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ABSTRACT 

Natural hybridisation is the successful interbreeding of individuals from different 

populations, distinguishable through one or more heritable characters, and is a widespread 

phenomenon in the plant and animal kingdoms. The development of hybridisation theories 

has largely been based on studies in terrestrial and freshwater ecosystems. Hybridisation was 

traditionally considered rare and unimportant in marine systems and therefore received little 

attention. Recently however, there has been a surge of reported marine hybrids, particularly in 

corals and reef fishes. The ecological promoters and evolutionary and adaptive consequences 

of reef fish hybridisation are yet to be thoroughly evaluated. Butterflyfishes (f. 

Chaetodontidae) form a disproportionate number of hybrids and therefore represent an 

appropriate model group to investigate hybridisation in reef fishes. This thesis examines the 

causes and consequences of hybridisation in reef fishes and focuses on butterflyfishes (genus 

Chaetodon) at Christmas Island (Indian Ocean), a global hotspot for reef fish hybridisation. 

The aims of this thesis were to i) review the incidence and ecological/behavioural precursors 

of hybridisation in reef fishes, while providing a tentative framework for conducting studies 

within hybrid zones; ii) develop a microsatellite toolkit for species of the Chaetodon genus; 

iii) compare the ecology, behaviour and population genetics of hybridising sister species of 

butterflyfishes in order to, not only provide a snapshot of the evolutionary consequences of 

hybridisation in this group, but also determine which processes are likely to promote it; iv) 

use a comparative life history approach to determine the fitness of butterflyfish hybrids 

relative to their parental species.  

 Chapter 1 reviews the current knowledge of hybridisation with a focus on marine 

fishes. Hybridisation was found to be highly prevalent in marine fish, despite previous 

assertions of rarity, and showed a taxonomic as well as latitudinal bias. Further, the current 

marine fish hybridisation literature was found to be largely lacking ecological and behavioural 

data, in contrast with freshwater counterparts, therefore highlighting the need for a framework 
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to fill the data gap in order to better accompany the wealth of genetic data produced in the 

assessment of hybridisation.   

The development of a molecular toolkit, necessary for the rest of our investigations, is 

presented in Chapter 2. Twenty microsatellite loci were developed using 454 sequencing, to 

apply to the population genetic analysis of the Chaetodon guttatissimus × C. 

punctatofasciatus complex. This was done to facilitate direct comparison of the genetic 

underpinnings of hybridisation in this group to those of another previously studied group (C. 

trifasciatus and C. lunulatus), for which species-specific microsatellite loci had been designed 

and used.  

Chapter 3 uses the molecular toolkit and experimental framework outlined in the 

previous chapters to examine hybridisation between two butterflyfish sister species, 

Chaetodon guttatissimus and C. punctatofasciatus. The largely overlapping spatial and 

dietary ecologies of these species favour heterospecific encounters. Lack of assortative mating 

and local rarity of C. punctatofasciatus promote the formation of heterospecific breeding 

pairs. Analyses of mtDNA and microsatellite DNA were consistent with the hybrid status of 

the intermediately coloured hybrids. Maternal contribution to hybridisation in this complex 

was bidirectional, and introgression by C. punctatofasciatus mtDNA was detected in C. 

guttatissimus individuals within and beyond the hybrid zone (almost 1000 km to the west), 

potentially indicating a Pacific invasion of an Indian Ocean species genome. The comparisons 

drawn with previous work on hybrdising Chaetodon trifasciatus and C. lunulatus showed 

that, despite being driven by similar factors, hybridisation in reef fishes can have varying 

evolutionary consequences, possibly due to the magnitude of the genetic distance between 

hybridising species. 

Chapter 4 evaluates hybrid fitness in both Chaetodon hybridising groups presented in 

the previous study. Histology confirmed the reproductive viability of hybrids, and liver lipid 

analyses showed that hybrid condition was not different from parental species. Further, otolith 

data highlighted no difference in growth rate and maximum length between hybrids and 
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parents. According to the fitness-related traits measured here, Chaetodon hybrids are as fit as 

their parents, and unlikely to promote the formation of a hybrid swarm. However, sufficient 

fitness and rapid transfer of genetic material between species allow persistence of hybrids 

within the suture zone, where they positively contribute to genetic diversity. 

 The cases of hybridisation studied here appear to be initiated by similar ecological and 

behavioural settings, albeit showing different genetic consequences. Determining this was 

possible through the use of a comprehensive approach, which combined molecular analyses 

and extensive field observations. Further, the apparent lack of differences in fitness between 

hybrids and parental species points at the persistence of hybrid individuals within the Indo-

Pacific suture zone, where they may continue to contribute positively to genetic diversity. The 

role of hybridisation in evolution and adaptability had been appreciated in terrestrial and 

freshwater systems, and this thesis shows that hybridisation can have a role in maintaining 

reef fish diversity. The studies presented here constitute a comprehensive overview of the 

relevance of hybridisation for reef fishes and may be a stepping stone toward ascertaining its 

role in the evolution and adaptation of new species in such a diverse group. 
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GENERAL INTRODUCTION 

Hybridisation definition and theory 

Hybridisation is the crossing of genetically distinct taxa, distinguishable through one 

or more heritable characters. More than 25% of plants and 10% of animals hybridise (Mallet 

2005), and the occurrence of natural hybridisation varies spatially, temporally and 

taxonomically. Some taxonomic groups tend to hybridise much more than expected (Mallet 

2005) and hybridisation is concentrated in narrow geographic regions termed “hybrid zones” 

(Barton & Hewitt 1985). Hybrid zones can exist inside overlapping sympatric ranges (van 

Herwerden et al. 2006) or where two recently diverged, allopatric sister species come into 

secondary contact (Hewitt 2000).  

Harrison (1990) defined hybrid zones as “windows on evolutionary processes”, but his 

view is not one that has been unanimously shared. Natural hybridisation has historically been 

considered a rare and unimportant phenomenon, particularly because it challenges the 

biological species paradigm (Abbott et al. 2013). Interestingly, the perceived rarity of natural 

hybridisation caused it to be considered unimportant, whereas rare fitness-increasing 

mutations have been considered milestones for adaptive evolution (Arnold 2006). Despite this 

traditional view of natural hybridisation, there is mounting evidence in the scientific literature 

indicating that studying hybridisation through ecological observations and molecular genetic 

approaches should be considered fundamental to understanding speciation and evolution 

(Abbott et al. 2013). 

Hybridisation is most successful between closely related species (e.g. secondary 

contact between recently diverged taxa) which often have overlapping ecologies that favour 

contact, thus increasing the chances of interbreeding (Mallet 2005). Some ecological traits 

common to hybridising species include: habitat and dietary overlap, which increase 

heterospecific encounters (Arnold 1997); localised rarity of one or both species, which, 

because of the lack of conspecific partners, will facilitate heterospecific mating (Hubbs 1955) 
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and lack of assortative mating, which favours the formation of heterospecific breeding groups 

(McMillan et al. 1999).  

Recent research has revealed that natural hybrids are more common than first thought, 

and hybridisation can have substantial evolutionary and adaptive significance – see Abbott et 

al. (2013) and references therein -. Natural hybridisation can even lead to unpredictable and 

rapid evolutionary consequences (in a few decades) and increase the genetic diversity of a 

population and its adaptability to novel environments (Grant & Grant 2002; Grant & Grant 

2008; Anderson et al. 2009). Additionally, hybrids have the potential to occupy unexploited 

ecological niches, and through reproductive isolation become new species (Seehausen 2004). 

Hybridisation can also contribute significantly to the loss of biodiversity through extinction 

by introgression (Rhymer & Simberloff 1996) or reverse speciation (Taylor et al. 2006). 

Introgression occurs when the genome of one species is invaded by genetic material of 

another species through repeated hybrid backcrosses (Arnold 1997). Fertile F1 hybrid 

offspring must successfully interbreed with one (or both) parental species for introgression to 

occur (Arnold 1997). Introgressed individuals resulting from these crosses are often 

phenotypically indistinguishable from one of the parent species, despite the presence of 

genetic material of the other (Yaakub et al. 2006).  

Long-term ecological observations, coupled with modern molecular genetic analyses, 

have allowed researchers to investigate the directionality and evolutionary consequences of 

hybridisation, often with striking results (Grant & Grant 2002; Anderson et al. 2009). 

Hybridisation is termed unidirectional when males of one species can successfully interbreed 

with females of another, but not vice versa (Birkhead & Balen 2007). Conversely, 

bidirectional hybridisation occurs when both sexes in both species can successfully interbreed 

(Steeves et al. 2010). For example, the bidirectional gene exchange between domesticated 

dogs and North American wolves has been deemed a mechanism of primary importance in the 

evolution of melanism (i.e. dark coat colour) in the wolf population (Anderson et al. 2009). 

Dark coats were selected against in the wild wolf populations, adapted to live in the tundra 



 3 

(Anderson et al. 2009). The higher genetic diversity of the domesticated dogs – maintained by 

human selection – flourished in the wild wolf population, re-introducing historically lost 

melanism (Anderson et al. 2009). The authors argued that, despite this being a result of 

anthropogenic intervention, North American wolves would potentially benefit from 

melanism, as available tundra habitat declines in the face of global warming (Anderson et al. 

2009).  

Hybridisation can also have rapid and significant positive effects on wild populations 

on isolated archipelagos, where the influence of human activity is minimal (Grant & Grant 

2002). The unidirectional hybridisation in Darwin finches of genus Geospiza at the Galapagos 

Islands, for example, mediated the morphological changes in beak shape of one of the 

parental species, resulting in increased adaptability to novel food sources (Grant & Grant 

2002). Following an El Niño Southern Oscillation (ENSO) event, the primary food source of 

G. scadens became unavailable, resulting in high mortality of females of this species (Grant & 

Grant 2002). Consequentially, males interbred with G. fortis females – which had beak shapes 

better suited for a wider array of food sources – resulting in hybrids that were better adapted 

to the novel environment (Grant & Grant 2002). Furthermore, long-term monitoring of the 

Darwin finches at the Galapagos Islands, has revealed that introgressive hybridisation occurs 

periodically, resulting in hybrids that are better adapted to some environmental conditions 

than their parents, increasing the overall genetic diversity and allowing for the persistence of 

these isolated species in a time of environmental change (Grant & Grant 2008). 

 Most of the theory on natural hybridisation has been developed from terrestrial and 

freshwater ecosystems, where the process has been well documented. Hybridisation in marine 

systems is known to occur in a diverse array of groups including – but not limited to – algae, 

molluscs, corals (Willis et al. 2006), crustaceans and fishes (Gardner 1997). Many cases of 

documented marine hybridisation involve commercially important species such as Atlantic 

salmon (Garcia de Leaniz & Verspoor 1989; Ayllon et al. 2004), Atlantic cod (Ruzzante et al. 

2000; Nielsen et al. 2003), flatfishes (Fujio 1977), menhadens (Dahlberg 1969), groupers (van 
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Herwerden et al. 2002; Frisch & van Herwerden 2006; van Herwerden et al. 2006), abalone 

(Klinbunga et al. 2003), blue mussels (Rawson et al. 1996; Rawson et al. 1999), snow crabs 

(Smith et al. 2005) and cetaceans (Spilliaert et al. 1991). Although the evolutionary 

consequences of hybridisation have been studied in terrestrial (Grant & Grant 2002) and 

freshwater (Taylor et al. 2006) species, the consequences of hybridisation in marine species 

are largely unknown - but see (Vollmer & Palumbi 2002)-. Because marine species have life 

history traits, such as lengthy planktonic larval stages (Victor 1986), that are different to 

species in other systems (Carr et al. 2003) it can not be assumed that the evolutionary 

consequences of hybridisation in marine species will be the same as those already found for 

terrestrial and freshwater species.  

Hybridisation in the marine environment 

Within the marine environment hybridisation studies have traditionally focussed on 

temperate species (Garcia de Leaniz & Verspoor 1989; Ruzzante et al. 2000; Nielsen et al. 

2003; Ayllon et al. 2004; Smith et al. 2005). Hybridisation in tropical seas has been 

comparatively understudied, possibly due to the traditional view that hybridisation is most 

common at high latitudes (Hubbs 1955). In fact, it was proposed that the lack of reported 

hybridisation from high diversity tropical systems (e.g. coral reefs) indicated that 

hybridisation is not important in the evolution of these communities (Hubbs 1955). However, 

more recent research has shown extensive hybridisation in scleractinian corals - see reviews 

by van Oppen and Gates (2006); Willis et al. (2006) -, and has ascribed significant roles to 

hybridisation in the evolution of this group, including speciation by hybridisation (Vollmer & 

Palumbi 2002). While hybridisation is important to corals, coral reefs support an enormous 

diversity of invertebrate and vertebrate species and the role of hybridisation in the evolution 

of this diversity is unknown, but warrants investigation, particularly in a time of increased 

anthropogenic impacts on these communities. 
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Hybridisation occurs in fishes more than any other vertebrate taxon (Hubbs 1955; 

Allendorf & Waples 1996) and coral reef fishes constitute the most diverse vertebrate 

communities on earth. Hybridisation in this group has traditionally been considered rare and 

unimportant (Hubbs 1955), however, there has been a recent surge of reported hybrids in the 

reef fish literature (Yaakub et al. 2006; Hobbs et al. 2009). Moreover, genetic approaches are 

increasingly yielding evidence that hybridisation is a widespread phenomenon in marine 

fishes and might have played a significant role in their speciation (Lacson & Nelson 1993; 

Lacson 1994; Lacson & Clark 1995; Kuriiwa et al. 2007; Litsios & Salamin 2014). However, 

reef fish hybridisation studies that couple genetic and quantitative ecological data are rare - 

but see Frisch and van Herwerden (2006); Yaakub et al. (2006); Marie et al. (2007) -. The 

combined use of these techniques is important because it allows determination of both the 

ecological processes responsible for the onset of hybridisation, and the genetic and 

evolutionary consequences of hybridisation.  

Known marine hybrid zones include the Florida peninsula (Avise 2000), the Baltic 

Sea (Johannesson & Andre 2006) and the Indo-Pacific border (Hobbs et al. 2009). According 

to Hobbs et al. (2013) 90% of hybridising butterflyfishes occur at four specific geographical 

locations: southern Japan, Hawaii, Papua New Guinea-Micronesia and the Eastern Indian 

Ocean. Christmas and Cocos (Keeling) Islands lie at this latter location, and are a recognised 

reef fish hybrid hotspot where Indian and Pacific Ocean reef fish sister species come into 

secondary contact at the edges of their respective distributions (Hobbs et al. 2009). The high 

number of reef fish hybrids from Christmas and Cocos (Keeling) Islands makes these 

locations a unique laboratory to further investigate hybridisation in this group (Hobbs et al. 

2009; Hobbs & Allen 2014). Conspicuously colourful butterflyfishes of the family 

Chaetodontidae form a disproportionately high number of hybrids (Allen et al. 1998; Kuiter 

2002; Yaakub et al. 2006). Forty four of 130 species, more than a third, hybridise (Hobbs et 

al. 2013), including at least eight at Christmas Island (Hobbs & Allen 2014).  
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The Chaetodontidae are characterised by striking colour patterns (Allen et al. 1998), 

making the intermediate colouration of the hybrids easily identifiable in the field (Hobbs et al. 

2013). The Chaetodontidae are a relatively young reef fish family (Bellwood et al. 2010), in 

which recently diverged, allopatric sister species are not uncommon (Blum 1989). Many of 

these sister species have come into secondary contact, setting the scene for hybridisation 

(McMillan et al. 1999; Montanari et al. 2012). Moreover, the dietary overlap shown by some 

species in this family (Pratchett 2005), together with habitat overlap, can increase the 

frequency of heterospecific encounters (favouring hybridisation). In synergy, these 

characteristics of the Chaetodontidae render butterflyfish a suitable model organism for 

hybridisation studies in reef fishes. Further, butterflyfishes are significantly affected by reef 

degradation (Pratchett et al. 2004; Pratchett et al. 2006b), possibly due to the high incidence 

of corallivory in this group (Cole et al. 2008). Hybridisation can result in increased 

adaptability to novel environments following natural disturbance (Grant & Grant 2002) and 

may potentially be beneficial to butterflyfishes in a time when coral reefs are undergoing 

significant habitat changes. 

Thesis objectives and structure 

 In order to evaluate the importance of hybridisation in reef fishes, its causes and 

consequences were evaluated in butterflyfishes of genus Chaetodon. This thesis i) reviewed 

the incidence and ecological/behavioural precursors of hybridisation in reef fishes, while 

providing a tentative framework for conducting studies within hybrid zones; ii) developed a 

microsatellite toolkit for species of the Chaetodon genus; iii) compared ecology, behaviour 

and genetics of 2 hybridising species pairs of genus Chaetodon at the Indo-Pacific marine 

suture zone; iv) examined the fitness of butterflyfish hybrids relative to their parental species.  
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Chapter 1 

To determine the state of knowledge of hybridisation in marine fishes Chapter 1 

presents a review of the literature, focussing on ecology and behaviour within fish hybrid 

zones. Following the identification of patterns of taxonomic and geographical distribution of 

hybridisation in marine fishes, the chapter focusses on ecological/behavioural precursors of 

hybridisation often reported in the freshwater literature, allowing direct comparisons and 

identification of knowledge gaps. Most current literature on marine fish hybridisation has a 

strong genetic focus, with little or no quantitative data about the ecology and behaviour of 

hybridising species. Therefore, the resulting proposed framework suggests that future studies 

should conduct ecological and behavioural observations within hybrid zones, to identify 

processes most relevant to overcoming pre-zygotic barriers to reproductive isolation. This will 

advance our understanding of the adaptive and evolutionary relevance of hybridisation in 

marine fishes and provide insights into the maintenance of reproductive isolation and the 

process of speciation in the marine environment.  

Chapter 2 

 Determining the evolutionary consequences of hybridisation requires molecular 

analyses. The combination of mitochondrial and microsatellite DNA represents a useful 

approach, as it can show patterns of hybridisation and introgression at both the evolutionary 

and contemporary timescales. Chapter 2 uses 454 sequencing to develop twenty microsatellite 

loci for two hybridizing sister species of butterflyfish: the spot-band butterflyfish (Chaetodon 

punctatofasciatus) and peppered butterflyfish (C. guttatissimus), which are widely distributed 

in the Western Pacific and Indian Ocean, respectively. All loci were genotyped in samples 

collected from Christmas Island (minimum sample size was 16 individuals per population) 

and were polymorphic. Albeit developed specifically for the work contained in the rest of this 

thesis, these markers may prove useful for population genetic analyses in other closely related 

species of genus Chaetodon. 
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Chapter 3 

In order to assess causes and consequences of hybridisation in reef fishes, Chapter 3 

evaluates the ecology, behaviour and genetics of hybridisation between pair-forming, 

corallivorous butterflyfishes Chaetodon guttatissimus and C. punctatofasciatus at Christmas 

Island, a recognised hotspot for marine hybridisation. Findings are further compared to those 

from a previous study of hybridisation between C. trifasciatus and C. lunulatus, two species 

that also hybridise at Christmas Island but are five-fold more divergent. Following the 

framework outlined in Chapter 1, underwater visual censuses (UVCs) were used to assess 

habitat use of parental species and hybrids, to ascertain levels of overlap. Dietary preferences 

of these obligate corallivores were recorded using 3-minute direct observations, to address 

similarities or differences between species and hybrids. Abundance of taxa was also recorded 

during UVCs to determine if heterospecific pair formation is a result of rarity of conspecific 

mates. Mitochondrial DNA at the cyt-b locus was used to show patterns of historical 

hybridisation and maternal contribution, and microsatellite nuclear DNA analyses helped 

determine the current extent of population admixture. The comparison to the C. trifasciatus 

group from the same suture zone was useful in highlighting the role of genetic distance 

between parental species in shaping the consequences of reef fish hybridisation.  

Chapter 4 

Fitness is multidimensional and often measured using traits directly relating to lifetime 

reproductive success. To determine if hybrid butterflyfishes are more or less fit than their 

parent species, Chapter 4 uses a multidisciplinary approach to examine fertility, body 

condition and growth in Chaetodon hybrids from Christmas Island. Qualitative histology was 

used to confirm viability of Chaetodon hybrids. Liver lipid content analysis, based on 

hepatocyte vacuolation as a proxy, was used for body condition comparisons between hybrids 

and parental species, because liver is an important energy storage organ in fish (Tocher 2003). 

Von Bertalanffy growth curves were fit to size-at-age data to ascertain differences (if any) in 

growth rates and asymptotic length between hybrids and parent species. Comparison of these 
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traits between parents and hybrids indicates that Chaetodon hybrids have similar fitness to 

their parental species and are likely to persist within the suture zone. 

General discussion and conclusions 

 The studies presented in this thesis represent the most comprehensive assessment of 

reef fish hybridisation to date. This section of the thesis summarises the findings of individual 

Chapters and attempts to bring them together to draw generalised conclusions in the context 

of broader hybridisation theory and literature. The hybridisation scenarios examined here find 

ground in similar ecological and behavioural contexts but have different molecular 

consequences. Despite these apparent discrepancies in maternal inheritance and introgression, 

no detectable difference was found in fitness-related traits between hybrids and parents, 

indicating that hybrids are likely to persists within the suture zone, but not to supplant their 

respective parental populations. The inherent rarity of hybrids may contribute to the limited 

magnitude of their effect over evolutionary and adaptive trajectories of their populations of 

origin. Nonetheless, both hybrid populations examined here fulfil a very important role in 

maintaining genetic diversity within the Indo-Pacific suture zone, and this may well increase 

the adaptive capacity of their parental populations in the face of environmental change.  
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CHAPTER 1: THE IMPORTANCE OF ECOLOGICAL AND BEHAVIOURAL DATA 

IN STUDIES OF HYBRIDISATION AMONG MARINE FISHES 

1.1 Abstract 

 Natural hybridisation is a widespread phenomenon, particularly well documented in 

terrestrial and freshwater ecosystems, where it has been ascribed substantial evolutionary and 

adaptive relevance. Hybridisation has received comparatively less attention in marine 

systems, though there has been a recent surge of reported marine hybrids, particularly among 

corals and fishes. This review summarises the current knowledge of hybridisation in marine 

fishes, with a focus on ecological and behavioural factors that may play a role in hybridisation 

processes. Rarity of one or both parental species within the hybrid zone, overlap in habitat 

use, dietary overlap and the breakdown in assortative mating appear to have a role in 

facilitating hybridisation. Despite this, most of the recent literature on marine fish 

hybridisation has a strong genetic focus, with little or no quantitative information about the 

ecological and behavioural factors that initiate or facilitate hybridisation. Future studies 

should attempt to gather ecological and behavioural data from hybrid zones, thus teasing out 

which processes are most relevant to overcoming pre-zygotic barriers to reproductive 

isolation. Not only will this advance our understanding of the adaptive and evolutionary 

relevance of hybridisation in marine fishes, but it will also provide unique insights into the 

maintenance of reproductive isolation and the process of speciation in the marine 

environment. 1 

 

1.2 Introduction 

                                                

This Chapter is published in the journal Reviews in Fish Biology and Fisheries: Montanari SR, Hobbs J-PA, 
Pratchett MS, Herwerden L (2016) The importance of ecological and behavioural data in studies of hybridisation 
among marine fishes. Reviews in Fish Biology and Fisheries, 1-18. 
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Natural hybridisation is the interbreeding of individuals from two genetically distinct 

species or populations resulting in viable offspring (Arnold 1997). Natural hybridisation has 

historically been considered infrequent and of limited ecological or evolutionary relevance, 

mainly because it challenges the biological species paradigm (Mallet 2005). Interestingly, the 

presumed rarity of natural hybridisation caused it to be marginalised as unimportant (Mayr 

1963). In contrast, rare fitness-increasing mutations have been recognised as milestones for 

adaptive evolution (Arnold 2006). There is increasing recognition that natural hybridisation 

can have substantial evolutionary and adaptive significance, increasing or decreasing adaptive 

capacity and species diversity (Arnold 2006; Abbott et al. 2013). To date, more than 25% of 

plants and 10% of animals have been reported to hybridise, but the true proportion of 

hybridising species is likely to be higher due to difficulties in detecting hybrids (Mallet 2005). 

 In just a few decades natural hybridisation can lead to evolutionary novelty (Budd & 

Pandolfi 2010) and increase the adaptability of a population to changing environments (Grant 

& Grant 2002; Anderson et al. 2009). Furthermore, hybrids have the potential to occupy 

unexploited ecological niches (Seehausen 2004), and through subsequent reproductive 

isolation become new species (Smith et al. 2003; Verheyen et al. 2003; Seehausen 2004). 

Hybridisation can also contribute significantly to the loss of biodiversity through extinction 

(Rhymer & Simberloff 1996) or reverse speciation (Seehausen 2006; Taylor et al. 2006). 

Whatever the ultimate outcome, it is clear that hybridisation can play an important role in 

adaptation and evolution of species.  

Most of the research and understanding of natural hybridisation comes from terrestrial 

and freshwater ecosystems, where there is reportedly a high incidence of hybridisation 

(Arnold et al. 1993; Cruzan & Arnold 1993; Carney et al. 1994; Nürnberger et al. 1995; 

MacCallum et al. 1998). Traditionally, hybridisation was considered much less common in 

the marine environment (Hubbs 1955), but was also less well studied. Since 1995, 

hybridisation has been documented across a broad range of marine plant and animal taxa 

(Gardner 1997; van Oppen & Gates 2006; Willis et al. 2006; Yaakub et al. 2006; Hobbs et al. 
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2009; Richards & Hobbs 2015). As for freshwater and terrestrial environments, there appears 

to be strong taxonomic bias in hybridisation in marine species. Hybridisation is particularly 

common in marine fishes (Gardner 1997; Yaakub et al. 2006), as it is for freshwater fishes 

(Scribner et al. 2000). 

The genetic consequences and evolutionary implications of hybridisation in terrestrial 

and freshwater environments have been widely studied and reviewed (Abbott et al. 2013). 

Numerous molecular studies have also demonstrated the range of genetic outcomes of 

hybridisation in marine species - reviewed by Richards and Hobbs (2015). However, less 

attention has been given to the proximal factors responsible for the breakdown in reproductive 

isolation that leads to hybridisation. Despite a lack of experimental evidence, a number of 

ecological and behavioural factors have been suggested to increase the incidence of 

hybridisation in marine fishes. These include: geographic co-occurrence of recently diverged 

sister taxa that come into secondary contact (McMillan & Palumbi 1995; Mallet 2005); 

external fertilisation (Hubbs 1955); the breakdown of assortative mating (McMillan et al. 

1999); overlapping spatial or dietary ecologies that increase heterospecific encounters (van 

Herwerden et al. 2006; Yaakub et al. 2006; Marie et al. 2007; Yaakub et al. 2007; Montanari 

et al. 2012; Montanari et al. 2014; Gainsford et al. 2015). Local rarity of one or both parental 

species (Gosline 1948; Randall et al. 1977; Frisch & van Herwerden 2006; van Herwerden et 

al. 2006; Marie et al. 2007; Hobbs & Allen 2014; Montanari et al. 2014) can further favour 

interbreeding because of the lack of conspecific partners.  

Recent reviews have addressed the topic of hybridisation in marine fishes, either to 

summarise the current knowledge of its consequences and our ability to differentiate it from 

alternative hypotheses (Richards & Hobbs 2015), or to examine in detail its occurrence in a 

specific taxon (Hobbs et al. 2013). Here we would like to bring the attention to an aspect of 

hybridisation that has been, in our opinion, overlooked: that is, the ecological and behavioural 

mechanisms that initiate hybridisation. To this effect, we: i) revise estimates of the incidence 

of hybridisation in marine fishes; ii) provide a summary of the most commonly reported 
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ecological and behavioural factors that facilitate hybridisation among marine fishes; iii) 

identify areas of study where ecological and behavioural data are needed in marine 

hybridisation studies; and, therefore, iv) suggest an approach for gathering such data, which 

are necessary to complement the wealth of genetic information currently available. Further, 

we argue that complementing genetic studies with ecology and behaviour can, not only shed 

light on the processes that initiate the formation of mixed social groups (thereby setting the 

scene for hybridisation), but also help characterise the role of hybrid fish taxa within hybrid 

zones.  

We focus our comparison on fishes because hybridisation in this group is common and 

relatively well studied (Hubbs 1955; Allendorf & Waples 1996; Gardner 1997; Yaakub et al. 

2006). Where possible, we include first reports of each hybrid exclusively, and separately cite 

further work if necessary. This review does not examine physiological and genetic factors 

implicated in hybridisation: although these have a recognized role in hybridisation, they come 

into play after the ecological and behavioural factors have initiated the hybridisation process 

(Figure 1). Ecological and behavioural factors can also determine the genetic outcome of 

hybridisation events (Gainsford et al. 2015), however this review will focus on how these 

factors initiate hybridisation. We have excluded anadromous fishes, some genera of which 

hybridise extensively - e.g. Oncorhynchus, (Ostberg et al. 2004), because these hybridisation 

events occur in freshwater streams. Finally, this review focuses only on natural instances of 

hybridisation, even though anthropogenic influences can cause fish species to hybridise 

(Scribner et al. 2000; Taylor et al. 2006). 

Hybrid fishes have historically been identified in the field through the observation of aberrant 

colour patterns, often deemed intermediate between those of the putative parent species 

(Randall 1956). This approach is still used today, and numerical predictions of hybrid colour 

patterns (Miyazawa et al. 2010), as well as genetic confirmation of the hybrid status of the 

intermediate individuals (DiBattista et al. 2012; Bernardi et al. 2013; Coleman et al. 2014; 

Montanari et al. 2014; Gainsford et al. 2015) have confirmed its validity. Given the universal 
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genetic confirmation of suspected hybrids across a wide range of fishes, we include in this 

review hybrids that have been reported based on morphology and colouration, but are yet to 

be genetically confirmed. As is the case in terrestrial and freshwater systems (Mallet 2005), 

hybrid identification based on phenotypes is likely to significantly underestimate the true 

incidence of hybridisation.  Many more hybrid marine fishes are likely to be detected through 

genetic analyses, as evidenced by the unintentional discoveries of hybrids in phylogenetic 

studies (Kuriiwa et al. 2007).  

1.3 Hybridisation in fishes 

1.3.1 Historical notes 

Naturally occurring hybrid marine fishes have been reported in the scientific literature 

since the end of the nineteenth century. Holt (1883), for example, reported probable hybrids 

between two common flatfishes, turbot (Scophthalmus maximus) and brill (S. rhombus). Since 

then, at least 111 hybrids, involving 173 marine fish species, have been reported (Table 1). In 

contrast with the broad temporal distribution of reported occurrences of hybrid freshwater 

fishes (Scribner et al. 2000), the majority (74%) of marine fish hybrids have been reported 

since 1990. The reported number of naturally hybridising marine fish species has more than 

doubled since the seminal review by Gardner (1997). This suggests that incidence of 

hybridisation among marine fishes was previously underappreciated due to limited research 

on this topic, but the recent plethora of reported marine fish hybrids provides a timely 

opportunity to compare processes of hybridisation between marine and freshwater fishes. 

1.3.2 Taxonomic distribution and genetic relatedness 

There is apparent taxonomic bias in the incidence of hybridisation among marine 

fishes. The families Chaetodontidae and Pomacanthidae account for a combined total of 

almost 40% of all marine fishes reported to hybridise (Figure 2). Even within the 

Chaetodontidae, there are considerable biases between clades in the proportion of species that 

hybridise (Hobbs et al. 2013). Of the remaining 26 families of marine fish involved in 
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hybridisation, 12 (Acanthuridae, Clupeidae, Gadidae, Haemulidae, Hexagrammidae, 

Labridae, Pleuronectidae, Pomacentridae, Scophthalmidae, Sebastidae, Serranidae and 

Siganidae) had more than one reported natural hybrid (Figure 2). Taxonomic bias in 

hybridisation is also evident in freshwater fishes (Scribner et al. (2000): 139 reported hybrids, 

involving 168 species across 19 families (not including cichlids), two of which, the 

Cyprinidae (40%) and Centrarchidae (20%), accounted for the most hybrids. 

 Some genetic factors may explain taxonomic bias in hybridisation incidence. For 

example, the reported extensive chromosome conservatism of chaetodontids (Molina et al. 

2013) may increase genetic compatibility of hybridising species. Families that contain a high 

proportion of recently diverged species may also be more prone to hybridise when they come 

into contact. More than 90% of marine and 68% of freshwater hybrid fishes were congeneric 

(Scribner et al. 2000). Intergeneric hybrids represent the minority and are confined to 

particular families of marine and freshwater fishes: the Pleuronectidae (87%) and Cyprinidae 

(96%), respectively (Scribner et al. 2000). These genetic patterns to hybridisation suggest 

there may be a divergence threshold beyond which the ability to hybridise is lost, as shown in 

terrestrial species (Mallet 2005). 

Sufficient genetic relatedness is a condicio sine qua non for the successful production 

of viable hybrids (Mallet 2007). Although it is difficult to summarise the genetic distance 

between hybridising species, mainly because authors have used different molecular markers 

in their studies, some examples can provide insights into the range of distances within which 

hybridisation is successful. In the Chaetodontidae, species diverging as little as 0.7% 

(McMillan & Palumbi 1995) and as much as 5% at the same mitochondrial marker 

(cytochrome b), have been shown to hybridise successfully and produce viable offspring 

(McMillan et al. 1999; Montanari et al. 2012). Similarly, in the Labridae, hybridisation occurs 

between species (Yaakub et al. 2006; Yaakub et al. 2007), with reported genetic distances 

ranging from <2% (Bernardi et al. 2004) to >5.5% (Barber & Bellwood 2005). Divergences 

in the order of 1% (at the molecular markers of focus) are commonly reported for hybridising 
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fishes in some families (e.g. Acanthuridae (Marie et al. 2007) and Serranidae (van Herwerden 

et al. 2006; Craig & Hastings 2007)). In contrast, menhadens of genus Brevoortia have been 

reported to hybridise (Hettler 1968; Dahlberg 1969) despite being as much as 20% divergent 

(Anderson 2007). Further, reported intergeneric crosses in flatfishes (Norman 1934) involve 

species as far apart as >25% (Verneau et al. 1994), however the latter examples represent a 

minority of the hybridisations reviewed here (Table 1). Examination of families with a high 

incidence of hybridisation and reliable published phylogenies reveals that hybridisation is 

prevalent between species and their closest relative: for example, 63% of cases for the 

Chaetodontidae (Littlewood et al. 2004; Fessler & Westneat 2007) and 42% for 

Pomancanthidae (Hodge et al. 2013; Gaither et al. 2014) (Table 1). Thus, it is clear that 

marine fishes have a propensity to hybridise that spans across a wide range of genetic 

distances, however hybridisation is most prevalent among closely related species.  

1.3.3 Latitudinal distribution 

The plethora of recent studies demonstrating hybridisation in coral reef fishes 

(Richards & Hobbs 2015) disproves the traditional view that hybridisation is rare on coral 

reefs (Hubbs 1955). Indeed, the majority (almost 70%) of marine fish hybrids have been 

reported from tropical waters (Table 1). This contrasts with the latitudinal distribution of 

hybrid fishes in freshwater, where over 90% of the crosses are either temperate or subtropical 

(Scribner et al. 2000). It is not clear whether there is an underlying reason for this apparent 

latitudinal bias in marine fish hybrid formation, or whether it is merely a reflection of the 

higher number of species in the tropics, or greater sampling effort and accessibility to shallow 

tropical reefs. However, the fact that hybridisation is most prevalent in a high diversity system 

raises the key question as to whether hybridisation has contributed to this diversity, as is the 

case for African cichlids (Seehausen 2004), which is a topic worthy of further investigation 

using molecular approaches. 

1.4 Ecology of natural hybridisation in fishes 
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In freshwater fishes, the importance of the ecology of the parent species in facilitating 

hybridisation has been well documented (Scribner et al. 2000); this may also be true for 

marine fishes. Ecological factors implicated in 48% of freshwater fish hybridisation events 

were grouped into three categories: 1) rarity of parental species; 2) spatial overlap in habitat 

use by the parental species; 3) habitat loss, range expansion, limited spawning habitat and 

unspecified natural factors (Scribner et al. 2000). Only one natural hybridisation event in 

freshwater fish implicated a role for both rarity and overlap in habitat use. 

Despite the recent surge in reported cases of natural hybridisation in marine fishes, the 

majority of studies lack quantitative data on the role of ecological factors (Table 1). 

Ecological factors are quantified in only 24% of hybrid cases, while circumstantial evidence 

or hypothetical statements are presented in 22% of cases (Table 1). Where ecological factors 

were implicated, rarity of one or both parent species was indicated as the primary factor 

promoting hybridisation in 81% of the reports on hybrid marine fishes (Table 1). In the 

remaining cases, habitat use overlap was invoked 54% of the time, often in combination with 

diet overlap. Dietary overlap has received some attention for facilitating marine fish 

hybridisation (15% of reported cases), always in association with another ecological driver 

(Table 1). Specific evidence for each of these factors (rarity of parental species, habitat 

overlap and dietary overlap) is discussed in turn. 

1.4.1 Rarity of parental species 

 Rarity of the putative parental species has been indicated as a facilitator of 

hybridisation in marine fish since the early work of Hubbs (1955). Intuitively, a lack of 

conspecific partners increases the chance that an individual will mate with a heterospecific 

partner (Hubbs 1955). For hybridising marine species, rarity of parent species has been 

reported in tropical (24 cases), temperate (nine cases) and subtropical (one case) waters 

(Table 1) (Gosline 1948; Hettler 1968; Fujio 1977; Ayling 1980; Roques et al. 2001; Crow et 

al. 2010; Miralles et al. 2014; Mirimin et al. 2014). Most studies on the hybridisation of 

fishes do not however, explicitly consider the local abundance of putative parent species 
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(Feddern 1968; Fischer 1980; Frisch & van Herwerden 2006; Yaakub et al. 2006; Marie et al. 

2007; Maruska & Peyton 2007; Hobbs et al. 2009; Montanari et al. 2012; Coleman et al. 

2014; Montanari et al. 2014; DiBattista et al. 2015), which makes it difficult to 

comprehensively assess the importance of mate scarcity in the hybridisation of fishes. 

Hybridisation in marine fishes is particularly prevalent at the intersection of 

biogeographic regions, where species often come into contact with sister species (Hobbs et al. 

2009; Hobbs & Allen 2014; DiBattista et al. 2015; Richards & Hobbs 2015). A notable 

hotspot for hybridisation is Christmas Island (Indian Ocean), where there is overlap of Pacific 

and Indian Ocean fauna (Hobbs & Salmond 2008). Of the 681 fish species that have been 

reported at Christmas Island, 286 (42%) are considered rare (< 2 individuals per 3000 m2) 

(Hobbs et al. 2014), which may promote high levels of hybridisation at this location. 

Moreover, at least 80% (12 out of 15) of the putative parental species of commonly observed 

hybrid fishes recorded from this location are rare (Hobbs & Allen 2014). Species are often 

rare at the extremes of their geographical ranges, but parental rarity can facilitate 

hybridisation even when the hybrid zone is more central to the species’ ranges (Hettler 1968). 

 In some instances, extreme rarity of a hybridising species results from vagrants 

(Hobbs et al. 2013). Species not known to hybridise within their normal geographic ranges 

may hybridise as vagrants. Vagrant fishes, straying from their distributional ranges, may 

hybridise with allopatric sister species or endemics (Severns & Fiene-Severns 1993; Maruska 

& Peyton 2007; Craig 2008). Parental rarity has also been shown to favour hybridisation at 

several spatial scales, from individual coral heads to entire sections of the reef (Feddern 

1968). The range of magnitudes and spatial scales at which rarity can play a role in initiating 

hybridisation in tropical marine fishes requires further investigation (Epifanio & Nielsen 

2000). Although hybridisation is reportedly common when one parent species is rare, there 

are several instances where both parent species are common (Hobbs et al. 2009; Hobbs et al. 

2013; Coleman et al. 2014). Thus factors other than rarity of a parent species may also play a 

role in hybridisation.  
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The lack of a conspecific partner appears to promote hybridisation across the range of 

mating systems exhibited by marine fishes including: pair spawning, haremic and mass 

spawning. Hybridisation has been reported in monogamous anemonefishes (Gainsford et al. 

2015) and pair-forming butterflyfishes (Hobbs et al. 2013; Montanari et al. 2014). Pygmy 

angelfishes tend to spend their lives in harems, and hybridising species are often observed in 

heterospecific harems and interbreeding (Moyer et al. 1983; Hobbs et al. 2009; Hobbs & 

Allen 2014). Some species only form harems during spawning times, and these species may 

also hybridise (Frisch & van Herwerden 2006). For mass-spawning species, Gosline (1948) 

suggested that congeneric mating might occur where there are too few of one species to 

initiate reproductive behaviour. Thus, in a range of mating systems, species are deliberately 

choosing to mate with another species.  

Rarity has also been reported to act in synergy with some degree of niche overlap (either 

spatial or dietary) between the two parent species to breakdown reproductive isolation - e.g. 

Hypoplectrus spp., (Fischer 1980) - (Table 1). In another case of serranid hybridisation, rarity 

of one species was reported to promote hybridisation in synergy with habitat overlap at 

several locations along a latitudinal gradient (Frisch & van Herwerden 2006). The 

concomitant effect of rarity of the parental species and habitat overlap has also been shown to 

favour hybridisation in the Labridae (Yaakub et al. 2006), Acanthuridae (Figure 3) (Marie et 

al. 2007) and Chaetodontidae (Montanari et al. 2012; Hobbs et al. 2013; Montanari et al. 

2014) (Table 1). Further ecological assessment of reef fish hybrid zones is required to 

quantify the relative importance of ecological factors promoting hybridisation. In particular, 

to determine if local rarity of one or both parental species has a role in initiating hybridisation, 

abundance surveys should be routinely conducted in the context of hybridisation studies 

(Figure 1). This type of survey is inexpensive and time efficient, especially when combined 

with necessary sampling for genetic analyses, and it can further provide a direct estimate of 

hybrid prevalence. The presence of marine suture zones (Remington 1968), biogeographic 

borders where multiple species pairs come into secondary contact and hybridise (Hobbs et al. 
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2009), provides the opportunities to investigate the relative contribution of ecological 

promoters of hybridisation across multiple taxa in the same setting. 

1.4.2 Niche overlap 

 Even if species co-occur within the same geographic location, inter-specific 

reproduction will be conditional on some level of niche overlap, such that interbreeding 

individuals co-occur in the same space concurrently. For extreme habitat-specialists, such as 

anemone fishes or coral-dwelling fishes, inter-breeding species must co-habit the same 

specific habitat type (Gainsford et al. 2015). Anemone fishes have species-specific 

preferences for their host anemones, and the control of this limiting resource can lead to 

strong interspecific competition (Gainsford et al. 2015). To cohabit an anemone, two species 

must have the same preference and also be willing to disregard interspecific competition 

(Gainsford et al. 2015). As such, hybridisation among anemonefishes may be somewhat 

constrained by species-specific use of different microhabitats (Gainsford et al. 2015). For 

more generalist or wide-ranging species, niche overlap may be structured by depth 

distributions or large-scale habitat preferences. This is important because changes in habitat 

availability, due to either acute disturbances or sustained degradation of natural ecosystems 

(Mullen et al. 2012), may bring species together that normally occupy very distinct habitats, 

thereby facilitating hybridisation ((Yaakub et al. 2006). 

Despite being a necessary precursor to hybridisation, habitat overlap has been 

articulated only in 20 cases of marine fish hybridisation, almost 28% of which contained no 

indication of another ecological driver acting in synergy with habitat overlap to facilitate the 

hybrid formation process (Table 1) (Nichols 1918; Norman 1934; Schultz & Smith 1936; 

Yaakub et al. 2006; Yaakub et al. 2007; Mullen et al. 2012; Gainsford et al. 2015). Fisheries 

catch and observational data indicated an overlap in the depth range and substrate use of the 

hybridising species in early works on flatfishes (f. Pleuronectidae) (Nichols 1918; Norman 

1934; Schultz & Smith 1936). More recently, in their molecular genetic assessment of a 

hybrid between the two Caribbean wrasses Halichoeres garnoti and H. bivittatus, Yaakub et 
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al. (2007) indicated that this hybridisation event might have been driven mainly by habitat use 

overlap in concomitance with synchronous spawning events (Table 1). 

Habitat overlap can increase the likelihood of hybridisation in marine fishes at several 

spatial scales (Feddern 1968). In hamlets (f. Serranidae), species with broad, fully overlapping 

depth distributions have been found to hybridise just as readily as species that only share a 

narrow depth range (Fischer 1980). Broadly overlapping habitats have been shown to promote 

hybridisation between the menhadens Brevoortia patronus and B. smithi  (f. Clupeidae) 

(Hettler 1968), as well as the surgeonfishes Acanthurus achilles and A. nigricans (f. 

Acanthuridae) (Randall 1956). Conversely, in another case of hybridisation between the 

surgeonfishes Acanthurus leucosternon and A. nigricans, the species involved shared a very 

narrow depth range, where they were also observed foraging together, indicating a possible 

dietary overlap (Marie et al. 2007).  Acanthurus nigricans is able to setup and defend 

territories, but may also form roving schools (Marie et al. 2007). These are often multispecies 

assemblages, not formed to defend a resource (Figure 3). Having the same dietary preferences 

aids in keeping the multispecies groups together, because individuals share a common goal 

(Figure 3). Avoiding territorial defence and moving in a roving school may, therefore, create 

opportunities for hybridisation (Marie et al. 2007). Habitat overlap can favour hybridisation 

even when two species have markedly different distributions on a reef: for instance if one 

species occurs exclusively on the reef flat, where it encounters individuals of the second 

species straying from their normal reef crest habitat (Yaakub et al. 2006). Habitat 

modifications (e.g. breakwater structures) can lead to hybridisation because species occupying 

discrete depth zones and habitats come into close proximity and interact (Kimura & 

Munehara 2010).  

Aside from spatial overlap and co-occurrence of inter-breeding species, the capacity to 

hybridise may also be facilitated by the timing of reproduction (Schultz & Smith 1936; Frisch 

& van Herwerden 2006). Regardless of the reproductive mode, spatial and temporal overlap 

of spawning events facilitate hybridisation in compatible species (van Herwerden & Doherty 
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2006). In 73% of the reported cases, parental habitat overlap was said to be a factor for 

marine fish hybridisation in synergy with parental rarity, dietary overlap or a combination of 

the two. In all but two cases (Gosline 1948; Rao & Lakshmi 1993), the authors included 

quantitative data to illustrate habitat overlap (Randall 1956; Feddern 1968; Hettler 1968; 

Fischer 1980; Frisch & van Herwerden 2006; Yaakub et al. 2006; Marie et al. 2007; 

Montanari et al. 2012; Mullen et al. 2012; Hobbs et al. 2013). 

If inter-breeding species co-occur, it does not seem necessary that they also exploit the 

same dietary resources. However, high levels of dietary overlap may increase encounters 

between potential heterospecific partners (Grant & Grant 2002). Conversely, very high levels 

of dietary overlap may lead to levels of inter-specific competition (Blowes et al. 2013) that 

may reinforce reproductive isolation. To assess if this is the case, where possible, competitive 

interactions between potentially hybridising species should be recorded from the hybrid zone 

(Figure 1). Among the Chaetodontidae, Hobbs et al. (2013) suggested that specialist coral-

feeding species were less likely to hybridise than generalist feeders, which may well reflect 

strong inter-specific competition among species that are coral-feeding specialists. Even so, 

dietary overlap is suggested to be an important facilitator of hybridisation for at least seven 

pairs of marine fishes, always in combination with another ecological process (Table 1). In all 

of these studies, the diets of the putative parents were deemed essentially the same (Randall 

1956; Feddern 1968; Fischer 1980; Montanari et al. 2012; Montanari et al. 2014). Generalist 

corallivorous butterflyfishes of genus Chaetodon come into contact frequently as they are 

feeding on the same resources and hybridise (Montanari et al. 2012; Montanari et al. 2014). 

Some Chaetodontids are territorial and defend food resources, but these two pairs of 

hybridising sister species are willing to share the same food source, instead of competitively 

excluding one another (Montanari et al. 2012; Montanari et al. 2014). Analogous to the 

research on terrestrial species that identified a threshold for successful hybridisation as less 

than 10% genetic divergence (that is, > 90% overlap) between parent species, documentation 

of habitat and dietary preference data within the hybrid zone (Figure 1) would be helpful in 
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determining the degree of niche overlap that is required for successful hybridisation in marine 

fishes. Field-based experiments that involve manipulating the amount of food or habitat 

resources available could be used to identify these thresholds. 

1.5 Behaviour of hybridising marine fishes 

Most marine fishes spawn gametes resulting in external fertilization and interbreeding 

between species can occur accidently or deliberately. Accidental hybridisation occurs when 

two species mate homospecifically at the same time and place and the gametes from different 

species inadvertently mix, resulting in fertilisation and viable offspring. Accidental 

hybridisation may be common in other marine groups – e.g. corals (Willis et al. 2006), 

however only three studies explicitly implicate its role in marine fish hybridisation (Gosline 

1948; Frisch & van Herwerden 2006; Yaakub et al. 2007). For marine fishes, multi-species 

spawning aggregations do exist (Heyman & Kjerfve 2008; Karnauskas et al. 2011) and 

although accidental hybridisation has occasionally been suggested, no conclusive evidence 

has been provided (Frisch & van Herwerden 2006; Yaakub et al. 2007).  

Deliberate interbreeding has been more commonly reported for hybridising marine 

fishes (16 studies in Table 1). Although this can occur through the deliberate choice of one 

species and not the other - e.g. sneak spawning (Frisch & van Herwerden 2006), more 

commonly reported is the formation of heterospecific social groups where both species 

choose to interbreed. For example, pygmy angelfishes form harems and two species may 

accept each other in the harem and choose to interbreed (Moyer et al. 1983; Hobbs & Allen 

2014). Similarly, hybridising butterflyfishes are often observed as a long-lasting heterosexual 

breeding pair (Hobbs et al. 2013; Montanari et al. 2014). In damselfishes that lay demersal 

eggs, not only does hybridisation represent a deliberate choice by both species during 

courtship and spawning, but it also represents a deliberate choice by a male to care for, and 

guard, the eggs of another species (Maruska & Peyton 2007; Gainsford et al. 2015). Thus, 

hybridisation in many marine fishes is due to a breakdown in assortative mating through 
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deliberate choices made by both parent species. These choices may be influenced by local 

conditions (e.g. a lack of conspecific partners). It is therefore important to carefully document 

the abundance and temporal stability of mixed social groups (Figure 1), to determine how and 

to what extent their offspring will influence the hybrid zone population.  

1.6 Conclusions and future directions 

 Natural hybridisation among marine fishes has been underestimated and perhaps 

overlooked until very recently. In terrestrial and freshwater systems, by contrast, hybridisation 

is recognised as being not only highly prevalent, but also important in speciation (Seehausen 

2004), extinction (Rhymer & Simberloff 1996) and adaptability to novel environments (Grant 

and Grant 2002). The literature on marine fish hybrids has been dominated by studies 

documenting hybrids, or more recently, determining the genetic consequences of 

hybridisation. Much less research has focused on determining the causes of hybridisation. 

This review has identified the ecological and behavioural processes that have most frequently 

been ascribed a role in the initiation of hybridisation in marine fishes, and highlighted a 

general lack of quantitative ecological and behavioural data from within fish hybrid zones. 

Understanding how ecological and behavioural processes enable species to overcome the 

barriers to reproductive isolation (e.g. assortative mating) will prove useful in contextualizing 

the consequences of hybridisation in the marine environment.  

Despite being widely acknowledged (Albert et al. 2006), the need for quantitative 

ecological and behavioural data is rarely met in marine fish hybridisation studies (but see 

(Frisch & van Herwerden 2006; Yaakub et al. 2006; Marie et al. 2007; Montanari et al. 2012; 

Montanari et al. 2014; DiBattista et al. 2015; Gainsford et al. 2015). Figure 1 provides a 

framework for gathering ecological and behavioural data at the critical steps in initiating 

hybridisation and overcoming pre-zygotic barriers to reproductive isolation. Mate choice 

experiments would be required to test which factors are most important to the breakdown in 

assortative mating. Surprisingly, there has been a lack of mate choice experiments on 
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hybridising marine fishes, and the approach used in McMillan et al. (1999) illustrates how to 

test the role of mate choice in the breakdown in assortative mating.  

As described above, niche overlap (particularly habitat/microhabitat and diet) has been 

identified in several hybrid reports as a factor increasing heterospecific encounters between 

potentially hybridising species. In situ surveys documenting habitat and dietary preferences of 

parental species (Figure 1) can help to quantify the degree of such overlap. Quantification 

would in turn provide a means to differentiate between species that rarely come into contact 

within the hybrid zone - leading to rare, evolutionarily irrelevant hybridisation events 

(Yaakub et al. 2007) – and species that, conversely, spend most of their lives together in 

heterospecific social groups, thereby producing a large number of viable hybrid offspring 

with rapid evolutionary and adaptive consequences (Taylor et al. 2006).  

Field studies that document key ecological and behavioural factors (Figure 1) are required to 

identify the proximal cause for hybridisation in marine fishes. Previous work on hybridising 

Galapagos finches provides an example of a successful approach. Careful documentation of 

abundance (and diet) through time enabled the authors to show that hybrid numbers rapidly 

fluctuated in response to resource availability, resulting in the persistence of the population in 

times of scarcity (Grant & Grant 2002; Grant et al. 2005; Grant & Grant 2008). Similarly, it 

was thanks to abundance data that the mechanism underlying mixed pair formation was 

elucidated, namely the choice to mate with more abundant heterospecific partners in response 

to conspecific rarity mediated by a lack of food resources (Grant & Grant 2002). Further, 

careful documentation of the ecology and behaviour of hybridising and non-hybridising 

relatives within the hybrid zone is required to tease out which factors are most important to 

initiating hybridisation. Similarly, comparisons between ecological conditions inside and 

outside a hybrid zone will help determine what facilitates hybridisation between sympatric 

species in some parts of the range but not elsewhere. It is also important to test predictions by 

considering ecological similarities among closely related species that do not hybridise, despite 

opportunities to interbreed when co-occurring. Finally, experiments involving the 
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manipulation of abundance, availability of adult mates, amount and type of food or habitat, 

could be used on suitable species (e.g. anemonefish) to determine the relative importance of 

different ecological and behavioural factors in facilitating hybridisation. Determining what 

conditions cause hybridisation in marine fishes is critical to understanding how marine fishes 

achieve reproductive isolation and thus initiate the speciation process.  Finally, elucidating the 

causes of hybridisation is necessary to predicting how changing environmental conditions will 

affect hybridisation.   
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Figure 1.1. Provisional framework for examining the initiation of deliberate hybridisation in 

marine fishes. Biogeographical distribution and ecology/behaviour lay the foundations for 

hybridisation to occur, before genetic compatibility determines the outcome of hybridisation. 

Although overlapping geographic distributions is all that is required to initiate hybridisation, 

ecological (e.g. niche overlap) and behavioural factors increase the likelihood of hybridisation 

occurring. Highlighted in bold are the aspects of marine fish hybridisation for which data are 

largely lacking.  
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Figure 1.2. Number of hybrid marine fishes grouped by family. Almost 40% of the reported 

hybrids belong to families Chaetodontidae and Pomacanthidae, two taxa characterised by 

striking colour patterns and that receive disproportionately high attention from SCUBA divers 

and aquarium enthusiasts. 
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Figure 1.3. Acanthurus leucosternon (A) in a multispecies roving school with A. nigricans 

(B). Hybridisation between these two species at Christmas Island is mediated by rarity of one 

parent species and some degree of niche overlap (habitat and diet) (Marie et al. 2007). 

 

A

B



 30 

Table 1.1. Naturally hybridising marine fish species ordered by family. Locations where the hybrids were reported from; general climatic pattern of the 

waters where the hybridising species are found: tropical (Tr), subtropical (ST) or temperate (Te); ecological factor having a role in the hybridisation, as 

suggested by the author(s): rarity of one or both parental species (R), overlapping habitat use (H) or dietary overlap (D) of the putative parents and 

other (O); quantitative ecological/behavioural data are available in the selected hybrid report (Q); circumstantial, anecdotal or hypothetical evidence is 

provided (C); no ecological/behavioural data are present in the hybrid report (N/A). Sources are mostly first reports: where more than one reference is 

provided, the more recent studies have further evaluated the same hybrids.   

Family Species 1 Species 2 Location 
Climat

e 

Facto

r 

Ecolog

y/beha

viour 

Source 

Acanthuridae 
Acanthurus 

leucosternon 
Acanthurus nigricans Christmas Is. Tr R, H Q Marie et al. (2007) 

Acanthuridae Acanthurus japonicus Acanthurus nigricans Taiwan Tr   N/A Randall and Frische (2000) 

Acanthuridae Acanthurus achilles Acanthurus nigricans Phoenix Is. Tr H, D Q Randall (1956) 

Acanthuridae Naso elegans Naso lituratus Christmas Is. Tr R Q Hobbs et al. (2009) 

Acanthuridae Acanthurus lineatus Acanthurus sohal 
Socotra 

Archipelago 
Tr R Q DiBattista et al. (2015) 

Anguillidae Anguilla anguilla Anguilla rostrata Iceland Te R C Albert et al. (2006) 

Atherinopsidae Menidia menidia Menidia beryllina Florida Te R, H C Gosline (1948) 

Balistidae Melichthys indicus Melichthys vidua Christmas Is. Tr R Q Hobbs et al. (2009) 
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Chaetodontidae Chaetodon argentatus Chaetodon mertensii N/A Tr   N/A Allen et al. (1998) 

Chaetodontidae Chaetodon argentatus Chaetodon xanthurus N/A Tr   N/A Kuiter (2002) 

Chaetodontidae Chaetodon auriga Chaetodon ephippium Tuamotu Tr R C Randall et al. (1977) 

Chaetodontidae Chaetodon auriga Chaetodon fasciatus Red Sea Tr   N/A  Gardner (1997) 

Chaetodontidae Chaetodon austriacus Chaetodon melapterus N/A Tr   N/A Allen et al. (1998) 

Chaetodontidae Chaetodon burgessi Chaetodon tinkeri N/A Tr   N/A Allen et al. (1998) 

Chaetodontidae Chaetodon burgessi 
Chaetodon 

flavocoronatus 
N/A Tr   N/A Allen et al. (1998) 

Chaetodontidae Chaetodon daedalma Chaetodon nippon N/A Tr   N/A  Allen et al. (1998) 

Chaetodontidae Chaetodon ephippium Chaetodon semeion Marshall Is. Tr R C Randall et al. (1977) 

Chaetodontidae Chaetodon ephippium 
Chaetodon 

xanthocephalus 
N/A Tr R N/A Kuiter (2002) 

Chaetodontidae Chaetodon guentheri Chaetodon daedalma N/A Tr   N/A Allen et al. (1998) 

Chaetodontidae Chaetodon guentheri Chaetodon oxycephalus N/A Tr   N/A Kuiter (2002) 

Chaetodontidae Chaetodon kleinii Chaetodon unimaculatus Marshall Is. Tr R C Randall et al. (1977) 

Chaetodontidae Chaetodon miliaris Chaetodon tinkeri Hawaii Tr R C Randall et al. (1977) 

Chaetodontidae 
Chaetodon 

ornatissimus 
Chaetodon reticulatus N/A Tr   N/A Allen et al. (1998) 

Chaetodontidae Chaetodon rafflesii Chaetodon vagabundus N/A Tr   N/A Kuiter (2002) 

Chaetodontidae Chaetodon Chaetodon rainfordi GBR Tr R C Randall et al. (1977) 
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aureofasciatus 

Chaetodontidae 
Chaetodon 

guttatissimus 

Chaetodon 

punctatofasciatus 
Christmas Is. Tr 

H, D, 

R 
Q 

Hobbs et al. (2009); Montanari et al. 

(2014) 

Chaetodontidae 
Chaetodon 

punctatofasciatus 
Chaetodon pelewensis GBR Tr   N/A Randall et al. (1977) 

Chaetodontidae Chaetodon trifasciatus Chaetodon lunulatus Christmas Is. Tr 
H, D, 

R 
N/A 

Hobbs et al. (2009); Montanari et al. 

(2012) 

Chaetodontidae 
Chaetodon 

ornatissimus 
Chaetodon meyeri 

Palau; Christmas 

Is. 
Tr   N/A Randall et al. (1977) 

Chaetodontidae Chaetodon auriga Chaetodon lunula Red Sea Tr   N/A Randall et al. (1977) 

Chaetodontidae Chaetodon miliaris Chaetodon multicinctus Hawaii Tr   N/A Randall et al. (1977) 

Chaetodontidae Chaetodon ocellatus Chaetodon striatus Puerto Rico Tr O C Clavijo (1985) 

Chaetodontidae Chaetodon collare Chaetodon lunula 
Socotra 

Archipelago 
Tr R Q DiBattista et al. (2015) 

Chaetodontidae Chaetodon gardineri Chaetodon leucopleura 
Socotra 

Archipelago 
Tr R Q DiBattista et al. (2015) 

Chaetodontidae Chaetodon melapterus Chaetodon trifasciatus 
Socotra 

Archipelago 
Tr R Q DiBattista et al. (2015) 

Cirrhitidae Cirrhitichthys calliurus 
Cirrhitichthys 

oxycephalus 

Socotra 

Archipelago 
Tr R Q DiBattista et al. (2015) 
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Clupeidae Brevoortia patronus Brevoortia smithi Florida ST R, H Q Hettler (1968) 

Clupeidae Brevoortia smithi Brevoortia tyrannus Florida ST   N/A Dahlberg (1969) 

Fundulidae Fundulus majalis Fundulus similis Florida Te   N/A Duggins et al. (1995) 

Gadidae  Gadus morhua 
 Melanogrammus 

aeglefinus 
Nova Scotia Te   N/A Gardner (1997) 

Gadidae Gadus morhua Gadus morhua 
Baltic Sea; North 

Sea 
Te   N/A Nielsen et al. (2003) 

Haemulidae Anisotremus virginicus 
Anisotremus 

surinamensis 
Brazil ST   N/A  Bernardi et al. (2013) 

Haemulidae 
Haemulon 

flaviguttatum 
Haemulon maculicauda Panama Tr   N/A  Rocha et al. (2008) 

Haemulidae Haemulon bonariense Haemulon parra Venezuela Tr   N/A  Rocha et al. (2008) 

Hexagrammida

e 

Hexagrammos 

octogrammus 
Hexagrammos otakii Japan Te R C Munehara et al. (2000); Crow et al. (2010) 

Hexagrammida

e 

Hexagrammos 

octogrammus 

Hexagrammos 

agrammus 
Japan Te R C Munehara et al. (2000); Crow et al. (2010) 

Hexagrammida

e 

Hexagrammos 

agrammus 
Hexagrammos otakii Japan Te R C Munehara et al. (2000); Crow et al. (2010) 

Labridae Bodianus pulchellus Bodianus rufus Brazil Tr   N/A Sazima and Gasparini (1999) 

Labridae Halichoeres garnoti Halichoeres bivittatus Belize, Caribbean Tr H C Yaakub et al. (2007) 
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Labridae Notolabrus celidotus Notolabrus fucicola NE New Zealand Te R Q Ayling (1980) 

Labridae Notolabrus celidotus Notolabrus inscriptus NE New Zealand Te   N/A Ayling (1980) 

Labridae Notolabrus fucicola Notolabrus inscriptus NE New Zealand Te   N/A Ayling (1980) 

Labridae Notolabrus fucicola Notolabrus tetricus SE Australia Te   N/A Russell (1988) 

Labridae Thalassoma jansenii 
Thalassoma 

quinquevittatum 
Coral Sea Tr R, H Q Yaakub et al. (2006) 

Labridae Thalassoma hardwicke 
Thalassoma 

quinquevittatum 
Saipan Tr   N/A Myers (1999) 

Labridae Thalassoma lutescens Thalassoma duperrey Johnston Atoll Tr   N/A  Sale (1991); Lobel (2003) 

Labridae 
Thalassoma 

nigrofasciatum 

Thalassoma 

quinquevittatum 
Coral Sea Tr   N/A Walsh and Randall (2004) 

Merlucciidae Merluccius capensis Merluccius paradoxus South Africa Te R C Miralles et al. (2014) 

Moronidae Dicentrarchus labrax Dicentrarchus labrax Mar Menor ST   N/A Lemaire et al. (2005) 

Pleuronectidae  Isopsetta isolepis  Parophrys vetulus 
Puget Sound, WA 

USA 
Te   N/A  Garrett (2005) 

Pleuronectidae  Limanda limanda  Platichthys flessus England Te   N/A Norman (1934) 

Pleuronectidae  Limanda limanda  Pleuronectes platessa England Te   N/A Norman (1934) 

Pleuronectidae  Platichthys flessus  Pleuronectes platessa Baltic Sea; England Te   N/A  Norman (1934) 

Pleuronectidae  Platichthys stellatus  Kareius bicoloratus Japan Te R C Fujio (1977) 

Pleuronectidae  Platichthys stellatus  Parophrys vetulus Puget Sound, WA Te H Q Schultz and Smith (1936); Garrett et al. 
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USA (2007) 

Pleuronectidae  Pleuronectes platessa 
 Glyptocephalus 

cynoglossus 
Baltic Sea Te   N/A  Norman (1934) 

Pleuronectidae 
 Pseudopleuronectes 

americanus 
 Limanda ferruginea 

New York, NY 

USA 
Te H C Nichols (1918) 

Pomacanthidae 
Apolemichthys 

xanthurus 

Apolemichthys 

trimaculatus 

Seychelles; 

Maldives 
Tr   N/A  Pyle and Randall (1994) 

Pomacanthidae Centropyge eibli Centropyge flavissima Christmas Is. Tr R Q 
Pyle and Randall (1994); DiBattista et al. 

(2012) 

Pomacanthidae Centropyge eibli Centropyge vrolikii Indonesia Tr R C 
Pyle and Randall (1994); DiBattista et al. 

(2012) 

Pomacanthidae Centropyge flavissima Centropyge vrolikii 
Marshall Is.; 

Christmas Is. 
Tr R Q 

Pyle and Randall (1994); DiBattista et al. 

(2012) 

Pomacanthidae Centropyge loricula Centropyge potteri Hawaii Tr R C Pyle and Randall (1994) 

Pomacanthidae Centropyge bispinosa Centropyge heraldi Philippines Tr   N/A  Pyle and Randall (1994) 

Pomacanthidae Centropyge bispinosa Centropyge shepardi Guam Tr R C Pyle and Randall (1994) 

Pomacanthidae 
Chaetodontoplus 

caeruleopunctatus 

Chaetodontoplus 

septentrionalis 
Japan Tr   N/A  Pyle and Randall (1994) 

Pomacanthidae 
Chaetodontoplus 

melanosoma 

Chaetodontoplus 

septentrionalis 

Indonesia; Taiwan-

S Japan 
Tr   N/A  Pyle and Randall (1994) 
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Pomacanthidae 
Holacanthus 

bermudensis 
Holacanthus ciliaris Florida Tr 

H, D, 

R 
Q Feddern (1968) 

Pomacanthidae 
Paracentropyge 

multifasciata 
Paracentropyge venusta Philippines Tr   N/A  Pyle and Randall (1994) 

Pomacanthidae Pomacanthus arcuatus Pomacanthus paru Laboratory* Tr   N/A  Pyle and Randall (1994) 

Pomacanthidae Pomacanthus chrysurus Pomacanthus maculosus Kenya Tr   N/A  Pyle and Randall (1994) 

Pomacanthidae 
Pomacanthus 

maculosus 

Pomacanthus 

semicirculatus 
Kenya Tr   N/A  Pyle and Randall (1994) 

Pomacanthidae 
Pomacanthus 

sexstriatus 

Pomacanthus 

xanthometapon 
GBR Tr   N/A  Pyle and Randall (1994) 

Pomacanthidae 
Pomacanthus 

navarchus 

Pomacanthus 

xanthometapon 
Aquarium* Tr   N/A  Pyle and Randall (1994) 

Pomacentridae Abudefduf abdominalis Abudefduf vaigiensis Hawaii Tr R Q 
Maruska and Peyton (2007); Coleman et 

al. (2014) 

Pomacentridae 
Acanthochromis 

polyacanthus 

Acanthochromis 

polyacanthus 
GBR Tr H C 

Planes and Doherty (1997); van 

Herwerden and Doherty (2006) 

Pomacentridae Stegastes planifrons Stegastes leucostictus Florida Tr   N/A  Gardner (1997) 

Pomacentridae 
Amphiprion 

chrysopterus 

Amphiprion 

sandaracinos 
PNG Tr R, H Q 

Fautin and Allen (1997); Gainsford et al. 

(2015) 

Pomacentridae Amphiprion bicicntus Amphiprion omanensis Scocotra Tr R Q DiBattista et al. (2015) 
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Archipelago 

Pomacentridae Dascyllus carneus Dascyllus margintus 
Scocotra 

Archipelago 
Tr R Q DiBattista et al. (2015) 

Scaridae 
Chlorurus 

perspicillatus 
Chlorurus sordidus Hawaii Tr   N/A  Randall (2005) 

Sciaenidae Argyrosomus inodorus Argyrosomus japonicus South Africa Te R C Mirimin et al. (2014) 

Scombridae 
Scomberomorus 

commerson 
Scomberomorus guttatus India Tr 

R, H, 

O 
C Rao and Lakshmi (1993) 

Scophthalmida

e 
Scophthalmus maximus Scophthalmus rhombus 

Baltic Sea; North 

Sea 
Te H C Holt (1883); Norman (1934) 

Scophthalmida

e 
Scophthalmus maximus Scophthalmus maximus 

Baltic Sea; North 

Sea 
Te   N/A  Nielsen et al. (2004) 

Sebastidae Sebastes auriculatus Sebastes caurinus 
Puget Sound, WA 

USA 
Te   N/A  Seeb (1998); Buonaccorsi et al. (2005) 

Sebastidae Sebastes auriculatus Sebastes maliger 
Puget Sound, WA 

USA 
Te   N/A  Seeb (1998); Buonaccorsi et al. (2005) 

Sebastidae Sebastes caurinus Sebastes maliger 
Puget Sound, WA 

USA 
Te   N/A  Seeb (1998) 

Sebastidae Sebastes fasciatus Sebastes mentella S Newfoundland Te R, H C Roques et al. (2001) 

Serranidae Hypoplectrus aberrans Hypoplectrus nigricans Panama Tr H, D Q Fischer (1980) 
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Serranidae Hypoplectrus unicolor Hypoplectrus puella Jamaica Tr R, H Q Fischer (1980) 

Serranidae Hypoplectrus aberrans Hypoplectrus puella Panama Tr H, D Q Fischer (1980) 

Serranidae Hypoplectrus puella Hypoplectrus indigo Panama Tr R, D Q Fischer (1980) 

Serranidae 
Plectropomus 

maculatus 
Plectropomus leopardus GBR Tr R, H Q Frisch and van Herwerden (2006) 

Siganidae Siganus guttatus Siganus lineatus Philippines Tr   N/A  Kuriiwa et al. (2007) 

Siganidae Siganus doliatus Siganus virgatus Philippines Tr   N/A  Kuriiwa et al. (2007) 

Siganidae Siganus corallinus Siganus puellus Palau Tr   N/A  Kuriiwa et al. (2007) 

Siganidae Siganus fuscescens Siganus canaliculatus Japan ST   N/A  Kuriiwa et al. (2007) 

Siganidae Siganus unimaculatus Siganus vulpinus Philippines Tr   N/A  Kuriiwa et al. (2007) 

Soleidae Solea aegyptiaca Solea senegalensis France; Tunisia ST   N/A  She et al. (1987); Ouanes et al. (2011) 

Tetraodontidae 
Arothron 

nigropunctatus 
Arothron mappa Christmas Is. Tr R Q Hobbs et al. (2009) 

Triglidae Prionotus alatus Prionotus paralatus Alabama, USA ST   N/A   McClure and McEachran (1992) 

* Not included in the summary calculations and discussion presented here, because the hybridisations were not observed in the wild 
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CHAPTER 2: ISOLATION AND CHARACTERIZATION OF TWENTY 

MICROSATELLITE MARKERS FOR THE STUDY OF HYBRIDIZATION IN 

BUTTERFLYFISH OF THE GENUS CHAETODON  

 

2.1 Abstract 

 

Twenty polymorphic microsatellite loci were developed via 454 sequencing for two 

hybridizing sister species of butterflyfish: the spot-band butterflyfish (Chaetodon 

punctatofasciatus) and peppered butterflyfish (C. guttatissimus), which are widely distributed 

in the Western Pacific and Indian Ocean, respectively. All loci were genotyped in samples 

collected from Christmas Island: C. guttatissimus (n = 25), C. punctatofasciatus (n = 17) and 

hybrids (n = 16). Mean alleles per locus (Na) were: 9.05 for C. guttatissimus, 9.95 for C. 

punctatofasciatus and 9.45 for hybrids. Observed heterozygosity (HO) ranged from 0.00 to 

1.00 for C. guttatissimus; from 0.08 to 0.88 for C. punctatofasciatus; and from 0.19 to 0.94 

for hybrids. Most loci conformed to Hardy–Weinberg expectations, were in linkage 

equilibrium, and did not contain null alleles. These markers will be useful for testing 

population genetic hypotheses including patterns of hybridization in this pair of 

butterflyfishes.  

  

                                                

 This Chapter is published in the journal Conservation Genetics Resources: Montanari SR, Gardner MG, Hobbs 
JPA, et al. (2013) Isolation and characterization of twenty microsatellite markers for the study of hybridization 
in butterflyfish of the genus Chaetodon. Conservation Genetics Resources 5, 783-786. 
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 Hybridization is widespread in coral reef fishes, but its consequences are still poorly 

understood. Uni- or bidirectional parental contributions, and presence or absence of 

introgression, can all characterize reef fish hybridization (McMillan et al. 1999; Yaakub et al. 

2006; Montanari et al. 2012). The relative importance of these processes may be explained by 

the magnitude of the genetic distance between parental species (Mallet 2005) but this is not 

known for most species. 

Butterflyfishes (f. Chaetodontidae) are a young reef fish family (Cowman & Bellwood 2011) 

characterized by having high levels of gene flow among geographically isolated populations 

(Lawton et al. 2011b) and a high proportion of hybridizing species (Hobbs et al. 2013). The 

peppered butterflyfish (Chaetodon guttatissimus) and the spot-band butterflyfish (Chaetodon 

punctatofasciatus) are allopatric sister species with large geographical ranges spanning the 

Indian and Western Pacific Oceans (Allen et al. 1998). Both taxa occur at Christmas Island 

(Indian Ocean, Australia) at the edge of their distributions (Hobbs & Salmond 2008) and 

hybridize at this reef fish suture zone (Hobbs et al. 2009).  

Another pair of butterflyfishes hybridize at Christmas Island (Montanari et al. 2012). 

Comparisons between these hybridizations will allow to identify patterns of directionality and 

introgression in reef fish hybridization. To examine the specific consequences of 

hybridization in the C. punctatofasciatus – C. guttatissimus complex, we developed markers 

for the parental species, rather than attempting cross-amplification of available markers 

(Lawton et al. 2010). 

 All loci were developed from C. punctatofasciatus DNA, extracted using Gentra Puregene 

(Qiagen). DNA (1 μg) was shotgun sequenced on 12.5% of a Roche GS-FLX (AGRF, 

Brisbane, Australia) (Gardner et al. 2011). All 454 sequencing results were deposited on 

Dryad (Meglécz et al. 2012) with doi:10.5061/dryad.jd183.  

 A total of 113,361 reads (average sequence length = 348 bp; total GC content = 

43.07%) were screened for di-hexanucleotide repeats using the default settings of QDD 

(Meglécz et al. 2010). Microsatellite coverage was 0.03%, within the average obtained for the 
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Actinopterigii (Meglécz et al. 2012). PCR primers with the lowest pair penalty (Meglécz et 

al. 2010) were synthesized for 24 tri-hexanucleotide loci. 

 Initial testing for amplification and marker diversity was performed on five 

individuals of each taxon. PCR contained 1 X Type-it Multiplex PCR Master Mix (Qiagen), 

20–50 ng template, and 0.2 M each primer. Each tailed forward primer and a reporter primer 

(5’ TET-labeled) were mixed at a 1:4 ratio (total = 0.2 M) for indirect labeling (Shimizu et al. 

2002). PCRs included an initial denaturation of 95°C for 5 min followed by 28 cycles of 95°C 

for 30 s, 60°C for 90 s and 72°C for 30 s followed by 30 min at 60°C on a Bio-Rad C1000 

Thermal Cycler (Bio-Rad). Genotypes were run on an ABI 3730XL Genetic Analyzer 

(Applied Biosystems) with a LIZ-500 size standard and scored using Microsatellite Plugin 

v1.1.0 (Biomatters Ltd.).  

Twenty loci reliably amplified and were polymorphic (Table 1). All these were directly 

fluoro-labeled and genotyped in 58 individuals collected from Christmas Island, using 

Chelex-extracted DNA: C. guttatissimus (n = 25), C. punctatofasciatus (n = 17) and hybrids 

(n = 16). Multiplexing (Table 1) was carried out using PCR conditions described above.  

Number of alleles (Na), observed (HO) and expected (HE) heterozygosities and probabilities 

of departure from Hardy–Weinberg Equilibrium (HWE) were calculated using the R package 

adegenet (Jombart 2008). GENEPOP v4.2 (Rousset 2008) and MICROCHECKER v2.2.3 

(van Oosterhout et al. 2004) were used to check for linkage disequilibrium and null alleles. 

CERVUS v3.0 (Kalinowski et al. 2007) and COLONY v2.0.4 (Wang 2004) were used to 

calculate Polymorphic Information Content (PIC) and sibship probabilities.  

For C. guttatissimus HO ranged from 0.00 to 1.00 and for C. punctatofasciatus from 0.08 to 

0.88 (Table 1). Mean Na was 9.05 ± 0.84 SE and 9.95 ± 0.69 SE, respectively (Table 1). Eight 

loci departed significantly from HWE in the parental species (Table 1), possibly due to 

siblings in the sample. All loci departing from HWE showed presence of null alleles 

(frequency = 0.16-0.48), with the exception of Cpun3 in C. punctatofasciatus. Two between-
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locus comparisons deviated from linkage equilibrium (Bonferroni-adjusted α = 0.0026; C. 

punctatofasciatus: Cpun6-Cpun7, p = 0.001 and Cpun19-Cpun21, p < 0.001).  

For hybrids, mean Na was 9.45 ± 0.77 SE and HO ranged from 0.19 to 0.94 (Table 1). Four 

loci departed significantly from HWE (Table 1): all but Cpun17 displayed evidence of null 

alleles (frequency = 0.13-0.30), whereas no loci deviated from linkage equilibrium. 

 Markers reported here are polymorphic, amplify in two sister species of genus 

Chaetodon and will be used for resolving population structure, patterns of hybridization and 

speciation in this species pair and closely related taxa. 
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Table 2.1. Primer sequences and characteristics of 20 microsatellite loci: number of alleles (Na), observed (HO) and expected (HE) heterzygosity, 

probability of departure from HWE (p), Polymorphic Information Content (PIC) and estimated null-allele frequency (NULL). Chaetodon guttatissimus 

(n = 25, GUT), hybrids (n = 16, HYB) and C. punctatofasciatus (n = 17, PUN) were all collected from Christmas Island.  

Locus Primer sequences (5’-3’) Motif Ta(℃) Na 

GUT 

HYB 

PUN 

HO 

GUT 

HYB 

PUN 

HE 

GUT 

HYB 

PUN 

p 

GUT 

HYB 

PUN 

PIC 

NULL  

GenBank Accession # 

Cpun11 F: 

FAMGTGGAGGCAACAGAACAGGT 

R: GGCCTTCATCTCACAGCTTC 

(TCA)8 60 2 

3 

7 

0.08 

0.19 

0.39 

0.08 

0.17 

0.67 

1.000 

0.982 

0.000** 

0.31 

0.28 

KC699732 

Cpun21 F: 

VICCATCAGAGGAAGCGAAGACC 

R: GCCCTTGAAGCAGTCTGAAG 

(CAA)8 60 4 

4 

4 

0.40 

0.50 

0.56 

0.44 

0.54 

0.53 

0.220 

0.973 

0.984 

0.45 

0.05 

KC699733 
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Locus Primer sequences (5’-3’) Motif Ta(℃) Na 

GUT 

HYB 

PUN 

HO 

GUT 

HYB 

PUN 

HE 

GUT 

HYB 

PUN 

p 

GUT 

HYB 

PUN 

PIC 

NULL  

GenBank Accession # 

Cpun32 F: FAMTTCCTCTCCTATCTGACGCC 

R: TCTGAGCGACAACAATGAGC 

(GGA)8 60 6 

5 

6 

0.36 

0.37 

0.53 

0.62 

0.65 

0.63 

0.007** 

0.033* 

0.001** 

0.61 

0.20 

KC699734 

Cpun41 F: 

PETGCTTGAGGTTCAACACGGAT 

R: AAGGAGCTCGCACAAATCAC 

(GTT)8 60 11 

9 

11 

0.40 

0.31 

0.53 

0.83 

0.83 

0.88 

0.000** 

0.001** 

0.008** 

0.85 

0.35 

KC699735 

Cpun61 F: NEDACCCTTCCCTACATGCTCCT 

R: TGCACATATGCATTCATCTCC 

(GGA)10 59 8 

9 

10 

0.79 

0.69 

0.76 

0.79 

0.82 

0.77 

0.285 

0.593 

0.973 

0.78 

0.03 

KC699736 
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Locus Primer sequences (5’-3’) Motif Ta(℃) Na 

GUT 

HYB 

PUN 

HO 

GUT 

HYB 

PUN 

HE 

GUT 

HYB 

PUN 

p 

GUT 

HYB 

PUN 

PIC 

NULL  

GenBank Accession # 

Cpun72 F: 

NEDCGAAGTCACTCTGAACGCTG 

R: AGTCAACACAGGAGCGACG 

(AGG)10 60 9 

8 

8 

0.54 

0.73 

0.50 

0.80 

0.80 

0.81 

0.000** 

0.222 

0.050* 

0.83 

0.19 

KC699737 

Cpun93 F: 

FAMCACAATGCCAGCAATGATCT 

R: GCTGAAGTGCAGAATGATGG 

(GAG)11 59 10 

9 

8 

0.18 

0.46 

0.35 

0.85 

0.87 

0.80 

0.000** 

0.007** 

0.001** 

0.86 

0.46 

KC699738 

Cpun102 F: VICCCTTTAACGAGGCAGCTCAC 

R: AAGTGAAGTGTTTCACCGGG 

(CAT)11 60 10 

10 

12 

0.60 

0.75 

0.71 

0.78 

0.84 

0.87 

0.074 

0.367 

0.026* 

0.84 

0.12 

KC699739 
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Locus Primer sequences (5’-3’) Motif Ta(℃) Na 

GUT 

HYB 

PUN 

HO 

GUT 

HYB 

PUN 

HE 

GUT 

HYB 

PUN 

p 

GUT 

HYB 

PUN 

PIC 

NULL  

GenBank Accession # 

Cpun112 F: 

PETAAGTGCGTCCACATTCAACA 

R: CAGAGCCAACTCCACACTGA 

(GTT)11 60 16 

16 

14 

1.00 

0.94 

0.88 

0.91 

0.92 

0.91 

0.400 

0.427 

0.793 

0.93 

0.00 

KC699740 

Cpun123 F: 

PETAGGTGGAGAGCAGAAGCAGA 

R: GTGTGACAGGTGACCCTCCT 

(GGA)12 60 6 

7 

7 

0.59 

0.73 

0.67 

0.76 

0.80 

0.72 

0.081 

0.138 

0.765 

0.75 

0.09 

KC699741 

Cpun133 F: VICCGTCGTTAAAGCCCTGAGAG 

R: TCAGAGGTCAAACTGTCGCA 

(GGA)12 60 11 

9 

7 

0.29 

0.67 

0.08 

0.88 

0.88 

0.83 

0.000** 

0.073 

0.000** 

0.88 

0.48 

KC699742 
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Locus Primer sequences (5’-3’) Motif Ta(℃) Na 

GUT 

HYB 

PUN 

HO 

GUT 

HYB 

PUN 

HE 

GUT 

HYB 

PUN 

p 

GUT 

HYB 

PUN 

PIC 

NULL  

GenBank Accession # 

Cpun144 F: VICTCAGCAGCACTCCTCTCATC 

R: GGTGGAAGACACCAGTGAGAC 

(TCT)13 59 5 

11 

13 

0.20 

0.75 

0.72 

0.19 

0.69 

0.88 

1.000 

0.377 

0.878 

0.64 

0.15 

KC699743 

Cpun153 F: NEDCAGCATTTGGCTAGCTTGGT 

R: TGGCAGCTGATCAGAAATGA 

(TAT)13 60 6 

8 

12 

0.39 

0.80 

0.76 

0.37 

0.69 

0.86 

0.934 

0.778 

0.252 

0.71 

0.10 

KC699744 

Cpun174 F: 

FAMTGAATGGATGAATGGATGGTT 

R: CCTGGGAGGAGACAAACAGA 

(ATGG)10 60 10 

13 

14 

0.92 

0.73 

0.78 

0.86 

0.88 

0.91 

0.171 

0.009** 

0.567 

0.89 

0.05 

KC699745 
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Locus Primer sequences (5’-3’) Motif Ta(℃) Na 

GUT 

HYB 

PUN 

HO 

GUT 

HYB 

PUN 

HE 

GUT 

HYB 

PUN 

p 

GUT 

HYB 

PUN 

PIC 

NULL  

GenBank Accession # 

Cpun184 F: 

NEDAACAAAGCTTTCAGGCTCCA 

R: GTCTGTCCACACGTCACAGG 

(CTGT)12 60 11 

10 

9 

1.00 

0.56 

0.56 

0.88 

0.83 

0.83 

0.794 

0.054 

0.104 

0.88 

0.08 

KC699746 

Cpun195 F: VICTCCTCTCCATCGTCTCCAAC 

R: GTTGTAGAGGTGCCATGCAG 

(GTCT)12 60 11 

14 

13 

0.67 

0.62 

0.41 

0.84 

0.86 

0.84 

0.027* 

0.007** 

0.000** 

0.86 

0.19 

KC699747 

Cpun204 F: 

PETGGCAACTGGGTTCAGATGAT 

R: CTGTTCGTCCTTGGATTGCT 

(TGGA)13 60 15 

16 

16 

0.70 

0.79 

0.69 

0.92 

0.91 

0.92 

0.230 

0.307 

0.102 

0.93 

0.13 

KC699748 
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Locus Primer sequences (5’-3’) Motif Ta(℃) Na 

GUT 

HYB 

PUN 

HO 

GUT 

HYB 

PUN 

HE 

GUT 

HYB 

PUN 

p 

GUT 

HYB 

PUN 

PIC 

NULL  

GenBank Accession # 

Cpun215 F: PETCTCTTCTGACGGACGGTGAT 

R: TGACTTTCTATTGAGCCGCA 

(GACGT)10 60 16 

12 

11 

0.76 

0.87 

0.76 

0.90 

0.88 

0.85 

0.751 

0.384 

0.093 

0.90 

0.06 

KC699749 

Cpun225 F: 

FAMGAAGGCTGTGCTGACACTGA 

R: GAGTTTGAAGCCGTGTGGAG 

(AGGAC)11 60 6 

7 

8 

0.6 

0.81 

0.83 

0.75 

0.81 

0.82 

0.505 

0.906 

0.665 

0.79 

0.04 

KC699750 

Cpun235 F: 

NEDGACAGAGCGATGTGCTATGG 

R: AGGTCCCTCAGCAAGGAGAT 

(GGAGA)13 60 8 

9 

9 

0.00 

0.62 

0.47 

0.86 

0.86 

0.81 

0.000** 

0.087 

0.038* 

0.88 

0.41 

KC699751 

1,2,3,4,5 Multiplex plate allocation; * p < 0.05; ** p < 0.0167 after sequential Bonferroni correction (highlighted in bold). 
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CHAPTER 3: DOES GENETIC DISTANCE BETWEEN PARENTAL SPECIES 

INFLUENCE OUTCOMES OF HYBRIDISATION AMONG CORAL REEF 

BUTTERFLYFISHES?  

3.1 Abstract 

Christmas Island is located at the overlap of the Indian and Pacific Ocean marine provinces, 

and is a hotspot for marine hybridisation. Here we evaluate the ecological framework and 

genetic consequences of hybridisation between butterflyfishes Chaetodon guttatissimus and 

Chaetodon punctatofasciatus. Further, we compare our current findings to those from a 

previous study of hybridisation between Chaetodon trifasciatus and Chaetodon lunulatus. For 

both species groups, habitat and dietary overlap between parental species facilitate frequent 

heterospecific encounters. Low abundance of potential mates promotes heterospecific pair 

formation and the breakdown of assortative mating. Despite similarities in ecological 

frameworks, the population genetic signatures of hybridisation differ between the species 

groups. Mitochondrial and nuclear data from C. guttatissimus × C. punctatofasciatus (1% 

divergence at cyt b) show bidirectional maternal contributions and relatively high levels of 

introgression, both inside and outside the Christmas Island hybrid zone. In contrast, 

Chaetodon trifasciatus × C. lunulatus (5% cyt b divergence) exhibit unidirectional 

mitochondrial inheritance and almost no introgression. Back-crossing of hybrid C. 

guttatissimus × C. punctatofasciatus and parental genotypes may eventually confound 

species-specific signals within the hybrid zone. In contrast, hybrids of C. trifasciatus and C. 

lunulatus may coexist with and remain genetically distinct from the parents. Our results, and 

comparisons with hybridisation studies in other reef fish families, indicate that genetic 

distance between hybridising species may be a factor influencing outcomes of hybridisation in 

reef fish, which is consistent with predictions from terrestrially-derived hybridisation theory. 
                                                

 This Chapter is published in the journal Molecular Ecology: Montanari SR, Hobbs JPA, Pratchett MS, Bay LK, 
Van Herwerden L (2014) Does genetic distance between parental species influence outcomes of hybridization 
among coral reef butterflyfishes? Molecular Ecology 23, 2757-2770. 
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3.2 Introduction 

  Hybridisation is often a significant evolutionary force that can erode genetic diversity 

in natural populations (Abbott et al. 2013), but can also contribute to creating and maintaining 

genotypic novelty (Seehausen 2004; Mallet 2007; Nolte & Tautz 2010; Abbott et al. 2013). 

Hybridisation challenges the assumptions of the biological species concept: to provide a 

suitable framework for the interpretation of natural hybridisation (Frankham et al. 2012), we 

define species as separate ‘genotypic clusters’ that remain stable in the face of gene flow 

(Mallet 2007). Hybridisation can increase genotypic variation, which may be significant in 

enhancing adaptation to altered or novel environments - e.g. Darwin finches (Grant & Grant 

2002) -. Further, hybridisation can have significant effects on evolution through the formation 

of hybrid swarms - e.g. sticklebacks (Taylor et al. 2006) - and stable hybrid lineages, which 

coexist in sympatry with parental species - e.g. sparrows (Hermansen et al. 2011) -. Albeit 

well understood in terrestrial and freshwater systems, the role of hybridisation in shaping the 

evolution of marine organisms remains, with a few exceptions - e.g. corals (Willis et al. 2006) 

- , in need of thorough evaluation.  

 Several ecological and behavioural processes promote natural hybridisation (Willis et 

al. 2013). Closely related species often share similar ecological niches (habitat, diet) and this 

can increase the frequency of heterospecific encounters - e.g. fire-bellied toads (MacCallum et 

al. 1998) -. Species in low abundance may choose to mate with close relatives when 

conspecific partners are not available, thus rarity of one or both species within the contact 

zone might result in the formation of heterospecific social groups - e.g. (Grant & Grant 2008) 

-, the breakdown of assortative mating (Arnold 1997), and hybridisation. Through ecological 

observations, the abovementioned studies have identified conditions that favour hybridisation 

in terrestrial systems but quantitative ecological data are scarce in the marine hybridisation 

literature (Montanari et al. 2012). 

 Studies have shown a negative correlation between frequency of hybridisation and 

evolutionary divergence (Edmands 2002; Mallet 2005, 2007): genetic distance, with some 
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exceptions (Edmands 2002), is considered a good predictor of reproductive isolation (Singhal 

& Moritz In press). Further, interspecific gene flow mediated by hybridisation (introgression) 

can occur between species with varying levels of divergence, but appears to be strongest in 

more closely related species (Mallet 2005). The evolutionary proximity of the parental species 

facilitates hybridisation because closely related species are more likely to be genetically 

compatible, and therefore capable of producing viable hybrids (Mallet 2005). Conversely, if 

divergence is too extensive, successful hybridisation might not be possible due to genetic 

incompatibility (Mallet 2005; Abbott et al. 2013). Geographic locations where hybridisation 

is most prevalent are ideal to investigate the outcomes of hybridisation in taxa with varying 

degrees of relatedness, because these narrow areas allow controlling for environmental 

variation that may influence patterns of hybridisation (Avise 2000). 

 Suture zones are geographic locations where hybrid zones naturally cluster (Swenson 

& Howard 2004) and were defined by Remington (1968) as “[bands] of geographic overlap 

between major biotic assemblages, including some pairs of species or semispecies which 

hybridise in the zone”. In terrestrial suture zones the extent of divergence and reproductive 

isolation between hybridising species can vary greatly and influence the evolutionary 

consequences of hybridisation (Moritz et al. 2009): here we propose to test this terrestrially 

derived notion in marine species.  

 The best known tropical marine suture zone is located at the Indo-Pacific 

biogeographic border, in the eastern Indian Ocean (Hobbs et al. 2009). Here the fish fauna is 

characterised by an admixture of Indian and Pacific Ocean taxa (Hobbs & Salmond 2008). 

Typically allopatric sister species make secondary contact at this border, where they form the 

highest number of reef fish hybrids reported from any marine location (Hobbs et al. 2009). 

Christmas Island, Australia, is an oceanic seamount located on the Indo-Pacific biogeographic 

border (Allen et al. 2007), and its reefs provide a unique location to apply terrestrially derived 

theory to test ecological frameworks and evolutionary consequences of hybridisation in a 

tropical marine suture zone.  
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 Butterflyfishes inhabit coral reefs worldwide, are dependent on live coral for food 

(Cole et al. 2008) and shelter (Wilson et al. 2013), readily respond to changes in reef 

environments (Pratchett et al. 2008) and thus are ideal candidates to examine effects of 

hybridisation on adaptation (Grant & Grant 2002). Butterflyfishes are well known for their 

propensity to hybridise, with more than 50% of species in the family involved in 

heterospecific pairing and/or interbreeding (Hobbs et al. 2013). Hybrids occur mostly along 

zones where major biogeographic provinces overlap (Hobbs et al. 2013), including at least 

eight butterflyfish species that form hybrids at Christmas Island (Hobbs et al. 2009; Hobbs et 

al. 2013). Chaetodon butterflyfishes are an ideal system to investigate reef fish hybridisation 

because many species are monogamous (Yabuta 1997; Pratchett et al. 2006a). Further, even 

though there may be instances where hybrids go undetected (Hobbs et al. 2013), butterflyfish 

hybrids are generally easy to recognise through intermediate colouration (McMillan et al. 

1999; Montanari et al. 2012; Hobbs et al. 2013). 

In a previous study of hybridisation between Chaetodon trifasciatus and C. lunulatus 

at Christmas Island (Montanari et al. 2012), we hypothesised that the magnitude of 

divergence between hybridising parents might influence patterns of introgression in reef 

fishes based on comparisons of our results to those from the literature (incorporating several 

geographic locations and reef fish families). By examining hybridisation between Chaetodon 

guttatissimus Bennett, 1832 and Chaetodon punctatofasciatus Cuvier, 1831 at the Indo-

Pacific marine suture zone, the present study allows us to control for taxon- and location-

specific factors that may influence patterns of introgression in reef fishes. Therefore, the aims 

of this paper are to: (i) determine the ecological and behavioural context of hybridisation 

between C. guttatissimus and C. punctatofasciatus by assessing abundance, spatial and dietary 

overlap, and breeding pair formation in parental species and hybrids; (ii) investigate the 

genetic mechanisms and evolutionary consequences of hybridisation between these species 

through analyses of mitochondrial (mt) and nuclear microsatellite DNA; (iii) discuss 

similarities and differences in ecology, genetics and potential evolutionary trajectories of C. 
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guttatissimus × C. punctatofasciatus and C. trifasciatus × C. lunulatus (Montanari et al. 2012) 

at the Indo-Pacific suture zone. Specifically we evaluate whether genetic distance between 

hybridising species influences maternal inheritance and introgression in tropical marine fish. 

 

3.3 Material and Methods 

3.3.1 Study location and species 

This study was conducted in October-November 2010 at Christmas Island, Australia, 

in the northeastern Indian Ocean (10°25’-10°34’S, 105°32’-105°42’E) (Figure 1, inset). The 

peppered butterflyfish, C. guttatissimus (Figure 2A), is wide-ranging in the Indian Ocean, 

occurring from the East coast of Africa to the Indo-Pacific biogeographic border at Christmas 

and Cocos (Keeling) Islands (Allen et al. 1998). The spot-band butterflyfish, C. 

punctatofasciatus (Figure 2A), is distributed throughout the Western Pacific Ocean, from 

Indonesia to the Line Islands and from the Ryukyu Islands to the Great Barrier Reef (Allen et 

al. 1998). Christmas Island is the edge of the respective distributions of these butterflyfishes 

(Allen et al. 1998; Hobbs & Salmond 2008), which form heterospecific pairs at this location 

(Hobbs et al. 2009) (Figure 2A). Importantly, putative hybrids with colouration intermediate 

to C. guttatissimus and C. punctatofasciatus (Figure 2B) are seen at Christmas Island. 

3.3.2 Hybrid zone ecology 

Abundance, depth distribution, and diet surveys 

To assess the abundance of all taxa, underwater visual censuses (UVCs) were 

conducted at nine sites along the accessible coasts (Figure 1). In face of the relative rarity of 

the focal species, transect size was increased (Thompson 2004) during additional abundance 

surveys along the north coast (Figure 1). Transect length varied (ranging from 162.1 m to 

580.5 m), but all data were standardised, with densities presented as the number of fishes per 

3000 m2. Surveyors swam unidirectionally along depth contours while towing a body board 

fitted with a Global Positioning System (GPS) receiver. The total area sampled for each of 14 
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replicate transects was calculated based on independent measures of each GPS track (see 

Additional Material and Methods in Supporting Information). T-tests were used to assess 

significant differences in abundance between parental species and hybrids. 

To assess depth distribution of the parent species and hybrids, the depth at which 

individual fishes were first sighted was recorded during UVCs (n = 30 individuals for all 

taxa). Depth data were examined using a one-way analysis of variance (ANOVA), comparing 

the mean depth occupied by parent species and hybrids. 

In situ three-minute feeding observations – following Pratchett (2005) - were 

conducted for all individuals recorded during the depth distribution UVCs. To examine 

dietary overlap between parent species and hybrids, we recorded the number of bites taken 

from different benthic prey or substrates. Prey items included predominantly scleractinian 

corals that were categorised based on genus and growth form sensu Montanari et al. (2012). 

Dietary composition was analysed using a multivariate analysis of variance (MANOVA), 

comparing the proportion of bites taken from each prey category by the parents and hybrids. 

Feeding rates (number of bites over three minutes) were compared between parents and 

hybrids using a one-way ANOVA, to further identify differences (if any) in feeding 

behaviour. 

Pairing behaviour surveys 

During UVCs along the north coast, pair composition was recorded to determine the 

frequency of assortative pairing behaviour in the C. guttatissimus group. Pairings were noted 

for all focal fishes encountered, regardless of whether both partners were within the transect 

area, and therefore included in the abundance counts. Unpaired fishes were small (< 70 mm 

TL) and most likely juveniles. For each parent species and hybrids, expected pairing 

frequencies were calculated by multiplying the proportional observed abundances by the 

number of paired individuals, and observational data were analysed for departures from 

expectations using a χ2-test. 
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3.3.3 Hybrid zone genetics 

Sampling and DNA extraction 

Samples of C. guttatissimus (n = 25), C. punctatofasciatus (n = 18) and C. 

guttatissimus × C. punctatofasciatus hybrids (n = 16) were collected within the Christmas 

Island hybrid zone. Chaetodon guttatissimus samples from outside the hybrid zone were 

collected at Cocos (Keeling) Islands (n = 18) and Zanzibar (n = 1). Similarly, putative 

purebred C. punctatofasciatus were collected from the Marshall Islands (n = 7) and Guam (n 

= 1) in the Pacific Ocean. Individual fish were speared whilst SCUBA diving and fin clips 

were preserved in 80% ethanol for later genetic analysis. Purebred parental species from 

locations as far as 7500 km away from the hybrid zone were useful in phylogenetic analyses, 

to tease apart species-specific genetic signals from the signal obtained from the hybrid zone. 

Chaetodon citrinellus from Lizard Island were used to root all phylogenetic analyses 

described below (Fessler & Westneat 2007). DNA was extracted from fin clips using 5% 

Chelex-100 (Walsh et al. 1991). 

MtDNA sequences and microsatellite genotypes 

Mitochondrial cytochrome (cyt) b primers (McMillan & Palumbi 1995), previously 

utilised in hybridisation studies of Chaetodon butterflyfishes (Montanari et al. 2012), were 

used to amplify 566 bp of the cyt b gene in all samples. Sequences from Montanari et al. 

(2012) were also used to redraw the relevant haplotype network. Polymerase chain reactions 

(PCR), PCR evaluation, product purification, sequencing, alignment and manual editing were 

conducted as described in Montanari et al. (2012). Twenty microsatellite markers developed 

for C. punctatofasciatus (Montanari et al. 2013) were used to further examine hybridisation in 

the C. guttatissimus × C. punctatofasciatus group. PCR and genotyping were performed as 

described in Montanari et al. (2013). 

Phylo- and population genetic analyses 

In order to identify species-specific and hybridisation signals, phylogenetic 

relationships were inferred using four approaches: Neighbour-Joining (NJ), Maximum 
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Parsimony (MP), Bayesian Inference (BI) and Maximum Likelihood (ML). All phylogenetic 

model parametrisations and cyt b haplotype network constructions were done following 

Montanari et al. (2012) to allow direct comparisons and minimise model-related variation 

(see Additional Material and Methods in Supporting Information). Population genetic 

analyses followed the same protocols as described in Montanari et al. (2012) and did not 

include Zanzibar C. guttatissimus (n = 1) or Guam C. punctatofasciatus (n = 1), due to small 

sample sizes (see Additional Material and Methods in Supporting Information).  

Microsatellite genotypes were partitioned into clusters assuming an admixture model 

with independent allele frequencies between populations, using STRUCTURE v2.3.4 

(Pritchard et al. 2000). Each value of k (set from 1 to 10) was independently evaluated 20 

times, with 1,500,000 iterations following a 100,000-long burn-in (Gilbert et al. 2012). The 

best fit model was chosen with the Evanno method (Evanno et al. 2005) implemented in 

STRUCTURE HARVESTER v0.6.93 (Earl & vonHoldt 2012) and values of Δk plotted and 

presented as Supporting Information. Admixture coefficients (Q), averaged over the 20 

independent runs, were visualised by means of a barplot with credibility regions for k = 2 

(corresponding to the parental species irrespective of geographic origin). Posterior 

probabilities, based on microsatellite genotypes, of individuals belonging to six classes (pure 

parental species, F1 or F2 hybrids and backcrosses in either direction) were calculated using 

NEWHYBRIDS (Anderson & Thompson 2002). Populations outside the hybrid zone were 

designated as pure parental species as prior information and the chain was run for 1,500,000 

iterations, after 150,000 burn-ins. Probabilities were subsequently averaged at population 

level. A discriminant analysis of principal components (DAPC) (Jombart et al. 2010) was run 

on all loci to investigate the relationship between the sampled populations.  

The STRUCTURE, NEWHYBRIDS and DAPC analyses described above were also 

run on genotypes from Montanari et al. (2012) and added as Supporting Information. By 

choosing a number of PCs equal to the number of individuals divided by three and a number 

of DA eigenvectors corresponding to the number of populations minus one in both analyses, 
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the genotypic variability retained in DAPC was similar between the two hybridising 

butterflyfish groups. This allowed direct comparisons, thus highlighting key differences in the 

evolutionary consequences of hybridisation in the two Chaetodon species groups at the 

Christmas Island suture zone.  

 

3.4 Results 

3.4.1 Hybrid zone ecology 

Abundance, depth distribution and diet 

 Hybrid C. guttatissimus × C. punctatofasciatus were relatively common at Christmas 

Island (2 ± 0.47 SE individuals per 3000 m2) and at least as abundant as the least common 

parental species, C. punctatofasciatus (2 ± 0.47 SE) (t(26) = 0.42, p = 0.68) (Table 1). 

Chaetodon guttatissimus was significantly more abundant (40 ± 4.5 SE) than C. 

punctatofasciatus (t(13) = 8.32, p < 0.0001) (Table 1).  

The ecology (specifically habitat use and dietary composition) of C. guttatissimus, C. 

punctatofasciatus and their hybrids was very similar. There was no significant difference in 

depth distribution between C. guttatissimus (average depth 16.6 m ± 0.49 SE) and C. 

punctatofasciatus (15.5 m ± 0.49 SE) (F(1, 89) = 3.14, p = 0.08) (Table 1). The parental species 

occupied relatively narrow, largely overlapping, depth ranges (Table 1). The depth 

distribution of the hybrids (16.2 m ± 0.50 SE) was not statistically different from that of either 

parent species (F(2, 29) = 1.47, p = 0.235). Similarly, dietary composition was not significantly 

different between parent species (Pillai’s Trace(34) = 0.51, p = 0.085) (Table 1). Both parental 

species most frequently fed on encrusting Montipora and massive Porites, which are among 

the most common coral genera at Christmas Island. The hybrids fed largely on the same prey 

as their parental species (Pillai’s Trace(34) = 0.51, p = 0.085) (Table 1). The feeding rates 

(number of bites per three minute observation) of parent species and hybrids were not 

significantly different (F(2, 29) = 2.03, p = 0.14).  
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Pairing behaviour 

The relative number of individuals that paired with conspecifics, heterospecifics or 

hybrids, was generally proportional to the abundance of these individuals (Figure 3A, Table 

1). The pairing behaviour of C. punctatofasciatus did not significantly deviate from the 

frequencies expected based on abundances (χ2(2, n = 30) = 2.89, p > 0.24), indicating that this 

species is pairing non-assortatively under these conditions (Figure 3A, Table 1). Chaetodon 

guttatissimus appeared to actively choose to pair heterospecifically (disassortative mating) 

(χ2(2, n = 264) = 14.91, p < 0.001), but this may be a statistical artefact of the large sample size 

for this species (Figure 3A). Hybrids were never observed paired together, and formed pairs 

with the parental species non-assortatively (χ2 (2, n = 26) = 3.25, p > 0.19) (Figure 3A). This 

indicates that hybrids are likely choosing partners based on their prevalence rather than 

phenotype.  

3.4.2 Hybrid zone genetics 

Five hundred and sixty-six base pairs (bp) of the mitochondrial cyt b region were 

resolved for a total of 86 individuals in the C. guttatissimus group. The alignment contained 

92 parsimony informative sites and identified 49 discrete haplotypes (Figure 3B). Twenty 

microsatellite loci reliably amplified and were scored in 83 individuals: one C. 

punctatofasciatus from Christmas Island was excluded due to > 20% missing data. Population 

level tests showed significant departures from HWE in 26 of 100 tests after sequential 

Bonferroni correction (α = 0.01) (Table S1). Eighteen (69%) of these HWE departures were 

concentrated at five loci (Cpun3, 4, 7, 9 and 13) (Table S1). Null alleles contributed to 

departures from HWE in all abovementioned loci. Chaetodon punctatofasciatus from 

Christmas Island had the most private alleles (17) compared to all other taxa in this group 

(Table S1). 

Phylogenetic relationships 

Congruent phylogenetic relationships were inferred with four methodologies (NJ, MP, 

BI and ML) and a clear separation between the two parental clades was strongly supported by 
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all analyses (Figure 3B). Six fixed nucleotide changes (1% divergence at cyt b) separated the 

two parental species, despite evidence of some interspecific mtDNA exchange (Figure 3B). 

All C. punctatofasciatus individuals and three of 44 individuals (7%) identified in the field as 

C. guttatissimus based on colouration were contained in a single clade (Figure 3B). Two of 

these individuals were from Cocos (Keeling) Islands, outside the hybrid zone of Christmas 

Island (Figure 3B). Hybrids in the C. guttatissimus group shared haplotypes with both 

parental clades, indicating a bidirectional maternal contribution to hybridisation (Figure 3B). 

This contrasts with the C. trifasciatus group, where redrawn haplotype relationships from 

Montanari et al. (2012) show 5% divergence between the parent species at cyt b, and all 

hybrids occur in only one of the two parental clades (unidirectional maternal contribution - 

Figure S1B).  

 

Population genetic structure 

Cytochrome b haplotype (h) and nucleotide (π) diversities, as well as gene diversity 

based on microsatellites (1-Q inter) within the Christmas Island hybrid zone were high for all 

taxa in the C. guttatissimus group (Table S2). The AMOVA fixation index for mtDNA cyt b 

was Φst = 0.48 p < 0.0001. Microsatellites indicated a clear separation between parental 

species and hybrids and had raw Fst = 0.038, p < 0.0001, Dest = 0.115 and ENA corrected 

values that were comparable to raw values, indicating low confounding effects from null 

alleles (Table S4). Nearly all pairwise Fst tests were significant for mitochondrial and nuclear 

markers, and this was further confirmed with Dest (Table S3). Genetic structure was evident 

between parental species irrespective of geographic location (Tables S3). Analyses of cyt b 

did not detect significant intra-specific structure between populations of either C. 

guttatissimus or C. punctatofasciatus (Table S3A). Microsatellites indicated weak intra-

specific structure between C. guttatissimus populations, but not between C. punctatofasciatus 

populations (Table S3B), possibly due to small sample size of the Marshall Island population. 

The hybrid population significantly differed from all other populations (Table S3). 
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Mitochondrial data indicated that hybrids are less differentiated from the parental species 

within the hybrid zone (Table S3A). However, microsatellite data showed that the hybrids are 

less differentiated from C. punctatofasciatus within the hybrid zone, but more from C. 

guttatissimus (Table S3B).  

STRUCTURE identified two clusters (Figure S2A): some admixture was detected 

between parental species (Figure 3D), both outside and within the hybrid zone - consistent 

with previous mtDNA and microsatellite analyses. Interestingly, the C. guttatissimus 

population from Cocos (Keeling) showed a slightly higher level of admixture with C. 

punctatofasciatus than the Christmas Island population (Figure 3D). Most notably, the C. 

punctatofasciatus population in the contact zone showed greater levels of admixture than C. 

guttatissimus (Figure 3D), but with high levels of variability in the estimates. The hybrids’ 

intermediacy was evident compared to both parental species, particularly C. guttatissimus 

(Figure 3D). Two clusters were also identified in the C. trifasciatus group (Montanari et al. 

2012) (Figure S2B): this dataset shows lower levels of parental admixture (particularly in the 

C. lunulatus populations) and hybrid intermediacy is clear in this group (Figure S1D). In both 

butterflyfish groups however, STRUCTURE lacks the resolution to reliably detect 

backcrossing and hybrid classes (possibly as a result of the small sample sizes and limited 

number of molecular markers). 

 NEWHYBRIDS assigned over 95% of C. guttatissimus individuals to their pure 

species, in both populations of origin (Figure 4). As also suggested in STRUCTURE, the 

Cocos (Keeling) population had a somewhat greater probability of introgression than the 

Christmas Island population (Figure 4). The hybrids were clearly intermediate and were 

mostly either assigned to C. guttatissimus or designated as F2 hybrids (Figure 4). Likewise, a 

similarly high probability of being F2 hybrids (almost 30%) was assigned to the Christmas 

Island population of C. punctatofasciatus, consistent with the suggested pattern of 

introgression observed in the STRUCTURE analysis (Figures 3D and 4). This contrasts with 

the C. trifasciatus group (Montanari et al. 2012), in which both parental species were 
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assigned to their respective pure clusters with >92% probability irrespective of geographic 

location (Figure S3). The hybrids in this group had a range of probabilities of being assigned 

to either parental cluster, F1, F2 or either backcross (10-25%) (Figure S3). Moreover, 

approximately 60% of assignments were to inter-parental crosses, the remainder being to pure 

parental clusters (Figure S3). In both NEWHYBRIDS analyses, the standard deviation around 

the mean posterior probabilities was negligible for all taxa, except for the hybrids, underlining 

the uncertainty associated with assigning these intermediate individuals.  

DAPC examined the relationship between clusters, predefined as combinations of 

taxon and geographic location (Figure 3C). The hybrid population was distinct from all others 

and hybrid genotypes were intermediate between parental species’ genotypes (Figure 3C). 

Little partitioning was evident between populations of the same species (Figure 3C), 

consistent with other analyses. Chaetodon guttatissimus × C. punctatofasciatus hybrids 

occupied a broad parameter space close to their parental clusters and confidence ellipses were 

shared in seven of 16 individuals (Figure 3C). In contrast, microsatellite data from Montanari 

et al. (2012), presented in a re-parametrised DAPC (see Material and Methods), show almost 

no overlap of hybrid and parental genotypes in the C. trifasciatus group (Figure S1C).  

 

3.5 Discussion 

3.5.1 Hybrid zone ecology  

Chaetodon guttatissimus and C. punctatofasciatus as well as C. lunulatus and C. 

trifasciatus (Montanari et al. 2012) have come into secondary contact at the tropical marine 

suture zone of Christmas Island. Our results highlight several ecological factors that are likely 

to contribute to the propensity of these species to hybridise. Some degree of habitat overlap is 

a necessary precursor to hybridisation in sexual vertebrates - e.g. Bombina toads (Vines et al. 

2003) -. The distributions of C. guttatissimus, C. punctatofasciatus and their hybrids largely 

overlap at Christmas Island: all taxa occupy sites with similar exposure (north coast) and have 
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relatively narrow and consistent depth ranges. Habitat overlap was also reported between C. 

lunulatus and C. trifasciatus (Montanari et al. 2012) and has been documented for a large 

number of hybridising marine fishes (Nichols 1918; Norman 1934; Schultz & Smith 1936; 

Gosline 1948; Randall 1956; Feddern 1968; Hettler 1968; Fischer 1980; Rao & Lakshmi 

1993; Frisch & van Herwerden 2006; Yaakub et al. 2006; Marie et al. 2007; Yaakub et al. 

2007; Hobbs et al. 2013). Such overlap increases the chance of heterospecific encounters 

between hybridising butterflyfishes at the Indo-Pacific suture zone. 

 Chaetodon guttatissimus, C. punctatofasciatus, C. trifasciatus and C. lunulatus are 

relatively specialised obligate corallivores (Cole et al. 2008), and their feeding mode has been 

confirmed through both gut content analyses (Harmelin-Vivien 1989; Sano 1989) and direct 

observations (Pratchett 2005). This study and data from Montanari et al. (2012) indicated that, 

in each hybridising group, the two parental species and their respective hybrids fed on the 

same suite of coral prey. Further, gut content analyses and direct feeding observations in 

tropical marine fishes belonging to the Acanthuridae (Randall 1956), Pomacanthidae 

(Feddern 1968) and Serranidae (Fischer 1980) showed, in all cases, that the diets of 

hybridising parents and hybrids were essentially the same. In synergy with overlap in habitat 

use, dietary overlap further increases encounter probability between hybridising 

butterflyfishes at Christmas Island. 

Rarity of conspecific mates is considered a promoting factor in hybridisation among 

terrestrial organisms - e.g. Darwin finches (Grant & Grant 2002) - and reef fishes (Randall et 

al. 1977; Pyle & Randall 1994; van Herwerden et al. 2002; Maruska & Peyton 2007; Hobbs 

et al. 2009). Although C. guttatissimus is relatively common at Christmas Island, its sister 

taxon, C. punctatofasciatus, is rare. At Christmas Island, C. punctatofasciatus occurs in 

densities 40 – 100 times lower than those found at locations near the centre of its distribution 

range - e.g. Indonesia and Palau (Findley & Findley 2001) -. The local rarity of C. 

punctatofasciatus may explain why many of these individuals are found in heterospecific 

pairs. Chaetodon trifasciatus and C. lunulatus are both rare at Christmas Island (Montanari et 
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al. 2012) and their abundances are one to three orders of magnitude lower compared to any 

other location for which abundance data are available (Adrim & Hutomo 1989; Findley & 

Findley 2001; Pratchett et al. 2004; Pereira & Videira 2005; Pratchett et al. 2006b). 

The frequency of heterospecific pair formation was proportional to the abundance of 

parent species in both the C. guttatissimus and C. trifasciatus (Montanari et al. 2012) hybrid 

groups at Christmas Island. This supports the hypothesis that rare species (and hybrids) are 

forming heterospecific pairs based on encounter rates and that a rare species (or hybrid) will 

choose a partner based on availability rather than the phenotypic identity of the individual. A 

breakdown in assortative mate choice has been reported for other pair forming Chaetodon 

butterflyfishes that are known to hybridise (McMillan et al. 1999; Hobbs et al. 2013). The 

parent species and hybrids examined in this study and in Montanari et al. (2012) belong to 

subgenera thought to be exclusively monogamous (Pratchett et al. 2006a; Craig et al. 2010), 

and indeed examination of the gonads of heterospecific pairs at Christmas Island revealed that 

these pairs always comprised a mature male and a mature female (Hobbs unpublished data). 

Therefore, the observed heterospecific breeding pairs are likely producing the hybrids seen at 

Christmas Island. Overall, our observations indicate that the ecological and behavioural 

processes that set the scene for hybridisation are similar across Chaetodon butterflyfish hybrid 

groups at Christmas Island and probably explain the onset of hybridisation in pair-forming 

butterflyfishes elsewhere (Hobbs et al. 2013). 

3.5.2 Hybrid zone genetics  

Mitochondrial and nuclear DNA analyses confirmed hybridisation in both the C. 

guttatissimus and C. trifasciatus (Montanari et al. 2012) groups. However, despite similarities 

in the ecological context of hybridisation in the two complexes, the genetic mechanisms are 

clearly different. In C. guttatissimus - C. punctatofasciatus, which are 1% divergent at cyt b as 

measured in this study, hybrids shared mtDNA with both parental clades, indicating 

bidirectional maternal contribution to hybridisation, a mode previously reported in reef fishes 

(McMillan et al. 1999; van Herwerden & Doherty 2006). This is consistent with field 
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observations of heterospecific pairs in which females were identified as either C. 

guttatissimus or C. punctatofasciatus, but in contrast with unidirectional mitochondrial 

inheritance in C. trifasciatus × C. lunulatus, 5% divergent at cyt b (Montanari et al. 2012). In 

previous studies of reef fish hybridisation, most or all hybrids reportedly shared haplotypes 

with the more abundant parental species, suggesting sneak mating by males of the rare species 

with females of the common species, likely due to rarity of conspecifics (van Herwerden et al. 

2006; Yaakub et al. 2006; Marie et al. 2007). In both cases of Chaetodon hybridisation 

examined here and in Montanari et al. (2012), hybrids shared most (or all) haplotypes with 

the rarest of contributing parents. Although this could be an artifact of small samples sizes 

(inherent to hybridisation studies, where hybrid taxa are often rare), females of the rare parent 

species appear to actively choose to mate with males of the more abundant sister species, 

probably due to the lack of conspecific males. In order to discriminate whether these results 

are consistent with female-mediated partner choice (Wirtz 1999), or represent selection 

against offspring that result from the opposite cross, further enquiry should be directed toward 

hybrid fitness in Chaetodon butterflyfish. 

Mitochondrial introgression was detected in Christmas Island C. guttatissimus 

individuals, which shared haplotypes with C. punctatofasciatus. This supports backcrossing of 

hybrid females with C. guttatissimus males. Microsatellite analyses also showed nuclear 

introgression in either direction, but mostly toward C. punctatofasciatus. The detection of 

both mtDNA and nDNA introgression in this group is perhaps not surprising, given the close 

genetic proximity of the parent species (Mallet 2005). Introgressed individuals were all 

identified as pure parents based on colouration, indicating that assessment of hybrid 

abundance based on colouration alone can lead to underestimation (Hobbs et al. 2013). Some 

“purebred” C. guttatissimus from Cocos (Keeling) Islands also had C. punctatofasciatus 

mtDNA and nDNA even though hybrids have never been observed at this location. Larval 

dispersal from Christmas to Cocos (Keeling) Islands (facilitated by westward flowing surface 

currents) might explain the presence of these individuals (Yaakub et al. 2006; Craig 2008). 
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Previous studies of reef fish hybridisation showed that gene flow between the parent species 

was either bidirectional or directed from the abundant maternal species to the rare paternal 

species (McMillan et al. 1999; van Herwerden et al. 2006; Yaakub et al. 2006; Marie et al. 

2007). Unidirectional mtDNA introgression - or lack thereof, as in the C. trifasciatus group 

(Montanari et al. 2012) – indicates that a partial barrier to gene flow is still present, perhaps 

due to assortative mating or selection against hybrids (Rhymer & Simberloff 1996). 

Assortative mating is unlikely, because our observations indicate that, in both groups, pairs 

are formed bidirectionally, and hybrids pair with either parental species, providing the 

opportunity for backcrossing. Further, the admixture detected in nDNA shows that the historic 

hybridisation suggested by the mtDNA introgression is ongoing, and that hybrids are still 

contributing to interspecific gene flow.  

An alternative interpretation of our detection of mtDNA and nDNA introgression 

between C. guttatissimus and C. punctatofasciatus is incomplete lineage sorting. Recent and 

robust phylogenies of the Chaetodontidae based on two mtDNA and rRNA markers 

unequivocally partition the two sister species, suggesting that the lineages have sorted 

completely (Littlewood et al. 2004; Hsu et al. 2007). Moreover, our phylogenetic analyses 

have shown that C. guttatissimus and C. punctatofasciatus populations sampled from 

locations most distant from the hybrid zone have distinct, species-specific mtDNA 

haplotypes. However, detection of introgressed individuals outside the hybrid zone points to 

possible incomplete lineage sorting, because allopatric populations of these species show 

some degree of admixture, irrespective of the geographic distance between them. To 

discriminate between this scenario and introgressive hybridisation, further studies should 

include more samples across the distribution ranges of these species, and apply genotyping-

by-sequencing techniques to increase resolution. 

3.5.3 Consequences of hybridisation 

Contrary to what has been observed in the Solomon Islands – Papua New Guinea 

hybrid zone involving C. punctatofasciatus and C. pelewensis (McMillan et al. 1999) and in 
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another hybridising fish, Acanthurus leucosternon, at Christmas Island (Marie et al. 2007), the 

introgressive hybridisation between C. guttatissimus and C. punctatofasciatus is not strong 

enough to swamp species-specific signals. Although this pattern could be the result of chance 

given the small sample size, our data suggest that divergence between C. guttatissimus and C. 

punctatofasciatus is decreasing within the hybrid zone and gene flow mediated by the hybrids 

appears to be ongoing. Persistence of hybrids and introgressed individuals at Christmas and 

Cocos (Keeling) Islands may eventually confound species signals in the C. guttatissimus 

hybrid group, resulting in a hybrid swarm sensu Taylor et al. (2006). Alternatively, the 

presence of novel genotypes (and the high genetic diversity) in the hybrid population at 

Christmas Island may one day enable hybrids to exploit niches not occupied by parent 

species. This process was documented in terrestrial - Geospiza Darwin finches (Grant & 

Grant 2002) - and freshwater environments - cichlids (Seehausen 2004) -, and can lead to the 

formation of new species (Seehausen 2004). Long term monitoring of the reef fish suture 

zone at Christmas Island (Hobbs et al. 2009; Arnold & Martin 2010), through regular 

assessment of hybrid prevalence and genotypic make up across a wide range of taxa, could 

further elucidate the ecological and evolutionary relevance of hybridisation in reef fishes.  

The scenario emerging from the C. trifasciatus hybrid group (Montanari et al. 2012) 

appears different to that of the C. guttatissimus group. Lack of introgression, evident both in 

mtDNA and microsatellites, and unidirectional mtDNA inheritance in the C. trifasciatus 

group indicate that interspecific gene flow mediated by hybrids is minimal at Christmas 

Island. Even though failure to detect significant levels of introgression in this group could be 

due to sample size, the sample sizes in the two groups were similar, leading us to expect 

similar power of detection in both hybridising groups. Interestingly, in the C. trifasciatus 

group, a Zanzibar individual identified in the field as C. trifasciatus showed almost 2% 

divergence at cyt b from its putative species clade (Montanari et al. 2012): this could be a rare 

backcross with a hybrid formed between C. trifasciatus and other members of 

Corallochaetodon that occur in that area (e.g. C. melapterus – B. Bowen, pers. comm.). This 
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needs further work to be confirmed, but if found to be true could indicate that barriers to gene 

flow are permeable in Corallochaetodon, despite the apparent lack of backcrossing at 

Christmas Island (Montanari et al. 2012).  

The rarity of both parent species and hybrids in the C. trifasciatus group may prevent 

detection of introgression and bidirectional maternal contribution at Christmas Island 

(Montanari et al. 2012). In this group, the measured 5% divergence at cyt b (Montanari et al. 

2012) appears to be large enough to generate genotypic novelty in the form of a persistent 

sympatric hybrid taxon, albeit small enough to warrant successful hybridisation (Mallet 

2005). Nuclear microsatellite DNA data were particularly informative for this group, 

confirming the hybrids’ status as hybrids rather than aberrant colourations of C. lunulatus, a 

possibility not ruled out by previous mtDNA analyses (Montanari et al. 2012). Microsatellites 

further showed that hybrid genotypes are intermediate and different to those of the parent 

species, even within the hybrid zone, thus maintaining their genotypic identity despite 

extensive ecological, behavioural and reproductive contact with parental species. Hybrid 

genotypes or hybrid species sometimes colonise environments distinct to those of their 

parents, as observed for example in cichlids and sculpins (Seehausen 2004; Nolte et al. 2006). 

However, sympatric hybrid coexistence with parental forms does occur – sparrows 

(Hermansen et al. 2011); swallowtail butterflies (Kunte et al. 2011) -, and this could be the 

case for C. trifasciatus × C. lunulatus hybrids at Christmas Island.  

The apparent negative interaction between extent of divergence and introgression 

highlighted in this study finds further validation when data from other hybridising reef fishes 

are examined. As noted in Montanari et al. (2012) for example, in the Solomon Islands, 

hybridisation between C. punctatofasciatus and C. pelewensis (McMillan et al. 1999), 

divergent by 0.7% at cyt b (McMillan & Palumbi 1995), results in extensive bidirectional 

introgression (McMillan et al. 1999). This interaction holds true even in families other than 

the Chaetodontidae. In the Labridae, bidirectional introgression was detected in hybridising 

Thalassoma jansenii and T. quinquevittatum (Yaakub et al. 2006), divergent by less than 2% 
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at cyt b (Bernardi et al. 2004). Conversely, in Halichoeres garnoti and H. bivittatus, divergent 

by >5.5% based on three mtDNA markers (Barber & Bellwood 2005), hybridisation did not 

result in introgression (Yaakub et al. 2007). In the Acanthuridae, hybridisation between 

Acanthurus leucosternon and A. nigricans, 1% divergent at mtDNA COI, was introgressive 

and bidirectional (Marie et al. 2007). In hybridising Serranids Plectropomus leopardus and P. 

maculatus, 1% divergent based on two nuclear and two mtDNA markers (Craig & Hastings 

2007), hybridisation was highly introgressive, but the maternal contribution was 

unidirectional (van Herwerden et al. 2006). 

Further inquiry should be aimed at evaluating the relative importance of divergence 

levels in shaping the evolutionary outcomes of reef fish hybridisation, and to test whether reef 

fish have a threshold of divergence beyond which their ability to hybridise is lost, as 

suggested for terrestrial species (Mallet 2005). Given their position at the Indo-Pacific marine 

suture zone, Christmas and Cocos (Keeling) Islands could provide an ideal location for these 

future studies. Further, application of genomic tools may identify adaptive genes that are 

differentiated between hybridising reef fish species, which will provide insights into 

adaptation and selection for hybrid genotypes in environments that are novel compared to 

those inhabited by the parental species outside the hybrid zone. 
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Figure 3.1. Map showing the distribution of Chaetodon guttatissimus (solid line) and C. 

punctatofasciatus (dashed line), in the Indian and Pacific Oceans, respectively. Asterisks 

represent sampling locations outside the Christmas Island hybrid zone (detailed sample sizes 

are given in Material and Methods). The star symbol identifies the position of Christmas 

Island within the area of overlap (darker shade of grey) between the two species. Inset shows 

details of the Christmas Island study sites used for the distribution surveys (black circles) and 

north coast area covered during the GPS-assisted surveys (thicker grey line). 
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Figure 3.2. A) Chaetodon guttatissimus (CG) and C. punctatofasciatus (CP) observed in a 

heterospecific pair at Christmas Island. B) A hybrid (GPHYB) of this species complex, paired 

with C. guttatissimus (CG) at Christmas Island: the circle highlights the distinguishing maze-

like dorsal pattern (cf the clear, straight lines of C. punctatofasciatus in photograph A). Maze-

like patterns, such as these, have been shown to be characteristic of natural fish hybrids 

(Miyazawa et al. 2010). 
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Figure 3.3. A) Pairing frequencies of C. guttatissimus (yellow), C. guttatissimus × C. 

punctatofasciatus hybrids (orange) and C. punctatofasciatus (red). All three taxa are colour-

coded according to the legend below. Bars represent observed pairings from Christmas Island, 

and dots represent expected pairing frequencies based on observed taxon abundance. 

Observed pairing does not statistically deviate from expectations, indicating that taxa are 

pairing non-assortatively. B) MST showing haplotype relationships in the C. guttatissimus 

group. Each circle represents one individual and is colour-coded for taxon and geographic 

origin. Each black dot on connecting branches represents one substitution (bp). Bootstrap 

support values for phylogenetic relationships inferred by NJ, MP, ML and posterior 

probabilities from BI are shown for the partition between the two major clades in the species 

group. C) Scatterplot of DAPC (Jombart et al. 2010) performed on 20 microsatellite loci for 

five populations of the C. guttatissimus group. Populations are shown by colours and 95% 

inertia ellipses, squares represent individual genotypes. Axes show the first two discriminant 

functions, and eigenvalues the genetic information retained by discriminant functions. D) 

Barplot of STRUCTURE admixture coefficients based on 20 microsatellite loci in five 

populations of the C. guttatissimus group. Bars represent individuals, black lines are 90% 

credibility regions, and subdivisions show the genotypic admixture between clusters (k = 2, 

representing the parent species). Colour coding as well as taxon and geographic location 

abbreviations are valid throughout all panels: CG = C. guttatissimus; CP = C. 

punctatofasciatus; GPHYB = C. guttatissimus × C. punctatofasciatus; CK = Cocos (Keeling) 

Islands; GUA = Guam; RMI = Republic of Marshall Islands; XMAS = Christmas Island; 

ZAN = Zanzibar.  
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Figure 3.4. Posterior probabilities, based on microsatellite data, of individuals of the C. 

guttatissimus group belonging to six classes: pure parental species, F1 or F2 hybrids and 

backcrosses (Bx) in either direction. Individual data were averaged within population of 

origin. Colour codes for the six classes are given in the legend. Each bar represents one 

population and is designated by species and geographic location (for sample sizes refer to 

Material and Methods). Abbreviations: CG = C. guttatissimus; CP = C. punctatofasciatus; 

GPHYB = C. guttatissimus × C. punctatofasciatus; CK = Cocos (Keeling) Islands; RMI = 

Republic of Marshall Islands; XMAS = Christmas Island.  
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Table 3.1. Qualitative summary of ecological and behavioural conditions conducive to 

hybridisation in two pairs of allopatric Chaetodon sister species in secondary contact at the 

Christmas Island suture zone in the Indo-Pacific. Data for the C. trifasciatus group are 

summarised from Montanari et al. (2012) and presented here for comparison.  

 C. guttatissimus group C. trifasciatus group 

Parental species abundance One parent rare (2 individuals 

per 3000 m2) 

Both parents rare (< 2 

individuals per 3000 m2) 

Hybrid abundance As abundant as rare parent Rarer than both parents 

Parental depth distribution Range: 13 - 17 m; largely 

overlapping (> 93%)  

Range: 5 - 8 m; largely 

overlapping (> 98%) 

Hybrid depth distribution Overlapping (> 99%) with 

parents 

Overlapping (83%) with parents 

Parental species diet Generalist corallivores; largely 

overlapping (> 73%) 

Generalist corallivores; largely 

overlapping (> 77%) 

Hybrid diet Generalist corallivore; 

overlapping (> 76%) with 

parents 

Generalist corallivore; 

overlapping (>81%) with 

parents 

Parental species pairing 

behaviour 

Non-assortative Non-assortative 

Hybrid pairing behaviour Pairing with both parents; non-

assortative 

Pairing with both parents; non-

assortative 
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3.6 Supporting Information 

 

3.6.1 Additional Material and Methods 

Abundance surveys 

The GPS tracks recorded during the survey swims were divided into deep and shallow 

transects and independently measured, excluding distances covered to reach initial depth and 

those swum whilst moving between deep and shallow water transects. Deep (10 to 25 m) 

transects were 10 m wide and 323.56 m long on average (average transect area 3,235.64 m2). 

Shallow (3 to 9 m) transects were 20 m wide (due to low abundances, and made possible by 

high visibility and flat topography) and average length was 314.76 m (average transect area 

6,295.14 m2). 

Phylo- and population genetic analyses 

NJ and MP algorithms were implemented in Mega 4(Tamura et al. 2007), BI was run 

through the Mr. Bayes plug-in for Geneious Pro v5.3.3 (Biomatters Ltd.) (Huelsenbeck & 

Ronquist 2001) and ML analysis was performed using Garli v0.95 (Zwickl 2006) and 

Bootscore v3.11 (Sukumaran 2007). The Maximum Composite Likelihood method (Tamura 

et al. 2004) with 1000 Bootstrap replicates was used to compute the NJ tree. All gaps and 

missing data were pairwise deleted. The overall shortest tree was selected from 10 

independent MP analyses. A Close-Neighbour-Interchange algorithm (Nei & Kumar 2000), 

with search level 2 (Eck & Dayhoff 1966; Nei & Kumar 2000) and initial trees inferred by 

random addition (10 replicates), was used to obtain the tree. All gaps and missing data were 

discarded. The JC69 substitution model (Jukes & Cantor 1969) - selected using jModelTest 

v0.1.1 (Guindon & Gascuel 2003; Posada 2008) - was used in the BI analysis, which was 

Monte Carlo simulated on four Markov chains (100,000 generations each) (MCMC), 

sampling trees every 100 generations. The consensus tree was computed using the 1000 best 

post-burn-in trees, applying a 50% majority rule. Ten independent ML analyses were run and 

the resulting best trees checked for consistent topology. A consensus tree based on the best 
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topology obtained was computed following 100 bootstrap-replicated ML analyses. Cyt b 

haplotypes were assembled in a minimum-spanning tree (MST) using Hapstar v0.6 (Prim 

1957; Excoffier et al. 2005) and the support values for the two main clades from the 

abovementioned phylogenetic analyses were indicated on the MST. 

Haplotype (h) and nucleotide (π) diversities were calculated for all populations in 

Arlequin v3.1 (Excoffier et al. 2005). Intra-population gene diversity based on microsatellite 

loci (1-Q Inter) was computed using option five of web-based GENEPOP v4.2 (Rousset 

2008). Analyses of molecular variance (AMOVA) and pairwise Fst, performed in Arlequin 

with 1000 permutations, were used to assess cyt b spatial heterogeneity. Number of alleles 

(Na), observed (HO) and expected (HE) heterozygosities and probabilities of departure from 

HWE were calculated using the R package adegenet (Jombart 2008). MICROCHECKER 

v2.2.3 (van Oosterhout et al. 2004) was used to check for null alleles. Excluding Null Alleles 

(ENA) corrected estimates of population structure, associated with null allele frequencies, 

were calculated in Freena (Chapuis & Estoup 2007). Missing data were regarded as null 

homozygotes. Smogd v1.2.5 (Crawford 2010) was used to calculate estimators of actual 

differentiation (Dest)(Jost 2008). 
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Figure 3.S1. A) Pairing frequencies of C. trifasciatus (light pink), C. trifasciatus × C. 

lunulatus hybrids (dark pink) and C. lunulatus (purple). All three taxa are colour-coded 

according to the legend above. Bars represent observed pairings from Christmas Island, and 
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dots represent expected pairing frequencies based on observed taxon abundance. Data are 

redrawn from Montanari et al. (2012). Observed pairing does not statistically deviate from 

expectations of random mating, indicating that taxa are pairing non-assortatively. B) MST 

showing haplotype relationships in the C. trifasciatus group (redrawn from Montanari et al. 

(2012). Each circle represents one individual and is colour-coded for taxon and geographic 

origin. Each grey dot on connecting branches represents one substitution (bp). Bootstrap 

support values for phylogenetic relationships inferred by NJ, MP, ML and posterior 

probabilities from BI are shown for the partition between the two major clades in the species 

group. C) Scatterplot of DAPC (Jombart et al. 2010) performed on 12 microsatellite loci for 

six populations of the C. trifasciatus group (redrawn from Montanari et al. (2012)). 

Populations are shown by colours and 95% inertia ellipses, squares represent individual 

genotypes. Axes show the first two discriminant functions, and eigenvalues the genetic 

information retained by discriminant functions. D) Barplot of STRUCTURE admixture 

coefficients based on 12 microsatellite loci in six populations of the C. trifasciatus group 

(Montanari et al. 2012). Bars represent individuals, black lines are 90% credibility regions, 

and subdivisions show the genotypic admixture between clusters (k = 2, representing the 

parent species). Colour coding as well as taxon and geographic location abbreviations are 

valid throughout all panels: CL = C. lunulatus; CT = C. trifasciatus; TLHYB = C. trifasciatus 

× C. lunulatus; CK = Cocos (Keeling) Islands; RMI = Republic of Marshall Islands; XMAS = 

Christmas Island; ZAN = Zanzibar.  
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Figure 3.S2. Δk plots (Evanno et al. 2005) from STRUCTURE HARVESTER (Earl & 

vonHoldt 2012) showing a sharp decline in the rate of change of the log probability of data 

for values of k > 2. Data are based on: A) 20 microsatellite loci genotyped in 84 individuals of 

the C. guttatissimus group; B) 12 microsatellite loci genotyped in 109 individuals of the C. 

trifasciatus group (Montanari et al. 2012). In both groups k = 2 clusters were chosen as the 

best-fit model.  
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Figure 3.S3. Posterior probabilities, based on microsatellite data from Montanari et al. 

(2012), of individuals of the C. trifasciatus group belonging to six classes: pure parental 

species, F1 or F2 hybrids and backcrosses (Bx) in either direction. Individual data were 

averaged within population of origin. Colour codes for the six classes are given in the legend. 

Each bar represents one population and is designated by species and geographic location (for 

sample sizes refer to Montanari et al. (2012)). Abbreviations: CT = C. trifasciatus; CL = C. 

lunulatus; TLHYB = C. trifasciatus × C. lunulatus; CK = Cocos (Keeling) Islands; RMI = 

Republic of Marshall Islands; XMAS = Christmas Island; ZAN = Zanzibar.  
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Table 3.S1. Summary statistics for 20 microsatellite loci (Montanari et al. 2013) used to 

genotype the C. guttatissimus group: for each adequately sampled population we report 

sample size (n), number of alleles (Na), private alleles (Pa), average inbreeding coefficient 

(FIS), observed (HO) and expected (HE) heterozygosities, and probability of departure from 

HWE (p). * significance at p < 0.05; ** significance at p < 0.01 after sequential Bonferroni 

correction (highlighted in bold) 

Locus Cocos (Keeling) Islands 

C. guttatissimus  

(n = 18) 

Christmas Island 

C. guttatissimus 

(n = 25) 

Christmas Island 

Hybrids 

(n = 16) 

Christmas Island 

C. punctatofasciatus 

(n = 17) 

Marshall Islands 

C. punctatofasciatus 

(n = 7) 

Cpun1 Na = 3 

Pa = 0 

HO = 0.11  

HE = 0.11 

FIS = -0.01 

p = 1.00 

Na = 2 

Pa = 0 

HO = 0.08 

HE = 0.08 

FIS = -0.02 

p = 1.00 

Na = 3 

Pa = 0 

HO = 0.18  

HE = 0.17 

FIS = -0.04 

p = 0.98 

Na = 7 

Pa = 3 

HO = 0.39 

HE = 0.67 

FIS = 0.49 

p < 0.01** 

Na = 4 

Pa = 0 

HO = 0.43 

HE = 0.70 

FIS = 0.41 

p = 0.37 

Cpun2 Na = 4 

Pa = 0 

HO = 0.50 

HE = 0.42 

FIS = -0.18 

p = 1.00 

Na = 4 

Pa = 0 

HO = 0.40  

HE = 0.44 

FIS = 0.12 

p = 0.22 

Na = 4 

Pa = 1 

HO = 0.50 

HE = 0.54 

FIS = 0.11 

p = 0.97 

Na = 4 

Pa = 1 

HO = 0.55 

HE = 0.53 

FIS = 0.02 

p = 0.98 

Na = 3 

Pa = 0 

HO = 0.28 

HE = 0.54 

FIS = 0.48 

p = 0.11 

Cpun3 Na = 5 

Pa = 0  

HO = 0.61 

HE = 0.71 

FIS = 0.15 

p = 0.01** 

Na = 6 

Pa = 0  

HO = 0.36 

HE = 0.62 

FIS = 0.44 

p < 0.01** 

Na = 5 

Pa = 0 

HO = 0.37 

HE = 0.65 

FIS = 0.45 

P = 0.03* 

Na = 6 

Pa = 1 

HO = 0.53 

HE = 0.63 

FIS = 0.19 

p < 0.01** 

Na = 4 

Pa = 0 

HO = 0.28 

HE = 0.57 

FIS = 052 

p = 0.06 

Cpun4 Na = 7 

Pa = 0 

HO = 0.61 

HE = 0.77 

FIS = 0.21 

p < 0.01** 

Na = 11 

Pa = 1 

HO = 0.40 

HE = 0.83 

FIS = 0.53 

p < 0.01** 

Na = 9 

Pa = 0  

HO = 0.31 

HE = 0.83 

FIS = 0.64 

p < 0.01**  

Na = 11 

Pa = 2 

HO = 0.53 

HE = 0.87 

FIS = 0.42 

p < 0.01** 

Na = 4 

Pa = 0 

HO = 0.71 

HE = 0.63 

FIS = -0.15 

p = 0.10 
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Cpun6 Na = 9 

Pa = 0 

HO = 0.67 

HE = 0.79 

FIS = 0.16 

p = 0.03* 

Na = 8 

Pa = 0 

HO = 0.79 

HE = 0.79 

FIS = 0.01 

p = 0.28 

Na = 9 

Pa = 0 

HO = 0.68 

HE = 0.82 

FIS = 0.19 

p = 0.59 

Na = 10 

Pa = 2 

HO = 0.76 

HE = 0.77 

FIS = 0.04 

p = 0.97 

Na = 4 

Pa = 0 

HO = 0.71 

HE = 0.63 

FIS = -0.15 

p = 0.77 

Cpun7 Na = 6 

Pa = 0 

HO = 0.44 

HE = 0.78 

FIS = 0.43 

p < 0.01** 

Na = 9 

Pa = 0 

HO = 0.52 

HE = 0.80 

FIS = 0.35 

p < 0.01** 

Na = 8 

Pa = 1 

HO = 0.73 

HE = 0.84 

FIS = 0.18 

p = 0.22 

Na = 8 

Pa = 0 

HO = 0.50 

HE = 0.81 

FIS = 0.45 

p = 0.05* 

Na = 6 

Pa = 1 

HO = 0.43 

HE = 0.87 

FIS = 0.53 

p < 0.01** 

Cpun9 Na = 8 

Pa = 0 

HO = 0.33 

HE = 0.85 

FIS = 0.61 

p < 0.01** 

Na = 10 

Pa = 1 

HO = 0.18 

HE = 0.85 

FIS = 0.72 

p < 0.01** 

Na = 9 

Pa = 0 

HO = 0.46 

HE = 0.87 

FIS = 0.44 

p < 0.01** 

Na = 8 

Pa = 0 

HO = 0.35 

HE = 0.80 

FIS = 0.58 

p < 0.01** 

Na = 4 

Pa = 0 

HO = 0.43 

HE = 0.71 

FIS = 0.42 

p = 0.03* 

Cpun10 Na = 11 

Pa = 0 

HO = 0.66 

HE = 0.76 

FIS = 0.13 

p = 0.27 

Na = 10 

Pa = 0 

HO = 0.60 

HE = 0.79 

FIS = 0.25 

p = 0.07 

Na = 10 

Pa = 0 

HO = 0.75 

HE = 0.86 

FIS = 0.13 

p = 0.36 

Na = 12 

Pa = 1 

HO = 0.70 

HE = 0.87 

FIS = 0.21 

p = 0.03* 

Na = 7 

Pa = 0 

HO = 0.43 

HE = 0.86 

FIS = 0.52 

p < 0.01** 

Cpun11 Na = 16 

Pa = 1 

HO = 1.00 

HE = 0.94 

FIS = -0.06 

p = 0.87 

Na = 16 

Pa = 3 

HO = 1.00 

HE = 0.93 

FIS = -0.07 

p = 0.41 

Na = 16 

Pa = 0 

HO = 0.94 

HE = 0.95 

FIS = 0.01 

p = 0.82 

Na = 14 

Pa = 0 

HO = 0.88 

HE = 0.93 

FIS = 0.06 

p = 0.34 

Na = 9 

Pa = 0 

HO = 1.00 

HE = 0.91 

FIS = -0.10 

p = 0.63 

Cpun12 Na = 7 

Pa = 0 

HO = 0.78 

HE = 0.80 

FIS = 0.03 

p = 0.46 

Na = 6 

Pa = 0 

HO = 0.59 

HE = 0.76 

FIS = 0.17 

p = 0.08 

Na = 7 

Pa = 0 

HO = 0.73 

HE = 0.80 

FIS = 0.10 

p = 0.14 

Na = 7 

Pa = 0 

HO = 0.67 

HE = 0.72 

FIS = 0.06 

p = 0.76 

Na = 5 

Pa = 1 

HO = 0.57 

HE = 0.72 

FIS = 0.22 

p = 0.18 



 

 85 

Cpun13 Na = 10 

Pa = 0 

HO = 0.61 

HE = 0.84 

FIS = 0.28 

p < 0.01** 

Na = 11 

Pa = 1 

HO = 0.28 

HE = 0.88 

FIS = 0.61 

p < 0.01** 

Na = 9 

Pa = 1 

HO = 0.66 

HE = 0.88 

FIS = 0.16 

p = 0.07 

Na = 7 

Pa = 0 

HO = 0.08 

HE = 0.83 

FIS = 0.58 

p < 0.01** 

Na = 4 

Pa = 0 

HO = 0.14 

HE = 0.71 

FIS = 0.81 

p < 0.01** 

Cpun14 Na = 8 

Pa = 1 

HO = 0.50 

HE = 0.44 

FIS = -0.14 

p = 1.00 

Na = 5 

Pa = 0 

HO = 0.20 

HE = 0.19 

FIS = -0.04 

p = 1.00 

Na = 11 

Pa = 0  

HO = 0.75 

HE = 0.69 

FIS = -0.05 

p = 0.37 

Na = 13 

Pa = 1 

HO = 0.72 

HE = 0.88 

FIS = 0.16 

p = 0.88 

Na = 5 

Pa = 0 

HO = 0.86 

HE = 0.82 

FIS = -0.04 

p = 0.17 

Cpun15 Na = 3 

Pa = 0 

HO = 0.22 

HE = 0.37 

FIS = 0.40 

p = 0.16 

Na = 6 

Pa = 1 

HO = 0.39 

HE = 0.37 

FIS = -0.09 

p = 0.93 

Na = 8 

Pa = 2 

HO = 0.80 

HE = 0.69 

FIS = -0.15 

p = 0.78 

Na = 12 

Pa = 2 

HO = 0.76 

HE = 0.85 

FIS = 0.13 

p = 0.25 

Na = 8 

Pa = 0 

HO = 0.71 

HE = 0.91 

FIS = 0.23 

p = 0.02* 

Cpun17 

 

Na = 13 

Pa = 0 

HO = 0.83 

HE = 0.89 

FIS = 0.07 

p = 0.39 

Na = 10 

Pa = 0 

HO = 0.92 

HE = 0.86 

FIS = -0.05 

p = 0.17 

Na = 13 

Pa = 2 

HO = 0.73 

HE = 0.88 

FIS = 0.18 

p < 0.01** 

Na = 14 

Pa = 1 

HO = 0.78 

HE = 0.91 

FIS = 0.19 

p = 0.56 

Na = 10 

Pa = 0 

HO = 0.83 

HE = 0.97 

FIS = 0.15 

p = 0.18 

Cpun18 Na = 13 

Pa = 1 

HO = 0.89 

HE = 0.91 

FIS = 0.02 

p = 0.44 

Na = 11 

Pa = 1 

HO = 1.00 

HE = 0.88 

FIS = -0.11 

p = 0.79 

Na = 10 

Pa = 0  

HO = 0.56 

HE = 0.83 

FIS = 0.35 

p = 0.06 

Na = 9 

Pa = 0 

HO = 0.56 

HE = 0.83 

FIS = 0.32 

p = 0.10 

Na = 9 

Pa = 0 

HO = 0.86 

HE = 0.91 

FIS = 0.06 

p = 0.08 

Cpun19 Na = 11 

Pa = 0 

HO = 0.61 

HE = 0.88 

FIS = 0.31 

p = 0.02* 

Na = 11 

Pa = 0 

HO = 0.67 

HE = 0.84 

FIS = 0.22 

p = 0.03* 

Na = 14 

Pa = 3 

HO = 0.62 

HE = 0.86 

FIS = 0.30 

p < 0.01** 

Na = 13 

Pa = 1 

HO = 0.41 

HE = 0.84 

FIS = 0.53 

p < 0.01** 

Na = 8 

Pa = 0 

HO = 0.96 

HE = 0.90 

FIS = 0.05 

p = 0.73 
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Cpun20 Na = 17 

Pa = 1 

HO = 0.83 

HE = 0.85 

FIS = 0.13 

p < 0.01** 

Na = 15 

Pa = 1 

HO = 0.69 

HE = 0.92 

FIS = 0.24 

p = 0.23 

Na = 16 

Pa = 1 

HO = 0.78 

HE = 0.91 

FIS = 0.14 

p = 0.31 

Na = 16 

Pa = 1 

HO = 0.69 

HE = 0.92 

FIS = 0.26 

p = 0.10 

Na = 9 

Pa = 2 

HO = 0.86 

HE = 0.91 

FIS = 0.06 

p = 0.16 

Cpun21 Na = 15 

Pa = 2 

HO = 0.83 

HE = 0.94 

FIS = 0.11 

p = 0.37 

Na = 16 

Pa = 1 

HO = 0.76 

HE = 0.90 

FIS = 0.17 

p = 0.75 

Na = 12 

Pa = 0  

HO = 0.87 

HE = 0.88 

FIS = 0.03 

p = 0.38 

Na = 11 

Pa = 2 

HO = 0.76 

HE = 0.85 

FIS = 0.13 

p = 0.09 

Na = 7 

Pa = 2 

HO = 0.71 

HE = 0.86 

FIS = 0.18 

p = 0.10 

Cpun22 Na = 10 

Pa = 2 

HO = 0.94 

HE = 0.81 

FIS = -0.17 

p = 0.21 

Na = 6 

Pa = 0 

HO = 0.64 

HE = 0.75 

FIS = 0.17 

p = 0.50 

Na = 7 

Pa = 0  

HO = 0.81 

HE = 0.81 

FIS = 0.03 

p = 0.90 

Na = 8 

Pa = 0 

HO = 0.83 

HE = 0.82 

FIS = -0.02 

p = 0.66 

Na = 7 

Pa = 0 

HO = 0.86 

HE = 0.86 

FIS = 0.00 

p = 0.92 

Cpun23 Na = 10 

Pa = 2 

HO = 0.67 

HE = 0.88 

FIS = 0.24 

p < 0.01** 

Na = 8 

Pa = 1 

HO = 0.00 

HE = 0.86 

FIS = 0.42 

p < 0.01** 

Na = 9 

Pa = 1 

HO = 0.62 

HE = 0.86 

FIS = 0.03 

p = 0.09 

Na = 9 

Pa = 0 

HO = 0.47 

HE = 0.81 

FIS = 0.44 

p = 0.04* 

Na = 7 

Pa = 0 

HO = 0.57 

HE = 0.85 

FIS = 0.35 

p = 0.17 
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Table 3.S2. Sample sizes, cyt b number of haplotypes (nh), haplotype (h) and nucleotide (π) 

diversities and intra-population gene diversity based on 20 microsatellite loci (1-Q Inter). 

Data are presented for all adequately sampled populations of the C. guttatissimus group (total 

n = 84).  Guam and Zanzibar populations were not included due to small sample size (each n 

= 1). 

Population n nh h π 1-Q Inter 

Cocos Is. C. guttatissimus 18 14 0.95 0.007 0.747 

Christmas Is. C. guttatissimus 25 19 0.93 0.004 0.726 

Christmas Is. Hybrid 16 15 0.99 0.011 0.804 

Christmas Is. C. punctatofasciatus 18 14 0.97 0.006 0.840 

Marshall Is. C. punctatofasciatus 7 7 1 0.008 0.828 
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Table 3.S3. Pairwise population comparisons in the C. guttatissimus group: A) Φst (lower 

diagonal) generated from 566 bp of mitochondrial cyt b gene, and corresponding p values 

(upper diagonal); B) Fst (with respective p values computed over 1023 permutations) (lower 

diagonal) and harmonic mean of Dest (Jost 2008) (upper diagonal) based on 20 microsatellite 

loci. Significant comparisons are highlighted in bold. CG = C. guttatissimus; CP = C. 

punctatofasciatus and GPHYB = C. guttatissimus × C. punctatofasciatus hybrids; XMAS = 

Christmas Island; CK = Cocos (Keeling) Islands; RMI = Marshall Islands. 

A 

 CG (CK) CG (XMAS) GPHYB 

(XMAS) 

CP (XMAS) CP (RMI) 

CG (CK)  p = 0.168 p < 0.001 p < 0.001 p < 0.001 

CG (XMAS) 0.022  p < 0.001 p < 0.001 p < 0.001 

GPHYB 

(XMAS) 

0.416 0.313  p < 0.001 p < 0.001 

CP (XMAS) 0.696 0.618 0.166  p = 0.177 

CP (RMI) 0.705 0.667 0.187 0.056  

 

 

B 

 CG (CK) CG (XMAS) GPHYB 

(XMAS) 

CP (XMAS) CP (RMI) 

CG (CK)  0.009 0.053 0.116 0.163 

CG (XMAS) 0.012 

p = 0.036 

 0.065 0.093 0.162 

GPHYB 

(XMAS) 

0.024 

p < 0.001 

0.024 

p < 0.001 

 0.052 0.105 
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CP (XMAS) 0.068 

p < 0.001 

0.065 

p < 0.001 

0.030 

p < 0.001 

 0.001 

CP (RMI) 0.096 

p < 0.001 

0.101 

p < 0.001 

0.055 

p < 0.001 

0.017 

p = 0.288 
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Table 3.S4. Raw and ENA corrected (Chapuis & Estoup 2007) population differentiation and 

estimator of actual differentiation (Jost 2008) (Dest) presented locus-by-locus and as a mean 

over all loci. All values were significant within the 95% confidence interval. Results based on 

allele frequencies of 20 microsatellite loci in the C. guttatissimus group.  

LOCUS Raw ENA corrected Dest 

Cpun01 0.155 0.215 0.094 

Cpun02 0.009 0.006 0.012 

Cpun03 0.019 0.015 0.016 

Cpun04 0.024 0.037 0.268 

Cpun06 0.020 0.024 0.137 

Cpun07 0.040 0.035 0.202 

Cpun09 0.036 0.039 0.397 

Cpun10 0.032 0.034 0.213 

Cpun11 0.008 0.008 0.119 

Cpun12 0.024 0.025 0.116 

Cpun13 0.021 0.030 0.253 

Cpun14 0.229 0.237 0.470 

Cpun15 0.204 0.190 0.482 

Cpun17 0.006 0.006 0.092 

Cpun18 0.020 0.015 0.206 

Cpun19 0.010 0.008 0.021 

Cpun20 0.001 0.003 0.144 

Cpun21 0.023 0.023 0.267 

Cpun22 0.011 0.010 0.019 

Cpun23 0.050 0.057 0.367 

Average over 20 loci 0.038 0.042 0.115 
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CHAPTER 4: NATURALLY OCCURRING HYBRIDS OF CORAL REEF 

BUTTERFLYFISHES HAVE SIMILAR FITNESS COMPARED TO PARENTAL 

SPECIES   

4.1 Abstract 

Hybridisation can produce evolutionary novelty by increasing fitness and adaptive capacity. 

Heterosis, or hybrid vigour, has been documented in many plant and animal taxa, and is a 

notable consequence of hybridisation that has been exploited for decades in agriculture and 

aquaculture. On the contrary, loss of fitness in naturally occurring hybrid taxa has been 

observed in many cases. This can have negative consequences for the parental species 

involved (wasted reproductive effort), and has raised concerns for species conservation. This 

study evaluates the relative fitness of previously documented butterflyfish hybrids of the 

genus Chaetodon from the Indo-Pacific suture zone at Christmas Island. Histological 

examination confirmed the reproductive viability of Chaetodon hybrids. Examination of liver 

lipid content showed that hybrid body condition was not significantly different from parent 

species body condition. Lastly, size at age data revealed no difference in growth rates and 

asymptotic length between hybrids and parent species.  Based on the traits measured in this 

study, naturally occurring hybrids of Chaetodon butterflyfishes have similar fitness to their 

parental species, and are unlikely to supplant parental species under current environmental 

conditions at the suture zone. However, given sufficient fitness and on going genetic 

exchange between the respective parental species, hybrids are likely to persist within the 

suture zone. 

                                                

 This Chapter is published in the journal PLoS ONE: Montanari SR, Hobbs J-PA, Pratchett MS, Bay LK, van 
Herwerden L (2017) Naturally occurring hybrids of coral reef butterflyfishes have similar fitness compared to 
parental species. PLoS ONE 12, e0173212. 
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4.2 Introduction 

Natural hybridisation was once considered rare and unimportant (Mayr 1963), but a large and 

increasing body of literature suggests that this process may be critically important for both 

adaptation and speciation (Abbott et al. 2013). Importantly, natural hybridisation can play a 

role in the formation of new species if it produces novel genotypes that outperform their 

parental species or persist in previously unoccupied niches (Arnold 1997). Conversely, 

hybridisation can contribute to the loss of biodiversity through extinction (Rhymer & 

Simberloff 1996) or reverse speciation (Seehausen 2006; Taylor et al. 2006). The 

evolutionary consequences and implications of hybridisation are largely dependent upon the 

extent to which hybrids interact with their parent species (e.g., differential habitat use, 

assortative mating) and individual fitness.  

Heterosis (commonly referred to as hybrid vigour) (Shull 1948) is a notable consequence of 

hybridisation and has been exploited for decades in agriculture and aquaculture. Hybrids of 

many plant and animal species exhibit increased vigour (e.g., faster growth, larger size, and 

higher reproductive output) and can be more stress tolerant relative to either parental species 

(Bartley et al. 2000; Chen 2013). However, the mechanistic underpinnings of heterosis are 

only just beginning to emerge, and involve the complex interplay of epigenetic modification 

of gene regulation (Chen 2013) and environmental selection for novel genotypes (Burke & 

Arnold 2001). In at least some instances, hybrid genotypes experience marked loss of fitness 

relative to their parental species, which is commonly attributed to meiotic irregularities or 

genetic incompatibility (Burke & Arnold 2001). In the extreme, hybrids may be sterile or non-

viable (Schilthuizen et al. 2011). However, the fitness of hybrids is influenced by both 

endogenous (environment-independent) and exogenous (environment-specific) selective 

processes (Burke & Arnold 2001). Where genetic incompatibility is not an issue (Abbott et al. 

2013), exogenous selection enables hybrid genotypes to outperform their parental 

counterparts in at least some situations and environments (Burke & Arnold 2001). 
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Natural hybridisation has been particularly well studied among terrestrial and freshwater 

species (Arnold et al. 1993; Cruzan & Arnold 1993; Carney et al. 1994; MacCallum et al. 

1998). Herein, the prevalence of hybridisation (largely apparent from genetic analyses that 

reveal high levels of introgression) shows that postzygotic barriers to inter-breeding among 

recently diverged species are rarely complete, but may be permeable in time or space (Abbott 

et al. 2013). Hybridisation can therefore provide an additional (and potentially major) source 

of genetic variation, contributing to adaptive radiation in highly diverse or changing 

environments (Seehausen 2004; Riginos & Cunningham 2007). Recent pulses in the 

incidence of “natural” hybridisation are widely attributed to anthropogenic degradation or 

disruption of natural ecosystems, such as translocation of species and fragmentation of 

habitats (Allendorf et al. 2001; Hoffmeister et al. 2005). Hybridisation among some wild 

species would not have occurred naturally and is leading to extensive genetic mixing and 

effective extinction of one or both parental species (Allendorf et al. 2001). However, genetic 

variation through hybridisation may also yield novel genotypes and expedite adaptation, 

thereby ensuring species persistence in the face of changing environmental conditions 

(Anderson et al. 2009; Arnold & Martin 2010). 

The prevalence and importance of hybridisation has not been appreciated in marine systems 

until very recently (Gardner 1997; Richards & Hobbs 2015). Given the very high diversity 

and relatively recent divergence of species in some marine habitats (e.g., coral reefs), it is 

little surprise that hybridisation is highly prevalent among marine species (Mallet 2001; 

Yaakub et al. 2006; Bowen et al. 2013; Montanari et al. 2016). Hybridisation is particularly 

apparent in narrow and specific geographic areas, where regional biotas intersect at 

biogeographic borders or suture zones (Remington 1968; Hobbs et al. 2013; Hobbs & Allen 

2014). As shown in other ecosystems, taxonomic bias in the occurrence of hybridisation is 

also evident among marine species: hybridisation is particularly prevalent among coral reef 

fishes, especially butterflyfishes (family Chaetodontidae) and angelfishes (family 

Pomacanthidae) (Pyle & Randall 1994; Allen et al. 1998; Yaakub et al. 2006; Hobbs et al. 
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2013; Hobbs et al. 2014). Accordingly, there has been disproportionate research attention 

given to the molecular and ecological factors that promote hybridisation in these groups 

(DiBattista et al. 2012; Montanari et al. 2012; DiBattista et al. 2013; Montanari et al. 2014; 

DiBattista et al. 2015; Montanari et al. 2016). However, the evolutionary implications of 

hybridisation in coral reef fishes are not yet well understood. 

The purpose of this study was to explicitly test for variation in fitness of documented hybrids 

relative to parental species for coral reef butterflyfishes (Chaetodon: Chaetodontidae). Fitness 

is ultimately a measure of individual reproductive success and is the average contribution to 

the next generation gene pool by individuals of a particular genotype. Directly measuring fish 

reproductive success in the wild can prove impractical in the absence of long-term mark-and-

recapture studies coupled with parentage analysis. In the case of Chaetodon hybrids, fertility 

has been either anecdotally reported or inferred through the detection of introgression 

(Montanari et al. 2012; Montanari et al. 2014). Some differences in growth rates and 

longevity have been reported in one other case of tropical reef fish hybridisation: 

Cephalopholis groupers at Christmas and Cocos (Keeling) Islands (Payet et al. 2016). 

Further, increased growth rates, particularly during early life-history stages, are associated 

with enhanced survivorship, faster maturation, and greater female fecundity at a given age, 

thereby representing a useful proxy for fitness (Taylor et al. 2012). The aims of this paper 

were to compare fitness between parental species and naturally occurring butterflyfish hybrids 

of genus Chaetodon based on: 1) reproductive output, measured as relative gonad mass; 2) 

body condition, inferred from hepatocyte vacuolation; and 3) growth, inferred from size at 

age relationships. 

4.3 Materials and Methods 

4.3.1 Study sites and species 

Sampling was conducted between July 2008 and November 2013 at Christmas Island, 

Australia (10.4475° S, 105.6904° E). All samples used in the fertility and body condition 
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analyses described below were collected over 2 weeks between November 15th, 2013 and 

November 28th, 2013, in order to minimise differences due to yearly or seasonal variation 

(Table 1). The study was undertaken in accordance with the Committee of Animal Ethics of 

James Cook University of North Queensland (AEC Approval Number: A1757). All fishes 

were speared on SCUBA and immediately euthanized by severing the first postcranial trunk 

vertebra, in accordance with the permit above. This study focussed on two hybridising 

butterflyfish groups, for which detailed genetic analyses have confirmed the status of hybrids 

and parental species (Montanari et al. 2014). Despite some between-group differences in 

mitochondrial inheritance and introgression rates, hybridisation appears to be on going in both 

groups, and the hybrids display no obvious differences in ecology or behaviour relative to 

their parental species (Montanari et al. 2014). To date however, nothing is known about the 

fitness of these hybrids and whether they are likely to persist in the wild. Total length (TL) 

was measured to the closest mm and each fish was weighed (after blotting) on electronic 

scales to the closest mg. Livers and gonads were extracted and weighed to the closest mg, and 

stored in 4% buffered formaldehyde for histological examination. Otoliths were extracted, 

rinsed in ethanol and preserved dry for size at age analysis. 

4.3.2 Fitness measurements 

Fertility 

To confirm that hybrid fishes were fertile, we undertook a qualitative histological assessment 

of female and male gonads for all taxa. Preserved gonads were processed using an automatic 

tissue processor (Intelsint – EFTP) with ascending grades of ethanol, three changes of 

absolute ethanol, and cleared in xylene followed by three changes of paraplast wax. Tissues 

were then embedded using a Shandon Histocentre 3 embedding centre, and blocks were cut at 

5µm using a Micron rotary microtome. Slides were dried at 60ºC, then manually stained with 

Mayer’s Haematoxylin and Young’s eosin/erythrosine, and mounted in DPX (Woods & Ellis 

1994). Each slide was viewed under transmitted light with a compound microscope, and three 

haphazardly chosen sections photographed at 400x using an Olympus DP21 system to 
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provide evidence of hybrid fertility (e.g. presence of gametocytes). Further, relative gonadal 

mass, or gonadosomatic index (GSI) (Barber & Blake 2006), was calculated for all 

individuals in each taxon, and used as a proxy for reproductive output. Fishes used in these 

analyses were all paired at the time of collection, indicating they had reached sexual maturity 

(Pratchett et al. 2006a). Butterflyfish are thought to spawn year-round under ideal conditions 

(Yabuta & Berumen 2013) and the assumption that all specimens were reproductively 

synchronised, with similarly developed gonads, was deemed reasonable. The C. trifasciatus 

hybridising group was data deficient, and therefore not included in formal statistical 

comparisons. For the C. guttatissimus group, one-way analysis of variance (ANOVA) was 

used to evaluate the effect of taxon on GSI, separately for each gender.  

Body condition 

To provide a measure of general body condition, livers were prepared for histological 

examination following the methods described above for gonads. Hepatocyte vacuolation was 

used as a proxy for liver lipid content and body condition (Theilacker 1978; Hoey et al. 

2007). We recorded the proportion of 42 points that intercepted vacuolated hepatocytes 

(Pratchett et al. 2001) using a grid superimposed on each photograph in ImageJ (Schneider et 

al. 2012). Generalised linear models assuming a binomial distribution (Warton & Hui 2010) 

were used, for each hybrid group separately, to determine the effect of taxon on hepatocyte 

vacuolation.  

Aging 

To determine the age of specimens, sagittal otoliths were embedded in an epoxy resin block 

and a transverse section (approximately 400 µm) was cut from each using a Buehler low-

speed saw to expose the otolith core (Secor et al. 1990). Individual sections were mounted on 

glass microscope slides with thermoplastic cement and polished with 1200-grit wet-dry 

sanding paper (Secor et al. 1990). Each section was viewed under transmitted light with a 

dissecting microscope for annual increments and a compound microscope for daily 
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increments. Where possible, the number of presumed daily or annual increments was counted 

along the dorsal axis, as the increments were generally more distinct in this region. 

Size at age 

Von Bertalanffy growth functions (VBGFs) (von Bertalanffy 1938) were fitted to length at 

age data, separately for each taxon. Unconstrained least-squares estimates of the VBGF 

parameters L∞ (asymptotic length), K (growth rate) and t0 (theoretical time at length 0) were 

generated using R function nls (Bates & Watts 1988). The effect of taxon on VBGFs was 

determined by assessing the degree of overlap of the 95% confidence intervals around the 

VBGF parameter estimates. 

4.4 Results and discussion 

4.4.1 Fertility 

Mature hybrid females and males had normally developed gonads, similar to those of the 

parental species, showing all stages of oocyte and spermatocyte development respectively 

(Figure 1). GSI did not vary significantly between hybrids and parental species in either 

females or males of the C. guttatissimus group (Figure 2). Differences in GSI between sexes 

were clear in all taxa and variation around the median was high for all sex/taxon combinations 

(Figure 2). GSIs of hybrid females and males were no different to those of their parent species 

of the same sex (F(2,26) = 0.59, p = 0.56 and F(2,24) = 0.88, p= 0.43), respectively (Figure 2).  

4.4.2 Body condition 

Hepatocyte vacuolation was not influenced by taxon in either hybrid group (Figure 3). In both 

groups, within-taxon variability in liver lipid content was high (Figure 3). In the C. 

guttatissimus group, median hepatocyte vacuolation was generally low and ranged from 12% 

to 26% (Figure 3A). Hybrid C. guttatissimus × C. punctatofasciatus had similar levels of liver 

lipids compared to their parent species (z(33) = 0.50, p =0.62). In the C. trifasciatus group, 

median hepatocyte vacuolation had a broader range from 10% to 48% (Figure 3B) and 
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hybrids were not significantly different from their parental species (z(7) = 0.55, p =0.58) from 

the suture zone, potentially confounded by small sample size. 

4.4.3 Size at age 

There was no difference in asymptotic length for parental versus hybrid individuals in either 

species group (Figure 4). Average L∞ estimates were consistent with observed maximum 

lengths: C. guttatissimus 104.66 mm, C. guttatissimus × C. punctatofasciatus hybrids 105.71 

mm, C. punctatofasciatus 104.41 mm, C. trifasciatus 139.79 mm, C. trifasciatus × C. 

lunulatus hybrids 146.52 mm and C. lunulatus 143.91 mm. The 95% confidence intervals of 

estimates showed a high degree of overlap between parent species and hybrids in both groups 

(Figure 4). This suggests marginal differences in asymptotic length (L∞), growth rate (K) and 

theoretical time at length 0 (t0), between hybrids and parental species in each respective 

group. This indicates that hybrid taxa in both groups grow at a similar rate to their parent 

species within the suture zone. 

 This study indicates that inter-specific breeding across two distinct species groups of 

Chaetodon butterflyfishes results in viable hybrid offspring. Naturally occurring hybrids of 

Chaetodon butterflyfishes considered here (C. guttatissimus × C. punctatofasciatus and C. 

trifasciatus × C. lunulatus) have similar condition to their respective parental species from 

the suture zone in at least three distinct fitness related traits including fecundity, body 

condition, and growth. Heterosis or decreased fitness have been documented in some hybrid 

teleost fishes (e.g. salmonids, minnows, barramundi) (McGinnity et al. 2003; Rosenfield et al. 

2004; Cancela et al. 2010) and Payet et al. (2016) found some possible differences in 

longevity and growth in hybrid groupers. Here we explicitly test for increased vigour 

following interspecific breeding of wild tropical reef fishes, by examining several fitness-

associated traits. 

Although hybrid butterflyfishes examined here exhibited similar levels of fecundity (GSI), 

body condition (hepatocyte vacuolation), and growth (size at age) compared to parental 

species from the suture zone, it is possible that heterosis or decreased fitness may be 
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expressed in other traits or environments not evaluated here. Importantly, hybrids of some 

freshwater fishes (e.g. hybrids of pupfish and minnow, cichlids) exhibit enhanced 

performance and/or capacity to exploit novel niches that are generally unavailable to parental 

species (Seehausen et al. 2003; Rosenfield et al. 2004; Seehausen 2004). Ecological surveys 

for the Chaetodon species groups considered in this study show that hybrids occupy the same 

habitats and ostensibly use the same resources as their parent species (Montanari et al. 2012; 

Montanari et al. 2014). This is not unexpected, given that hybridising species of Chaetodon 

butterflyfishes tend to exhibit striking similarities in their ecology (Hobbs et al. 2013), which 

may well be an important requisite for hybridisation between teleost fishes (Montanari et al. 

2016). Hybrids may nonetheless have traits that differentiate them from their parental species, 

and enable increased tolerance of changing environmental conditions or increased occupation 

of distinct niches not detected here. This would only be apparent from either ongoing 

monitoring of hybrid prevalence in the field or experimental tests of physiological tolerances. 

This study represents a snapshot in time and space of the relative fitness of hybrids and their 

respective parent species, providing an important reference point. Ongoing monitoring of 

hybrid prevalence is important, because if hybrids disperse away from the Christmas Island 

suture zone they may encounter different environmental conditions. It is unknown what the 

relative fitness of the hybrids would be in these new environments, but hybrid freshwater 

fishes have been successful in exploiting new environments (Seehausen et al. 2003; 

Seehausen 2004). In addition, environmental conditions are changing throughout all oceans 

and reefs - including those at Christmas Island (Hobbs 2014) - for a number of reasons, thus 

the fitness of hybrids compared to parental species may change at the suture zone in the 

future. For example, rising sea temperatures directly impact reef fish metabolism (Johansen & 

Jones 2011; Messmer et al. 2016) and indirectly impact corallivorous species (such as the 

butterflyfishes in this study) through thermal bleaching and mortality of corals that are 

important for food and habitat (Pratchett 2005, 2007; Cole et al. 2008; Bellwood et al. 2010). 

Finally, given that hybrids represent a continual source of novel genetic combinations, the 
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ongoing hybridisation of butterflyfishes at Christmas Island may, in the future, produce 

hybrids that are fitter than their parent species (Anderson et al. 2009). In this study we found 

hybrids that had similar fitness related traits to parent species at the time of collection at 

Christmas Island. Further research on these taxa at other times and locations will provide 

insights into how the relative fitness of hybrids changes with environmental conditions. 

Apparent similarities in trait values for hybrid versus parental species of Chaetodon 

butterflyfishes may partly reflect the limited sample sizes, especially in terms of numbers of 

hybrids sampled (n = 3-13 for C. trifasciatus × C. lunulatus and n = 10-37 for C. 

guttatissimus × C. punctatofasciatus, see also Table 1). Unfortunately, limited sample sizes 

are an inherent limitation for studies of natural hybridisation, because these taxa are often rare 

(Thompson 2004). The C. guttatissimus group was analysed with a minimum of ten hybrid 

individuals and showed the same patterns as the C. trifasciatus group with a minimum of 3 

hybrids. We would expect discrepancy in results between groups if small sample sizes played 

a major role. 

The vigour expressed in some F1 hybrids is often lost in subsequent generations (F2 and/or 

backcrosses) (McGinnity et al. 2003). Distinguishing between pure individuals and later 

generation backcrosses (F4 or later) can represent a challenge and may not be particularly 

useful, because the signal of hybridisation is lost (Lavretsky et al. 2016). Further, the limited 

sample size did not allow for the subdivision of individuals into discrete hybrid classes (e.g 

F1, backcrosses) for the statistical analyses presented here. Both species groups examined 

here exhibited the full spectrum of hybrid genotypes (e.g. F1, F2 and backcrosses), as 

indicated by microsatellite data in previous studies (Montanari et al. 2014) and subsequently 

confirmed with whole genome SNP scans (unpublished data). These observations per se 

confirm not only the fertility, but also the viability of Chaetodon hybrids, and are 

corroborated by the histology and GSI data presented here. Hybrids in both groups backcross 

with either parent species, in frequencies directly proportional to their relative abundance (i.e. 

non-assortatively) (Montanari et al. 2014). They are also infrequently seen in hybrid-hybrid 
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pairs, suggesting that the production of F2 individuals is a distinct possibility, as evident from 

genetic analyses (Montanari et al. 2014). Indeed, F1 individuals are the least common in both 

groups (Montanari et al. 2014) and hence represent the minority of the hybrids sampled in this 

study. It seems therefore reasonable to conclude that the loss of fitness frequently reported in 

subsequent generation hybrids (Huff 2010; Huff et al. 2011) does not apply to butterflyfishes 

of genus Chaetodon at Christmas Island, where they hybridise naturally.  

4.5 Conclusions 

Hybridisation can play an active role in shaping populations and communities, thus impacting 

biodiversity. One or both parent species in the two Chaetodon groups considered here are 

locally rare (Hobbs et al. 2009; Montanari et al. 2012; Montanari et al. 2014). Hybridisation 

can be an evolutionarily relevant source of genetic diversity for these species, because the 

probability of conspecific mating is low (Seehausen 2004). Unlike cases of hybridisation that 

have anthropogenic causes and consequences that are deemed detrimental to the species 

involved (Hoffmeister et al. 2005; Taylor et al. 2006), hybridisation among Chaetodon 

butterflyfishes and other coral reef fishes at Christmas Island (Hobbs & Allen 2014) seems to 

find its roots in secondary contact between recently diverged sister species (Montanari et al. 

2012; Montanari et al. 2014). The similarity in fitness related traits between butterflyfish 

hybrids and their parental species supports the likely persistence of hybrids and their potential 

as sources of novel genetic diversity, adaptability and biodiversity within this isolated 

geographical location. 
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Figure 4.1. Female and male gonads of hybridising Chaetodon butterflyfishes. Typical 

appearance of female (A, C and E) and male (B, D and F) gonads of hybridising Chaetodon 

butterflyfishes from the Christmas Island suture zone. Chaetodon guttatissimus (A and B); C. 

guttatissimus × C. punctatofasciatus hybrids (C and D); C. punctatofasciatus (E and F). 

Mature hybrids (C and D) of both sexes had normal gametocytes, similar to those of their 

parental species, at all stages of development. DO: primary oocyte in diplotene stage; PO: 
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primary oocyte; SO: secondary oocyte; PS: primary spermatocyte; SS: secondary 

spermatocyte.  
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Figure 4.2. Gonadosomatic indices of the C. guttatissimus hybrid group at Christmas Island. 

The width of boxes is proportional to the square root of sample size (see Table 1), for females 

(A) and males (B). CG: C. guttatissimus; GPHYB: C. guttatissimus × C. punctatofasciatus 

hybrids; CP: C. punctatofasciatus. 
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Figure 4.3. Hepatocyte vacuolation in C. guttatissimus (A) and C. trifasciatus (B) hybrid 

groups. Solid boxes indicate standard errors and whiskers indicate range (see Table 1 for 

sample sizes). CG: C. guttatissimus; GPHYB: C. guttatissimus × C. punctatofasciatus 

hybrids; CP: C. punctatofasciatus; CT: C. trifasciatus; TLHYB: C. trifasciatus × C. lunulatus 

hybrids; CL: C. lunulatus. 
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Figure 4.4. Size at age relationships in hybridising Chaetodon butterflyfishes at Christmas 

Island. Von Bertalanffy growth functions fitted to size at age data of all taxa in the C. 

guttatissimus (A) and C. trifasciatus (B) hybrid groups. Dots are individual data points and 

dashed lines are 95% confidence intervals around the fitted models. For sample sizes refer to 

Table 1. 
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Table 4.1. Sample sizes for the components of the present study, divided by taxon.  

Taxon Fertility Body 

condition 

Size at age 

Chaetodon guttatissimus 29 14 87 

C. punctatofasciatus 12 12 31 

C. guttatissimus × punctatofasciatus 

hybrids 

15 10 37 

C. trifasciatus 4 3 39 

C. lunulatus 5 4 23 

C. trifasciatus × lunulatus hybrids 3 3 13 
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GENERAL DISCUSSION AND CONCLUSIONS 

 The studies presented in this thesis are the most comprehensive overview of reef fish 

hybridisation to date. Using a multidisciplinary approach the work presented here has shone 

light on marine fish hybridisation, while raising a number of important questions. Review of 

the current and past marine fish hybridisation literature, presented in Chapter 1, highlighted 

several knowledge gaps in this field of study, the most important of which were: i) many of 

the reviewed studies were dated, simplistic reports of odd taxonomic occurrences, for which 

no data were available other than, occasionally, some meristic analyses; ii) the studies that 

contained ecological and behavioural information (less than 20 percent) often did so by 

including data from outside the hybrid zone, limiting the interpretability of those data in terms 

of the mechanistic underpinnings of hybridisation; iii) genetic data included in the reviewed 

studies were plentiful, but hard to directly compare, as authors often used a disparate suite of 

mitochondrial and nuclear markers, precluding the definition of a threshold of divergence 

after which the ability to hybridise is lost (Mallet 2005). The prevalence of hybridisation in 

the marine fish realm, coupled with a general lack of ecological and behavioural data from 

marine hybrid zones, call for more comprehensive studies that should strive to combine direct 

field-based observations with genetic data. This kind of investigation can lead to deeper 

conclusions in regards to the evolutionary significance of hybridisation, as shown in seminal 

studies in the terrestrial and freshwater literature – e.g. Grant et al. (2002); Seehausen (2004) -

. 

 Another interesting question that arose from this work is the apparent latitudinal bias 

toward tropical marine fish hybridisation. Hubbs (1955) contended that hybridisation at low 

latitudes is less likely, due to high species richness and general lack of exploitable niches, 

particularly on coral reefs. The findings presented here are in contrast with these notions and 

may have their roots in several possible scenarios. The accessibility of shallow, clear tropical 

waters may today increase our ability to detect hybrids and also, in general, augment the 

number of studies conducted on tropical marine fauna. Further, the vast majority of the 
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hybridising tropical marine fishes in the review share striking colour patterns that make them 

readily identifiable to amateur ichthyologists and aquarium enthusiasts, which may artificially 

increase the latitudinal bias. Whatever the ultimate cause, recent re-evaluations of biodiversity 

theory in marine systems (Bowen et al. 2013), beg the question of how much influence 

hybridisation has had in creating and maintaining the staggering levels of diversity we 

observe in the marine tropical belt.  

 The choice of taxon for the studies in Chapters 2, 3 and 4 (Chaetodon: 

Chaetodontidae), although not devoid of shortcomings, had several benefits, furthering our 

understanding of marine fish hybridisation. The butterflyfishes discussed here are pair-

forming and monogamous (Pratchett et al. 2006a; Yabuta 2007), thus making the distinction 

between heterospecific social groups easier. In pair-forming, monogamous species of birds, 

such as Geospiza finches (Grant & Grant 2008), the study of hybridisation events has shown 

that hybridisation can be driven by periodic oscillations in climatic conditions, leading to 

scarcity of resources. In this regard, our choice of taxon could also lead to ascertain the effects 

of hybridisation on reef fish populations following climate-driven resource paucity. The 

species studied here, as well as their respective hybrids, are obligate corallivores (Cole et al. 

2008), highly dependent on live coral for food and shelter. Monitoring of the hybridising 

populations of Christmas Island following the dramatic bleaching event of 2016 (Zinke et al. 

2018), could highlight effects of hybridisation on resource use (if any) as previously done on 

Darwin finches (Grant & Grant 2002).  

When comparing causes and consequences of hybridisation between two different 

groups of Chaetodon butterflyfishes, we found that hybridisation was initiated by similar 

ecological and behavioural factors, had somewhat dissimilar genetic consequences (e.g. 

presence/absence of introgression, uni/bi-directional maternal contribution), but we detected 

similarly low levels of fitness differentiation between hybrids and parents. Following the 

secondary contact of otherwise allopatric sister species at Christmas Island, along the Indo-

Pacific suture zone, these species of butterflyfish readily form heterospecific breeding pairs. 
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The frequency of pair formation seems driven by the abundance of available partners, 

indicating a breakdown of assortative mating. Local rarity of conspecifics, as well as overlap 

in the dietary and spatial ecology of the hybridising parent species (which increases the 

encounter rate between potential mates), set the scene for heterospecific pair formation. 

Interestingly, these ecological and behavioural conditions leading to hybridisation have been 

ascribed a similar role in freshwater fishes (Scribner et al. 2000) and terrestrial taxa (Grant et 

al. 2005). 

The mitochondrial and microsatellite DNA analyses presented here indicated that, 

despite having i) the same secondary contact patterns at the Indo-Pacific suture zone, ii) the 

same social structure (monogamy), and iii) highly similar ecological and behavioural 

underpinnings for hybridisation (overlap in diet and habitat use, rarity of parental species and 

non-assortative mating), the two groups of butterflyfish differed in the genetic outcomes of 

hybridisation. The presence of introgression and bidirectional maternal contribution in the C. 

gtttatissimus group and the contrasting absence of introgression and unidirectional maternal 

contribution in the C. trifasciatus group, in the absence of other detectable differences, lead to 

the hypothesis that these differences may be a result of the different magnitudes in genetic 

distance between parent species pairs. This hypothesis found confirmation when data were 

compared to those available for other reef fish families, allowing some level of generalisation 

that fit well with general hybridisation theory (Mallet 2001; Whinnett et al. 2005; Abbott et 

al. 2013).  

Despite apparent similarities with freshwater and terrestrial systems, given the vastly 

different distribution patterns and life history traits of marine, freshwater and terrestrial 

organisms, it was reasonable to expect differences in the causes and consequences of 

hybridisation (Carr et al. 2003). Interestingly, the most striking similarities between the study 

systems presented here and any other terrestrial counterpart were found with flight-capable 

species - such as butterflies (Whinnett et al. 2005) and birds (Grant et al. 2005) -, 

characterised by wide dispersal patterns, somewhat similar to those ascribed to marine 
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organisms with long pelagic larval duration. The most surprising finding highlighted in the 

study presented here was the apparent lack of fitness differences between hybrids and parents. 

Although hybridisation is often thought to have a positive or negative effect on the fitness of 

hybrid taxa (Pekkala et al. 2014), it is not uncommon for hybrids resulting from crosses 

between recently diverged species to show negligible fitness effects (Grant et al. 2005). The 

study presented in Chapter 4, although limited by small sample sizes, indicated that 

butterflyfish hybrids have similar fitness to their parents and, given that the Chaetodontidae 

are a relatively young family (Bellwood et al. 2010) characterised by the strong presence of 

recently diverged sister species - many of which hybridise (Hobbs et al. 2013) - it is possible 

that hybridisation in this family does not carry any significant fitness costs. 

It would be of interest to ascertain if such generalisation on the effect of hybridisation 

on fitness can be made across multiple reef fish families. Having a wider taxonomic sampling 

range, across, for example, multiple feeding and reproductive strategies, would allow this and 

also broader generalisations as to what effects hybridisation can or cannot have on marine fish 

diversity. In the study systems presented here, it is apparent that hybrids will persist in the 

wild, fulfilling the very important role of genetic exchange through introgression and 

contributing to the maintenance of biodiversity. This is an effect of hybridisation that has 

been widely observed in terrestrial (Grant & Grant 2008; Anderson et al. 2009) and 

freshwater (Seehausen 2004) systems, and assessing its presence in reef fishes as a whole 

would shed light on the role hybridisation plays in the evolution of this group, particularly in 

light of recent re-evaluations of biodiversity theory in marine systems (Bowen et al. 2013).  

 Lastly, inexpensive and time-efficient genome-wide single nucleotide polymorphism 

(SNP) screens will prove effective in highlighting crucial aspects of hybridisation at genome 

level. Introgression is an important consequence of hybridisation and can rapidly accelerate 

the rate of adaptation and evolution (Abbott et al. 2013), however it does not occur at the 

same rate across genomes. Some markers introgress faster than others, evidence that the 

influence of hybridisation on diversity and evolution can be subtle (Abbott et al. 2013). 
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Preliminary SNP data from the Chaetodon guttatissimus complex indicate that our limited 

ability to distinguish later generation hybrids (e.g. backcrosses) phenotypically and with the 

use of microsatellite markers is greatly improved with the use of genome-wide data. The lack 

of a reliable reference genome for Chaetodon limits our power to detect critically important 

mutations that may be relevant to adaptability. Nonetheless, SNP genome-wide data will 

hopefully enable us to show that disappearing characteristic hybrid colouration in later 

generation hybrids is directly linked to genome-wide loss of genetic hybridisation signal 

(Lavretsky et al. 2016). Although the hybridisation signal may be lost within three to four 

generations of backcrossing (Lavretsky et al. 2016), differentiating first generation and 

backcrossed hybrids with a suitable level of confidence makes genomic data invaluable, 

particularly if we are to determine how readily hybridisation can influence adaptability. 

Specifically, genome-wide analyses have enabled identifying genes under selection which 

lead to direct fitness estimates. For example, the detection of introgressed wolf SNPs in 

coyote populations lead to the identification of fitness-increasing genes related to body size 

and skeletal proportions (vonHoldt et al. 2016). In the case of butterflyfish hybrids studied 

here size differences were not detected. However, there may be fitness-related advantages that 

could become apparent through genomic analyses: for example MHC-mediated parasite 

resistance as seen in salmonids (Consuegra & Garcia de Leaniz 2008). Hybrid zones are 

windows to our understanding of evolution and adaptation (Harrison 1990): modern genetic 

technology combined with careful field observations can generate fresh insights into the role 

hybridisation has had, presently has and will have in marine fish evolution.   
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