptake responses of benthic dinoflagellates to temperature 

and salinity changes

Total nitrogen (nitrite-corrected nitrate) uptake rates were steady (10-20 pg cell-1

day-1) for P. lima irrespective of temperature and salinity up to day 20 when the 

medium was supplemented with nitrate (Figs 6.2 A and D). This resulted in a 

large increase in total nitrogen uptake rates for cultures at 28 °C for both 

salinities and 24 °C at a salinity of 26, whilst uptake rates remained steady for 

cultures at a salinity of 36 at this temperature. Further replenishment on day 22 

for 28 °C cultures, where largest uptake rates were observed, maintained large 

total nitrogen uptake rates. In contrast, total nitrogen uptake rates fluctuated
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Table 6.1 Summary statistics from three-way ANOVAs comparing population growth 
between benthic dinoflagellates: Prorocentrum lima, NQAIF379; Gambierdiscus 
carpenteri, NQAIF380; Ostreopsis sp. NQAIF382 at 28 and 24°C with salinities of 36 and 
26 (n = 3 for each benthic dinoflagellate).
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greatly for G. carpenteri which was amplified by low salinity at both 

temperatures (Figs 6.2B and E). At 28 °C, only small amounts of nitrate were 

secreted from cells into the culture medium on days 4, 6, 12 and 16 (Fig. 6.2B), 

but at a salinity of 26 large amounts of uptake oscillated with large amounts of 

secretion within the culture medium (Fig. 6.2E).

Table 6.2 Nutrient uptake rate (pg.cell-1.day-1) for total nitrogen (TN) and phosphate   
(PO4

3-), relative population growth (r), and cell doubling time (k) over a 28-day period for 
benthic dinoflagellates NQAIF379, Prorocentrum lima; NQAIF380, Gambierdiscus 
carpenteri; NQAIF382, Ostreopsis sp. (n = 3 for each benthic dinoflagellate).

a, A indicates driver of significant difference; a and b, B indicate significant differences.
@ shares with Ostreopsis sp. 28⁰C at a salinity of 26a significant differences to P. lima 28⁰C at a 
salinity of 26, G. carpenteri salinity of 26 at 28⁰C and 24⁰C, Ostreopsis sp. 24⁰C at a salinity of 
36 and 26.
Ø indicates not significantly different to any treatments.

Ostreopsis sp., on the other hand, showed steady uptake rates of total nitrogen,

similar to P. lima at salinities of 36 and 26 at 24 °C (Figs. 6.2 C and F). By 

contrast to P. lima, however total nitrogen uptake rates were generally lower at 

28 °C for both salinities.
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Figure 6.2 Total nitrogen uptake (pg.cell-1.day-1) over 28 days at 28°C and 24°C for benthic
dinoflagellates: Prorocentrum lima at a salinity of 36 (A) and 26 (D); Gambierdiscus 
carpenteri in a salinity of 36 (B) and 26 (E); Ostreopsis sp. at a salinity of 36 (C) and 26 
(F). n=3. Standard error is visible when larger than data points.

A three-way ANOVA indicated a significant effect of species and a significant 

interaction effect of temperature*species and salinity*species on total nitrogen 

uptake rates, while temperature and salinity as well as the interaction of 

temperature*salinity and temperature*salinity*species were not significant 

(Table 6.1). P. lima had the highest nitrogen uptake rates of 10.24 and 7.22 pg 

cell-1 day-1 at 28 °C and at 24 °C, with the latter only exceeded by Ostreopsis sp.

at 24 °C and salinity 26 (Table 6.2). A Tukey’s post hoc analysis showed that 
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the significance of the effect of species and the interaction of 

temperature*species and salinity*species was driven by the large total nitrogen 

uptake rate of P. lima at 28 °C and a salinity of 26 (Table 6.2, Supplementary 

Table S6.2, Appendix H), which required refertilisation with nitrogen twice over 

the cultivation period (Figs 6.2A and D).

Total phosphate uptake was not influenced by temperature or salinity for P. 

lima, requiring replenishment of the medium with phosphate every 2-days (Fig. 

6.3 A and D). Similar to growth performance and total nitrogen uptake patterns, 

total phosphate uptake by G. carpenteri fluctuated greatly at a salinity of 26 for 

both temperatures, with large uptake observed between inoculation and day 2 

(Fig. 6.3 E). Following replenishment of the medium on day 14, however, 

uptake rates were three times greater for cultures under 24 °C and a salinity of 

26 compared to cultures at 28 °C and that salinity (Fig. 6.3 E). By contrast, and 

irrespective of phosphate replenishment of the medium, total phosphate uptake 

rates did not differ greatly for cultures at a salinity of 36 (Fig. 6.3 B), which was 

on average similar to rates observed for P. lima (Figs. 6.3 A and D). For 

Ostreopsis sp., large phosphate uptake rates were observed at 24 °C and a 

salinity of 26, requiring frequent replenishment of the medium (Fig. 6.3 F), while 

uptake rates at 28 °C and a salinity of 26 were comparable to those at 28 °C for

a salinity of 36 (Figs. 6.3 C and F) and not enhanced by phosphate addition to 

the medium (Fig. 6.3 F). Phosphate uptake rates were initially higher at 28 °C at

a salinity of 36 up to day 10 compared to cultures at 24 °C, and luxury 

phosphate uptake was observed only for cultures at 24 °C at a salinity of 36 on 

day 8 (Fig. 6.3 C).
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Figure 6.3 Phosphate uptake (pg.cell-1.day-1) over 28 days at 28°C and 24°C for benthic 
dinoflagellates: Prorocentrum lima in a salinity of 36 (A) and 26 (D); Gambierdiscus 
carpenteri in a salinity of 36 (B) and 26 (E); Ostreopsis sp. in a salinity of 36 (C) and 26 
(F). n=3. Standard error is shown.

A three-way ANOVA indicated a significant effect of temperature, salinity, 

species and temperature*species interaction on total phosphate uptake rates, 

while temperature*salinity, salinity*species and temperature*salinity*species 

interactions were not significant (Table 6.1). Highest phosphate uptake rates of 

0.73, 0.63 and 0.5 pg cell-1 day-1 were observed at a salinity of 26 at 24 °C for 

Ostreopsis sp., at 28 °C for P. lima and 24 °C for G. carpenteri, respectively, 

while lowest uptake rates were observed for Ostreopsis sp. at 28 °C for both 
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salinities (Table 6.2). A Tukey’s post hoc analysis showed that the significance 

of species and temperature and temperature*species interaction was driven by 

very low total phosphate uptake rates of Ostreopsis sp. at 28 °C for both 

salinities (Table 6.2). The effect of salinity was driven by a significant difference 

of Ostreopsis sp. at 28 °C and a salinity of 36 to phosphate uptake rates at 24 

°C salinity 26 and P. lima at 28 °C and salinity 26 (Table 6.2, Supplementary 

Table S6.3, Appendix H).

A principal component analysis (PCA) showed species-specific trends of 

population growth rates and total nitrogen uptake rates, with the first two 

components of the PCA explaining 81.92 and 16.87% of the variability (Fig. 

6.4). PC1 separated species by population growth rate, while PC2 separated 

species by total nitrogen uptake rate. For G. carpenteri higher total nitrogen 

uptake rates were associated with higher growth rates, irrespective of 

temperature, while for Ostreopsis highest growth rate occurred at the lowest 

nitrogen uptake rates, irrespective of salinity, but it separated out at the low 

salinities according to temperature preference. By contrast, P. lima was 

positively correlated with PC2, while the distribution along PC1 was 

heterogeneous both with regards to temperature and salinity. A cluster analysis 

confirmed species-specific grouping with temperature, salinity and total nutrient 

uptake rates with growth rates (Supplementary Fig. S6.1, Appendix I).
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Figure 6.4 A principal component analysis showing the relationship between growth 
rates and nutrient uptake rates of benthic dinoflagellates: G Gambierdiscus carpenteri; P
Prorocentrum lima; O Ostreopsis sp.; LS low salinity, 26; NS normal salinity, 36; WT 
warm temperature, 28 °C; CT cool temperature, 24 °C.

6.4.3 Effect of salinity and temperature on fatty acid profiles of benthic 

dinoflagellates

Irrespective of species, temperature or salinity, palmitic acid (C16:0) was 

present at highest concentrations (≤ 2 to ≥ 8 mg g-1 DW) and at a 30-50% 

contribution to the FA profile, followed by eicosapentaenoic acid (EPA; C20:5) 

and docosahexaenoic acid (DHA; C22:6) and oleic acid (C18:1), whilst 

arachidonic acid (C20:4) was not detected in any of the species under any 

cultivation condition (Table 6.3, Figure 6.5). Palmitic acid contributed 40-50% to 

the total fatty acid content in G. carpenteri, whilst it was between 30-35% for P. 

lima and Ostreopsis sp. (Figure 6.5). Percent oleic acid concentrations were 

also lower in P. lima and Ostreopsis sp. (~5-10%), with no large effects of 

salinity or temperature observed, whilst percent contribution to fatty acids were 
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Figure 6.5 The effect of temperature and salinity on percentage of major fatty acids, 
palmitic acid (C16:0); oleic acid (C18:1ω-9); eicosapentaenoic acid (EPA C20:5ω-3); and 
docosahexaenoic acid (DHA C22:6ω-3) as % of total FAME for benthic dinoflagellates (A) 
Prorocentrum lima (NQAIF379); (B) Gambierdiscus carpenteri (NQAIF380); (C) 
Ostreopsis sp. (NQAIF382). n=3., except Ostreopsis sp., samples were combined. 
Standard error is shown.
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(13-22%) for G. carpenteri, with the highest relative contribution observed at 24 

°C and a salinity of 26. Percent EPA was similar in Ostreopsis sp. compared to 

G. carpenteri, but in G. carpenteri amounts were two-fold lower at a salinity of 

26 at 24 °C, compared to 36 for both temperatures, whilst such effects were not 

observed in Ostreopsis sp. Highest relative amounts of EPA were observed for 

P. lima (~25-30%) with highest levels at 24 °C at a salinity of 26. Whilst relative 

DHA levels were comparable between P. lima and Ostreopsis sp. (~20-25%), 

DHA levels were lower than EPA levels for P. lima and slightly higher for 

Ostreopsis sp. No treatment effect on DHA levels was observed for these two 

species, but appeared to be slightly higher at 24 °C for P. lima. DHA levels were

lowest in G. carpenteri (~10-15%), with highest levels observed at 24 °C and a 

salinity of 36.

In general, total fatty acid content was lowest for Ostreopsis sp. at a salinity of 

36 for 24 and 28 °C, whilst highest total fatty acid contents were observed for 

G. carpenteri at a salinity of 36 for both temperatures (Table 6.3). Ostreopsis 

sp. also had the lowest content of polyunsaturated fatty acids (PUFA) at 28 °C 

for both salinities and at 24 °C at a salinity of 36 along with G. carpenteri at a 

salinity of 26 (Table 6.3). Generally, fatty acid profiles were dominated by SFA 

and PUFA at similar levels with much lower levels of mono-unsaturated fatty 

acids (MUFA) being observed (Table 6.3). Similarly, ω-3 fatty acids were 

present at all temperatures and salinities for all species and content was at least

three times greater than ω-6 fatty acids, the latter were not detected in P. lima 

at 24 °C at either salinity (Table 6.3). Due to high amounts of EPA 
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Table 6.3 Fatty acid composition in dry weight (mg. g-1 dry weight) of benthic 
dinoflagellates: NQAIF379, Prorocentrum lima; NQAIF380, Gambierdiscus carpenteri; 
NQAIF382, Ostreopsis sp. grown at 28°C and 24°C and at salinities 36 and 26. 

EPA: Eicosapentaenoic acid; DHA: Docosahexaenoic acid. One-way ANOVA statistical 
analysis conducted for treatments with n=3: AProrocentrum lima between salinities at 
24°C; BP. lima between temperatures at a salinity of 36; Cbetween P. lima and 
Gambierdiscus carpenteri at 28°C and a salinity of 36. Significant differences indicated in
bold and correspond to summary statistics in Table 4.
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(C20:5; generally, between 2 to < 5 mg g-1 dry weight (DW)), except for 

Ostreopsis sp.) and DHA (C22:6; generally, > 1 and < 3 mg g-1 DW) and low 

amounts of linoleic acid (LA; C18:2, 0 to ≤ 1 mg g-1 DW), ω6/ω-3 ratios were 

low, ranging from very low (0 to ≤ 0.1 ± 0.66) for P. lima at all salinities and 

temperatures to moderately low (0.15 ± 0.01 to 0.31 ± 0.03) for the other 

species (Table 6.3).

A one-way ANOVA investigating the effect of salinity on fatty acid profiles in P. 

lima at 24 °C showed a significant effect on all FA levels (Table 6.4), except for 

C14:0, which were generally higher at the lower salinity (Table 6.3). By contrast,

although FA levels were generally lower at 24 °C compared to 28 °C for P. lima 

(Table 6.3), a one-way ANOVA on the effect of temperature at a salinity of 36 

showed only a significant effect on levels of palmitoleic acid (C16:1) (Table 6.4).

A significant effect of species was detected for C16:0, C18:1, C18:2 for P. lima 

and G. carpenteri at 28 °C and a salinity of 36 (Table 6.4), due to the 2-3 times 

higher concentration of these fatty acids in G. carpenteri, with concentration 

differences in C18:1 and C18:2 driving the significance of sum of MUFA and ω-

6 fatty acids, respectively (Table 6.3).

A PCA showed clear separation of species based on sum of SFA and PUFA, 

with the first two components of the PCA explaining 75.41 and 24.09% of the 

variability (Fig. 6.6). PC1 separated species by ΣSFA, while PC2 separated 

species by ΣPUFA. For G. carpenteri high ΣSFA were associated with medium 

to low levels of ΣPUFA, with lowest ΣPUFA observed for 24 °C and a salinity of 

26. In contrast, Ostreopsis was characterized by low ΣSFA content, irrespective
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of salinity, but ΣPUFA were positively associated with low salinity. The PCA plot

shows partial separation of P. lima along PC1 with salinity, while the distribution

along PC2 was heterogeneous both with regards to temperature and salinity. A 

cluster analysis confirmed a grouping of ΣSFA and ΣPUFA with ΣMUFA 

grouped with nutrient uptake rates and growth rates (Supplementary Figure 

S6.1, Appendix I).

Table 6.4 Summary statistics from one-way ANOVAs comparing fatty acid contents (mg. 
g-1 dry weight) for NQAIF379, Prorocentrum lima between: Asalinities 36 and 26 at 24°C; 
Btemperatures 28°C and 24°C at a salinity of 36; and with CNQAIF380, Gambierdiscus 
carpenteri at 28°C and a salinity of 36.

A PCA showed clear separation of species based on sum of SFA and PUFA, 

with the first two components of the PCA explaining 75.41 and 24.09% of the 

variability (Fig. 6.6). PC1 separated species by ΣSFA, while PC2 separated 

species by ΣPUFA. For G. carpenteri high ΣSFA were associated with medium 

to low levels of ΣPUFA, with lowest ΣPUFA observed for 24 °C and a salinity of 

26. By contrast, Ostreopsis was characterized by low ΣSFA content, 
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irrespective of salinity, but ΣPUFA were positively associated with low salinity. 

The PCA plot shows partial separation of P. lima along PC1 with salinity, while 

the distribution along PC2 was heterogeneous both with regards to temperature

and salinity. A cluster analysis confirmed a grouping of ΣSFA and ΣPUFA with 

ΣMUFA grouped with nutrient uptake rates and growth rates (Supplementary 

Figures S6.1, Appendix F and S6.2, Appendix G).

Figure 6.6 A principal component analysis showing the relationship between the sum of 
saturated, monounsaturated and polyunsaturated fatty acids for benthic dinoflagellates: 
G Gambierdiscus carpenteri; P Prorocentrum lima; O Ostreopsis sp.; LS low salinity, 26; 
NS normal salinity, 36; WT warm temperature, 28 °C; CT cool temperature, 24 °C.

6.5 Discussion

Temperature and salinity changes, as well as nutrient supplies, affect 

population growth rates and essential ω-3 LC-PUFA contents of microalgae, 

which as primary producers, form the base of the food web. Thus, potentially, 

the broad tolerance range to temperature and salinity of the benthic toxic 

dinoflagellates G. carpenteri, P. lima and Ostreopsis sp., which often occur 
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naturally in an assemblage complex (Sparrow et al., 2017), could facilitate 

population expansions into new geographic locations (Granéli et al., 2011; 

Sparrow et al., 2017; Xu et al., 2016). Population sizes, growth rates and 

nutritional profiles of these organisms from the GBR determine the potential for 

toxin transfer via the food web. In order to develop range expansion models for 

potentially toxic benthic dinoflagellates from tropical to temperate regions, it is 

critical to determine the effects of lower temperature and salinity on population 

growth rates, nutrient utilization and ω-3 LC-PUFA contents. Such effects have 

previously not been investigated. Active growth has been recorded for 

Gambierdiscus, Prorocentrum and Ostreopsis between 15 and 33 °C and 

salinities of 15 to 40 (Ben-Gharbia et al., 2016; Gillespie et al., 1985; Kibler et 

al., 2012; Morton et al., 1992). Maximum growth rates of populations for P. lima 

and Ostreopsis at 27 °C were observed to peak at salinities of 30 and 33, 

respectively (Morton and Norris, 1990; Morton et al., 1992). By contrast, optimal

growth rates for Gambierdiscus species at 26 °C varied between salinities of 25 

and 35. Growth rates of populations peaked at a salinity of 27 for G. carpenteri, 

isolated from Guam in the Pacific Ocean (Kibler et al., 2012). Although studies 

of growth response to salinity were conducted at similar temperatures to this 

study (28 and 24 °C), population growth responses differed. In this study, 

population growth for P. lima and Ostreopsis sp. was comparable at salinities of

36 and 26, but a salinity of 26 population growth rate of G. carpenteri was 

reduced significantly. While salinity tolerance range can indicate the likely ability

to acclimatise in different coastal marine habitats, including estuaries, tidal 

rocky shores and riverine environments, geographic origin was shown to 

influence the upper and lower thermal limits for Gambierdiscus and Ostreopsis
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(Granéli et al., 2011; Kibler et al., 2012; Xu et al., 2016). Recently, two strains of

G. carpenteri isolated from the same latitude, but from different habitats, 

showed different thermal and salinity responses in terms of growth rates, 

suggesting that acclimation to local environmental conditions may result in 

differences within species (Sparrow et al., 2017). Similarly, Ostreopsis ovata in 

the Mediterranean appears to have acclimated to local environmental 

conditions, as population growth was observed to increase as temperature 

increased from 16 – 30 °C in the Tyrrhenian Sea, but reached a maximum at 16

°C in the North Adriatic Sea (Granéli et al., 2011). In this study, a tropical 

Ostreopsis sp. had higher population growth rate at 28 °C than at 24 °C, which 

was similar to observations by Granéli et al. (2011) in the Tyrrhenian Sea, but 

differed from other studies in tropical regions, which recorded peak growth at 25

°C for Ostreopsis siamensis, and O. heptagona (Morton and Norris, 1990; 

Morton et al., 1992). Population growth for Prorocentrum species, including P. 

lima, peaked at mid-tolerance range temperatures of 26 – 27 °C (Morton and 

Norris, 1990; Morton et al., 1992), but maximum growth for Gambierdiscus 

varied between 26 – 31 °C depending on species (Bomber et al., 1988a; Kibler 

et al., 2012). In comparison, population growth for P. lima and G. carpenteri in 

this study was not affected by temperature. Adaptability or acclimatization 

capacity to local environmental conditions has been the suggested rationale for 

inconsistencies between geographic locations for G. carpenteri and O. ovata 

species in response to temperature and salinity (Granéli et al., 2011; Sparrow et

al., 2017; Xu et al., 2016). Intensive sampling and phylogenetic analysis of 

Ostreopsis in Japan identified an O. cf ovata complex, where strain distribution 

appeared to infer geographic preferences (Sato et al., 2011). Sporadic benthic 
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dinoflagellate surveys have recorded the presence of Gambierdiscus spp. along

the Qld coast and seasonally at Merimbula on the southern NSW coast. 

Whether populations in Merimbula are derived through range expansion from 

tropical locations to the north like reef fish, whose thermal survival threshold is 

similar, about 17 °C (Figueira and Booth, 2010; Kohli et al., 2014), and have 

acclimated to temperate environmental conditions remains to be established.

Benthic dinoflagellate species, G. carpenteri, P. lima and Ostreopsis sp. have 

been recorded within temperate estuarine and riverine environments (Ajani et 

al., 2013; Kohli et al., 2014), where salinity and temperature changes would 

make establishment of tropical dinoflagellate populations difficult. Similar to 

mixed benthic dinoflagellate assemblages in tropical regions, at Merimbula, G. 

carpenteri co-occurred with other benthic dinoflagellates, including P. lima and 

Ostreopsis sp. (Kohli et al., 2014). During periods of lower salinities, survival of 

G. carpenteri in coastal habitats on the GBR was observed to improve within 

mixed benthic dinoflagellate assemblages (Sparrow et al., 2017). To truly 

understand the potential for G. carpenteri to survive in colder marine habitats, 

such as Merimbula, NSW, research on population growth responses at cooler 

temperatures in different salinities needs to be conducted on single species as 

well as with mixed benthic dinoflagellate assemblages.

Oligotrophic waters of the GBR have low average nitrogen and phosphorus 

concentrations of 0.0014 and 0.015 µg. L-1, respectively (Furnas et al., 2005). 

Nutrients are supplied periodically by freshwater flood plumes, sediment 

resuspension or upwelling (Andrews and Gentien, 1982). In comparison, 
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temperate cooler waters are nutrient-rich, with average concentrations of 

nitrogen and phosphorus ranging from 32 and 9.4 µg. L-1 in central NSW to 0.8 

and 0.1 µg. L-1 at Merimbula in southern NSW, respectively (Scanes et al., 

2007). Since nutrient availability and uptake rates determine population growth 

rates, nutrient uptake rates (pg.cell-1.day-1) were used here to compare the 

results with those published. For the GBR isolates, based on highest and lowest

nitrogen uptake rates observed, population densities of 329 – 972, 134 – 327, 

and 232 – 1,671 cells L-1 of G. carpenteri, P. lima and Ostreopsis sp. could be 

supported, respectively, whilst reported average phosphorus concentrations 

would sustain larger population densities of 7,945 -12,815, 6,306 -9,239, and 

5,442 – 26,484, respectively. This confirms reports that phytoplankton 

populations are nitrogen-limited on the GBR (Wooldridge et al., 2015). Based 

on documented nutrient loads (Supplementary Table S6.4, Appendix J) and 

calculated nutrient consumption rates, GBR nutrient concentrations would 

maintain the smallest populations of these benthic dinoflagellates, while 

populations of P. lima and O. ovata would reach millions of cells per litre in 

nutrient-rich Mediterranean waters and one order of magnitude larger 

populations of Gambierdiscus toxicus would be sustained by average nutrient 

concentrations in the Caribbean (Supplementary Table S6.4, Appendix J). 

Calculated nitrogen and phosphorus uptake rates for the Caribbean G. toxicus 

and the Mediterranean P. lima and O. ovata were 5 – 100 times higher 

(Supplementary Table S6.5, Appendix K) than uptake rates observed in this 

study, suggesting that uptake rates may be linked to the nutrient history that the

dinoflagellates experience. In addition, while growth rates appear to be 

nitrogen-limited on the GBR and in the Caribbean, population size appears to 
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be phosphorus-limited in the Mediterranean (Supplementary Table S6.5, 

Appendix K).

Nutrient-rich waters in colder temperate regions are likely to exceed growth 

requirements for maintaining population sizes of toxic dinoflagellates, potentially

supporting bloom development as observed with O. ovata in the Mediterranean

(Accoroni et al., 2011) and high seasonal abundances of G. carpenteri in 

Merimbula, NSW (Kohli et al., 2014). To date there is an absence of research 

on whether unfavourable conditions for benthic dinoflagellate cultures affect 

nutrient uptake rates and growth rates. In this study, nutrient uptake rates were 

influenced significantly by species, which were driven by the respective 

temperature and salinity preferences of the species. Nitrogen utilization by G. 

carpenteri was linked to growth rates, while stress-induced higher nitrogen 

uptake rates by P. lima and Ostreopsis sp. was not translated into growth, as 

growth rates were low. Benthic dinoflagellates may show low population growth 

rates in response to changes in temperature and salinity (Sparrow et al., 2017). 

Under temperature and salinity stress conditions it is likely that costly metabolic 

energy would be diverted from growth to physiological responses for survival, 

such as the production of osmolytes and heat-shock proteins (Kibler et al., 

2012; Rosic et al., 2011; von Alvensleben et al., 2016). Higher nitrogen uptake 

rates that were not translated into growth, may have been utilized for N-based 

osmolytes, such as proline, taurine and glycine betaine, which have been 

frequently found in microalgae (Keller et al., 1999; Tevatia et al., 2015; von 

Alvensleben et al., 2016). Dimethylsulfoniopropionate (DMSP) is a suggested 

osmolyte in dinoflagellates, including several species of Prorocentrum (Caruana
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and Malin, 2014), however, the formation of DMSP remains to be established 

for P. lima, G. carpenteri and Ostreopsis. Synthesis of DMSP commences with 

ATP-assisted sulphur assimilation that leads to the formation of the sulphated 

amino acid methionine, which is followed by oxidative decarboxylation to DMSP

(Gage et al., 1997; Stefels, 2000). While osmolyte production was not 

investigated here, the highest uptake rates for nitrogen and phosphate were 

observed at lower population growth rates at a salinity of 26 for P. lima at 28 °C 

and Ostreopsis sp. at 24 °C, suggesting potential production of DMSP as an 

osmolyte in response to environmental stress. By contrast, population growth 

for G. carpenteri declined with an equivalent reduction in nutrient uptake under 

unfavourable conditions. Research on response of benthic dinoflagellates to 

environmental stressors, including potential production of osmolytes, would 

provide a clearer understanding of the adaptability to dynamic marine coastal 

habitats and southward range expansion of benthic dinoflagellates from the 

GBR into colder marine habitats.

Other than abundance and population growth rates, nutritional profile of benthic 

dinoflagellates is important for bioaccumulation of ciguatoxins into marine food 

webs. It is generally accepted that ω-3 fatty acids (EPA and DHA), stearidonic 

acid (C18:4 ω-3) and octadecapentaenoic acid (C18:5 ω-3) are characteristic of

dinoflagellates, however, most research has been conducted on planktonic 

dinoflagellates (Litz et al., 2010; Mansour et al., 1999; Usup et al., 2008), with a 

paucity of research on the fatty acid profiles of benthic dinoflagellates. An 

analysis of fatty acids for planktonic and benthic dinoflagellates, including 

Ostreopsis, isolated from Malaysian waters did not detect the characteristic 18:4
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ω-3 and 18:5 ω-3 (Usup et al., 2008). Similarly, in this study, although EPA and 

DHA were detected, there was an absence of the characteristic stearidonic and 

octadecapentaenoic acid. The proportion of palmitic, oleic and linoleic acid 

detected in the biochemical profile of O. ovata (Usup et al., 2008) was 

comparable to Ostreopsis sp. in this study, while EPA and DHA was 

approximately 6% lower in this study. Except for EPA content, fatty acid profiles 

and contents of the planktonic Prorocentrum mexicanum and P. emarginatum 

cultivated at 26 °C and a salinity of 36, but on a 14:10 photoperiod (Usup et al., 

2008) were quite dissimilar to the one for the benthic P. lima in this study. 

Specifically, this study detected no C18:3 fatty acids, but amounts of DHA were 

9-fold higher.

Benthic dinoflagellates in this study were separated by differences in total SFA, 

PUFA and MUFA. To the best of our knowledge, fatty acid profiles have not 

been conducted previously for P. lima and G. carpenteri, and therefore, it is 

difficult to put the observed differences in fatty acid compositions in perspective 

to other studies. A negative impact of low salinity and temperature on EPA 

content with no effect on DHA content was observed for G. carpenteri, while at 

normal salinity and low temperature, EPA contents remained unchanged, but 

DHA contents increased. For Ostreopsis sp. DHA and EPA contents were 

higher at reduced salinities at both temperatures. This can have flow-on effects 

in marine food webs, suggesting a higher nutritional value with regards to ω-3 

LC-PUFA content in cooler and estuarine environments. It is possible that they 

are representative of normal fluctuations in the fatty acid profiles of these 

benthic dinoflagellates. More studies on the impact of geographic origin on 
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essential fatty acid profiles would be helpful to confirm the observations 

presented here.

In summary, population growth rates for P. lima were not affected by 

temperature or salinity, and potential geographic range expansion of this 

species could be a threat to oyster beds in NSW. By contrast, salinity and 

temperature reduced growth rates of G. carpenteri and Ostreopsis sp., 

respectively. The typical salinity levels and nutrient-rich waters at Merimbula, as

well as the thermal tolerance of G. carpenteri indicate potential for populations 

to establish and proliferate in this southern locality. Although from a nutritional 

point of view, benthic dinoflagellates are a good source of EPA and DHA, it will 

be important to conduct further studies to investigate adaptability and 

acclimatization capability to confirm the true range expansion potential under 

climate change conditions. Nonetheless, the data presented here represent 

important baseline information for developing geographic range expansion 

models for these tropical potentially toxic benthic dinoflagellates.
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Chapter Seven: Discussion

Ciguatera is a worldwide seafood-related illness caused by trophic transfer of 

ciguatoxins to mesopredators through the uptake of tropical benthic species of 

Gambierdiscus (Argyle et al., 2016; Chinain et al., 1999b; Kohli et al., 2014). 

The benthic dinoflagellate, Gambierdiscus is found in mixed assemblages with 

Prorocentrum and Ostreopsis, most frequently colonizing macroalgae (Morton 

and Faust, 1997; Parsons et al., 2011; Tester et al., 2014). Climate change is 

thought to support new colonization of substrates for macroalgae and 

associated benthic dinoflagellate assemblages in tropical regions, while it is 

hypothesised that the southward translocation of Gambierdiscus into temperate 

coastal habitats in NSW is due to a strengthened East Australian Current (EAC)

(Heimann et al., 2011).

Health databases and questionnaires have previously only been used for 

epidemiological studies on reported ciguatera cases in tropical regions, 

including Queensland (Qld), Australia (Chateau-Degat et al., 2007; Chinain et 

al., 2010; Gillespie et al., 1986; Harvey, 1997; Rongo and van Woesik, 2011). 

The Qld government recognized the severity of ciguatera by inclusion of the 

illness in the foodborne disease database in 1987 (Harvey, 1997). Queensland 

coastal waters are the primary source of ciguatera in Australia, however, the 

distribution and ecophysiological responses of Gambierdiscus populations that 

potentially drive ciguatera occurrence is under-studied. 
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At the start of this PhD research, (which was conducted part-time), the state of 

knowledge was:

 Hales et al. (1999) reported a link between ciguatera occurrence and El 

Niño periods within south Pacific island nations;

 Chateau-Degat et al. (2005) demonstrated that following warmer sea 

surface temperatures (SSTs), (cause) a 13 to 17 month time line was 

needed for Gambierdiscus population to increase, leading to an increase 

in reported ciguatera cases (effect) three months later;

 Gillespie et al. (1985) haphazardly conducted a field study along the Qld 

coastline (1983 and 1984), excluding the central Great Barrier Reef 

(GBR) region, and found Gambierdiscus toxicus was present at low 

numbers across reef and coastal habitats, frequently co-occurring with 

Prorocentrum and Ostreopsis on most macroalgal substrates sampled. In

a seasonal study on Flinders Reef, off south-east Qld, an increased 

abundance of G. toxicus was documented at 20 – 21 °C, in September 

1983 and 1984.

 A link between an increase in Gambierdiscus population size with an 

increase in ciguatera incidence due to environmental and anthropogenic 

disturbances remained controversial;

 Likewise, substrate preference of Gambierdiscus populations for 

particular macroalgae remained conflicting;

 Prior to 1995, the now recognized 16 species of Gambierdiscus were all 

described as G. toxicus.
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In summary, this thesis focused on knowledge gaps on conditions that govern 

occurrence of ciguatera in Qld, Australia. Specifically, it investigated the 

possible effects of: 

 climate change and oceanic ecosystem trends; 

 macroalgal substrate preferences of benthic dinoflagellate assemblages in

the central GBR; 

 population growth responses of GBR-isolates of Gambierdiscus carpenteri

to temperature and salinity, and assemblage structure of associated 

benthic dinoflagellates; and 

 impact of temperature and salinity on nutritional quality (essential long 

chain-polyunsaturated fatty acids (LC-PUFA), critical for marine food 

webs), nutrient uptake rates and growth of benthic dinoflagellates, 

including G. carpenteri.

Two drivers of ciguatera occurrence were identified in a desktop study (Chapter 

2), through impacts on Gambierdiscus population dynamics: 1) climate and 

environment; and 2) trophic transfer and marine food webs (Figure 7.1).

7.1 Thesis Findings

7.1.1 Summary of research approach

An approach overview is illustrated in Figure 7.1, with drivers of ciguatera 

occurrence identified throughout the research. To ascertain current spatial and 

temporal distribution patterns, as well as the impact of climate on ciguatera 

occurrence in Qld, the government health database was sourced between 1996

and 2012 (Chapters 2 and 3). Prior to this research, this database was used for 
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epidemiological studies on ciguatera only. To investigate the effect of the multi-

decadal phases of the Pacific Decadal Oscillation (PDO) on ciguatera 

occurrence, annual reported cases in this research (Chapter 3) was combined 

with previous studies by Gillespie et al. (1985) and Harvey (1997) from 1976 to 

1995 (as records prior to 1976 were unreliable), to derive a 37-year continuous 

data set. This was fundamental to determine the effects of multi-decadal 

climatic conditions i.e. the ocean-scale PDO, on ciguatera incidence. To 

address the knowledge gap on benthic dinoflagellate assemblage composition 

and abundance in the central GBR, field studies were conducted at inshore and 

mid-reef sites (Chapter 4). When unobstructed by the presence of crocodiles or 

weather, i.e. cyclones, monthly field studies were conducted at Nelly Bay, 

Magnetic Island (19 ºS), during 2008 and 2009. Based on the highest 

Gambierdiscus population occurring in August at Nelly Bay, sampling was 

conducted in August 2009 at Pioneer Bay, Pelorus Island (inshore reefs), 

Lodestone and Keeper Reefs (mid reefs). To identify the potential impact on 

ciguatera occurrence under climate change scenarios, knowledge is needed on 

the interactive effect of predicted warmer SSTs with lower salinities experienced

in coastal habitats in tropical and temperate regions. It was therefore essential 

to understand potential growth effects on Gambierdiscus and associated 

dinoflagellates. Controlled laboratory studies, were, therefore, conducted to 

ascertain the interactive effect of increased temperatures and lower salinities on

population growth of benthic dinoflagellate assemblages, including 

Gambierdiscus, isolated from GBR waters (Chapter 5) and large-scale 

cultivation of benthic dinoflagellates was carried out to enable investigation of 

the impact of the interactive effect of lower temperature and salinity on 
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population growth, nutrient uptake and nutritional value for marine food webs 

(Chapter 6).

Figure 7.1 Flow diagram and alignment of PhD research conducted to identified and 
validate drivers that influence ciguatera occurrence

7.1.2 Drivers of ciguatera occurrence

Research presented in Chapter 2 suggested a regional effect in the spatial 

distribution trend of reported cases based on the geographic location of 

sufferers. This supported observations by Gillespie et al. (1986) that the number

of reported cases decline with distance from metropolitan south-east Qld. This 

research was the first to investigate spatial trends based on the geographic 

167



Chapter 7: Discussion

location of sufferers and demonstrated that the number of reported cases was 

lower in the central and far northern Qld regions, which have regionally isolated 

pockets of inhabitants between large uninhabited areas of national and state 

parks. This suggests that reporting of ciguatera cases is influenced by distance 

from metropolitan south-east Qld, and thereby, access to public health facilities.

Distance and access to health facilities was also observed to affect reporting of 

ciguatera in the Pacific (Anderson and Lobel, 1987; Kaly et al., 1991). The 

limitations of estimating ciguatera incidence and frequency from health records 

based on reported cases is detailed in 7.2.

Spatial trends were also investigated based on the origin of fish (locality of fish 

catch) implicated in reported ciguatera cases. The three most frequent fish 

families implicated in ciguatera were Scombridae, Serranidae and Carangidae. 

Previous epidemiological studies on ciguatera in Qld identified Scombridae and 

Serranidae as most frequently implicated fish families in reported cases

(Gillespie et al., 1986; Harvey, 1997). This PhD research delineated the 

southern end of the GBR (24 °S) as the boundary between higher frequency of 

cases associated with Serranidae in the north and Scombridae in the south. 

This supports a similar trend reported by Gillespie et al. (1986) and Harvey 

(1997), which identified the boundary at Yeppoon (23 ºS). The increase of 

Serranidae responsible for ciguatera from southern to northern regions, in this 

research, correlated with and evidenced their close association with reef habitat

in the GBR. By contrast, contribution of Scombridae to ciguatera in the wet 

season and southern Qld, particularly Harvey Bay appeared to be governed by 

migratory patterns. Ciguatera cases caused by Carangidae was most frequent 
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in central Qld (Zone 3) and declined southwards. This research identified that 

movement habits of fish families may influence the regional frequency of 

association with ciguatera occurrence. The regional trend observed, based on 

location of ciguatera sufferers may be influenced by an increase of macroalgal 

substrates for Gambierdiscus populations to colonise following environmental 

disturbances, such as coral bleaching, cyclones and A. planci outbreaks, which 

occur frequently in the central GBR. Environmental disturbances were, 

therefore, investigated at a regional-scale in Chapter 3.

Chapter 2 demonstrated that ciguatera occurrence was 65% more frequent in 

the Austral wet season, suggesting a potential influence of warmer SSTs, 

characteristic for this season (Figure 7.1), which is additionally supported by 

reports on higher ciguatera frequency during the warmer wet season in French 

Polynesia between 1992 and 2001 (Chateau-Degat et al., 2007). The 

importance of climate and associated environmental disturbances, including 

climatic systems that induce warmer SSTs, was investigated at a broader-scale 

in chapter 3 (Figure 7.1). At the same time as this research, effects of PDO, 

Southern Oscillation Index (SOI) and El Niño on ciguatera occurrence was 

investigated in Pacific tropical regions (Llewellyn, 2010; Rongo and van Woesik,

2011), emphasizing the importance of the question investigated in Chapter 3, 

whether ocean-scale and multi-decadal climate periods are linked to ciguatera 

frequency in Qld.

Chapter 3 adopted a model-based approach to determine whether trends 

identified in Chapter 2 were linked drivers of ciguatera incidence. The multi-
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decadal PDO significantly influenced the frequency of ciguatera occurrence in 

Qld. The long-term, continuous dataset, synthesized from available public data 

in this research, demonstrated 62 – 85% higher ciguatera occurrence during the

warm PDO phase, compared to the cool PDO phase. This has significant 

implications for predictions of likely periods of increased ciguatera occurrence 

under climate change conditions, i.e. effects of the imminent shift to the PDO 

warm phase. Studies, during the time of this research, identified a link between 

ciguatera and the PDO in the Pacific, however, while it is noted that the studies 

were conducted within the same PDO phases as this research, the datasets 

were limited to the warm phase (1977 – 1998) (Llewellyn, 2010) and the cool 

phase (1999 – current) (Rongo and van Woesik, 2011). Likely outcomes with 

regards to ciguatera incidence in Qld can, therefore, not be extrapolated from 

these studies alone.

This research determined that the PDO at 2-year lag time was the best climate 

model, with 54% support followed by the PDO at zero and 1-year lag time. An 

influence of the PDO was also demonstrated for several Pacific island nations

(Llewellyn, 2010), particularly, Kiribati, Fiji and Vanuatu showed a positive link 

to ciguatera with the PDO at a 2-year lag time, with 41, 49 and 51% support, 

respectively (Llewellyn, 2010). Climate models based on the SOI and El Niño 

did not support an effect on ciguatera incidence for Qld, while similar SOI- and 

El Niño- based models showed significance for the Pacific (Llewellyn, 2010; 

Rongo and van Woesik, 2011). It is hypothesised that the no effect of the SOI 

and El Niño on ciguatera incidence in this research was masked by a latitudinal 

effect, as the length of the Qld coastline spans almost 18° of latitude, which 
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would also explain regional differences in trends identified in Chapter 2. This 

hypothesis is supported by opposing model outcomes for New Caledonia and 

French Polynesia (21 and 18 °S, respectively) to other Pacific Island nations at 

3 – 18 °S latitude (Llewellyn, 2010). Similarly, latitudinal spread of the Cook 

Islands was hypothesised as being responsible for differences in frequency of 

ciguatera between the northern and southern Cook Islands (Rongo et al., 2009).

The best climate model, PDO at 2-year lag time, also demonstrated that 

ciguatera occurrence declines in years when coral bleaching is occurring. This 

supports the model outcome reported by Chateau-Degat et al. (2005), which 

established a 16 – 20 month time lag between cause (warmer SSTs) and effect 

(increased ciguatera occurrence). It is noteworthy that the modelling research 

conducted here is the first to support Chateau-Degat et al. (2005) model 

outcome, and no differing outcomes have yet been reported. Climate change 

scenarios predict warmer SSTs will increase the frequency of coral bleaching in 

tropical regions, and strengthen the EAC, to extend warmer SSTs along the 

east Australian coastline towards Tasmania (Heimann et al., 2011). 

Environmental disturbances are thought to lead to periodic increases in 

ciguatera due to a flow-on effect of increased macroalgal dominance on reefs, 

offering ideal substrates for benthic dinoflagellates to colonise and subsequent 

increased transfer of ciguatoxins into marine food webs (Figure 7.1). 

Research in Chapter 3 identified environmental disturbances to have the 

highest impact on coral cover in the central GBR, a region characterised by 

most frequent occurrence of severe tropical cyclones, coral bleaching and the 
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majority of A. planci outbreaks. The more frequent occurrence of environmental 

disturbances in the central GBR is likely to support a greater range of 

macroalgal substrates and associated benthic dinoflagellates, but the central 

GBR region was excluded in the only reported survey on Gambierdiscus 

abundances in the GBR by Gillespie et al. (1985). In Chapter 4, field research 

was conducted at inshore and mid-shelf reefs in the central GBR to address the

knowledge gap of temporal abundance, composition of benthic dinoflagellate 

assemblages, and macroalgal substrate preferences by dinoflagellates. 

Although co-occurrence with Prorocentrum and Ostreopsis was noted by

Gillespie et al. (1985), composition of benthic dinoflagellate assemblages and 

seasonal abundance for benthic dinoflagellates was not investigated on the 

GBR. Similar to reports by Gillespie et al. (1985), Gambierdiscus was a minor 

component of benthic dinoflagellate assemblages at inshore and mid-shelf 

reefs. Dominance of Ostreopsis at Nelly Bay corroborated observations by

Gillespie et al. (1985) for northern and southern GBR, however, Prorocentrum 

dominated benthic dinoflagellate assemblages at Pioneer Bay, Pelorus Island, 

Lodestone and Keeper Reefs. The dominance of Prorocentrum in benthic 

dinoflagellate assemblages in November 2008 at mid-shelf reefs, Bramble, 

John Brewer, and Trunk Reefs, and dominance of Ostreopsis at inshore reefs 

on Pelorus Island (Heimann et al., 2010) suggest regional and potentially reef-

related environmental factors are likely to influence the composition of benthic 

dinoflagellate assemblages. While Gambierdiscus abundance field studies have

been conducted for Pacific Islands, benthic dinoflagellate assemblage 

composition was not investigated, making a comparison to the results obtained 

here impossible.
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The distribution of Gambierdiscus on macroalgal substrates have been reported

as patchy within reefs and highly variable among reefs when substrate 

preference was investigated using phyla or defence strategies against grazing 

as categories (Ballantine et al., 1985; Bomber et al., 1988b; Faust, 1995; 

Nakahara et al., 1996; Parsons et al., 2011). Parsons et al. (2011) directly 

tested substrate preference under laboratory-controlled conditions and although

there was no clear substrate preference, the use of macroalgal surfaces as an 

anchor point and differential levels of motility by Gambierdiscus among 

substrates supported earlier observations. Often a single macroalgal phylum 

dominated study sites during the field studies (Chapter 4), while thallus 

structure (i.e. terete, flattened, leathery) was more diverse. It was therefore 

hypothesised that surface structure may be more important in explaining 

differences in Gambierdiscus abundances than taxonomic diversity. This 

research, therefore, used a novel approach that explored the use of macroalgae

surfaces as anchor points and investigated macroalgal substrate preference by 

thallus structure. A non-selective preference for substrate was established in 

this research, as preference varied among reefs and between inshore and mid-

shelf reefs. This research corroborates the low abundances of Gambierdiscus 

recorded by Gillespie et al. (1985) across seasons in northern and southern 

GBR with no clear macroalgal substrate preference of Gambierdiscus 

identifiable. The variability in macroalgal colonisation by Gambierdiscus 

documented in this research may indicate that availability of macroalgal 

substrates are likely to govern colonisation patterns and population size. If this 

hypothesis is correct, then the question of macroalgal substratum preference by
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Gambierdiscus would only be resolved at sites with high diversity of macroalgae

(Figure 7.2). As Gambierdiscus utilises macroalgal surfaces as anchorage 

points, colonisation of specific macroalgal substrates is also likely influenced by 

environmental conditions such as light, currents, temperature, salinity and 

nutrient supply (Figure 7.2).

Figure 7.2 The influence of macroalgal thallus structure diversity and reef-specific 
environmental conditions on Gambierdiscus substrata selectivity.

Chapter 2 identified that dietary components (fish, benthic crustaceans, and 

other invertebrates) were relatively consistent in mesopredators frequently 

implicated in ciguatera. A second novel approach to investigate macroalgal 

substrate preference, was therefore, tested based on macroalgal palatability for 

grazers (Chapter 4). Abundances for benthic dinoflagellate assemblages varied 

among reefs with substrates palatable to invertebrates often higher than fish 

palatable substrates. Differences between abundance of benthic dinoflagellate 

174



Chapter 7: Discussion

assemblages and Gambierdiscus was observed when grazer palatability was 

categorised by thallus structure. A herbivory fish in situ exclusion experiment 

conducted at Orpheus Island demonstrated the increased abundance and 

dominance of leathery macroalgae of the genus, Sargassum (Hughes et al., 

2007). Similarly, Sargassum dominance at Nelly Bay may suggest low grazing 

pressure by herbivorous fish, and whether this permits the dominance of other 

grazers such as sea urchins is unknown. The abundance of Gambierdiscus and

benthic dinoflagellate assemblages documented in this research provides 

valuable information for studies of grazer assemblages, which are currently not 

available (Figure 7.2).

The consistent low abundances of Gambierdiscus on the GBR all year round 

and non-selectivity for macroalgal substrate would assist EAC-transported 

Gambierdiscus in colonization of macroalgal surfaces in southern NSW coastal 

habitats (Figure 7.1). Chapter 2 identified a spatial trend in the distribution of 

ciguatera in Qld, which suggests a potential broad tolerance range of 

Gambierdiscus to temperatures and salinities. Tolerance for lower temperatures

was reported in a seasonal study conducted by Gillespie et al. (1985) at 

Flinders Reef (27 ºS) in south-east Qld, who observed increased abundances of

Gambierdiscus at temperatures below 22 ºC. Sampling following a heavy rain-

induced freshwater plume in March in the seasonal study conducted in the 

central GBR (Chapter 4) documented lower abundances of benthic 

dinoflagellates (Heimann et al., 2010), suggesting that the regional 

Gambierdiscus populations and associated dinoflagellate assemblages are 

sensitive to low salinity. As in Chapter 3, environmental disturbances were 
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identified as a potential driver of ciguatera occurrence and GBR-derived benthic

dinoflagellate cultures were established in Chapter 4, Chapters 5 and 6 could 

now test directly the effect of temperature, salinity and nutrients on population 

growth of GBR – isolated benthic dinoflagellates (Figure 7.1).

As environmental disturbances can lower salinities during periods of warmer 

temperatures, the interactive effect of temperature and salinity was investigated 

in chapter 5 using the GBR – isolated benthic dinoflagellates. This identified a 

significant effect of temperature and lower salinities but no interaction on 

population growth for two G. carpenteri strains isolated from different habitats 

but at the same latitude, which suggest strongly that habitat history is important 

in acclimating to adverse environmental conditions and expansion to southern 

NSW coastal habitats. Along with the determination of Gambierdiscus as a 

species-rich genus, these data support first reports that differences in 

environmental tolerances of Gambierdiscus were geographically influenced

(Kibler et al., 2012; Xu et al., 2016). 

In Chapter 4, Gambierdiscus populations co-occurred with other benthic 

dinoflagellates. To test whether co-occurring benthic dinoflagellates had an 

effect on population growth of G. carpenteri, cells were grown in a mixed 

assemblage of P. lima and Ostreopsis sp. and at low salinities, that naturally 

occur in coastal habitats (Chapter 5). The effect of species-interaction varied at 

different salinities and dominance of assemblage. Growth of G. carpenteri was 

inhibited at a salinity of 36 by mixed assemblage, regardless of P. lima or 
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Ostreopsis sp., dominance, but growth patterns were indicative of recovery at a 

salinity of 16 when Ostreopsis sp. dominated the cultures. This research is the 

first to investigate the effect of environmental parameters and assemblage 

composition on the population growth of G. carpenteri.

Populations of Gambierdiscus have been recently recorded along the New 

South Wales (NSW) coastline (32 – 37 °S), including G. carpenteri in southern 

waters off Merimbula (37 °S) (Ajani et al., 2013; Kohli et al., 2014). This 

suggests the potential southward geographic expansion of Gambierdiscus, 

transported by the EAC, from the GBR to southern NSW coastal habitats 

(Figure 7.1). The nutritional value of benthic dinoflagellates, including 

Gambierdiscus may influence whether they would be targeted by resident fish 

assemblages in cooler southern waters. Coastal habitats are characterised by 

variable environmental conditions, particularly temperature and salinity. The 

effect of environmental conditions, however, on nutrient availability and uptake 

rates, which determine population growth rates, and the nutritional value of 

benthic dinoflagellate cultures has not, to date, been investigated. Therefore, 

the effect of temperature and salinity on nutritional value, nutrient uptake and 

population growth, using large-scale cultures of G. carpenteri, P. lima and 

Ostreopsis sp. was investigated in Chapter 6.

Nutrient uptake rates in this research, were influenced significantly by 

species.This may explain the generally species-specific temperature and 

salinity preferences. The oligotrophic waters of the GBR (Furnas et al., 2005) 

177



Chapter 7: Discussion

would sustain small populations of benthic dinoflagellates, based on calculated 

nutrient consumption rates in Chapter 6. This maintains the generally low 

abundances of benthic dinoflagellates documented on the GBR in this research 

(Chapter 4) and reported by Gillespie et al. (1985) and Heimann et al. (2010). 

By contrast, nutrient-rich temperate waters in NSW (Scanes et al., 2007) and 

the Mediterranean (Accoroni et al., 2017) are likely to exceed growth 

requirements for maintaining large benthic dinoflagellate populations that could 

reach millions of cells per litre. Such bloom development was observed recently

in the Mediterranean with Ostreopsis ovata (Accoroni et al., 2011) and with the 

high seasonal abundances of G. carpenteri in Merimbula, NSW (Kohli et al., 

2014). 

Population growth of P. lima was not significantly affected by temperature or 

salinity, and as this species has been implicated in diarrhetic shellfish 

poisoning, the potential geographic expansion could increase the threat to the 

NSW shellfish industry under climate change scenarios. By contrast, salinity 

and temperature challenged growth of G. carpenteri and Ostreopsis sp., 

respectively. The growth rate for G. carpenteri was linked to nutrient uptake, 

which was higher at a salinity of 36 in both temperatures. At the higher growth 

rate, the essential omega-3 fatty acid, docosahexaenoic acid (DHA) increased 

at 24 °C and a salinity of 36. By contrast, the low growth rates for Ostreopsis sp.

at 24 °C in both salinities were linked to higher nitrogen and phosphate rates, 

indicating stress-induced consumption, and potential production of osmolytes as

a physiological response for survival (Rosic et al., 2011; von Alvensleben et al., 

2016). Essential omega-3 fatty acid contents for Ostreopsis sp., however, were 
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higher at low salinities at both temperatures. This research established the likely

higher nutritional value of benthic dinoflagellates in temperate coastal habitats, 

and therefore, the potential for them to be targeted by temperate marine fish 

species. Additionally, this research established the potential for G. carpenteri 

and Ostreopsis sp. populations to establish and proliferate in southern 

geographic locations, such as Merimbula, NSW, which have relatively stable 

salinity levels and nutrient-rich waters.

7.2 Limitation of this research and future research foci

While the use of a public health database for desktop studies on ciguatera 

occurrence in this research identified potential spatial and temporal trends, the 

underlying influences, such as human lifestyle, diet choices, frequency of fish 

consumed and availability and source of fish species was not revealed. In 

addition, habitat association of fish species implicated in ciguatera can also not 

be unravelled based on information in health databases and records alone. 

Further, as health records do not enable evaluation of the impact of under-

reporting, identifying significant trends remains challenging. To overcome at 

least the human population-associated limitations, construction of a meaningful 

questionnaire would offer a simple approach to obtain substantive quantitative 

and qualitative data that can evaluate the potential impact of under-reporting of 

ciguatera and whether the rate of under-reporting increases with geographic 

isolation. This was already suggested by Lewis et al. (1988) who identified that 

extensive questionnaires are needed to provide more accurate estimates on 

prevalence and distribution of ciguatera in Qld. In the continued absence of 

such questionnaires, the impact of ciguatera on coastal populations and the 
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socio-economic costs to commercial fisheries in Qld will remain a limitation in 

the management of ciguatera.

While high abundances of benthic dinoflagellates can be recorded in the field, 

difficulties with field-based studies include timing, costs, and labour intensive 

sampling. To investigate environmental effects on benthic dinoflagellate 

populations in situ, requires at least 5 years of continuous data and, therefore, 

are not sustainable. Low abundances of Gambierdiscus on the GBR all year 

round, but continued reports of ciguatera incidence documented in this 

research, in addition to the demonstrated high nutritive long chain 

polyunsaturated omega-3 fatty acids, indicate active grazing pressure and 

ready transfer of the toxins via the food web. This research identified the need 

for field surveys on fish assemblages and grazing of macroalgal substrata. Fish 

surveys utilising video technology enables extensive data to be collected with 

an efficient and cost-effective use of resources (Mantyka and Bellwood, 2007). 

Data obtained from field surveys on fish grazing assemblages could then be 

applied to much needed feeding trials that simulate natural marine food webs. 

Initial lack of all dinoflagellate cultures made feeding experiments impossible, 

however, as a result of this research, isolates are now available to enable the 

growth of large-scale cultures required for feeding trials possible.

Compounding factors in the field can be overcome by controlled laboratory 

studies if benthic dinoflagellates can be domesticated. Although not described 

in detail in this thesis, it is worth noting that prior to controlled laboratory 
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experiments, domestication of benthic dinoflagellate genera proved rather 

difficult. Cultured microalgae, in general, can be maintained under similar 

conditions, including media, temperature and light as well as aeration in large-

scale cultures, which allow sampling to be easily homogenised for counting and 

analysis. These culture conditions proved non-suitable for benthic 

dinoflagellates, and although literature reported culture growth in commonly 

used media, i.e. f/2, Gambierdiscus isolates from the GBR only survived in K – 

medium. In addition, disturbance to flasks, or homogenising cultures caused 

GBR-derived benthic dinoflagellate cells to stress and lyse. Therefore, the 

isolation, establishment and maintenance of monocultures for GBR-derived 

benthic dinoflagellates required a trial and error approach, in which more than 

12 months were needed to successfully achieve domestication.

One of the main hurdles in sampling field populations and establishing cultures 

is the accurate identification of benthic dinoflagellate genera, which is currently 

time consuming and costly, including light microscopy and scanning electron 

images supported by genetic analysis. Alternative methods of identification are 

needed to be explored, of which the tree of life approach may be a suitable 

alternative. Barcoding of the cytochrome oxidase 1 (CO1) is informative for 

dinoflagellates (Stern et al., 2012), however, this is yet to be established for 

benthic dinoflagellates involved in this research. While this will initially require 

extensive sampling and laboratory work to create the barcoding for benthic 

dinoflagellates, in the long term it is likely to offer a more efficient method for 

use in the field.
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As discussed above, the governance of the multi-decadal PDO on ciguatera 

occurrence was documented in this research. It is predicted, based on this 

research that an increase in ciguatera outbreaks and the potential for 

proliferation of Gambierdiscus with its southward geographic expansion will 

occur following the imminent transition into the next PDO warm phase. 

Investigation of climate and environmental disturbances on ciguatera 

occurrence in Qld was limited by the extensive coastline of Qld, which spans 

more than 17 º of latitude, essentially spanning the tropics. Latitudinal impacts 

were also demonstrated for Pacific regions, which influenced outcomes of 

climatic events (Llewellyn, 2010; Rongo et al., 2009). The latitudinal distance of 

the Qld coastline and the unknown effect of under-reporting of ciguatera, 

particularly in northern Qld, potentially masked links of ciguatera with the SOI 

and El Niño periods. Spatial and temporal distribution patterns at a regional-

scale were impeded by latitudinal distance of the Qld coastline, patchy 

investigations on the abundance and distribution of benthic dinoflagellate 

assemblages, including Gambierdiscus, migratory patterns of mesopredators 

implicated in ciguatera, and limited knowledge on the impact of environmental 

disturbances on coral reef food webs. The limited available data, particularly at 

a regional-scale, hindered establishment of baseline information that could be 

applied to model-based investigations and predictions of ciguatera hotspots 

under climate change scenarios. To overcome these limitations, long-term 

interrelated studies along the Qld coastline, including macroalgal diversity, 

Gambierdiscus and co-occurring benthic dinoflagellate abundances, fish diets 

and a better understanding of food webs is essential. This needs to be co-

ordinated with regional-scale questionnaires on the incidence of ciguatera in 
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human populations. Initial sampling efforts need to be sustained over at least 5 

– 10 years, due to the lag of time between the cause (climate) and effect 

(ciguatera outbreaks) documented in this research. The huge sampling effort 

needed to obtain this knowledge would be cost prohibitive and beyond the 

scope of a doctorate research study. Sampling effort would need to be directed 

to identified regional trouble areas and then extrapolated or modelled. In 

southern Qld, Platypus Bay, Fraser Island (Harvey Bay) is a globally known 

ciguatera hotspot; while extensive freshwater plumes, which lower salinities and

are a rich source of nutrients, often impact reef health of the inshore Keppel 

Islands. As the growth of G. carpenteri is linked to nutrient uptake, these reefs 

could potentially be another southern regional ciguatoxic hotspot. Trunk and 

Lodestone Reefs in central Qld were identified as areas of concern by this 

research (Chapter 2), while areas of concern in northern Qld are unknown. 

Questionnaires on ciguatera incidence in northern Qld regional populations are 

needed, so that local knowledge on reefs of regional concern can be identified 

before concentrating regional sampling effort.

Linking of the dataset derived in this research with other large datasets on water

quality parameters, ocean and coastal currents, climate, coral bleaching and 

Acanthaster planci (crown-of-thorns starfish) outbreaks, which have been 

collated by stakeholders in reef and human health (including the Australian 

Institute of Marine Science (AIMS), CSIRO and The Centre for Tropical Water 

and Aquatic Ecosystem Research (TropWATER)), could assist in further 

determining likely regional hotspots for ciguatoxin trophic transfer using model-

based investigations.
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7.3 Conclusions

This research has addressed the principle aim to provide a better understanding

of the potential drivers of ciguatera occurrence and the effect of predicted 

climate change on the potential range expansion of benthic dinoflagellates into 

new geographic regions. Two drivers of ciguatera occurrence were identified: 1)

climate and environmental disturbances; 2) trophic transfer and marine food 

webs. In addition to the identification of two drivers of ciguatera occurrence, the 

findings of this research:

 Contributed to the understanding of ciguatera in Qld; 

 Demonstrated governance of multi-decadal climate and linked with coral 

bleaching; 

 Enabled base line information to model predictions; and 

 Established that southward geographic expansion into NSW coastal 

habitats has potential based on:

o The non-selectivity of substrates; 

o Population growth responses to environmental conditions; and 

o The high nutritional value of benthic dinoflagellates for grazing fish and 

invertebrates.

This now lays solid foundation for studies to be given priority in ciguatera 

research.

In conclusion, the identified influence of the multi-decadal PDO has implications

for management in southward migration of benthic dinoflagellates and fish 

species at high ciguateric risk, such as Spanish mackerel; a time-line with lower

ciguatera incidence in the year of coral bleaching with a two-year time lag to a 

periodic increase; benthic dinoflagellate responses to different environmental 
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conditions varies between genera; and that benthic dinoflagellate assemblages 

can improve survival of G. carpenteri in lower salinities. This research 

established that spatial and temporal trends require regional-scale field 

research supported by controlled laboratory experiments and extensive 

questionnaires. It has been demonstrated that habitat history may influence the 

adaptability and acclimatisation of benthic dinoflagellates to new geographic 

locations, thereby, influencing their success for southward geographic 

expansion and colonisation in NSW coastal habitats; potentially supported by 

non-substrate preference of Gambierdiscus in the central GBR. Low 

abundances all year round in addition to the demonstrated high nutritive long 

chain polyunsaturated omega-3 fatty acids indicate active grazing pressure and 

ready transfer of the toxins via the food web.
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Appendix A

Chapter One:

Supplementary Table S1.1. Frequency and occurrence of ciguatera hot spots, 

reported ciguatera cases acquired through affordable travel, fish exports and 

local fish caught outside tropical regions, expansion of Gambierdiscus spp. 

recorded in temperate regions and expansions within tropical regions.
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Tropical regions

Hot spots
Total no. cases
(no. years)

Average no. 
cases / 100,000

Total no.
years

References

Cook Islands 2687 1437 11 (Skinner et al., 2011)

French Polynesia 8534 329 11 (Skinner et al., 2011)

Kiribati 3183 313 11 (Skinner et al., 2011)

Marshall Islands 2122 416 11

Niue 50 303 11

Tokelau 279 1576 11

Vanuatu 8127 397 11

Antigua & Barbuda 4548 6527 15
(Caribbean 
Epidemiology 
Centre, 2008)

Bahamas 1888 741 15

British Virgin Is. 985 5541 15

Cayman Islands 361 1214 15

Jamaica 357 15 15

Montserrat 571 6624 15

Travel location Implicated fish
Travel 
originated

Year

Florida, USA Barracuda Brazil 1972 (Barkin, 1974a)

Cuba Unknown Canada 1987
(Frenette et al., 
1988)

West Indies Coral Trout France 1994
(Moulignier et al., 
1995)

Haiti Amberjack USA 1995 (Poli et al., 1997)

Cuba Barracuda Italy 1999 (Butera et al., 2000)

Pacific Islands Grouper Hong Kong 2004
(Cheng and Chung, 
2004)

Pacific Islands Grouper China 2004 (Chan, 2014)

St Eustatius Snapper England 2004 (Kipping et al., 2006)

Pacific Islands Grouper China 2005 (Chan, 2014)

Pacific Islands
Snapper & 
Grouper

Hong Kong
1989-
2008 (Chan, 2014)

Mexico Local seafood Qld, Australia Pre-2008 (Slobbe et al., 2008)

Qld, Australia Barracuda Unknown Pre-2008 (Slobbe et al., 2008)

201



Temperate regions

Import location Exported fish
Location 
source

Year References

Toronto, Canada Barracuda Jamaica 1983 (Todd, 1997)

Ontario, Canada Grouper USA 1984 (Todd, 1997)

NSW, Australia
Spanish 
mackerel

Hervey Bay, Qld 1987
(Sydney Fish 
Markets, 2005)

Ontario, Canada Grouper Spain 1989 (Todd, 1997)

Quebec, Canada Mahi-mahi USA 1989 (Todd, 1997)

San Francisco, 
USA

Barracuda Florida, USA 1989 (Geller et al., 1991)

Vancouver, British 
Columbia

Grouper Fiji 1990 (Todd, 1997)

Toronto, Canada Barracuda USA 1993 (Todd, 1997)

Toronto, Canada Barracuda
Trinidad & 
Tobago

1997 (Todd, 1997)

Toronto, Canada Mackerel West Indies 1997 (Todd, 1997)

Import location Exported fish
Location 
source

Year

Victoria, Australia Maori Wrasse Queensland 1997
(Ng and Gregory, 
2000)

North Carolina, 
USA

Amberjack Florida, USA 2007 (Langley et al., 2009)

St Louis, Missouri,
USA

Amberjack Louisiana, USA 2007 www.yourlawyer.com

New York, USA
Grouper & 
Barracuda

Florida, USA 2011 (Graber et al., 2013)

Canada
Grouper & 
Barracuda

Cuba
1983-
1997 (Todd, 1997)

Paris, France unknown West Indies Pre-1995
(Moulignier et al., 
1995)

Implicated fish Location Country Year

Barracuda North Carolina USA 1987 (Morris et al., 1990)

Barracuda & 
Snapper

Texas USA 1998 (Villareal et al., 2006)

Amberjack Canary Islands Spain 2004
(Pérez-Arellano et 
al., 2005)

Barracuda South Carolina USA 2004 (Villareal et al., 2006)

Amberjack Canary Islands Spain 2012 (Nunez et al., 2012)

Reef fish Okinawa Japan
1997-
2008 (Oshiro et al., 2010)

Amberjack Canary Islands Spain 2008-09 (Boada et al., 2010)
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Note: G. yasumotoi re-classified, now Fukuyoa paulensis
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Appendix B

Chapter Two:

Supplementary Table S2.1. Reported ciguatera cases in Queensland, between 

2001 and 2012, including available data on fish species; location fish originated,

including regional zone; source of fish, purchased or recreationally caught, with 

percentage calculations detailed below the Table.
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Appendix C

Chapter Two:

Supplementary Figure S2.1. Percent distribution of fish families associated with 

reported ciguatera in: (A) Pacific; and (B) Caribbean. The six fish families most 

frequently associated are shown in dark blue. Fish implicated with ciguatera 

from the Pacific and Caribbean was sourced from the Fishbase database 

(Froese & Pauly 2010).
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Appendix D

Chapter Three:

Supplementary Figure S3.1. Diagrams illustrating the results of model selection 

for the subsets of nested models. Within each panel, boxes labeled “SOI x 

PDO” include an interaction between the SOI and PDO explanatory variables, 

“SOI+PDO” are models including only additive effects of the two variables, 

“SOI” are models including only the SOI but not the PDO variable, “PDO” are 

models including the PDO but not the SOI variable, and “None” indicates a 

model where the number of cases is constant over time. Numbers on the 

arrows are likelihood ratio statistics for tests of the null hypothesis that the more

complex model does not significantly improve the fit to the data. Where there 

are no asterisks, the likelihood ratio statistic is not significant, and thus the more

complex model is rejected in favor of the simpler one (so the arrow points 

toward the simpler model). Asterisks indicate statistically significant support for 

the more complex model (*P<0.05; **P<0.01; ***P<0.001); in these cases, the 

arrow points towards the more complex model. In each panel, the best model in

the subset is shaded in grey. Rows of panels correspond to models whose 

explanatory variables have different time lags (0, 1, or 2 years), and columns of 

panels correspond to different combinations of SOI and PDO variables (as 

described in the text, “Categorical” SOI refers to years classified as El Niño, La 

Niña, and normal; “Ordinal” SOI refers to yearly average numerical SOI value; 

“PDO phase” is either positive or negative; and “PDO Index” is the yearly 

average PDO index value).

208



209



Appendix E

Chapter Five:

Supplementary Table S5.1. Statistical results of the two-way ANOVA testing for 

the effect of temperature and salinity on growth of Gambierdiscus carpenteri 

monocultures for NQAIF116 and NQAIF380 and mixed cultures of NQAIF116 

with Ostreopsis sp. and Prorocentrum lima.
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Appendix F

Chapter Five:

Supplementary Figure S5.1. Maximum Likelihood phylogeny based on the D8-

D10 region of the 28S rRNA gene illustrating the position of the strain 

(NQAIF380) within the genus Gambierdiscus (sensu lato). Branch labels 

represent bootstrap support based on 1000 pseudo-replicate datasets. Scale 

represent number of changes per nucleotide. The strain isolated in this study is 

shown in bold as NQAIF380.
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Appendix G

Chapter Six:

Supplementary table S6.1. Tukey post hoc test on relative population growth 

rate [r] for benthic dinoflagellates, Gambierdiscus carpenteri, Prorocentrum lima

and Ostreopsis sp. at 24 and 28 °C and salinities of 26 and 36.
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Supplementary table S6.1. Tukey pos doc test on relative population growth rate [r] for benthic dinoflagellates, 

Gambierdiscus carpenteri, Prorocentrum lima and Ostreopsis sp. at 24 and 28 °C and salinities of 26 and 36.



Appendix H

Chapter Six:

Supplementary Table S6.2. Tukey post hoc test on total nitrogen uptale [pg cell-

1 day-1] for benthic dinoflagellates, Gambierdiscus carpenteri, Prorocentrum lima

and Ostreopsis sp. at 24 and 28 °C and salinities of 26 and 36.

Supplementary Table S6.3. Tukey post hoc test on total phosphate uptake [pg 

cell-1 day-1] for benthic dinoflagellates, Gambierdiscus carpenteri, Prorocentrum 

lima and Ostreopsis sp. at 24 and 28 °C and salinities of 26 and 36.
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Supplementary Table S6.2. Tukey pos doc test on total nitrogen uptale [pg cell-1 day-1] for benthic dinoflagellates, 

Gambierdiscus carpenteri, Prorocentrum lima and Ostreopsis sp. at 24 and 28 °C and salinities of 26 and 36.

Supplementary Table S6.3. Tukey pos doc test on total phosphate uptake [pg cell-1 day-1] for benthic dinoflagellates, 

Gambierdiscus carpenteri, Prorocentrum lima and Ostreopsis sp. at 24 and 28 °C and salinities of 26 and 36.



Appendix I

Chapter Six:

Supplementary Figure S6.1. A Ward’s hierarchical cluster analysis reveals two 

groups in the physiological response of benthic dinoflagellates to temperatures 

(24 and 28 °C) and salinities (36 and 26). One group contains Saturated Fatty 

Acids (SFA) and Polyunsaturated Fatty Acids (PUFA), the other group contains 

the Monounsaturated Fatty Acids (MUFA) with population growth rate, total 

phosphate (TP) and total nitrogen (TN) uptake.
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Appendix J

Chapter Six:

Supplementary Table S6.4. Average daily total nitrogen and phosphorus loads 

in µg.L-1 for lagoon catchments in tropical (GBR) and temperate (New South 

Wales (NSW) and the northern Adriatic Sea) locations.
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Location Nitrogen Phosphorus

Great Barrier Reef, Qld1 0.00137 0.0145

Merimbula, NSW2 0.77 0.101

Wallis Lake, NSW2 32 9.36

Northern Adriatic Sea, 
Mediterranean3 680 64

Caribbean 7 13.95
1(Furnas et al., 2005); 2(Scanes et al., 2007); 3(Accoroni et al., 2017)

221



Appendix K

Chapter Six:

Supplementary Table S6.5. Nutrient uptake rate (pg.cell-1.day-1) calculated from 

reported nutrient concentration [μmol] changes and population growth.
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Location Dinoflagellate
Estimated

cells L-1

pg N 
cell-1

day-1
Estimated

cells L-1

pg P
cell-1

day-1
Salinity
[g L-1] [°C]

Caribbean1 G. toxicus 20,408 343 25,272 552 35 27

GBR2 G. carpenteri 329 4.16 10,454 0.38 36 28

GBR2 P. lima 233 5.87 8,636 0.46 26 24

Mediterranean3 P. lima 12,551,180 54.2 8,078,239 7.97 25 20

GBR2 Ostreopsis 464 2.95 12,038 0.33 36 24

Mediterranean4 O. ovata 52,693,569 12.91 38,323,549 1.68 36 20
1(Lartigue et al., 2009); 2current study; 3(Vanucci et al., 2010); 4(Vanucci et al., 2012)
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