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ABSTRACT 

Carbon nanostructures (CNSs) perpetuate the scientific interest over decades due to their 

remarkable properties and emerging technological applications. The development of sustainable 

technologies for the synthesis of CNSs from natural resources grabbed immense research attention 

aiming to implement these high-end materials in wide range of nano electronic devices through safe 

and environmentally friendly routes. Even though a number of top down and bottom up approaches 

have been developed for the production of CNSs, most of them either aided by catalysts or involved 

solvent assisted multi-step process that considerably increase the cost of production and hinders the 

realization of low cost CNSs based commercial devices. In addition, vast majority of these techniques 

use high pure petroleum derived hydrocarbon gas precursors that are non-renewable and expensive. 

Hence, it is imperative to develop scalable techniques that can derive high quality CNSs directly on 

arbitrary substrates from naturally derived carbon feed stocks. This work aims to develop an 

environmentally benign plasma enhanced chemical vapor deposition technique for fabricating CNSs 

from Citrus sinensis essential oil, a bio renewable precursor, and explored the potential of these 

nanostructures for gas sensing application.  

 C. sinensis essential oil, obtained through cold extraction of orange peels is a rich source of 

non-synthetic hydrocarbon compounds principally limonene. Inherently volatile in nature, C. sinensis 

essential oil can serve as an ideal candidate material compatible to plasma enhanced chemical vapor 

deposition. This thesis investigated the fabrication of vertically-oriented graphene nanostructures from 

C.sinensis essential oil through radio frequency plasma enhanced chemical vapor deposition process, 

the fundamental properties, extend to which the process parameters influenced the structure and 

morphological features, and the suitability of the developed vertical graphene arrays for gas sensing 

applications. Special attention is paid to probe deep into the morphological evolution with the help of a 

set of advanced analytical characterization methods and multi-parameter model simulations.  

 In the first phase, C.sinensis vapors were subjected to low RF power glow discharge that 

resulted in the formation of plasma polymer thin films, and the material properties were studied as a 

function of input RF energy. The fundamental properties of plasma polymer thin films fabricated at 
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different RF power level (10−75 W) were characterized with variable angle spectroscopic ellipsometry, 

UV-visible spectroscopy, Fourier transform infrared spectroscopy X-ray photoelectron spectroscopy 

and atomic force microscopy. Optical characterization showed that independent of deposition power 

films exhibited good transparency (~90 %) in the visible region and a refractive index of 1.55 at 500nm. 

The optical band gap measured around 3.60 eV and falls within the insulating region. The atomic force 

microscopic (AFM) images revealed that the surface is pinhole-free and smooth at nanoscale, with 

average surface roughness dependent on the deposition power. Film hardness increased from 0.50 GPa 

to 0.78 GPa as applied power increased from 10 to 75 W. 

 In the second phase, experiments were modified by redesigning the experimental set up in order 

to eliminate hydrogen from the deposits leaving only crystalline carbon. The RF power deliberately 

kept high, substrate temperature was raised and hydrogen gas fed into the reactor in controlled manner. 

A sequence of experiments were carried out by systematically changing the process parameters such as 

in put RF power (300-500W), hydrogen flow rate (10-50 sccm) and deposition duration (2-8 min) and 

analysed the structural and morphological evolution of the resulted vertical graphene nanostructure. 

 The structure-property correlation of vertical graphene arrays with the plasma process 

parameters was performed. The Raman spectra ascertained the formation of less defected multilayered 

graphene nanostructures and scanning electron microscopic images provided the primary evidences of 

morphological evolution. The potential of the novel analytical techniques such as Hough 

transformations, fractal dimension distributions and Minkowski connectivity for the analysis of 

graphene array morphology was then successfully demonstrated. Worth noting that, these advanced 

techniques displayed significant changes and revealed the complex morphological transformation of C. 

sinensis derived vertical graphene subjected to change in process conditions. Precisely, vertical 

graphene nanowalls obtained at 300 and 500W presented a narrow height distribution profile but much 

wider array formed at 400 W. Fourier and Hough transformation spectra showed a prominent change 

with an increase in power, thus highlighted change in the morphology with the density of nanoflakes. 

Similarly, 2D FFT transform spectra of vertical graphene samples also presented notable changes with 

increasing hydrogen flux. The most narrow height distributions, well-shaped Hough transformation 
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spectra and distribution of fractal dimensions obtained for structures formed at 20 and 50 sccm of 

hydrogen flow rate. In addition to this, the principal characteristics of thus fabricated vertical graphene 

such as flake length (Lvg) and flake half width (Wvg) are theoretically modelled by an ad hoc model 

based on a large number of interaction elemental processes and correlated with the experimental results. 

The combination of the experimental and simulation results ensured important insights and deeper 

understanding of the processes that govern formation of the vertical graphene morphology.Vertical 

graphene nanostructures having superior structural and morphological properties were successfully 

fabricated at an input RF energy of 500W, hydrogen flow rate of 30 sccm and deposition duration of 6 

minutes.  

 The third phase presented an in-depth study of the properties of C.sinensis oil derived graphene 

over a set of conducting (copper and nickel) and insulating substrates (silicon and quartz). The SEM 

images of thus fabricated graphene patterns showed the unique feature of vertically interconnected and 

non-agglomerated carbon nanowall structures having maze-like and petal-like networks. Moreover, the 

normalized height distribution function and 2-D FFT spectra analysis ascertained that vertical graphene 

formed on silicon substrates displayed the most uniform distribution. X-ray photoelectron spectroscopy 

spotted only the presence of carbon and the transmission electron microscopic studies revealed the 

formation of unique onion-like closed loops. The 3-D nanoporous structure of C.sinensis oil derived 

graphene showed high hydrophobicity and measured a water contact angle of 129. The surface energy 

studies were performed using Neumann model, Owens-Wendt-Kaelble approach and van Oss-

Chaudhury-Good relation and estimated within the range 35‒41 mJ/m2. 

 Finally, plasma reformed vertical graphene from C. sinensis was integrated into a sensor device 

prototype to evaluate the performance in gas sensing. The chemiresistive type sensor exhibited sensing 

activity towards acetone. 
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 In summary, this thesis has identified a viable renewable resource and successfully developed 

a process that transform them into vertical graphene nanostructures. Furthermore, the fabricated 

graphene was integrated to real world devices and evaluated the performance. The outcomes of this 

investigation add knowledge base to the state-of-the-art of green chemistry approach for the synthesis 

of vertical graphene carbon nanostructures.  
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Chapter 1 

Introduction 

1.1 Rational 

The advent in nanotechnology spearheaded the ongoing developments in modern electronics 

that paved the way for device miniaturization and improved the device performance many-fold. Carbon 

nanostructures (CNSs) are vital part of this technological breakthrough owing to its remarkable 

combination of material properties ideally suit them to serve various domains of nanoelectronics, energy 

conversion and storage, gas and bio sensing and environmental science. As one of the potential 

candidate material for swiftly emerging organic electronics industry, CNSs have been widely 

investigated for tailoring their properties, deterministic growth and large-scale production [1, 2]. The 

ever-increasing energy demand and environmental concerns put forwarded by the growing population 

tremendously increased CNSs demand. For instance, the global market for graphene is expected to hit 

US$349 million by 2025 which was just US$12 million during 2013 [3, 4]. Such a colossal demand 

necessitates the need for sustainable development of these high-end materials through “green” synthesis 

routes.  

The fabrication of CNSs through scalable, sustainable and cost effective techniques become the 

most crucial part of CNSs research from both the developmental and application point of view. One of 

the major challenge encountered by the material scientists and industrialists in the production of CNSs 

is the high manufacturing cost predominantly imposed by the energy intensive and resource consuming 

nature of the existing fabrication processes (e.g. Thermal CVD, arc discharge, epitaxial growth etc.) 

[5]. The large energy consumption arises from the stringent process requisites such as high temperature, 

high vacuum, catalyst-assistance and long lasting deposition durations. In the meantime, the resource 

exploitation mainly associated with the incomplete conversion of the precursors, extensive use of 

catalysts and toxic organic solvents (e.g. N-methyl-pyrrolidone, sodium dodecylbenzene sulfonate etc.) 

and post-synthesis process for catalyst removal, purification and CNSs transfer. 
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The huge demand for CNSs anticipates the rapid exhaustion of commonly used synthetic non-

renewable hydrocarbon resources like methane, acetylene, xylene and toluene etc. Besides, these high 

pure hydrocarbons are refined from petroleum and hence are expensive sources and explosive in nature. 

Even though naturally existing graphite can serve as another carbon feed stock, but mostly employed 

in top down approach like mechanical exfoliation that is limited to laboratory scale production. In this 

regard, it is imperative to pinpoint cheap, naturally derived renewable precursors that are plentiful and 

can be transformed to CNSs at low cost and minimal environmental damage.  

The reformation of natural precursors into useable nanostructures using conventional 

techniques is complex as most of them are catalyst assisted, precursor-specific and require high 

temperature [6, 7]. On the other hand, PECVD, since the first study by Wang et al. [8] for fabricating 

few layered graphene acknowledged as much more efficient technique that address almost all the 

aforementioned issues and extensively used for converting both conventional and non-conventional 

precursors to high-value added carbon nano materials. The supremacy of PECVD over other methods 

mainly ascribed to the ability of plasma to create a highly reactive environment with exceptionally high 

amount of reactive species, featured by the collision assisted molecular dissociation unique to plasma 

[9]. The capability of PECVD to rebuild a wide range of precursors to functional nanomaterials, 

growth/patterning on arbitrary substrates, catalyst-free nature, and low process temperature 

benchmarked the PECVD technique as the most proficient compared to the conventional methods. In 

addition, the plasma sheath and the intense ion fluxes that originate at the sheath region, which is 

exclusive to plasma, enable the growth of vertically aligned novel nanostructures and facilitate much 

easier way to control the properties through independent control of the process parameters [10]. 

Therefore, the selection of an abundant and cheap renewable precursor in combination with PECVD 

technique provide far more efficient way to achieve the goal of implementing green chemistry approach 

(precursor-process-nanomaterial) for the fabrication of CNSs. 

In this view, to develop an environmentally friendly and economically viable synthesis of high 

pure CNSs having well defined properties, Citrus sinensis essential oil (Australian Botanical Products, 

Australia), a by-product from juicing industry was used with PECVD.  As-extracted C. sinensis oil is 
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abundant, inexpensive, self-volatile and serve as rich source of hydrocarbon compounds primarily 

composed limonene (>94 %) and several other monoterpenes like myrcene , α-pinene, sabinene etc.  in 

trace amounts. The fabrication of CNSs from C.sinensis oil derive novel nano material for advanced 

applications like environmental sensing, developed from a low cost environmentally friendly approach. 

In brief, a process was developed for synthesizing CNSs, the process was optimized, properties were 

investigated, and the device performance was evaluated. 

1.2 Research objectives 

This research aimed to develop environmentally friendly and low cost method for the growth 

of high purity CNSs from a bio-renewable precursor, C.sinensis essential oil with minimal energy and 

resource consumption and to explore its performance in environmental monitoring applications. In 

order to achieve this aim a set of research goals are formed and given below:  

 Develop RF-PECVD technique for the synthesis of CNSs from C.sinensis essential oil 

precursor source. 

 Optimize the RF-PECVD process by varying the discharge parameters and to identify the most 

favorable deposition conditions that produce high quality CNSs. 

 Determine the material’s fundamental properties (structural, morphological, chemical and 

surface properties) using appropriate characterization techniques and to deduce 

structure/process/property relation. 

 Investigate the structural and morphological evolution through theoretical modelling.  

 Identify a particular application in the field of carbon-based nanoelectronics and evaluate the 

performance of CNSs thus developed by integrating into device structure.  

Achieving these objectives would significantly contribute to the current research activities in 

environmentally benign production of CNSs from non-conventional resources for advanced 

applications. This project would demonstrate an efficient methodology for the fabrication of CNSs 

based on essential oil i.e. C.sinensis oil for environmental applications, potentially for gas sensors. 



4 
 

Furthermore, the knowledge base produced out of this project shed light into new application areas like 

advanced electronics for Australian essential oils. 

1.3 Document organization 

This thesis comprises six chapters, each of which intended to address the abovementioned 

research objectives.  

Chapter 1 introduces the motivation and the research context of this work, outlines the research 

objectives to be formed to accomplish the aim of the project. 

Chapter 2 presents a literature review that describes the relevant studies detailing the CNSs and their 

properties, significance of plasma in the growth of CNSs, the effect of various plasma process 

parameters on the growth and properties of CNSs , and the importance of plasma-assisted techniques  

in deriving CNSs from natural resources. 

Chapter 3 details the low power plasma deposition of C. sinensis vapours and studies the fundamental 

properties of the resultant plasma polymer thin films as a function of RF power. The optical properties 

were investigated using variable angle spectroscopic ellipsometry and UV-visible spectroscopy. The 

chemical properties were revealed through Fourier transform infrared spectroscopy (FITR) and X-ray 

photoelectron spectroscopy (XPS). The morphological and mechanical properties were probed through 

atomic force microscopy (AFM) and nano-indentation measurements. The results were reported in the 

journal article S. Alancherry, K. Bazaka, M.V. Jacob, RF Plasma Polymerization of Orange Oil and 

Characterization of  the Polymer Thin Films, J. Polymers and the Environment, 2018, 26 (7), 2925-33.  

Chapter 4 presents the development of vertical graphene nanostructures from C. sinensis essential oil 

through RF-PECVD technique. This chapter principally focussed on the process optimization for the 

fabrication of vertical graphene nanosheets having well defined structural and morphological properties 

by varying the input RF energy, hydrogen flow rate and deposition time. The structural features and 

chemical properties of thus developed graphene were described with the help of laser Raman 

spectroscopy. A comprehensive characterization of morphological features of graphene arrays 

fabricated at various plasma process parameters were revealed through scanning electron microscope 
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(SEM), Fourier and Hough transformation profiles. In addition, the degree of connectivity and 

randomness of the resulted vertical graphene geometry and morphology was probed through Minkowski 

connectivity and fractal dimension (FD). Finally, the vertical graphene growth was simulated through 

theoretical modelling. The results has been communicated  S. Alancherry, M. Jacob, K. Prasad, J. 

Joseph, O. Bazaka, R. Neupane, O. Varghese, O. Baranov, S. Xu, I. Levchenko, and K. Bazaka, 

“Towards Sophisticated Morphology Control of Natural Resource-derived Vertical Graphenes: 

Experimental and Simulation Insights”, to Journal of Materials Chemistry A. 

Chapter 5 illustrates the growth of vertical graphene nanosheets from C. sinensis over a range of four 

different conducting and insulating substrates (copper, nickel, quartz and silicon) and investigated the 

material properties. The structural and morphological evolution of thus formed vertical graphene arrays 

on different substrates was probed at length using Laser Raman spectroscopy, scanning and 

transmission electron microscopies, as well as sophisticated statistical and morphological analyses. X-

ray photoelectron spectroscopy was then employed to perform the chemical composition analysis. The 

surface properties of as-fabricated graphene nanosheets was measured using contact angle measurement 

and the surface energy was estimated through Neumann model, Owens-Wendt-Kaelble approach and 

van Oss-Chaudhury-Good relation. Finally, a sensor device was fabricated and demonstrated the 

sensing activity towards acetone gas. The results has been communicated S. Alancherry, K. Bazaka, I. 

Levchenko, A. Al-Jumaili, O. K. Varghese and M. V. Jacob. One-step plasma assisted synthesis of 

graphene from Citrus sinensis oil for acetone gas sensors, to Carbon. 

Chapter 6 provides an overall summary of the research work undertaken in this research. This chapter 

also highlighted the major results and recommendations for future work.  
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Chapter 2 

Literature Review 

This chapter summarizes the literature relevant to plasma-assisted synthesis of carbon nanostructures 

(CNSs). Principally, the review focused on two areas: CNSs and PECVD growth of CNSs. The first 

section, Section 2.1, scrutinises important CNSs such as fullerene, carbon nanotubes (CNTs), graphene 

and their fundamental properties. The second section, Section 2.2, covers the important studies 

describing different type of plasma discharges and PECVD growth of various type of CNSs. The 

significance of PECVD in growing CNSs especially graphene and the role of various plasma process 

parameters on the structure and properties of graphene were discussed in depth. Additionally, special 

focus was given to studies explaining conventional and plasma-assisted reformation of renewable 

resources into various type of CNSs. 
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2.1 Carbon nanostructures 
 

Among nanomaterials, CNSs, the group of carbon allotropes in the nano regime having 

different size, shape and dimensionality grabbed immense research interest owing to their structural 

diversity, remarkable material properties and huge application potentials [1-4]. Until now, different 

types of CNSs were developed and intensive efforts have been in progress to tailor their properties and 

large-scale production [5-8]. With regards to the material properties, CNSs are widely reorganized for 

their excellent electrical conductivity, supreme mechanical strength, high thermal conductivity, 

extraordinary high surface area, good transparency and structural stability [9, 10]. Featured by the 

unique combination of properties, CNSs have been widely employed in a range of advanced 

applications stretching from thin film transistors [11], transparent conducting electrodes [12], 

photovoltaics [13], supercapacitors [14], hydrogen storage [15] and sensors [16]. Perhaps most 

importantly, CNSs are considered as an integral part of organic electronics and hold the potential to 

substitute the silicon semiconductor technology currently used by the modern microelectronics [17]. 

Compared to the silicon-based technology, carbon nanoelectronics have many advantages such as low 

cost, low energy consumption, superior performance, device flexibility and environmental friendliness. 

In order to cater the huge demand put forwarded by the modern technologies enormous attention is 

being paid for the large-scale development of CNSs through simple, cost effective and “clean” 

approaches. 

2.1.1 Fullerene 

 The advent of CNSs began during 1985’s with the discovery of fullerenes, zero dimensional 

(0‒D) allotrope of carbon [18]. Fullerenes are carbon clusters comprised of pentagonal and hexagonal 

rings of sp2 hybridized carbon atoms self-assembled to spherical shape. They can be generally 

represented by the formula C20+m (m is an integer) and consist of wide range of structures and isomers 

[19]. The most abundant and stable fullerene is C60 which exhibits a close-packed face centered cubic 

(FCC) structure with lattice constant 14.17 A° [20]. C60 behaves as an  n-type semiconductor having 

direct band gap [21].  Also, fullerene possesses high electron affinity, large surface to volume ratio and 
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a hydrophobic surface [22]. Highly resistant to compression (compressed up to 75% of the original 

shape),fullerenes exhibited a bulk moduli of 665 GPa [23]. Fullerenes have gained immense attention 

for organic photovoltaics as the active layer (fullerene/polymer blend) to create heterojunction polymer 

solar cells [24]. In addition, fullerene find extensive usage in nonlinear optics, surface coatings, biology 

and medicine [25-27]. 

2.1.2 Carbon nanotubes 

 The pioneering work of Iijima [28] led to the discovery of CNT, the one dimensional (1‒D) 

allotrope of carbon. CNT represents the cylindrically arranged structures of carbon atoms, typically a 

few nanometers in diameter and micro/millimeters in length. Strongly dependent to number of layers, 

CNTs exhibit different properties, and mainly classified as single and multi-walled depending on the 

number of concentric layers. The charge transport through CNTs is ballistic in nature and hence showed 

remarkably high carrier mobility (1,00,000 cm2V-1s-1) and large current density (109A/cm2) [29, 30]. 

They exhibit supreme mechanical strength with Young’s modulus 100 times greater than steel. A 

Young’s modulus of 0.27-0.95 TPa measured for individual SWCNT whereas 0.32-1.47 TPa reported 

for MWCNT [31, 32]. In addition, CNTs showed excellent photo transparency higher than 90% [33]. 

With its large surface to volume ratio, CNTs measured a surface area as high as 1315 m2/g [34]. A 

number of fabrication techniques such as arc discharge, laser ablation, chemical vapor deposition 

(CVD), electrolysis and spray pyrolysis etc. have been used for the synthesis of CNTs [35].  

2.1.3 Graphene 

Graphene, the two dimensional (2-D) allotrope of carbon represents the one atom thick atomic 

layer of sp2 hybridized carbon atoms arranged in a hexagonal honeycomb lattice. To date, graphene 

represents the most promising nano material having unparalleled physicochemical properties. Graphene 

is a zero band gap semiconductor with exceptional carrier mobility of 2,00,000 cm2V-1s-1 and current 

density 1013 A/cm2 indicating the lowest resistivity material at room temperature [36, 37]. However, a 

range of carrier mobility have been reported for this technological material and mainly affected by the 

number of layers, defects, ripples and the deposition process [38-40]. The presence of delocalized 
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electrons having very high Fermi velocity give rise to the phenomenon of ballistic transport which make 

them an ideal material for Terahertz devices [37]. A monolayer of graphene possesses excellent 

transmittance of 97.3% over the entire wavelength region and widely recognized for transparent 

electrode applications. It is also noticed that the transmittance is a function of number of layers (N) 

which varies as T~100‒2.3 N(%) [41]. Mechanically, graphene is the stiffest material ever found with 

Young’s modulus 1±0.1 TPa and tensile strength 130±10 GPa [42]. Also, graphene is renowned for the 

extra ordinarily high surface area (2630 m2/g) and super hydrophobicity [43]. It exhibits an intrinsic 

capacitance of 21µF/cm2 and denote the highest capacitance among the carbon based materials [44]. 

The major synthesis routes for graphene include PECVD, thermal CVD, epitaxial growth on SiC, 

micromechanical cleavage and chemical reduction of graphene oxide (GO) [45]. 

2.1.4 Vertical graphene nanostructures 

Vertical graphene nanosheets are the 3-D interconnected network of self-supported graphene 

layers typically composed of 1 to 3 layers on the top and several layers at the bottom arranged 

perpendicular to the substrates [46, 47]. The vertical alignment make vertical graphene a unique 

material with distinguished material properties. Intrinsically graphene, vertically-oriented graphene 

exhibits distinctive characteristic properties such as, non-agglomerated free standing interconnected 

structure, long exposed thin reactive edges, high mechanical stability, superior in-plane conductivity 

and exceptionally high specific surface area all resulted from the perpendicular orientation [48, 49]. The 

spacing between adjacent graphene walls varied from few nanometers to few hundreds of nanometers 

and observed to be dependent to the deposition conditions [50]. With its exclusively defined surface 

features forming electrochemically active reactive edges, vertical graphene electrodes provide large 

accessible area for ion diffusion and swift ion transport and widely employed for the development of 

high performing supercapacitors [51]. In addition, highly reactive edges can immobilize biomolecules 

and rapidly respond to various gases hence implemented for gas and bio sensing applications [16]. 

Morphologically, vertical graphene exhibited a variety of an interconnected 3-D porous structure having 

leaf-like [47], petal-like [52], tree-like [53] and turnstile-like [54] topographies.  
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2.2 Suitable techniques for vertical graphene fabrication - Reactive plasma: 

Direct current, Radio frequency and Microwave frequency discharges 

Plasma represents partially or fully ionized state of a gas comprised of free electrons, ions, 

free radicals, photons, atoms in the ground and excited states. In general, plasma can be generated 

through the dissociation of neutral gas molecules by providing an energy greater than the ionization 

energy. For creating plasma and disintegrate gas molecules a number of ways is used such as thermal 

excitation, adiabatic compression, excitation using charged beams or an electric field [55]. 

Nevertheless, the most convenient way of generating and sustaining plasma in laboratory is through a 

glow discharge produced by applying an electric field to a neutral gas. Usually, the glow discharge 

plasma operates at a lower pressure and uses a direct current (DC), radio frequency (RF), or microwave 

(MW) frequency signal for triggering the plasma [56]. Upon excitation, the reactant molecules 

dissociate into smaller molecular fragments by the inelastic collisions with the free electrons, and 

subsequently recombine with the other species in the plasma volume and dissociate further to sustain 

the plasma [57]. The plasma produced by such means are categorized as “cold” (i.e. T<5000K), 

possesses low degree of ionization and low ion temperature ranges from fractions to few tens of electron 

volt. The other category is termed as “hot” (i.e. T>5000K), display very high degree of ionization and 

high electron and ion temperature [58]. The cold plasma can be further divided in to thermal plasma 

and non-thermal plasma with respect to their electron, ion and neutral particle temperatures. The former 

exhibits a thermal equilibrium in electron, ion and neutral particle temperatures (i.e. Te ~Ti ~Tn) whereas 

the latter possesses a higher electron temperature than others [59].  

The conventional DC plasma reactor consisted two parallel plate electrodes arranged inside a 

vacuum chamber powered with DC electric signal. By regulating the voltage and current of the input 

signal, various discharges such as Townsend discharge, subnormal glow discharge, normal discharge 

and arc discharge could be created inside the discharge tube [55]. A DC discharge at lower pressure 

produces characteristic luminous bands such as cathode dark space, negative glow, Faraday dark space, 

positive column and anode glow inside the discharge volume [60]. However, DC glow discharge is not 
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commonly used in applications due to the following reasons. Firstly, in a DC discharge more energy is 

consumed for accelerating ion than creating reactive species [61]. Secondly, DC discharge with high 

energy ion collisions damages the substrate as well as the growing structure [62].  

A typical RF plasma system should have three necessary components: the RF generator, 

impedance matching network and reactor. The matching network minimises the reflected RF power by 

matching the impedance of the generator to that of the discharge [63]. In order to sustain an RF plasma 

the wavelength of the exciting signal should be comparable with the dimensions of the plasma reactor. 

The most commonly used excitation signal frequency for RF plasma is 13.56 MHz, restricted by the 

International Telecommunications Union-approved, Industrial, Scientific and Medical (ISM) 

frequencies [64]. There are mainly two types of RF-discharges, such as capacitively coupled (CCP) and 

inductively coupled configuration (ICP), classified based on the nature of coupling of RF power to the 

reactor. The CCP configuration uses either internal parallel electrodes or external electrodes to deliver 

RF power into the reactor. The presence of “self-bias” field is the unique feature of CCP discharge [65]. 

The self-bias is created by the higher mobility of electrons compared to the ions in an RF field which 

create large difference in the electron current and ion current formed on an electrode in successive half 

cycles of the RF field. To balance the positive ion flow and electron charge flow, the surface of the 

electrode become negative self-biased with respect to the plasma potential [56]. The CCP configuration 

can generate electron densities up to 109‒1010 cm-3 and plasma density 1011 cm-3 [66]. The ICP uses 

electric field generated by RF current in a conductor to excite the plasma [55]. Noteworthy is that, ICP 

have high electron density (1012 cm-3) and plasma density ( 1014 cm-3) than CCP [61, 66].  

The MW plasma systems use electromagnetic signals within the microwave regime (frequency 

above 300 MHz) to generate the plasma discharge. The ISM accepted excitation frequency for 

microwave discharge is 2.45 GHz. The MW discharge are electrodeless and can operate at pressure 

ranges from 10-5 Torr to atmospheric pressure and power ranging from several watts to hundreds of 

kilowatts. Compared to low frequency plasma MW can deliver high electron densities of the order of 

1013 cm-3 and high degree of ionization [67]. Apart from this, MW plasma exhibits intense emission in 

near ultra violet region which triggers the simultaneous action of plasma-chemical and photo-chemical 
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process which realize high growth rate and remarkable properties [68]. In fact, the absorbed power in a 

plasma system depends on the electron neutral collision frequency, and is very high (up to 90% ) of the 

incident power in MW plasma systems [69]. Wertheimer and Moisan [70] compared the behavior of 

microwave and lower frequency plasma and reported that the former have significantly higher fraction 

of high energy electrons and very high deposition rate (about ten times higher) compared to the latter. 

According to Musil et al. [68] the electron energy distribution and activation of plasma particles inside 

the plasma volume is determined by the ratio υ/ω, where υ is the electron-neutral collisional frequency 

and ω is the angular frequency of the applied electromagnetic field. It was observed that, the plasma 

created by the low frequency and microwave have entirely different υ/ω and electron energy 

distribution. For υ/ω≥ 1 (RF and ac region) many collisions occurs per oscillations whereas when υ/ω≥ 

1 (MW region) many oscillations of the electron occurs before collision [56]. The theoretical studies of 

Ferreira and Loureiro proposed that the electron energy distribution of microwave plasmas is Maxvalian 

(υ/ω ≤1) where as others are not Maxvalian distribution (υ/ω≥ 1) [71]. Hence, it is generally considered 

that microwave plasma is different from other plasmas. 

2.2.1 Reactive plasma and nanostructure growth 

 Reactive plasma serves as an excellent tool for the fabrication of nanostructures. For the 

creation of any nanoassemblies, there exists mainly four different stages such as (a) creation of building 

units, (b) preparation of substrate surface to initiate the growth, (c) transport of building unit on to the 

substrate and (d) appropriate stacking of building unit [72]. It is important to note that, plasma have 

significant influence over each of these phases and hence considered superior to other techniques for 

nanostructure growth [59]. Firstly, reactive plasma exhibits the unique ability to generate a large number 

of building units ranging from simple elementary units such as atoms, ions and free radicals to complex 

macromolecules or nanoclusters. It is worth noting that, plasma can offer different ways like gas phase 

inelastic electronic and ionic collisions, physical sputtering and complex gas phase recombination for 

the formation of building units [72]. In addition to this, the plasma sheath effectively trap electrons and 

negatively charged ions inside the plasma volume thereby enable the rapid dissociation and 

reintegration of plasma species that can form huge number of building units [73]. To exemplify the 
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efficacy of plasma, Hash and Meyyappan [74] demonstrated that, compared to thermal dissociation of 

CH4/H2 feedstock, plasma dissociation  produced several other hydrocarbon (benzene, acetylene etc.), 

huge variety of CxHy radicals and ions that favours the enhanced growth of nanostructure at lower 

temperature. Secondly, reactive plasma facilitates the substrate surface preparation through the inherent 

mechanism of physical sputtering (PS) and reactive chemical etching (RCE) via the intensive collisions 

of large fluxes of ions and neutrals [75]. Lee et al. [76] observed that the cobalt and nickel catalyst 

layers can be converted into densely distributed small island of diameter 4 to 6 nm with a 10 minute H2 

(100 sccm), 200W RF-plasma pre-treatment at 700ºC. Likewise, a number of studies have reported 

regarding the substrate surface preparation using intense collisions of plasma species [77-80]. Thirdly, 

the plasma sheath enables the transport of selective building units form the plasma bulk to the specific 

growth sites on the substrate and provide many-fold enhancement in the growth rate. Fourthly, during 

plasma assisted deposition the ion fluxes are focussed  towards the sharp tips of growing nanostructure 

on the substrate that facilitated the appropriate stacking of building unit with excellent orientation [72]. 

This enhances the vertical alignment of growing structure and further increase the quality of the 

structure produced [78, 81]. Due to above-mentioned advantageous, plasma assisted synthesis became 

the most attracted fabrication technique for growing CNSs. 

2.2.2 PECVD: Growth of various CNSs 

PECVD have been used for fabricating various CNSs since decades [48, 61, 82-84]. The first 

report on the synthesis of CNSs through PECVD technique was appeared in 1989 by Amaratunga et al. 

[82], reported the room temperature growth of nanodiamond crystal using low pressure RF-PECVD 

from CH4/Ar gas mixture. The process has employed a RF power of 275‒350W, pressure of 200 mTorr, 

and CH4/Ar mixture to produce nanocrystalline diamond film. Soon after the discovery, the technique 

gained enormous attention among researchers for producing high-value added CNSs owing to its 

simplicity, reproducibility, low deposition temperature and high yield. The most popular and widely 

studied among them are CNTs. PECVD growth of CNTs was extensively reviewed by Meyyappan et 

al. [61, 85] and majority of studies has employed C2H2/NH3 and CH4/H2 precursor, temperature between 

500‒800°C and deposition pressure within 5‒10 mbar. The first study on the plasma fabrication of 
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carbon nanofiber was published by Chen and coworkers [86] using CH4/N2 feedstock on Ni (100) 

substrate maintained at a temperature 800°C and pressure 50 Torr. Wu and colleagues [87] for the first 

time reported the fabrication of carbon nanowall using MW-PECVD, operated at 500W using CH4/H2 

gases on different substrates kept at 650‒700°C temperature and 1 Torr pressure. The first report on the 

preparation of few layers of graphene through RF-PECVD was published by Wang and coworkers [83]. 

Graphene sheet of less than 1 nm thicknesses synthesized without the aid of any catalysts on a wide 

variety of substrates (Si, W, Mo, Zr, Ti, Hf, Nb, Ta, Cr, stainless steel, SiO2 and Al2O3). The process 

employed a gas mixture of CH4/H2, deposition pressure of 12 Pa, deposition temperature 680°C and a 

RF power of 900W. The study by Tsakadze et al. [75] fabricated aligned carbon nanotips on Si (100) 

substrates kept at low temperature 350°C through an inductively coupled RF-PECVD from Ar/H2/CH4 

gas mixture. From the foregoing discussion, it is clearly understood that by the by appropriate selection 

of the precursors and plasma process parameters any form of CNSs can be created using PECVD and 

the properties can be easily tailored. Hence, PECVD is considered as the most versatile technique for 

the synthesis of CNSs.  

Table.2.1 Over view of PECVD fabrication of various CNSs 

Carbon 

nanostructure 

Precursors Ratio Temperature 

(ºC) 

Pressure 

(mbar) 

Power 

(W) 

Ref 

Nanodiamond CH4/Ar 2/98 30 0.2 275‒350 [82] 

Carbon nanotube C2H2/NH3 ‒ 750 0.01 1000 [88] 

Graphene CH4/H2 5/100 680 0.12 900 [83] 

Carbon nanotip CH4/H2/Ar ‒ 350 0.13 2000 [75] 

Carbon nanowall CH4/H2 10/40 650‒700 1.3 500 [87] 

Carbon nanofiber C2H2/NH3 40/50 700 2 550 [86] 
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2.3. PECVD growth of graphene and its significance 

2.3.1 Vertical alignment 

Vertical orientation is the most striking feature of plasma-derived graphene, exclusively 

provided by the plasma field. The vertical alignment was driven by the combined action of plasma‒

induced field, stress effect, anisotropic effects and lattice mismatch [81, 89, 90]. The influence of 

plasma field on the vertical growth is detailed in the coming section 2.5. 

2.3.2 Catalyst-free growth 

As in any other process, the catalysts activate the surface diffusion of carbon bearing moieties 

and facilitate faster growth of CNSs. However, the use of catalyst is generally less entertained due to 

its high cost and limited availability. Moreover, catalyst free techniques eliminate all intricacies (i.e. 

formation of wrinkles, cracks and unintentional doping) associated with the post-synthesis process to 

remove the catalyst and transfer graphene into desired substrate for device fabrication. In this regard, 

plasma being a highly reactive environment facilitate alternate reaction mechanisms that enable the 

growth of graphene without the aid of catalysts on wide variety of substrates [7, 54, 91-96]. With regard 

to the substrates, PECVD offers compatibility to a wide spectrum of substrates (i.e. metallic, dielectric 

and insulating). Chugh et al. [93] observed that the substrate has no effect on the decomposition of 

hydrocarbon species in PECVD, but the adsorption and diffusion of carbon bearing species during the 

process is different for each substrates caused variation in the growth rate of graphene. It can also be 

noticed that substrate-plasma interaction and the subsequent nanographitic layer formation is dissimilar 

for different substrates which lead to divergence in morphology and growth rate of graphene with 

respect to substrates [97].  

2.3.3 Non-Precursor specific nature 

The PECVD is widely noted for its excellent compatibility with diverse range of precursors in 

any form such as solid (e.g. sugarcane bagasse, food waste and insect waste), liquid (plant extracts) 

gaseous (e.g. hydrocarbons and fluorocarbons) for growing graphene nanostructures [98-100]. Unlike 
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conventional techniques plasma have the capability to reform precursors into analogous structures 

irrespective of their state [16, 90].  

2.3.4 Easy tailoring of the properties 

PECVD offers a number of independent process parameters such as deposition power, pressure, 

temperature and reactant gas concertation, each of which have significant effect on governing the 

growth process and final properties of the generated nanostructure. The following section 2.4 presented 

an in-depth discussion on the influence of various plasma process parameters on graphene growth. Seo 

et al. [54] reported that by simply changing the pre-treatment conditions, vertical graphene topography 

could be switched from a turnstile-like to maze-like morphology and the electrical properties from 

strongly dielectric to semiconducting nature within the same plasma unit under the same process 

conditions. It can also be noticed that PECVD is capable of generating a wide variety of morphologies 

such as leaf-like [47], petal-like [52], tree-like [53] and turnstile-like [54] and excitingly different 

properties. The recent literature by Shuai et al. [50] identified that by changing the plasma source (DC, 

RF-ICP and MW) the wettability of the vertical graphene nanostructure can be tailored from hydrophilic 

to hydrophobic nature. The study pointed out that, graphene morphologies formed under the 

experimental condition were noticeably different and measured with different inter-sheet spacing. The 

distance between neighboring walls and WCA decreased in the order 306.2102.714.5 nm and 

110º72º34.5º for DC, RF-ICP and MW plasma respectively. As plasma is compatible with all 

precursors, it became so easy to dope graphene and alter the properties. For instance, Wei et al. [101] 

reported the nitrogen doping to modulate the electronic properties of graphene without metal-catalyst 

by simple incorporating 30% NH3 along with CH4 gas. Considering the above factors, it can be 

understood that PECVD have significant advantages over other techniques in terms of the simplicity, 

purity, short deposition durations, and energy efficiency.  
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2.4. Influence of various plasma process parameters on the growth of 

graphene  

2.4.1 Precursors and precursor concentration 

The most common and wildly used precursor for the development of graphene nanostructure 

through PECVD is purified hydrocarbon gases (e.g. methane, ethane, acetylene, benzene, toluene and 

xylene) and fluorocarbon gases [48, 102]. In general, a mixture of hydrocarbon gas with appropriate 

percentage of inert gas like argon or hydrogen-bearing gases (hydrogen, ammonia etc.) were used to 

minimize the co-deposition of amorphous carbon. The hydrogen molecules when subjected to electric 

field dissociate into atomic hydrogen and contribute to the etching of co-deposited amorphous carbon 

[103-105]. On the other hand, inert gases help to maintain the discharge and enhances the ionization 

and dissociation capacity within the plasma volume [106, 107]. For the successful growth of graphene 

and other CNSs, optimal hydrogen flow rate should be used because a low flow rate induces the co‒

deposition of amorphous carbon, while the high flow rate caused dominant etching of the deposited 

carbon [108]. In fact, the precursor gas chemistry and concentration significantly change the plasma 

chemistry, density of reactive species within the plasma volume and the final properties of the growing 

nanostructure [109-112]. For instance, the study conducted by Zhu et al. [109] revealed that vertical 

graphene produced from different precursors exhibited different growth rate. In a comparison, the 

authors observed that vertical graphene were produced at rate 16 μm/h with acetylene, which is 8 times 

higher than that of methane. Similar observation was noticed by Cai et al. [110], where vertical graphene 

nanosheets grown from C2H2 feedstock exhibited faster growth rate (2.7 times) and higher specific 

capacitance than those obtained from CH4 gas under the same growth conditions. The difference in 

properties with respect to feedstock was mainly associated with the bond dissociation energies of a 

particular reactant molecule and the creation different reactive species especially C2 dimer, the most 

important growth component for the growth of carbon nanostructure [113]. With the help of optical 

emission spectroscopy, Teii et al. [114] traced the difference in plasma species formed by Ar/N2/C2H2 

and Ar/N2/CH4 gas mixtures. It was confirmed that, the former creates the C2 dimer through direct 
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dissociation and hence have higher percentage of C2 dimer than the latter where the disintegration 

mechanism is indirect. Consequently, acetylene exhibited higher growth rate than methane and the 

resulted nanostructure was morphologically different. It is worth noting that there should be a minimum 

concentration of the carbon bearing gas, otherwise resulted with amorphous carbon [115]. In an attempt 

to grow nitrogen doped graphene on dielectric substrates, Wei et al. [101] noticed that the growth 

temperature was precursor dependent. Interestingly, hydrocarbon gases with higher hydrogen content 

like CH4 required more substrate temperature compared to C2H4 or C2H2 when diluted with 15% NH3 

gas. The study successfully developed graphene at lower temperatures 435ºC>475ºC>600ºC with gas 

compositions that contain acetylene, ethane and methane respectively. In a recent study, Gosh et al. 

[111] detected that the growth and orientation of graphene in PECVD using a CH4 plasma could be 

flipped by diluting with different concentration of hydrogen and argon gases. While the hydrogen-rich 

CH4 plasma preferred the horizontal growth, argon-rich plasma favored the vertical growth. Another 

study by Yue et al. [112] reported the tuning of the vertical graphene morphology within the same 

plasma reactor. In a typical gas mixture of CH4/H2/Ar, 30:40:50 composition formed petal-like 

morphology whereas 44:11:45 lead to tree-like morphology. Therefore, it is clear that the precursor gas 

chemistry play vital part in the growth and properties of graphene nanostructures. 

2.4.2 Growth temperature 

The substrate temperature is another critical process parameter that significantly affect the 

physical and chemical properties of graphene and other CNSs fabricated through PECVD [115, 116]. 

In a catalyst assisted PECVD, the growth temperature determines the size, shape and number density 

of catalyst nano-islands and regulate the size, shape and properties of the growing nanostructure [117, 

118]. On the other hand, in catalyst-free PECVD, the temperature influences the surface diffusion of 

reactant species as well as the purity and the alignment of the resulted structure [54, 88, 119, 120]. In 

contradiction to thermal CVD, PECVD offers relatively low growth temperature due to its capability to 

fragment the reactant molecules through inelastic collisions, not by the substrate temperature [121-123]. 

In addition, PECVD capable of heating the substrates through the inherent mechanism of physical 

sputtering (PS) and reactive chemical etching (RCE) [75]. Kim et al. [107] published the large area 
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(23cm X 20cm) growth of graphene through MW-PECVD from a mixture of CH4/Ar/H2 gases at a 

temperature of 400°C one of the lowest growth temperature reported for graphene growth. Similarly, 

there are published reports on the development of graphene from hydrocarbon plasma at a substrate 

temperature well below 680°C [83, 124]. A recent, report by Pineda et al. [125] discussed the extremely 

low temperature (i.e. at 200 ºC) synthesis of graphene micro-islands on copper foil though inductively 

coupled RF-PECVD process using CH4/Ar/H2 gas mixtures. It is noteworthy that plasma alone is 

capable of providing sufficient heat environment for the nanostructure growth [126]. Nevertheless, 

majority of PECVD process employ a conventional heating along with plasma in order to change the 

plasma independent of the substrate temperature [48]. Generally, an enhanced growth rate was 

suggested with increase in substrate temperature due to the improved surface diffusion of adsorbed 

carbon species. The surface diffusion time and substrate temperature is related as [103, 127] 

𝜏𝑑 = 𝜐1
−1𝐸𝑥𝑝 [

𝐸𝑑
(𝑘𝑇𝑠)

⁄ ]                                     (2.1) 

where 𝜏𝑑 is the mean diffusion time, υ1 is the lattice vibrational constant, k is the Boltzmann constant 

and Ts is the substrate temperature. It is also observed that a higher substrate temperature lead to a 

higher impingement rate that further improve the deposition rate [103]. In an ICP configured plasma 

system, Tsakadze and coworkers [117] measured the same ion current at the substrate surface at lower 

and higher temperatures and therefore claimed that neutral free radicals predominantly contribute to the 

enhanced growth rate than ions. In addition, the higher substrate temperature cause larger pressure 

gradient at near substrate region and increased thermophoresis forces that improves the diffusion flow 

of neutral species.  

In MW-PECVD, Kim and coworkers [128] demonstrated that temperature was very critical in 

determining the microstructure, nanowall height, surface density and the crystallinity of carbon 

nanowall. In their work, lower temperature (700ºC) failed to form the characteristic nanowall 

microstructure whereas the higher temperature (950ºC) resulted in microstructure collapse. Similar 

observations were made in a RF-PECVD process by Wang et al. [120] during the development of carbon 

nanowalls at four different temperatures 630, 680, 730 and 830ºC. Well-separated and densely packed 
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nanowalls were formed only at 680ºC, which gradually turned into a corrugated and agglomerated form 

with further increase in temperature. Another study by Raut et al. [129] showed that within the same 

plasma system and under the same process conditions, by solely controlling the substrate temperature 

(950‒1150ºC) nanostructures with different dimensions and properties can be synthesized. 

Interestingly, the authors could form 1-D CNT at lower temperature (~950ºC), 2-D graphenated CNT 

at intermediate temperature (1050ºC) and 3-D vertical graphene sheets at higher temperature (1150ºC). 

Therefore, the optimization of the deposition temperature become essential for the successful growth 

of the growth of graphene and other CNSs with well-defined properties. From the above discussion, it 

is evident that with the incredible properties of plasma, property-tailored CNSs can be grown at lower 

temperature on arbitrary substrates, which significantly reduced the energy and resource consuming. 

2.4.3 Deposition power and pressure 

The deposition power is an important plasma tool in PECVD to engineer the CNSs properties. 

Most significantly, deposition power influences the dissociation of reactant molecules and determine 

the ion, neutral and radical densities inside the bulk plasma.  More the power higher the molecular 

fragmentation, density, momentum and energy of the plasma species (ions, electrons and neutral 

species). Denysenko and coworkers [130] studied the effect of RF-power on the dissociation of 

Ar/CH4/H2 gas mixture and observed that the concentration of electron, Ar+, H+ densities inside the 

plasma increased with increase in the RF power whereas concentration of Ar, H2, CH4 and higher 

hydrocarbons (CxHy, x≥2) decreased. The study by Zhu et al. [103] revealed that vertical graphene 

nanosheets formed at higher RF power (1200 W) have smooth morphology, increased growth rate and 

high degree of order compared to samples made at lower RF power (800 W). Moreover, an increase in 

the atomic hydrogen percentage was noticed with respect to the increase in RF power caused enhanced 

etching of amorphous carbon. Kim et al. [104] in an effort to grow graphene from methane gas on 

copper substrate at different RF power (50‒120W) observed that the RF power can effectively tune the 

hydrogen partial pressure and thereby control the grain size and nucleation density during the early 

phase growth of graphene. Another study from Yang et al. [119] attempted growing vertical graphene 

nanosheets at different RF power ranging from 50‒200W reported that the lower power only resulted 
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sparsely distributed vertically erected graphene flakes. Gosh et al. [131] reported the mechanism of 

growth of vertical graphene fabricated at different microwave powers, 200‒475W, from CH4/Ar 

plasma. The study revealed that the microwave power controlled the growth rate and areal density of 

vertical graphene and found to be high at intermediate power 375W, but decreased thereafter. 

The effect of pressure on the PECVD growth of CNSs is complex and controlled by Paschen’s 

law. For a particular gas composition, it was observed that the breakdown voltage is directly 

proportional to the product of the system pressure (p) and the inter-electrode distance (d). Therefore, 

pressure became a critical factor deciding the molecular fragmentation as the electrode distance is a 

fixed variable for a particular system. In addition, the mean free path for inelastic collisions is inversely 

proportional to the pressure which provide higher dissociation and increased ionization rate inside bulk 

plasma at lower pressure [48]. Furthermore, pressure also affects the number of collisions (n P1/2 ) 

within the sheath region and the mean energy per ion (E P-1/2 ) [132, 133]. Most importantly, the 

deposition pressure influences the growth rate as well as the defects formed within the growing 

nanostructure. It is observed that lowering the pressure inside the chamber resulted with increased 

deposition rate and defects in the structure. An increase in the deposition rate could be ascribed to 

increased fragmentation of the reactant molecules [103]. In the above study, the calculated mean ion 

energy near sheath region is varied from 2 to 8 eV as the pressure varied from 400 to 20 mTorr. Apart 

from this, in hydrogen rich plasma the lower pressure leads to the increased concentration of atomic 

hydrogen that predominate the etching effects. To illustrate, Wei et al. [134] reported a drastic increase 

in the Hα concentration within the plasma created from C2H2/H2/Ar mixture with decrease in chamber 

pressure from 350 mTorr to 50 mTorr. The Raman characterization of PECVD deposited graphene 

films at a various pressure 0.8 to 1.5 Torr indicated that ID/IG ratio increased with increase in pressure 

and hence the samples became more defected at higher pressure [135]. In an attempt to study the effect 

of pressure (0.4 ‒ 50 mbar) and argon flow rate (350‒1400 sccm) on the properties of carbon nanowalls, 

Vizireau et al. [118] found that well distinguished carbon nanowall with good length /thickness ratio 

and surface density could only be grown at lower pressure (1 mbar) and high argon flow rate (1400 

sccm). Recent study by Gao et al. [136] explored the effect of deposition pressure (30, 40 and 50 Pa) 
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on the structural and morphological properties of carbon nanowalls prepared through RF-PECVD. The 

key finding was that an increase in working pressure increased the surface roughness and decreased the 

surface free energy of graphene samples. The water contact angle measurements conducted revealed 

that all samples exhibited super hydrophobic behavior and noticed with a steady increase in WCA, 

showed a maximum value of 152.1 for sample formed at 50 Pa. 

2.5 PECVD and mechanism of vertical graphene growth 

Over other techniques, PECVD is widely recognized for producing individual, free-standing 

vertically aligned structures. The growth mechanism for vertical graphene was discussed in detail in the 

review article by Bo et al. [84] and the references therein. According to Malesevic and coworkers [137] 

the growth comprises three phases. During the first stage, a discontinuous graphitic buffer layer formed 

parallel to the substrate. These layers consisted of several cracks and dangling bonds that act as the 

nucleation sites to receive the incoming carbon baring species and initiate the formation of freestanding 

few layers of graphene in the second stage. Finally, the process terminated by the accumulation of 

carbon moieties, strongly determined by the competitive deposition and etching of plasma process. The 

early stage buffer layer formed before the onset of vertical growth mainly composed of amorphous 

carbon, defective nanographitic islands, nanodiamond particles and carbon onions [46, 97, 103, 138]. 

Ghosh et al. [97] further investigated the phase prior to buffer layer formation and revealed that hot 

spots were formed on the substrate surface through the energetic plasma bombardment which is 

followed by the rapid nucleation of the nano graphitic islands that coalesce to the form the buffer layer. 

There are several mechanisms such as surface electric field interactions, stress induced effects etc. that 

govern the vertical growth from the parallel buffer layers. The effect of local electric field in the growth 

and alignment of vertical graphene was explained by Zhu et al. [103]. It was postulated that the local 

electric field produced by the plasma induces the bending of the nucleating layer by providing sufficient 

energy to overcome the activation energy barrier (E) of the sp2 bonded graphene network layer. In 

addition, by making the electric field radially oriented, the authors further observed that the nanosheet 

growth predominantly oriented radially in the local electric field direction and therefore confirmed the 

correlation between the direction of electric field and alignment. It was also interpreted that as a result 
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of the existence of plasma sheath electric field, on the substrate region the ion fluxes are focussed 

towards the sharp tips of growing nanostructure that efficiently direct the carbon bearing radicals on to 

the tip of the developing structure that predominate the growth in vertical direction than horizontal 

direction [72]. Similar observation have been reported for CNTs. By running PECVD and thermal CVD 

consecutively within the same apparatus, Bower et al. [81] showed that the plasma induced self-bias 

field has major role in controlling the vertical growth and alignment of CNTs. The authors noticed a 

switching between aligned nanotubes to curly nanotubes when the process shifted from PECVD to 

thermal CVD. The study conducted by Yu et al. [139] revealed that the electric field near the substrate 

is critical to graphene growth and coverage. The work pointed out that under same experimental 

conditions the electric field intensity near grounded gold substrate is higher than the dielectric SiO2 

substrate. As a result, the reactant gas was ionized more efficiently over gold substrate and provide 

better coverage. Another study attributes the vertical growth to the accumulation of compressive strain 

energy that transform the continuous 2-D intermediate few layers of graphene film into discontinues 3-

D clusters [140]. In addition, the high-energy ion bombardment from the plasma creates defects, which 

act as the nucleation spots for the carbon bearing species and further accelerate the vertical growth. In 

a recent study, Zhao et al. [46] demonstrated that the vertical growth starts either from the mismatches 

and curved areas of the graphitic layers or from the carbon onions that formed on the substrate surface.  

2.6 Break down and rebuild of natural precursors into various CNSs 

Fabrication of CNSs from natural precursors gained immense research attention among 

material scientists. In general, the non-renewable resources for producing CNSs includes graphite, 

purified hydrocarbon gases and several other organic compounds [141-143]. Among the conventional 

precursors, purified hydrocarbon gases such as methane, acetylene, xylene, toluene benzene etc. are 

extensively used owing to the popularity of chemical vapor deposition for synthesizing CNSs. However, 

hydrocarbon gases are refined from petroleum and hence are expensive. In addition, the dissociation of 

hydrocarbon gases produce harmful mixtures of volatile organic compounds and polycyclic aromatic 

hydrocarbons as by-products that contribute to the greenhouse gas emission [144]. In this context, 

natural resources gained considerable impetus as carbon sources due to its abundance, renewability, 
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low cost and environmental friendliness. The recent advancements in the development of CNSs from 

sustainable materials were detailed in review articles by Soumya et al. [145], Titirici et al. [146] and 

Deng et al. [147] and the references therein. Until now, renewable feedstock like biomass [148], waste 

plastics [149], plant extracts [91], oils [150], proteins[151] etc. have been successfully employed to 

develop diverse functional carbon based nano structures. For instance, Sun et al. [148] reported the 

preparation of porous graphene-like nanosheet from a biomass, coconut shell. The procedure employed 

the simultaneous activation and graphitation process by mixing FeCl3 catalyst and ZnCl2 activation 

agent with the coconut shell and heating to a temperature of 900ºC under N2 atmosphere. During the 

pyrolytic process FeCl3 catalyst generates a carburized phase from the rest of the reactants which govern 

the graphene formation. Similarly, Ruiz et al. [151] published the production of graphene from sucrose 

and gelatine protein through thermal treatment at N2 atmosphere. The study by Kumar et al. [152] 

described the synthesis of single and multi-walled CNTs from a botanical hydrocarbon: camphor 

(C10H16O) through pyrolysis method. The process has used a temperature of 800‒1050°C, Fe catalyst 

and argon atmosphere to grow high purity CNTs with good yield as high as 90%. Camphor was also 

identified as an excellent precursor for fabricating few layers of graphene through two-step thermal 

CVD technique. Initially, camphor was vaporized by heating up to 180ºC in the first chamber and 

carried to the second chamber using argon gas to undergo thermal decomposition over nickel substrate 

maintained at a temperature 700‒850ºC, yielded few layered planar graphene [153]. In liquid 

precursors, turpentine oil, a plant extract derived from the oleoresin of pinus species served as an 

excellent renewable resource for CNTs [150, 154, 155]. Gosh et al. [156] converted eucalyptus oil to 

single walled CNT through catalyst decomposition process at a temperature 850°C under the presence 

of Fe/Co catalyst. Kawale et al. [157] demonstrated the fabrication and electrical characterizations of 

CNTs through hot wire chemical vapour deposition using a wide range of naturally derived materials 

such as camphor, mustard oil, castor oil, coconut oil, turpentine oil and menthol. Noteworthy is that, 

the process provided excellent yield and resulted nanostructures displayed comparable properties with 

that of the hydrocarbon equivalent. A two-step dissolution-precipitation process for developing 

graphitic carbon nanostructures from celluloses was described by Sevilla and Fuertes [158]. The 

cellulose was first treated by a hydrothermal process at 250ºC and then subjected to the impregnation 
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with nickel nitrate solution followed by a thermal treatment at 900ºC to form the graphitic 

nanostructures. The yielded nanostructures exhibited coiled morphology, high crystallinity and 

accessible surface area and hence proposed for electrochemical applications. In an attempt to utilize 

negatively valued precursors, Ruan et al. [99] explored six different waste carbon-containing materials 

such as chocolate, cookies, grass, polystyrene, dog feces and cockroach leg for monolayer graphene 

synthesis through thermal CVD. The growth was carried out on copper substrate heated to 1050ºC at 

lower pressure under H2/Ar gas flow. This method produced high quality pristine monolayer graphene 

having excellent transparency (97%) on the backside of the copper foil. Likewise, there are several 

studies reported employing other waste plastics such as polypropylene (PP), polyethylene-polystyrene, 

polytetrafluoroethylene (PTFE), polymethylmethacrylate (PMMA) for deriving single layer and 

multilayer graphene [149, 159, 160]. Lotus and hibiscus flower petals was the carbon source for Ray 

and co-workers [161]. Pure graphene was obtained through thermal exfoliation method by heating the 

petals to a very high temperature of 1600ºC in argon atmosphere for half an hour. The cellulose and 

hemicellulose present in the petals acted as the carbon supplier, which undergo bond scission at elevated 

temperature and rearranged to from graphene. The study noticed that the quality of graphene was poor 

at lower temperature (800ºC) but improved with the increase in temperature. The foregoing discussion 

clearly states that the conversion of bio-renewable resources into CNSs require high temperature 

catalyst assisted multi-step process. Therefore, it is essential to develop single-step, catalyst-free low 

temperature techniques that transform precursors of any kind to different forms of CNSs. 
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Table.2.2 An overview of synthesis of CNSs using bio-renewable resources through conventional 

techniques 

Precursor Synthesise technique Temperature/Ca

talyst 

Carbon nanostructure 

Type 

Reference 

Camphor Pyrolysis 800‒1050ºC Fe single, multi-walled 

CNTs 

[152] 

Coconut shell Simultaneous 

activation-graphitation 

(SAG) 

900ºC/ Fecl3 Graphene-like nanosheets [148] 

Turpentine oil spray pyrolysis 500‒900ºC 

Fe/Co 

CNTs [150] 

cellulose Hydrothermal 

carbonization 

900ºC/Ni Graphitic carbon [158] 

Camphor Thermal CVD 700‒850ºC/Ni Few-layered 

planar graphene 

[153] 

Food waste and 

insect waste 

Thermal CVD 1050ºC/Cu monolayer graphene [99] 

Hibiscus/lotus 

petals 

Thermal exfoliation 1600ºC graphene/ 

Ni-decorated graphene 

[161] 

 

2.7. Significance of plasma in deriving CNSs from natural resources 

The advantage of PECVD in the growth of graphene and other CNSs were detailed in section 

2.3. However, it can also be mentioned that PECVD offer significant advantages in converting bio-

renewable carbon sources into diverse high-value-added nanostructures [162]. Most importantly, 

PECVD recognized as non-precursor specific technique that allows the use of virtually any type of 

carbon containing sources (solid, liquid and gaseous) to derive potential nanostructures with minimal 
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consumption of time, precursor and energy. To illustrate, with the aid of plasma Seo and colleagues 

[90] reformed a range of natural resources such as honey, table sugar, butter, milk and methane into 

vertical graphene nanostructures and evidenced that plasma is capable of converting diverse precursors 

to functional nanostructures under the same process conditions. By successively running PECVD and 

thermal CVD with these sources, the authors ascertained that only PECVD could successfully produce 

graphene, and thermal CVD resulted in the formation of amorphous carbon. In contrast to plasma-

derived structures, thermal reformed samples were different in structure and morphology (indicated by 

the SEM and Raman studies) due to the precursor specific nature of thermal CVD. However, the use of 

plasma for reforming naturally derived precursors into novel CNSs like vertical graphene gained 

attention recently, and hence only less explored. Recent literature by Mohan et al. [91] reported the 

catalyst-free growth of high quality graphene from the volatile extract of tea tree (Melaleuca 

alternifolia). The 3-D nanostructured surface found to be highly hydrophobic (WCA of 135º) and 

possessed high degree of structural order (ID/IG=0.63 and I2D/IG=3.32). In addition, no elemental 

impurities detected on the XPS spectrum (even for very short duration of deposition of 2m) though tea 

tree oil is a multicomponent system. Furthermore, the film showed excellent memristive behaviour and 

proved to be promising for RRAM applications. The synthesis of graphene through a scalable RF-

PECVD from honey and its by-product honeycomb was demonstrated by Seo et al. [16, 163]. Both 

studies obtained few-atomic-layer thick vertical graphene nanosheets having exceptional material 

properties suitable for bio-sensing and supercapacitor electrode applications. The former showed 

potential sensing towards hydrogen and Au tagged antibodies whereas the latter to neurotoxic Amyloid-

beta (Aβ), biomarker for Alzheimer’s disease. Furthermore, the cost calculation revealed a substantial 

reduction of production cost (about 100 times lower) for honey based graphene compared to that 

produced from purified methane. Similar studies have been reported from other bio-renewable 

resources like cheese and butter and demonstrated the supercapacitor electrode applications [92, 164]. 

Interestingly, cheese derived graphene electrodes possessed a very high areal capacitance of 0.46 Fcm-

2 owing to the high mass loading of 3.2 mgcm-2. The recent work by Shah et al. [165] described the 

successful fabrication of single layer and few layers of graphene from waste mango peels, a biomass 

rich in heteropolysaccharide pectin. The process first ground mango peels into powders (particle size ≈ 
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1 nm) and uniformly distributed over copper a substrate. The samples were then placed inside reaction 

chamber and heated up to 750ºC under vacuum. An argon/hydrogen plasma (RF power 300W) was 

ignited then for one hour to deposit graphene. It was noticed that multilayer graphene was formed for 

plasma exposure time  30 min and single layer was obtained at one hour. Another work by Karthika 

et al. [98] revealed effective use of sugarcane bagasse to produce vertical graphene for antifouling 

coatings. Similar to previous case, grounded sugarcane bagasse powder was evenly loaded on porous 

nickel substrate and exposed to Ar/H2 (50:15 sccm) plasma generated at 760W for 10 minutes. The 

TEM analysis revealed the formation of multilayer system having 15-20 layers. The coatings exhibited 

reasonably good antifouling characteristics against gram-positive bacteria Escherichia coli and gram-

negative bacteria Staphylococcus aureus.  

Table 2.3 PECVD growth of graphene from natural precursors: plasms parameters, properties and 

applications 

Precursor Process parameters 
Power (P), pressure 
(p), temperature (T) 

Properties Application Reference 

Tea tree oil P ‒500W 

p‒0.20 mbar 

T‒800ºC 

I2D/IG=3.32, ID/IG=0.63 

3‒4 layers 

Random access 
memory (RRAM) 

[91] 

Honey P‒ 1000W 

p‒ 2 Pa 

T‒400ºC 

I2D/IG=1.4, ID/IG=0.63 

5‒6 layers 

Biosensing (Au-
antibodies) and gas 
sensing (Hydrogen) 

[163] 

Mango peel P ‒300W 

p‒0.2 Torr 

T‒ 750ºC 

I2D/IG= 2.78 

Single layer 

- [165] 

Honeycomb P ‒1000W 

p‒2 Pa 

T‒ No external heating 

I2D/IG=0.45, ID/IG=0.72 

Specific capacitance 240 
Fg-1 

Biosensing (Aβ) 
and supercapacitor 
electrode 

[16] 

Sugarcane 
bagasse 

P ‒760W 

p‒2 Pa 

T‒ 400ºC 

I2D/IG=0.38, ID/IG= 1.52 

15-20 layers 

Antifouling 
coatings 

[98] 
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2.8 Conclusion 

In summary, this chapter overviewed various type of CNSs such as fullerene, CNTs and 

graphene and their properties. Then the significance of plasma assisted synthesis over other techniques 

for the fabrication of CNSs reviewed succinctly. PECVD employed with DC, RF and MW sources for 

the synthesis of CNSs was demonstrated. With special focus on graphene, the significance of PECVD 

and the influence of process parameters such as precursor gas, gas concentration, temperature, power 

and pressure were discussed. The important studies unveiling the mechanism of vertical graphene 

growth was then comprehended. Finally, different types of non-conventional resources and currently 

existing techniques for their conversion to various CNSs with special focus to PECVD process was 

established.  
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Chapter 3 

RF Plasma Polymerization of Orange oil and Characterization of 

the Polymer Thin films 

 

In order to implement polymer thin films in real applications a deep insight in the materials fundamental 

properties are essentially required. This chapter outlined the fabrication of polymer thin films from 

Citrus sinensis essential oil through RF plasma polymerization process and its characteristic properties. 

A set of samples were fabricated at various input RF power and the influence of RF power on the 

structural, morphological, chemical and mechanical properties were studied using appropriate 

characterization techniques. The outcomes of this study was reported in S. Alancherry, K. Bazaka and 

M.V. Jacob, “RF plasma polymerization of orange oil and characterization of polymer thin films”, J. 

Polymers and the environment, (2018), 26 (7), 2925-33. 
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3.1 Introduction 

Polymer thin films have attracted considerable research attention for their potential to advance 

the performance and reduce the cost of organic electronic devices, such as organic thin film transistors 

(OTFTs), organic photovoltaics (OPV) and organic light emitting diodes (OLEDs) [1-3]. In organic 

devices various types of polymeric materials are used including organic conductors, organic 

semiconductors and insulators. Unlike inorganic semiconductors, polymers possess weak van der Waals 

forces between molecules which make them flexible and hence well-suited to flexible or foldable 

devices [4]. Also, polymers afford easy processing conditions, versatile properties and economic 

viability compared to semiconductors commonly used in microelectronics. Even though significant 

progress has been made in increasing power conversion efficiency (>11%) of solar cells, mobility in 

OTFTs, and power efficiency and response time in high efficiency OLED displays, with several of these 

technologies being available commercially [2, 5], these technologies are yet to reach their full potential. 

Plasma polymerization has emerged as one of the promising polymer thin film fabrication 

techniques owing to the flexible processing and unique properties of resulting plasma polymer thin 

films. From a process point of view, plasma polymerization is free from organic solvents and offers an 

easy tailoring of the physical and chemical properties of the polymer film through retention of functional 

groups, etching, functionalization and cross linking [6, 7]. With regard to the properties, plasma 

polymers exhibit a smooth, pinhole free nature with conformity, mechanical and thermal stability and 

good adhesion with the substrate [8]. A large body of literature has been published on the process 

optimization and structure-property correlation of plasma polymers derived from a variety of monomers 

[8-11], reporting a wide range of properties ranging from conductors to insulators [12, 13], variable 

refractive index [14], and hydrophilic to hydrophobic surfaces [15, 16].  

Polymers derived from bio-renewable resources are very promising owing to their 

environmental friendliness, biodegradability and biocompatibility [17-19]. However, processing 

required to convert the bio-renewable resource into useful high-quality polymers typically necessitates 

the use of a catalyst (e.g., acid catalyst, bio-catalyst, and metal-catalyst), and is complex, multistep and 

time consuming [20]. On the other hand, plasma polymerization offers alternate reaction paths and 
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reaction mechanisms, enabling direct, one-step conversion of virtually any type of monomer [21, 22]. 

Highly volatile at ambient temperature and pressure, rich in hydrocarbon compounds and featuring a 

wide range of chemical functionalities, essential oils and their derivatives are suitable precursors for 

fabrication of high-quality thin films using plasma polymerization [23]. Previous studies have shown 

plasma polymers derived from individual components of essential oils have attractive electronic and 

biomedical properties [24, 25]. However, isolation of individual components may increase the 

complexity and expense associated with the use of this natural carbon resource.  

Citrus sinensis essential oil (here after called as orange oil) is a multicomponent system 

principally composed of monoterpenes (97.52%), aldehydes (0.75%) and alcohols (0.58%). The major 

monoterpene component is limonene (94.14%) followed by myrcene (1.66%), α-pinene (0.48%) and 

sabinene (0.48%). Decanal (0.38%) and linalool (0.40%) are identified as the main aldehyde and alcohol 

components, respectively [26]. Hence, the present study investigates the synthesis and characterization 

of polymer thin films derived directly from multicomponent orange essential oil as-extracted from 

orange peel. The structural, optical, surface and mechanical properties of the films and their dependence 

on processing conditions, such as deposition time and applied RF power were investigated.  

3.2 Experimental 

The present study used a custom-made tubular plasma polymerization apparatus for fabricating 

plasma polymer thin films. The electromagnetic signals of frequency of 13.56 MHz is used and 

capacitively coupled into the system via external copper electrodes. The inter-electrode distance and 

the distance between monomer and the electrode were optimised to attain the best plasma stability and 

kept same throughout the deposition. The radio frequency power level was varied from 10 to 75 W and 

the films were deposited at different time intervals, i.e. 2, 5, and 10 min. The depositions were 

performed at pressure of 0.2 mbar. Orange essential oil obtained from Australian Botanical Products 

was used as the precursor. Orange essential oil predominantly composed of monoterpene limonene 

along with feeble percentage of alcohols and aldehydes. For each deposition, same amount of monomer 

(5 ml) was placed into the monomer flask, which was then evacuated prior to placement of the substrate 

within the polymerization cell to remove residual air. The monomer was released into the chamber 



47 
 

throughout deposition. Flow rate was estimated to be 32 cm3min-1 by the procedure outlined by 

Gengenbach and Griesser [27].  

FTIR spectroscopy was employed to determine the chemical structure of the polymer thin films 

using a Perkin-Elmer Spectrum 2000 FTIR Spectrometer. Spectra were obtained in transmission mode 

in the region of 4000–600 cm−1
. The surface chemistry of the polymer films was analysed by X-ray 

photoelectron spectroscopy [28]. XPS spectrum was recorded by Specs SAGE 150 spectroscope 

equipped with monochromatic Al Kα X-ray source (hυ=1486.6 eV). The spectra were recorded at a 

take-off angle 90º from a circular area of diameter 5 mm. The C1s peak with binding energy 285.0 eV 

used as the reference to eliminate the surface charging effects. The atomic concentrations were 

calculated using Casa XPS software.  Optical properties and thickness of the films were examined over 

the wavelength range 200–1000 nm using a variable angle spectroscopic ellipsometer (model M-2000, 

J. A. Woollam Co., Inc.). Ellipsometric parameters Ψ and Δ were collected at three different angles of 

incidence, φ = 55°, 60°, and 65°. In addition, the transmission data was also collected. Ψ and Δ were 

used to derive the optical constants based on a model of the sample built in the J.A. Woollam Inc. 

analysis software (WVASE32) via regression analysis. The absorption spectrum was measured using a 

UV-vis spectrometer (Avantes AvaSpec 2048, UV-vis spectrometer, Broomfield, CO) and the band gap 

was calculated using Tauc plot. Analysis of the surface morphology was undertaken using the NT‒

MDT NTEGRA Prima atomic force microscope in taping mode. 

Nanoindentation experiments were performed to characterise the mechanical properties of 

orange oil polymer thin films. Hysitron Triboscope head attached to NT‒MDT NTEGRA Prima atomic 

force microscope was used to carry out the indentations. A Berkovich indenter (70.3˚ equivalent semi 

opening angle) was used and the instrument was calibrated using fused silica. A series of seven 

indentations were performed with loads ranging from form 200 to 1000 µN and constant loading time 

of 3 s, holding time 3 s and unloading time 5 s, respectively. The indentation process was monitored 

and the load−displacement curves were obtained. The mechanical properties were derived from the 

contact area and load−displacement curve as proposed by Oliver and Pharr [29]. 
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3.3 Results and Discussion 

The diverse properties exhibited by plasma polymers make them an excellent candidate 

material for electronic and optoelectronic applications. Plasma polymers possess branched, randomly 

terminated and highly cross-linked structures due to the considerable fragmentation and rearrangement 

of molecular species that occurs during the deposition process. Hence these polymers display different 

properties compared to conventional polymer thin films [30-32]. For instance, plasma polymers show 

high dielectric constant compared to conventional polymers, with potential applications as gate 

dielectric material in TFTs [33]. Plasma polymerized dichlorotetramethyldisiloxane (pp-DCTMDS) 

exhibited a very high dielectric constant (~7−10) owing to the presence of highly polarizable –Cl 

functional group, and showed good gate dielectric performance [34]. Similarly, the layered structure 

created by the plasma polymerization of vinyl acetic acid and allyl amine demonstrated enhanced gate 

dielectric performance, characterized by high dielectric constant (5.7−6.2) attributed to the retention of 

polar –COO- and –NH3
+ groups [35, 36]. Plasma polymer films deposited from 

O2/hexamethyldisiloaxane and silicone−SiO2 also displayed tunable dielectric properties, good 

interfacial characteristics with channel layers and flexibility [37, 38]. In addition, 

O2/hexamethyldisiloaxane hybrid films were characterised by good transmittance of ≥90%, and low 

water vapour transmission rate (WVTR) of 3.6×10-6 gm-2 day-1, suggesting they can be used as 

encapsulating layers for solar cells [39].  

Polymers derived from bio-renewable resources, such as essential oils and plant extracts, have 

the potential to deliver the same valuable properties characteristic of polymers at lower economic and 

environmental costs, as well as enable the development of biodegradable and biocompatible materials 

and devices [19, 25]. Using minimally-refined input materials, e.g. essential oil rather than individual 

component, is particularly attractive for both reducing the cost and environmental impact of the polymer 

synthesis.  
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3.3.1 Film thickness 

In order to determine the effect of deposition time on film thickness, films were fabricated at 

deposition times 2, 5 and 10 min at each RF power level. The Ψ and Δ values were measured using 

variable angle spectroscopic ellipsometer and the film thickness was calculated using optical model 

with Cauchy dispersion relation [40]. The transmission spectra of the polymer films at normal incidence 

was also collected to determine a transparent region and Cauchy model is applied to this wavelength 

region (400‒1000nm). An initial values for the dispersion parameters A=1.534 and B=0.009 were 

assumed and fitted along with the thickness to estimate the best possible values for the same. It is 

observed that the film thickness increased linearly with deposition time, which is in good agreement 

with previous reported studies [41, 42]. For the deposition power of 10 W, 2 min deposition leads to a 

thickness of 135 nm, which increases to 675 nm for 10 min deposition, corresponding to a deposition 

rate of 67.5 nm/min. The samples deposited at other power levels showed similar trend of increase in 

film thickness with deposition time, with estimated deposition rates of 57.5 nm/min, 45.5 nm/min, and 

39.5 nm/min for 25, 50 and 75 W respectively. The decrease in deposition rate with power can be 

explained by the competitive ablation-polymerization concept, where the process of ablation is 

predominant at higher RF power due to the increased rate of high energy ion bombardment [43]. 

3.3.2 Chemical characterization 

Structurally, plasma polymers are considered to be amorphous in nature and possess a different 

chemical composition and chemical bonding compared with conventional counterpart polymers [44]. 

In order to get an insight into the chemical composition, FTIR spectra of both the films and the orange 

essential oil were recorded and showed in Figure 3.1. The major vibration peaks were assigned based 

on the work by Coates  [45]. With regards to the FTIR spectrum of orange oil, strong bands at ~2920, 

2965, 2856 and 2835 cm-1 can be assigned to the asymmetric stretching (υa) and symmetric (υs) 

stretching vibrations of saturated C−H bonds. The asymmetric ( δa) and symmetric ( δs) bending 

vibrations of C−H bonds are observed at wavenumbers 1453, 1436 cm-1 and 1376 cm-1, respectively. 

The vibrational peaks observed above 3000 cm-1 can be associated with the unsaturated C−H stretching 
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from ═C−H and ═CH2 bonds. Whereas the peak formed around 2725 cm-1 represents the C−H 

stretching vibration from aldehyde functional group and the corresponding C═O vibrations formed 

around lower wavenumber 1732 cm-1. The medium intensity peak located at 1644 cm-1 arose from the 

C═C stretching vibrations. The small peaks on either side may indicate the presence of C═C bonds 

conjugated with second unsaturated site. The several weak intensity peaks observed between 1300−900 

cm-1 may be produced from ═CH bending, C−H skeletal vibration or C−H out of plane bending 

vibrations [46]. The two prominent peaks formed at lower wavenumbers are at 887 cm-1 and 797 cm-1 

and can be attributed to C−H out of plane bending vibrations from mono-substituted and tri-substituted 

═C−H bonds [47]. 

Upon exposure to plasma, the reactant molecules dissociate into low molecular species (ions, 

free radicals, and excited species) and photons through inelastic collisions of the electrons, which gain 

energy from the plasma filed. In general, the electron collision produces significant amounts of free 

radicals than ions. These radicals serve as reactive sites to form bonds with other free radicals and 

neutral species. Apart from electronic collisions, the vacuum ultraviolet radiation from plasma 

(λ~100−200 nm) will result in H−abstraction, C−C bond scission, double bond formation, radical 

formation and oxidation [8]. However, free radicals and neutral species are considered to be 

contributing to polymer growth, whereas ions provide adsorbing sites for the free radicals through high 

energy bombardment [48]. 
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Figure 3.1 FTIR spectra of orange oil and plasma polymerized orange oil thin films fabricated at 

different RF input powers. 

A comparison between FTIR spectra of orange oil before and after plasma exposure shows 

significant changes in the vibrational features. Most importantly, considerable reduction in the number 

of vibrational peaks was observed in the plasma polymerized orange oil polymer films. In the higher 

wave number region, the quartet indicating the saturated C−H stretching vibrations reformed to triplet. 

Also, the unsaturated C═C bonds became saturated, revealed by the disappearance of ═C−H and C═C 

stretching vibrations. However, the samples fabricated at 10 W have retained very low yet discernible 

peaks of functional groups present in the original precursor, indicating potential retention of these 

moieties from the precursor material. By increasing the RF input power, higher dissociation of 

molecules is achieved, which lowers the likelihood of original precursor chemistry being retained in the 

polymer. Strong bands at 2954 and 2928 cm-1 arise from the asymmetric stretching vibrations of C−H 

bonds in methyl (−CH3) group. The next strong intense band at 2870 cm-1 corresponds to symmetric 
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stretching vibrations. The methyl C−H asymmetric bend appeared around 1456 cm-1 and vibrational 

peak at 1376 cm-1 indicates the corresponding symmetric bending vibration. The weak peak at 1708 

cm-1 related to carboxylic C═O stretch. The peak associated with O−H stretching vibration is very weak 

and broad (not seen in the spectrum) and occurs around 3455 cm-1. The band assignments for orange 

oil and plasma polymerized orange oil polymer thin film are summarised in Table 3.1.   

Table 3.1 Vibrational band assignments. Vibrational modes: υs= symmetric stretching, υa= asymmetric 

stretching, υ= stretching, δs=symmetric bending, δa=asymmetric bending, ω= out of plane bending 

 

Group frequency (cm-1) Relative intensity Band assignment 

Orange oil 

3083,3068,3043 and 3010 

2965, 2920 

2856, 2835                                                                                                    

2725, 1732 

1644 

1453, 1436 

1376  

1300 to 950 

957 and 914  

887 and 797 

Plasma polymer  

2954 and 2928 

2870 

1708   

1456    

1376 

 

weak 

strong 

strong 

weak 

medium 

medium to strong 

medium 

weak 

weak 

strong, medium 

 

strong 

medium 

weak 

weak 

weak 

 

υ(C−H) unsaturated  

υa(C−H) 

υs(C−H) 

υ(C−H) and υ(C═O) from aldehyde 

υ(C═C)  

δa(C−H)  

δs(C−H)  

sk(C−H) or ω(C−H) 

δ (C−H) unsaturated  

ω(C−H) unsaturated 

 

υa(C−H) 

υs(C−H) 

υ(C═O) 

δa(C−H) 

δs(C−H) 
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The elemental composition of the plasma reformed orange oil polymer film was further 

confirmed by performing the XPS analysis. A representative XPS spectrum (survey scan) of the 

polymer thin film fabricated at 10W in put RF power is presented in Figure 3.2a. The wide scan 

spectrum clearly detect the presence of carbon and oxygen at binding energies around 282 eV and 531 

eV respectively. In addition, a minor intensity peak was also noticed about 396 eV attributed to nitrogen 

possibly arise from the air contamination. Furthermore, atomic fractions have calculated and carbon 

identified as the dominating element contributed to 86.86% of the total atomic concertation followed 

by oxygen 10.55% and nitrogen 2.60%.  

Figure 3.2b depicts the high-resolution C1s XPS spectrum for the same sample. The C1s 

spectrum was fitted with four different component peaks each of which corresponding to different 

possible bonding environments of the carbon atoms like hydrocarbons C−C/ C−H (BE= 285.0 eV) and 

functional groups such as ether C−O (BE= 286.4 eV), carbonyl C═O (BE= 287.7 eV), and ester 

O−C═O (BE= 289.1 eV). From the fitting, the relative concentration of the different carbon bonding 

states with respect to the total carbon concentration within the sample was quantified. In the present 

case, the major contribution arise form from the hydrocarbon species holding 86.89% of the total carbon 

concertation. The second leading contribution came from ethers, 10.74% and the rest is estimated from 

carbonyl, 2.37%. Compared to high C 1s peak, high-resolution O 1s appeared to be symmetric and 

devoid of any distortion or fine structure to perform fitting. However, it is presumed that the O 1s peak 

resulted from the C−O bonds in functional groups.  
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Figure 3.2 (a) XPS survey spectrum of orange oil polymer thin film fabricated at 10W RF power (b) 

Curve fitting for the high-resolution C 1 s spectrum. 

3.3.3 Optical properties  

Optical properties of orange oil thin films deposited at different RF power levels (10, 25, 50 

and 75W) are shown in Figure 3.3. The refractive index (Figure. 3.3a) and extinction coefficient 

(Figure 3.3b) were calculated from the Ψ and Δ values (wavelength from 200−1000 nm, and angle of 

incidence φ = 55−65° with 5° interval) by constructing an optical model that incorporated Cauchy 

dispersion layer, followed by Gaussian harmonic oscillator. The Cauchy dispersion relation describes 

the relationship between the refractive index and wavelength within the transparent wavelength region. 

To understand the absorption behaviour of the films, the film transmission data at normal incidence was 

measured using the ellipsometer and shown in Figure 3.3c. Irrespective of the deposition power, the 

films were found to be transparent (transparency ~90%) above 380 nm. The refractive index profiles 

for samples deposited at various RF power (Figure 3.3a) resemble each other in shape and exhibited a 

similar behaviour. For samples fabricated at 10 W and 25 W, the refractive index varied from 1.67 to 

1.54, whereas for 50 W and 75 W samples, the refractive index changes from 1.65 to 1.54 within 

measured spectral range. Even though a very small change in refractive index is observed within UV 

wavelength region (200−380 nm), it is not noticeable in the visible wavelength range. Furthermore, 

within UV range, the dispersion of refractive index was more prominent and attributed to the absorption 

in this the region. A refractive index of 1.55 is measured at 500 nm for all the samples and found to be 
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slightly higher than glass (n~ 1.5). Figure 3.3b shows the extinction coefficients for the same set of 

samples within the same wavelength region. The plot reveals that the extinction coefficients are 

relatively high within the UV region and approach zero as the wavelength increases. High optical 

transparency and refractive index similar to that of glass suggest possible applications for these 

polymers as protective coating for organic devices and lenses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Refractive index (a), extinction coefficient (b), and (c) transmittance of polymer thin films 

derived from orange oil within the range 200-1000nm.   

3.3.4 Optical band gap 

In order to study the absorption behaviour and to determine the optical band gap of the polymer 

thin films, UV-visible absorption spectra were collected (plotted in Figure 3.4) and analysed. 

Irrespective of the deposition power, all the samples showed a strong single absorption peak around 
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295 nm. However, a difference in peak intensity was observed due to the difference in film thickness. 

In general, the absorption within 200−800 nm region is associated with transition of electrons from Π 

(bonding) to Π*(antibonding) or from nonbonding to Π* antibonding orbitals. Furthermore, the latter 

transition produces two absorption peaks and hence the absorption peak here can be assigned to Π−Π* 

electronic transition. The UV-vis data also confirms that polymer thin films are transparent in the visible 

region. The absorption band can be used to determine the optical band gap of the material using the 

relation [49] 

                                            𝛼h𝜐 = A(h𝜐 − 𝐸𝑔)𝑚                       (1.1) 

where A is a constant, Eg is the optical band gap, α is the absorption coefficient (determined from the 

absorbance values), and m denotes the type of transmission such as direct allowed and forbidden  (m=1/2 

and m=3/2), indirect allowed and forbidden (m=2 and m=3) [50]. Tauc plots were generated with 

MATLAB program and the most linear plot is identified for different m values. It is observed that m=1/2 

gives the most linear plot, indicating that the nature of electronic transition is direct allowed. The band 

gap is calculated from the plot and obtained within the range 3.55 to 3.64 eV. However, as the RF power 

increased, a slight decrease in optical band gap is noticed. The band gap values are observed within the 

insulating region, and hence the films can be implemented as flexible insulating layers in organic 

electronics. 

 

 

 

 

 

 

 

Figure 3.4 UV‒vis absorption spectra of orange oil polymer thin films.  
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3.3.5 Surface topography 

The surface topography of polymer thin films may affect the range of potential applications, 

and need to be precisely controlled to put in to real applications [51]. For instance, surface defects, 

pinholes and roughness will determine the quality of interface, which is of particular significance for 

the performance of electronics multilayer structures [52]. In order to obtain a quantitative description 

of surface topography, atomic force microscopic images were taken for samples fabricated at different 

RF powers (Figure 3.5).         

 The AFM images (3 µm × 3 µm) reveal the defect-free and pinhole-free nature of film surfaces 

comprising peaks and valleys. At a glance, the films showed nearly similar topography except the 

sample made at 50 W, which exhibited comparatively broad peaks than other samples. In addition to 

average surface roughness (Ra), other topographical parameters, such as surface skewness (Rsk) and 

coefficient of kurtosis (Rku) were determined to get a better understanding of the surface nature. It is 

observed that the surface roughness of the samples showed an increasing tendency upon increasing the 

RF power up to 50 W but then decreased for film made at 75 W RF power (Table 3.2). The average 

surface roughness increased form 0.62 nm to 2.19 nm with an increase in deposition power from 10 to 

50 W. However, samples fabricated at 75 W showed a lower surface roughness (1.14 nm) than films 

made at 50W. Furthermore, one-way ANOVA test was employed to define the statistical significance 

of increase in surface roughness. The analysis was significant as determined by one-way ANNOVA, F 

(3,16) =123.5161, p<0.001. The statistical test resulted with a lower p value (p<0.001) compared to the 

alpha level 0.05 used, and the Fstatistics value (123.5161) found to be greater than the Fcritical (3.2388) 

which confirm that the roughness values are statistically different. The increase in the surface roughness 

with the deposition power can be attributed to the high energy bombardment of the energetic ions during 

the deposition process. The symmetry of the surface profile is represented by the statistical amplitude 

distribution function surface skewness (Rsk) which gives the variation of symmetry of the surface profile 

over a mean line. Ideally, a symmetrical distribution of peaks leads to zero Rsk. Here, the Rsk >0 and 

hence the peak distribution is asymmetric, indicating the surface is dominated by peaks rather than 

valleys. The coefficient of kurtosis (Rku) is the second distribution function that describes the surface 
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sharpness relative to a normal distribution. Normal distribution has a kurtosis of 3 and higher value 

indicates spiked surface. The samples under study exhibited a low Rsk <3 which reveal that the surface 

is nearly flat. The good morphological features provide better interface characteristics and hence 

suggested prospective applications as gate dielectric layers in OTFTs and as buffer layers in various 

thin film device structures [53]. 

 

 

 

  

 

 

 

   

Figure 3.5 Representative AFM images (3µm × 3µm) of plasma derived orange oil thin films deposited 

at different RF powers (a) 10 W, (b) 25 W, (c) 50 W and (d) 75 W. 

 

Table 3.2 Surface properties of orange oil thin films. 

Topographical parameters 10W 25W 50W 75W 

Average surface roughness Ra (nm) 0.62 0.76 2.19 1.14 

Root mean square Rq (nm) 0.79 0.96 2.49 1.51 

Surface skewness Rsk             0.73 0.70 0.17 0.85 

Coefficient of kurtosis Rkur 0.81 0.85 -0.24 0.97 
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3.3.6 Nanoindentation 

The mechanical properties of the films were studied using nanoindentation technique. Figure 

3.6 is the representative image for the typical load-displacement curve recorded at a load of 1000 µN 

and AFM image of orange oil thin film fabricated at 25 W after indentation with different loads. The 

mechanical properties such as hardness and elastic modulus of the orange oil thin films were calculated 

by the method proposed by Oliver and Phar and tabulated in Table 3.3 [29]. From the measurements, it 

can be seen that the hardness of the films increased with the deposition power. An increase in the 

hardness from 0.50 GPa to 0.78 GPa is noted for the polymer films when the deposition power increased 

from 10 to 75 W. Again, there was a statistically significant difference between hardness values as 

determined by the one-way ANNOVA, F(3,24)=17.01596, p<0.001. The alpha level was less than 0.05 

and calculated Fstatistics value (17.01596) exceeds the Fcritical value (3). The improvement in hardness can 

be attributed to the enhancement in degree of crosslinking with deposition power. In addition, under the 

same load, films fabricated at higher deposition power had smaller maximum depth and contact area 

values (Table 3.3). The elastic modulus found to increase from 10.26 GPa (10 W) to 10.33 GPa (25 W), 

but then decreased for 50 and 75 W samples. However, it is important to note that thus‒estimated values 

for polymer films can be subject to several uncertainties. Most importantly, the exact determination of 

contact area is difficult as method does not account for the pile-up or sink-in, both of which may occur 

during indentation and thus lead to overestimation of hardness and elastic modulus [29, 54]. Also, the 

accuracy of modulus and hardness values further depend on the selection of correction factor β. Hence, 

the listed hardness and elastic modulus may vary from the actual values.  
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Figure 3.6 Typical loading and unloading curve (maximum load 1000 µN) and AFM image of orange 

oil polymer thin film fabricated at 25 W and indented with different loads.  

 

Table 3.3 Mechanical properties of orange oil thin films.  

RF power (W) 

 

Hardness  

(GPa) 

 

Elasticity 

(GPa) 

Max depth (nm) Contact area (nm2) 

10 0.50 10.26 180.48 1.02 × 106 

25 0.58 10.33 166.98 9.27 × 105 

50 0.68 9.74 156.81 7.62 × 105 

75 0.78 9.38 148.64 6.49 × 105 
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3.4 Conclusion 

Polymer thin films from orange essential oil were successfully synthesised through RF plasma 

polymerization technique by varying the RF power and the structural, optical, topographical and 

mechanical properties were studied.  Under different RF power, the films were transparent in the visible 

region and exhibited a refractive index ~1.55 at 500 nm. The optical absorption is found to be direct 

allowed transition and the optical band gap falls within the insulating region. The topographical 

characteristics showed dependence on RF power, with an increase in average surface roughness with 

increase in deposition power. However, the 50 W sample exhibited a higher surface roughness (2.01 

nm) compared to the 75 W sample (1.17 nm). The nanoindentation studies revealed that the film 

hardness increased upon increasing the deposition power. The film exhibited a lower hardness of 0.50 

GPa at 10 W which increased to 0.78 GPa for 75 W sample. Hence, by controlling the input RF energy, 

the surface and mechanical properties of the orange oil film can be tailored without affecting optical 

properties of the films. The obtained properties suggest that these films can be implemented as 

insulating layers or as encapsulation coatings for flexible organic thin film devices. 
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Chapter 4 

Towards Sophisticated Morphology Control of Natural Resource- 

derived Vertical Graphenes: Experimental and Simulation 

Insights 

 

Strong interest in vertically-oriented graphemes largely stems from their unique surface morphology, 

which makes them well suited for such applications as field emitters, gas and biomolecule sensors, and 

electrodes in supercapacitors to name but a few. Recently, minimally-processed raw and waste biomass 

have been discussed as a promising low-cost, abundant source of carbon for the synthesis of these 

materials via plasma-enhanced chemical vapour deposition (PECVD). However, the extent to which 

the multicomponent chemical nature of such a precursor would affect the ability to control the structural 

and morphological features of graphenes using traditional control mechanisms such as RF power, 

hydrogen flow rate and deposition duration is not well understood. In this chapter, the evolution of 

surface morphology of graphene derived from cold-pressed Citrus sinensis oil, via catalyst-free radio 

frequency PECVD is investigated using experimental analysis, standard characterisation techniques 

such as Raman spectroscopy, scanning electron microscopy and X-ray photoelectron spectroscopy, and 

numerous advanced analytical techniques such as distributions of fractal dimensions, 2D FFT 

transforms, Hough transformation spectra and others. Detailed growth simulations by an ad hoc model 

based on a large number of interaction elemental processes was implemented to insure deep insight into 

the processes. S. Alancherry, M. Jacob, K. Prasad, J. Joseph, O. Bazaka, R. Neupane, O. Varghese, O. 

Baranov, S. Xu, I. Levchenko, and K. Bazaka, “Towards Sophisticated Morphology Control of Natural 

Resource-derived Vertical Graphenes: Experimental and Simulation Insights”, has been submitted to 

Journal of Materials Chemistry A. 
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4.1 Introduction 

Among graphene-based materials, surface-grown vertically oriented graphene nanosheets or 

nanoflakes hold promise for a wide range of applications, which include but not limited to field emitters 

[1, 2], gas and biomolecule sensors [3, 4], biotechnological devices [5, 6], catalysis [7, 8], electrodes in 

supercapacitors [9, 10], and lithium ion batteries [11, 12], materials for storage [13, 14], nanoscale 

electronic devices [15, 16] and materials for space technologies [17-19]. These applications rely on 

several inherent properties of this type of graphene [20, 21]. These include vertical orientation of flakes 

on the surface, excellent mechanical stability, open intersheet space that allows exceptionally high 

surface contact area for ion and atom diffusion and transport, superior in-plane conductivity for charge 

transport [14, 22] and exposed long and sharp edges that enable high chemical reactivity [21, 23] as 

well as facilitate mechanical killing of pathogenic bacteria [24]. 

The specific performance of this network of self-supported graphene layers is highly dependent 

on its structural and morphological characteristics, including dimensions of the flakes, sharpness and 

length of the edges, degree of 3D interconnectivity between individual sheets, spacing between sheets, 

presence of structural defects and doping, and others [23, 25, 26]. Typically, these characteristics are 

controlled during material synthesis by tuning the processing conditions such as temperature, residence 

time, and gas chemistry (e.g. ratio of methane to hydrogen) and flow rate, and by using post-fabrication 

treatments, such as using plasma to sharpen and thin the edges [27, 28]. 

Recently, there has been a growing interest in the use of minimally-processed raw and waste 

biomass resources as precursors for the synthesis of graphene and other nanoscale materials [29-31], 

with the primary objective to reduce the environmental footprint of this family of materials and reduce 

the cost and complexity of their synthesis [32]. Materials from food waste and oils to plant and animal 

matter have been converted to graphenes with some success, with most examples using catalytic thermal 

chemical vapour deposition (CVD) where temperatures in excess of 1000 °C are used to break down 

the precursor into carbon atoms, which are then reassembled into graphene sheets on the surface of 

nickel or copper catalyst support [33]. This synthesis route is lengthy (reaching several hours) [34, 35], 
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and most often results in the formation of horizontal graphene sheets which then have to be transferred 

from the substrate [36]. 

Plasma enhanced chemical vapour deposition (PECVD) presents a far more attractive 

environment for the growth of vertically-oriented carbon nanostructures, providing a wide range of 

possible control mechanisms for the synthesis and assembly of structures with diverse geometry and 

chemical characteristics. These controls include conventional mechanisms, such as controlling gas 

chemistry, substrate temperature, and time of treatment, as well as those unique to plasma environment, 

such as presence of highly chemically-reactive species [37, 38], e.g. energetic electrons and ions, and 

electric fields, and the ability to control fluxes of energy and matter using external electric and magnetic 

fields [39]. The plasma sheath and the intense ion fluxes that originate at the sheath region direct the 

incoming carbon bearing species to the tips of the growing nanoassemblies, strongly favouring vertical 

over lateral growth [40]. Importantly, in PECVD, it is possible to grow vertically-oriented graphenes 

directly on the substrate of choice, e.g. silicon wafer, in the absence of conventional catalytic support. 

Furthermore, it is possible to use these various control mechanisms for the synthesis and post-

processing within the same technological run.   

There is a growing body of evidence that suggests PECVD to be highly amenable to fabrication 

of large-area vertically-oriented graphenes at scales needed to realise real-life devices, including 

directly from natural resources, particularly from inherently volatile precursors such as essential oils 

that produce vapours without the need for heating or carrier gas [41, 42]. 

However, while these results are certainly promising, our understanding of the major processes 

that govern graphene morphology at these larger scales is limited, particularly in the context of the use 

of chemically-complex, multi-component precursors [43]. Indeed, the effects of plasma process 

parameters on nucleation, propagation and termination stages of vertical graphene growth are 

conventionally described in terms of nanoflake height, nanoflake length, and nanoflake surface density 

[44]. However, at larger scales of cm, these traditional parameters may not provide adequate 

representation of long-order characteristics of vertically-oriented graphenes yet these long-order 

morphological features may define how the graphene network would behave. 
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In this chapter, a comprehensive characterization of short and long-order morphological 

features of arrays of vertically-oriented graphenes as a single system is conducted, to understand the 

extent to which the multicomponent chemical nature of carbon precursor would affect the structural and 

morphological features and evolution of surface morphology of graphenes using traditional control 

mechanisms. A catalyst free radio frequency PECVD have used where RF power (i), hydrogen flow 

rate (ii), and deposition duration (iii) were varied. A low-value ‘green’ product, i.e. cold-pressed Citrus 

sinensis oil, which is a by-product of orange juice production by centrifugation was selected as a model 

precursor. 

The remainder of the chapter is organized as follows. Firstly, the core principles of growing 

complex nanostructures in plasmas is described. Then, the experimental setup used to synthesise the 

arrays of vertical graphene nanoflakes in low-temperature plasma is outlined. Next, the results of the 

Raman characterization that reflects the chemical properties and structural characteristics of individual 

nanoflakes. Then the results of a comprehensive characterization of the morphological features of the 

arrays as a single system, which is the main focus of this chapter. Finally, successfully related the 

experimental results to a model that allows simulation of nanoflake growth and modelling of principal 

characteristics of thus-produced graphenes.  

4.2. Methods 

4.2.1 Framework for growth processes in plasmas 

Figure 4.1 illustrates the core framework for growing complex nanostructures in plasmas, 

which is based on a step-by-step transition from plasma-enhanced treatment of millimeter- through 

micrometer- to nanometer size areas, with each consecutive stage using features formed or grown during 

the previous stage. Fundamentally, each stage comprises three main phases, which can be classified in 

accordance with the rate of change in the geometrical shape of the treated surface. The first phase is 

associated with events that transform the base surface into a substrate suitable for material growth. Since 

there is typically no geometry change that is required at this phase, and the main purpose of the phase 

is to change atomic bonding characteristics of the surface to increase e.g. the likelihood of adhesion 
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interactions, this phase is called “functionalization” and is described as a change in material structure 

without changing its geometry. Examples of events that take place during this phase include generation 

of vacancies and interstitial atoms; formation of precipitates transformed to screw and edge 

dislocations; ballistic mixing and thermal segregation of material phases; heating and grain coalescence, 

which are used later as adsorption sites; and others. The second stage covers all the processes of additive 

growth of structures on the base surface. For the case of vertically-oriented graphenes, this phase 

describes the growth of graphene sheets orthogonal to the surface of the substrate. Next phase, denoted 

as “trimming”, includes processes that result in removal of excess material, such as atoms of amorphous 

carbon (α-C). Then, next cycle of the construction can begin, and the possible transition is shown by 

the arrow pointed from the stage 1 to stage 2 in Figure 4.1. During this phase, the surface or sharp edges 

of vertically-oriented graphene sheets can serve as the base on which nanostructure growth can take 

place. This sequential growth is in good agreement with experimentally observed evolution of 

nanocrystalline carbon film morphology, which involved a sequence of such phases as formation of 

diamond-like particles on the surface, formation of ultra-thin graphite flakes parallel to the surface, 

nucleation and growth of vertically-oriented graphene sheets on stacked horizontal flakes, growth 

vertically-oriented graphene sheets accompanied by a continuing decrease in the structural defect 

density, and, lastly, nucleation of carbon nanotubes on the surface of vertically-oriented flakes driven 

by the internal stress generated at the tips of these flakes [45]. In principle, these nanotubes can also be 

trimmed and undergo the following doping or tree-like stricture modification.  
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Figure 4.1 A strategy for growing complex nanostructures based on a step-by-step transition from 

plasma-enhanced treatment of millimetre- through micrometre- to nanometre-size areas. Each stage 

comprises three main phases classified according to the rate of change in the geometrical shape of the 

treated surface. The first phase is associated with that transform the base surface into a substrate 

suitable for material growth; the second stage covers all the processes of additive growth of structures 

on the base surface. For the case of vertically-oriented graphenes, this phase describes the growth of 

graphene sheets orthogonal to the surface of the substrate. The third phase, denoted as “trimming”, 

includes processes that result in removal of excess material, such as atoms of amorphous carbon (α-

C). Then, next cycle of the construction can begin, and the possible transition is shown by the arrow 

pointed from the stage 1 to stage 2. 
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4.2.2 Experimental 

The fabrication of graphene was carried out using a custom-made quartz tube RF-PECVD 

system. Figure 4.2 depicts the schematic of the experimental set-up. Silicon wafers (N-type) with a size 

of 1 cm × 1 cm coated with 500 nm-thick thermally oxidized SiO2 layer were used as substrates for 

graphene growth. Prior to loading into the deposition reactor, substrates were cleaned by sonication 

with acetone (5 min), isopropanol (5 min) and finally dried with N2 gas. Cleaned silicon substrates were 

loaded into an alumina boat and arranged at the middle of the reactor. The tube was then pumped down 

to a base pressure of 0.03 mbar and the substrate was heated up to 750 ºC.  Following this, hydrogen 

gas was flown into the system at a flow rate of 10 sccm, and the system pressure was adjusted to 0.3 

mbar. The RF energy from Navio RF generator (13.56 MHz, 1.2 kW max) was capacitively coupled to 

the quartz tube reactor via an impedance matching network and two external copper electrodes. Prior 

to deposition of graphene, plasma was ignited at 500 W and silicon substrates were pre-etched for 1 

min to remove any contaminants from the substrate surface. Cold-pressed Citrus sinensis oil (hereafter 

referred to as orange oil) was acquired from Australian botanical products, Australia, and used as the 

precursor source without further modification. Highly volatile at room temperature and pressure, orange 

essential oil is primarily composed of limonene (94.14%) and other monoterpenes, e.g. myrcene 

(1.66%), α-pinene (0.48%) and sabinene (0.48%) [46], making the oil a rich source of hydrocarbon 

compounds. For each deposition, 3 ml of essential oil was used and the vapour flow was controlled 

using a needle valve. 

To study the evolution of short- and long-order morphological features of arrays of vertically-

oriented graphenes as a single system, the study assumed some initial set of plasma process parameters 

as follows: 

 Phase 1: Input RF power varied from 300 W to 500 W to study the effect of deposition power. 

The process kept the hydrogen flow rate at 10 sccm, deposition temperature at 750 ºC and 

duration of deposition at 4 min. 



74 
 

 Phase 2: The RF power fixed at a single value and the hydrogen flow rate was varied 

gradually from 10 to 50 sccm. The growth temperature and duration were retained same as 

in Phase 1.  

 Phase 3: The RF power and hydrogen flow rate were fixed, and the deposition time varied 

successively from 2 min to 8 min. The deposition temperature remained at 750 ºC. 

 The structural evolution of all the samples grown under various plasma conditions was 

investigated by confocal laser Raman spectroscopy (Witec, 532 nm laser). The morphology of graphene 

samples were analysed by scanning electron microscope (Carl Zeiss, EV018, Germany). The elemental 

analysis was done using X-ray photoelectron spectroscopy (XPS) (Physical Electronics Model 5700 

with an Al x-ray source). A MultipakTM software was used for data processing. The morphology was 

characterised by the Gwyddion© visualization and analysis free software (released by GPL license). 
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Figure 4.2 Top panel: Experimental set-up for growth of networks of vertically-oriented graphene 

nanosheets in low-temperature plasmas. Surface characterization was performed using traditional suit 

of microscopy and spectroscopy methods, and analytical approaches to investigate various 

morphological characteristics such as fractal dimensions, Minkowski connectivity, and others. Bottom 

panel: Three-dimensional morphology patterns of the dense (left) and rarefied (right) arrays of vertical 

graphenes. 
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4.3 Experimental Results and Discussion 

4.3.1 Effect of RF power, gas flux and growth time on structure of graphene  

The input RF energy influences the growth of graphene mainly in two ways. Most importantly, 

an increase in RF power enhances the electric field intensity within the plasma, which triggers an 

acceleration of charged entities (electrons and ions) and creates a large number of reactive species 

through highly energetic inelastic plasma collisions [47, 48]. Besides, the electric filed acting normal 

to the substrate is critical to the formation of nucleation sites on the substrate and to the stacking of 

growth species in vertical direction [49]. On the other hand, it is also noted that higher RF power 

elevates the atomic hydrogen concentration in the plasma volume that causes competitive etching of the 

deposited carbon to become a dominant process, hence leading to a decline in the growth rate [49, 50]. 

Therefore, for efficient growth, the input RF power need to be precisely controlled. 

Figure 4.3a represents Raman spectra of graphene samples fabricated at three different RF 

powers of 300, 400 and 500 W. Irrespective of the deposition power, Raman spectra of all samples 

show three distinct peaks indexed around 1335 cm-1, 1570 cm-1 and 2675 cm-1 attributed to the 

fundamental D, G and 2D bands indicating the formation of multilayer graphene. The D’ peak is 

intercalated along with the G peak and forms a shoulder around 1604 cm-1. Apart from this, the spectra 

also show small intensity D+G and 2Dʹ peaks at respective wave numbers of 2930 cm-1 and 3230 cm-1. 

The relative intensity ratios of these bands were calculated and plotted in Figure 4.3d. The ID/IG ratio 

remains low at ~ 0.65 for all these samples that represented a low defect structure mainly composed of 

sp2-hybridized carbon atoms. Nevertheless, an increase in ID/IG was noticed with increasing RF power, 

probably due to the disorder that arises from the high-energy ionic collisions. On the other hand, with 

the increase in RF power, the I2D/IG ratio decreased from 0.91 to 0.78, indicating the formation of a few 

layer graphene.  

The atomic species of hydrogen plays two key roles in the growth of graphene. First, as an 

initiator to trigger the dehydrogenation of carbon bearing free radicals that flourish the plasma volume 

with active species. Second, as an etching agent that etches away the amorphous carbon and cleaves 
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“weak” carbon-carbon bonds from the surface of growing graphene. During the growth, these two 

processes compete with each other and serve as a control for the rate and mechanism of graphene 

growth.  

 

Figure 4.3. Raman characterization of vertically-oriented graphene nanoflakes synthesizes in plasma. 

(a-c) Raman spectra of graphene samples fabricated at different RF power (300, 400, and 500 W), 

hydrogen flow rates (10, 20, 30, and 50 sccm), and time of deposition (2, 4, 6, and 8 min). (d-f) Peak 

intensity ratios from the Raman spectra for the same samples, fabricated at different RF power, 

hydrogen flow rate, and time of deposition.  

The Raman spectra of graphene samples did not differ considerably with the initial increase in 

hydrogen flow rate and showed all the characteristics D, G and 2D peaks at wave numbers of ~1334 

cm-1, 1566 cm-1 and 2669 cm-1, respectively (Figures 4.3b and 4.3e). However, the samples fabricated 

at 50 sccm exhibited an enlarged and slightly right shifted (~2690cm-1) 2D peak compared to the rest 

of the samples. The band intensity ratio ID/IG remained low for all samples (between 0.56 and 0.68), 

indicative of a low defect structure. It can also be inferred that the initial increase in hydrogen (up to 30 

sccm) brought about only a very slight change in I2D/IG ratio, with the change becoming significantly 
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more prominent upon further increase in hydrogen flow. This increase in I 2D/IG at 50 sccm may be a 

result of a lower thickness of the produced samples due to higher level of etching. 

A sequence of depositions was performed by gradually varying the deposition duration from 2 

to 8 min under 500 W input RF power and 30 sccm hydrogen to reveal the different growth stages of 

orange oil derived graphene. A lower deposition time is deliberately included to get an insight into the 

very early stages of nanostructure growth. Figure 4.3c denotes the corresponding Raman spectra 

showing the characteristic D, G and 2D bands formed at respective wave numbers of ~1340 cm-1, 1563 

cm-1 and 2670 cm-1. It is worth noting that D+G (~2924 cm-1) and 2D’ (~3214 cm-1) peaks acquire a 

relatively noticeable intensity at a lower deposition time, but diminished successively after longer 

periods of deposition. Interestingly, even a very short time of deposition (2 min) leads to the growth of 

graphene nanostructures and reveals the efficacy of PECVD in producing graphene structures. 

Figure 4.3f plots the extracted band intensity ratios for the same samples. As observed in the above 

cases, ID/IG does not show a regular trend, being relatively high for the samples made at 2 min (0.74) 

and low for 6 min sample (0.51). In contrast, the I2D/IG ratio consistently dropped from 0.80 to 0.62 with 

an increase in duration of deposition, most likely due to the improvement in thickness. 

Representative XPS spectra of the fabricated graphene nanosheets is presented in Figure 4.4. 

The survey scan (Figure 4.4a) shows a single strong peak located at a binding energy (BE) of ~284.5 

eV, unambiguously assigned to C1s peak that explicitly confirm that the resulted structure is 

predominantly composed of carbon atoms. In addition to this, a minor intensity peak is also observed 

around BE~532.45 eV corresponding to O1s peak, which most likely arises due to the exposure of 

graphene to air. The atomic concentration of carbon and impurity oxygen was estimated to be 98.69% 

and 0.94%, respectively. With the optimized process conditions, the elemental analysis detected only 

the presence of carbon that effectively reveals the efficacy of RF‒PECVD in converting the 

multicomponent orange essential oil into high purity graphene. The high resolution XPS scan of C1s 

band is given in Figure 4.4b. Upon peak deconvolution, the narrow C1s peak was fitted with three 

peaks, as can be seen in the figure. A major intensity peak and minor intensity peak were obtained at 

binding energies ~284.8 and 285.4 eV, respectively, corresponding to the sp2 and sp3 hybridized carbon 
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in the graphene nanostructure. The fraction of sp2-hybridized carbon is higher than that of sp3 carbon, 

which demonstrates the high quality of thus-synthesized vertical graphene. A very low intensity peak 

was observed around BE~290.9 eV, corresponding to the shake‒up energy loss feature. 

 

Figure 4.4 XPS spectra of vertically-oriented graphenes produced in PECVD (a) survey scan and (b) 

C1s high resolution scan fitted with sp2, sp3 and shake-up features. 
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4.3.2. Effect of RF power on the morphological characteristics of graphene array 

Figure 4.5 Control of the graphene patterns morphology by varying input power. Image illustrates 

(from top to bottom) SEM images, 3D reconstructions, 2D FFT transforms, Hough transformation 

spectra and heights distributions of the arrays of graphene nanoflakes grown at 300 W (a), 400 W (b), 

and 500 W (c) discharge power. Low density of graphene nanoflakes can be observed for 300 W, with 

much higher density obtained for 400 W, and even higher density of flakes for samples fabricated at 

500 W. Fourier and Hough transformation spectra show a notable change with an increase in power, 

thus highlighting a change in the morphology with the density of nanoflakes. Growth at 10 sccm, 750 

ºC, 4 min. Bottom images show the spectra of heights distributions, with notably wider distribution 

obtained at 400 W.  
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Figure 4.5 presents a comprehensive characterization of the morphological structure and 

characteristics of graphene arrays fabricated at different RF power levels, i.e. 300 W (left panel, a), 

400 W (central panel, b), and 500 W (right panel, c), at the fixed hydrogen flow rate of 10 sccm and 

temperature of 750 ºC. SEM images of graphene samples prepared under the same plasma process 

conditions but different powers are shown in the upper line, with the 3D reconstructions below. None 

of the images showed a fully developed vertical graphene structure. Instead, sparsely distributed 

vertically-oriented graphene flakes resembling the early growth phase were observed. The spatial 

distribution of vertically-oriented graphene edges found to be noticeably affected by the input RF 

energy. The graphene flakes formed at a lower power were less in number, smaller in size and scattered 

further apart (Figure 4.5a). The height distribution reveals the particularities of growth at the low 

power, which are evidenced by a sharp narrow peak located at 0.4 a.u. on the height axis. It can conclude 

that the process involved a rather short nucleation time, followed by the growth period when the growth 

rate was almost the same. This behaviour can be explained by a low effect of the ion bombardment 

experienced by the substrate at 300 W, which results in a prolonged time of diffusion of the adsorbed 

particle along the surface and preferential attachment to existing adsorption sites, rather than 

dissociation and generation of new sites. In this case, we conclude that the adsorption sites are generated 

within the short period of time, and then they serve as a sink for the rest of the adsorbed particles. 

Nevertheless, theses flakes appeared to be the initial nucleation sites before the onset of vertical 

graphene wall growth. As the power was increased to 400 W, more flakes with less interspacing are 

formed (Figure 4.5b). Interestingly, when the RF power increased further to 500 W the growth rate was 

enhanced, with flake size increasing both in lateral and vertical directions. The improvement in the 

growth rate with RF power can be attributed to the enhanced decomposition rate of orange essential oil 

components and their subsequent substrate surface diffusion to take part in the growth process. Similar 

observations have been reported by Yang et al. [49] in growing vertical graphene from CH4 precursor. 

In contrast to the case of 300 W, a manifestation of a prolonged nucleation stage, followed by the growth 

stage are evident. By considering the linear dependence of the growth rate on time, it is possible to 

conclude that the nucleation time occupies about [(0.6-0.3)/0.6]100 % = 50 % of the processing time, 
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since the distribution is characterized by a plateau with a sharp rise at 0.3 a.u. and a sharp drop at 0.6 a.u. 

The distribution obtained at 500 W looks similar to the distribution at 300 W, yet is slightly wider, while 

the reason is quite different from the low power operation mode. It is assumed that there is an 

interference between the neighbouring vertically-oriented graphene sheets for the 500 W mode, when 

the capturing areas (which are the domains on the substrate surface which provide the adatoms for the 

particular vertically-oriented graphene sheets) of the highest and longest graphenes becomes 

superimposed due to the very quick growth. During this process, the growth of the highest graphenes is 

terminated due to the lack of the building material, while the smaller graphenes continue their growth 

thus removing the difference in sizes with the largest graphenes. Hence, the distribution with the plateau 

obtained at the intermediate power of 400 W, transforms to the peaked distribution again. By 

considering the obtained results, it should be stressed that the distributions do demonstrate the ability 

to control the nucleation stage by changing the applied power, since the transition from 300 W to 400 W 

results in a change from short-to long nucleation time, yet the following increase in power to 500 W 

does not change the nucleation to the short time mode, and the observation for 500 W is explained by 

coincidence of the time of observation and the time of the growth interference. Intentionally, the present 

study fixed the RF power at 500W for the rest of the experiments in order keep the growth at lower 

plasma conditions. 

Fourier and Hough transformations were used to better assess both short-and long-range 

ordering in the fabricated and selected samples, aiming to verify the high quality of the produced 

graphene arrays, and to test these assessment methods for specific graphene growth applications. For 

this purpose, the SEM images of the selected samples were inverted, and generated the 2D FFT (two-

dimensional Fourier Transform) and Hough patterns. The 2D FFT and Hough spectra for the three 

sample types are shown in Figure 4.5, central horizontal line. These spectra highlight differences in the 

morphology, with a much more distinct and clear structure for the first and third sample groups (this 

also corresponds to the heights distributions). 

Another method for the ordering estimation is the Hough transformation, which is being used 

to search for certain shapes in the pattern. In the case of PECVD growth of graphenes, apparent 
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differences can be noticed in the spectra shown in Figure 4.5 for all three sample types. These 

differences could indicate the ordering in the graphene patterns, since the perfect structure of the defect-

free pseudo-crystal features many linearly ordered flakes. Sample 2 appears to be the worse one with 

respect to the long-scale ordering of the graphene flakes. 

In this research work, two functionals were used, namely the Minkowski connectivity (the 

Euler-Poincaré characteristic) and fractal dimension (FD), to quantify the degree of connectivity and 

randomness in several different networks of vertically-aligned few-layered graphene flakes grown on a 

solid substrate [51]. We demonstrate that the Minkowski connectivity and fractal dimension essentially 

depend on the morphological features of graphene patterns, and thus could be used as morphological 

descriptors to differentiate between various graphene flake configurations on surfaces and hence, 

provide a quantitative measure to correlate the geometrical configuration of the pattern with its physical 

properties. 

Minkowski functionals are statistical measures used to characterize geometrical structure and 

morphology of a system composed of many objects irregularly distributed in the two-and three-

dimensional space. These measures have been previously successfully used to relate the structural 

characteristic with the physical parameters of such systems. For example, Minkowski functionals were 

capable of predicting fluid phase distribution in porous media [52], provide an estimation of percolation 

threshold [53], assess mechanical and transport properties [54, 55], permeability [56] and strength [57] 

of complex systems with stochastically distributed objects. Minkowski functional have also been 

proposed as useful to characterize morphology of MoO3 nanosheet networks [58] and surface roughness 

features along hetero-interfaces that support electromagnetic wave excitations, morphologies and 

geometrical properties of thin films [59], large nanotube networks [60], complex networks inlaying the 

surface such as carbon interconnections [61] and other similar patterns. Specifically, Minkowski 

connectivity describes the measure of the amount of connections in the pattern by analysing the 

relationship of connected and disconnected pixels in an image. In a general case, ξ is defined [62],  
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ξ(θ) =
𝑁𝑊−𝑁𝐵

𝑁
,                                                                                      (4.1) 

where θ is the threshold, i.e. parameter running over the entire interval between the lightest and darkest 

hints in the image; NW and NB are the numbers of continuous (percolated) clusters of pixels above and 

below the threshold θ, respectively; and N is the total number of pixels. As can been seen from the 

equation, ξ is a characteristic of properties which depend on the interconnection of nanostructures in 

network, such as percolation threshold, conductivity and others related to the transfer of gas, heat, 

electrons etc. between the nanostructures [63]. 

Fractal dimensions is one more morphological descriptor often used to characterize 

morphological features and degree of order/randomness in the complex arrays and networks [60, 64]. 

Importantly, fractal dimension can be correlated with the physical properties of the patterns, such as 

thermal conductivity for porous media [65], hydraulic conductivity [66] and complex conductivity [67]. 

It has also been demonstrated that the films with a significant fractal character exhibit intense surface-

enhanced Raman spectra (SERS) [68]. In the classical formulation, the fractal dimension ψ is the limit 

of logarithmic ratio of the number of self-similar objects N(l) and length scale 1/l, i.e. 

ψ(Z) = lim
l→0

(
𝑙𝑜𝑔𝑁(𝑙)

𝑙𝑜𝑔(1/𝑙)
),                                                                              (4.2) 

where Z is the current height of the network or hint threshold for the image [69]. Geometrically, the 

fractal dimension ψ can be interpreted as the power of stretched factor k which return the area increase; 

i.e. if the area was increased by the factor of k, the area increase is δ = kψ. Apparently, for the continued 

(not fractalized) surface with ψ = 2, this will return δ = 22 = 4, as expected. For the fractalized surface, 

ψ can exceed 2, that is, a fractalized surface cannot be considered as flat. 
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Figure 4.6. Fractal dimensions calculated as a power spectrum [70] (a) and by triangulation [68] (b). 

(c, d): Minkowski boundaries distribution (c) and Minkowski connectivity (d) as morphological 

descriptors.   

Figures 4.6a and 4.6b show the fractal dimensions, power spectrum (a) and calculated by 

triangulation (b) [71, 72]. An increase in input power results in slight variations of spectra, but a 

significant change in the value of fractal dimension elucidates an essential change in the morphological 

structure. Fractal dimension increases with input power, suggesting that new fragments are being 

nucleated and developed at the elevated input power probably due to an increase in ion energy and 

fluxes. Figures 4.6c and 4.6d show the Minkowski boundaries distribution (c) and Minkowski 

connectivity (d) as morphological descriptors. A wide boundary distribution at 400 W agrees well with 

the wide heights distribution for 400 W shown in Figure 4.5. Narrow boundary distributions for 300 W 

are due to the weakly developed structures formed at this input power, and for 500 W–due to the 

narrower heights distribution. This analysis shows that during the growth, pattern goes through a 

complex morphological transformation. 
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4.3.3. Effect of hydrogen flow rate on the morphological characteristics of 

graphene array 

 

Figure 4.7 Evolution of graphene morphology as a function of gas flux (see caption of similar figure 

4.5 for more details). SEM images, 3D reconstruction, and 2D FFT transform of the arrays of graphene 

nanoflakes grown at 20 sccm (a), 30 sccm (b), and 50 sccm (c) gas flux. Low density of graphene 

nanoflakes for 20 sccm, much higher density for 30 sccm, and even lower density for 50 sccm is noted. 

2D FFT transform spectra show notable changes with increasing hydrogen flux, thus highlighting a 

change in morphology with the density of nanoflakes. Very narrow height distributions were obtained 

for 20 and 50 sccm (lower histograms). Growth at 500 W, 750 ºC, 4 min.  
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SEM analysis suggests that an increase in hydrogen concentration accelerates the vertical 

growth up until 30 sccm, but decreases the growth thereafter (Figure 4.7). This trend can be interpreted 

by the dual role played by hydrogen in graphene growth, as explained in the above section. During the 

initial increase in the amount of available hydrogen (from 10 to 30 scm), hydrogen acts like a catalyst 

to promote rapid dissociation of essential oil components and gives rise to a greater amount of carbon-

bearing building blocks that take part in the flake growth. In contrast, at the hydrogen flow rate above 

this value, the etching process dominates (Figure 4.7c). Furthermore, it effectively decreases the C/H 

ratio and hinders the successful supply of carbon species to the site of graphene growth. This is in good 

agreement with the Raman results, where a sudden increase in I2D/IG was noted, indicating the lower 

thickness of the resulted structure. These results suggest that while graphene can be grown with various 

hydrogen flow rates, 30 sccm was found to be most favourable for the present case.  

A comparison with the SEM image in Figure 4.5 (500 W, 10 sccm, 4 min) shows that the 

dependence of the length of vertical graphenes on the flow ratio is strongly nonlinear. One can see a 

dense array of vertically-oriented graphene structures at 10 sccm, less dense at 20 sccm, very dense at 

30 sccm, and a rather sparse array at 50 sccm. At the same time, the heights distribution obtained for 

samples produced at 30 sccm is similar to the interference growth observed at 10 sccm, which confirms 

the similarity of the growth conditions. In contrast to the results obtained with the varied power 

(Figure 4.5), no obvious plateau was observed with the varied flow ratio, yet we may conclude the 

presence of the plateau for 20 and 50 sccm cases for the observation time above 4 min (here one can 

see the initial stage of a very slow nucleation and growth), as well as for 10 and 30 sccm at the time less 

than 4 min (where one can observe the interference growth when the largest sheets do not grow while 

the smaller sheets still grow). 
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Figure 4.8 Spectrum of the fractal dimensions (power spectrum) does not significantly depend on the 

reactive gas supply (a); complex dependence of a triangulation-calculated fractal dimension on gas 

flux (b), with the highest values reached at 30 sccm (b). Indeed, the relevant SEM images shows simple-

shaped nanoflakes. Insets illustrates the dependence of maximum values of fractal dimension on gas 

flow. Minkowski boundaries distribution (c) and Minkowski connectivity (d) show narrow spectra for 

50 sccm, and well-developed patterns for 30 sccm of hydrogen flow.   

 

Lower fractal dimensions were found for low and high gas fluxes, while the highest value of 

fractal dimension was obtained at medium (30 sccm) flux. It is evident that a proper balance between 

the growth of the already nucleated structures, and nucleation of new structures is important to form 

well-developed structures with high fractal dimensions (Figure 4.8).  
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4.3.4. Effect of deposition time on the morphological characteristics of graphene 

arrays 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9. Influence of growth time on evolution of morphology (see caption of similar figure 4.5 for 

more details). SEM images, 3D-reconstruction, and 2D FFT transform of the arrays of graphene 

nanoflakes grown at 2 min (a), 6 min (b), and 8 min (c). The density of graphene flakes increases with 

time. 2D FFT transform spectra show a notable change with deposition time increasing from 2 to 5 

min, thus highlighting change of the morphology with the density of nanoflakes. Growth at 500 W, 750 

ºC, 30 sccm.  

(b) 6 min (a) 2 min (b) 8 min 

2m 6m 8m 
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The SEM images displayed in Figure 4.9 illustrate the morphology of graphene samples where 

the time of deposition was varied. As indicated by Figure 4.9a, the early growth of graphene is likely 

to involve evolution of base layers parallel to the substrate surface likely composed of nanocrystaline 

graphene sheets that possess initial nucleation sites for vertical growth. With an increase in deposition 

duration, nucleation sites begin to proliferate and act as the seeds to start the vertical growth. These 

observations are in good agreement with two phase growth mechanism of vertical graphene reported 

by previous studies [73, 74]. 

As time progressed further, with the arrival of more carbon-bearing reactive species, these seeds 

grow larger, predominantly in vertical direction caused by the combined effect of plasma sheath and 

the induced polarization of the graphitic layers. In the present study, the deposition time was optimized 

to 6 min at which point the whole surface was completely covered with vertically-oriented 

interconnected carbon nanostructures with thin edges (Figure 4.9b). However, longer deposition 

duration (8 min) tends to lead to agglomeration of individual free-standing walls. The heights 

distributions exhibit the initial stage of growth with the short nucleation time (Figure 4.9a), and two 

final stages of growth, when the capture areas on the surface are being superimposed (interference 

growth) (Figure 4.9b,c) 
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Figure 4.10  Spectrum of fractal dimensions (power spectrum) does not significantly depend on the time 

of deposition (a); complex dependence of fractal dimension (calculated by triangulation) on time of 

deposition (b), with the lowest values obtained after 2 min (b). Minkowski boundaries distribution (c) 

and Minkowski connectivity (d) show the widest distribution for the longer (8 minutes) process. 

4.4 Simulations: Insights into Growth Process 

4.4.1. Model and technique 

A multi-parameter model is used to look deeper into the processes that directly, physically and 

chemically, relate the formation of the highly-controllable morphology with the key parameters of the 

process. A schematic of the dependencies of the growth characteristics considered in this model is 

shown in Figure 4.11. The main species necessary for the vertical graphene growth are delivered by 

pressurizing a processing reactor with carbon precursor gas (PCxHy) and molecular hydrogen (PH2) at a 

total gas pressure P. When supplying the discharge power to the gas mixture, a transition from gas to 

plasma occurs, and this enriches the mixture with ions (mostly hydrogen) and electrons. The charged 

particles interact with a substrate mounted in the reactor, and a negative space charge sheath with a 

potential drop Us is formed between the plasma and the substrate. Neutral species also interact with the 

8 
min

in 

6 m 

6 min 
8 min

6m 

8 min

8 min
6m 

8m 



92 
 

substrate, and a number of carbon precursor (nCxHy) and hydrogen (nH2) molecules are adsorbed on the 

substrate surface with the adsorption energies ofaCxHy(α) and aH2(α), respectively.  

The molecules can dissociate through a thermal process at the substrate temperature Ts yet the 

dissociation energies disH2 and disCxHy are rather high to neglect this route without a catalyst on the 

surface. The ion bombardment changes the adsorption energies as comparing to the values calculated 

or measured for the ideal surface because of large number of defects generated due to the kinetic energy 

of the ions. The value of the energy depends not only on the sheath potential drop Us, but also on the 

total gas pressure P, since at the interactions with the neutral gas species, a charge exchange is possible, 

so the mean ion energy i can differ from the maximal value of Us. The ion energy acts as a powerful 

catalyst for the surface reactions – the adsorbed molecules are decomposed, and the radical and atomic 

species diffuse easily along the substrate surface due to the ion mixing; we describe the diffusion with 

the potential barriers of dCHx(α) and dH(α), respectively.  

As a result of the diffusion, the species collide and some stable densities of the adsorbed atomic 

hydrogen nH(α) and carbon-containing radicals nCHx(α) are obtained on the substrate. Then, the ion 

bombardment promotes a formation of a layer of amorphous carbon (α-C) on the substrate, and a large 

number of seeds for the future vertical graphene growth is generated as a result of the nucleation process 

(that is not considered in this model). This model consider the stage of the growth when the adsorbed 

carbon precursor radical reaches the sharp edge of the seed during the diffusion along the substrate 

surface, and starts the diffusion along the seed edge with the energy of the diffusion activation dCHx(E). 

It should be mentioned that the sharp edges generate rather strong local electric field due to the charge 

re-distribution, so they also are subjected to intense ion bombardment. When an ion hits the radical on 

the seed edge, the energy xi is gained, which facilitates the process of dissociation of the carbon-

containing radical, and the carbon atom is released and attached to the seed edge–the seed grows and 

develops into a vertical graphene sheet. Due to the dissociation on the edges, a sink term is added into 

the diffusion equation, which describes the number density nCHx(E) of the carbon-containing radicals 

along the edge. The non-uniformity of the shape of vertical graphene forces us to imply two components 

of the ion flux extracted from the plasma to the substrate: while we treat the substrate with the average 



93 
 

density ji of the ion current, the side edges of the vertical graphene sheet are subject to density jiR while 

the top of the sheet is exposed to the density jiL of the ion current. As a result of the plasma-enhanced 

process, a time moment t is characterized by a distribution Wvg(z,t) of the graphene flake width (where 

z is a coordinate originated from the substrate surface and directed normally from it) and the graphene 

flake length (height) Lvg(t). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 Schematics of the energies and processes involved in the simulations. Dependencies of the 

growth characteristics on the control parameters through the microscopic quantities. Complex 

interrelation of many elemental processes were taken into account in the model, to ensure detailed 

simulations of the graphene nucleation and growth, and formation of the array morphology. 

 

Briefly, the model describes the stationary mode of the diffusion [75, 76] of the hydrocarbon 

radicals from the substrate surface along the side edge to the top edge of the growing vertical graphene 

flake. It is assumed that the adsorption energies of CxHy and H2 molecules depend on the ion irradiation, 

being higher than for physisorption process. This is one of the main points of the model, which allows 

it to explain plasma-enhanced growth of nanostructures. A significant increase in the adsorption energy 

a allows to obtain rather high density of the adsorbed species on the heated surface, which cannot be 
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done in the absence of ion bombardment [77]. The partial pressure of the precursor gas is described as 

a function of the flows of the precursor gas and hydrogen [78]. The density nCHx(α) of carbon-containing 

radicals is found from the equilibrium between the processes of the molecule dissociation under the 

condition of ion bombardment, and recombination on the substrate surface. A general solution of the 

dependence of the density nCHx(z) of CHx radicals on the flake edge is then found [79]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Schematic of the mechanisms and reactions involved in vertical graphene growth. Motion 

of species involved into the reactions about the surface of growing graphene flake (a); list of chemical 

reactions taken into account in the model (b); schematic of the reactions (c); 
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4.4.2 Density of radicals of the precursor gas on a substrate surface 

Carbon-containing radicals play a vital role in the discussed mechanism of vertical graphene 

growth, and the substrate surface either in its initial state or once covered by amorphous carbon (α-C) 

is the place where the radicals are generated. The radicals are originated from the molecules of hydrogen 

and carbon-containing precursors adsorbed on the substrate and exposed to the bombardment by 

predominantly hydrogen ions extracted from plasma. During this process, the adsorbed species 

dissociate through a non-thermal process driven by the kinetic energy of the ions. The products of the 

dissociation diffuse along the surface and collide, thus making the recombination process possible. 

Generally, ion bombardment affects greatly the adsorption of molecules, their dissociation, as well as 

diffusion of the atoms and carbon-containing radicals. 

The densities nCxHy and nH2 of CxHy and H2 molecules on a surface of the substrate (z = 0) are 

expressed in a form of Langmuir adsorption isotherm at a suggestion of the small densities 

(nCxHy/n0 << 1, and nH2/n0 << 1) [77] 

𝑛𝐶𝑥𝐻𝑦

𝑛0
=

𝑃𝐶𝑥𝐻𝑦

𝑃0𝐶𝑥𝐻𝑦+𝑃𝐶𝑥𝐻𝑦
,                            

𝑛𝐻2

𝑛0
=

𝑃𝐻2

𝑃0𝐻2+𝑃𝐻2
.                                     (4.3) 

Where PCxHy and PH2 are the partial pressure of the precursor and hydrogen gases, Pa; P0CxHy and P0H2 

are the constants which do not depend on the pressures PCxHy and PH2; and n0 is a surface density of the 

adsorption nodes. The constants are found using the following equations: 

𝑃0𝐶𝑥𝐻𝑦 = (
𝑀𝐶+4𝑀𝐻

2𝜋ℎ2 )
3 2⁄

(𝑘𝐵𝑇𝑠)5 2⁄ 𝑒𝑥𝑝 (−
𝑒𝜀𝑎𝐶𝑥𝐻𝑦(𝛼)

𝑘𝐵𝑇𝑠
),  𝑃0𝐻2 = (

2𝑀𝐻

2𝜋ℎ2)
3 2⁄

(𝑘𝐵𝑇𝑠)5 2⁄ 𝑒𝑥𝑝 (−
𝑒𝜀𝑎𝐻2(𝛼)

𝑘𝐵𝑇𝑠
), 

(4.4) 

where MC and MH are the masses of carbon and hydrogen atoms (here we assume that methane is the 

carbon-containing molecule), kg; kB is the Boltzmann constant; e is the electron charge; Ts is the 

substrate temperature; aH2(), and aCxHy() are the adsorption energies of the hydrogen and carbon 

precursor molecules. 
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The partial pressure of the precursor and hydrogen are expressed as 

𝑃𝐶𝑥𝐻𝑦 =
𝜙𝐶𝑥𝐻𝑦

𝜙𝐻2+𝜙𝑥𝐶𝐻𝑦
𝑃,                      𝑃𝐻2 =

𝜙𝐻2

𝜙𝐻2+𝜙𝐶𝑥𝐻𝑦
𝑃,                               (4.5) 

where CxHy and H2 are the flows of the precursor gas and hydrogen, sccm; and P is the total gas pressure 

in the chamber, Pa (we suppose that no other gases are present in the vessel).  

4.4.3 Density of hydrocarbon radicals and atomic hydrogen on substrate surfaces 

The adsorption energy of the carbon precursor molecule is changed from aCxHy() to aCHx() 

after the ion-induced dissociation, and CxHy molecule is transformed into CHx radical. 

The number density of the precursor radicals nCHx on the substrate surface depends on the rate 

of dissociation of the adsorbed precursor and hydrogen on the surface. To describe a process of the 

radical generation, a balance between the processes of the radical generation and loss of the adsorbed 

molecules is considered; the rates of the density growth are described by the equations: 

𝑑𝑛𝐻2

𝑑𝑡
= −𝑛𝐻2 (𝑎0

2 𝑗𝑖

𝑒

𝑛𝐻2

𝑛0
+ 𝜈0𝑒𝑥𝑝 (−

𝑒𝜀𝑑𝑖𝑠𝐻2

𝑘𝐵𝑇𝑠
)) + 𝑛𝐻

𝑛𝐻

𝑛0
𝜈0𝑒𝑥𝑝 (−

𝑒𝜀𝑑𝐻(𝛼)

𝑘𝐵𝑇𝑠
),                             (4.6) 

𝑑𝑛𝐶𝑥𝐻𝑦

𝑑𝑡
= −𝑛𝐶𝑥𝐻𝑦 (𝑎0

2 𝑗𝑖

𝑒

𝑛𝐶𝑥𝐻𝑦

𝑛0
+ 𝜈0𝑒𝑥𝑝 (−

𝑒𝜀𝑑𝑖𝑠𝐶𝑥𝐻𝑦

𝑘𝐵𝑇𝑠
)) + 𝑛𝐻

𝑛0𝐶𝐻𝑥

𝑛0
𝜈0 (𝑒𝑥𝑝 (−

𝑒𝜀𝑑𝐻(𝛼)

𝑘𝐵𝑇𝑠
) +

𝑒𝑥𝑝 (−
𝑒𝜀𝑑𝐶𝐻𝑥(𝛼)

𝑘𝐵𝑇𝑠
)),                       (4.7) 

where0 is the lattice vibration frequency, 𝜈0 =
2𝑘𝐵𝑇𝑠

ℎ
, h is the Plank’s constant; ji is an average density 

of ion current extracted to a substrate from plasma; nH2 and nCxHy are the surface densities of the 

adsorbed molecules of hydrogen and carbon precursor; disH2 and disCxHy are the dissociation energies 

of the adsorbed hydrogen and hydrocarbon gas; nH and nCHx are the surface densities of the hydrogen 

atoms and hydrocarbon radicals; dH(α) and dCHx(α) are the diffusion activation energies of hydrogen 

atoms and hydrocarbon radicals. 

The first summand in both equations (4.6) and (4.7) describes the decrease in the number 

densities of the adsorbed molecules due to the dissociation caused by the ion bombardment (ji) and 
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temperature (Ts), while the second summand in both equations describes the increase in the number 

density due to the recombination of atoms and radicals (which are generated after the ion and thermal 

induced dissociation of the molecules) on the surface. 

For the steady mode, the derivatives equal zero, and the stationary surface densities of the 

species are determined: 

𝑛𝐻 = 𝑛0 (
𝑃𝐻2

𝑃0𝐻2+𝑃𝐻2
)

1 2⁄

(
𝑗𝑖𝑎0

2

𝑒𝜈0

𝑃𝐻2

𝑃0𝐻2+𝑃𝐻2
𝑒𝑥𝑝 (

𝑒𝜀𝑑𝐻(𝛼)

𝑘𝐵𝑇𝑠
) + 𝑒𝑥𝑝 (−

𝑒(𝜀𝑑𝑖𝑠𝐻2−𝜀𝑑𝐻(𝛼))

𝑘𝐵𝑇𝑠
))

1 2⁄

,                       (4.8) 

 

𝑛0𝐶𝐻𝑥 =

𝑃𝐶𝐻4
𝑃0𝐶𝐻4+𝑃𝐶𝐻4

(
𝑃0𝐻2+𝑃𝐻2

𝑃𝐻2
)

1 2⁄

(
𝑗𝑖

𝑒𝜈0

𝑃𝐶𝑥𝐻𝑦

𝑃0𝐶𝑥𝐻𝑦+𝑃𝐶𝑥𝐻𝑦
+

1

𝑎0
2𝑒𝑥𝑝(−

𝑒𝜀𝑑𝑖𝑠𝐶𝑥𝐻𝑦

𝑘𝐵𝑇𝑠
))

(
𝑗𝑖𝑎0

2

𝑒𝜈0

𝑃𝐻2
𝑃0𝐻2+𝑃𝐻2

𝑒𝑥𝑝(−
𝑒𝜀𝑑𝐻(𝛼)

𝑘𝐵𝑇𝑠
)+𝑒𝑥𝑝(−

𝑒(𝜀𝑑𝑖𝑠𝐻2+𝜀𝑑𝐻(𝛼))

𝑘𝐵𝑇𝑠
))

1 2⁄

(1+𝑒𝑥𝑝(−
𝑒(𝜀𝑑𝐶𝐻𝑥(𝛼)−𝜀𝑑𝐻(𝛼))

𝑘𝐵𝑇𝑠
))

.               (4.9) 

As it can be seen, the density of the hydrocarbon radicals depends on the precursor gas and 

hydrogen pressures, temperature of the substrate, and density of the ion current to the substrate surface.  

4.4.4 Ion energy and density of ion current as the factors determining surface 

sputtering 

In spite of the positive effect caused by the ion energy, which is expressed in activation and 

functionalization of the processed surface, high value of this parameter may result in intensive 

sputtering of the graphene surface thus terminating the whole growth process. Since the high ion energy 

intensifies the sputtering processes, low ion energy usually is required to grow graphene nanostructures, 

and for the plasma source applied in the processing chamber, when growing the graphene structures in 

low-pressure plasmas (RF, MW), a substrate is usually is either under the floating potential or is 

grounded; here the specific ion energy is determined by the discharge conditions:  

𝜀𝑖 ≈ 𝜀𝑠,                                                                                       (4.10) 

where s is the energy gained by the ion in the plasma sheath, and the energy s does not exceed the 

values from a few eV to a few tens of eV. 
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After the calculation of the ion energy, for the specified energy range the sputter yield can be 

found as 

Υ = Υ0 (
𝜀𝑖

𝑈0
)

𝑘
,                                                                               (4.11) 

where Y0, U0, and k are constants. For the narrow ranges of the ion energy the linear dependence is 

rather good fit, i.e. the above expression with k = 1. 

4.4.5 Rate of vertical graphene growth 

The carbon radicals n0CHx diffuse along the substrate surface, and some of them are adsorbed 

by the graphene flake side or edge during the diffusion, at which stage the adsorption energy is changed 

from aCHx() to aCHx(S) or aCHx(E), respectively (Ref. Figure 4.12). We consider that the energy aCHx(S) 

is very small due to the perfect crystalline structure, so adsorption of the radical by the side surface of 

the flake results in quick evaporation of the radical. If the radical is adsorbed by the defect graphene 

edge, the adsorption energy is increased (aCHx()  aCHx(E)), and the radical can diffuse along the edge 

for rather long time with low probability of evaporation or transition to the side surface of the vertical 

graphene sheet (aCHx(G) >> aCHx(S)) [80]. Because of the ion bombardment the radical on the flake edge 

dissociates and releases a carbon atom, which attaches to the graphene edge thus enabling vertical 

graphene growth. 

The rate of the growth due to a presence of the carbon species delivered from the substrate 

surface through the diffusion for the side edge of the VG sheet at a coordinate z is [81]; 

𝑉𝑣𝑔−𝑑𝑖𝑓(𝑧) =
𝑛𝐶𝐻𝑥

(𝑧)

𝑛0

𝑗𝑖𝑅

𝑒
𝑎0

3𝑒𝑥𝑝 (−
𝑒(𝜀𝑥−𝑑𝑖𝑠−𝜀𝑥𝑖)

𝑘𝐵𝑇𝑠
) =

𝑛𝐶𝐻𝑥
(𝑧)

𝑛0

𝑗𝑖𝑅

𝑒
𝑎0

3𝑒𝑥𝑝 (−
𝑒𝜀𝑥−𝑑𝑖𝑠(1−𝛼𝜀)

𝑘𝐵𝑇𝑠
),           (4.12) 

where 𝑛𝐶𝐻𝑥
(𝑧) is a density of CHx radicals at the edge of VG at a coordinate z; a0 is the lattice parameter 

of vertical graphene, m; n0 is the surface density of carbon atoms (density of adsorption nodes), 

𝑛0 = 𝑎0
−2; exp(-ex-dis/kBTs) is the probability for CHx radical to dissociate by overcoming a potential 

barrier x-dis (eV) which is the energy of CHx dissociation at the substrate temperature Ts, K; kB is the 

Boltzmann constant; e is the electron charge; 𝑎0
3 is the volume generated at the condition that the 
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reaction of dissociation of CHx radical followed by generation of carbon atom took place; jiR/e is the 

ion flux; nCHx/n0 is a probability to find the radical CHx in the adsorption node; nCHx/n0(jiR/e)exp[-e(x-

dis – xi)/kBTs)] is a frequency per unit area of dissociation of CHx radicals in the node due to the energy 

xi gained as a result of the interaction with the bombarding ion, x-dis  xi (a case when x-dis < xi is 

considered as sputtering),  = xi/x-dis is a ratio of the energy xi gained by CHx radical as a result of 

ion bombardment to the energy x-dis of dissociation of the radical. 

The sputtering results in a negative rate of the vertical graphene side edge for any coordinate z: 

𝑉𝑣𝑔−𝑠𝑝𝑢𝑡(𝑧) = −𝑌
𝑗𝑖𝑅

𝑒
𝑎0

3,                                                         (4.13) 

where 𝑌𝑎0
3 is the volume removed at the condition that carbon layer is affected by the ion flux jiR/e ;  

is the sputter yield. 

Hence, for the side edge of the vertical graphene with a coordinate z, the resulting growth rate is: 

𝑉𝑣𝑔−𝑊(𝑧) =
𝑑𝑊𝑣𝑔(𝑧,𝑡)

𝑑𝑡
= 𝑉𝑣𝑔−𝑖𝑜𝑛(𝑧) + 𝑉𝑣𝑔−𝑠𝑝𝑢𝑡(𝑧) =

𝑛𝐶𝐻𝑥
(𝑧)

𝑛0

𝑗𝑖𝑅

𝑒
𝑎0

3𝑒𝑥𝑝 (−
𝑒𝜀𝑥−𝑑𝑖𝑠(1−𝛼𝜀)

𝑘𝐵𝑇𝑠
) − 𝑌

𝑗𝑖𝑅

𝑒
𝑎0

3. 

(4.14) 

where Wvg is the half-width of the vertical graphene sheet. 

The distribution nCHx(z) is determined by solving the diffusion equation, which describes the 

stationary mode of the diffusion of the carbon precursor radicals from the substrate surface  

𝐷𝐶𝐻𝑥

𝜕2𝑛𝐶𝐻𝑥

𝜕𝑧2 = −
𝑛𝐶𝐻𝑥

(𝑧)

𝑛0

𝑗𝑖𝑅

𝑒
𝑒𝑥𝑝 (−

𝑒𝜀𝑥−𝑑𝑖𝑠(1−𝛼𝜀)

𝑘𝐵𝑇𝑠
),                                           (4.15) 

And the diffusion coefficient is  

𝐷𝐶𝐻𝑥
= 𝐷0𝐶𝐻𝑥

𝑒𝑥𝑝 (−
𝑒𝜀𝑑𝐶𝐻𝑥(𝐸)

𝑘𝐵𝑇𝑠
) =

𝜈0𝑎0
2

2
𝑒𝑥𝑝 (−

𝑒𝜀𝑑𝐶𝐻𝑥(𝐸)

𝑘𝐵𝑇𝑠
) =

𝑘𝐵𝑇𝑠

ℎ
𝑎0

2𝑒𝑥𝑝 (−
𝑒𝜀𝑑𝐶𝐻𝑥(𝐸)

𝑘𝐵𝑇𝑠
),            (4.16) 

where dCHx(E) is the activation energy for the diffusion of the radicals along the VG edge, eV; D0CHx is 

a diffusion coefficient. 

It is assumed that in the model the surface features such as vertical graphene seeds or sheets 

cause re-distribution of the local electric field above the substrate surface and generation of a very strong 
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electric filed which, in turn, results in the strong focusing of ions extracted from plasma to the sharp 

edges of vertical graphene [44, 82], so the ion current densities to the side edge jiR and top edge jiL are 

[83]; 

𝑗𝑖𝑅 = 𝑓𝑖𝑅𝑗𝑖,                                        𝑗𝑖𝐿 = 𝑓𝑖𝐿𝑗𝑖,                                                 (4.17) 

where fiR and fiL are the coefficients of the ion flux enhancement because of the focusing to the VG side 

and top edge, respectively; ji is the average density of the ion current extracted from the plasma to the 

substrate, A/m2. 

General solution of equation (4.15) is [79]; 

𝑛𝐶𝐻𝑥
(𝑧) =

𝐴𝑐𝑜𝑠 [(
𝑗𝑖𝑅

𝑒𝐷𝐶𝐻𝑥𝑛0
𝑒𝑥𝑝 (−

𝑒𝜀𝑥−𝑑𝑖𝑠(1−𝛼𝜀)

𝑘𝐵𝑇𝑠
))

1 2⁄

𝑧] 𝐵𝑠𝑖𝑛 [(
𝑗𝑖𝑅

𝑒𝐷𝐶𝐻𝑥𝑛0
𝑒𝑥𝑝 (−

𝑒𝜀𝑥−𝑑𝑖𝑠(1−𝛼𝜀)

𝑘𝐵𝑇𝑠
))

1 2⁄

𝑧];         (4.18) 

by considering that the density of CHx radicals should be n0CHx for z = 0, the final expression is: 

𝑛𝐶𝐻𝑥
(𝑧) = 𝑛0𝐶𝐻𝑥𝑐𝑜𝑠 [(

𝑗𝑖𝑅

𝑒𝐷𝐶𝐻𝑥𝑛0
𝑒𝑥𝑝 (−

𝑒𝜀𝑥−𝑑𝑖𝑠(1−𝛼𝜀)

𝑘𝐵𝑇𝑠
))

1 2⁄

𝑧].                      (4.19) 

After the substitution, the dependence of the rate of the vertical graphene flake half-width and length 

on time t is: 

𝑑𝑊𝑣𝑔(𝑧,𝑡)

𝑑𝑡
=

𝑛0𝐶𝐻𝑥

𝑛0

𝑗𝑖𝑅

𝑒
𝑎0

3𝑒𝑥𝑝 (−
𝑒𝜀𝑥−𝑑𝑖𝑠(1−𝛼𝜀)

𝑘𝐵𝑇𝑠
) 𝑐𝑜𝑠 [(

𝑗𝑖𝑅

𝑒𝐷𝐶𝐻𝑥𝑛0
𝑒𝑥𝑝 (−

𝑒(𝜀𝑥−𝑑𝑖𝑠(1−𝛼𝜀))

𝑘𝐵𝑇𝑠
))

1 2⁄

𝑧] − 𝑌
𝑗𝑖𝑅

𝑒
𝑎0

3,        

(4.20) 

𝑑𝐿𝑣𝑔(𝑡)

𝑑𝑡
=

𝑗𝑖𝐿

𝑒
𝑎0

3 𝑛0𝐶𝐻𝑥

𝑛0
𝑒𝑥𝑝 (−

𝑒𝜀𝑥−𝑑𝑖𝑠(1−𝛼𝜀)

𝑘𝐵𝑇𝑠
) 𝑐𝑜𝑠 [(

𝑗𝑖𝑅

𝑒𝐷𝐶𝐻𝑥𝑛0
𝑒𝑥𝑝 (−

𝑒(𝜀𝑥−𝑑𝑖𝑠(1−𝛼𝜀))

𝑘𝐵𝑇𝑠
))

1 2⁄

𝐿𝑣𝑔(𝑡)] −

𝑌
𝑗𝑖𝐿

𝑒
𝑎0

3,   (4.21) 

with W0vg and L0vg as the initial half-width and length of the VG, m. 
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The exact solution of the above equation can be found [84]; 

𝑊𝑣𝑔(𝑧, 𝑡) = (
𝑛0𝐶𝐻𝑥

𝑛0
𝑒𝑥𝑝 (−

𝑒𝜀𝑥−𝑑𝑖𝑠(1−𝛼𝜀)

𝑘𝐵𝑇𝑠
) 𝑐𝑜𝑠[𝐴𝑧] − 𝑌)

𝑗𝑅

𝑒
𝑎0

3𝑡 + 𝑊0𝑣𝑔,                       (4.22) 

 

𝐿𝑣𝑔(𝑡) =
2

𝐴
𝑎𝑟𝑐𝑡𝑔 [

√𝐷2−𝐶2

𝐷−𝐶

(𝑒𝑥𝑝(√𝐷2−𝐶2𝑡)+1)(𝐷−𝐶)𝑡𝑔
𝑎𝐿0𝑣𝑔

2
+(𝑒𝑥𝑝(√𝐷2−𝐶2𝑡)−1)√𝐷2−𝐶2

(𝑒𝑥𝑝(√𝐷2−𝐶2𝑡)−1)(𝐷−𝐶)𝑡𝑔
𝑎𝐿0𝑣𝑔

2
+(𝑒𝑥𝑝(√𝐷2−𝐶2𝑡)+1)√𝐷2−𝐶2

],(
𝐷

𝐶
)

2
> 1;    (4.23) 

where 

𝐴 = (
𝑗𝑖𝑅

𝑒𝐷𝐶𝐻𝑥𝑛0
𝑒𝑥𝑝 (−

𝑒(𝜀𝑥−𝑑𝑖𝑠(1−𝛼𝜀))

𝑘𝐵𝑇𝑠
))

1 2⁄

,                                           (4.24) 

𝐶 = −𝐴𝑌
𝑗

𝑖𝐿

𝑒
𝑎0

3,                                                                 (4.25) 

𝐷 =
𝑛0𝐶𝐻𝑥

𝑛0

𝑗𝑖𝐿

𝑒
𝐴𝑎0

3𝑒𝑥𝑝 (−
𝑒𝜀𝑥−𝑑𝑖𝑠(1−𝛼𝜀)

𝑘𝐵𝑇𝑠
).                                            (4.26) 

L0vg is the initial length of the flake; n0 is the surface density of carbon atoms (density of adsorption 

nodes) on the substrate surface; n0CHx is a density of carbon-containing radicals on a surface of the 

substrate (z = 0);  = xi/x-dis is a ratio of the energy xi gained by carbon-containing radical as a result 

of ion bombardment to the energy x-dis of dissociation of the radical; dCHx(E) is the energy of activation 

of diffusion of carbon-containing radicals along the flake edge; a0 is the lattice parameter of graphene; 

Ts is the substrate temperature; kB is the Boltzmann constant; e is the electron charge; is the sputter 

yield; A case when (𝐷

𝐶
)

2
< 1 is not considered here since it corresponds to the mode when sputtering 

of the surface is a dominant process. 

4.4.6 Numerical Procedure 

The task of modelling the growth of vertical graphene is complicated by the fact that many 

parameters cannot be measured directly, and even theoretical results obtained for the conditions without 

the ion bombardment cannot be considered as reliable. That is why in our model we determined the 

main adsorption and diffusion activation energies by fitting the calculation results to the experimental 
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data. The energies of adsorption aH2() and aCH4() were determined from the condition of sustaining 

the densities of the species on the substrate surface at elevated temperatures (of about 1000 C) at a 

value of about a few percent at least; the corresponding energies are aH2() = 1.5 eV and 

aCxHy() = 2.8 eV. The adsorption energy for carbon radical exceeds the value calculated for methane 

by density-functional theory (DFT) for adsorption on pristine graphene (0.45 eV), but is compared to 

the energy of adsorption on P-doped graphene (2.13 eV), and is much less than energy of adsorption on 

Al-doped graphene (3.28 eV) [85]. The energy of hydrogen adsorption on graphene is also much less 

than the energy obtained by DFT and Monte Carlo studies is about 0.1 eV [86], which can be attributed 

to the activation of the atomic bonds caused by the ion bombardment; the diffusion activation energies 

dH(α) = 1.6 eV, dCHx(α) = 1.8 eV, and dCHx(E) = 0.57 eV were determined also by the reason to fit the 

experimental results. Since the dissociation energies dH2 and dCH4 are rather high (4.52 eV and 4.95 eV, 

respectively) [87], the thermal dissociation does not affect the process of generation of hydrogen atoms 

and hydrocarbon radicals on the surface for the considered temperature range at the absence of a 

catalyst, so the plasma enhanced dissociation is the main driving force for the growth of vertical 

graphene. 

4.4.7 Numerical results 

 

 

 

 

 

 

Figure 4.13 Dependence of a vertical graphene length on time under various growth conditions (a); 

time evolution of the vertical graphene shape at Ts = 750 C. 
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Various growth characteristics obtained by use of equation (4.21) are shown in Figure 4.13. 

Principally, the dependence of the vertical graphene growth is described by a curve with a saturation, 

and the expression of the dependence is deduced from expression (4.23) at the limit for t  ∞: 

𝐿𝑣𝑔(∞) =
2

𝑎
𝑎𝑟𝑐𝑡𝑔√

𝐷+𝐶

𝐷−𝐶
.                                                                (4.27) 

 

 
 

Figure 4.14 Surface plots Lvg(P, Ts) of the vertical graphene length for the growth time t = 6 min and 

for different ratios of carbon precursor-to-total gas pressure: total gas pressure P is varied at a fixed 

pressure PCxHy = 3 Pa of the carbon precursor (a), P is varied at a fixed ratio PCxHy : P = 0.1 (b). 
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The saturation depends on the density of the ion current applied to the surface, and the higher 

is the current density the quicker the saturation occurs, and the lower is the maximum length of the VG 

structure. It should be noted that the dependencies calculated at 0.25-0.5 A/cm2 are consistent with the 

experiments conducted by the use of microwave plasma sources where dense plasma is generated [88]. 

For the relatively low densities of the ion current obtained in the low-pressure RF plasma setups [89, 

90], the linear part of the dependence is observed in the experiments, which is consistent with the 

experiments described in this chapter. All dependencies except one were calculated for the sheath 

voltage drop of about 20 V that is a fit to the floating potential developed on the isolated electrode 

exposed to the RF plasma, while the lower curve calculated for rather severe plasma conditions such as 

200 kV of the sheath voltage drop at the total gas pressure of 0.01 Pa is shown to illustrate the sputtering 

possibilities of plasma yet the parameters are adjusted just to show the effect for the short time. 

The shape of vertical graphene sheet calculated by the use of expressions (4.22) and (4.23) 

shows gradual evolution of the rectangular seed with almost constant length-to-width ratio of about 1:2, 

as it can be seen in Figure 4.13b. However, according to expression (4.22), the shape gradually changes, 

and the closer is vertical graphene to the saturation mode, the more cosine-like the VG shape is, since 

at the saturation point the vertical growth is stopped while the growth in width is not. 

An interesting feature is revealed when calculating the surface plots of the vertical graphene 

length obtained for the same growth time of 6 min, but different pressure operation modes (Figure 

4.14). When the carbon precursor pressure is fixed at 3 Pa, the maximum length of the VG structure 

can be as high as 1.2 µm, while for the fixed ratio PCxHy : P = 0.1 the length does not exceed 0.7 µm for 

the whole field of the pressure and temperature parameters, which confirms the necessity of adjustment 

of the ratio to control the growth process. 

 4.4.8 Simulation results 

The following discussion is aimed to establish the dependencies of short-and long-order 

morphological features on processing parameters by comparing the experimental data with the 

numerical results 
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Figure 4.15 Surface plots Lvg(ji, Ts) of the vertical graphene flake length for different operation modes 

and moments of time t: a – hydrogen pressure 18 Pa (corresponds to hydrogen flow of 20 sccm), carbon 

precursor gas pressure 3 Pa, total gas pressure 21 Pa, time of growth 6 min; b – hydrogen pressure 27 

Pa (hydrogen flow of 30 sccm), carbon precursor gas pressure 3 Pa, total gas pressure 30 Pa, time of 

growth 6 min; c – hydrogen pressure 45 Pa (hydrogen flow of 50 sccm), carbon precursor gas pressure 

3 Pa, total gas pressure 48 Pa; time of growth 6 min; d – Hydrogen pressure 45 Pa (hydrogen flow of 

50 sccm); carbon precursor gas pressure 3 Pa, total gas pressure 48 Pa, time of growth 20 min. 
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The graphs in Figure 4.15 show the plot of graphene length as a function of the density of the 

ion current [A/m2], which is considered as linearly dependent on the discharge power, and the substrate 

temperature [K] including the value 1023 K or 750 °C used in the experiment. The discharge power 

varied from 300 to 500 W in the experiment, and the density of the ion current in the range from 10 to 

100 A/m2 at the ion energy of 20 eV suitable for the sample under the floating potential and exposed to 

the low-pressure RF plasma was used in the calculations. The measured values of the vertical graphene 

structure length of about 0.25 µm obtained for the time of growth of 6 min was used as a reference point 

to fit the experimental data. The model describes the results shown in Figure 4.9 (SEM images of the 

graphenes growth for 2, 6, 8min), as well as the results shown in Figure 4.7c (where the increase in the 

hydrogen flow results in the decrease of the nanostructure size). The decrease in the sizes with an 

increase in the hydrogen gas flow is explained by the recombination of the hydrocarbon radicals (which 

are considered as the main building blocks) with the hydrogen atoms–the higher is the hydrogen density, 

the higher is the recombination rate, and the lower is the hydrocarbon radical density. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16 Relative densities of adsorbed species as a function of growth temperature at a fixed density 

of the ion current ji = 50 A/m2 (a), and the relative densities as a function of density of the ion current 

at the fixed growth temperature Ts = 750 C (b); other parameters are: PH2 = 30 Pa; PCxHy = 3 Pa 

 

Figure 4.15 highlights the importance of the direct ion flux for graphene growth. The growth 

is very slow when the ion current Ji is low, since the ion-induced decomposition of the adsorbed 
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molecules is not sufficient to create the necessary concentration of carbon radicals on the surface, even 

at a high adsorption energy. Moreover, a balance between adsorption and diffusion should be sustained 

to grow the nanostructures, as seen from the growth dependence on substrate temperature. In the case 

of low temperatures, concentration of the adsorbed molecules on surfaces can be high yet the growth is 

still slow due to a low mobility of the species. When the temperature is high, the growth is restricted by 

the low concentration of the molecules on the surface due to re-evaporation. 

The results shown in Figure 4.3 are explained by the assumed dependence of the surface state 

from the ion bombardment–the higher is the discharge power the higher is the density of the ion current, 

and the more intensive is the ion bombardment, which results in generation of the hydrocarbon radicals 

on the substrate surface. The calculations reveal the existence of a maximum of a dependence of the 

vertical graphene length on the growth temperature for the fixed density of the ion current. The 

maximum is explained by noting the dependence of the adsorption and diffusion on temperature. To 

obtain long vertical graphene sheets, we should deliver a large number of the carbon precursor radicals 

to the top of the flake, and make this delivery process as fast as possible.  

For that, high density of the radicals should be sustained on the substrate surface to make a 

rather powerful source for the diffusion along the vertical graphene edges, and the diffusion should be 

fast. However, the density of the adsorbed species is decreased with the temperature increase, unlike 

the diffusion that is enhanced by high temperatures. Thus, the temperature maximum describes the 

optimal conditions to provide vertical graphene growth with high productivity. The presence of the ion 

flux is vital for the catalyst-free graphene growth, since two important processes are initiated by ions: 

generation of adsorption sites on the surface to reach the necessary concentration of molecules on the 

surface (i), and generation of carbon radicals, which is possible due to the ballistic effects during ion 

bombardment (ii). The model accounts for both of these processes by introducing adsorption energies 

and by adding the density of the ion flux ji into the equations. 

The relation between the energies of adsorption of the molecular hydrogen and carbon 

precursor gas also is important: since the energy for hydrogen molecules is lower than that for the 

precursor, the decrease of the hydrogen molecule density occurs earlier than that for methane–at 
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approximately 500 C (Figure 4.16a) for H2 and at 800 C–for CxHy. Importantly, the molecular H2 

adsorption could be negligible at high temperatures without the effect of ion bombardment; however, 

the situation changes in the plasma environment, where strong ion bombardment is present. As a result, 

density of hydrocarbon radicals CHx adsorbed on the surface changes the behaviour from  decreasing 

initially to increasing until the high temperature maximum is reached at about 1000–1100 C; the high 

temperature mode is usually utilized in growth of the vertical graphene. According to the calculation, 

the ion current is a much more effective tool to control the density of the adsorbed precursor radicals, 

since a change in the ion current density by two orders of magnitude (which can be conducted in plasma 

reactors) results in changing the density of adsorbed radicals by seven orders of magnitude, while the 

temperature control allows to change the density by three orders of magnitude (Figure 4.16b).    

Thus the results of simulations show that the dependence of the vertical graphene length on the 

ion current density is monotonic for the entire range of parameters considered in this study. For the 

specific pressure range, ion energy is not restricted by the charge exchange collisions, so the sputter 

yield is almost constant. Moreover, ions promote adsorption of species on the surface of the growing 

nanostructures by generating a large number of defects and activating surface bonds. As a result, the 

adsorption energy increases, and hence the density of the adsorbed carbon precursor molecules elevates. 

However, when the growth is sustained at a high (about 103–104 Pa) pressure, the collision sheath should 

be considered. In this case, the charge exchange collisions lead to the formation of a directed flux of 

neutrals from the gas phase to the surface, wherein the processing flux energy can be adjusted by 

changing the gas pressure. Hence, the combination of the plasma power and gas pressure forms an 

additional control loop to adjust the growth of vertical graphenes to the specified conditions. Then, ions 

bombard the adsorbed molecules and decompose them, thus giving rise to the density of carbon 

precursor radicals, which are the main building blocks for the growth of vertical graphenes. Moreover, 

the bombardment also destroys carbon precursor molecules on the edges of vertical graphenes, thus 

promoting the release of carbon atoms to be incorporated into the lattice of the growing vertical 

graphene sheet. Thus, plasma is an environment that makes the growth of vertical graphene possible in 

the absence of any catalyst on the surface; where the sheets grow not via direct gas phase deposition of 



109 
 

building blocks onto graphene sheets but mainly under ion bombardment, with the thermal guided 

adsorption, diffusion, and dissociation complemented by ballistic effects. 

4.5 Conclusion 

Complex arrays of vertically-aligned few-layer graphene nanostructures were synthesized from 

orange essential oil through a single step, green, environmentally friendly catalyst-free RF-PECVD 

process, suggesting a set of plasma process conditions (duration of synthesis; power applied to the 

plasma discharge; gas flow rates) that maximise the development of highly-controllable, well-resolved 

graphene array morphologies. SEM, FEM, Raman and XPS techniques were used to study the 

morphology, and advanced analytical characterization methods (distributions of fractal dimensions 

calculated by triangulation and power spectrum methods, 2D FFT transforms, 3D reconstructions of the 

arrays, as we as Hough transformation spectra and heights distributions) were then utilized to analyse 

various geometrical and statistical parameters and characteristics of the arrays synthesised under various 

process conditions. Moreover, a specially developed model was then used to conduct a detailed multi-

parameter simulation of the array formation on plasma, to reveal the major processes and drivers that 

govern and significantly influence the array morphology and other characteristics of large, complex 

patterns of the vertically-aligned few-wall graphene flakes. It was found that all the examined 

parameters of the reactive plasma environment significantly influence the array morphology and hence, 

could be used as efficient control knobs. 

Specifically, narrow distributions of the graphene nanowalls were obtained at 300 and 500 W 

with much wider array synthesised at 400 W. This was confirmed by well-articulated Hough 

transformation spectra and 2D FFT transform patterns. The distributions of fractal dimensions 

calculated as power spectrum and by triangulation, as well as Minkowski boundaries distributions and 

connectivity also manifest the best array morphology obtained at 300 W. Similar results were obtained 

for the analysis of experiments conducted in 500 W discharge, with the most narrow height distributions 

and well-shaped Hough transformation spectra obtained for 20 and 50 sccm of gas supply. The spectra 

of the fractal dimensions have also confirmed that the arrays grown at 20 and 50 sccm feature the most 

articulated and regular morphology. The experiments on the array grown at various process durations 
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have demonstrated that the best result in terms of well-ordered morphology was obtained for short 

(about 2 min) processes, which are enabled by strong material and energy fluxes from active plasma 

environment; however, short process still results in a low-density graphene array. The analytical model 

was then used to provide a deep insight in these processes, based on a large number of elemental events 

(Figure 4.11 and 4.12 illustrates a scheme of the interactions that were taken into account). The model 

has enabled detailed simulation of the major parameters in the graphene arrays, as well as parameters 

of intermedium processes which cannot be directly measured and assessed in the experiment (e.g., 

relative densities of adsorbed species as a function of growth temperature and density of the ion current, 

and the relative densities as a function of density of the ion current). The simulation results ensured 

important insights and deeper understanding of the processes that govern formation of the morphology, 

and have revealed several important facts, such that e.g. the ions promote the adsorption of species on 

the surface by generating a large number of defects and activating surface bonds; ions bombard the 

adsorbed molecules and decompose them, promoting re-nucleation; and ensure the release of carbon 

atoms to be incorporated into the lattice vertical graphenes. 
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Chapter 5 

One-step Plasma-assisted Synthesis of Graphene from Citrus 

sinensis oil: Acetone Sensors and Evidence of Onion-like 

Structures 

 

Citrus sinensis essential oil, a volatile aroma liquid composed of non-synthetic hydrocarbon 

compounds, was successfully reformed in a single-step, environmentally sustainable radio frequency 

plasma enhanced chemical vapor deposition into the ordered patterns of vertically oriented graphene 

nanosheets of complex structure incorporating the onion-like structures (multi-layer fullerenes), and 

their potential for gas sensing application is demonstrated in this chapter. Laser Raman spectroscopy, 

scanning and transmission electron microscopies, as well as sophisticated statistical and morphological 

analyses were used to probe deep into the structure of graphenes formed on four various conducting 

and insulating substrates. Highly promising for various applications such as sensing and catalysis, 3D 

nanoporous onion-like loop nanostructures were then unveiled, and the mechanism of their formation 

was suggested. The surface energy of the graphene patterns was then calculated by three different 

surface energy models. Finally, integration of C. sinensis oil derived graphene patterns into a 

chemiresistor prototype sensor has revealed a promising sensing activity towards acetone. S. 

Alancherry, K. Bazaka, I. Levchenko, A. Al-Jumaili, O. K. Varghese and M. V. Jacob,  “One-step 

plasma assisted synthesis of graphene from Citrus sinensis oil for acetone gas sensors”, has been 

submitted to Carbon. 
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5.1 Introduction 

Graphene, an atomically thin and hexagonally oriented lattice of sp2 hybridized carbon atoms 

perpetuate the scientific interest over wide range of applications since inception. The 2-D crystalline 

carbon framework with its extraordinary carrier mobility [1], large surface-to-volume ratio, 

transparency [2], mechanical flexibility and robustness [3] extend its application potential to high 

frequency nano electronics [4], energy storage [5], photovoltaics [6], sensors [7], and transparent 

conductors [8]. Exhibiting a layer dependent physical properties, the current progress has enabled the 

fabrication of single, few layered graphene through a range of techniques such as micromechanical 

exfoliation [9], chemical vapor deposition (CVD) [10], epitaxial growth [11], and plasma enhanced 

chemical vapor deposition (PECVD) [12] along with the quality assessment [13]. However, most of 

these techniques either employ highly purified petroleum derived compressed precursor gases or require 

multistep solvent assisted process and hence consumes more energy, resources and money. Therefore, 

it is essential to identify novel bio renewable precursors and efficient fabrication techniques for the 

development of graphene at lower cost and minimal environmental impact. 

The ever-increasing demand for graphene in advanced applications necessitate scalable and 

economically affordable growth on arbitrary substrates. As far as scalability is concerned, thermal CVD 

is promising for large area wafer-sized high quality graphene growth [14]. Nevertheless, CVD 

demanded high reaction temperature (900‒1200C) and long-lasting catalyst aided process that impose 

laborious post-growth graphene transfer procedure thus enhances the total production cost [15-17]. On 

the other hand, micromechanical exfoliation restricted to laboratory scale production and epitaxial 

growth required extremely high vacuum (10-4 to 10-9 Torr) and temperature (1200-1600°C) [18]. In this 

context, PECVD was recognized for single-step, non-precursor specific, catalyst-free and low 

temperature fabrication of graphene [19-21]. Since the first ever synthesis of few layers of graphene 

through PECVD by Wang and coworkers [22] much attention was focused in this area and recent studies 

have demonstrated very low temperature fabrication of graphene from hydrocarbon sources [23-25].  

Recent investigations have revealed considerable advancements in the development of 

graphene from bio-renewable resources principally aimed to achieve the futuristic goal of implementing 
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sustainable technologies for safe future [20, 21]. Until now, different approaches such as thermal CVD, 

simultaneous carbonization and thermal exfoliation have been employed to convert various natural 

carbon sources like biomass, plant extracts, waste plastics, food/insect waste etc. to graphene 

nanostructures [26-28]. However, these techniques to some extend challenge the sustainability as the 

reformation process involve high temperature consumption, catalyst assistance and harsh chemical 

treatments. As an alternative approach that is more environmentally friendly and efficient, PECVD 

technique has been acknowledged, owing to its outstanding capability to break and rebuild virtually any 

type precursors to functional nanomaterials [21, 29, 30]. However only handful of literatures were 

published so far on the plasma assisted synthesis of graphene from non-conventional resources and 

hence there exist plenty of space to research. 

Gas sensors play crucial role in various domains of industries, environment, agriculture and 

health for detecting dangerous gases and volatile organic compounds bio marking different diseases. 

Strongly defined by the delocalized electrons, carrier mobility of graphene can be significantly altered 

by the adsorption or desorption of molecules, therefore widely employed in gas sensing and biosensing 

applications [31, 32]. With its atomic thinness and low noise level graphene based sensors  demonstrated 

exceptionally high sensitivity even towards single gas molecule [33, 34]. Driven by the huge surface-

to-volume ratio a large body of literature have been published on graphene sensors for the selective 

detection of different gases such as NH3 [35], NO2 [34], CO2 [36], CO [37], H2S [38], C3H6O [39] etc. 

in trace concentrations. Meanwhile, efforts are also devoted to enhance the performance of graphene 

based gas sensors by improving the sensitivity, reproducibility and cross sensing at room temperature 

and under humid conditions [34]. However, environmentally sustainable and economically feasible 

fabrication of graphene based gas sensors is yet challenging due to the high production cost imposed 

by expensive precursors and complex production techniques. To this end plasma derived graphene from 

natural resources are prospective candidates. 

This chapter reports a simple and environmentally benign RF-PECVD fabrication of vertically 

oriented graphene nanostructures from a renewable precursor C. sinensis essential oil and its potential 

for gas sensing application. Firstly, through RF-PECVD vertical graphene nanostructures were 
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fabricated on different substrates such as copper, nickel, silicon and quartz. The extent to which the 

substrate influenced structural, topographical and chemical properties of plasma synthesized vertical 

graphene arrays were studied with the help of laser Raman spectroscopy, scanning electron microscopy, 

2-D Fast Fourier Transform and X-ray photoelectron spectroscopy techniques. A set of three different 

surface energy model was employed to estimate the surface energy. Finally, a chemiresistor sensor 

prototype incorporated with C. sinensis essential oil derived graphene was fabricated and evaluated its 

sensing performance towards acetone gas. 

5.2 Experimental 

 

Figure 5.1 Custom-made quartz tube plasma enhanced chemical vapor deposition system. 

 

The fabrication of graphene was carried out using a custom-made quartz tube RF-PECVD 

system. Figure 5.1 depicts the schematic of the experimental set up. Different substrates copper, nickel, 

quarts and Si/SiO2 having size (1×1 cm) were selected for this study. Prior to deposition, the substrates 

were cleaned by sonicating with acetone (5 min), isopropanol (5 min) and finally dried with N2 gas. 

Cleaned substrates were loaded into an alumina boat and arranged at the middle of the reactor. The tube 

was then pumped down to a base pressure 0.03 mbar and the substrate was heated up to 750ºC.  

Following this, hydrogen gas was flown into the system at a flow rate 30 sccm and the system pressure 
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was adjusted to 0.3 mbar. The RF energy from Navio RF generator (13.56 MHz, 1.2 kW max) 

capacitively coupled to the quartz tube reactor via an impedance matching network and two external 

copper electrodes. Prior to deposition of graphene, plasma was ignited at 500W and the substrates were 

pre-etched for 1m to remove any contaminants remained on the surface. Subsequently, the C.sinensis 

vapor was fed into the reactor via needle valve and the deposition was carried out for 6 minutes. 

Confocal laser Raman spectroscopy (Witec, 532 nm laser) and scanning electron microscopy (Hitachi 

SU 5000) were used to investigate the structural and morphological features. The elemental analysis 

was carried out using X-ray photoelectron spectroscopy (Physical Electronics Model 5700 with an Al 

x-ray source). A MultipakTM software was used for data processing. The transmission electron 

microscopic images were obtained using a TEM. The contact angle measurements were performed 

using KSV 101 system. Surface energy was calculated using Owens, Wendt, Rabel and Kaelble 

(OWRK) approach, Van Oss Chaudhary and Good method and Neumann model. 

The environmental response of the graphene films on quartz substrates were studied by 

exposing them to the test gas/vapor atmosphere and monitoring the resistance as a function of time. 

Circular platinum electrodes of thickness about 100 nm, diameter 1 mm with center to center spacing 

about 2 mm were formed on the surface of a graphene film by direct current (dc) sputtering. The sample 

was then loaded inside a stainless steel chamber fitted with a septum sealed port for injecting the gases 

or vapors of interest. Gas flushing lines also were connected to the chamber. Electrical contacts were 

taken from the platinum electrodes using platinum wires. The resistance was measured using a 

Picoammeter (Keithley 6487) interfaced with a computer. A constant 0.5 V was applied to measure the 

resistance. While a calibrated syringe was used to inject a known amount of gas/vapor into the chamber, 

argon was used to flush the chamber and remove the test gas environment. The argon flow was 

controlled by a mass flow controller (MKS Instruments). After loading the sample, the chamber was 

flushed with Ar till the baseline resistance was stabilized. This was followed by stopping the argon 

flow, sealing the chamber and injecting a known amount of test gas/vapor into the chamber. After the 

resistance reached a saturation level, the gas inlet and outlet were opened and the chamber was again 



124 
 

flushed with argon. The resistance was monitored the whole time using a computer. The sensitivity S 

was calculated using the relation  

𝑆 =
𝑅𝑔− 𝑅𝑎𝑖𝑟

𝑅𝑎𝑖𝑟
 100% 

5.3 Results and Discussion 

5.3.1 Raman characterization of plasma derived vertically oriented graphene 

 

 

Figure 5.2 Raman characterization of plasma synthesized vertically-oriented graphene samples (a) 

Raman spectra of graphene deposited on copper, nickel, Si/SiO2 and quartz substrates, (b) Band 

intensity ratios and (c) FWHM for D, D and 2D Raman bands for the same set of samples. 

Raman spectroscopy is a well-established technique for identifying graphene and to characterize 

its structural features such as defects, number of layers, impurities, strain and atomic arrangement at the 

edges [40]. Figure 5.2a plots the Raman spectra for vertical graphene deposited on copper (CG), nickel 

(NG), Si/SiO2 (SG) and quartz (QG) substrates and confirmed the formation of multi-layer graphene 

with the presence of unique vibrational D, G and 2D peaks. Even though the characteristics D, G and 
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2D peaks were formed at nearly similar wavenumbers changes have observed in peak intensity and 

broadening especially for the 2D band. The D peak observed at ~1340 cm-1, generated by the A1g 

breathing mode vibrations  of hexagonal carbon rings and accounts for the various defects such as edges, 

vacancies, grain boundaries, doped atoms, and change in hybridization (sp2 to sp3) that hinder the long 

range order of hexagonal honeycomb lattice [40, 41]. Compared to CG, NG and SG Raman spectrum 

obtained from QG exhibited relatively larger D band hence indicate structure that is more defective. 

The typical G peak located ~1570 cm-1, related to the doubly degenerate E2g phonon mode at the 

Brillouin zone center, originated from the first order Raman scattering from the carbon-carbon 

stretching vibrations [42]. In addition, the symmetry breaking due to the finite size of sp2 hybridized 

crystallites caused a shoulder peak (~1620cm-1) intercalated with G peak termed as Dʹ [43]. The G peak 

attains more intensity with respect to increase in layer numbers as more carbon contributes to similar 

kind of vibrations [42, 44]. The 2D band situated around 2670 cm-1 resulted from the second order 

phonon vibrations at the Brilllouin zone boundary and showed a significant variation in the peak 

intensity with respect to the substrates. The relative intensity ratios between the prominent D, G and 2D 

bands were extracted from the Raman spectra and plotted at Figure 5.2b. The ID/IG ratio remained low 

in the range 0.64‒0.55 for CG, NG and SG representing a very low defected structure but obtained 

relatively high for QG (0.97). Apart from this, CG presented larger intensity 2D peak and the highest 

I2D/IG (1.19) ratio, QZ on the other hand displayed the smallest intensity 2D peak, and the lowest I2D/IG 

(0.44) ratio. The FWHM for D, G and 2D were projected at Figure 5.2c and noticed with a steady 

increase in peak broadening particularly for 2D band. The CG exhibited the lowest FWHM of 73.36 

cm-1 and increased up to 100.79 cm-
1 for QZ, which again confirms the defective nature of QZ.  
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5.3.2 Morphological features of vertically oriented graphene arrays on different 

substrates 

Figure 5.3 (a-d) presents the SEM images, three-dimensional reconstructions and EDX spectra 

of as-grown CG, NG, SG and QG nanosheets, respectively. As can be seen, the PECVD of C.sinensis 

oil gives rise to densely packed interconnected vertically projected free-standing carbon nanowalls 

irrespective of the substrates. Morphologically, QG showed a maze-like appearance while the rest of 

the samples have petal-like network. In addition, CG, NG and SG seems to be structurally more rigid, 

well separated and less defected compared to QG. The difference in the SEM images with respect to 

substrates may plausibly arise due to the change in the nucleation and growth rate imposed by different 

substrates. Worth noting, that the substrates play no role in the dissociation of molecular species in 

PECVD, instead the plasma-substrate interaction and the surface diffusion of growth species differ for 

each substrate that caused difference in the surface topology [45]. As the growth occurred both on 

metallic and insulating substrates under the same plasma conditions and can be extended to arbitrary 

substrates which make the device fabrication less complicated and economically feasible by eliminating 

all intricacies (formation of wrinkles and retention of impurities etc.) associated with the post-synthesis 

graphene transfer [16, 17]. The EDX spectra was also recorded (Figure 5.3, right column) as a primary 

tool to get an insight of the chemical composition and the extent to which the PECVD process converted 

the multi-component C.sinensis oil into graphene nanostructure. The spectra detected carbon and 

oxygen along with substrate constituents.  
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Figure 5.3 Morphological features of plasma derived vertically-oriented graphene nanostructures 

fabricated over different substrates. Scanning electron microscopic images (left column), three-

dimensional representation of the relief (central column), and the energy dispersive X-ray diffraction 

spectrum (right column) for  graphene patterns grown on (a) copper, (b) nickel, (c) Si/SiO2 and (d) 

quartz substrates, respectively. 
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Figure 5.4 Morphological analysis of the four samples shown in Figure 5.3. Normalized height 

distribution functions of the vertically oriented graphene patterns on different substrates: (a) copper, 

(b) nickel, (c) Si/SiO2 and (d) quartz. The pattern on Si/SiO2 (c) demonstrates the most uniform 

distribution, followed by the array formed on quartz (d). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Morphological analysis of the four samples shown in Figure 5.3. 2D Fast Fourier Transform 

(2D FFT) spectra of the vertically-oriented graphene patterns on different substrates: (a) copper, (b) 

nickel, (c) Si/SiO2 and (d) quartz. The pattern on Si/SiO2 (c) demonstrates the most ordered (less noised) 

structure. 
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Figures 5.4 and 5.5 represent the further morphological analysis of the four samples shown in 

Figure 5.3. Normalized height distribution functions of the vertically-oriented graphene patterns on 

different substrates (Figure 5.4) reveals that the pattern grown on Si/SiO2 (Figure 5.4c) demonstrates 

the most uniform distribution, followed by the array formed on quartz (Figure 5.4d). The Fast Fourier 

Transform (2D FFT, Figure 5.5) spectra of the vertically-oriented graphene patterns on different 

substrates also) demonstrates the most ordered (less noised) structure for the pattern grown on Si/SiO2. 

5.3.3 Transmission electron microscopic studies 

The TEM micrographs (Figure 5.6) from QG revealed the formation of closed loops and highly 

important onion-like carbon nanostructures resembling the multi-layer fullerenes. The size of the loop 

varies at different regions. To the best of our knowledge, post-synthesis techniques like Joule heating, 

electron beam irradiation and high temperature annealing have previously been reported that caused the 

formation of loops in graphene nanostructures whereby the creation of defects critically affected the 

curvature and physicochemical properties [46-48]. Chuvilin et al. [46] demonstrated that electron beam 

irradiation remove carbon atoms from the strained hexagonal graphene lattice and create pentagons that 

triggers the curving of graphene edges to bowl shaped fullerene structures. Similarly, non-hexagonal 

rings introduced into carbon nanotube structure through high energy ionic bombardment by post plasma 

treatments initiate bending of hexagonal nanosheets and reported to form onion-like nano-protuberance 

[49]. Strictly controlled by the annealing temperature Delgado et al. [47] observed a thermally induced 

loop formation produced by the defect annihilation mechanism upon high temperature treatments of 

graphitic nanoribbons. Worth noting that, plasma growth in fact simultaneously involve deposition of 

growth species and etching of the same from the ionic bombardments. Therefore, we assume that the 

high-energy ionic collisions during the plasma deposition process introduce defects in growing 

graphene lattice that induces curving of graphitic basal planes to eliminating dangling bonds and 

ultimately resulted in the loop formation. The loop formation was also noticed in CG and was given in 

the Supporting Information, Figure S1. Importantly, the onion-like structures demonstrate several 

exceptional properties, very important for various applications ranging from catalysis [50] to energy 

storage [51], electrodes in supercapacitors [52], rechargeable batteries [53, 54], and many others. Below 
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we will discuss briefly some plausible mechanism that may lead to the formation on onion-like 

structures in the plasma reactive environments. 

 

Figure 5.6 Representative transmission electron microscopic (TEM) images of graphene samples 

deposited on quartz substrates. 

5.3.4 Plausible mechanism on nano-onions and nano-rings formation 

Let us examine in short the possible mechanisms that could result in the formation of multi-

layered fullerene-like nano-onions. As we have mentioned above, these structures are highly promising 

for various applications and a deeper understanding of the formation mechanisms, and hence the 

possibilities to control the structure, are required for efficient applications of these nanostructures. It 

should be mentioned that the two types of closed nanoparticles, namely surface-based nano-rings and 

nano-onions similar to multi-layered fullerenes, are possible. Figure 5.7 illustrates the rings (a) and 

onions (multi-layered fullerenes) (b), both are important for the applications due to high specific surface 

area and specific surface energy. 
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Figure 5.7 (a) Formation carbon rings on surface. This system is a combination of the topside 

monolayer graphene domain (gray) and the bottom side few-layer graphene ribbons (blue), are 

synthesized on Cu foils by heating in a H2/CH4 atmosphere at 1074 °C. Reprinted from [55]. Note that 

our structures were synthesized at much lower temperatures, due to strong activation by plasma-

accelerated ions. (b) A model of three-dimensional onion-like structure. Reprinted from [51]. 

According to TEM observations (see also Figure S1 in the Supporting Information available), the 

structures close to onions shown in (b) were synthesized in this work. 

 

Several sound mechanisms for both three-and two-dimensional structures were already 

discussed in the recent publications (see e.g. [51, 55] ), with high temperatures and intense diffusion 

processes being considered as the key processes. However, while in the publications the onions of μm-

scale sizes are demonstrated, our finding have revealed much smaller (‘true nanoscale’) structures that 

range from 10 to 20-30 nm in size (see TEM images in Figure 5.6, and Figure S1 in the SI available). 

In general, the formation and growth of similar structures is interpreted in terms of an initial nucleation 

(on copper or some other surface that does not feature high solubility of carbon) of small graphene 

nuclei, followed by the edge growth, formation of carbon ring (or multilayered structure), and repeated 

growth that eventually result in the formation layered two-or three-dimensional structures of μm-scale 

size. Importantly, the heat process techniques require the temperatures of about 1000 ºC for this kind 

of growth, while in our plasma-based technology we rely on much lower temperature due to strong 

activation by plasma-accelerated ions [56, 57]. Apart from the technological benefits and lower cost, 

such a process could potentially ensure much higher controllability [58] and lower level of damage to 

the crystalline lattice of both substrates and formed carbon nanostructures [59-61]. 

 



132 
 

5.3.5 Elemental analysis of plasma synthesized vertical graphene  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 XPS spectra of vertically-oriented graphene samples grown on copper, nickel and silicon 

substrates (a) survey scan, (b-d) high resolution C1s scan. 

The XPS spectra of graphene nanosheets derived from C.sinensis essential oil fabricated on 

different substrates was recorded and given in Figure 5.8. The survey scan of CG, NG and SG (Figure 

5.8a) resemble each other, showed no apparent change in peak positions with respect to the substrates 

and located a single strong peak at binding energy (BE) of ~284.82eV assigned to C1s peak. In addition 

to this, a feeble intensity peak is formed around BE~532.45eV attributed to O1s peak, plausibly due to 
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the exposure of graphene samples with ambient air. The percentage of atomic concentration of carbon 

was estimated to 98.12, 99.27 and 98.69% for CG, NG and SG respectively. Likewise, the atomic 

percentage for impurity oxygen was also calculated and obtained between 1.54‒0.66%. The elemental 

analysis confirms that the RF-PECVD and the process conditions are well enough to break and 

reassemble the multi-component C. sinensis oil into high pure graphene nanostructure (dominated by 

carbon element) over different conducting and insulating substrates. Figure 5.8b-d depict the high-

resolution XPS scan of C1s band from CG, NG and SG samples. The deconvoluted C1s peak contained 

a major intensity band at BE~284.8 that corresponding to sp2  hybridized carbon and a medium intensity 

band at BE~285.4 eV related with sp3 hybridized carbon in the graphene nanostructure. In addition, a 

very feeble peak was observed around BE~291.3 eV, corresponds to the shake-up energy loss feature. 

5.3.6 Contact angle measurements and surface energy studies 

Surface energy is an important surface property determining the interactions of solid surface 

with its surroundings. As graphene exhibit exceptionally high surface area, the interactions with the 

nearby environment became significant. The surface energy play critical  role in the graphene‒substrate 

adhesion and surface adsorption of biomolecules, living cells and bacteria, determining the electronic 

and biomedical applications of graphene [62, 63]. Hence, it is important to have a good knowledge on 

surface properties of graphene to make use of the excellent material properties in real applications 

As most of the practical applications depends on the wettability, number of studies have been 

reported regarding the contact angle measurements of graphene. The wettability shows large 

dependence to the chemical composition and the geometric structure of the solid surface [64-66]. 

Exhibiting hydrophobic behavior a range of water contact angle values has reported for graphene, of 

which the horizontal graphene showed water contact angle within the range 90‒96º [67, 68]. Moreover 

the contact angle was found affected by the supporting substrate [69]. Though, a high water contact 

angle of 127º reported for planar graphene, but challenged by researchers and theoretically arrived at a 

value of the order 95-100º for single layer graphene [68]. On the other hand, vertically oriented graphene 

exhibited highly hydrophobic behavior that originated from the combined effect of 3-D porous 

structure, non-polar surface nature, surface chemistry, and roughness effect [70]. Recent study by 
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Mohan et al. [20] reported a very high water contact angle of 135 for as-grown graphene derived from 

M. alternifolia extracts. A WCA of 152.0º was reported by Dong et al. [71] for chemically modified, 

microwave plasma derived vertical graphene formed on patterned silicon substrates. There are few 

studies reporting the tailoring the wettability of vertical graphene through controlled plasma exposure 

[63, 65]. Although, number of studies have been published on the WCA measurements, only a handful 

are extended to the surface energy analysis [72-75].  

The most common way to measure the surface energy/wetting properties of graphene with 

reference to a liquid is by measuring the contact angle of the liquid droplet on the graphene surface. 

The calculation of solid surface tension from contact angle measurement is based on Young’s equation 

described as  

                                                    𝛾𝑠 = 𝛾𝑠𝑙 + 𝛾𝑙 cos 𝜃,                       (5.1) 

where s is the solid surface tension, l is the liquid surface tension, sl is the solid-liquid interfacial 

tension and θ is the contact angle. Worth noting that, the surface energy measurements depend on a 

particular model and selected based on the nature of surface. For non-polar surfaces, it is more likely to 

employ methods that do not lay on specific molecular interactions and vice versa [76]. Likewise, in 

order to measure the surface energy, the test liquid surface tension should be equal or greater than the 

expected solid surface tension, otherwise complete wetting occurs and liquid spread over the solid 

surface instantaneously [77].   

Based on the contact angle measurements, different surface energy calculation methods such 

as Zisman’s critical tension, acid-base approximation, Fowkes approach, Neumann method, Owens-

Wendet, Berthelots approximation etc. have been developed and detailed elsewhere [75, 77, 78]. In fact, 

the calculated surface energy have explicit dependence on the surface energy model, and unlikely to 

predict the most accurate method. The present study, have chosen Neumann approach, Owens, Wendt, 

Rabel and Kaelble (OWRK) approach and van-Oss-Chaudhury-Good relation to calculate the surface 

energy of plasma synthesized vertically oriented graphene synthesized from C.sinensis essential oil.  
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The contact angles measured for SG using water, glycerol, formamide, ethyleneglycol, 

dimethylsulphoxide (DSMO) and diiodomethane (DIM) are tabulated along with surface tension 

components in Table 5.1. The as-fabricated vertically oriented graphene presented strong hydrophobic 

nature and displayed a high water contact angle of 129º. The second highest contact angle was measured 

for glycerol, 107.3. The remaining liquids formamide, ethylene glycol, dimethyl sulfoxide and 

diiodomethane exhibited successively decreasing contact angle, 94.54º, 81.39º, 64.40º and 39.5 

respectively (refer Figure 5.9 and table 5.1).  

Table 5.1 Polar and dispersive surface energy components and average contact angle measured for 

different solvents. 

 

 

 

 

 

 

 

 

 

 

Solvent 
Contact angle 

(Degrees) 

Surface tension 

(mJ/m2) 

Surface tension components 
(mJ/m2) 

γl γl
+ γl

- 

Water 129.04 72.8 21.8 25.5 25.5 

Glycerol 107.03 64.0 34.0 3.9 57.4 

Formamide 94.54 57.5 38.5 2.3 39.6 

Ethylene glycol 81.39 48.0 29.0 1.9 47.0 

DSMO 64.40 43.6 35.6 0.5 32.0 

DIM 39.50 50.8 50.8 - - 
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Figure 5.9 contact angle measurements on vertical graphene patterns formed on Si/SiO2 substrates for 

six different test liquids, (a) water (129.04), (b) glycerol (107.03), (c) formamide (94.54), (d) ethylene 

glycol (81.39), (e) DSMO (64.40) and (f) DIM (39.50). 

Van Oss Chaudhary and Good method (OCG) approach 

The Van Oss Chaudhary and Good method (OCG) approach postulates that the total surface 

energy of a solid or liquid can be expressed as the sum of the Lifshitz-van der Waals (LW) and Lewis 

acid-base components.  

                             𝛾𝑖 = 𝛾𝑖
𝐿𝑊 + 2√𝛾𝑖

+𝛾𝑖
−,     (5.2) 

where 𝛾𝑖 denote the total surface tension, 𝛾𝑖
𝐿𝑊 represents the Lifshitz-van der Waals interaction and 

𝛾𝑖
+, 𝛾𝑖

− corresponds to electron donor (+) and electron acceptor (-) components at the solid-liquid 

interface. For any solid liquid system the OCG relation described as 

(a) 

(c) 

(b) 

(d) 

(e) (f) 
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                          (1 + 𝑐𝑜𝑠𝜃)
𝛾𝑙

2
= √𝛾𝑠

𝑑𝛾𝑙
𝑑 + √𝛾𝑠

+𝛾𝑙
− + √𝛾𝑠

−𝛾𝑙
+    (5.3) 

The surface energy can be determined by solving a set of three simultaneous equations obtained 

by substituting contact angles and surface tension parameters for at least three solvents. A non-polar 

liquid (𝛾𝑙
+ = 𝛾𝑙

− = 0) was inducted so that only Lifshitz-van der Waals interactions come into play 

during the course of measurements enabling the calculation of the LW parameter (dispersive 

component) for the solid [79]. Nevertheless, this method largely depend on the combination of liquids 

used and some resulted in unphysical values.  

Table 5.2 combines the calculated surface tension values for seven liquid combinations 

obtained for SG samples. The Lifshitz-van der Waals component estimated as 39.69 mJ/m2 using polar 

liquid diiodomethane. For majority of the liquid combinations the donor component (𝛾𝑠
−) dominates 

over the acceptor component (𝛾𝑠
+) revealing slightly monopolar nature of graphene surface. In addition, 

the total contribution from the acid base interactions found to be much lower compared to the Lifshitz-

van der Waals interactions and therefore predicted that the principal contribution of graphene surface 

energy derive from dispersive forces. The estimated surface energy for different liquid combinations 

using OCG method ranges between 41-35 mJ/m2
. 
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Table 5.2. Surface tension components graphene nanosheets using OCG method for different liquid 

combinations 

Liquid combinations 
Dispersion 
component 

γl (mJ/m2) 

Polar components (mJ/m2) Surface energy 

γs (mJ/m2) γs
+ γs

- 

W/EG/DIM 39.69 0.13 7.82 41.73 

W/GLY/DIM 39.69 1.97 3.09 44.61 

W/FMID/DIM 39.69 2.68 2.33 44.69 

W/DMSO/DIM 39.69 0.24 7.13 42.33 

GLY/DMSO/DIM 39.69 0.018 58.85 37.61 

EG/DMSO/DIM 39.69 0.44 1.72 41.43 

FMID/DSMO/DIM 39.69 0.20 104.77 35.46 

 

Neumann surface energy model 

The second approach, Neumann surface energy model was based on the equation of state theory 

[80]:  

                          𝑐𝑜𝑠𝜃 = −1 + 2√
𝛾𝑠

𝛾𝑙
𝑒𝛽(𝛾𝑠−𝛾𝑙)2

,      (5.4) 

where s and l represent the solid and liquid surface tension and β a constant coefficient specific solid 

surface. The Eq. 4 can be rewrite as 

                        𝑙𝑛 [𝛾𝑙 (
1+cos 𝜃

2
)

2

] = −2𝛽(𝛾𝑠 − 𝛾𝑙)
2 + ln(𝛾𝑠).    (5.5) 

Neumann model calculate the surface energy by plotting the left hand side of Eq.5.5 against l 

and fitting the generated parabolic curve with a second order polynomial to obtain the  and the s. 

Figure 5.10a displays the Neumann plot created for the vertical graphene samples fabricated on silicon 

substrates (SG) using five different liquids. The generated parabolic curve was described by the 
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equation y - 0.00225 X2 + 0.19276 X - 1.13467, from which the surface energy was calculated as 41.91 

mJ/m2.  

Owens, Wendt, Rabel and Kaelble (OWRK) Approach 

The OWRK model derived by assuming the total surface tension of solid and liquid as the sum 

of dispersive (d) and polar components (p). The dispersive component originates from the specific 

molecular interactions between the solid-liquid interface whereas the polar component resulted from all 

other interactions (hydrogen bonding, dipole-dipole interactions, dipole-induced dipole interactions 

etc.) arise due to non-London forces [78]. For any solid-liquid system the OWRK model was derived 

as  

                        [
1+𝑐𝑜𝑠𝜃

2
] 𝑋 [

𝛾𝑙

√𝛾𝑙
𝑑
] = √𝛾𝑠

𝑝𝑋√
𝛾𝑙

𝑝

𝛾𝑙
𝑑 + √𝛾𝑠

𝑑  ,     (5.6) 

where , d, and p represent the surface tension and the respective dispersive and polar components. 

The subscript s and l stands for solid and liquid phases. Eq. 5.6 can be associated to the general equation 

for a straight line, y =mx+c. where y is the LHS of Eq.5.6 and x is the square root of the ratio between 

polar and dispersive components of the liquids (RHS). A liner regression plot between LHS and RHS 

of Eq.5.6 resulted in a straight line whose square of the slope and y ordinate gave the polar (𝛾𝑠
𝑝

) and 

dispersive (𝛾𝑠
𝑑) component of the solid surface tension. To minimize the error, the preset study used 

contact angle values from five test liquids. The linear fitting resulted in a straight line, y=-

2.188748+6.22286 (Figure 5.10b) and the polar and dispersion components were obtained as 4.79 

mJ/m2 and 38.72 mJ/m2 respectively. Therefore, OWRK method estimated the total surface energy as 

43.51 mJ/m2
. The observation resulted from OCG method that dispersion component exceeds polar 

component was further confirmed by the similar observation obtained from the WORK approach.  
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Figure 5.10 Surface energy studies of vertically oriented graphene samples fabricated on silicon 

substrates. Surface energy plots obtained from (a) calculated by Neumann surface energy model and 

(b) Owens, Wendt, Rabel and Kaelble (OWRK) Approach. 

5.4 C. sinensis derived vertically oriented graphene and gas sensing properties 

Acetone detection grabbed immense research interest as a noninvasive medical tool for its 

capability to mark early stage detection of diabetes mellitus [81]. Extensively used in industries, acetone 

gas also raise potential threat to human health due to its highly volatile nature and needs to be traced 

for facilitating a healthy and safe workplace environment. With the growing concerns, metal-oxide 

based sensors are vastly explored to detect acetone ranging from minute concentrations 0.6-2000 ppm, 

but restricted by the elevated operating temperature (200-400C) and rigid nature [82]. On the other 

hand, sensors based on graphene and graphene oxide are widely recognized for its ease of fabrication, 

better sensing performance and flexibility. Recent study by Chia and coworkers [39] demonstrated a 

room temperature resistive-type monolayer graphene sensor showing enhanced reversible acetone 

sensitivity (100-1000 ppb). Hybrid structures formed by inducting metal oxide nanoparticles like 

ZNFe2O4 [83], SnO2 [81], WO3 [84], ZnO [85] etc. into graphene structure were also gained immense 

research attention for enhanced acetone sensing performance. 

The acetone gas sensing performance of sensor integrated with C. sinensis derived vertically 

oriented graphene presented in Figure 5.11. In the chemiresistive type sensor, as-fabricated graphene 

acts as excellent channel material connecting the electrodes whose conductivity changes when subjected 

to test gas. Upon exposure to acetone gas the resistance of the sensor device increased as depicted by 
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Figure 5.11a, demonstrating the acetone sensing activity. However, the sensor device could not 

achieved the initial base resistance after truing the acetone supply off probably due to the incomplete 

removal of the test gas. Apart from good response to acetone, the chemiresistor sensor device exhibited 

sensing towards ammonia (NH3) and hydrogen sulfide (H2S) gases, shown in Figure 5.11b. Among the 

three gases tested, the device showed highest sensitivity towards acetone. The change in resistance 

towards H2S and NH3 were feeble and hence displayed relatively low sensitivity. As can be seen from 

Figure 5.11b, on supplying acetone and ammonia, the sensor device resistance increased and noticed 

with a positive sensitivity whereas H2S decreased the resistance hence revealed a negative sensitivity. 

It can also be observed that the desorption process was gradual and the base resistance was upshifted 

compared to the initial base resistance after closing the acetone supply due to the retention acetone gas 

molecules. 

 

 

Figure 5.11 The response of the orange oil reformed graphene chemiresistive device towards acetone 

(a) and the selectivity of the device towards various gases (b). 
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5.5 Conclusion 

In summary, the fabrication of vertically-aligned graphene nanosheets from C. sinensis 

essential oil on different metallic and insulating substrates though one-step environmentally benign RF-

PECVD technique has been successfully demonstrated. These films predominantly composed of carbon 

atoms, exhibited a network of interconnected vertical graphene walls having maze-like and petal-like 

morphologies. The normalized height distribution and 2D-FFT profiles demonstrated that among the 

different substrates used, vertically-oriented graphene arrays on silicon substrates exhibited the most 

uniform and less noised distribution. The formation of ‘true nanoscale’ closed loops resembling 

multilayer fullerene was unveiled using TEM analysis and a mechanism for the formation was 

proposed. As-fabricated graphene measured with a high water contact angle of 129 signifying the 

hydrophobic behavior of the surface and the surface energy was estimated in the range 41-35 mJ/m2. 

Finally, we fabricated a sensor device incorporated with C.sinensis oil derived vertical graphene and 

evaluated the performance towards acetone detection.  
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Chapter 6 

Conclusion and future work 

 

In recent years, environmentally benign synthesis of carbon nanostructures (CNSs) has been 

recognized as an indispensable part of carbon nanomaterial research to address the growing 

environmental concerns associated with the production and implementation of nanomaterials for 

various advanced applications. The research and developments in this sector stem around the 

identification of abundant, cheap and renewable precursor materials along with the development of an 

appropriate technique that convert them to sustainable CNSs with better yield and performance. 

Noteworthy is that precursor chemistry plays a crucial role in the purity and properties of CNSs and 

various naturally derived sources such as waste plastics, biomass, plant extracts, food and animal waste 

etc. been recognized to this end. Nevertheless, efforts are afoot in search of plentiful and low cost 

materials to cater the huge demand. In the meantime, among the various processes developed for the 

breaking and reassembling various naturally derived and conventional precursors into functional nano 

materials, plasma enhanced chemical vapor deposition (PECVD) has emerged as the most efficient 

technique owing to its unique features and thus gained considerable impetus to minimize the 

environmental impacts and production cost.  

In this thesis, an environmentally friendly RF-PECVD for the synthesis of vertical graphene 

nanostructures from a non-conventional resource is developed. Citrus sinensis essential oil, a non-

synthetic renewable carbon feed stock derived from waste orange peels was selected as the processor 

source. The process was optimized for a range of plasma process parameters and the structural, 

morphological, chemical and surface properties of resulted graphene nanostructures were studied at 

length. Laser Raman spectroscopy and scanning electron microscopy (SEM) was used as the primary 

analysis tool to understand the structural and morphological evolution. A comprehensive 

characterization of the morphological features was done in depth using SEM, Fourier and Hough 

transformation, Minkowski connectivity and fractal dimensions to shed light into the morphological 
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transformations occurred at various plasma conditions. Besides, thorough theoretical simulated 

modelling of the growth of vertical graphene nanostructures is carried out at different operational 

modes. Furthermore, from an application point of view a gas sensor was fabricated and established to 

study the sensing activity towards acetone. The major finding of this thesis are as follows: 

6.1 Low power RF plasma discharge: Plasma polymer thin films and 

fundamental properties 

Polymer thin films were successfully fabricated from C.sinensis essential oil using RF-PECVD 

technique under different input RF power (10 ‒75W) and their fundamental properties were investigated 

in chapter 3. The optical properties, mainly the refractive index (n), extinction coefficient (k), and the 

optical band gap (Eg) were determined from VASE and UV-Vis spectroscopy measurements. The films 

exhibited a refractive index of 1.55 (500nm) and found to be to be optically transparent in the visible 

region. The UV-vis spectrum showed an absorption peak around 295nm and the corresponding Tauc 

plot measured an optical band gap around 3.60. The FTIR measurements determined the characteristic 

bond vibrational frequencies and revealed the hydrocarbon rich nature of the fabricated polymer thin 

films. The XPS detected dominant carbon C1s peak (282 eV), feeble oxygen peak O1s (531 eV) and 

impurity nitrogen peak (396 eV). In addition, the atomic fraction of carbon, oxygen and nitrogen were 

estimated as 86.86%, 10.50% and 2.60% respectively. The AFM images unveiled the pinhole free thin 

films, which can be used for encapsulation layers. The average surface roughness showed a dependence 

to the deposition power and varied between 0.62 to 2.19 nm. To investigate the mechanical properties 

nanoindentation technique was employed and the hardness of the material was found to be increased 

from 0.50 to 0.78 GPa with the deposition power.  

6.2 One-step plasma fabrication of vertical graphene: Characterization and 

control of morphology  

Using RF-PECVD, vertically oriented graphene nanostructures were successfully fabricated 

from C.sinensis essential oil and the process optimization and comprehensive morphological 

characterizations were investigated in chapter 4. The evolution of structure and morphology was studied 
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as a function of plasma process parameters (i) in put RF power (300-500W), (iii) hydrogen flow rate 

(10-50 sccm) and (iii) deposition duration (2-8m). The structural growth of graphene nanostructures 

fabricated under different plasma process conditions were explored by Raman spectroscopy. Raman 

spectrum of graphene samples confirmed the formation of low defect few-layered graphene, indicated 

by the characteristics vibrational features D (1335 cm-1), G (1570 cm-1) and 2D (2675 cm-1) peaks and 

their corresponding band intensity ratios. The XPS survey scan detected dominant C1s peak (98.69%) 

at BE~284.5 eV unequivocally declared the predominance of elemental carbon in the resulted 

nanostructure produced from multicomponent C.sinensis precursor. Finally, the morphological growth 

at different process conditions was comprehensively characterized and illustrated the complex 

morphological transformations occurred with respect to the change in selected plasma process 

parameters.   

RF power and morphological characteristics: The input RF power markedly control the spatial 

distribution of vertically erected graphene edges unveiled by the SEM analysis. A low density of 

distribution at 300W, higher distribution at 400W and much higher distribution at 500W was observed. 

In addition, the spectra of height distribution emphasized that RF power demonstrated the ability to 

govern the nucleation stage from short to long nucleation time. The Fourier and Hough transformation 

profiles displayed considerable changes that further revealed the complex morphological changes with 

successive increase in RF power. Besides, the fractal dimension analysis presented an increasing trend 

with RF power, mainly caused by the creation of new molecular fragments and their subsequent 

nucleation at the growth sites. Minkowski boundary distributions also found to be different, narrow at 

300W, wide at 400W and narrow at 500W and in good agreement with the height distribution patterns. 

Hydrogen flow rate and morphological characteristics: The density distribution of graphene 

nan flakes with subsequent increase in hydrogen flow rate was nonlinear and transformed through a 

dense (10 sccm), less dense (20 sccm), much dense (30 sccm) to rather light arrays of distributions (50 

sccm). Different Fourier and Hough transformation profiles were also obtained for these samples. The 

Fractal dimensions were low at both lower (10 sccm) and higher (50 sccm) flow ratios, but the 

maximum value was obtained at 30sccm. The spectra of the fractal dimensions have confirmed that the 
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arrays grown at 20 and 50 sccm feature the most articulated and regular morphology. These analyses 

succinctly described the catalytic and etchant role played by the atomic hydrogen at lower and higher 

concentrations respectively. 

Deposition duration: The SEM images at respective growth duration 2, 6 and 8min depicted a sequential 

growth of vertical graphene nanostructures from the early growth phase comprise of parallel 

nanocrystalline graphite layers to the final stage having completely grown non-agglomerated vertical 

graphene nanowalls. As observed in the previous cases, the set of sophisticated morphological analysis 

further showed that the morphology exhibited notable changes with deposition duration. Spectrum of 

fractal dimensions (calculated by triangulation) exhibited a complex dependence to deposition time 

whereas the power spectrum does not significantly depend on time of deposition. Minkowski 

boundaries distribution and Minkowski connectivity showed the widest distribution for the longer (8 

minutes) process.  

Finally, a multi-parameter model was employed that correlated the vertical graphene 

morphology with the key process parameters and intermedium processes that cannot be directly 

measured and assessed in the experiment. The growth parameters such as length of the vertical graphene 

sheet (Lvg) and half width of vertical graphene sheet (Wvg) were simulated for different operation modes. 

The modelling unveiled deep understanding on various processes (ion induced surface adsorption of 

molecular species, ion induced defect generation and surface activation etc.) that control the growth of 

vertical graphene nanostructures.    

6.3 One-step plasma fabrication of vertical graphene: Growth on different 

substrates, properties and acetone gas sensing  

With the optimized process, chapter 5 extended the vertical graphene growth to copper (CG), 

nickel (NG), quartz (QG) and Si/SiO2 (SG) substrates and investigated how the substrate influenced the 

structure, morphology and chemical properties of C.sinensis derived graphene. With respect to the 

substrates, the Raman spectrum of CG, NG, QG and SG exhibited D, G and 2D peaks that formed at 

nearly same wavenumbers but differed in the peak intensity and peak broadening. Among the different 
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substrates QG denoted as more defective (ID/IG=0.97) whereas CG, NG and SG found to be less 

defective (ID/IG=0.64‒0.55). Similarly, CG exhibited the highest I2D/IG (1.19) and QZ displayed the 

lowest I2D/IG (0.44). Under the same plasma conditions, different substrates gave the unique 

morphological features of vertical graphene arrays having Maze-like (QZ) and petal-like (CG, QG and 

SG) morphologies. Among the different samples studied, Fast Fourier Transform (2D FFT) spectra and 

height distribution profile of vertically-oriented graphene pattern on Si/SiO2 presented the most ordered 

structure. The elemental concentration was calculated from XPS analysis. The C1s peak was formed at 

binding energy 284.5 eV and the atomic percentage was calculated 98.12% (CG), 99.27% (NG) and 

98.6% (SG). The formation of unique onion-like closed loops within the graphene layers was unveiled 

by TEM analysis. These were previously observed in carbon nanotubes, but not in graphene.  

Contact angle measurements were carried out to study the surface properties. Interestingly, the 

vertical graphene surface behaved as hydrophobic in nature and measured with a water contact angle of 

129. The surface energy was estimated using three different techniques Van Oss Chaudhary and Good 

method approach (41-35 mJ/m2), Neumann surface energy model (38.72 mJ/m2), Owens, Wendt, Rabel 

and Kaelble Approach (43.51 mJ/m2).  

Finally, C,sinensis derived vertical graphene proved to be a good candidate for gas sensors and 

established the sensing activity towards acetone gas. 

Overall, this research assisted to develop thin layers of plasma polymer thin films to few layer 

graphene with very novel and unique features in graphene. In a nutshell, the outcomes of this thesis 

significantly strengthen up the ongoing research activities in the development of vertical graphene 

nanostructures from bio-resources. Furthermore, it open up new avenues for Australian essential oil 

industry through recognition as precursors for high-end nanomaterials apart from their conventional 

applications. 
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6.4 Recommendations for future work 

This research provided an efficient method for the synthesis of vertically oriented graphene 

from essential oils (C.sinensis) through green chemistry approach and revealed the structural, 

morphological and chemical properties of resulted graphene nanostructure. 

Through comprehensive morphological characterization and theoretical modelling, the role of 

various plasm process parameters in architecting the unique vertical graphene morphology was clearly 

established. Likewise, it will be very interesting to look deep in to the plasma chemistry of C.sinensis 

oil plasma and establish its relationship with plasma process parameters. Therefore, investigations on 

different molecular species created during the ignition of plasma using mass spectroscopy will be 

important. 

In fact, sustainability is subject to debate, and indeed a challenge for material scientists to make 

the complete cycle (i.e. precursor selection-process-nanomaterial-device fabrication) ecofriendly. In 

this respect, this research can be extended to analyze the constituent species in the plasma exhaust. 

This research also outlined the straightaway fabrication of a sensor incorporated with C.sinensis 

oil derived graphene and its sensing activity to evaluate the performance in real application. However, 

present study utilized pristine C.sinensis reformed graphene for the sensor fabrication and testing. 

Meanwhile, the sensors fabricated out of hybrid structures (i.e. graphene incorporated with 

nanoparticles and metal oxide semiconductors) are better choices that improve the sensitivity, 

reversibility and sensing at room temperature and harsh environments. Hence, an efficient strategy that 

would dope the C.sinensis oil graphene with various metal oxide semiconductors or nanoparticles 

should be developed and further investigate for the fundamental material properties and sensing 

performance.    

Last but not the least there are plenty of other applications such as electrode material for 

supercapacitors and batteries, anticorrosion coating and antibacterial coatings to which vertical 

graphene nanostructures are potential candidates. Hence expanding the investigation into these 
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applications will further enhance the scope of essential oil derived graphene to energy, environmental 

and biological research sectors. 
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APPENDIX A 
 
 

Figure S1. TEM images 
Additional evidence of onion-like multi-layered fullerene structures formed over 

copper substrates 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Muli-layered fullerene-like structures 

Muli-layered fullerene-like structures 
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