Sn-W-Critical Metals & Associated Magmatic Systems

An International Geological Conference

24th - 28th June 2019
Tinaroo Lake Resort
Atherton Tablelands
Queensland, Australia

EXTENDED ABSTRACTS

Edited by:
Kaylene Camuti, Jan Marten Huizenga, Carl Spandler, Yanbo Cheng

EGRU Contribution 70
Sn-W-Critical Metals & Associated Magmatic Systems

An International Geological Conference

EXTENDED ABSTRACTS

Edited by:
Kaylene Camuti, Jan Marten Huizenga, Carl Spandler, Yanbo Cheng

Hosted by:
Economic Geology Research Centre (EGRU)
James Cook University
Townsville, Queensland

EGRU Contribution 70

24 - 28 June 2019
Atherton Tablelands, Queensland
Australia
The Watershed tungsten deposit, NE Queensland, Australia: An example of a Permian metamorphic tungsten upgrade after a Carboniferous magmatic-hydrothermal mineralisation event

Jaime Poblete¹, Paul Dirks¹, Jan-Marten Huizenga¹, Zhaoshan Chang¹,²
¹Economic Geology Research Centre, College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
²Colorado School of Mines, Department of Geology and Geological Engineering, 1516 Illinois St, Golden, Colorado, 80401, USA

Tungsten is considered a strategic metal by various countries, including Australia. Between 1998 and 2016 Australia has been steadily increasing its tungsten production, but it is still far smaller than those of the main producers (e.g., China, Russia). Watershed with its current resources of 49.2 Mt averaging 0.14% WO₃ is considered one of the biggest undeveloped tungsten deposits outside of China, and if developed would boost Australia’s tungsten production. We will be presenting the geological, geochemical and structural characteristics of the Watershed deposit, as well as the timing, mineral paragenesis and fluid characteristics of the mineralizing system; with the main goal of improving our understanding of the Watershed tungsten deposit and how to explore for similar deposits in northeast Queensland.

Geological context

The Watershed tungsten deposit lies within the Mossman Orogen (Fig. 1A), which comprises multiply deformed Silurian-Ordovician metasedimentary rocks of the Hodgkinson Formation intruded by Carboniferous-Permian granites of the Kennedy Igneous Association (Fig. 1B) (Champion and Bulitude, 2013; Henderson et al., 2013). The Hodgkinson Formation is host to tungsten, tin, copper and gold deposits (Fig. 1B). The Hodgkinson Formation in the Watershed area comprises skarn-altered conglomerate, psammite and slate units, which record at least four deformation events including early ductile folding and shearing events (D₁ to D₃) and later brittle-ductile shear events (D₄) associated with mineralisation and the emplacement of scheelite-bearing tension veins, which record four separate stages of retrograde metamorphism/alteration (Retrograde Stages 1 to 4). Peak metamorphic assemblages (garnet, actinolite, quartz, clinopyroxene, titanite) in the host rocks to mineralisation formed during D₄. Multiple felsic dykes intruded the metasedimentary rocks at Watershed and include: (a) Carboniferous, monzonite dykes (zircon U/Pb age of 350±3 Ma) emplaced during D₁₋₂; and (b) Permian granite plutons and dykes (zircon U/Pb ages of 276±2 Ma, 275±2 Ma and 273±1 Ma), and diorite (zircon U/Pb age of 281±1 Ma) emplaced during D₄.

Mineralisation events and paragenesis

An early (syn-D₁₋₂) mineralisation event involved the syn-tectonic growth of disseminated scheelite in monzonite dykes and adjacent skarn-altered conglomerate, and was associated with the emplacement of the monzonite, which appears to have enriched the Hodgkinson Formation in W-Be-B-Sc-Cu-Mo-Re. The bulk of the economic scheelite mineralisation formed in syn-D₄ shear-related, quartz-oligoclase veins and associated vein haloes (with a muscovite Ar-Ar age of 276±6 Ma). The veins developed preferentially in skarn-altered conglomerate, and they terminate abruptly where they encounter slate. Vein opening involved four stages, each associated with a characteristic retrograde alteration assemblage. The margins of the D₁ veins contain feldspar, scheelite and quartz, which represent Retrograde Stages 1 and 2. During Retrograde Stage 1 early sanidine (overgrown by plagioclase, An₁₅₋₁₇) formed with minor quartz. Retrograde Stage 2 is characterised by intergrown scheelite and plagioclase (An₃₋₄) overgrowing early plagioclase, phlogopite and trace apatite. Further vein opening during Retrograde Stage 3 infilled the central part of the vein with quartz, which is intergrown with muscovite, calcite and minor chlorite, tourmaline and fluorite. Fractures that formed during Retrograde Stage 4 cut textures belonging to the previous stages and contain pyrrhotite, arsenopyrite with lesser pyrite, chalcopyrite, and sphalerite.

Scheelite trace element characteristics

Scheelite can incorporate small amounts of REE, and the origin of the scheelite grains (i.e. intrusion-related vs metamorphic) has been investigated using the relative abundance of contained LREE, MREE and HREE. Using ternary REE plots, early D₁₋₂ scheelite in monzonite coincides with the compositional field for scheelite that forms during magmatic-hydrothermal processes, whereas late D₄ vein-hosted scheelite is compositionally similar to pure hydrothermal scheelite. The Eu and Mo contents of scheelite, coupled with graphite inclusions in scheelite and the presence of pyrrhotite and arsenopyrite in scheelite-bearing veins, show that D₁₋₂ scheelite precipitated from a relatively oxidized fluid, while vein-hosted D₄ scheelite records a shift to more...
reduced conditions as a result of fluid interaction with carbonaceous shale.

Whole-rock geochemical pathfinders

Whole-rock geochemistry of the various rock types within the deposit indicates that the Watershed deposit is characterised by an enrichment of W-Be-B-Sc-Cu-Mo-Re. These elements were probably remobilised from the Hodgkinson Formation and introduced by hydrothermal fluids during D$_4$ veining. The fluid interacted with the skarn-altered conglomerate to leach REE, Y and Nb plus skarn-related elements (i.e., Ca-F-P-Fe-Sr), and add Rb, Cs and Li in vein haloes. Whole-rock geochemistry of psammite units along a 2 km transect north of the deposit shows a regional footprint that is characterised by enrichment in W-Cu-Mo-Ca-Fe-Mn-Li.

Fluid inclusions and stable isotope characteristics

Fluid inclusions in D$_4$ vein scheelite and quartz from Retrograde Stage 2 constrain P-T conditions during mineralisation to ca. 300°C and 1-1.5 kbar (i.e. depths of 3.5-6 km) indicating a high geothermal gradient, which has been linked to the emplacement of Permian granites.
The P-T conditions are similar to those recorded in lode-gold deposits in the Hodgkinson Gold Field and elsewhere (Peters et al., 1990; Groves et al., 1998; Vos and Bierlein, 2006). The fluid inclusions preserve a low salinity H₂O-NaCl-CH₄ fluid (XCH₄ < 0.01) with evidence for fluid-fluid mixing between low- (close to 0 wt.% NaCl) and medium-salinity (< 8 wt.% NaCl) fluids. The oxygen fugacity was calculated at 0.6 to 0.8 log₁₀ values below the FMQ buffer, consistent with the reduced mineralogy and geochemical signatures. δ¹⁸Oᵥsmow values obtained for scheelite (+3.4 to +7.3‰), plagioclase (+7.0 to +11.8‰) and quartz (+12.6 to +15.5‰), which formed during Retrograde Stage 2, and δDᵥsmow (-73.4 to -62.7‰) and δ¹⁸Oᵥsmow (+11.5 to +13.2‰) values for muscovite that formed during Retrograde Stage 3 are indicative of a metamorphic origin for the mineralising fluids, with a possible magmatic component. Sulphur isotope (δ³⁴Sᵥsmow) values for sulphides formed during Retrograde Stage 4 in veins are consistent with the presence of seawater sulphate (i.e. basinal brine) in the system. Metamorphic fluids probably originated from prograde devolatilisation reactions during metamorphism of the Hodgkinson Formation.

Main findings

Our findings indicate that tungsten was sourced from Carboniferous monzonite, which enriched the metasedimentary rock units of the Hodgkinson Formation during the early stages of deformation/metamorphism. Continued ductile deformation and associated metamorphism during D₁ caused devolatilisation reactions in the host rocks and remobilisation of tungsten. Permian scheelite mineralisation during D₁ involved a metamorphic-hydrothermal fluid with minor magmatic input that deposited tungsten at 300°C and 1-1.5 kbar (<6 km depth). This tungsten was transported as NaWO₄, HWO₄ and WO₄²⁻ complexes (Wood and Samson, 2000) along extensional shear zones. Calcium was supplied by the skarn-altered conglomerate that hosts the scheelite-bearing veins. It is proposed that the precipitation of scheelite was promoted by the interaction between the relatively acidic hydrothermal fluids and the alkaline, carbonate-rich, skarn-altered conglomerate host rock, lowering the solubility of the tungsten complexes and co-precipitating scheelite and Na-rich plagioclase during Retrograde Stage 2.

The main controls on economic scheelite mineralisation at Watershed include: (a) D₄ shear-zones that formed in response to N-S extension; (b) D₄ tension veins (commonly E-W trending), that opened up in association with the shear-zones; (c) skarn-altered conglomerate units that supplied Ca as well as chemical (pH) and physical (localisation of tension veins) controls on mineralisation; (d) an extensional setting to allow fluid penetration; (e) high geothermal gradients driving fluid flow; and (f) the presence of ~350 Ma, scheelite-enriched monzonite dykes that appear to have prepared the ground. Thus, exploration should focus on the identification of ~350 Ma intrusions in association with skarn-altered units, and younger (i.e. D₃) shear-zones that formed in an extensional regime. Considering a continuum model for this deposit type (i.e. mineralisation could form between 2-20 km depth) there is potential for mineralisation at depth.

References

2017, Queensland Mineral Occurrence Data, in Greenwood, M., ed.: Brisbane, Queensland, Australia.

