Response to terminal water deficit stress of cowpea, pigeonpea, and soybean in pure stand and in competition

Likoswe, A.A., and Lawn, Bob (2008) Response to terminal water deficit stress of cowpea, pigeonpea, and soybean in pure stand and in competition. Australian Journal of Agricultural Research, 59 (1). pp. 27-37.

[img] PDF (Published Version)
Restricted to Repository staff only

View at Publisher Website:


The response to terminal water deficit stress of three grain legumes, soybean, cowpea and pigeonpea, was evaluated in plants grown in large tubes, in competition with either the same species or one of the other two species. The aim was to explore how species differences in drought response affected water use, growth and survival of plants in pure stand and in competition. Two plants, comprising the test species and its competitor, were grown in each tube. Water was withheld 26 days after sowing by which time each plant had at least three fully expanded trifoliolate leaves. Leaf water status and plant growth were measured through destructive samples when 80% and 90% of the estimated plant available water (PAW) was depleted and at plant death, while PAW depletion, node growth and leaf survival were monitored at 2–3 day intervals until the last plants died (61 days after water was withheld). In pure stand, the rate of PAW depletion was initially slowest in cowpea despite its much larger leaf area, and fastest in soybean. Node growth was most sensitive in cowpea, ceasing at 65% PAW depletion compared with 85% PAW depletion in pigeonpea and soybean, so that the latter two species produced relatively more nodes after water was withheld. However, senescence of the lower leaves was most rapid in soybean and slowest in cowpea. Cowpea and pigeonpea extracted almost all PAW and died an average 18 days and 14 days, respectively, after maximum PAW depletion. In contrast, soybean died before 90% of PAW was depleted and so in pure stand used less water. There were otherwise only minor differences between the species combinations in the timing and maximum level of PAW depletion. The ability of cowpea and pigeonpea to maintain leaf water status above lethal levels for longer was achieved through different means. Cowpea relied primarily on dehydration avoidance and maintained tissue water status higher for longer, whereas pigeonpea demonstrated greater dehydration tolerance. While significant levels of osmotic adjustment (OA) were identified in soybean and pigeonpea, OA appeared to be of limited benefit to leaf survival in soybean. Pigeonpea invested significantly more total dry matter (TDM) in roots than either cowpea or soybean. Cowpea survived longest in pure stand whereas pigeonpea and soybean survived shortest in pure stand, suggesting that the dehydration avoidance response of cowpea was more effective in competition with like plants whereas the dehydration tolerance strategies of pigeonpea and soybean were least effective when competing against like plants. On average, TDM per plant ranked in the order cowpea > soybean > pigeonpea, largely reflecting initial differences in plant size when water was withheld. However, there was an inverse relation between TDM of a species and that of its competitor, so that in effect, water not used by a given plant to produce TDM was used by its competitor and there were no differences in TDM production per tube.

Item ID: 5900
Item Type: Article (Research - C1)
ISSN: 1836-5795
Keywords: tropical biology; drought resistance; leaf water status; physiological traits
Date Deposited: 06 Apr 2010 04:55
FoR Codes: 07 AGRICULTURAL AND VETERINARY SCIENCES > 0703 Crop and Pasture Production > 070303 Crop and Pasture Biochemistry and Physiology @ 60%
07 AGRICULTURAL AND VETERINARY SCIENCES > 0703 Crop and Pasture Production > 070305 Crop and Pasture Improvement (Selection and Breeding) @ 40%
SEO Codes: 82 PLANT PRODUCTION AND PLANT PRIMARY PRODUCTS > 8205 Winter Grains and Oilseeds > 820503 Grain Legumes @ 100%
Downloads: Total: 4
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page