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Executive summary 

Conservation interventions are only effective if people use them. Thus, identifying 

motivations and barriers to the uptake of conservation interventions is critical. Yet, analysis 

of factors that hinder or promote conservation diffusion (spread of conservation 

interventions) processes has received little attention by conservation practitioners and policy 

makers. Consequently, many efforts to achieve sustainability fail to reach full potential.  

Nearly all conservation interventions are characterized by the introduction of new ideas and 

practices. In line with this recognition, implementation of conservation can therefore benefit 

from a large body of social science research that explains how new ideas, practises, and 

technologies, i.e., innovations1 spread. Central to understanding how innovations spread 

among social systems, is the diffusion of innovations theory2 pioneered by Rogers. This 

thesis uses the diffusion of innovation lens to investigate the introduction of a conservation 

intervention in coastal Kenya.  

Diffusion research show that peoples‘ adoption behaviour is typically influenced by social 

differentiations in terms of personal attributes, socioeconomic status, and communication 

behaviour (Rogers 2010). Though personal attributes and socioeconomic status are widely 

used to analyse adoption processes (Horst et al 2007, Knowler & Bradshaw 2007), there 

remains very limited empirical work emphasizing the effect of communication behaviour in 

conservation diffusion literature. In addition, there is a long-standing recognition that proper 

communication channels3 are critical in facilitating innovation transfer (Gladwell 2006, 

Nilakanta & Scamell 1990, Rogers 1995). Yet, no criteria currently exist in the conservation 

                                                             
1 An idea, practice or object that is perceived as new by individuals, groups, or other units of adopters (e.g., 
organizations) (Rogers 1995). 
2 Diffusion of innovations is defined as the process by which a novel idea, technology, or practice is 
communicated through certain channels over time among members of a social system (Rogers 1995). 
3 Means by which innovations move from individual to individual, group to group, or organizations to 
organizations (Rogers 1995). 
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literature to identify characteristics and functions of key intermediaries needed to facilitate 

conservation transfer. Thirdly, after initial adoption, whether people maintain an innovation is 

largely determined by the impact it has on their lives. However, conservation diffusion 

studies rarely examine the impacts of conservation innovations on either people or 

ecosystems (Weeks et al 2010, Woodhouse & Emiel de Lange 2016). These critical 

knowledge gaps lend themselves for empirical investigation. 

This thesis therefore aims to examine how people adopt conservation interventions and 

determine key social and environmental impacts of doing so. To address these aims, I ask two 

fundamental research questions: (i) “how does conservation interventions spread through 

societies?” (ii) “what are the consequences of conservation diffusion on people and 

environment?”   

I provide answers to these questions by addressing the following interrelated specific 

objectives: 

1. determine the factors that influence uptake (adoption) and spread (diffusion) of a 

conservation intervention over time (Chapter 3) 

2. identify key stakeholders to facilitate conservation transfer (Chapter 4) 

3. investigate impacts of conservation diffusion on people‘s wellbeing (Chapter 5) 

4. examine impacts of conservation diffusion on the ecosystem (Chapter 6) 

I explore these issues through a case study of a fisheries bycatch (incidental take) reduction 

initiative introduced in coastal Kenya (see details in chapter 2). Specifically, I study a 

modified basket trap retrofitted with escape gaps that allows juveniles and narrow-bodied, 

low value fish species (i.e. bycatch) to exit, while larger, wider-bodied target species are 

retained (Mbaru & McClanahan 2013). This intervention was introduced with the explicit 

aim to protect biodiversity by harvesting fish species at sizes that ensure sustainability of the 
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local fishery (McClanahan & Mangi 2004). However, it was expected that improved catches 

over time will translate to positive sustainability outcomes, e.g., improved income and 

livelihoods that will continue to accrue over the long term. 

Aside from the diffusion of innovations theory, this research further draws from a number of 

social science theories and emerging breakthroughs in functional ecology to provide a 

rigorous and deeper examination of the study aims highlighted above. Chapter 1 provides a 

general introduction about the different theoretical foundations and approaches that can be 

used to analyse conservation diffusion processes in light of the diffusion of innovations 

theory. Chapter 2 provides an overview of study sites and describes the methods used 

throughout the thesis, though each chapter will also have additional methods.  

In chapter 3, I integrate theoretical foundations of the diffusion of innovations theory with 

novel breakthroughs in network science to offer a clearer understanding of the factors that 

shape conservation diffusion patterns over time. Unlike the majority of conservation diffusion 

studies, I explicitly measure communication behaviour via social networks4 and leverage 

recent advances in network modelling to simultaneously test the effect of social network 

structures and social influence on conservation diffusion while accounting for personal 

attributes and socioeconomic characteristics. I show that network processes contribute 

considerably to conservation diffusion – particularly in the early adoption stage – even when 

key socioeconomic factors are accounted for. By showing that communication behaviour is 

crucial during the early stages of the diffusion process, my results challenge decades of 

diffusion research suggesting commination behaviour is more important for late adoption. 

Overall, I demonstrate that harnessing the power and characteristics of social networks can 

help diffuse conservation interventions through target populations. 

                                                             
4 The notion that individuals are embedded within a larger context of relational ties (Borgatti et al 2009). 
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In chapter 4, I draw on social network theory and methods to develop specific criteria for 

selecting stakeholders who are best placed in social networks (i.e., key players) to facilitate 

four key conservation objectives: (1) rapid diffusion of conservation information, (2) 

diffusion between disconnected groups, (3) rapid diffusion of complex knowledge or 

initiatives, or (4) widespread diffusion of conservation information or initiatives over a longer 

time period. After identifying the key players for the four distinct diffusion related 

conservation objectives, I then test whether the socioeconomic attributes of the key players I 

identified match the ones typically selected by conservation NGOs and other resource 

management agencies to facilitate conservation diffusion (i.e., current players). Results show 

clear discrepancies between current players and key players, highlighting missed 

opportunities for progressing more effective conservation diffusion. The chapter concludes 

with a novel, practical, and nuance approach to identify a set of ‗key players‘ better 

positioned to facilitate diffusion related conservation objectives, thereby helping to mitigate 

the problem of stakeholder identification in conservation diffusion processes. 

The focus of chapter 5 is to investigate the effects of adoption or non-adoption of the 

conservation intervention on people‘s wellbeing, i.e., an umbrella term that encompasses 

good social relations, freedom of choice, and basic materials for a good life (MEA 2005). 

Here, I use the wellbeing framework (Gough & McGregor 2007) to capture how the 

conservation innovation may impact multiple dimensions (material, relational, subjective) of 

people‘s wellbeing. I use panel data (i.e., follow the same individuals over time) to study 

these three dimensions of wellbeing before the intervention, during the short term (i.e., one 

year after the introduction), and in the medium term (i.e., about two years after the 

introduction) for those that adopt the innovation (adopters), those that don‘t adopt (non-

adopters), and in control villages, where the intervention was not introduced. Overall, my 

findings indicate that adoption of the conservation intervention did no harm to the associated 
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human communities. Indeed, I show modest improvements in material and subjective 

livelihood wellbeing for adopters relative to controls over time. However, the variations I 

find in wellbeing experiences (in terms of magnitude of change) among adopters, non-

adopters, and controls across the different domains over time affirm the dynamic and social 

nature of wellbeing. Findings emphasize the need for environmental policy to use multiple 

indicators of wellbeing in addition to baselines in future evaluation research. 

The focus of chapter 6 is to assess the impact of the conservation intervention on 

environment. Previous attempts have been made to understand the effects of escape slot trap 

fishing on the marine environment (Condy et al 2015). However, most of this work tends to 

focus on species abundances and catch composition (Gomes et al 2014). Yet, the growing 

interest in an ecosystem-based approach has stressed maintaining and sustaining ecological 

functions (Henriques et al 2014). Moreover, in multi-species coral reef fisheries fishing gears 

are known to exhibit some degree of overlap in the species they capture (McClanahan & 

Mangi 2001). Depending on the level and type of overlap, these interactions can potentially 

retard critical pathways associated with gear-based conservation interventions (McClanahan 

& Kosgei 2018). Against this background, I employ a trait-based approach to assess 

functional selectivity of the escape slot trap. In addition, I quantify overlaps in catch 

composition between escape slot traps and other gear types that operate concurrently in the 

same reefs. These are hook and line, speargun, gillnet, beach seine, basket trap, and a 

combination of other nets. Overall, I show that using escape slot traps has the potential to 

lead to environmental improvements. Fish assemblages in escape slot traps are more 

functionally redundant (tendency of species to perform similar functions) and a vast majority 

constitute the least breadth of functional diversity. However, I find that two-thirds of the 

catch released by escape slot traps is targeted by other gear types. Thus, given the extent of 

overlaps in species selectivity between gears, switching to escape slot traps may not achieve 
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conservation targets in the Kenyan multi-species coral reef fishery unless other gear types are 

also simultaneously excluded. These results call for caution when assessing ecological 

implications of gear-based conservation innovations particularly in gear-diverse coral reef 

fisheries where competitive interactions between gears are eminent.  

Together, this body of work advances the current state of knowledge about analysing patterns 

and outcomes of conservation diffusion over time. The stakeholder selection criteria 

developed in chapter 4 can be applied to facilitate widespread adoption and diffusion of 

simple initiatives such as rapid environmental awareness campaigns as well as more complex 

initiatives that seek to implement behaviour change to improve conservation outcomes. This 

work further provides a more comprehensive way to look at conservation outcomes and can 

help draw policy attention to the nonmaterial impacts of conservation. Trait-based approaches 

can provide a concrete platform for ecosystem-based management approaches in tropical 

multi-species fisheries.  
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Chapter 1: General introduction 

Conservation diffusion gap 

Ecosystems support immense biodiversity and provide important services to millions of 

people (Hicks & Cinner 2014, Pitcher et al 2009). Yet these ecosystems and the services they 

support are degrading rapidly in response to numerous anthropogenic disturbances (Hughes 

et al 2017). To stem these losses, research programs, NGOs, development agencies, and 

funding bodies have invested heavily in conservation (Dudley & Stolton 2010, Paehlke 

2005).  Here, I define conservation as planned preservation, protection, and management of a 

natural resource to prevent overexploitation or destruction.  

Conservation practitioners often hope that successful conservation strategies will become 

widely adopted. However, limited uptake and transitory use of conservation interventions is 

increasingly becoming a major concern for conservation practitioners around the globe 

(Knowler & Bradshaw 2007). Understanding factors that might promote or constrain 

conservation diffusion (spread of novel conservation interventions) is clearly essential for the 

success of current and future conservation programs. However, identifying key determinants 

of adoption and diffusion can be challenging because people respond differently to 

socioeconomic factors when they consider whether or not to take up novel conservation ideas 

and practises (Padgett 2011, Tiwari et al 2008). 

Problem statement 

Many conservation interventions suffer poor rates of adoption because there is little 

understanding of how conservation ideas and practices spread through societies.  
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Diffusion of innovations theory 

Nearly all conservation interventions are characterized by the introduction of new ideas and 

practices. Yet the implementation of conservation often fails to consider lessons from the 

decades of social science research that has studied patterns of adoption and diffusion of new 

ideas and practises (i.e., innovations) (Rogers 2003, Valente 1996a). Central to understanding 

how new messages, ideas, practises, or technologies (innovations) spread among social 

systems, is the diffusion of innovations theory (Rogers 2010). Diffusion of innovations is 

defined as the process by which a novel idea, technology, or practice is adopted through 

certain channels over time among members of a social system (Rogers 2003). Diffusion of 

innovation theory has evolved from its roots in rural sociology, education, and anthropology 

(Allen 1982, Dosi 1991), and is now applied across disciplines to study how and why novel 

interventions spread, as well as predict rates of adoption and diffusion over time (Banerjee et 

al 2013, Fuglie & Kascak 2001, Stoneman & Diederen 1994, Wejnert 2002). Key to the 

theory is the presence of four elements of diffusion that are identifiable in every diffusion 

research study, i.e., innovation, communication channels, social systems, and time  

Innovation: Diffusion literature defines innovation as an idea, practice or object that is 

perceived as new by individuals, group, or other units of adopters (e.g., organizations) 

(Rogers 1995). In the conservation context, innovations could include output controls in 

fisheries management, reserves, or changes to waste management practices (Islam & Tanaka 

2004, McClanahan 2010). Conservation can also take the form of technologies, e.g., fisheries 

technology improvements that reduce bycatch (Brewer et al 1998). Sociologists in the past 

attempted to make a distinction between innovation and technology. In support of their 

argument, they define technology as a design for instrumental action (Tutore et al 2014), and 

an innovation as an idea or object perceived as new by an individual (Rogers 2003). Based on 

this distinction, technological diffusion was described as the process by which innovations 
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(e.g., new products, new processes, and new management methods) spread within and across 

economies (Stoneman & Diederen 1994). However, more recent additions of Rogers‘ 

diffusion of innovations theory contend that innovation and technology can be treated as 

synonyms because a majority of new ideas and practises are technological innovations 

(Rogers 2003). 

Communication channels: Diffusion literature captures communication channels as the 

means by which innovations move from individual to individual, group to group, or 

organizations to organizations (Rogers 1995). In natural resource management settings, 

intermediaries who serve varied functions between authorities, experts, and local resource 

users are key channels of communication that can facilitate transfer of novel information, 

knowledge, and innovations (Prell et al 2009, Reed et al 2009). Their functions often include 

facilitating the flow of innovations between users and developers by linking potential 

adopters with experts or translating technical material into a more user friendly format 

(Gladwell 2006).  

Social systems: Diffusion research defines a social system as a set of interrelated units that 

are engaged in joint problem solving activities to accomplish a goal or goals (Rogers 1995). 

In social-ecological settings, a co-managed fishery typify a social system where several 

stakeholders come together to solve natural resource problems cooperatively, e.g., 

overfishing. Social systems are rarely homogenous. Even in small-scale societies, there can 

be remarkable heterogeneity in socioeconomic conditions between individuals, groups, or 

organisations (Jackson & Lopez-Pintado 2013). Differences in socioeconomic identities 

observed in social systems underpin the existence of different adopter categories and patterns 

of adoption over time (Rogers 2010). 
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Time: Time is the non-spatial interval through which the diffusion events occur (Rogers 

1995). These events include the relative span of time for the individual or group to adopt the 

innovation, the innovation-decision process, and the innovations‘ rate of adoption in a system 

(Rogers 2010). Adoption-decision process captures the period between innovation awareness 

to final adoption. For a potential adopter, the innovation-decision process may lead to 

adoption or rejection of the innovation. When adoption occurs, the rate of adoption among 

potential adopters follows a cumulative S-curve when plotted over time (Ryan & Gross 

1943). 

Adopter categories 

Based on the time of adoption, diffusion of innovations theory classifies the diffusion process 

as consisting of five adopter categories; innovators (first, 2.5%), early adopters (second, 

13.5%), early majority (third, 34%), late majority (fourth, 34%), and laggards (last, 16%) 

(Rogers 1995) (Fig. 1). In describing the characteristics of these categories, diffusion 

literature contend that differences exist between adopters at different stages of the distribution 

curve (Rogers 2010, Ryan & Gross 1943). Recent studies have however shown that stronger 

differences between adopter groups emerge when some adopter categories are merged 

(Diederen et al 2003). As a result, very recent diffusion studies consider innovators, early 

adopters, and early majority, „early adopters‟ whereas late majority and laggards are 

collectively classified as „late adopters‟ (Flaten et al 2006, Läpple & Van Rensburg 2011). 

In any diffusion process, there are cases where people don‘t adopt innovations even when all 

evidence may suggest that they should (Guerin & Guerin 1994). Similarly, discontinuation or 

‗dis-adoption‘ of innovation use can occur (Dinar & Yaron 1992). Several reasons that make 

individuals reject or give up innovations such as cost of the innovation, lack of profitability, 

insufficient subsidy have been highlighted (Dinar & Yaron 1992, Dinar & Yaron 2002). 

Following these revelations, classical diffusion studies contend that, at a minimum, there 
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should be four important categories of adoption behaviour: early adopters, late adopters, non-

adopters, and one that is often overlooked dis-adopters (those that adopt but later quit) 

(Barham et al 2004, D‘Souza & Mishra 2018).  

 

Figure 1. Innovation adopter categories of Rogers. 

 

Characteristics of adopter categories 

A critical focus of many diffusion studies is exploring why some people adopt and others do 

not. Studies that examine the influence of various determinants on adoption and diffusion 

processes have identified three key categories of adoptee traits that influence spread of 

innovations and speed of adoption: personality traits, socioeconomic status, and 

communication behaviour (Dearing & Cox 2018, Feder & Umali 1993, Gine & Klonner 

2008, Tingley & Pascoe 2005). The next paragraphs below highlight the general overview of 

these attributes. A more detailed review of these attributes is provided in chapter 2. 
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Personality traits  

Many adoption studies often correlate personality characteristics such as risk orientation, 

rationality or agency, psychological strength, self-confidence, and others with innovation 

adoption behaviour (Feder 1980, Goldsmith 1984, Shields & Rauniyar 1993, Torres-Irineo et 

al 2014, Vanclay & Lawrence 1994). The emphasis on personality traits is underpinned by 

the notion that innovations would spread more rapidly among members who perceive them to 

be advantageous regardless of whether or not those innovations have objective advantages 

(Rogers 2010). 

Socioeconomic status 

Taking a broad view on socioeconomic status, diffusion research demonstrate that differences 

in people‘s socioeconomic status account for more variance in likelihood of an individual's 

adoption behaviour than a vast majority of sociodemographic variables such as age, race, 

ethnicity, marital status, and gender (Halim 2002, Morris & Venkatesh 2000, Muldoon 2009). 

Attributes of socioeconomic status such as wealth, education, occupational 

diversity/multiplicity, size of firm, and ownership of key productive assets have often been 

used to classify adopter categories (Feder & Umali 1993, Guerin & Guerin 1994, Knowler & 

Bradshaw 2007, Mercer 2004). However, like personality traits, socioeconomic status can 

have both positive and/or negative effects on adoption and diffusion of innovations across 

societies, showing either positive or negative relationships depending on the complexity of 

the innovation and the social identity5 and experiences of the potential adopter (Ervin & 

Ervin 1982, Guerin & Guerin 1994, Knowler & Bradshaw 2007, Muldoon 2009, Prokopy et 

                                                             
5 The social identity approach describes and explains the way groups of people interact with each other, and how 
an individual may adopt behavioural tendencies associated with other members of a group or become member 
of a group (Covin et al 2015, Lute & Gore 2014). Thus an individual‘s social identity is not simply a statement 
of who they are, but also describes how they perceive their place in social groups, and indicates the social norms 
to which they are likely to adhere (Haslam 2000, Unsworth & Fielding 2014). By offering implications for 
deliberations and decision-making, the breadth of the social identity provides insights into how people engage 
with an issue such as adoption of new ideas and practices (Crane & Ruebottom 2011, Rowley & Moldoveanu 
2003).  
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al 2008). The lack of consistency in a vast majority of these characteristics in predicting 

adoption behaviour has led to unstructured adoption and diffusion processes around the globe 

(Feder & Umali 1993, Mascia & Mills 2018, Ugochukwu & Phillips 2018). 

Communication behaviour 

Though personality traits and socioeconomic status of individuals are identified as key 

adoptee traits influencing adoption, diffusion literature on the other hand contends that 

communication behaviour is critical in determining the spread of innovations and speed of 

adoption (Banerjee et al 2013, Centola 2015, Jackson & Lopez-Pintado 2013). In many cases, 

the rate of adoption is dependent on the information sharing patterns and localized 

interactions between individuals, groups or organisations in social systems (Valente 1996b). 

Proxies of communication behaviour that influence the spread of innovations are often 

described in terms of social participation, contact with change agents, cosmopoliteness, 

exposure to mass media, level of innovation knowledge, and degree of opinion leadership 

(Boahene et al 1999, Rogers 2010). Although these proxies can provide useful insights on the 

relationship between communication behaviour and adoption, recent research has stressed the 

important role of explicitly considering social networks in the diffusion process. 

Theoretically, social networks6 captures the notion that individuals are embedded within a 

larger context of relational ties (Borgatti et al 2009). These networks are often represented by 

links within or between interacting individuals or groups where ties provides the means by 

which new information, ideas, and practises can be channelled (Warriner & Moul 1992). 

Thus, whether and when an individual adopts an innovation is often associated with their 

                                                             
6 A major contribution to diffusion research has been the categorization of adopters based on network thresholds 
in the manner described for time of adoption (Rogers 1995, Valente 1996a). The network threshold distribution 
partition adopter categories such that early adopters are individuals with very low personal network thresholds, 
i.e., greater than one standard deviation less than the average threshold, whereas later adopters are those with 
very high network thresholds, i.e., one standard deviation greater than average (Valente 1996a). 
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individual social network or the proportion of adopters they‘re exposed to (Dearing & Cox 

2018, Valente 1996c). 

Innovation adoption consequences 

Although personality traits, socioeconomic status, and communication channels can predict 

adoption rates, some studies have demonstrated that changes that occur to an individual as a 

result of adopting innovations could be the ultimate arbiter in determining whether or not 

people maintain innovations over time (Foxon & Pearson 2008, Loewe & Dominiquini 

2006). In diffusion research, changes that occur to an individual or to a social system as a 

result of adoption or rejection of an innovation are known as ―innovation adoption 

consequences‖ (Rogers 1995, pp 440). Although fundamentally important, the consequences 

of innovation adoption have received limited attention by diffusion researchers and by change 

agents (Rogers 1995). However, recent additions to the diffusion of innovations theory stress 

the need to analyse consequences of innovation adoption (Rogers 2010). This is necessitated 

by the fact that innovations are highly diverse, adoption rates are highly differential, and 

innovation adoption consequences cannot be assumed a priori (Rogers 1995). 

Existing literature that investigates consequences of innovation adoption show that both 

positive and negative outcomes are possible when people adopt innovations (Brewer et al 

2006, Ngoc 2018). In an effort to improve understanding of adoption consequences, it is 

highly recommended that a long range research approach is needed in which consequences of 

innovation adoption are analysed as they unfold over time (Rogers 1995). Given that 

innovation adoption consequences are not unidirectional, scholars initially classified them in 

a taxonomy as anticipated or unanticipated; desirable or undesirable; direct or indirect 

(Rogers 1995). However, adjustments to the diffusion of innovations theory have narrowed 

down the list of categories into two, i.e., public vs. private goods (Rogers 2010). Private 

goods are benefits associated with one party and not available for others whereas public 
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goods are benefits associated with the entire social system (Wejnert 2002); and 2) benefits vs. 

costs (Rogers 2010). By analysing both private and public consequences, this all-

encompassing simplified approach encapsulates consequences at the individual and 

community scale. 

Conservation diffusion research 

Scientists have begun to explore adoption and diffusion of conservation-related interventions 

(Fuglie & Kascak 2001, Mascia & Mills 2018). A voluminous research literature has 

accumulated in agricultural systems about variables related to adoption of conservation 

interventions such as soil tillage practises, sloping agricultural land technologies, integrated 

pest management technologies, organic farming, among others (Amsalu & De Graaff 2007, 

Bultena & Hoiberg 1983, Feder et al 1985). An increasing focus is being directed to the 

factors that promote or constrain adoption.  

A series of case studies integrate personality traits such as agency, rationality, risk, in 

conservation diffusion research (Bélanger & Carter 2008, Horst et al 2007). In some cases, 

personal attributes have been shown to outweigh sector specific issues and priorities in the 

innovation adoption processes. Factors such as risk and risk aversion have been related to the 

rate of adoption of modern conservation technologies by farmers in different regions (Feder 

1980). For example, risk aversion can be a key constraint to the rapid adoption of agricultural 

land conservation technologies (Fisher et al 2018, Guerin & Guerin 1994, Knowler & 

Bradshaw 2007). A study by Fernandez-Cornejo et al (1996) showed that farmers that were 

willing to take risks were more likely to be early adopters of integrated pest management 

technologies among vegetable growers in Florida. However, other research has argued that 

because personal attributes revolve around perceptions, a positive perception based on a 

given personality attribute may not always translate to a positive intent to adopt novel 

conservation interventions (Adesina & Zinnah 1993, Greiner & Gregg 2011). Thus, there is a 
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need to examine the impact of personal attributes in relation to other socioeconomic and 

demographic factors that may exist in the social system (Feder 1980). 

Much of the conservation adoption literature, particularly in agricultural systems has focused 

on socioeconomic and demographic factors associated with farms and farmers, such as farm 

size, access to credit, income, education, age, access to extension services, and ownership of 

productive assets (Brush et al 1992, Bultena & Hoiberg 1983, Greiner & Gregg 2011, Jung & 

Kim 2017). For example, several studies have found that education has a positive impact on 

adoption of soil conservation technologies and other natural resource management schemes 

(D‘Souza & Mishra 2018, Feder et al 1985, Mwangi & Kariuki 2015), whereas farm size can 

have a positive influence on the adoption of a number of conservation farming technologies 

(Knowler & Bradshaw 2007, Mercer 2004). Younger farmers have been found to be educated 

and more involved with more innovative farming (Feder & Umali 1993), while older farmers 

with shorter planning horizons tend to be less receptive to soil conservation practices (Jung & 

Kim 2017, Norris & Batie 1987). Income can have a positive influence on adoption of 

erosion control practices (Feder & Umali 1993, Jung & Kim 2017). It is generally held that 

renters of productive assets such as farmland are less likely to invest in conservation 

practices; although, other studies found that renters can rapidly embrace the use conservation 

tillage than full owners (Lee & Stewart 1983).  

Depending on stage of the diffusion process, some socioeconomic factors that influence 

adoption can be more or less important (Barham et al 2004, Feder & Umali 1993, Läpple & 

Van Rensburg 2011). For example, a study that examined the determinants of adoption of 

sloping agricultural land technologies in the Philippines show that farm size, ownership of 

productive assets, education, access to extension services, and access to credit were major 

determinants of the speed of adoption by various users during the early phases of adoption 

(Feder et al 1985). However, subsequent surveys at a phase when the technology had reached 
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the final stage of the diffusion process indicated that the impact of many of these factors to be 

no longer significant (Feder & Umali 1993). Precisely, factors such as ownership of 

productive assets, age, education, and farm size were not significant determinants of adoption 

during the later stages of the diffusion process (David & Otsuka 1990, Ramasamy et al 1992, 

Upadhyaya et al 1993).  

In terms of communication behaviour, adopters of conservation practises have been 

characterized to have strong social ties with other adopters (Pannell et al 2006a, Tenge et al 

2004). This reflects a form of social influence among potential adopters (Valente 1996b). 

Others studies that integrate proxies of communication behaviour in adoption and diffusion 

processes have shown that adopters of soil and water conservation measures tend to be more 

integrated in the social community and have intensive contact with information and extension 

services (Amsalu & De Graaff 2007, De Graaff et al 2008). 

Key knowledge gaps in conservation diffusion research 

The topic of conservation diffusion is gaining momentum in the literature; however, most 

studies do not follow the classical diffusion models developed over the years in diffusion 

research (Rogers 2010, Valente 1996c). Foremost, most conservation diffusion studies are 

mainly based on a comparison between adopters and non-adopters (Bultena & Hoiberg 1983, 

Burton et al 2003, Dadi et al 2004, Sheikh et al 2003). Yet, classical diffusion studies contend 

that, at a minimum, there should be four important categories of adoption behaviour: early 

adopters, late adopters, non-adopters, and one that is often overlooked dis-adopters (those 

that adopt but later quit) (Barham et al 2004, D‘Souza & Mishra 2018). Distinction between 

groups is important because early and late adopters respond differently to economic and non-

economic factors when they consider whether or not to adopt novel interventions (Rogers 

2010). 
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Early adopters are key to any diffusion process because they often provide initial practical 

evidence that an intervention actually works – a critical element in any diffusion process 

(Rogers 2003). Moreover, early adopters provide the critical mass7 needed to accelerate any 

diffusion process (Valente 1996b). The importance of late adopters is that they provide wider 

legitimacy, credibility, saliency, and confirmation to others that the intervention is beneficial 

over time (Rogers 2010). Depending on the reasons associated with dis-adoption, this 

situation can potentially undermine conservation diffusion processes over time (Barham et al 

2004, Guerin & Guerin 1994). It is often argued that dis-adopters can potentially slow down 

or even reverse diffusion processes depending on their position and capacity in the social 

system (D‘Souza & Mishra 2018, Dinar & Yaron 2002). Although differences among the 

four groups are well acknowledged in the extant diffusion literature (Dearing & Cox 2018, 

Fuglie & Kascak 2001, Rogers 2010, Ryan & Gross 1943), very few empirical studies have 

explored factors that influence dis-adoption or the differences in the factors that affect dis-

adoption, adoption, and non-adoption of conservation interventions over time. 

Another grey area in conservation diffusion literature is the lack of a specific framework to 

identify intermediaries to facilitate conservation transfer through target populations. Like 

many innovations, conservation strategies often originate from external actors (Arias 2015). 

Given the increase in scope and magnitude of environmental issues, matched by equally 

complex social settings, conservation interventions may not always be framed in a format that 

can be easily understood by target populations (Hughes et al 2017, Kirchhoff et al 2013). In 

such cases, intermediaries are often needed to bridge these information and knowledge gaps 

between higher-level institutional actors and local target communities (Berkes 2009). Indeed, 

barriers of knowledge exchange between technical actors with global perspectives on 

                                                             
7 Critical mass refers to a system level measure of the minimum number of participants needed to sustain a 
diffusion process (Valente 1996a).   
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resource conservation and those that operate within localized arrangements have been cited as 

major constraints of conservation diffusion (Nguyen et al 2017). 

To date, natural resource managers and conservation practitioners have consistently relied on 

local community leaders to diffuse and implement conservation actions at the community 

level (Armitage et al 2008, McClanahan & Cinner 2008, Olsson et al 2004). Such approaches 

have wide appeal to managers because formal leaders are easily identified and leadership 

characteristics are known to be important for the initiation and maintenance of many 

environmental conservation and management initiatives (Olsson et al 2004, Ostrom 2007b, 

Pretty 2003). Yet while these leaders may truly be better positioned to implement certain 

conservation and management actions, they are not always the most effective at diffusing and 

spearheading all types of conservation initiatives (Barnes-Mauthe et al 2015), and in some 

cases may struggle to deliver greater than localized conservation outcomes (Berkes 2004, 

Pajaro et al 2010). Due to a lack of understanding of the complexity, sociocultural diversity 

and dynamic nature of diverse social structures embedded within social-ecological systems, 

even relatively simple, low cost conservation initiatives can suffer from poor rates of success 

(Barnes-Mauthe et al 2015, Mertens et al 2005). At worst, they can result in conflicts (Ban et 

al 2013, Cohen et al 2012, Cumming et al 2006). Therefore, there is a need to develop criteria 

for stakeholder identification that is context specific that will enable conservation 

practitioners better implement conservation. 

Conservation tends to alter existing socio-economic arrangements with some degree of 

uncertainty (Mascia et al 2010, Milner‐Gulland et al 2014). However, many conservation 

programs do not analyse the consequential effects of conservation adoption or non-adoption 

on people. Arguments for this narrative have pointed to either sponsors of conservation 

research who overemphasize adoption per se, or the inappropriateness of survey methods to 

investigate consequences (Dudley & Stolton 2010, Gurney et al 2015). In other cases, 
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conservation practitioners may simply assume that conservation produces desirable outcomes 

for those who adopt (Cooke et al 2017, Cumming 2018, Lundquist & Granek 2005). Yet, 

existing literature that investigate relationships between people and nature, particularly on the 

implications of natural resource management strategies show that conservation can have both 

positive and/or negative outcomes on the environment and associated human communities 

(Ferraro & Hanauer 2014, Gurney et al 2014, Scherr 2000). Indeed, understanding the crucial 

linkage between adoption or non-adoption of conservation and changes to both people‘s 

wellbeing and the environment can help in formulating environmental policies that contribute 

to sustainability (Coulthard 2012, Weeratunge et al 2014).  

 
Research gaps  

Against this background, four broad knowledge gaps emerge: (i) unclear understanding of 

factors that influence adoption and diffusion of conservation interventions over time, (2) lack 

of a specific criteria to identify intermediaries to facilitate conservation transfer through 

target populations, (3) poor understanding of the consequences (i.e. impacts) of conservation 

diffusion on people, (4) little understanding of the consequences (i.e. impacts) of 

conservation diffusion on environment.  

 
Gap 1: Limited studies have examined the effect of social networks on conservation diffusion 

process 

To understand what causes or constrains conservation diffusion, several studies have 

examined the influence of various determinants on adoption decisions.  However, a vast 

amount of this literature is mainly based on the influence of personality traits and 

socioeconomic status on conservation adoption decisions (Amsalu & De Graaff 2007, 

Bultena & Hoiberg 1983, Padgett 2011, Tiwari et al 2008). Chapter 2 has an extended review 

of personality and socioeconomic characteristics that have been empirically tested to 
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influence conservation adoption behaviour in natural resource management context. 

Conversely, there remains very limited work emphasizing the effect of social networks on 

conservation diffusion. Although the word ‗social network‘ is extensively used in the 

development economics literature (e.g., Barr & Fafchamps 2010, Ductor et al 2014, 

Fafchamps & Gubert 2007, Udry & Conley 2004), none of these studies empirically 

measured social networks in a conventional way that would allow the use of standard social 

network analysis tools. The vast majority of these studies tend to focus on kinship ties rather 

than the traditional ego networks where a sample of participants report their personal egonets 

and their associated individual attributes (Robins 2015).  

 
Although a few studies have provided some considerations to ways of up scaling 

conservation based on network processes (Matous & Todo 2015, Pietri et al 2009), no 

specifics as to the structure and function of the social network are given. Only a few studies 

provide the general rationale with regards to the role of the social networks in conservation 

diffusion process by defining key network structures that can be harnessed to facilitate 

diffusion (Bodin & Crona 2009, Cohen et al 2012, Ramirez-Sanchez 2011a). However, these 

studies are mostly limited to diffusion of conservation information, yet conservation 

interventions can be incredibly diverse ranging from information-based conservation 

strategies to complex initiatives that seek behaviour change (Genius et al 2006, Sanchirico & 

Emerson 2002). One of the few attempts to empirically test the influence of networks on 

adoption of conservation is a study by Warriner and Moul, (1992). The authors explore the 

influence of personal communication networks on adoption of conservation tillage practises 

among crop farmers in Ontario, Canada. Although their results revealed a positive influence 

of network connectedness on adoption, their analysis relied only on one network attribute 

based on number of direct ties (i.e., actor direct connectedness) rather than structural 

characteristics of the network itself. Furthermore, their analysis was cross-sectional and based 
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on regression frameworks that are often considered inappropriate for modelling network data 

(Robins 2015).  

 
To date, a critical research gap is that few empirical studies have explored the role of social 

networks on the adoption and diffusion of conservation interventions over time. Here, I 

address this gap by modelling conservation adoption patterns over time based on individuals‘ 

social networks while taking account of personality traits and socioeconomic status attributes. 

Unlike previous research, here I simultaneously test the effect of key socioeconomic factors 

that have been empirically shown to influence adoption behaviour (see chapter 2), and 

network effects that have been widely used to model behaviour in social networks (Lusher et 

al 2013, Wang et al 2014). By utilizing the social network approach, this thesis moves 

beyond the conventional analysis of adoption behaviour to a more refined and robust 

approach that specifies further the relational basis of adoption. To capture differences among 

all possible adopter categories in any diffusion process, this thesis presents a robust 

comparison based on early, late, non-adopters, and dis-adopters.  

 
Gap 2: No specific criteria exist for selecting key stakeholders to facilitate more widespread 

adoption and diffusion of conservation interventions 

In many cases, conservation agendas tend to originate from top experts such as government 

officials, state, regional authorities, and technical experts (Arias 2015). Once firmly 

established, implementation of conservation is then directed to target populations. Owing to 

this approach, implementation of conservation tends to follow the top down centralized 

diffusion system8 (Rogers 2004). As such, proper communication channels are clearly needed 

to facilitate conservation transfer. This step requires proper identification of intermediaries 

                                                             
8 Centralized diffusion systems are based on a more linear, one-way model of communication, i.e., innovations 
originate from a centralized source such as government administrators and technical subject matter experts and 
then diffuse to users (Rogers 1995). 
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who can serve varied functions between authorities, experts, and local resource users 

(Borgatti 2006). The functions might include linking potential adopters with experts, and 

facilitating the flow of ideas and practises between developers of the conservation agenda and 

local users (Prell et al 2009, Reed et al 2009).  

 
One of the major challenges in conservation diffusion is the identification of the right 

stakeholders to engage with to facilitate adoption and diffusion of conservation interventions 

through target populations. Moreover, conservation diffusion goals can be incredibly diverse. 

For example, spreading of conservation information quickly is often necessary, especially 

when rapid awareness creation is needed to protect and safeguard certain species or habitats 

under emergency threat (Haddow et al 2013, Kapucu 2008). Where social systems are 

comprised of disjointed social structures, there is often a need to bridge conservation ideas 

and practises amongst disconnected groups (Barnes et al 2016). In cases where conservation 

initiatives specifically seek to implement behaviour change among various stakeholders, 

multiple direct contacts and persistence would be needed to influence adoption (Christie 

2000). Spreading conservation information widely and facilitating widespread adoption of 

more complex conservation initiatives over a longer time period is often necessary to achieve 

global sustainability outcomes (Mace 2014, Pannell et al 2006b).  

 
To successfully achieve the distinct diffusion related conservation objectives, different types 

of stakeholders may be more important to involve depending on the specific conservation 

diffusion goal. However, despite the diversity of goals associated with conservation 

initiatives, no criteria exist for selecting key stakeholders ideally placed to successfully 

implement the distinct diffusion-related conservation objectives. This lack of specific 

guidelines for selecting individuals most ideally placed to facilitate conservation diffusion is 

a critical research gap in conservation diffusion processes addressed in this thesis. This gap is 
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addressed by presenting specific criteria for identifying stakeholders that are optimally 

positioned to diffuse conservation information, knowledge, and practices that can be 

fundamental to successful conservation efforts in natural resource management systems 

(Armitage et al 2008, Ostrom 2007b).  

 
Gap 3: Little understanding of the impact of conservation diffusion on people 

Beyond ecosystems, there has been numerous calls for putting associated human 

communities at the centre of impact evaluation studies in the nature conservation context 

(Gough & McGregor 2007, MEA 2005). These calls are underscored by empirical evidence 

that shows severe negative impacts of conservation interventions on some domains of 

people‘s wellbeing (Beauchamp et al 2018b, MEA 2005). The inclusion of wellbeing in the 

conservation discourse is further driven by the notion that without meeting the needs and 

gaining the support of the people that conservation interventions affect, those interventions 

will inevitably fail (de Lange et al 2016). Indeed, there is an increased consensus among 

international policy circles that conservation should at very least do no harm to the local 

populations affected by interventions (Biedenweg & Gross-Camp 2018). 

 
Apart from the paucity of studies that analyse the effects of conservation on people, other 

concerns are raised on the indicators used to capture people‘s wellbeing. Existing impact 

evaluation studies in the natural resource management context are predominantly based on 

monetary or material measures (Charles et al 2015, Cochrane 2000). Measures that are often 

considered narrow, incomplete, and misleading because they do not reflect anything more 

than just the material dimension of peoples wellbeing (Weeratunge et al 2014). Yet, people‘s 

perceptions about quality of life and pursuit of happiness also matter to wellbeing (Abunge et 

al 2013, Ban et al 2013, Coulthard et al 2011).  For example, investigations that pay deeper 

attention to the impacts of conservation such as marine protected areas (MPAs) on people 
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reveal that conservation can result in substantial alterations to people‘s way of life and 

general wellbeing (Ban et al 2013, Coulthard et al 2014, Pullin et al 2013). As a result, 

several reviews on environmental impact assessment research have proposed other multi-

dimensional wellbeing concepts and indicators that take into account social and subjective 

dimensions of people‘s wellbeing (Camfield et al 2009b, McGregor et al 2009).  

 
Despite the diversity of opinions on how wellbeing is conceptualized, consensus is forming 

that wellbeing is multidimensional, and composed of both objective and subjective 

components (Gough & McGregor 2007). These components are guided through three key 

dimensions, i.e., material, relational, and subjective dimensions (Gough & McGregor 2007, 

Narayan-Parker 2000). Material wellbeing refers to the material conditions of life (Gough & 

McGregor 2007). These conditions subsumes finance or income, quality of the living 

environment, and possessions (White 2010). Perceptions about the broader notion of quality 

of life as well as meanings and experiences related to competence, autonomy, and identity 

falls within the dimensions of subjective wellbeing (McGregor 2007). Taking a broad view 

on interconnectedness, social ties and relationships that link people together are considered 

key determinants of relational wellbeing (Camfield et al 2009a). Considering and 

understanding impacts of conservation interventions on material, relational, and subjective 

dimensions of wellbeing matters for a number of reasons. Firstly, conservation project 

implementers are morally responsible for ensuring that conservation interventions do not 

undermine the economic progress of local communities (Hutton et al 2005). Secondly, 

negative impacts on subjective wellbeing can potentially erode local support and therefore 

jeopardize environmental outcomes (Woodhouse et al 2015). Thirdly, the interplay between 

people and their relational circumstances can explicitly determine their scope for personal 

and collective action to safeguard a common resource (Charles et al 2012). In sum, the 

wellbeing indicators not only provides a more comprehensive way to look at conservation 
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outcomes on people, but they represent an analytical lens which can help draw policy 

attention to the nonmaterial outcomes of conservation. This effectively adds value to our 

understanding of social and subjective implications of conservation in social-ecological 

systems (Coulthard 2012, Weeratunge et al 2014). 

 
Despite the emerging recognition on the robustness of the alternative indicators in impact 

assessments research in natural resource management context, no impact evaluation study has 

compared multi-dimensional wellbeing concepts between adopters and non-adopters of 

conservation initiatives. The lack of robust investigations of the impacts of conservation on 

people is a considerable knowledge gap addressed in this thesis. This thesis addresses this 

key research gap by applying multi-dimensional approaches to understand the objective and 

subjective impacts of conservation. Precisely, this thesis emphasizes key components of 

material, relational, and subjective dimensions of wellbeing, each of which being relevant to 

human wellbeing at the individual scale (Coulthard et al 2011, McGregor & Sumner 2010). 

Understanding the crucial linkage between adoption or non-adoption of conservation and 

changes in people can help in formulating environmental policies that contribute to human 

wellbeing (Coulthard 2012, Weeratunge et al 2014).  

 
Gap 4: Linkages between use of conservation-friendly fishing technologies and assemblage 

functioning is still unclear 

Linkages between conservation and the environment has always been an important 

component of natural resource management (Pitcher 2001, Pitcher & Pauly 1998).  

Understanding the ecosystem impacts of conservation therefore remains critical particularly 

in the context of anticipated change (Hughes et al 2017). Studies that analyse impacts of 

conservation on the environment affirm that certain interventions can be either beneficial 

and/or detrimental to the environment (Eklöf et al 2009, Hannah & Jones 2007, Weeks et al 
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2010). For example, despite the overwhelming publicity about the effectiveness of marine 

protected areas (MPAs) in biodiversity protection, a series of studies have demonstrated some 

degree of MPAs‘ ineffectiveness as solutions to biodiversity erosion in the marine 

environment (Benjamin 2003, Eklöf et al 2009, Mascia et al 2010, Pauly et al 2002, Weeks et 

al 2010). Similarly, fisheries conservation interventions such as gear restrictions, bycatch 

reduction devices, mesh size regulations are often enforced to protect certain sizes and 

species of fish (McClanahan 2010). However, empirical evidence now exists that shows a 

vast majority of gear-based management interventions tend to have little effect on 

conservation gains such as increasing fish biomass compared to other forms of management 

e.g., marine reserves (Cinner et al 2016, Cinner et al 2018, MacNeil et al 2015).  

 
In marine ecosystems, fishing remains one of the major drivers of change worldwide (Worm 

et al 2006). A primary focus of the global marine conservation agenda has been gear or 

technology-based interventions intended to reduce negative spillovers or environmental 

externalities associated with resource extraction (McClanahan 2010). One such fisheries 

gear-based conservation intervention, i.e. the escape slot trap, was introduced in Africa and 

globally in order to catch species of fish at sizes that do not undermine sustainability (Gomes 

et al 2014, Johnson 2010). This is a modified basket trap retrofitted with escape gaps that 

allows juveniles and narrow-bodied, low value fish species (i.e. bycatch) to exit, while larger, 

wider-bodied target species are retained (Mbaru & McClanahan 2013). 

Although escape slots can be effective in reducing catch of juveniles and narrow-bodied 

species (i.e. bycatch) (Gomes et al 2014, Johnson 2010, Mbaru & McClanahan 2013), no 

study has examined the functional diversity that these traps may remove from the ecosystem. 

Yet, the growing interest in an ecosystem-based approach has stressed maintaining and 

sustaining ecological functions (Sinclair et al 2002, Tillin et al 2006). Indeed, examining the 
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relationship between fishing and ecological function is key to understanding the effect of 

fishing on marine ecosystems (Koutsidi et al 2016, Micheli et al 2014). This thesis therefore 

integrates emerging frameworks in functional ecology (Mouillot et al 2014) to investigate the 

functions that escape slot traps may remove from the ecosystem. To determine the potential 

for escape slot traps to have an ecological impact, I quantify overlaps in catch composition 

between escape slot traps and other gear types that operate concurrently in the same reefs. 

Study objectives and thesis structure  

The overall objectives of this study are to examine how people adopt conservation 

innovations, and determine key social and environmental impacts of doing so. These 

objectives will be addressed by answering the following research questions:  

1. What factors determine the uptake (adoption) and spread (diffusion) of conservation 

interventions over time? (Chapter 3) 

2. Who are the key stakeholders to engage with when rolling out conservation 

programs? (Chapter 4) 

3. How does adoption of conservation initiatives affect people‘s wellbeing? (Chapter 5) 

4. How does adoption of conservation initiatives affect the ecosystem? (Chapter 6)  
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Figure 2. Thesis structure, research gaps addressed and theoretical frameworks of 
thesis chapters. 

 
Thesis chapters 

Chapter 3: What factors determine the uptake (adoption) and spread (diffusion) of 

conservation initiatives over time? In this chapter, I integrate decades of social science theory 

on diffusion of innovation with novel breakthroughs in social network science to offer a 

clearer understanding of the factors that shape adoption behaviour patterns of conservation 

initiatives over time.  

Chapter 4: Who are the key stakeholders to engage with when rolling out conservation 

programs? Here, I draw on social network theory and methods to develop specific criteria for 

selecting key stakeholders to facilitate diffusion of conservation information, as well complex 

knowledge or complex conservation initiatives that specifically target behaviour change.  

 
Chapter 5: How does adoption of conservation initiatives affect people‘s wellbeing? To 

evaluate the impact of conservation initiatives on people overtime, I draw insights from the 

wellbeing framework (material, subjective, relational). The wellbeing framework is explicitly 

viewed as a robust tool to bridge the gap between natural resource sustainability and 

Chapter 3. Examining the factors that
determine the adoption and spread of
conservation initiatives overtime

Chapter 6. Assessing the impacts of
conservation diffusion on the ecosystem

Chapter 5. Evaluating the effect of
conservation diffusion on associated human
communities over time

Chapter 4. Identifying stakeholders to engage
with when rolling out conservation programs

Chapter 1. General introduction

Chapter 2. Study sites and methods

Chapter 7. General discussion

Research gap 1. Limited studies have examined the
effect of social networks on conservation diffusion
process

Research gap 2. No specific criteria exist for selecting
key stakeholders to facilitate more widespread adoption
and diffusion of conservation interventions

Research gap 3. Little understanding of the impact of
conservation diffusion on people

Research gap 4. Linkages between use of conservation-
friendly fishing technologies and assemblage functioning
is still unclear

Theoretical framework.

1. Diffusion of Innovations
2. Network science

Theoretical framework.

2. Network science

Theoretical framework.

3. Impact evaluation

Ecological framework.

4. Functional Ecology



40 
 

socioeconomic development, a fundamental aspect in policy processes (Coulthard et al 2011). 

Indeed, policies for ecological sustainability of natural resources are more likely to succeed 

when they draw on insights from a wellbeing perspective (Ban et al 2013). 

 
Chapter 6: How does adoption of conservation initiatives affect the ecosystem? Here, I 

employ a trait-based approach to determine whether marine conservation technologies 

(specifically gear-based management) are associated with certain traits, potentially affecting 

assemblage functioning (Mouillot et al 2014). This analysis attempts to connect traits to 

fishing gears in multi-species coral reef fisheries and provide insights on how fishing affect 

assemblage functioning in tropical coral reef fisheries. The linkages between use of specific 

fishing gears and the targeting of ecosystem functions are particularly important for the many 

multi-species fisheries in vulnerable ecosystems.  
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Chapter 2: Study sites and methods 

Contextual background of the Kenyan marine fishery 

The Kenyan coastal fishery is predominantly small-scale and artisanal (Daw et al 2009). 

Local fishers operate within a narrow continental shelf between 2.5 to 3.0 nautical miles 

(McClanahan & Mangi 2004). Despite operating within a small strip, the fishery supports 

more than 23,000 fishers catching over 16,000 tonnes of fish annually (McClanahan & Mangi 

2004). The subsector also provides monetary income and animal protein to about 70% of the 

coastal communities (Glaesel 1997, Tuda et al 2008). Over the years, the local fishery has 

however grappled with a number of management challenges. Some of the major problems 

facing the fishery include the rise in the number of small-scale fishers (Ochiewo 2004), 

excessive and destructive fishing (McClanahan et al 2008). 

 
To address these challenges, Kenya has prioritized a number of measures to conserve and 

manage her natural resources; these include the establishment of marine protected areas 

(MPAs) and beach management units (BMUs) to delegate responsibility to stakeholders to 

administer their natural resources at the local level (McClanahan & Mangi 2004). More 

recently, Kenya has also implemented gear-based management approaches by eliminating 

beach seines responsible for catching very small fish (McClanahan 2010), while promoting 

gears that catch most of the available species at sizes that do not undermine sustainability 

(McClanahan & Mangi 2004), e.g. the escape slot trap (Condy et al 2014). These modified 

traps are expected to increase size selectivity by reducing the catch of juveniles and narrow-

bodied species without compromising the fisherman‘s income (Mbaru & McClanahan 2013). 

Periodic patrols are also maintained to check illegal, unreported and unregulated fishing 

(Athawale 2012). 
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Gear utilization 

Eleven different gear types are commonly used in this coastal fishery both on the reef and 

even beyond the reef (Mangi & Roberts 2006, Mbaru 2012). These include basket traps, 

gillnets, spearguns, hook and lines, beach seines, longlines, trolling, ringnets, castnets, fence 

traps and scoop nets. Basket traps are the most dominant accounting for about 40% of the 

total fishing effort (Mbaru & McClanahan 2013). These traps are popular because they retain 

most fish that enter (Munro 1983). By retaining a vast majority of the fish caught, basket trap 

fishing often results in a catch with a high species composition (Johnson 2010; Fig. 3a). Only 

a small proportion of fishers use gears such as hook and lines that target pelagic stocks 

(Mbaru 2012). The lack of adequate equipment such as boats and engines has limited the use 

of offshore fishing nets such as ring nets and large mesh sized gillnets (Mbaru 2012). Many 

of the gear types used within the reef (e.g., basket trap, hook and line, speargun, gillnet, 

beach seine) are commonly used in small-scale coral reef fisheries around the world (Cinner 

et al 2009b).  

Institutional management framework  

Various stakeholders are involved in the management of the Kenya marine fishery 

(McClanahan et al 2011). The Fisheries Act (Cap 378 of the Laws of Kenya) gives the State 

Department of Fisheries (SDF) mandate to explore, exploit, utilize, manage, develop, and 

conserve fishery resources. Research on the fisheries resources is a function of the Kenya 

Marine and Fisheries Research Institute (KMFRI). The Wildlife (Conservation) Act (Cap 

376) recognizes Kenya Wildlife Service (KWS) as the agency responsible for conservation 

and management of Marine Protected Areas (MPAs). Apart from the state owned agencies, 

other non-governmental organizations (NGOs) are also licensed to conduct marine research 

along the Kenyan coast. 
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The Kenyan coastline also falls under the jurisdiction of various local county governments 

(Gomes et al 2014). Matters of environmental sustainability, human development capacity 

and empowerment, marketing of fish and other marine related products are addressed by the 

local county authorities (Gomes et al 2014). Since 2006, the SDF introduced community 

based management (co-management) where fishers were organized into beach management 

units (BMUs). This decentralized approach allowed for multi-stakeholder co-management of 

natural resources with the SDF in specific geographic locations (typically including one or 

more fish landing sites) at the local level (Cinner et al 2009c). Within their area of 

jurisdiction, BMUs are required to develop their own bylaws, e.g., they can restrict space, 

time, gear, species, and life history stages of fish being caught, or establish a no take fishery 

closure (Cinner et al 2009c). 

 
The escape slot trap  

Fish traps capture a significant portion of the reef fish both in Africa and globally (Johnson 

2010, Mbaru & McClanahan 2013, Munro 1983). High-value fish such as rabbitfishes, 

groupers (siganidae, serranidae) and snappers (lutjanidae) are typical targets of trap fishers 

(Mbaru & McClanahan 2013). However, traps also tend to harvest a vast majority of non-

target species such as butterfly fishes (chaetodontidae), box fishes (ostraciidae), including 

high bycatch of key herbivores parrotfish (scaridae) and surgeonfish (Acanthuridae) (Johnson 

2010). Consequently, many small-scale coastal fisheries can be stripped of their resources if 

the trap fishery remains unregulated.  

Over the years, management of trap fisheries had focused almost exclusively on the use of 

larger mesh sizes to reduce the catch of juveniles (Laarman & Ryckman 1982, Mahon & 

Hunte 2001, Olsen et al 1978). However, given the diverse morphologies of fish caught by 

traps, selecting one mesh size that optimizes the yield of all exploited species has been a 



44 
 

major challenge (Laarman & Ryckman 1982, Mahon & Hunte 2001, Olsen et al 1978). For 

example, aside from releasing low-value and narrow-bodied fish (e.g., butterflyfish), large 

mesh would also permit escape of high-value target species (e.g., groupers) (Bohnsack et al 

1989). Indeed, (Johnson 2010) showed that hexagonal mesh with 5 x 8 cm aperture reduced 

the mean number of fish caught and the mean catch value compared to a normal basket trap. 

An alternative and more effective solution to the problem of bycatch in fish traps has been the 

introduction of escape slots (Fig. 3b).  

Initial experiments with escape slots were carried out in the Antillean crab fisheries to allow 

mainly non-targeted finfish to escape through the slots in lobster traps (Munro 1974). Later, 

the same technology was introduced in the Caribbean coral reef trap fin fisheries to allow 

juveniles and narrow-bodied, low-value species exit (Gobert 1994, Johnson 2010, Mahon & 

Hunte 2001). Currently, several African coastal states including Kenya, Tanzania, and 

Mozambique have begun to adopt these modified traps in an effort to protect certain sizes and 

species of fish in the dominant basket trap fishery (McClanahan & Kosgei 2018). 

Escape slots allows juveniles, low value and narrow-bodied species to exit, while retaining 

high value target species (Fig. 3b). Reducing the catch of juveniles (i.e., reproductively 

immature fish) can increase long-term sustainability of the fishery by allowing fish to grow 

and reproduce before they are caught (Thomsen et al 2011). Many narrow-bodied, 

ornamental species are rarely targeted by fishers because they are undesirable as food 

(Johnson 2010). Importantly, ornamental species can promote ecotourism in these villages 

and fishing grounds (Parsons & Thur 2008, Suuronen et al 2012). By retaining high value 

target species (i.e., groupers, snappers, emperors, rabbitfish), profitability is maintained 

(Gomes et al 2014). The inclusion of escape slots can potentially reduce catch of key 

herbivores (e.g., parrotfish and surgeonfish) who help maintain the coral dominance on reefs 

by up to 58% (Mbaru & McClanahan 2013). This means that using escape slot traps can 
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sustain the population of critical algal grazers that suppress the dominance of algae in coral 

reef ecosystems (Hughes et al 2007). Thus, despite the diversity of fish caught with traps, 

escape slot can provide a long-term solution to the adverse ecological impacts associated with 

trap fishing. No specialized training is required on the part of basket trap fishers in fabricating 

and deployment during transition from using basket traps to escape slot traps. This therefore 

makes the technology more adaptable and inexpensive (Mbaru & McClanahan 2013).   

 

 

Figure 3. A heuristic representation of the conservation intervention, i.e., escape slot 
fishing trap. Diagrams illustrate structural and operational differences between the 
unmodified basket trap and escape slot trap. 

 

a. Basket trap

All fish retained Small & non-target fish (i.e., bycatch) released

b. Escape slot trap
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Research setting, survey design, and data collection  

This research was conducted in six major fishing landing sites along the Kenyan coast (Fig. 

4). I focused my primary data collection on study sites where traps represented the dominant 

fishing gear in use. Within the six fish landing sites surveyed, two were controls (i.e., where 

the conservation intervention was never introduced). In chapters 3, 4, and 5, I will use 

different combinations of data collected to address the relevant research objective, which will 

be specifically detailed in the methods sections of each chapter. The target population was 

therefore defined as active trap fishers (preferable fishing captains) because existing research 

in the region indicates that captains bear ultimate responsibility for all actions and decisions 

about fishing (McClanahan et al 2012). A total of 265 trap fishers (hereinafter ‗respondents‘) 

were interviewed, representing over 95% of the target population at each of the six villages. 

Precisely, I surveyed 34 respondents in site A, 59 in site B, 49 in site C, 36 in site D, 45 in 

site E, and 42 in site F. In the experimental sites, a fisher is considered an adopter if s/he 

fabricates an escape slot trap or modifies at least one existing trap by introducing the escape 

slots. Fishers who never used escape slot traps during the survey period were classified as 

non-adopters. Dis-adopters are fishers that adopted the intervention, but later abandoned it. A 

total of 62 fishers were given the new gear to conduct experimental fishing. However, for the 

purposes of this study, they were not considered adopters unless they modified their own 

traps.  

Panel data study 

The study was coupled with the conservation intervention to track the diffusion process 

through time. This research therefore makes use of panel data comprising responses to the 

same questions by the same participants over three-time period. Panel data is considered gold 

standard in social science because the same individual is tracked overtime, which allows 

multiple sources of variance to be held constant (Bell & Jones 2015, Lohse et al 2000). 
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Figure 4.  Map showing study sites. Boundaries of Marine Protected Areas (MPAs) 
and marine reserves are shown as dashed lines. Site a and e are control sites where 
escape slot traps were not introduced. 

Control 

Control 
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Panel data is sometimes associated with attrition bias (loss of panel members overtime), panel 

selection bias (when people surveyed are different from the population), and conditioning 

effects. Conditioning effects happen when the process of conducting surveys affect its 

findings (Lohse et al 2000). For example, when people are asked regularly whether they 

intend to adopt a product may come to the conclusion that they should develop such 

innovation (Kinnear &Taylor 1996). Here, panel attrition was almost negligible because only 

a few fishers (15/265) were surveyed in one time period during the project implementation 

phase. I addressed panel selection bias by sampling over 95% of the target population at each 

of the six villages. A one year interval between surveys was considered wide enough to 

minimise any conditional effects. Precisely, I used panel data in two aspects of this thesis: 

first, to look at dynamic networks in chapter 3, and second, to look at whether individuals 

who adopted the escape slot trap had different wealth measures, subjective wellbeing 

outcomes, and levels of reciprocity from individuals who did not (chapter 5). 

 
Table 1. Thesis chapters, research objectives, and type of data used. 

 

Prior to the launch of the project, I conducted baseline surveys. Two follow-up surveys were 

conducted at an interval of one year each after the conservation program rolled out the 

innovation. Data was collected using questionnaires administered through face-to-face 

interviews conducted in Swahili. Chapter 6 differs from the other chapters in that it uses a 

dataset on coral reef fisheries landings from 25 sites across Kenya over a seven-year period 

Thesis chapter Research objective Panel data

Chapter 3 Determine the factors that influence uptake (adoption) and spread Used

(diffusion) of a conservation intervention over time.

Chapter 4 Identify key stakeholders to facilitate conservation transfer. Not used

Chapter 5 Investigate impacts of conservation diffusion on people‟s wellbeing. Used

Chapter 6 Examine impacts of conservation diffusion on the ecosystem. Not used
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(Table 1). The catch data include creel surveys conducted annually between 2010 and 2016. 

Of the 25 sites included in this chapter, four sites overlap with the other chapters (Fig. 5). 

 

 

Figure 5. Catch sampling sites for fish data used in chapter 6. 
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Review of predictor and control variables  

This review covers predictor variables used to address research objectives for chapter 3, 4, 

and 5 as well as control variables used in chapter 5. A review of empirical diffusion studies 

yielded a list of key socioeconomic factors that influence adoption behaviour and those that 

can be used to identify key stakeholders to facilitate innovation transfer (Chapter 3 & 4). 

Impact evaluation studies in social-ecological contexts provided a list of variables that are 

often accounted for when evaluating resource conservation and management interventions 

(Chapter 5).  I then illustrate how the variables selected were conceptualized in line with the 

conservation intervention and social-ecological setting studied here. Factors that were 

particularly relevant for the adoption of the conservation intervention were also included 

(Table 3).  

 
Predictor variables in diffusion research  

A critical focus of many diffusion studies is exploring why some people adopt and others do 

not. Studies that examine the influence of various determinants on adoption and diffusion 

processes have identified three key categories of adoptee traits that influence spread of 

innovations and speed of adoption: personality traits, socioeconomic status, and 

communication behaviour (Baerenklau & Knapp 2007, Greiner et al 2009). I therefore 

conducted a desktop review to identify factors that have been empirically shown to influence 

adoption behaviour and diffusion processes. A special consideration was given to studies that 

focus on uptake of environmental schemes. 

Personality traits: Many adoption studies often correlate personality characteristics such as 

risk orientation, rationality or agency, psychological strength, self-confidence, and others 

with innovation adoption behaviour (Goldsmith 1984, Vanclay & Lawrence 1994, Young 

2009). The emphasis on personality traits is underpinned by the notion that innovations 
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would spread more rapidly among members who perceive them to be advantageous 

regardless of whether or not those innovations have objective advantages (Feder et al 1985, 

Rogers 2010).  

Risk orientation: Risk orientation captures key perceptions of the individual about the present 

and future probability distribution of social and economic returns from investing in new ideas 

and practises (Mistian & Strand 2000). Indeed, of all personality traits associated with 

adoption, risk orientation is the most studied (Binswanger & Sillers 1983, Greiner et al 2009, 

Knowler & Bradshaw 2007). Earlier comparative studies on adoption and non-adoption 

yielded a general consensus that non-adopters of new technologies including innovative 

environmental schemes tend to be more risk averse than adopters (Feder et al 1985, 

Fernandez-Cornejo et al 1994). However, with the increasing number of new technologies 

and environmental schemes in different regions as well as empirical adoption studies in the 

recent past, this notion is challenged. Currently, there is lack of consistency in the 

relationship between risk orientation and adoption of new technologies and practices 

(including conservation interventions) in that both negative (Greiner et al 2009, Knowler & 

Bradshaw 2007) and positive (Barham et al 2004) relationships have been documented. 

Longitudinal studies that investigate risk attitudes and adoption of organic farming found the 

relationship to be non-existent between adopter categories over time (Läpple & Van 

Rensburg 2011). 

Agency: In addition to risk orientation, a lot of attention has been paid on personal attributes 

that revolve around agency. People with higher agency particularly those that believe in using 

the most effective and realistic means to achieve personal development targets are often 

related with early adoption behaviour, e.g., uptake of novel farming technologies (Rogers 

2010). Conversely, individuals with lower agency, often associated with being irrational and 

dogmatic tend to invoke fatalistic ways of reasoning that discourage investment in new 
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farming technologies and environmental schemes (Fulton et al 2011, Rogers 2010). In the 

conservation context, agency - like many other personal attributes - has been shown to have 

dual effects (i.e., positive and negative) on conservation adoption decisions depending on the 

conservation intervention considered (O'connor et al 1999, Slimak & Dietz 2006).  

Self-confidence and venturesomeness of individuals have also been shown, albeit to a lesser 

extent to influence individual‘s receptiveness to novel information as well as rate of adoption 

of innovations (Blau 1960). Early adopters of high cost integrated farming technologies and 

practices have been characterized by high self-esteem and being venturesome, whereas 

people that are less industrious with lower self-esteem remain skeptical about new 

technologies tend to be the slowest to adopt (Ram & Jung 1991, Rogers 2010). However, due 

to the difficulties associated with quantifying venturesomeness and self-confidence (Feldman 

& Armstrong 1975), recent empirical investigations rarely include these attributes. 

Depending on the specific attribute considered and the innovation to be diffused, personal 

attributes can either promote or constrain adoption (Gelcich et al 2005). Thus, although 

personality characteristics are a key part of the central tenets driving responses to adoption 

decisions, some personal attributes can unwittingly act as barriers and/or drivers for adoption 

(Greiner et al 2009). 

Socioeconomic status: Taking a broad view on socioeconomic status, diffusion research 

demonstrate that differences in people‘s socioeconomic status account for more variance in 

likelihood of an individual's adoption behaviour than a vast majority of sociodemographic 

variables such as age, race, ethnicity, marital status, and gender (Morris & Venkatesh 2000). 

Attributes of socioeconomic status such as wealth, education, occupational 

diversity/multiplicity, size of firm, and ownership of key productive assets have often been 

used to classify adopter categories (Feder & Umali 1993, Guerin & Guerin 1994, Knowler & 

Bradshaw 2007, Mercer 2004). However, like personality traits, socioeconomic status can 
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have both positive and/or negative effects on adoption and diffusion of innovations across 

societies, showing either positive or negative relationships depending on the complexity of 

the innovation and the social identity and experiences of the potential adopter (Ervin & Ervin 

1982, Guerin & Guerin 1994, Knowler & Bradshaw 2007, Prokopy et al 2008). The lack of 

consistency in a vast majority of these characteristics in predicting adoption behaviour has 

led to unstructured adoption and diffusion processes around the globe (Makate et al 2018, 

Weiss et al 2018). I review them in turn. 

Wealth: The effect of wealth on adoption decision including high-risk technologies is often 

shown to be positive (Arslan et al 2014, Boahene et al 1999, Rogers 2010). The underlying 

explanation to this relationship has been that people having higher material wealth tend to 

have greater capacity to deal with potential setbacks often associated with adoption of 

unproven innovations such as high-risk farming technologies (Cramb et al 1999, Knowler & 

Bradshaw 2007, Mercer 2004). In social-ecological settings however, when a higher level of 

wealth is associated with individuals that have a wide range of income generating activities, 

(i.e., occupational diversity) a negative relationship with adoption of conservation schemes is 

often observed. Alternative sources of livelihoods tend to reduce the need to conserve a 

shared resource (Gebremedhin & Swinton 2003). Indeed, these occurrences are prevalent in 

cases where income obtained from alternative income generating activities obscures the 

benefits accruing from investments in conservation of the common resource or when people‘s 

participation in other activities keep them away from the social-ecological system (Jansen et 

al 2006, Shively 1996). 

Education: Education is shown to be a very important factor for early adoption of new 

technologies (Rogers 2010). A positive relationship between higher levels of education and 

technology adoption of environmental schemes has often been observed in developed 

societies. For example, a study by Burton et al (1999) showed that higher levels of education 
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were positively related to early adoption of organic horticultural technology among flower 

farmers in Ireland, and the United Kingdom. Numerous investigations in developing 

countries have shown no association between levels of education and adoption of 

environmental schemes (D‘Souza & Mishra 2018, Feder et al 1985, Mwangi & Kariuki 

2015). In fact, a few studies have shown that level of education can be negatively related to 

adoption, e.g., adoption of sloping agricultural land technologies in the Philippines 

(Sureshwaran et al 1996). In the conservation context, a vast majority of empirical studies 

have shown that level education is not likely to influence peoples conservation adoption 

decisions (Burton et al 2003, Hattam & Holloway 2007). Only a hand full of studies that 

focus on uptake of soil conservation interventions show education to be an important factor 

for early adoption (Diederen et al 2003, Läpple & Van Rensburg 2011, Rogers 2010). One 

possible explanation for the lack of directional relationship between education and adoption 

in developing countries is that the level of education for most people in rural settings is 

relatively low (i.e., between 0 to 4 years) compared to other diffusion studies conducted in 

developed societies where most people would have a higher range (~12 years) of education 

(Feder et al 1985, Lau et al 2018). 

Occupational multiplicity: Occupational multiplicity, i.e., having multiple sources of 

livelihoods or income among members of a household, can serve as a buffer for potential 

setbacks and tend to encourage uptake of novel technologies (Knowler & Bradshaw 2007, 

Mercer 2004). Conversely, a number of empirical investigations on adoption of conservation 

farming practises and technologies have shown a negative relationship between occupational 

multiplicity and adoption decision (Cramb et al 1999, Gebremedhin & Swinton 2003). The 

underlying explanation to this negative relationship has been that income from other 

members of a household can be used to support many members of the household to hire 

labour force for efficient farming and productivity (i.e., intensification) – occurrences that 
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often negate goals associated with widespread adoption of conservation schemes (Meyfroidt 

et al 2018).  Other studies have also shown that occupational multiplicity and other variables 

denoting whether or not the farm household has fellow members engaged in income 

generating activities may not influence adoption altogether (Burton et al 2003, Genius et al 

2006). The lack of a directional relationship is supported by the assertion that having multiple 

sources of income from independent members of a household may not always translate into 

greater financial capacity on all members of the household (Gebremedhin & Swinton 2003). 

Ownership of productive assets: Ownership status of key productive assets is recognized as a 

major determinant of adoption of new farming technologies and practises (Ramasamy et al 

1992, Tiongco & Hossain 2016, Upadhyaya et al 1993). Prior research has however shown 

that the nature of ownership, i.e., lease versus owned can determine the speed with which 

adoption of agricultural conservation practises and technologies among farmers occur 

(Tiongco & Hossain 2016, Upadhyaya et al 1993). Where, ownership of key productive 

assets such as land and other capital assets is associated with access to subsidies – an 

influential aspect on conservation adoption decision, ownership status has been shown as key 

factor to rapid adoption of innovative farming practises such as organic farming (Feder & 

Umali 1993, Läpple 2010).  

Size of firm: Though this variable is presented in a variety of ways, e.g., size of farm space or 

existing capital assets overall trends show a positive relationship to adoption (Amsalu & De 

Graaff 2007, Feder 1980). Specific longitudinal studies have revealed that farms that are 

bigger tend to adopt conservation interventions earlier (Diederen et al 2003), highlighting that 

size of firm could be important during the early stages of adoption processes. Only a few 

studies show that an increasing farm size can be negatively related to adoption of novel 

farming practises such as organic farming (Burton et al 2003, Dadi et al 2004). This suggest 

that in certain contexts farmers who operate larger farms can be less receptive to novel 
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farming technologies especially if it is too costly to apply the innovation at a large scale 

(Hayami & Ruttan 1985). A few longitudinal diffusion studies on adoption of organic 

farming in developed societies have found no differences in the positive relationship between 

farm size and early, medium, or late adoption (Läpple & Van Rensburg 2011).  This implies 

that farm size can be a robust indicator of adoption over time.  

Formal leadership: Numerous empirical studies show a positive relationship between formal 

leadership and conservation adoption decisions (Feder & Umali 1993, Knowler & Bradshaw 

2007, Rogers 2010). Longitudinal diffusion studies have indeed shown that formal leaders are 

often early adopters of new ideas (Harper et al 2018). This is because formal leadership is 

often associated with opinion leadership, strong social ties, and command a lot of respect 

from other members of the society especially in rural social systems (Flynn et al 1996, Loewe 

& Dominiquini 2006, Valente & Pumpuang 2007). Key underlying explanation for this trend 

is that having a leadership role tend to increase one‘s chances of accessing crucial 

conservation information due to the frequent contact between local leaders and extension or 

external change agents (Bodin & Crona 2008). 

Innovation knowledge: A vast majority of empirical studies point to a big positive connection 

between innovation knowledge and adoption particularly during the early stages of the 

adoption process (Feder & Umali 1993, Fuglie & Kascak 2001, Knowler & Bradshaw 2007, 

Mercer 2004, Rogers 2010). For example, studies on adoption of organic farming in Ireland 

showed a consistent positive effect of innovation knowledge on early adoption among 

farmers (Läpple & Van Rensburg 2011). However, an important caveat (i.e., credibility of 

information source) is often put on this positive relationship. For example, despite the 

elegance, efficiency, productivity, and/or ecologically sustainability of soil and water 

conservation techniques in Burkina Faso, very few people adopted because of credibility 

issues of the information source (Sidibé 2005). Agricultural experts with limited knowledge 
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of organic farming and therefore perceived to have less credibility have also in the past led to 

discouragement among farmers to convert to organic farming in Ireland (Wheeler 2008).  

Provision of incentives: Consensus stipulates that incentives can positively influence 

adoption behaviour. For conservation interventions that require huge investment capital or 

other costs associated with adoption, inadequate incentives has been highlighted as a major 

constraint to the rapid adoption of conservation interventions (Feder & Umali 1993, Knowler 

& Bradshaw 2007). However, in societies where people are heavily dependent on aid, e.g., 

communities in but not limited to developing countries, offering incentives can undermine 

innovation diffusion processes. To support their argument, they contend that provision of 

incentives can create false hope – a scenario that often discourage investment in innovative 

technologies over the long term (Eliasen et al 2013, Feder et al 1985, Läpple & Van 

Rensburg 2011).  

Age: Aside from personality and socioeconomic status attributes, another key 

sociodemographic attribute that is often included in adoption studies is age. In any social 

system age may serve as a surrogate for other socioeconomic conditions, e.g., work 

experiences a person has accumulated over time (Knowler & Bradshaw 2007). As such, 

many studies have analysed the relationship between age and adoption behaviour in different 

contexts around the globe. Overall, a vast majority of adoption studies show inconsistent (i.e., 

both positive and negative) relationships between age and adoption behaviour (Feder & 

Umali 1993, Jung & Kim 2017, Knowler & Bradshaw 2007). For example, studies that 

analysed the effect of age on the uptake agricultural conservation interventions show that 

older farmers tend to be more resistant to take up new environmental practises with long-term 

conservation objectives (Sayer & Campbell 2004, Tiwari et al 2008). The limited motivation 

to adopt is underscored by the notion that older farmers often feel that the expected 

ecosystem change may not occur in their lifetimes (Feder & Umali 1993). In contrast, 
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younger people often associated with longer planning horizons have been shown to be more 

receptive to new conservation ideas and tend to invest more in conservation  (Bultena & 

Hoiberg 1983, Crona & Bodin 2006, Feder & Umali 1993, Knowler & Bradshaw 2007). 

Specific longitudinal diffusion studies have indeed shown that that early adopters are the 

youngest to adopt organic farming practises and technologies (Barham et al 2004, Läpple & 

Van Rensburg 2011). However, a sizable amount of empirical investigations also reports a 

positive relationship between age and adoption of conservation interventions. For example, it 

has been shown older farmers that exhibit a higher level of environmental concern (Burton et 

al 2003, Läpple 2010), tend to embrace farming practices that prioritize protection over 

destructive behaviour to safeguard their traditional resource (Jagers et al 2012). In cases 

where old age is associated with opinion leadership, a positive relationship with uptake of 

novel fisheries management schemes has been reported (Bodin & Crona 2008). Equally, 

other studies have shown that the relationship between age and adoption decision can be non-

existent (Amsalu & De Graaff 2007, Rogers 2010, Shiferaw & Holden 1998).  

Communication behaviour: One of the primary research findings of diffusion research was 

that adoption over time follows the two-step-flow hypothesis where opinion leaders9 are 

made aware of innovations through external exposure, which increases their propensity to 

adopt early; and in a second step they influence opinion followers (Rogers & Cartano 1962, 

Valente & Pumpuang 2007, Weimann 1982). In other words, the longstanding theory of 

diffusion has argued that early adopters tend to have more sources of external influence in 

terms of cosmopoliteness10 and exposure to mass media than late adopters (Merton & Merton 

1968). In accordance with these contributions, it is often argued that whereas external 

                                                             
9 Opinion leadership in this context is measured by the number of network nominations received in a social 
network indicating the flow of interpersonal influence (Rogers & Cartano 1962, Valente & Pumpuang 2007).   
10 A cosmopolite is an individual who is oriented to the world outside of his or her local system and who relates 
his or her local system to the larger environment by providing links to outside information (Merton 1968, 
Valente 1996a) 
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influences are generally responsible for making individuals aware of innovations, it is often 

interpersonal influence with friends and neighbours that leads to actual adoption (Valente 

1996c). Put explicitly, a large network comprised of a few direct ties and multiple indirect ties 

is often associated with opinion leadership and early adoption behaviour, whereas 

interpersonal communication ties that are more instrumental for persuasion are linked to late 

adoption (Valente 1996c). Against this background, there is therefore a general consensus that 

communication behaviour is key for late adopters (Rogers 2003).  

Social network science however provides a set of new concepts and analytical strategies, e.g., 

SNA for understanding how human behaviour, e.g., adoption of innovations, is socially 

constructed as an outcome of an actor‘s relationship with others (Centola 2015). Researchers 

have explored a number of topological properties of social networks such as centrality 

metrics, measures of brokerage, contagion effects, and network clustering to understand how 

network processes relate to the spread of innovations (Centola 2018, Louch 2000, Valente et 

al 2008). I review them in turn. 

Level of social connectivity: Actors that display high degree centrality (i.e., have many direct 

ties) tend to be more popular in a network (Wasserman & Faust 1994). By maintaining many 

more times the number of ties than the average person does popular actors or high degree 

nodes are more likely to access novel information by connecting to others who are in 

positions that are different from them (Gladwell 2006). Depending on the information 

extracted from their social world, these connections can translate into a wide variety of 

favourable outcomes, spanning social obligations such as adoption of new ideas, practise, and 

technologies (Valente 1996c). Indeed, diffusion literature argues that early adopters tend to 

be more integrated in the social community and may have strong social ties with other 

innovators in the social system (Gladwell 2006). 
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Contagion effect: This is a type of social influence on people‘s behaviour through social ties 

and association (VanderWeele 2011). Current studies on contagion processes builds on prior 

research on peer effects and interpersonal influence (Burt 1987, Christakis & Fowler 2013). 

Empirical analyses on contagion effects with social network data have shown that contagion 

processes can play an important role in diffusion process of certain behaviours such as the 

spread of smoking habits among other social states, e.g., loneliness (Cacioppo et al 2009, 

Christakis & Fowler 2008). Interestingly, the nature of social influence or contagion effects 

can occur in different forms. For example, obesity among people has been shown to spread 

through two socially connected actors (i.e., one individual influencing another by changing 

weight-related behaviour e.g., diet) (VanderWeele 2011). Conversely, other empirical studies 

have shown that person-to-person influence may be insufficient to facilitate innovation 

transfer especially if the knowledge, practise or technology is complex (Reagans & McEvily 

2003). To advance this suggestion, several scholars have argued that social cohesion, defined 

as third-party ties around relationships can facilitate complex contagion processes among 

social systems because it congregates homogenous actors thereby decreasing the 

impediments associated with node-to-node social influence (Reagans & McEvily 2003). 

Network clustering: Clustering is considered one of the most important properties in classical 

networks (Levine & Kurzban 2006). Clustering, often associated with social consolidation of 

shared norms and practices (Centola & Baronchelli 2015), has been shown to promote 

diffusion of novel information and practises among people with shared social identities 

(Centola 2010).  Network clustering has also been shown to increase coordination 

(McCubbins et al 2009), cooperation, and trust among individuals in social systems (Burt 

2004). In some cases, these closed network clusters have provided a special ingredient that 

often can have a direct positive effect on contagion and diffusion process that seek behaviour 
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change (Centola & Macy 2007, Opsahl 2013), and  the transfer of complex knowledge 

(Centola 2018, Hansen 1999). 

However, it is equally argued that close-knit clusters tend to congregate homogenous groups 

– a situation that often undermines knowledge diversity, innovativeness, and transfer of 

knowledge among individuals between groups (Levine & Kurzban 2006). In other words, 

while new information or knowledge can diffuse well within clusters, it travels less well 

between them, especially when it is complex (Hansen 1999). By creating and reinforcing 

isolation as well as cutting externalities, network clustering may eventually pose a special 

challenge to diffusion processes (Levine & Kurzban 2006). Indeed, close-knit groups that 

tend to be cohesive with few opportunities to create more crosscutting ties that can improve 

access to novel information and spread of innovations across systems (Centola 2010, Centola 

2015). Put simply, network clustering can impede complex contagion processes between 

clusters (Granovetter 1983). Therefore, like personality traits and socioeconomic status, 

patterns of communication behaviour, and network positions can all have both potentiating 

and/or inhibiting effects on adoption and diffusion of innovations, showing either positive or 

negative relationships depending on the context. 

Type of networks 

In the network context, diffusion is a communication process in which adopters persuade 

non-adopters to adopt innovations (Rogers 1995, Valente 1996c). Network analysis therefore 

serves as a vital tool to better understand the flow of influence enabling researchers to 

determine who influences whom in the network (Valente 1996c). Although diffusion of 

innovations research has been greatly enhanced by network analysis, the role of network 

structure and how the structure relate to conclusions and inferences drawn from diffusion 

processes is still an open debate (Robins 2015). Understanding the different types of network 
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structure will permit more exact specifications of who influences whom during the diffusion 

process (Robins 2015, Valente 1996).  

Network science identifies three types of network structure, i.e., random, scale free, and 

small-world networks (Robins 2015). These network structures are often classified according 

to two independent structural features, i.e., clustering coefficient and average node-to-node 

distance (average shortest path length) (Barabasi et al 1999, Bollobas et al 2001, 

Choromanski et al 2013).  The two independent features can have different effects on 

diffusion processes depending on the complexity or simplicity of the innovation to be 

diffused.   

Random networks can take the form of regular lattices or the Erdos-Renyi graphs (Barabasi et 

al 1999, Robins 2015).  Regular lattices are artificial networks that have the lowest 

heterogeneity (e.g., the number of connections each node has is more or less the same) and 

lowest randomness (the probability of any two randomly chosen nodes to be wired to each 

other is very low or zero) (Barabasi et al 1999). The more extreme random graphs, often 

referred to as Erdos-Renyi graphs, are generated by starting with a disconnected set of nodes 

that are then paired with a uniform probability, i.e., network ties occur independently and 

with probability p – easily estimated as the density (Robins 2015). Because random networks 

are based on independent ties, they do not offer a good representation of empirical social 

networks and therefore network patterns such as reciprocity or closures - that are often 

critical in any diffusion process - are least expected (Lusher et al 2013). For this reason, 

random graphs are only useful as null models against which to compare more complex effects 

in diffusion processes.  

Most real-world social networks however do not have homogeneous distribution of degree 

that regular or random networks have. The number of connections each node has in most 
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networks varies greatly and they are positioned somewhere between regular and random 

networks. In other words, where the connections between the nodes in a regular graph are 

rewired with a certain probability, the resulting graphs are between the regular and random in 

their structure and are referred to as small-world networks (Watts & Strogatz 1998). Small-

world networks are very close structurally to many social networks in that they have a higher 

clustering coefficient and almost the same average path length than the random networks 

with the same number of nodes and edges (Choromanski et al 2013). Small-world networks 

usually have high modularity (groups of the nodes that are more densely connected together 

than to the rest of the network) (Watts & Strogatz 1998). Many empirical network graphs 

tend to exhibit features of small-world networks, e.g., social networks. Because small-world 

networks tend to contain cliques (i.e., sub-networks between almost any two nodes within 

them) among other network configurations, their properties permit the use of numerous 

network effects in diffusion studies that utilise the network approach (Robins 2015).  

A scale-free network is a network whose degree distribution follows a power law, at least 

asymptotically (Clauset et al 2007, Cohen & Shlomo 2003). The most notable characteristic 

in a scale-free network is the relative commonness of vertices with a degree that greatly 

exceeds the average (Choromanski et al 2013). The clustering coefficient distribution in a 

scale-free network decreases as the node degree increases – which means that removing 

randomly any fraction of nodes from the network will not destroy the network (Cohen & 

Shlomo 2003). This in turn suggests that diffusion processes in scale-free networks are 

immune from fragmentation even when one or more stakeholders are removed from the 

network. Many empirical networks have been reported to be scale-free although statistical 

evidence still remains inconclusive due to the developing awareness of more rigorous data 

analysis techniques. As such, the scale-free nature of many networks is still being debated by 

the scientific community.  
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Conceptualization of predictor and control variables 

Here I illustrate how the variables selected were conceptualized in line with the conservation 

intervention and social-ecological setting studied. Where a variable is used in multiple 

chapters either as a predictor or control (i.e., predictor for adoption - chapter 3; predictor for 

selecting key players in conservation diffusion - chapter 4; or control factor for evaluating 

conservation outcomes on people - chapter 5), I provide the corresponding theoretical 

justification. Factors that were particularly relevant for the adoption of the conservation 

intervention (i.e., the escape slot trap) are included in this section (Table 3). I also include 

other factors that had specific relevance for controlling wellbeing conditions based on the 

conservation intervention and the social-ecological setting studied here (i.e., fishing 

communities). It is important to note that control variables were only used in chapter 5. 

Personal attributes 

In terms of personality traits, I included agency and risk orientation. Particular attention was 

paid to the impact of personal attributes on adoption decisions. While more recent literature 

agrees on the importance of the attitudes or subjective norms on people‘s adoption decision, 

this is often incorporated into empirical analysis with the inclusion of only one question in 

the survey (Burton et al 2003, Genius et al 2006). In this analysis multiple set of attitudinal 

statements are used in order to assess fishers‘ attitudes towards personal attributes. This 

approach is consistent with foundation studies that underline the importance of measuring 

attitudes with multiple statements (Fishbein & Ajzen 1975).  

Agency: Agency conveys the notion about what people can do with that they have, e.g., how 

people engage with others or the environment to achieve certain goals and meet their needs 

(Woodhouse et al 2015). In diffusion research, it is often argued that higher agency tends to 

relax the constraints needed for adoption of innovations (Rogers 2010). Agency was used as a 

predictor for adoption (chapter 3; Table 3).  
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To assess agency, I used three attitudinal questions. First, respondents were asked to state the 

extent at which their personal capabilities determine success in fishing. Second, I asked 

respondents to indicate whether they believe success in fishing is mostly determined by their 

relationship with God/Allah. Third, respondents were asked to state whether they believe 

their success in fishing is mostly determined by traditional practices, such as offering 

sacrifices or and praying at traditional shrines. The three questions were deemed important 

because peoples metaphysical believes have been shown to be crucial in determining hopes 

and aspirations for the future among fishers in coastal Kenya (Abunge et al 2013). Moreover, 

it has been shown that rational fishers that believe in using the most effective and realistic 

means to increase their catch tend to exhibit higher agency and propensity to embrace change 

in management of fisheries (Jentoft & Chuenpagdee 2009). In all questions, fishers were 

presented with multiple choices, (i.e., No, A little bit, Yes, or Don‘t know). For question 1, a 

YES response was associated with agency (i.e., ability of an individual to use the most 

effective means to increase catch), whereas all other responses (including don‘t know) were 

interpreted as a lack of agency. The order was however reversed for question 2 and 3 in that a 

YES response was associated with a lack of agency, whereas other responses were linked to 

agency.  Using the set of binary variables created as explained above, I ran a PCA (principal 

component analysis) to create an agency score from the first axis (88.3% of total variance 

explained).  

Risk orientation: Risk is defined as ‗the chance of something happening that will have a 

negative impact on our objectives‘ (Coleman 2011). The impacts of attitudinal characteristics 

such as perceptions about risk are of critical importance when people reflect whether or not to 

take up novel conservation interventions (Barham et al 2004). In the fisheries context, 

specific studies have shown that fishers tend to be risk seekers compared to other members of 

the general population (Cinner et al 2010).  However, the influence of fishers‘ perception of 
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how they behave under uncertainty (risk orientation) on their conservation adoption decisions 

is not well documented. Risk orientation was used in chapter 3 as a predictor for adoption 

(Table 3). 

Risk orientation was examined as a latent trait comprised of three questions. First, fishers 

were asked to indicate the number of times per year they go exploring for new fishing 

grounds. I used the mean number of days that fisher‘s explore new fishing grounds per 

village to distinguish between risk seekers and risk averse. Fishers that reported more days 

than the village mean were considered risk seekers whereas those who reported numbers 

below the village mean as risk averse. Second, respondents were asked to state their opinion 

when they thought about taking a risk, (i.e., the words that came to their mind first). Those 

who perceived risk taking as an opportunity were classified as risk seekers while those who 

perceived taking risk as loss risk averse. Indeed, several studies have shown that people who 

perceive challenges (i.e., risks) as opportunities tend to embrace and invest more in 

conservation (O'connor et al 1999, Slimak & Dietz 2006). Third, fishers were asked to 

indicate how they would behave under uncertainty of catch, e.g., whether they would be 

willing to try something new, (i.e., a new fishing technique or fishing site, even if it meant 

that while learning they might catch less, but after learning catch more). Fishers were 

required to indicate either No, A little bit, Yes, or Don‘t know. Those who answered YES 

were classified as risk seekers otherwise risk averse. Finally, respondents were asked to 

indicate what their best friends would say about them taking risks. Fishers were presented 

with four categories of choices, i.e., [1] You‘re a real gambler [2] You‘re willing to take risks 

after doing adequate research [3] You‘re cautious about risks [4] You avoid risks at all costs. 

Real gamblers were considered risk seekers, all others were considered risk averse. Coded 

responses about risk orientation were included in a PCA and component scores created from 

the first axis (83.1% of total variance explained).  
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Socioeconomic status 

Education: Education is considered a key ingredient in shaping peoples opinion towards 

change (Lau et al 2018, Lin 1991). In the conservation literature, it is widely hypothesized 

that highly educated people are likely to comprehend novel conservation ideas more quickly 

and accurately than less educated people do (Pomeroy & Berkes 1997). Education is defined 

here as the maximum grade the fisher completed in formal education. In rural fisheries 

settings, level of education can be an indicator of social status in a community (Cinner et al 

2009a). Persons with higher social status in rural social-ecological settings can have easier 

access to collective benefits, e.g., resource management information at the expense of others 

(Ribot 2002), a scenario that can positively influence conservation adoption decisions. Highly 

educated persons can derive prestige, command respect, and influence in rural social-

ecological settings from their frequent engagement with external environmental experts or 

actors – circumstances that often influence people‘s relational and subjective aspects of 

wellbeing (Bodin & Crona 2008, Coulthard et al 2011, Olsson et al 2004). Against this 

background, education was used in all three chapters (i.e., chapter 3 – as a predictor for 

adoption; chapter 4 – a predictor for selecting key players in conservation diffusion; and 

chapter 5 – as a control variable for evaluating conservation outcomes on people) (Table 3). 

Occupational multiplicity: Having alternatives to livelihoods can serve as a buffer for 

potential setbacks and tend to encourage uptake of novel environmental and conservation 

schemes (Knowler & Bradshaw 2007). Occupational multiplicity was measured as total 

number of income generating activities within a fisher household. The influence of 

occupational multiplicity on a wide range of fisheries management topics such as perceptions 

about resource conservation and management preferences is well studied (Cinner et al 2009a, 

Daw et al 2012, McClanahan et al 2012). Fishers whose fellow householders have multiple 

income generating sources can be an indicator of wealth (Cramb et al 1999). Material assets 
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among fishers has been associated with their level of occupational multiplicity (Cinner 2014). 

Higher occupational multiplicity can provide an opportunity for other members of the fisher 

household to supplement their incomes - a key aspect that can encourage investment in 

conservation (Cinner et al 2009a, Cramb et al 1999). However, in other natural resource 

management contexts, having alternatives to livelihoods may serve to reduce the need to 

conserve a common resource (Mercer 2004). Against this background, occupational 

multiplicity was used in two chapters (i.e., a predictor for adoption - chapter 3; and a control 

variable for evaluating conservation outcomes on people - chapter 5) (Table 3).  

Ownership of productive assets (fishing gear and vessel): In the agricultural economics, 

ownership of key productive assets such as land and other capital assets can be major 

constraints to the rapid adoption of novel farming technologies and environmental schemes 

(Feder & Umali 1993, Läpple 2010). Indeed, conservation practitioners tend to prefer persons 

with full ownership of key productive assets when offering incentives – a key factor that can 

influence conservation adoption decision. In the fisheries context, possession of productive 

fishing assets such as full ownership of a fishing gear and vessel is critical in determining 

success in fishing (McClanahan et al 2015). Gear ownership is even more important because 

fishing cannot happen without a fishing gear. Gear ownership was simply determined by 

whether or not one owns a fishing gear (in this case a fishing trap) and was used in chapter 3 

as a predictor for adoption of the escape slot trap. Because of the high cost associated with 

fishing boats, ownership of a fishing vessel can be an indicator of wealth and is often 

associated with social status in fishing communities (Pollnac & Crawford 2000). 

Accordingly, I used vessel ownership (denoted as productive assets in chapter 4) to identify 

key players in conservation diffusion (Table 3). 

Material style of life (MSL): In many cases, the effect of wealth on adoption decision 

including high-risk innovations is often shown to be positive (Arslan et al 2014, Boahene et 
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al 1999, Rogers 2010). The underlying explanation to this relationship has been that people 

having higher material wealth tend to have greater capacity to deal with potential setbacks 

often associated with innovations such as high-risk conservation interventions (Cramb et al 

1999, Knowler & Bradshaw 2007, Mercer 2004). In rural social-ecological settings, wealthy 

people or more privileged individuals (elites) tend to be opinion leaders that dominate 

decision-making processes at the expense of other groups – attributes that are often 

associated with early adoption behaviour (Leonard-Barton 1985, Valente & Davis 1999, 

Valente & Pumpuang 2007). By having more access to collective benefits (elite capture) such 

as access to information related to resource management (Ribot 2007), wealthy people can 

strategically align, adjust, and adopt resource exploitation strategies in line with existing laws 

and regulations ahead of others (Ostrom 2007a). In sum, wealth (MSL) can be an indicator of 

social status in a community in developing countries where wealthy people can derive a lot of 

respect, prestige, and influence in various social systems (Cinner et al 2009a). Indeed, 

people‘s level of wealth can influence their objective and subjective aspects of wellbeing 

such as material assets and social relationships (Bodin & Crona 2008, Coulthard et al 2011, 

Olsson et al 2004). Against this background, MSL was used as a predictor in all three 

chapters. In chapter 5, I used material style of life as an indicator of material wellbeing (Table 

3). 

In computing material wealth, I used material style of life (MSL, i.e., an indicator of wealth 

based on a wide range of household possessions and structure (Cinner et al 2009a). I 

examined a list of 55 items including lighting, transport, household electronics, cooking 

materials, household structures (such as wall, roof, and floor), among others. I treated all 

household items as stand-alone attributes for indicators of wealth. These include generator, 

electricity, solar panel, car battery, TV, DVD, radio cassette, electric fan, mobile phone, 

smart phone, satellite dish, refrigerator, air conditioning, and piped water. A similar approach 
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was followed for means of transport, land, and investments assets. Regarding transport, I 

asked respondents to show whether they possess the following: bicycle, motorcycle, vehicle, 

or other. Respondents would also indicate whether they own land, livestock, cows, poultry, 

plot, business kiosk, dugout canoe, outrigger, dhow (a different type of vessel), outboard, 

inboard, or fish freezer as investments assets. For land, respondents were prompted to 

indicate the exact number of acres owned while actual numbers were to be given for 

livestock, cows, poultry, and plot/s owned. Conversely, dummy variables (1=rich and 

0=poor) were created for other indicators of wealth, i.e., lighting, cooking items, roof 

material, floor material, and wall material. For lighting, any respondents using light bulb 

powered by electricity was considered rich while those using hurricane lamps, candles, solar 

light, and kerosene wick were classified as poor. Regarding transport, respondents with 

vehicles or motorcycles were categorised as rich while those with only bicycles or otherwise 

were considered poor. Respondents using gas or electric cookers were considered rich while 

those using charcoal, kerosene, or firewood as cooking material were classified as poor. 

Respondents whose houses were roofed with iron sheets or tiles were regarded as rich while 

those whose houses had thatched roof or otherwise were categorised as poor. For floor 

material, respondents with finished tiles and cement were classified as rich while those with 

dirt/soil, bamboo/palm, plank wood were regarded as poor. Finally, respondents whose 

houses were constructed using stone block and cement were considered rich while those with 

bamboo/thatch, metal, mud wood/plank or otherwise as wall material were classified as poor. 

This categorisation is based on existing research that uses the material style of life index 

(Cinner et al 2009a) and personal experiences of the authors who had a thorough knowledge 

of the communities‘ lifestyle. A material style of life (MSL) metric was created from the first 

axis of a PCA (36.6% of total variance explained).  
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Size of firm (number of traps): The influence of size of firm is central in most conservation 

adoption studies (Amsalu & De Graaff 2007, Feder 1980). Depending on the intervention, 

this variable is however presented in a variety of ways. For, example, studies that focus on 

adoption of farming practises such as organic farming and soil conservation tillage have used 

acreage (size of farm space) as a proxy of size of firm (Bultena & Hoiberg 1983, Clearfield & 

Osgood 1986, Tiwari et al 2008). Studies that analyse adoption patterns of agricultural 

conservation technologies have used existing capital assets to denote size of firm (Adesina & 

Zinnah 1993, Feder 1980, Fuglie & Kascak 2001). Other studies looking into adoption 

intensity on conservation technologies have framed the influence of size of firm as the 

number of objects or units that can potentially be replaced or changed by the adopter 

(Mwangi & Kariuki 2015, Strauss et al 1991, Ugochukwu & Phillips 2018). Regardless of 

how the variable is created and presented, overall trends show a positive relationship to 

adoption. Here a proxy denoting the number of traps owned by a fisher describes the 

influence of size of firm and was used in chapter 3 as a predictor for adoption (Table 3). 

Using the number of objects or items that can be replaced or changed in analysing adoption 

behaviour is consistent with previous studies that show people are likely to depict differential 

adoption intensities, i.e., try some and maintain others when adopting innovations with 

trialability11 characteristics such as the one studied here (Arslan et al 2014, Rogers 2010).  

Formal leadership: Leadership is often highlighted as an important component for adoption 

of conservation interventions (Black et al 2011, Harper et al 2018). Having a leadership 

position is often associated with opinion leadership and strong social ties - key determinant of 

adoption behaviour (Harper et al 2018). I define formal leaders as individuals who are elected 

as leaders of the Beach Management Unit (BMU) responsible for community-based coastal 

                                                             
11 In diffusion research, trialability refers to the degree to which an innovation may be experimented on a limited 
basis (Rogers 1995). 
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and marine management in my study sites. In Kenya, conservation practitioners tend to work 

closely with community leaders, e.g., BMU leaders when initiating environmental 

conservation and management initiatives at the local level (Olsson et al 2004, Ostrom 2007b, 

Pretty 2003). Because of their social status and position in the co-management process, BMU 

leaders are expected to adopt, sustain, and maintain environmental and management actions 

over time in order to increase visibility and awareness on conservation efforts at the local 

level (Bodin & Crona 2008, Olsson et al 2004). Due to their positions and responsibilities 

formal leaders carry in the wider community, formal leadership can therefore have an impact 

on their social relationships with others in the social system – a key determinant of relational 

wellbeing (Bodin & Crona 2008, Coulthard et al 2011, Olsson et al 2004). It is against this 

background that formal leadership was used in all three chapters (i.e., chapter 3 - as a 

predictor for adoption; chapter 4 – to select key players in conservation diffusion; and chapter 

5 – a control variable for evaluating conservation outcomes on people) (Table 3). 

Innovation knowledge: Knowing about the existence of an innovation a critical step in the 

adoption decision process (Lynne et al 1995). Put plainly, no adoption can occur without 

initial knowledge of the innovation. Thus, innovation knowledge has been acknowledged to 

play a critical role in many diffusion processes (Genius et al 2006, Khataza et al 2018). A 

well-known concept in the diffusion literature is that innovation knowledge tends to reduce 

perceived risks and uncertainties associated with adoption (Feder & Slade 1984, Marra et al 

2003). Therefore, having principle knowledge of any innovation is likely to significantly 

influence people‘s adoption decisions (Dewar & Dutton 1986, Ostlund 1974, Rogers 2010). 

To capture innovation knowledge, respondents were asked to elaborate the extent of their 

prior knowledge of the innovation, i.e., awareness knowledge, how to knowledge and 

principle knowledge of the innovation (Rogers 2010). The three questions were framed as 

follows: awareness knowledge, i.e., whether or not one had heard about the innovation 
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before; how to knowledge, i.e., whether one fully understands the purpose of the innovation; 

and principle knowledge, i.e., whether one has the ability to fabricate the innovation12. I 

included the credibility of information source in addition to the three questions highlighted 

above. This is important because credibility of the information source of any novel idea can 

determine whether or not people will embrace that idea (Shepherd & DeTienne 2005, Wiig 

2000). Here, respondents were asked to rate the level of credibility of the source of 

innovation knowledge. A source regarded as completely credible had a higher score of four 

while a score of one describes an injection point that is not credible. The PCA approach was 

used to compute average scale scores of innovation knowledge (84.2% of total variance 

explained). Innovation knowledge was used as a predictor for adoption (chapter 3; Table 3). 

Provision of incentives: In order to increase the uptake of conservation interventions, 

provision of incentives is considered an important and influential ingredient (Eliasen et al 

2013). This form of coercive pressure can influence adoption for a number of reasons. Firstly, 

offering incentives can be a strategy for getting to the critical mass of early adopters who are 

often needed to accelerate diffusion processes (Valente & Davis 1999). Secondly, provision 

of incentives can shape adoption inevitability perceptions (i.e., by implying that the 

innovation is very desirable and adoption is inevitable) (Rogers 2010). In this study, I had 

instances where some fishers were given the innovation to carry out experimental fishing on a 

trial basis. As indicated in innovation diffusion theory, this can be considered as offering 

incentives because the new gear was provided at no cost. Provision of incentives was used in 

chapter 3 as a predictor for adoption (Table 3). 

                                                             
12 In diffusion research, innovation knowledge is three fold (awareness knowledge, how-to-knowledge, and 
principle knowledge). Awareness knowledge simply refers to whether one has information that an innovation 
exists. How-to-knowledge consists of information necessary to use an innovation properly whereas principle 
knowledge captures the functioning principles underlying how the innovation works (Rogers 1995). 
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Age (sociodemographic variable): Age, expressed as age of the fisher in years is a key 

sociodemographic variable that was included because of its relationship with other 

socioeconomic attributes such as work experience (Tiwari et al 2008).  In fisheries settings, if 

old age is correlated with long years of fishing experience could carry important practical 

implications for fisheries management (McClanahan et al 2012). For example, in co-managed 

fisheries managers tend to engage fishers with significant longevity in co-management 

process due to their extensive knowledge base, traditional knowledge, and intellectual outlay 

about fishing (Bodin & Crona 2008). Through these collaborative arrangements, older fishers 

tend to have easier access to fisheries management information than their young counter parts 

– a scenario that can have a positive influence of on conservation adoption decision (Mbaru 

& Barnes 2017). Indeed, work experiences a fisher has accumulated over time can shape 

perceptions towards various components about fishing or the broader fishing community 

(McClanahan et al 2012). From a societal view point, age can also determine how people 

respond to various aspects about their quality of life (Cinner et al 2009a). To predict 

adoption, I used age of the fisher in (chapter 3; Table 3). However, given the relationship 

between age and work experience, I used the number of years spent actively in fishing (i.e., 

fishing experience) as a predictor for selecting key players in conservation diffusion (chapter 

4; Table 3). In fisheries settings, fishing experience can determine whether or not one‘s 

opinion is respected by peers in a fishing community (McClanahan et al 2012). Other 

socioeconomic and sociodemographic factors that were included as control variables are 

access to credit, fishing dependency, and marital status. Access to credit can be a reflection of 

how individuals relate with others especially where people derive financial support from 

other members of the community (Cinner 2014). Where fishing is main source of livelihood, 

dependency on fishing can shape a myriad of perceptions about fishing activities which 

obviously can have an effect on subjective livelihood wellbeing (Gurney et al 2014). Marital 
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status can be a potential barrier that can inhibit some members of a society from accessing 

certain collective benefits (Bene & Merten 2008). In rural fishing communities, marital status 

can also be a key determinant of social differentiation among people potentially affecting 

social relations (Geheb et al 2008). As such, marital status is often accounted for when 

evaluating management interventions in fisheries social-ecological settings (Cinner et al 

2010, Coulthard et al 2014, Gurney et al 2015) (Table 3).  

 
Social network processes  

Naturally, when innovations are initiated, a small proportion of individuals are expected to 

adopt. Once the critical mass is firmly established, innovations are expected to propagate 

through the social system. During this time, communication behaviour (more so social 

networks) is thought to play a major role in determining the spread of innovations and speed 

of adoption (Golub & Jackson 2010, López-Pintado 2008). A review of empirical studies 

show that interpersonal communication behaviour tend to minimise risks and uncertainties 

associated with innovations thereby facilitating spread of innovations (Feder & Umali 1993, 

Goldsmith 1984, Greiner et al 2009, Lapinski et al 2018).   

 
Table 2. Number of respondents interviewed in each village during the three 
sampling periods, i.e., baseline surveys (T0), first follow-up surveys (T1), and second 
follow-up surveys (T2). Total number of actors in the social network in each village is 
shown in parenthesis. Categories of adopters over the three sampling periods in 
experimental villages (i.e., where the escape slot trap was introduced) are shown in 
the last two rows.   

  Number of respondents (# actors) 

Sampling period Village_a Village_b Village_c Village_d Village_e Village_f All sites 
Baseline (T0) 34(85) 43(127) 43(102) 33(78) 45(116) 40(112) 238 
1st follow-up (T1) 33(84) 59(152) 49(113) 36(85) 40(73) 42(82) 259 
2nd follow-up (T2) 31(88) 57(146) 45(111) 31(111) 41(76) 41(116) 246 
  Adopters (dis-adopters) in experimental villages 
1st follow-up (T1) 11 10 7 

 
11 39 

2nd follow-up (T2) 24(5) 10(2) 11(3) 
 

20(6) 65(16) 
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Table 3. Description of predictor variables used in chapter 3 and 4 and control variables used in the chapter 5. Material style of life 
was used as a predictor variable in chapter 3, 4, and 5. 

Variable type Variable name Description Ch.3 Ch.4 Ch.5 Data type 

Personal attributes Agency Multiple questions on perception about success  √   PCA score 

 
  in fishing       

  Risk orientation Multiple questions about risk orientation  √   PCA score 
Socioeconomic status Formal leadership Whether respondent holds a leadership position  √ √ √ Dummy 
    in the community      
  Material style of life Indicator of wealth based on household possessions  √ √ √ PCA score 
    and structure       
  Occupational multiplicity Number of income-generating activities associated  √ √ √ Continuous 
    with the respondent‟s household      
  Education Highest grade completed √ √ √ Continuous 
  Fishing experience Number of active years spent fishing  √  Continuous 
  Productive assets Whether respondent owns a fishing vessel  √  Dummy 
  # Traps Number of fishing traps used by a fisher √   Continuous 
Sociodemographic &  Innovation knowledge Multiple questions about prior knowledge of the √   PCA score 
other variables   escape slot trap      
  Age Age (in years) √  √ Continuous 
  Gear ownership Ownership of the fishing gear used √   Dummy 
  Provision of incentives Whether a fisher was given escape slot trap at inception √   Dummy 
  Fishing dependency Whether fishing is primary source of livelihood   √ Dummy 
  Marital status Whether respondent is married   √ Dummy 
  Credit access Whether respondent has access to financial support   √ Dummy 
PCA = principal component analysis.   



 
 

Different network properties in people‘s social networks can have important influence on 

behaviour change (Centola 2015). In my analysis having adoption as the outcome variable, I 

include five key network effects that have been widely used to model behaviour in social 

networks (Table 3). These include network popularity, activity, clustering, and contagion 

effects (Lusher et al 2013).  

Popularity: Network popularity refers to general levels of social connectivity (Lusher et al 

2013). Popular actors tend to have a higher number of direct ties has been positively related 

to trust and influence in social networks.  Because of their ability to connect to a huge 

number of people quickly poplar actors are associated with the spread of complex 

innovations that seek behavior change (Freeman 1978, Tsai & Ghoshal 1998).  

Activity: Unlike popular actors that often maintain numerous connections with many friends 

and acquaintances, actors that are more active in a network tend to maintain ties with other 

actors for the benefit of receiving or giving specific information based on the type of social 

network (i.e., type of network tie or question involved) (Lusher et al 2013). Actors that are 

more active in a given network tend to be information gatherers or disseminators of the 

specific network question/s under consideration (Gladwell 2006). They critically analyse and 

evaluate the information they derive from the network before passing their evaluations to 

others. In many cases, their evaluations may make or break the tipping of diffusion process 

(Gladwell 2006). Active actors can also determine or regulate the type of information that 

flows through the network.  

Though network studies does not argue this explicitly, their description of active actors 

suggests that actors who were generally more active in a given network can be specialized in 

areas of expertise covered in the network questions (Lusher et al 2013). For example, in 

fisheries social-ecological settings where fishing is characterized by a multiplicity of gears, 



78 
 

species, and vessels with various capacities there can be many active actors in particular areas 

of interest such as veteran fishers with experience in using certain fishing gears within a 

fishing and information sharing network. Indeed, conservation practitioners and other policy 

makers often tend to engage with persons that are more active in specific social contexts 

when implementing participatory conservation programs at the local level (Nguyen et al 

2017).  

Network clustering: Clustered networks are often characterised by higher level of 

generalized exchange, enabling faster, more complete flow of information that allow for 

better sanctioning of social norms such as spread of moral behaviour and trust among 

individuals (Granovetter 1978, Levine & Kurzban 2006).  Clustering may also serve to 

reduce competition and increase motivation to transfer of novel messages by minimizing 

bottlenecks that may result from the costliness of the transfer to the benefactor (Reagans & 

McEvily 2003). Indeed, network clustering and individual action has been cited as good 

predictors of the tendency to innovate in social systems (Levine & Kurzban 2006). Even in a 

social system where gaps emerge in a network due to absence or little communication 

between distinct clusters, work on structural holes has shown that brokers can connect other-

wise disconnected clusters and reap substantial gains for themselves from their clustered 

structure (Burt 2004). The small world phenomenon (Travers & Milgram 1967) further turns 

on the fact that even when everybody is not connected to everybody else, the few ties that 

connect distinct clusters allow novel ideas to diffuse (Centola & Macy 2007, VanderWeele 

2011). Existence of weak ties, which are more likely in sparse but closed networks, have 

indeed been found to be key in accessing and transfer of novel information (Granovetter 

1983). The counter-intuitive finding on the negative effects of sparsity or gaps in networks 

(i.e. the opposite of closure) further underscores the important role of direct and indirect ties 

in diffusion processes within network clusters (Ahuja 2000).  
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However, while network clustering supports communication, cooperation, and trust in social 

systems, it can also create isolation, cut externalities, and eventually pose a special challenge 

to contagion, diffusion process, and behaviour change (Levine & Kurzban 2006). The 

tendency to congregate in homogenous clusters has been shown to undermine innovativeness 

and transfer of complex knowledge between clusters (Centola & Macy 2007, Levine & 

Kurzban 2006). Thus, network clustering can impede complex contagion processes between 

clusters (Granovetter 1983). 

Contagion effect (social influence): Though behaviours and states diffuse through social 

networks, the nature of social influence or contagion effects can occur in several ways. For 

example, for many simple spreading processes (i.e., spreading of low risk strategies or 

information), one individual displaying the behaviour might be sufficient to persuade a 

susceptible neighbour to adopt (Hill et al 2010, Wejnert 2002). However, there are many 

instances where person-to-person influence may be ineffective to transfer other types of 

interventions such as the spread of complex knowledge, practises or technologies (Reagans & 

McEvily 2003). It has often been suggested that multiple or strong ties between individuals 

are required for successful transfer of complex contagions, i.e., diffusion processes where 

adoption is conditional on the decision of a fraction of direct peers (Centola & Macy 2007). 

This conclusion is found in many studies tying network clustering, behavioural outcomes, 

and diffusion of innovations (Centola 2018, Centola & Macy 2007, Levine & Kurzban 2006). 

To explicitly capture individual‘s communication behaviour, I measured their social 

networks. In social-ecological settings, social networks are important in facilitating 

information and knowledge exchange in cases where different stakeholders have come 

together to manage a shared resource (Bodin & Crona 2009, Folke et al 2005). These 

networks can even supersede the existence of formal institutions for effective compliance and 

enforcement of environmental management strategies (Scholz & Wang 2006). Indeed, social 
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networks have been shown to be important for conservation diffusion (Matous & Todo 2015), 

having direct implications for environmental outcomes (Barnes et al 2016). Respondents 

were specifically asked to name up to 10 individuals with whom they fished with or shared 

information with about fishing. These two relationships (fishing and information exchange 

about fishing) were deemed particularly important for the potential for coastal and marine 

conservation diffusion to occur at the local level given that majority of households depend 

primarily on fishing to support their livelihoods, and because fishing activities represent the 

primary behaviour conservation and resource management agencies target in conservation 

efforts. Respondents could list their crew members, fellow captains, or any other stakeholder 

they fished or shared information with about fishing. I used recall methods (Marsden 1990, 

Wasserman & Faust 1994), where each respondent reported his relations. My entire analysis 

is based on weighted network ties. Attaching some form of weight to ties rather than 

analysing only their presence and absence allows more complex relational states between 

nodes to be captured (Opsahl et al 2010). Thus, I assigned a weight of [1] for information 

sharing ties, [2] for fishing ties, and [3] for ties associated with both fishing and information 

sharing. Information or knowledge sharing ties are clearly important for developing a 

common understanding of natural resources and bringing in new ideas (Watts & Strogatz 

1998). However, fishing ties were assigned a higher weight due to their critical role in 

sharing practical experiences in fishing, which is essential to the adoption of fishing related 

technologies (Bodin & Crona 2009). Where a fishing and information tie was present, it was 

assigned an even higher weight due to key informants claiming such overlap captures the 

strongest, most intimate social relations in these traditional close-knit communities, where 

fishing is commonly undertaken by individuals with higher levels of trust among them 

(Bodin et al 2006, Bodin & Crona 2008).  
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Chapter 3: Factors that influence adoption and diffusion of conservation interventions 

Synopsis  

A critical gap in conservation diffusion is understanding the effect of social networks in 

adoption and diffusion processes. Here, I use emerging tools in network science to provide a 

novel examination of the combined effect of social networks and social influence (contagion) 

on conservation diffusion while accounting for key socioeconomic factors. I tracked adoption 

trajectories among fishers (n = 186) over time (i.e., a diffusion process) in four study sites. 

My results show that network processes contribute considerably to conservation diffusion – 

particularly in the early adoption stage – even when important socioeconomic factors such as 

knowledge of the innovation and risk orientation are accounted for. Equally striking, my 

results provide evidence that the provision of incentives does not promote early adoption, and 

actually contributes to non-adoption; suggesting that incentives may be counterproductive in 

some conservation diffusion processes. By showing that communication behaviour is crucial 

during the early stages of the diffusion process, my results challenge decades of diffusion 

research suggesting communication behaviour is more important for late adoption. For policy 

makers that are eager to achieve global sustainability outcomes, my results suggest that 

harnessing the power and characteristics of social networks may help jumpstart conservation 

diffusion through target populations.  
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Introduction  

Many conservation interventions attempt to introduce novel ideas, technologies, or practices 

to stem ecosystem degradation, but can only be effective if they are adopted (Giller et al 

2009, Weeks et al 2010). Lessons from the diffusion of innovations theory can provide a 

deeper understanding of the factors that enable (or inhibit) the adoption and spread of 

conservation initiatives (Rogers 2010). The diffusion of innovations theory argues that 

peoples‘ adoption behaviour is influenced by social differentiations in terms of personal 

attributes, socioeconomic status, and communication behaviour (Lublóy et al 2018, Mahler & 

Rogers 1999, Stoneman 1976).  

To date, considerable research has affirmed the important role of personal attributes and 

socioeconomic status on the adoption of conservation interventions (Barham et al 2004, 

Diederen et al 2003, Knowler & Bradshaw 2007), yet there remains very limited empirical 

work emphasizing the effect of communication behaviour in this context (Matous & Todo 

2015). Moreover, the majority of work that has been done in this area has been limited by the 

use of proxies of communication behaviour such as social participation, contact with change 

agents, and exposure to mass media (Fuglie & Kascak 2001, Läpple & Van Rensburg 2011). 

These proxies inherently ignore critical relational structures that more accurately capture how 

people access information and the embeddedness of individuals in social systems that can 

influence their adoption behaviour, e.g., through social influence (Barnes et al 2016, Valente 

2012). 

In the diffusion literature, consensus has emerged that a more robust way to explicitly capture 

people‘s communication behaviour is by assessing their social networks (Muller & Peres 

2018, Valente 2010). The study of social networks is theoretically grounded in the notion that 

individuals are embedded within a larger context of relational ties (Borgatti et al 2009), and 

thus their behaviour is to some extent socially constructed as an outcome of their 
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relationships with others (Fujimoto & Valente 2012, Valente 1996c). Thus, network analyses 

de-emphasize the analytical focus on solely individuals and instead focus on the network 

itself, while concentrating on it as a set of asymmetric ties binding individuals together 

(Warriner & Moul 1992). Network analysis therefore emphasizes the influences of social 

structure on decision-making over individualistic, cognate decision-making (Valente 1996c, 

Valente 2012). 

Calls for using network processes in studying conservation diffusion have been accompanied 

by methodological guidelines (Cohen et al 2012, Matous & Todo 2015, Pietri et al 2009), but 

empirical studies are rare and results have often been inconclusive. The few attempts that 

integrate social networks in conservation diffusion are mostly limited to diffusion of 

conservation information (Pietri et al 2009, Ramirez-Sanchez 2011a, Ramirez-Sanchez 

2011b), yet conservation interventions can be incredibly diverse ranging from information 

based conservation strategies to complex initiatives that seek behaviour change (Mbaru & 

Barnes 2017). To my knowledge, only one study uses network processes to study how 

conservation diffuses beyond information based conservation strategies (Warriner & Moul 

1992). However, authors investigate network processes and socioeconomic characteristics 

separately, and therefore fail to account for the independent effects of social network 

position, network structures, and social influence (contagion) (Lusher et al 2013).  

Social network position can have important influence on behaviour change especially on 

people that maintain numerous connections with many others or actors who are in positions 

that are different from them (Gladwell 2006). Network structures such as social enclaves or 

clusters can enable faster, more complete flow of information and resources, potentially 

allowing for rapid sanctioning of behaviour change among individuals (Granovetter 1978, 

Levine & Kurzban 2006). Social influence is a type of contagion effect on people‘s behaviour 

through social ties and association, which can translate into a wide variety of favourable 
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outcomes, spanning social obligations such as adoption of new ideas, practise, and 

technologies (VanderWeele 2011). Importantly, these network properties can influence 

behaviour change, e.g., adoption of high-risk conservation interventions independently of 

other socioeconomic characteristics (Lusher et al 2013).  

Here, I leverage recent advances in network modelling to simultaneously test the effect of 

social network position, network structures, and social influence on conservation diffusion 

while accounting for personal and socioeconomic status attributes. Given that diffusion 

research has shown that not all individuals in a social system adopt innovations at the same 

time, I describe the characteristics of key adopter categories at different stages along the 

diffusion curve (Fig. 1b). These are early adopters, late adopters, non-adopters, and one that 

is often overlooked, dis-adopters (those that adopt initially, but later abandon the 

intervention) (Barham et al 2004). The research aimed to find answers to the following 

specific research questions: What role do social networks play on adoption behaviour over 

the diffusion process? Are there differences in the effect of important determinants on 

adoption over time? 

Methods 

Survey design 

This study was conducted in four landing sites where the conservation intervention was rolled 

out (i.e., site B, C, D, F in Fig. 4). Within experiments, research was coupled with the 

conservation program in order to track the diffusion process between January 2016 and 

January 2018. Tracking individuals over time allowed the diffusion process to be recorded in 

real time. This analysis therefore makes use of panel data comprising responses to the same 

questions by the same participants over time. captured by the seven gear types analysed, 49 in 

site C, 36 in site D, and 42 in site F; comprising a total sample of 186. 
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Predictor variables 

In terms of personality traits, I included agency and risk orientation (Table 3). To capture 

socioeconomic status, I included education (maximum grade completed in formal education), 

material style of life (MSL, an indicator of wealth based on household possessions and house 

structure), occupational multiplicity (total number of different occupations), and formal 

leadership (whether or not one is a Beach Management Unit or other community leader). A 

proxy denoting the number of traps owned by a fisher describes the influence of size of firm 

(Feder 1980). Knowledge of the innovation (whether or not one had principle knowledge of 

the innovation before it was rolled out) was considered a proxy for conservation awareness. 

Age (age of the fisher), a key sociodemographic variable was included because of its 

relationship with other socioeconomic attributes such as work experience (Tiwari et al 2008).  

As mentioned previously, I had a handful of instances where some fishers were given the 

innovation to carry out experimental fishing with the new gear (provision of incentives). 

Therefore, I also included ‗provision of incentives‘ as an indicator variable to predict one‘s 

own adoption (defined here as a fisher physically modifying at least one of their own fishing 

traps to include the escape slot) (Table 4).  

Social networks 

This analysis makes use of undirected, weighted networks based on fishing and information-

sharing ties. The use of undirected network ties was informed by the fact that a vast majority 

of the nominees in the networks were fellow crew members and captains who would 

ordinarily have a two way flow of communication. Each respondent was asked to name up to 

10 individuals with whom they fished with or exchanged important information with about 

fishing (Chapter 2).  
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Table 4. Descriptive statistics for the socioeconomic predictors of adoption. Description of attributes as in Table 3. 

Attribute Statistic Early Late Non-adopters Dis-adoptersa 

 Sample (n) 53 51 82 16 
Agency Mean±SD 0.4±1.5 -0.2±0.5 0.1±0.9 -0.2±0.8 

 Min -0.5 -0.5 -0.5 -0.5 

 Max 6.3 2.7 3.6 0.06 
Risk orientation Mean±SD 0.2±1.1 -0.1±1.0 0.1±1.0 -0.2±1.1 
  Min -1.6 -1.6 -1.6 -1.6 
  Max 1.6 1.6 1.6 1.4 
Formal leadership  Leaders 12(22.7%) 6(11.8%) 11(13.5%) 4(25%) 
Material style of life Mean±SD -0.2±0.9 -0.4±0.8 -0.2±1 0.1±1 
  Min -1 -1 -1 -1 
  Max 3.3 2.3 4.3 2.1 
Occupation multiplicity Mean±SD 2.4±0.8 2.7±0.9 2.3±0.9 2.3±1 

 
Min 1 1 1 1 

 
Max 3 4 4 4 

Education Mean±SD 4.4±3.8 4.5±3.5 5±3.3 4.8±4.1 

 Min 0 0 0 0 

 Max 12 10 12 12 
Innovation knowledge Mean±SD 0.3±1 0.5±0.9 -0.1±1.1 0.4±0.9 

 Min -1.1 -1.1 -1.1 -1.1 

 Max 1.3 1.3 1.3 1.3 
Provision of incentives Provided 7(13.2%) 10(19.6%) 39(47.5%) 6(37.5%) 
NB: summary statistics are presented for socioeconomic factors that showed significant association with adoption, non-adoption, or 
dis-adoption. a = the total does not add up to 186 because of some double counting with dis-adoption. 
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Network data was collected in three time periods, i.e., time one = before the innovation was 

rolled out (baseline surveys), time two = one year after the innovation was launched (first 

follow-up surveys), and time three = two years after the launch of the project (second follow-

up surveys). During the first follow-up surveys, I surveyed some additional fishers (27) that 

had adopted the innovation but were not surveyed during my baseline surveys. No new 

adopters were recorded during the last sampling period. For this analysis, I therefore used 

network data from the first follow-up surveys because all participants were surveyed (i.e., 

adopters and potential adopters). I confirmed that the social networks measured did not 

exhibit substantial change over the three sampling periods using the RV coefficient (Robert 

& Escoufier 1976) (all coefficients were significant at 1%; Table A1). This coefficient is 

widely used to measure the closeness of two set of points represented in a matrix as well as 

test relationships between two sets of variables defined for the same individuals (Josse et al 

2008, Schlich 1996).  Results showed significant association between my adjacency matrices, 

suggesting that my networks did not change much over the three sampling periods at the site 

level (Table A1).  

Analysis  

I present a classic comparison widely applied in the diffusion literature that distinguishes 

between early and late adopters (Diederen et al 2003, Läpple & Van Rensburg 2011). 

Specifically, I considered innovators, early adopters, and the early majority collectively as 

„early adopters‟; and the late majority and laggards collectively as „late adopters‟ (Fig. 1). I 

used the Autologistic Actor Attribute Model (ALAAM) to simultaneously test the effect of 

socioeconomic factors as well as social networks in the diffusion process (Wang et al 2014). 

ALAAM is a social influence model that was specifically developed to model contagion 

(social influence) and diffusion processes in which a network tie between two actors entails 

interdependent actor attributes (Lusher et al 2013). ALAAM assumes that network ties are 
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fixed and that an individual‘s attribute of interest (i.e., adoption) may vary depending on the 

number of ties the individual has or on the corresponding attribute of others to whom the 

individual is connected. 

 
Mechanics of the Autologistic Actor Attribute Model (ALAAM) 

ALAAM is a social influence model that test how individual behaviour is influenced by the 

position in a social network and by behaviour of other actors in the network (Lusher et al 

2013). When modelling behaviour of the actors, network ties are taken to be exogenous and 

cannot be changed by the attributes. I demonstrate the validity of this assumption using the 

RV coefficient by testing the association between my adjacency matrices over the three 

sampling periods at the site level (see appendix, Table A1). An attribute is regarded as a 

dependent stochastic variable measured at the level of an individual and a network tie 

variable is regarded as an independent fixed variable measured at the level of the dyad. The 

starting point for model development is the idea that the attribute of one individual is 

potentially dependent on and may potentially influence the attributes of others. Adoption 

being my outcome variable, the mechanics of the model was expressed in the following 

equations: 

First, I considered a stochastic binary attribute vector Y = [Yi] where i = 1,…,n. which 

denotes adoption of the intervention. A realization (observed vector of attributes) of the 

stochastic vector Y is denoted by y = [yi] where yi = 1 if early-, late-, or non-adoption is 

present. yi = 0 denote otherwise. I then considered a collection of network tie variables 

represented by a weighted matrix, where xij = 1 if information sharing tie is present, xij = 2, 

fishing tie is present, xij = 3 if tie is associated with both fishing and information sharing, and 

xij = 0 otherwise. All other binary or continuous covariates (predictors) attributes are denoted 

by w = [wi]. With network ties treated as exogenous, (i.e., explanatory) network based social 
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influence effects were inferred when i‘s attributes associated with the attributes of the actors 

who may have social relations with i through the network ties. The model makes one 

assumption that the probability of an attribute being present depends on the presence of the 

attributes in some local network neighbourhood of the actor. In this regard, it is possible that i 

may adopt a behaviour solely based on i‘s position in the network such as greater popularity 

or activity or because of other attributes of i. I specified a probability for observing the 

attribute for each possible observation as follows: 

             
 

     
   {∑             

 

 

} 

Where θi and Zi are parameters and statistics for network attribute configurations involving 

an interaction of dependent attribute ( ), network ( ), and covariate ( ) variables. The 

proposed model predict outcome variable Y while taking the network dependences between 

observations into account in a principled way that cannot be addressed in the standard logistic 

regression (Kashima et al 2013).    

Before running the ALAAM, I combined all four networks from my four sampling sites 

effectively treating each network as a binary dummy variable. Because this step assumes 

homogenous effects across all four networks, I ascertained this homogeneity by performing 

chi-square goodness of fit (GOF) tests for the combined network and then used the same set 

of parameter values to rerun GOF for each network separately. The GOF statistics from the 

model networks were compared against simulated graph statistics based on 1000 samples, a 

million iterations, with a 100000 burn-in point. T-ratios were all smaller than 2.0 standard 

deviation units from the mean suggesting that the GOF statistics fit in all four individual 

networks separately (Wang et al 2014). 

 



90 
 

Modelling procedure 

Social influence models such as the ALAAMs are highly sensitive and can easily be over 

parameterized (i.e., by having more predictors than can be estimated from the network data) 

(Wang et al 2014). I therefore adopted a two-stage process in order to narrow down the 

number of predictor variables. Stage 1 examined the personal attributes and socioeconomic 

status influencing early and late adoption decisions using a standard multinomial logistic 

model (Diederen et al 2003). The determinants associated with each category were contrasted 

with the base category, which is non-adoption (see Läpple and Van Rensburg (2011) for a 

detailed illustration of this procedure). Individual covariates that significantly influenced 

early and late adoption were included as covariates for individual level predictors in the 

ALAAM model. Individual covariates that significantly influenced early and late adoption 

were included as covariates for individual level predictors in the ALAAM model. In the 

initial multinomial procedure, I included ten important socioeconomic attributes as 

predictors: age, agency, formal leadership, innovation knowledge, education, material style of 

life, risk orientation, occupational multiplicity, number of traps, and provision of incentives. 

An examination of variance inflation factors indicated there was no sign of multicollinearity 

among these socioeconomic variables (Fox & Weisberg 2011). Site was included as a random 

factor to account for potential differences across sites.  

 
Stage 2 involved using the ALAAM to test the combined effect of personal attributes, 

socioeconomic status, and social networks on adoption. Using early-, late-, and non-adopters 

as outcome variables, I tested for the personal attributes and socioeconomic status that were 

significant in the multinomial model, plus five key network effects that have been widely 

used to model behaviour in social networks. 
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(1) Popularity (actor activity) - testing whether actors who were generally more popular in the 

network were more likely to adopt the intervention (Table 5). By definition, popular actors 

tend to maintain many more times the number of ties than the average person does (Valente 

et al 2008). Because of their ability to connect directly to many others, popular actors are 

more likely to access novel information more quickly especially when ties are linked to other 

actors in positions or hierarchical levels that are different from them (Gladwell 2006). 

Depending on the information gained, these generalized exchanges can allow rapid transfer 

of new ideas and practises or result in changes in behaviour among individuals (Valente 

1996c).  

(2) Activity (actor 2-star) - this is an indicator that can be used to check whether actors who 

were generally more active in the network and had multiple network partners were more 

likely to adopt (Table 5). Actors that are more active in a network tend to maintain ties with 

other actors for the benefit of receiving or giving specific information (i.e., information 

gatherers and disseminators) that is solely associated with  the type of social network in 

context (Lusher et al 2013). Though network studies does not argue this explicitly, their 

description of active actors suggests that actors who are generally more active in a given 

network can be specialized in areas of expertise covered in the network questions (Lusher et 

al 2013). For example, in fisheries social-ecological settings where fishing is characterized by 

a multiplicity of gears, species, and vessels with various capacities there can be many active 

actors in particular areas of interest such as veteran fishers with experience in using certain 

fishing gears within a fishing and information sharing network.  

(3) Clustering (actor triangle) – I included a network clustering effect to examine whether 

adoption of the intervention is associated with clustered regions of the network (Table 5). 

Network clustering is considered one of the most important predictor of diffusion processes 

in classical networks because clustering is often associated with trust, cooperation, and more 
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complete flow of information in social systems (Centola 2018, Hansen 1999). Indeed, 

network clustering is often associated with better transfer of complex contagions, e.g., 

adoption of unproven high risk innovations (Centola & Macy 2007, VanderWeele 2011).  

(4) Partner attribute contagion (direct social influence) – this is a network contagion effect 

that tests whether adoption can be associated with direct social influence between two 

socially connected actors (Table 5). (5) Partner – partner attribute triangle (contagion within 

groups) - I looked at direct social influence within clustered regions of the network (partner 

attribute triangle) to ascertain whether adoption was associated with contagion within groups 

(Lusher et al 2013) (Table 5).  

Diffusion processes through social networks can occur between person-to-person (i.e., direct 

social influence), by multiple or strong ties between individuals, or by social cohesion (i.e., 

third-party ties around relationships) (Reagans & McEvily 2003). It is often argued that in 

cases where node-to-node social influence is infective to transfer certain types of 

interventions such as the spread of complex knowledge, practises, or technologies social 

cohesion can facilitate transfer of complex contagion processes among social systems (Ahuja 

2000). Cohesive groups tend to congregate homogenous actors thereby decreasing the 

impediments associated with node-to-node social influence (Reagans & McEvily 2003). (6) 

attribute density was included as an intercept term to show if the outcome variable can be 

observed in the network (Lusher et al 2013).  

To describe dependencies on the observed network and individuals‘ covariates (nodal 

attributes), I ran exponential random graph models (ERGMs) (Lusher et al 2013). Here, I 

checked for activity and homophily on the observed network on all indicator variables, 

controlling for different network configurations (appendix, Table A2). 

 



93 
 

Table 5. Description of network and actor attributes effects. 

 

Parameter Interpretation Configuration        

Actor 2 star (activity) Actors who are generally more active in the network and have 
multiple network partners are more likely to adopt the intervention.

Actor triangle Adoption of the intervention is associated with clustered regions of 
(network clustering) the network.                                                                                              

Density Baseline probability of the attribute, 
i.e. adoption of the intervention, being present.

actors who have adopted the intervention

Network attribute

other actors (who have or have not adopted the intervention)

Network position

Partner – partner attribute triangle Adoption of the intervention is associated with contagion within 
(contagion within groups) groups (direct social influence within clustered regions of 

the network).

Actor activity (popularity) Actors who are generally more popular in the network are more 
likely to adopt the intervention.

Partner attribute contagion Network contagion effect (direct social influence among two 
(direct social influence) socially connected actors).
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Statistical results for the ERGMs indicate whether any of the attributes in the ALAAM model 

significantly drove tie formation in the network (Table A2).  Multinomial approaches are 

unable to predict dis-adoption due to its overlap with other adoption categories, i.e., dis-

adopters are also early, late, or laggard adopters (Barham et al 2004).  

In order to examine which socioeconomic characteristics most strongly predict whether an 

individual is likely to be a dis-adopter, I employed a logistic regression model. Due to the 

relatively small number of fishers that gave up the practice (n = 16) relative to the sample 

size (186) and large number of potentially relevant indicators (10), I used a rare events 

logistic regression (RELOGIT) model for dichotomous dependent variables (Westland, 

2010). The RELOGIT procedure estimates the same model as a standard logistic regression, 

but the estimates are corrected for the bias that occurs when the sample is small or the 

observed events are rare; i.e., if the dependent variable has many more 1s than 0s, or the 

reverse. To examine the differences between dis-adopters and the other adopter groups (i.e., 

adopters = early and late adopters, and non-adopters), I used independent samples tests, based 

on the ten socioeconomic attributes.  I was also unable to perform the ALAAM for dis-

adopters because only a small number (16) gave up the practise.  

To capture differences in network properties between dis-adopters and those that maintained 

the innovation (i.e., adopters = early and late adopters) and non-adopters, I performed 

independent sample tests comparisons on the basis of four centrality metrics that capture 

different types of prominence or influence as highlighted in network theory (Freeman 1978, 

Valente 1996c). I looked at closeness centrality (Newman 2010, Rochat 2009), betweenness 

centrality (Freeman 1978), degree centrality (Wasserman & Faust 1994), and eigenvector 

centrality (Bonacich 1972). Closeness centrality takes into account how close an actor is 

located to all other actors in a network (Gil-Mendieta & Schmidt 1996) and is therefore 

associated with actors who can receive or send information to all actors in a network quickly 
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and efficiently (Costenbader & Valente 2003).  Betweenness centrality identifies actors who 

sit between many other actors in a social network (Butts 2008) who can therefore act as 

transmitters of resources and information between disconnected actors (Barnes-Mauthe et al 

2015, Borgatti et al 1998). Degree centrality measures the number of direct ties an actor has, 

and has been positively related to trust (Freeman 1978, Tsai & Ghoshal 1998) and influence 

in social networks (Valente et al 2008). Eigenvector centrality measures the extent to which 

actors are connected to others who are themselves well connected, thus affording them with a 

globally central position in a network (Bonacich 1972, Butts 2008). Depending on the 

information extracted from their social world, most central nodes or actors can obtain 

substantial benefits that can lead to a number of behavioural outcomes such as uptake of 

innovative ideas and practises (Valente 1996c). To visualize the networks and show the 

position of early, late, non-adopters, and dis-adopters in the networks, relational matrices 

based on reported fishing and information sharing ties were created and plotted in Visone 

(Baur et al 2001) by an algorithm that uses iterative fitting on a force-directed layout.  

Sensitivity analysis 

To determine whether my results are robust to the extent of using weighted ties, I reran all 

analyses using binarized network ties. Results from this sensitivity analysis did not change 

much from those using weighted ties. The only notable difference is that risk orientation 

turned out to be positively related to early adoption when binarized ties were used whereas no 

relationship existed between risk orientation and adoption when weighted ties were used. The 

rest of the results remained the same.  This is not surprising because only a handful of 

nominees were non fishers in the networks - a situation that ensured a vast majority of the ties 

between nominees and respondents followed the same pattern in the two networks. 
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Results 

Of the 186 respondents, early adopters account for 28.5%, whereas late adopters and non-

adopters are represented by 27.4% and 44.1% of the sample, respectively (Table 4). Results 

from an initial multinomial regression model including the full range of socioeconomic and 

personal attributes identified as important for adoption in existing research show that when 

social networks are not accounted for, early adoption is related to education, risk orientation, 

and knowledge of the innovation; while late adoption is related to occupational multiplicity 

and the provision of incentives (Table A3). These five socioeconomic attributes (education, 

risk orientation, knowledge of the innovation, occupational multiplicity, and provision of 

incentives) were therefore included as covariates in our social network model (Table 5), 

discussed in the following paragraph.  

Examining the combined effects of personal attributes, socioeconomic status, and social 

networks on adoption, I find a range of important network effects (Table 6). First, the general 

level of social connectivity (popularity), connections with numerous partners that are active 

in the network (activity), and clustering (actor triangle) have significant effects on early 

adoption. Specifically, a positive significant popularity parameter (β = 0.52, p < 0.05) 

suggests that fishers with multiple ties are more likely to be early adopters (Table A4). Early 

adoption also appears to be dependent on the number of active network partners within the 

fishing and information sharing network a fisher has given the positive and significant 

activity parameter (β = 0.11, p < 0.05). The positive significant parameter for clustering (β = 

0.53, p < 0.05) shows that nodes in clustered regions of the network (i.e., where there are 

strong, cohesive groups of interconnected people) are also more likely to adopt early. There 

was no direct social influence effect, which means that given other model parameters, having 

one network contact who adopts does not appear to significantly affect one‘s chances of 

adoption. However, I found a positive effect of social influence within groups (β = 1.3, p < 
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0.05), showing that exposure to multiple adopters in clustered regions of the network 

increases one‘s probability of being an early adopter. For non-adoption, a negative and 

significant popularity parameter (β = -0.73, p < 0.05) suggests that fishers with fewer ties are 

less likely to adopt the innovation. There were no significant social network effects 

associated with late adoption other than the density parameter, which confirms that late 

adoption was observed in the network (Table 6). 

Only innovation knowledge, provision of incentives, and occupational multiplicity emerged 

as important socioeconomic predictors of adoption behaviour when social network effects 

were taken into account (Table 6, Table A4). Precisely, I found that having knowledge of the 

innovation (β = 0.32, p < 0.05) was likely to increase ones chances of becoming an early 

adopter. Having multiple occupations (occupational multiplicity; β = 0.36, p < 0.05) and the 

provision of incentives (β = 0.8, p < 0.05) had a significant positive effect on late adoption. 

Innovation knowledge also had a significant negative relationship with non-adoption (β = -

0.12, p < 0.05). The provision of incentives was also positively related to non-adoption (β = 

0.75, p < 0.05; Table 6, Table A4).   

About a quarter (24.5%) of those who had adopted the practice late ended up abandoning it 

(i.e., became ‗dis-adopters‘), compared to only 5.9% of early adopters (Table 4). This means 

late adopters were more likely to dis-adopt than early adopters. Nearly half (47.5%) of those 

provided with incentives did not end up adopting the practice (i.e. modifying their own traps); 

while 13% of early adopters and 20% of late adopters were provided with incentives (i.e., 

initially given the innovation) (Table 4). Dis-adopters have a significantly higher closeness 

centrality (i.e., t = -2.18 when compared to adopters, and t = -1.48 when compared to non-

adopters) (Table 7). No significant differences in degree, betweenness, and eigenvector 

centrality were detected between dis-adopters and the other groups.  
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Table 6. Factors that influence adoption at different stages. Results of Auto-logistic actor attribute model (ALAAM) for the adopter 
groups. RELOGIT procedure was used for dis-adopters.  

 

 Attributes  Early adopters Late adopters Non-adopters Dis-adoptersa 

 Density (-) (-) (+) ----- 
 Popularity (+) 

 
(-) ----- 

 Direct social influence 
  

 ----- 
 Activity (+) 

 
 ----- 

 Network clustering (+) 
 

 ----- 
 Contagion within groups (+) 

 
 ----- 

 Agency ----- ----- ----- (-) 
 Risk orientation (+)b -----  ----- 
 Formal leadership ----- ----- ----- (-) 
 Material style of life ----- ----- ----- (+) 
 Occupation multiplicity ----- (+)  ----- 
 Education  -----  ----- 
 Innovation knowledge (+) ----- (-) ----- 
 Provision of incentives  (+) (+) ----- 
 

KEY: Number of observations = 186; (+) = positive significant effect;  (-) = negative significant effect;  ----- = No tests 
performed;   a = RELOGIT regression model. b = risk orientation came out as significant for early adopters when binarized ties were 
used. Other results did not change. 
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Table 7. Factors that distinguish dis-adopters from other adopter groups; i.e., all adopters (early and late) and non-adopters. 

Attributes Dis-adopters vs. all adopters Dis-adopters vs. non-adopters 

  Test statistic Standard error 95% Confidence Interval Test statistic Standard error 95% Confidence Interval 
Closeness centrality t = -2.18** 0.04 -0.17 0.01 t = -1.48* 0.05 -0.17 0.03 
Agency t = 2.38* 0.02 -0.08 0.01 t = 11.75** 0.09 -0.29 0.05 
Risk orientation t = 0.11 0.14 -0.24 0.29 t = 0.41 0.13 -0.22 0.31 
Formal leadership ꭓ2 = 2.57 0.11 -0.3 0.12 ꭓ2 = 4.48** 0.1 -0.32 0.08 
Material style of life t = -1.76** 0.25 -0.96 0.09 t = -0.76 0.27 -0.73 0.33 
Occupation multiplicity t = 1.14* 0.22 -0.19 0.69 t = 0.14 0.23 -0.43 0.49 
Education t = -0.38 1.09 -2.67 1.86 t = 0.18 0.94 -1.69 2.02 
Innovation knowledge t = -0.08 0.25 -0.54 0.5 t = -1.54** 0.27 -0.95 0.13 
 

T-tests were used for interval variables, whereas chi-square tests were used for categorical variables. *p < 0.05; **p < 0.01 
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In terms of socioeconomic status and personal attributes, I found that dis-adopters had lower 

levels of agency compared to both adopters (t = 2.38) and non-adopters (t = 11.75) (Table 7). 

Further, compared to other adopters who retained the innovation, dis-adopters had higher 

levels of material wealth (t = -1.76) but lower occupational multiplicity (t = 1.14; Table 7). 

Compared to non-adopters, dis-adopters had more knowledge of the innovation (t = -1.54) 

and were less likely to be formal leaders (χ2 = 4.48). Respondent‘s age and the number of 

traps they used were not related to adoption or dis-adoption (Table 7; Table A3). 

Summary statistics of all predictor variables are reported in Table A2. Basic network 

characteristics are presented in Table A5 along with other network attributes. The networks 

exhibit small world properties, with an average network path length of between 4.1 to 5.2, 

and a graph clustering rate of 10 - 16% (Table A5). This means that the ratio of the number of 

closed triples (actors in groups) to the number of two-stars (actors that are more active but not 

in groups) is just over a sixth, indicating that the network graphs are somewhat clustered 

(Banerjee et al 2013). Gear ownership turned out to be a redundant parameter because all 

fishers owned their traps and therefore not presented.  

 
Discussion 

This study provides a novel examination of key factors related to conservation diffusion. I 

employ emerging tools in network analysis that are specifically designed to capture social 

influence and diffusion processes while accounting for socioeconomic factors (i.e., personal 

attributes and socioeconomic status) of individuals in social systems (Lusher et al 2013). 

Unlike previous conservation diffusion studies (Fuglie & Kascak 2001, Mascia & Mills 

2018), I show that adoption is not only linked to personal and socioeconomic status attributes, 

but also shaped by complex social relations and the actions of others. Overall, my results 

show that network processes contribute considerably to adoption – particularly during the 
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early stages of the diffusion process. Indeed, I show that even general levels of connectivity 

(i.e., popularity) in a network can be important for early adoption. By showing that adoption 

behaviour is associated with the corresponding adoption status of the network partners (i.e., 

network clustering), my analysis confirms the existence of independent effects of social 

connectivity and spillover between individuals on conservation adoption behaviour. I did not 

find a direct node-to-node network contagion effect (i.e., direct social influence); instead, I 

show that the adoption status of network partners in strong cohesive groups has significant 

effects on early adoption. Taken together, these results demonstrate that harnessing the power 

and characteristics of social networks can help obtain the critical mass needed to accelerate 

conservation diffusion processes through target populations. I discuss my findings and their 

implications in greater detail below. 

Within localized social structures, my analysis shows that adoption is more pronounced in 

clustered regions of the networks. Precisely, I show a positive effect of network clustering for 

early adopters, indicating that clustering, often associated with social consolidation of shared 

norms and practices (Centola & Baronchelli 2015), can contribute to adoption. This means 

that in this case, only special forms of social influence (i.e., network ties within groups) 

appear to effect the successful diffusion of complex conservation innovations. In the current 

context, this finding indicate that localized enclaves may be more efficient as critical 

injection points for participatory conservation programs. Targeting individuals in distinct 

social subgroups could therefore help amplify the initial effect of localized conservation 

interventions at the community level as opposed to spreading resources more broadly. This 

conclusion is supported by many studies tying network clustering and innovation to transfer 

highlighting that multiple or strong ties between individuals in cohesive subgroups may 

reduce competition (Centola & Macy 2007, Opsahl 2013), minimize bottlenecks and costs 
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associated with innovation transfer (Burt 2004), as well as decrease the impediments 

associated with node-to-node social influence (Reagans & McEvily 2003).  

By integrating social networks in the longitudinal analysis of conservation diffusion, I 

highlight key additional findings that are equally striking. Foremost, by showing that 

communication behaviour is key during early stages of the diffusion process, my results seem 

to challenge decades of diffusion research that suggest communication behaviour is more 

important for late adoption (Diederen et al 2003, Rogers 2004). By showing there are 

minimal differences in terms of personal attributes and socioeconomic status between early 

and late adopters, my study also challenges the longstanding notion that a wide range of 

different socioeconomic factors affect early vs. late adoption (Diederen et al 2003, Läpple & 

Van Rensburg 2011). Effectively my results therefore suggest that the range of 

socioeconomic attributes distinguishing early from late adopters may not be as broad as 

previously thought once social network characteristics are taken into account. Two key 

observations can possibly explain this result. Firstly, my research explicitly measured 

communication behaviour rather than rely on proxies, which has largely been relied on in 

previous research. Secondly, this study focused on fishers who are known to display peculiar  

attributes (e.g., they tend to exhibit more risk seeking behaviour) that are not representative 

of the general population (Cinner et al 2010). Thus, despite the large sample size across 

different locations, the findings might be specific to this particular intervention and the 

social-ecological setting and should therefore be generalized with care. 

Though my results indicate social networks are incredibly important for conservation 

diffusion, I found that a handful of key socioeconomic factors can also play a role. 

Specifically, knowledge of the innovation was a strong characteristic of early adopters, 

whereas a lack of such knowledge hindered adoption altogether. This finding emphasises the 

need for periodic and more sustained educational and awareness campaigns to provide local 
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people with necessary knowledge about conservation interventions. Knowing about the 

existence of a conservation intervention is a critical step in the adoption decision process 

because no adoption can occur without initial knowledge (Lynne et al 1995). Indeed, having 

proper knowledge of a conservation innovation can reduce perceived risks and uncertainties 

associated with adoption (Feder & Slade 1984, Marra et al 2003). Conservation practitioners 

with specialized knowledge of the conservation innovation can therefore increase their direct 

engagements with target communities to increase learning opportunities. In the present case, 

increased exchange of information and knowledge about the conservation innovation can 

translate into a better understanding of the long term objectives of achieving fisheries 

sustainability through the use of escape slot traps. This might eventually have a direct 

positive influence on adoption.  

Providing incentives had no significant influence on early adoption behaviour although was 

important for late adoption and significantly contributed to non-adoption. Quite simply, 

people who were provided with escape slot traps were unlikely to acquire additional escape 

slot traps. These results have significant implications for conservation programs because they 

suggest that at worst, providing incentives may be counterproductive in some conservation 

diffusion processes; while at best, they are unlikely to induce an automatic shift towards the 

adoption of conservation initiatives. Incentives to adopt innovations or coercive pressure have 

previously been shown to shape people‘s perceptions that the innovation is both desirable and 

inevitable (Rogers 2010). Indeed, for conservation interventions that require huge investment 

capital or other costs associated with adoption, inadequate incentives has been highlighted as 

a major constraint to the rapid adoption of conservation interventions (Feder & Umali 1993, 

Knowler & Bradshaw 2007). Although the consensus stipulates that incentives can positively 

influence adoption behaviour - that was not the case in the present study.  This findings seem 

to reinforce the argument that in societies where people are heavily dependent on aid, e.g., 
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communities in but not limited to developing countries, offering incentives can undermine 

conservation diffusion processes (Eliasen et al 2013). To support this narrative, some scholars 

have argued that provision of incentives tend to create false hope (i.e., false sense of security 

built entirely around certain benefits that accrue but with no knowable chance of 

sustainability) – a scenario that often discourage investment in innovative practices over time 

(Eliasen et al 2013, Feder et al 1985, Läpple & Van Rensburg 2011).  

The effect of material wealth in the conservation literature has elicited varied opinions in 

relation to elite capture and elite control (Dasgupta & Beard 2007, Ribot 2002). It is assumed 

that wealthy persons are more likely to encourage investment in conservation practices given 

their greater capacity to deal with potential setbacks (Amsalu & De Graaff 2007). 

Conversely, it has been argued that unfavourable opinions or experiences about conservation 

that seeks behaviour change from wealthy persons could potentially undermine conservation 

efforts given the power and influence that they might have over less privileged individuals in 

rural settings (Mbaru & Barnes 2017). Here, I show a direct positive relationship between 

material style of life and fishers that abandoned the innovation after sometime. Interestingly, 

my results further show that higher closeness centrality is a unique characteristic of dis-

adopters, suggesting that any unfavourable opinion about a given conservation practice from 

dis-adopters could, in theory, quickly and efficiently spread to other members of the network 

(Mbaru and Barnes 2017; (Costenbader & Valente 2003). Conversely, formal leadership was 

significantly associated with a lower probability of abandoning the innovation after adopting 

it. This indicates that formal leaders can help to solidify conservation innovations, and 

therefore may be good targets when rolling out innovations. Nonetheless, my results provide 

a cautionary tale suggesting that wealth, coupled with a lack of leadership responsibilities, 

may drive behavioural tendencies that could potentially reverse significant gains of 

conservation diffusion.  
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The sensitivity of early adopters and dis-adopters to personal attributes such as risk 

orientation and agency was observed only when social networks were discounted. These 

results support findings in a plethora of diffusion studies that show personal or attitudinal 

influences such as risk seeking, among other personality traits that revolve around rationality 

underlie attitudes towards new practices and therefore important in shaping adoption 

behaviour (Feder 1980, Mercer 2004). However, risk orientation in my case became less 

important on the part of early adopters when social networks were taken into account. This 

finding emphasizes the point that social interactions can play a major role in moderating risk 

perceptions on new ideas and practises, e.g., high risk unproven conservation technologies as 

the one studied here (Valente 1996c). I did not simultaneously test the relationship between 

dis-adoption and the three broad socioeconomic factors (i.e., social network, socioeconomic 

status, and personal attributes). Therefore, it remains to be seen whether social embeddedness 

can also offset attitudinal influences such as agency that might contribute to dis-adoption of 

conservation innovations. The decision to use of weighted ties had little influence on the 

modelling results, with the exception of risk orientation, which came out as significant when 

binary ties were used. 

Concluding remarks 

This study has highlighted key factors associated with adoption behaviour, which may 

expand our understanding of the wider considerations influencing uptake of complex 

conservation initiatives seeking behaviour change. Overall, my results suggest that social 

network processes can significantly influence conservation adoption behaviour independently 

of other socioeconomic characteristics. By utilizing the social network approach, my study 

moves beyond the conventional analysis of adoption behaviour to a more refined and robust 

approach that specifies further the relational basis of adoption. The long-standing notion that 

socioeconomic status and personal attributes are more important for early adoption while 
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communication behaviour is more important for late adoption is challenged by my 

longitudinal analysis of a conservation diffusion process that explicitly accounts for social 

networks. For policy makers that are eager to achieve global sustainability outcomes, my 

results suggest that harnessing the power and characteristics of social networks can help 

diffuse conservation initiatives through target populations.  
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Chapter 4: Key players in conservation diffusion   

Synopsis  

Identifying the right stakeholders to engage with is fundamental to ensuring conservation 

information and initiatives diffuse through target populations. Yet this process can be 

challenging, particularly as practitioners and policy makers grapple with different 

conservation objectives and a diverse landscape of relevant stakeholders. Here I draw on 

social network theory and methods to develop guidelines for selecting ‗key players‘ better 

positioned to successfully implement four distinct conservation objectives: (1) rapid diffusion 

of conservation information, (2) diffusion between disconnected groups, (3) rapid diffusion 

of complex knowledge or initiatives, or (4) widespread diffusion of conservation information 

or initiatives over a longer time period. Using complete network data, I apply this approach to 

select key players for each type of conservation objective. I then draw on key informant 

interviews from seven resource management and conservation organizations working along 

the Kenyan coast to investigate whether the socioeconomic attributes of the key players I 

identified match the ones typically selected to facilitate conservation diffusion (i.e., ‗current 

players‘). My findings show clear discrepancies between current players and key players, 

highlighting missed opportunities for progressing more effective conservation diffusion. I 

conclude with specific criteria for selecting key stakeholders to facilitate each distinct 

conservation objective, thereby helping to mitigate the problem of stakeholder identification 

in ways that avoid blueprint approaches.  
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Introduction 

Consensus has emerged on the need to involve intermediaries in diffusion processes 

(Gladwell 2006, Rogers 2010). This involvement not only facilitates uptake and transitory 

use of new ideas and practices but also fosters the two-way flow of information and 

knowledge about innovations (Gladwell 2006). In the conservation context, proper 

communication channels can foster long-term interest in conservation, promote local support, 

and propel the spread of novel conservation ideas and practices for effective governance of 

natural resources (Khataza et al 2018, Nguyen et al 2017, Young et al 2016). Identifying the 

right stakeholders that are optimally positioned to diffuse conservation information, 

knowledge, and practices can therefore be fundamental to successful conservation efforts in 

social-ecological systems (Armitage et al 2008, Ostrom 2007b). However, identifying these 

key individuals (also referred to as ‗opinion leaders‘ or ‗change agents‘) is becoming more 

complex as the landscape of stakeholders in social-ecological systems diversifies and 

practitioners and policy makers grapple with increasingly variable conservation objectives 

(Arias 2015, Bottrill et al 2008, Cohen et al 2012).  

Communities are inter-sectoral social arenas with networks of social relations between 

different actors at various levels (Cohen et al 2012). These social networks are rarely 

homogeneous; rather, they are partitioned into complicated subgroups of individuals and 

stakeholders with different resources, interests, perceptions, affiliations and amounts of 

influence (Carlsson & Berkes 2005, Mertens et al 2005, Nygren 2005). In this context, certain 

people may be more effective than others at facilitating conservation diffusion due to their 

capability to pass information efficiently and rapidly to many others in the community 

(Beauchamp 1965, Valente & Davis 1999), their capability to control or coordinate the flow 

of information between disconnected communities (i.e., ‗brokers‘) (Valente et al 2008), or 

other factors related to their social-structural position. Despite this, to date, natural resource 



109 
 

managers and conservation practitioners have consistently relied on local community leaders 

(hereinafter ‗leaders‘) to diffuse and implement conservation actions at the community level 

(Armitage et al 2008, McClanahan & Cinner 2008, Olsson et al 2004). Although these 

leaders can be socially embedded in social-ecological settings, they may not be better 

positioned to effective diffuse all types of conservation intervention and in some cases may 

struggle to deliver greater than localized conservation outcomes (Berkes 2004, Pajaro et al 

2010). 

Conservation initiatives can be incredibly diverse and they often have different reasons for 

seeking stakeholder involvement. Stakeholder involvement is often sought in order to 

facilitate diffusion and adoption (e.g., of information and behaviours), yet even still different 

types of stakeholders may be more important to involve depending on the specific 

conservation goal. For example, spreading of conservation information quickly is often 

necessary, especially when rapid awareness creation is needed to protect and safeguard 

certain species or habitats under emergency threat (Haddow et al 2013, Kapucu 2008). 

Social-ecological systems are also typically comprised of disjointed social structures, so there 

is often a need to identify brokers who can bridge conservation ideas and practices amongst 

disconnected groups (Barnes et al 2016). Conservation information can also be highly 

complex, and many initiatives specifically seek to implement behaviour change among 

various stakeholders. In such cases, engaging with highly influential stakeholders with many 

opportunities to influence others would be particularly ideal for widespread adoption to occur 

as quickly as possible. Finally, spreading conservation information widely and facilitating 

widespread adoption of more complex conservation initiatives over a longer time period is 

often necessary to achieve global sustainability outcomes (Mace 2014, Pannell et al 2006b). 

Here, I draw on social network theory and methods to present guidelines for selecting key 

players optimally positioned to successfully implement four distinct diffusion-related 
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conservation objectives. Social network analysis (SNA) is an analytical approach that can 

identify the social structures underpinning social-ecological systems and shed light on the 

positions of key stakeholders. In the context of conservation, scholars have applied SNA to 

better understand how social-structural factors relate to processes that facilitate successes and 

failures in resource management (Bodin & Crona 2009). Critically, social networks have 

been shown to be important for conservation diffusion (Matous & Todo 2015), having direct 

implications for environmental outcomes (Barnes et al 2016). In an effort to combat conflict, 

marginalization, and unfair representation of diverse interests in conservation, SNA has also 

been directly employed as a method for stakeholder analysis in order to select relevant 

stakeholders for participatory conservation initiatives (Prell et al 2009, Reed et al 2009). I 

expand upon this body of work by demonstrating how SNA can be applied to select key 

players most optimally placed to facilitate conservation diffusion.  

Given the diversity of goals associated with conservation initiatives discussed above, I 

analyze four distinct diffusion-related conservation objectives: (1) rapid diffusion of 

conservation information; (2) brokering of conservation information and initiatives between 

disconnected or fragmented communities; (3) rapid diffusion of complex knowledge or 

conservation initiatives; and (4) widespread diffusion of conservation information or 

initiatives over a longer time period. I distinguish between spreading conservation 

information (simple spreading; typically associated with conservation objectives 1, 2, and 4) 

and complex knowledge or complex conservation initiatives (complex contagions; typically 

associated with conservation objectives 3) because the role of influential actors, the rate of 

spread, and the effects of network structure on spreading processes differ between the two 

(Granovetter 1978, Karsai et al 2014). Specifically, complex contagions processes (i.e., 

spreading of unproven technologies or high risk strategies) occur when the exposure of an 

individual is conditional on the decisions made by a fraction of his or her peers (Centola & 
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Macy 2007, Valente 1996c). In contrast, for simple spreading processes (i.e., spreading of 

low risk strategies or information), one ‗infected‘ neighbour is often sufficient to expose a 

susceptible individual for adoption or diffusion to occur (Hill et al 2010, Wejnert 2002).  

It is foreseen that failure of participatory programs will remain as long as there is ineffective 

involvement of key stakeholders in the management of natural resources. This scenario 

therefore calls for a specific approach that determines how local stakeholders are involved 

and by whom amongst these stakeholders is involved in order to achieve successful outcomes 

in participatory approaches.  

Drawing on social network theory, I begin by demonstrating how different conservation 

information and behaviours associated with the four objectives listed above can be expected 

to diffuse in a community, and provide guidelines for using SNA to identify key individuals 

to spearhead these conservation actions. I then empirically demonstrate how these guidelines 

can be used to identify key individuals to act as critical injection points in the diffusion of 

each conservation objective (i.e., key players) to show that different types of people are likely 

to be more effective depending on the conservation goal. Finally, I compare the types of 

individuals identified as key players for diffusion with the individuals that are currently 

selected for engagement by conservation organizations and resource management agencies 

(i.e., current players) to highlight missed opportunities for progressing more effective 

conservation diffusion. I accomplish this by leveraging comprehensive data on social 

networks and information on conservation diffusion strategies currently being applied along 

the Kenyan coast. 

Identifying key stakeholders for specific conservation goals 

A large body of work in sociology has demonstrated how actors‘ position in a social network 

determines how effective they are at acting as a conduit for the spread of information and 
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whether or not they have the power to influence others either directly or indirectly (Freeman 

1978, Valente 1996c). Based on their closeness to others, network position, level of 

connectedness, direct interactions, or nominations, certain well-connected individuals are 

typically referred to as ‗central‘ in social network theory (Freeman 1978, Valente 1996c). 

These central positions have often been equated with opinion leadership, change agency, 

prominence or popularity, all of which are associated with diffusion and adoption behaviours 

(Valente 1996a, Valente & Davis 1999). There are a range of different centrality metrics 

which emphasize different structural aspects of complex social systems. I focus on four: (1) 

closeness centrality (Newman 2010, Rochat 2009), (2) betweenness centrality (Freeman 

1978), (3) degree centrality (Wasserman & Faust 1994), and (4) eigenvector centrality 

(Bonacich 1972); each of which captures different types of prominence or influence relevant 

for facilitating the four conservation objectives included here (see Table 8). I discuss these 

measures in turn. 

Closeness centrality: This metric takes into account how close an actor is located to all other 

actors in a network (Gil-Mendieta & Schmidt 1996). Closeness centrality is important in 

identifying persons who are best positioned to spread novel information quickly and 

efficiently throughout a network (Costenbader & Valente 2003) – people who would 

therefore be most appropriate to efficiently transmit novel conservation ideas and information 

more quickly and rapidly to many others across a social-ecological system. Closeness 

centrality can be expressed as 

   
∑  

 
  

  

   
 

where dij is the shortest path (geodesic distance) between nodes i and j, i.e., sum of all 

geodesic distances from i to all others (Gil & Schmidt 1996). Computation for every node of 

the closeness centrality index however needs the distances between all pairs of vertices 
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(Rochat 2009). As such, where a graph is disconnected, the formula for computing closeness 

centrality described above can be useless because the distance between two vertices 

belonging to different components is infinite by convention. To correct this limitation, an 

alternative formula for computing closeness centrality was developed that replaced the 

infinite distance between two vertices belonging to two distinct components by the number of 

vertices of the graph: the largest geodesic possible in a graph with n vertices is of length n -1 

(Rochat 2009). Thus for a disconnected graph, the formula changes as follows: 

  
          ∑      

   

           

with     , V the set of nodes, n = |V| and dist(xi , xj) the distance from node xi to node xj. 

Vertices {xj}j chosen in the same connected component as the vertex xi, n = |V|, m the number 

of vertices unconnected to xi and    
 
  a constant greater than or equal to the diameter of 

graph (Rochat 2009). 

Betweenness centrality: This measure identifies actors who sit between many other actors in 

a social network (Butts 2008) – people who are often referred to as ‗brokers‘. The measure 

specifically identifies the extent to which a node falls between others on the shortest path 

length, thereby allowing it to act as transmitter of resources and information between 

disconnected actors (Barnes-Mauthe et al 2015, Borgatti et al 1998). Betweenness centrality 

is calculated as follows  

   ∑
    
     

 

where gjk is the number of shortest paths between nodes j and k, and gi
jk is the number of 

those paths that pass node i. In the case of gjk = 0, the corresponding contribution to the 

betweenness score is zero (Butts, 2008). 
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Table 8. Hypothetical network diagrams depicting four centrality measures. Green represent node(s) with high centrality scores 
while red represent selected key player(s) for the purpose of optimally achieving certain goals corresponding to each of the four 
centrality measures. Green represent node(s) with high centrality scores while red represent selected key player(s) for the purpose 
of optimally achieving certain goals corresponding to each of the four measures.  

Measure Description Key player12 Definition Theory

Closeness Measures a node‟s
capability to quickly reach 
other nodes (Gil & Schmidt 1996)

Identifies individuals who 
would diffuse information 
quickly to many others 
(Beauchamp 1965, Valente & Davis 
1999)

Betweenness Measures a node‟s
brokerage power in a 
network (Butt 2008)

Identifies individuals who 
would broker information or 
initiatives between 
disconnected groups 
(Stephenson & Zelen 1989)

Degree Measures a node‟s direct 
connectedness with other 
nodes in a network (Freeman 
1978)

Identifies individuals who 
would rapidly diffuse 
complex knowledge that 
target behavior  change 
(Valente et al 2006)

Eigenvector Measures the extent to 
which a node is connected 
to important others (Bonacich
1972)

Identifies individuals who  
would facilitate widespread 
diffusion of information or 
initiatives for behavior 
change in the long term 
(Butts 2008)
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Degree centrality: This metric measures the number of direct ties a node has, and has been 

positively related to trust (Freeman 1978, Tsai & Ghoshal 1998), influence (Valente et al 

2008), and the spread of complex contagions in social networks (Centola & Macy 2007). 

Complex contagions refer to information or behaviors that a node has to be exposed to 

through multiple contacts before it internalizes the information and/or adopts the behavior 

(Granovetter 1978, Karsai et al 2014). This is unlike the spreading of relatively simple 

information, which can transfer from one node to another through only one connection (Hill 

et al 2010, Wejnert 2002).  In the context of social-ecological systems, high degree centrality 

can identify highly influential nodes with many direct contacts, and is therefore useful in 

identifying people who can quickly facilitate the spread of complex conservation initiatives 

or complex knowledge that require multiple direct contacts and persistence for adoption to 

occur (An & Liu 2016, Centola & Macy 2007, Granovetter 1973). Indeed, this argument is 

largely supported by a number of theories. Firstly, under the assumption of transitivity and 

triadic closure, several studies theorizes that two individuals connected to the same person 

with a high degree centrality are likely to be in contact themselves (Kossinets & Watts 2006, 

Lou et al 2013, Rapoport 1953). 

Because of the strong overlaps in connections due to socio-structural bias expected in social 

networks (Rapoport 1953), individuals with high degree centrality are more likely to 

influence complex contagion cascades.  Secondly, under the theory of social influence, nodes 

with high degree centrality are generally thought to be more influential because they tend to 

use more impersonal and more technically accurate sources of information (Katz 1957, 

Rogers & Cartano 1962), tend to be more cosmopolitan in their communication behaviour 

and social relationships (Katz 1957). For degree centrality, I focused on multiple direct 

contacts, influence, and triadic closure arguments for the transfer of complex knowledge and 
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initiatives, however, further iterations of this framework can also include tie strength to more 

precisely capture complex contagions. Degree centrality is defined as follows  

   ∑     ∑   
  

 

where wij represents the tie status from node i to node j. Thus the first term indicates the 

outgoing connections from node i (i.e., outdegree) and the second term the incoming 

connections to node i (i.e., indegree) (Butts 2008, Freeman 1979). 

Eigenvector centrality: This measure builds on the degree centrality by measuring the extent 

to which actors are connected to others who are themselves well connected, thus affording 

them with a globally central position in a network (Bonacich 1972, Butts 2008). By the 

nature of this type of measure, which captures individuals‘ connections, but also connections 

of their connections, individuals with high eigenvector centrality tend to have a more global 

reach, and can therefore facilitate widespread diffusion of conservation behaviours. Because 

of the indirect connections involved, diffusion through these individuals is expected to occur 

over a longer time period because they would first need to influence those that are most 

directly connected to before these intermediaries influence others (Bonacich 1972, Butts 

2008). Theoretically, spreading conservation actions through indirect contacts often favours 

simple processes as opposed to complex contagions because complex interventions demand a 

higher threshold of influence (Granovetter 1978, Karsai et al 2014). However, due to the 

existence of direct connections (see arguments on degree centrality above regarding direct 

connections), these individuals are also capable of spreading complex contagions. In a social-

ecological context, eigenvector centrality can therefore be useful for identifying people who 

can facilitate widespread diffusion of conservation information, or widespread adoption of 
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more complex conservation behaviors over a longer time period through their direct and 

indirect connections. The eigenvector centrality is calculated as  

   
 

 
∑   
 

   

In matrix notations, this is equivalent to λE = WE, where W represents the adjacency matrix 

and   the largest eigenvalue of the above equation ((Bonacich 1972, Butts 2008). 

Though the metrics described above can be incredibly useful for identifying central actors in 

a network for different purposes (Borgatti & Everett 2006), they were not designed to select a 

‗set‘ of individuals that, as an ensemble, would be optimally central to facilitate diffusion 

and/or adoption of new behaviours (Everett & Borgatti 1999). For example, if networks are 

disconnected or consist of less densely connected components (i.e., groups of actors that are 

not connected to each other by any tie), there is a high likelihood of missing individuals to 

facilitate diffusion in all components (i.e., groups) if one was to simply select the top x 

number of individuals with the highest centrality score (Borgatti 2006). There is also the 

issue of redundancy in connections. For example, degree centrality highlights individuals 

with the highest number of ties, yet high-degree nodes tend to connect to other high-degree 

nodes, and all nodes in social networks are known to preferentially form ties with those that 

already have a high number of ties (a process called ‗preferential attachment‘) (Newman 

2001). Thus, high degree nodes are often connected to many of the same people – i.e., there is 

likely redundancy in their connections (Borgatti 2006). To address these shortcomings, an 

optimal criterion has been proposed to identify sets of key individuals at a group level termed 

the keyplayer algorithm13 (An & Liu 2016, Borgatti 2006). This algorithm incorporates 

                                                             
13 Keyplayer algorithm is a tool for computing individual centrality scores and optimally identifies individual 
key players in social networks. This algorithm also computes group centrality scores and can identify the most 
central group of players in a network. Selected key nodes in social networks are based on established centrality 
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information on centrality measures of interest, but optimally identifies key individuals 

depending on what they are needed for, while also redressing the computational issues and 

assumptions associated with each centrality measure (Borgatti 2005, Borgatti 2006, Borgatti 

& Everett 2006).  

In order to find nodes that can reach as many remaining nodes as possible via direct links or 

perhaps short paths, Everett & Borgatti (1999) proposes a generic solution to the key 

problem. The basic idea is to treat a group of nodes as a large pseudo-node. Although several 

criteria are provided in An & Liu 2006, for the purpose of this analysis, I relied on the 

minimum and maximum criterion. According to the minimum criterion, the tie status between 

a group G and an outside node j is measured as the minimum of the (nonzero) edges between 

nodes in the group and the outside node.  

       
   

    

This criterion ensures that there is a shortest path between the group and the outside node. It 

is useful for calculating geodistance related measures (An & Liu 2006). Accordingly, I used 

this criterion to calculate the group level measures of geodistance, i.e., closeness and 

betweenness centrality (An & Liu 2006).  

 
Unlike the minimum criterion, maximum criterion measures the tie status between a group G 

and an outside node j as the maximum of the (nonzero) edges between nodes in the group and 

the outside node.  

       
   

    

                                                                                                                                                                                             
measures depending on the purpose the key players are intended for and the specific context under investigation 
(An & Liu 2016, Borgatti 2006). 
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This criterion is useful for measuring the maximal strength of the connections between the 

group and the outside node. By default, maximum criterion is used to compute the group 

level degree and eigenvector centrality. Table 8 demonstrates graphically how employing the 

key algorithm builds on centrality metrics but minimizes redundancy (e.g., eigenvector, Table 

8) and accounts for separated components (e.g., degree, Table 8) in selecting an optimal set 

of two key players.  

Methods 

Data description 

This research was conducted in all six fishing villages along the Kenyan coast (Fig. 4). This 

analysis is based on 238 respondents sampled during baseline surveys. In order to compare 

the types of individuals I identified as key for facilitating conservation diffusion (i.e., key 

players) with the individuals that are currently selected for engagement by conservation 

organizations and resource management agencies (i.e., current players), I also surveyed key 

informants from three government institutions and four non-governmental organizations 

involved in the management and conservation of marine resources in Kenya in June 2016.  

Key informants were presented with a list of stakeholder groups (i.e., BMU leaders, 

experienced fishers, highly educated fishers, vessel owners, wealthy fishers, government 

representatives, and non-governmental organization representatives). The stakeholder groups 

presented here represent key resource users that typically dominate rural fisheries settings. 

Using the four distinct conservation objectives, each key informant was specifically asked to 

indicate the stakeholders they engage with (from the list provided) when trying to achieve 

each diffusion-related conservation objective analysed here. 

Analysis 

Relational matrices based on reported fishing and information sharing ties were created and 

plotted in Visone (Baur et al 2001) for each site by an algorithm that uses iterative fitting on a 
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force-directed layout (Fig. 6). I employed a weighted approach (see chapter 2) taking both the 

number of ties and tie weights into consideration in order to compute the four node centrality 

scores described in the introduction (Newman 2004).  

To identify key players for each conservation objective, I calculated the four centrality scores 

(closeness, betweenness, degree, and eigenvector) and then applied the key player algorithm 

to select 10 sets of individuals for each metric following (Borgatti 2006) using the R package 

‗keyplayer‘ for locating key players in social networks (An & Liu 2016). For closeness 

centrality, I calculated the harmonic measure rather than the traditional measure because my 

networks were disconnected (see Fig. 6; Rochat 2009). All centrality metrics were computed 

on undirected ties. I selected ten key players because it represented at least 20% of the sample 

in each site, thus representing the ‗critical mass‘ necessary for diffusion and/or adoption rates 

to become self-sustaining according to the diffusion of innovations theory (Rogers 2010, 

Valente 1996a). I quantified all overlaps between key players in each site to better understand 

the relationship between network structure and key players identified for achieving different 

diffusion-related conservation objectives.  

To examine which socioeconomic characteristics most strongly predict whether an individual 

is likely to be an effective injection point for conservation diffusion (i.e., a key player), I ran 

four binary logistic regression models: one on key players selected for each of the four types 

of conservation objectives (where key player = 1, 0 otherwise). I included five important 

socioeconomic attributes as predictors: formal leadership, fishing experience, education, 

possession of productive fishing assets (‗productive assets‘), and material style of life (MSL) 

(Cinner et al 2009a) (chapter 2). As mentioned previously, formal leaders are individuals who 

are elected as leaders of the Beach Management Unit (BMU) responsible for community-

based coastal and marine management in my study sites. In social settings, formal leaders can 

shape and determine the societal view of a given community (Valente 1996a).  
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Table 9. Socioeconomic attributes of all respondents from the six fishing villages (N = 238). Formal leaders are fishers elected as 
leaders of Beach Management Units (BMU), fishing experience is the number of active years spent fishing, education equals the 
highest grade completed, productive assets capture whether a fisher owns a fishing vessel, material style of life is a score 
computed from a number of household items as stand-alone attributes for indicators of wealth. Percentage for the population is 
relative to N, and the percentages for the villages are relative to n (sample size per fishing village). 

  
Formal leadership 

n(relative %) 
Fishing experience 

(mean±SD) 
Education 

(mean±SD) 
Productive assets 

n(relative %) 
Material style of life 

(mean±SD) 
Population (N) 38(16%) 19.1 ± 13.9 4.7 ± 3.7 121(50.9%) -0.1 ± 1.0 
Village_A 0(0%)        13.5 ± 9.6 7.0 ± 3.1 17(14.1%) 0.9 ± 1.5 
Village_B 9(23.7%) 15.9 ± 11.7 5.4 ± 2.8 16(13.3%) 0.2 ± 1.3 
Village_C 6(15.8%) 18.7 ± 13.5 5.3 ± 3.7 26(21.5%) -0.1 ± 0.9 
Village_D 4(10.6%) 24.7 ± 14.8 3.6 ± 3.6 19(15.8%) -0.4 ± 0.4 
Village_E 8(21.1%) 22.5 ± 16.6 3.8 ± 4.3 31(25.7%) -0.2 ± 0.5 
Village_F 11(29%) 19.2 ± 13.7 3.0 ± 3.3 12(10%) -0.4 ± 0.7 
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Figure 6.  Social network configuration of trap fishers in six Kenyan fishing villages 
(a, b, c, d, e, f; see Fig. 4). Nodes (representing actors) with the shortest path 
lengths were placed closest to each other in figurative two-dimensional drawings 
produced by an algorithm that uses iterative fitting on a force-directed layout (see 
Table A5 for network description). Nodes are colour coded by their identification as 
key players based on the four centrality metrics analysed. 

 

They are therefore often considered opinion leaders in the conservation literature (Valente 

1996a) and are typically selected by organizations for engagement in conservation and 

resource management. Fishing experience is defined as the number of years spent actively in 

fishing, which can determine whether or not one‘s opinion is respected by peers in a fishing 

community (McClanahan et al 2012). Education, defined as the maximum grade completed in 

formal education, can be an indicator of social status in a community in developing countries 

(Cinner et al 2009a). Possession of productive fishing assets refers to whether or not one 

owns a fishing boat. Material style of life (MSL) is a measure of wealth on the basis of 

household possessions and structure (Chapter 2). Possession of productive assets and MSL 

are both indicators of wealth and are often associated with social status in a community 

(Pollnac & Crawford 2000).  

 
Descriptive statistics for all socioeconomic attributes are reported in Table 9. An examination 

of variance inflation factors indicated there was no sign of multicollinearity among these 

socioeconomic variables (Fox & Weisberg 2011). Site was included in my models as a 

random factor to account for potential differences across sites. To account for issues related 

to non-independence of the network data, I employed a bootstrapping procedure with 1000 

random samples using replacement from the full sample to estimate robust standard errors 

and a 0.95 confidence interval following Barnes et al (2017). I used a 10% (p = 0.1) as 

significance indicator. All model analyses were done in R version 3.3.0 (R Development 

Core Team 2016). 
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Results 

Network function and key stakeholders 

848 ties used for either fishing, information sharing, or both were reported among the 238 

respondents, corresponding to a mean of 2.8 ties per person. All networks were highly 

centralized with low levels of density and clustering, though there was some variation across 

sites (Fig. 6). There was some overlap (29.7%, Table A6) between key players selected (e.g., 

sometimes the same person was selected by the algorithm for closeness and degree 

centrality), though the majority of these overlaps were between two metrics only (only one 

person was selected as a key player for all centrality measures) and all of them varied 

depending on the structural characteristics of the network. For example, where there was a 

high number of small components that had no connection to the largest group, and I had 

greater overlap between key players selected based on the range of centrality scores because 

of multiple transitive closures, which is the tendency among two nodes to be connected if 

they share a mutual neighbour (Rapoport 1953).  

Presence of isolates ordinarily reduce the average diameter and path length, translating into 

low clustering coefficients in social networks (Rapoport 1953). Clustering however appeared 

important for determining the level of overlaps, e.g., village E had the lowest level of 

clustering (clustering coefficient = 0.032) and the greatest overlap between eigenvector 

centrality and the other metrics, while village A had a relatively higher rate of clustering 

(0.081) and did not exhibit similar overlaps (see Table A5; Table A6 for a full summary of 

network characteristics and overlaps between key players selected for each village).  

My results demonstrate that socioeconomic attributes play an important role in defining key 

stakeholders well placed to facilitate conservation diffusion in social-ecological systems (Fig. 

5). However, depending on the conservation objective, different attributes are more or less 

important. For example, when rapid and efficient diffusion of conservation information is 
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needed, which relates to the theoretical foundation of the closeness centrality measure, formal 

leadership (β = 1.67, p < 0.05) and productive assets (β = 1.52, p<0.05) are important for 

selecting key players (Fig. 7, Table A7). When brokerage of conservation actions between 

disconnected groups is required, which theoretically relates to the foundation of the 

betweenness centrality measure, my results suggest that formal leadership (β = 1.96, p < 

0.05) is important. When the goal is to spread complex knowledge or influence behaviour 

change in a relatively short time scale, which theoretically relates to the degree centrality 

measure, formal leadership (β = 1.53, p < 0.1) and MSL (β = 1.21, p < 0.1) are both important 

for selecting key players. Finally, education (β = 1.09, p < 0.05), productive assets (β = 1.76, 

p < 0.05), and MSL (β = -1.22, p < 0.1) are all important for selecting key players when 

widespread diffusion of conservation information or long-term complex conservation 

initiatives are needed, which relates to the theoretical foundation of the eigenvector centrality 

measure.  

 
Shown in Table 10, my findings suggest that diverging from the current strategies used to 

identify key players to achieve conservation diffusion goals could produce more effective 

results. For instance, I found that conservation practitioners have strong appeal for formal 

leaders and experienced fishers as key persons needed to spearhead the majority of the 

conservation objectives I investigated. Yet my results suggest that experienced fishers are not 

likely to be ideally placed to facilitate conservation diffusion. On the other hand, while 

community leadership is important, wealth, productive assets such as ownership of fishing 

vessels and levels of education are also key to identifying individuals to help facilitate 

conservation interventions, though the importance of each attribute varies depending on the 

conservation objective at hand (Table 10).  
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Figure 7. Estimated effect size (± 95% confidence intervals) of socioeconomic attributes associated with key players for 
conservation diffusion based on four different centrality metrics (a-d) using binary logistic regression models (n = 238).
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Table 10. Alignment and divergence in identifying key stakeholders ideally placed to facilitate conservation diffusion. Four 
conservation diffusion goals are presented followed by the corresponding network metric that can help identify key players to 
achieve them. Socioeconomic attributes of „current players‟ selected to participate to achieve each conservation goal are then 
compared to the socioeconomic attributes of „key players‟, highlighting potential misalignment of effort and missed opportuni ties. 

Conservation diffusion goal Relevant centrality 

metric

Current players

Correspondence

Rapid diffusion of conservation 
information

Diffusion between disconnected 
groups, (information or initiatives)

Widespread diffusion of information 
or complex initiatives in the long 
term 

Rapid diffusion of complex 
knowledge or initiatives

Closeness

Betweenness

Eigenvector

Degree

Potential misalignment of effort Potential missed opportunities

Key players

Formal 
leadership

Fishing 
experience

Material 
style of life

Productive 
assets

EducationSocioeconomic factors:
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Discussion 

Overall, I show that formal leaders can play a key role in facilitating a number of diffusion-

related conservation goals. However, other types of stakeholders may be equally or even 

more important to involve when practitioners or resource management seek to spread 

information throughout a community and/or induce behaviour changes among a population 

(see Table 10). What this effectively means is that implementation of conservation goals is 

highly context-specific and cannot be generalized. Indeed, the inclusion and/or exclusion of 

certain stakeholders can and should be tailored to the specific conservation goal at hand. I 

discuss the theoretical and practical implications of these results in the following paragraphs 

before outlining my suggestions for future research.  

Firstly, my findings largely reinforce the critical role that formal leaders can play in 

conservation initiatives. In many developing countries, resource managers and conservation 

practitioners are highly dependent on formal community leaders when engaging in 

conservation initiatives at the local level (Bodin & Crona 2008, Cohen et al 2012, Nunan 

2006). In Kenya for example, fishing behaviour displays evidence of territoriality among 

groups, and management of marine natural resources is primarily coordinated through BMUs 

(Cinner et al 2009c, Oluoch & Obura 2008). These decentralized community-based 

management organizations allow multi-stakeholder participation in natural resource 

management (NRM) (Oluoch & Obura 2008) and as such, involving formal BMU leaders in 

conservation initiatives has been the norm among conservation practitioners and resource 

management agencies. However, it is improbable for a single stakeholder to effectively 

facilitate diffusion and adoption of all types of innovations. This scenario is due to the 

inherent heterophilous gap between the high level experts (managers) and the local resource 

users (local communities) (Arias 2015). In many cases, this gap leads to role conflicts, 

communication problems, social marginality  (where a change agent becomes heterophilous 
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in relation to both the local communities and managers), and information overload (where an 

individual is overburdened with excessive communication inputs that cannot be processed 

and utilized leading to breakdown) (Pratto 1999, Rogers 2010, Whelan & Teigland 2013).  

In line with my results, existing research calls into question the effectiveness of relying 

heavily on formal leaders for achieving all types of conservation objectives. For example, 

Barnes-Mauthe et al (2015) showed that formal leadership was not significantly related to 

being centrally placed in a social community of commercial tuna fishers, which they argue 

was responsible, at least in part, for the failure of a conservation tool aimed to reduce sea 

turtle bycatch (which was introduced only to formal leaders) to diffuse and be adopted 

throughout the community. Others have argued that formal leaders may be more able to 

facilitate coordination and the flow of conservation information rather than influence 

widespread adoption of conservation actions per se (Balkundi & Kilduff 2006, Bodin & 

Crona 2008, Dearing et al 2006, Edmondson 2003). This is partially supported by my results 

showing that formal leadership is not important for predicting key players ideally placed to 

facilitate widespread diffusion (Fig. 7). However, formal leadership was important for 

predicting key players for all of the other conservation objectives studied, and was in fact the 

only attribute that significantly predicted key players to act as brokers between potentially 

disconnected communities. Yet this brokerage power may only apply to less complex 

conservation actions or innovations with minimal social and technical chasms between social 

groups which require coordination as opposed to influence to spread (Duffy 2010, Pajaro et al 

2010). Thus, when the goal involves complex conservation actions spreading through 

fragmented communities, additional centrality measures such as degree and/or eigenvector 

should be included as a complement to betweenness centrality for identifying key players.  

In combination with existing work, my results also suggest that the importance of formal 

leadership to conservation diffusion depends on the social network structure underpinning 
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stakeholder organization. For example, the work by Barnes-Mauthe et al (2015) showed that 

formal leadership was not critical for predicting a large range of centrality metrics in a highly 

decentralized society of fishers where social network structure was largely defined by 

ethnicity. In contrast, my study sites were all in Kenya, a highly centralized and hierarchical 

society which is reflected in fisher‘s social networks. Over 87% of the respondents in all 

villages belong to one ethnicity with majority (>91%) indicating not to have lived away from 

home (see Table 11 for more details on ethnicity and migration behaviour for fishing villages 

surveyed). These societal differences may partly explain my contrasting results.  

Depending on the social structure and the conservation objective at hand, my results show 

that involving other types of individuals in addition to, or instead of formal leaders to 

facilitate diffusion is key for certain conservation objectives. For example, though 

institutional responses showed a wide appeal to select formal leaders and experienced fishers 

to facilitate rapid spread of less complex conservation actions, my results show that 

experience is not significantly related to identifying key players for this objective (Table 10). 

Moreover, failure to involve people with productive assets (such as vessel owners in fishing 

communities), which was at least as important as formal leadership for identifying key 

players for this objective, can be a potential barrier for successful implementation. Productive 

assets in addition to MSL and education are also important for identifying critical injection 

points to facilitate the adoption of more complex conservation actions for behavior change, 

both in the long and short term. Existing research by Cinner et al (2009a) and Pollnac & 

Crawford (2000) has similarly suggested that these factors can be indicators of social status in 

communities, and can therefore be important for influencing decision making processes (e.g., 

adoption of new technologies). In the present study, wealthier fishers tended to have high 

degree centrality scores, suggesting they would have more opportunities to directly influence 

others when a new conservation action is recommended for behaviour change. Similarly, 
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people with productive assets (i.e., vessel owners) and those who were highly educated had 

more ties with others who were themselves well-connected throughout the network. This 

implies that while original knowledge of a conservation practise can be gained from official 

sources, i.e., from formal leaders, targeting a broader combination of socially influential 

stakeholder groups may be more effective to galvanize the process of reaching a critical mass 

when initiating more complex conservation actions – such as those expected to spread widely 

in the long-term or those that seek to change behaviour in the short term (Conley & Moote 

2003, Valente & Davis 1999). Perhaps more importantly, excluding these stakeholders may 

have inhibiting effects on adoption and diffusion of more complex conservation innovations 

(Bongaarts 1994, Nabseth & Ray 1974). This sort of conservation diffusion strategy has the 

added benefit of being somewhat less vulnerable to fragmentation even if the role of one type 

of stakeholder is lost or ineffective (Borgatti & Foster 2003).  

My results regarding wealth and productive assets bring to light ethical questions regarding 

elite capture. Conservation initiatives are often participatory projects aimed to improve 

ecological health and the livelihoods of rural people who depend on natural resources 

(Mertens et al 2005, Platteau 2004, Saito-Jensen et al 2010). However, these projects have 

often had limited success in targeting the poorest due to situations of elite capture (Agarwal 

1997, Mansuri & Rao 2004, Platteau 2004, Springate-Baginski & Blaikie 2013), where the 

more privileged members of communities dominate decision making processes and, at the 

expense of other groups, improve their access to collective benefits (Ribot 2007). In the 

present study, I recognize and highlight the importance of MSL – a measure of wealth – in 

selecting key players in the conservation process. In fact, I show that elites often hold key 

structural positions well-placed to facilitate the spread of complex conservation actions for 

behaviour change. This suggests that conservation efforts even in rural communities may be 

particularly vulnerable to elite capture depending on existing inequality and hierarchies 
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(Cleaver 1999). Yet it is important to note that not all elites who have power are corrupt 

(Saito-Jensen et al 2010), a finding that highlights the important distinction between elite 

control and elite capture. For example, in investigating community driven development 

actions and elite capture in Indonesia, Dasgupta and Beard (2007) showed that in cases where 

participatory projects were controlled by elites, benefits continued to be delivered to the poor, 

yet where power was the most evenly distributed, resource allocation to the poor was actually 

restricted (Dasgupta & Beard 2007). Thus, while participatory approaches may face initial 

elite capture, this should not prevent us from seeing their positive long-term potential so long 

as these elites are willing and able to contribute their time and know-how needed to facilitate 

community-level projects and governance. Additionally, if elites adopt good conservation 

initiatives with more frequency and intensity compared to non-elites (Fung & Wright 2003), 

then this cause might still safeguard environmental objectives.  

My results also show that non-elites should be brought on board for widespread impact of 

conservation initiatives to be achieved.  In other words, for real impact to be achieved, 

managers must find ways of enabling poor fishers to adopt conservation activities. In the 

social-ecological context, scholars have previously noted that wealthy individuals have quick 

tendencies to embrace advanced fishing technologies and innovations to increase their fishing 

efficiency, catch rates, and direct economic gains (Brewer et al 2006, Deudero et al 1999, 

Kjelson & Johnson 1978, Reiss et al 2006). By the same token, poor individuals have 

consistently been constrained financially to adopt these technologies due to the high 

investment cost and risk associated with adoption. In a way, people‘s wealth status has 

always determined susceptibility of potential adopters to new ideas and practices (Feder et al 

1985). However, since the majority of the fishers in rural communities are poor, managers 

may resort to other strategies for getting to the critical mass, such as offering incentives or 

shaping adoption inevitability perceptions (i.e., by implying that the innovation is very 
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desirable and adoption is inevitable) to early adopters to enhance adoption (Rogers 2010).  

Still, it is important for participatory approaches to be designed in a way to either avoid or 

minimize the risk of elite capture with a view of promoting equity participation (Mertens et al 

2005), particularly in communities where it is unclear whether avenues are available to local 

residents to redress elite capture and other problems common to development and 

conservation in social-ecological systems. This precaution is particularly critical in rural 

coastal communities dominated by marginalized groups (non-elites) who generally depend 

more than others on natural resources. 

Conclusion 

Here I highlighted a mismatch between ideal strategies and current strategies applied to 

identify stakeholders to facilitate diffusion-related conservation objectives. By providing a 

specific criteria to guide the selection of relevant stakeholders to spearhead four specific 

conservation goals, I not only offer practical solutions to better identify critical injection 

points to achieve intended conservation objectives, but also help to mitigate the problem of 

stakeholder identification in ways that avoid blueprint approaches or panacea (Ostrom 2007). 

By showing how other key players have been overlooked in the current conservation strategy, 

my findings indicate that continued failures to achieve sustainability in coastal social-

ecological systems (Botsford et al 1997) may in part be attributed to the absence of specific 

guidelines to assist in identifying relevant stakeholder representation in conservation 

diffusion processes.  
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Chapter 5: Evaluating outcomes of conservation diffusion using multidimensional 

indicators of wellbeing  

Synopsis  

Many conservation interventions are hypothesised to be beneficial for both the environment 

and people‘s wellbeing (i.e. a win-win), but this has rarely been rigorously tested. Here, I 

examine the effects of adoption or non-adoption of a conservation intervention on three 

dimensions of people‘s wellbeing (material, relational, subjective) over time. I collected 

panel data from fishers (n = 250) in both control (without the intervention) and experimental 

villages (with the intervention) encompassing three observations over two years. Across 

multiple domains of wellbeing, I find no evidence that adoption did any harm to the local 

populations affected by the intervention. Indeed, I show modest improvements in material 

and subjective livelihood wellbeing for adopters relative to controls over time. The variations 

I find in wellbeing experiences (in terms of magnitude of change) among adopters, non-

adopters, and controls across the different domains over time affirms the dynamic and social 

nature of wellbeing. Findings provide a more holistic picture of the consequences of 

conservation diffusion processes on human associated communities.  
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Introduction 

Implementation of new ideas and practises can have both positive and negative outcomes on 

people (Rogers 2010). Understanding the consequences of transformative conservation ideas 

and practises on people is therefore critical. For example, demonstrating positive outcomes of 

conservation on people could improve cooperation and support for collective action among 

local people (Milner‐Gulland et al 2014).  Conversely, implementation of conservation would 

be somewhat difficult if negative impacts on people are associated with interventions (de 

Lange et al 2016). Indeed, assessing impacts on people from a biodiversity conservation 

intervention can help identify winners and losers in the social-ecological system (Leisher et al 

2013). 

To date, evaluations of the impacts of conservation interventions on people are rarer than 

those focused on the environment (de Lange et al 2016, Milner‐Gulland et al 2014, 

Woodhouse et al 2015). The limited evaluations exploring the effects of conservation on 

people‘s wellbeing tend to use monetary indicators or material measures of poverty (Charles 

et al 2015, Cochrane 2000) - examinations that are biased towards economic dimension of 

people‘s wellbeing and are largely premised on material deprivation and a deficit centred 

perspective (Coulthard 2012, Weeratunge et al 2014). Meanwhile, there is increasing 

consensus in international policy circles that wellbeing is multidimensional (Leisher et al 

2013). Recent conceptualisations of wellbeing have indeed moved toward a three 

dimensional framework comprised of material, relational, and subjective dimensions 

(Abunge et al 2013, Gough & McGregor 2007). Material wellbeing captures objective 

material resources such as income, assets, livelihoods, employment, and the natural 

environment that a person can draw upon to meet their needs (Coulthard 2012, Gough & 

McGregor 2007). Relational wellbeing entails what people do through social relationships 

that facilitates/or hinders the pursuit of good life (Narayan-Parker 2000). These connections 
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may include forms of collective action, relationships of care and love, social institutions, or 

cultural rules and norms (Coulthard 2012, Gough & McGregor 2007). Subjective wellbeing 

encompasses how a person thinks and feels about their life and what they have and do with 

what they have (Coulthard 2012, White 2010). Together, these concepts can be used to 

positively or negatively evaluate the extent to which actions or decisions affect people 

(Breslow et al 2016).  

Calls for a more holistic approach to studying wellbeing in the conservation discourse have 

been accompanied by recent methodological guidelines (Woodhouse et al 2015), but 

empirical studies are still rare. Indeed, no study to date has compared how multi-dimensional 

aspects of wellbeing between adopters and non-adopters of conservation initiatives change 

over time. Here, I ask ―how does adoption of a conservation intervention influence material, 

relational, and subjective wellbeing?‖  To provide a more robust and comprehensive 

evaluation of outcomes, this analysis draws on a before-after-control-intervention (BACI) 

design. The design combines controls (villages where the escape slot trap was not 

introduced), intervention villages (where the escape slot trap was introduced), and baselines. 

Having controls allowed changes in wellbeing conditions to be explicitly attributed to 

intervention studied. Given that wellbeing outcomes can change through the course of an 

intervention (McGregor 2007), this study adopted a longitudinal approach that include 

baselines to monitor trajectories on change over time. 

I integrate both objective and subjective measures of wellbeing, to better understand how a 

conservation intervention affects both what people have (objective measures) and how they 

feel about what they have (subjective measures). By combining objective and subjective 

evaluations of wellbeing, I emphasize the holistic, dynamic and social nature of wellbeing 

(Camfield et al 2009b). This brings together a novel configuration of independent and 

interdependent domains, counterbalancing the current trends in environmental policy that 
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privilege objective material measures of wellbeing (Woodhouse et al 2015). This approach 

further reinforce the value of subjective feelings, perceptions, and social dimensions of 

people‘s lives that are often underplayed when evaluating conservation (McGregor & Sumner 

2010). My evaluation further integrates the key aspects of casual and associated 

counterfactual analysis both theoretically and methodologically in order to ensure any 

changes in the outcome can be attributed to the intervention (see chapter 2). 

Methods 

Study design  

This research was conducted in all six study villages (i.e. both experimental and control 

sites). I employed a before-after-control-intervention (BACI) design to assess whether the 

escape slot traps affected wellbeing (Smith 2014). This method compares changes in 

outcomes (here, wellbeing indicators) between adopters of the escape slot trap relative to 

non-adopters and control villages (where the escape slot trap was not introduced) over time. 

The BACI design therefore accounts for bias due to: (1) initial differences in wellbeing 

between adopters, non-adopters, and controls; and (2) changes in wellbeing that are a result 

of broader-scale trends (Ferraro & Hanauer 2014). Controls sites are of special relevance to 

evaluation research because what matters to people in their assessment of their quality of life 

can be changed by the intervention itself (Milner‐Gulland et al 2014). Controls were selected 

based on their similarity with the intervention sites in regards to a suite of measurable 

conditions such as fishing gear utilization and resource dependency. To avoid spillover 

effects of the project or contamination by other interventions, I selected control sites situated 

several kilometres way (>20km) from the intervention sites and without an ongoing 

conservation project. This selection criterion is consistent with the guiding principles for 

evaluating impacts of conservation interventions on human wellbeing and the theory of 

change (Woodhouse et al 2015). To ascertain whether changes in wellbeing are immediately 
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or eventually reflected in conservation outcomes I collected data between October 2015 and 

January 2018. In this time, I conducted a baseline survey before the conservation practice was 

rolled out, followed by two follow-up surveys one and two years later after the launch of the 

project. The same questions were asked of the same participants in experiment and control 

sites, in all three time periods.  Fishers that adopted but later abandoned using the escape slot 

trap (dis-adopters) were still considered adopters because they had used the intervention.  

Operationalising wellbeing 

Material wellbeing: I measured one component of material wellbeing, material assets, 

represented by material style of life (MSL; Table 11). MSL is an indicator of wealth based on 

a locally grounded assessment of a wide range of household possessions and structure 

(Cinner et al 2009a). MSL captures ones quality of the living environment and can be a 

robust measure of economic and material wealth (Woodhouse et al 2015). I use MSL rather 

than income due to its preponderance in studies and importance as comprehensive indicator 

of material resources. In chapters 3 and 4, I used a factor analysis to create a wealth metric 

from the first axis of a principal component analysis (PCA). However, for this chapter I had 

to modify this slightly. Because each respondent had three observations in time, each with 

potentially different material assets, I could not use the PCA from earlier chapters. Instead, I 

used factor loadings created from the baseline state to weight each of the MSL items, which 

allowed me to create wealth scores that were directly comparable between the three sampling 

periods. To assess the reliability of scores across the different sampling periods, I used the 

Cronbach's alpha technique (Tavakol & Dennick 2011). Cronbach's alpha determines the 

average correlation or internal consistency among factors extracted from multipoint and/or 

dichotomous formatted scales (Santos 1999). A value of 0.89 indicate that the use of factor 

loadings was reliable at the 5% level of significance and therefore the MSL scores are 

suitable for further analysis (Nunnally 1978).  
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Relational wellbeing: Relational wellbeing was operationalized using a measure that captures 

relational balance of social relationships as developed in the network theory (Buunk & 

Schaufeli 1999, Sadilek et al 2018, Tóth et al 2018). Relational balance is grounded on the 

notion of giving and receiving which allows relational benefits such as social capital to be 

shared among members of a social system through social exchange (Leana III & Van Buren 

1999). A good social relational balance is a critical component of social relationships because 

it underpins how peoples relationships can be evaluated especially where social connections 

constitutes critical pathways through which people access other human needs and benefits in 

the society (Sadilek et al 2018). Indeed, a good relational balance can determine the nature of 

individuals‘ social embeddedness, whereas relational imbalance can be a reflection of 

relational tensions as a result of behaviour change, e.g., adoption of high-risk conservation 

intervention such as the escape slot trap (Tóth et al 2018). Here, I looked at reciprocity (i.e., 

number of reciprocated ties) based on fishing and information sharing ties. In the current 

context, these two relationships (fishing and information exchange) are critical for fishers in 

their pursuit of wellbeing because majority of households depend primarily on fishing to 

support their livelihoods.  

Subjective wellbeing: Subjective wellbeing was operationalized using three indicators that 

captured individuals‘ perceptions of different components of their lives. In developing these 

indicators, I drew on a framework developed from wellbeing assessments on coastal fishing 

villages in Kenya that identifies the three most important domains for their quality of life 

(Abunge et al 2013). For the items covered in Abunge et al (2013), participants indicated how 

satisfied they were with their food and income situation (livelihoods wellbeing, i.e., livWB), 

social relationships with other members of the community (cohesion wellbeing, i.e., cohWB), 

and their job (work wellbeing, i.e., worWB) (Table A8). 
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Table 2. Multidimensional framework used in the assessment of wellbeing outcomesa. Qualitative, quantitative indicators and data 
sources for the multiple domains of wellbeing. The indicator of relational of wellbeing i.e., reciprocity (number of reciprocated ties) is 
based on fishing and information sharing ties. The two relationships (fishing and information exchange) are deemed critical for 
fishers in their pursuit of wellbeing because majority of households depend primarily on fishing to support their livelihoods. 

 

Material

Relational

Subjective

Wellbeing dimension Indicator type

Basic needs 
satisfaction

3. Quantified satisfaction levels
regarding food & income 
(livWB)

Outcome

Wealth

Relational balance

1. Material style of life (i.e., 
possessions of key assets & 
type of household structure)

2. Reciprocity (i.e., number 
of reciprocated  ties)

Perceptions about food & 
income

Perceptions about work 
enjoyment

Perceptions about social 
cohesion

Interval 

Indicator Data type

Social 
relationships

Experienced 
quality of life

Interval

4. Quantified satisfaction levels
regarding relationship with 
community members (cohWB)

5. Quantified satisfaction levels
regarding work enjoyment & 
identity (worWB)

Ordinal; Likert scale 1-5 

Ordinal; Likert scale 1-5 

Ordinal; Likert scale 1-5 

What you have

Your social 
connections

How you feel about 
what you have and 
your social 
relationships
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aSource: adapted from the guiding principles for evaluating the impacts of 
conservation interventions on human wellbeing Woodhouse et al (2015) and drawing 
on Britton & Coulthard (2013), McGregor & Sumner (2010), and the World Bank‟s 
„Voices of the Poor‟ research (Narayan et al 2000). I draw on network theory of 
wellbeing to conseptualize relational wellbeing (Ayalon et al 2018, Borgatti et al 
2018, Sadilek et al 2018, Tóth et al 2018). 
 
 
These constructs not only provide a condensed assessment of quality of life (Priebe et al 

1999) but are also complimentary to the objective measures. Assessment of subjective 

wellbeing was conducted by means of 5-point Likert scale questions with endpoints very 

satisfied – very unsatisfied. I triangulated my subjective measures using a categorical 

question that captured perceived change in wellbeing. Specifically, I asked fishers to state 

whether they felt a change (based on a 5-point Likert scale) in the three domains of subjective 

wellbeing over the time period of the study. In so doing, I was able to determine whether my 

subjective measures were robust.  

 
Analysis 

Firstly, I examined whether there were differences in wellbeing conditions between adopters, 

non-adopters, and controls at the baseline time using rank based Kruskal-Wallis H test. I then 

used proportional odds models to test for differences in the three dimensions of subjective 

wellbeing (ordered categorical data), and a general linear mixed model with a Gaussian 

distribution was used for material and relational wellbeing (continuous data). Because my 

study uses panel data with at least two observations for each respondent, all analysis on 

differences between adopters, non-adopters, and controls are presented as deltas (i.e. the 

difference between wellbeing conditions at baseline level, T0 from conditions during the first 

follow-up (short term, T1) and second follow-up (medium term, T2). The design involved 

testing the effect of the categorical explanatory variable (adoption, control villages, and non-

adoption) – on each of the different domains of wellbeing (the response variables) (Table 12). 

Adopters were set as the reference category. To improve the attribution of the effects to the 
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intervention versus other socioeconomic conditions occurring in the community, I controlled 

for covariates that have been shown previously to influence wellbeing outcomes in fisheries 

social-ecological settings (Gurney et al 2016). These are formal leadership, fishing 

dependency, access to credit, occupational multiplicity, age (age of the fisher years), 

education (maximum grade completed in formal education), and marital status (Table 3; 

Table 12).  

Table 3. List of variables used in the analysis. Material style of life is a score 
computed from a number of household items as stand-alone attributes for indicators 
of wealth. Reciprocity captures the number of reciprocated ties based on fishing and 
information sharing ties. Levels of satisfaction regarding food and income (i.e., 
subjective livelihood wellbeing), social relationships with other community members 
(i.e., subjective social cohesion), and work enjoyment and identity (i.e., subjective 
work wellbeing) are denoted as livWB, cohWB, worWB respectively. Non-adopters 
are individuals who never used the escape slot trap in villages where the intervention 
was introduced. Controls are individuals from villages where the escape slot trap 
was not introduced. Description of control variables as in Table 3. 

Wellbeing dimension Response variables  Predictor variables Control variables 

Material Material style of life  Adopter Age 
Relational Reciprocity Non-adopter Occupational multiplicity 
Subjective livWB Control Fishing dependency 
  cohWB   Formal leadership 
  worWB   Education 
      Marital status 
      Credit access 
 

An examination of variance inflation factors indicated there was no signs of multicollinearity 

among these socioeconomic variables (Fox & Weisberg 2011). Summary statistics (i.e., 

mean, standard deviation, minimum, maximum, and percent proportions) of all control 

variables included in the regression frameworks are reported in Table A8. Site was included 

as a random factor to account for the hierarchical nature of the data (i.e. individuals nested in 

sites). All timescale results are presented over the short and medium terms. The relevant 

assumptions were tested for each of the statistical models (e.g. normality and homogeneity of 

variances for linear mixed models). I also ran linear models for wellbeing and compare 
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results with the proportional odds models. No differences were noted in the results and 

therefore not presented.  Network data were analysed using UCINET for Windows version 6 

and Gephi version 0.9.2 (Bastian et al 2009, Borgatti et al 2002). All statistical analyses were 

conducted using R software (version 3.4.5).  

Results 

Baseline conditions 

Of the 250 respondents, 42% adopted the escape slot trap, whereas non-adopters and controls 

are represented by 29.2% and 28.8% of the sample respectively (Table A8). I found no 

evidence that there were differences in baseline values between adopters, non-adopters, and 

control villages for the different domains of wellbeing, except for MSL (Table A9). This 

suggests that the parallel trend assumption is likely to hold, except for MSL, and thus those 

results in particular should be interpreted with caution.  

Changes in wellbeing over time 

Mean changes in wellbeing for adopters, non-adopters, and controls for each individual fisher 

are presented as deltas over the short and medium term (Fig. 8). Improvements in material 

wellbeing (MSL) for adopters were slightly higher compared to non-adopters and controls in 

the short term. Both adopters and non-adopters within villages where the escape slot trap was 

introduced showed even greater improvements in material wellbeing in the medium term 

relative to the magnitude of change they experienced in the short term (Fig. 8). Only a slight 

increase in material wellbeing was experienced by control villages in the medium term 

relative to the magnitude of change recorded in the short term. Changes in relational 

wellbeing (reciprocity) for adopters, non-adopters, and controls were relatively similar in the 

short term, although non-adopters appeared to have experienced a slightly higher magnitude 

of change. Short term gains in relational wellbeing among adopters and non-adopters were 

however lost in the medium term (Fig. 8). 
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Figure 8. Mean changes wellbeing among adopters, non-adopters and controls over 
the short (T1) and medium term (T2). Mean change is relative to baseline (T0). 
Domains for subjective wellbeing are as follows: how satisfied they were with their 
food and income situation (livelihoods wellbeing, i.e., livWB), social relationships with 
other members of the community (cohesion wellbeing, i.e., cohWB), and their job 
(work wellbeing, i.e., worWB) (Abunge et al 2013, Priebe et al 1999). The indicator of 
relational of wellbeing i.e., reciprocity (number of reciprocated ties) is based on 
fishing and information sharing ties.  

 

Changes in relational wellbeing in control villages were maintained at the same level in either 

time period. Improvements in subjective livelihood wellbeing (livWB) for adopters were 

slightly higher compared to non-adopters and controls in the short term. The level of change 

in subjective livelihood wellbeing for non-adopters was greater in the medium term relative 

to the magnitude of change they experienced in the short term. Changes in subjective 
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livelihood wellbeing among adopters and control villages were maintained at the same level 

in either time period (Fig. 8). There was consistent decline in subjective social cohesion 

wellbeing (cohWB) among all three groups (i.e., adopters, non-adopters, and controls) in 

either time period. A more detailed observation however shows that social cohesion 

decreased less among adopters than non-adopters and controls in either time period. 

Improvements in subjective work related wellbeing (worWB) for adopters and non-adopters 

were relatively higher compared to the control villages in the short term. Although these 

improvements were maintained for adopters in the medium term, short term gains in 

subjective work related wellbeing among non-adopters and controls were lost in the medium 

term (Fig. 8). 

Differences in changes in wellbeing over time 

The increase in adopters‘ material wellbeing in the medium term was greater than changes 

experienced within the control villages, but adopters‘ increases did not differ from that 

experienced by non-adopters‘ in either time period (Fig. 9). There was no significant 

difference on changes in relational wellbeing among adopters relative to non-adopters and 

controls in either time period. The increase in adopters‘ subjective livelihood wellbeing in the 

short term was greater than any changes experienced within the control villages and non-

adopters within experiments where the escape slot trap was introduced. However, adopters‘ 

increases in subjective livelihood wellbeing did not differ from that experienced by non-

adopters and controls in the medium term. The decrease in controls‘ subjective social 

cohesion wellbeing in the medium term was greater than changes experienced by adopters. 

No significant difference on changes in subjective social cohesion wellbeing was detected 

among adopters relative to non-adopters and controls in the short term (Fig. 9). The increase 

in adopters‘ subjective work related wellbeing among adopters over the short and medium 

term did not differ from that experienced by non-adopters and controls in either time period 
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(Fig. 9). Testing for robustness of my subjective measures of wellbeing, I show strong 

correlation between perceived and actual change across all three domains for the three groups 

sampled (Fig. A1). Socioeconomic factors that were related to changes in wellbeing 

dimensions include access to credit, formal leadership, education, fishing dependency and 

marital status (see full model results in Table A10). 

 

 

Figure 9. Difference in changes in wellbeing between adopters and controls (blue) 
and non-adopters (red) of escape slot traps assessed in the short and medium term. 
Differences in changes in wellbeing associated with the response variable were 
contrasted with the base category, i.e., adopters. 

 

Discussion 

The impacts of conservation on associated human communities remain a topic of contentious 

debate (Milner‐Gulland et al 2014, Woodhouse et al 2015). Here, I emphasize the relevance 

of multiple domains of wellbeing, to better understand how a fisheries conservation 
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intervention (i.e., escape slot trap) affects both what people have (objective measures) and 

how they feel about what they have (subjective measures) (Coulthard et al 2011). Overall, I 

show notable variations in the magnitude of change in wellbeing conditions experienced by 

adopters, non-adopters, and controls over two time period. This affirms that wellbeing is not 

a discrete outcome, but an ongoing dynamic process, changing through time or in the course 

of an intervention (Woodhouse et al 2015). Short term and medium term gains in terms of 

material, subjective livelihood, and work enjoyment wellbeing was higher for adopters 

relative to controls. Though adopters showed a decrease in relational wellbeing in the 

medium term, differences in the level of change between adopters, non-adopters, and controls 

were not significant. Aside from subjective livelihood wellbeing where the short term gains 

for adopters were higher than changes experienced by non-adopters, no significant 

differences were observed between adopters and non-adopters in all other domains of 

wellbeing over time. Consistent decline in subjective social cohesion wellbeing for adopters 

cannot be attributed to the intervention because similar trends were observed among non-

adopters and controls. Taken together, these results show no evidence that the conservation 

intervention did any harm to people that adopted it. 

This study is the first to examine how wellbeing outcomes differ among adopters and non-

adopters of conservation interventions using a BACI approach. I highlight intricate and 

diverse links between wellbeing and conservation, some of which could be specific to the 

conservation intervention studied here (i.e., escape slot trap). Foremost, the variation I found 

in wellbeing experiences among adopters, non-adopters, and controls over time in my 

longitudinal analysis affirm the dynamic nature of wellbeing (Woodhouse et al 2015). These 

findings reflect Gurney et al (2014)‘s study of the impacts of protected areas over three time 

periods, and highlights the importance of going beyond typical approaches of measuring 

outcomes over a single time period to examine out the impact of an intervention may differ at 
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various points of time after its implementation. My analysis also shows that short term gains 

in some aspects of wellbeing can be lost over time. For example, adopters experienced 

greater changes in subjective livelihood wellbeing in the short term relative to controls and 

non-adopters. However, these short term improvements were narrowed between the three 

groups (i.e., adopters, non-adopters, and controls) in the medium term. Baseline shifts, i.e., 

the change back to using normal unmodified traps by dis-adopters perhaps could have 

contributed to the loss of short term gains in some aspects of wellbeing. These findings are 

mirrored in other studies that showed the loss of initial gains in terms of empowerment and 

wealth among beneficiaries of marine protected areas in Indonesia (Gurney et al 2014); 

highlighting the need for long term monitoring of conservation outcomes on affected 

populations.  

Changes experienced by adopters and non-adopters within experiments (i.e., where the 

escape slot trap was introduced) across multiple domains of wellbeing were greater than 

those in control villages in either time period. However, changes experienced by adopters 

relative to non-adopters within experiments did not show much difference in either time 

period. This means that the presence of the intervention within experiments had an impact on 

people‘s wellbeing over time. Indeed, the benefits associated with the intervention were 

illuminated by the modest improvements in material wellbeing for both adopters and non-

adopters within experiments over the medium term. In many cases, bycatch management 

initiatives (such as the one studied here) are often introduced to protect biodiversity (e.g., by 

letting small and non-target fish exit though escape slots) (Johnson 2010). It is often expected 

that improved ecological conditions will in turn lead to increased catches over time 

(McClanahan & Kosgei 2018).  Subsequently, higher catches are expected to translate into 

positive socioeconomic outcomes e.g., improved income and livelihoods that will continue to 

accrue over the long term (Christie 2000). In this context, some degree of spillover of 
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benefits perhaps explains the improvements of wellbeing for both adopters and non-adopters 

of escape slot traps within experiments.  

There were no differences in changes experienced by adopters, non-adopters, and controls in 

terms of subjective work related wellbeing and relational wellbeing in either time period. 

This means that neither the presence of the intervention in experimental villages nor adoption 

of the escape slot trap was sufficient to significantly alter perceptions about fishing as well as 

social relationships among fishers studied. Previous research has shown that fishers have a 

strong attachment to fishing as an occupation even with diminishing returns (Cinner et al 

2009a). Indeed, in small-scale communities where fishing supports a significant portion of 

the population, perceptions about fishing might be deeply entrenched into the fabric of the 

society. This suggests that reshaping fisher‘s opinion on any component about fishing or 

social connections in the community can be challenging - a key observation that need to be 

recognized in fisheries governance.  

It is acknowledged that the presence, absence, or adoption of the conservation intervention 

might not explain all trends observed in this analysis. For example, I found consistent decline 

in subjective social cohesion wellbeing among adopters, non-adopters, and controls in either 

time period. These trends indicate that changes or breakdown of social cohesion should be 

attributed to other factors rather than presence or absence, adoption or non-adoption of the 

conservation intervention. Thus, despite my rigorous sampling design other socioeconomic 

trends that might have occurred within villages studied that could have funnelled this trend. 

However, the fact that social cohesion decreased less among adopters and non-adopters 

(within experiments) than controls in either time period may suggest that the presence, but 

more so adoption of the conservation intervention within experiments had a buffering effect 

on the consistent breakdown of social cohesion over time.  
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This study employed an alternative approach in assessing relational wellbeing using an 

indicator of relational balance as captured in the network theory. Prior to this study, 

evaluations on relational outcomes of conservation had favoured subjective questions that 

simply capture how satisfied one is with their social relationships in the wide community 

(Breslow et al 2016, Britton & Coulthard 2013) - as I also did here. However, relying on such 

general questions that are far removed from the intervention can result in attribution errors 

because people tend to maintain social relationships comprising hundreds of members 

(Warriner & Moul 1992, Woodhouse & Emiel de Lange 2016). Yet, at the heart of evaluation 

is the process of attributing specific effects to the intervention rather than to other intervening 

factors in the wider community (Woodhouse et al 2015). The value of the network approach 

in assessing relational wellbeing in the context of conservation was demonstrated in the 

findings. The buffering effect associated with the presence of escape slot traps within 

experiments (i.e., subjective social cohesion decreasing less among adopters and non-

adopters than controls) was not reflected in the patterns of relational wellbeing (i.e., 

reciprocity). Instead, controls appeared to have more reciprocated ties (i.e., improved 

relational wellbeing) compared to adopters and non-adopters in the medium term. I cannot 

conclude that there was a decrease in relational wellbeing among adopters relative to non-

adopters and controls because differences between the three groups were not significant. 

These findings can potentially challenge the traditional approach on how relational wellbeing 

has been conceptualized in impact evaluation research. The network property used here, (i.e., 

reciprocity - tendency that two people that are connected speak to each other) deemphasize 

on numeric properties of networks and can be applied to any evaluation design regardless of 

the intervention or the number of nominations made by respondent.  
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Conclusion  

Calls for putting human communities at the centre of impact evaluation studies have suffered 

from lack of methodological robustness and rarely pointed to clear cut arguments about net 

outcomes (Beauchamp et al 2018a, Biedenweg & Gross-Camp 2018). Here, I use a set of 

comprehensive indicators that capture the complex and multidimensional nature of wellbeing 

over time (Dawson et al 2018). In so doing, I bring together a novel configuration of 

independent and interdependent domains, counterbalancing the current trends in 

environmental policy that privilege objective material measures of wellbeing (Woodhouse et 

al 2015). The variation I found in wellbeing experiences between adopters relative to controls 

and non-adopters over time affirms the importance of taking a disaggregated and longitudinal 

approach in future evaluation research. Given the impact of the intervention differed between 

dimensions of wellbeing, I contend that even if material and other objective needs for target 

populations are met, imposing conservation policy that fails to capture hidden non-material 

aspects of wellbeing could potentially be problematic. Future assessments of wellbeing in 

fisheries social-ecological systems should perhaps look deeper into the effect of other 

socioeconomic conditions such as education, opinion leadership, and dependency in fishing. 

These socioeconomic factors were related to changes in wellbeing experiences among fishers 

at different time scales. The heterogeneity in socioeconomic conditions among various social 

groups in social-ecological systems might result in differences in the way impact of 

conservation is felt on people over time. 

I find no evidence that adoption of the conservation practice was detrimental to the overall 

wellbeing for adopters; indeed I find modest improvements in material and subjective 

livelihood wellbeing for adopters relative to controls over time. This study therefore provides 

wider legitimacy and support towards gear-based conservation strategies particularly in rural 

economies where acceptability of participatory conservation interventions remain a key 
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challenge. Longer term monitoring is however strongly recommended to provide 

understanding of whether the material and subjective benefits will continue to accrue over 

time. Sustained improvements over the long term could provide a more sustainable basis for 

pathways out of poverty hence increasing the resilience of communities engaged in 

conservation. Given the difficulties in measuring outcomes, findings of this study can be used 

to inform environmental policies and interventions such as collaborative governance and 

collective action (Scott & Thomas 2017). Although my study adopts frameworks that are 

grounded in the theoretical strands of wellbeing, the interaction of other dimensions of human 

wellbeing such as human rights, capabilities, resilience, and vulnerability should be seen as a 

new research frontier. 
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Chapter 6: Ecological implications of a gear based conservation intervention 

Synopsis 

An analysis of ecological implications of the escape slot trap provides evidence of whether 

adoption of the conservation intervention is beneficial to the environment. I employ a 

functional trait-based approach to determine whether escape slot remove and potentially 

compete with other gears for fishes with unique combinations of functional traits (diet, body 

size, depth, position in water column, period of activity, schooling behaviour) in a coral reef 

fishery. Data from 25 fish landing sites across Kenya over a seven-year period show that fish 

assemblages in escape slot traps carry the least functionally diverse assemblages.  Nets, 

including gillnets and beach seines, target the greatest breadth of functional diversity. These 

results indicate that using escape slot traps has the potential to lead to environmental 

improvements. However, the potential ecological benefits from escape slot traps are muted 

because two-thirds of the functional entities released by the escape slot traps are targeted by 

other gear types. The redistribution of conservation gains suggest that switching to escape 

slot traps is not likely to be beneficial to the coral reef ecosystem unless some other gears are 

simultaneously excluded from the fishery. These results call for caution when assessing 

ecological implications of gear-based conservation innovations particularly in gear-diverse 

coral reef fisheries where there are competitive interactions between gears. 
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Introduction 

Gear-based fisheries management has become a popular strategy for managing coral reef 

fisheries in many developing countries (Condy et al 2014, Johnson 2010, Larocque et al 

2012). Under this management strategy, resource managers mainly restrict the use of certain 

gears to protect specific sizes and species of fish (McClanahan & Mangi 2004). However, in 

instances where restricting the use of certain gear results in a large increase in the number of 

fishers using another type of fishing gear, resource managers opt to modify existing gears 

instead of outright prohibition (Milton et al 2009). This form of gear based fisheries 

management has received strong support from resource users because it allows the use of 

their existing skills and local knowledge during transition to the new gear (Condy et al 2014). 

Modifying existing gears also eliminates extra costs incurred on training especially when 

fishers transit to new gears (Mbaru & McClanahan 2013). 

Existing research on gear based management approaches only relates different gear types and 

catches composition (sizes, species diversity and selectivity) to generate management 

recommendations aimed at maintaining fish populations (Dalzell 1996, Gobert 1994, Mangi 

& Roberts 2006, McClanahan & Mangi 2001, McClanahan & Mangi 2004, Pet-Soede et al 

2001). For example, previous research on escape slots has shown that escape slots can be 

effective in reducing catch of juveniles and narrow-bodied species (i.e. bycatch) (Gomes et al 

2014, Johnson 2010, Mbaru & McClanahan 2013). Although these assessments provide 

valuable insights on ecosystem impacts of non-selective fishing, the growing interest in an 

ecosystem-based approach has stressed maintaining and sustaining ecological functions 

(Sinclair et al 2002, Tillin et al 2006).  

Choosing relevant functional traits and the complementary roles of organisms has become the 

cornerstone of functional ecology (McGill et al 2006, Violle et al 2007). By considering 
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biological traits as proxies for function, the emerging functional trait-based approach can help 

uncover ecosystem processes and functional implications of changes in fisheries assemblages 

(Mouillot et al 2013, Villéger et al 2017). Trait-based approaches were initially applied in 

plant ecology (Cornwell et al 2006)  and are now widely used across other organisms, such as  

birds (Naeem et al 2012), bats (Norberg 1994), corals (Darling et al 2012), insects (Poff et al 

2006), and fish (Mouillot et al 2011), to provide key insights into the functional structure of 

assemblages. The approach has proven to be exceptionally versatile, offering insights into 

changes in assemblages through time (Friedman 2009, Villéger et al 2011), the impacts of 

species invasions (Corbin & D‘Antonio 2010, Olden et al 2006), and responses to 

environmental change (Graham et al 2015, Laughlin et al 2011). 

Several studies have used functional traits to assess how fishing modifies aquatic ecosystems 

based on in situ observations in temperate countries (Guillemot et al 2014, Koutsidi et al 

2016, Tillin et al 2006). However, more remains to be understood about the functions that are 

being removed from the ecosystem by fishing, which is particularly important for the many 

multi-species fisheries in vulnerable tropical ecosystems. Consequently, linking different 

fishing gears to declines in targeted species and their ecological function remains unclear. In 

multi-species coral reef fisheries, fishing gears are known to exhibit some degree of overlap 

in the species they capture (McClanahan & Mangi 2001) and to reduce fish biodiversity 

(McClanahan 2015) highlighting the need to understand how competitive interactions among 

gear types affect outcomes (McClanahan & Kosgei 2018). Yet, only limited empirical 

attempts quantify overlaps in gear selectivity (McClanahan & Kosgei 2018). 

Here I employ a trait-based approach to assess the functional selectivity of escape slot trap. I 

then compare selectivity patterns against six other fishing gears, many of which are 

commonly used in small-scale coral reef fisheries around the world. Specifically, I ask the 
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following questions; (i) do escape slot traps target specific functional traits that could 

potentially affect reef ecosystems, and (ii) are there overlaps in trait composition between 

escape slot trap and other gears?  

Material and Methods 

Study sites and catch sampling 

I used catch data on fish assemblages from 25 coral reef and lagoon sites conducted monthly 

between 2010 and 2016 in Kenya. (Fig. 5). Onsite observers identified landed catch to 

species level and recorded the number, size (total length in cm), gear used, landing site name, 

and date. Although all sampling was conducted during daylight hours, these include catches 

attributed to nighttime fishing activities as observers also intercepted fishers returning from 

their overnight fishing. At least 8 days of data collection was achieved every month, 

translating into a total of 599 sampling days over the survey period. To avoid potential 

misidentification, I excluded 60 species that were represented by only one individual in each 

gear. My analysis is based on 19,401 fish representing 245 species from 25 families, with a 

mean ± SD of 777 ± 546 fishes per site. I produced cumulative frequency curves to determine 

whether enough samples were collected to reach asymptotes of observed functional entities. 

All curves reached saturation as evidenced by the asymptote plateaus in the number of 

functional entities suggesting that my sampling for each gear was adequate (Fig. 10). 

Consequently, adding more samples of fish should not affect my results.  

I assess functional selectivity to determine whether escape slot traps are associated with 

certain traits. To determine the potential for ecological impact of escape slot traps, I 

quantified relative differences in functional selectivity between escape slot traps and other 

gear types (i.e. basket trap, hook and line, speargun, gillnet, beach seine, and other nets). 
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Apart from gillnet and beach seine, occasionally artisanal fishers use a variety of other nets 

such as ringnets, scoop nets, cast nets, and mosquito nets; I therefore include a separate gear 

category of ‗other nets‘. Gillnets and beach seines were prioritized over other nets because 

they are more frequently used. 

 

Figure 10. Cumulative frequency curves of the number of functional entities (i.e., 
unique combinations of functional traits) present in sampled fish assemblages per 
gear. Sample sizes are displayed in parenthesis. 

 

Associations of gears with functional traits  

Fish species were assigned to a set of categorical functional trait values relating to their diet, 

body-size, mobility, time of activity, schooling behaviour, and position in the water column. 

These ecological traits are key for determining trophic role and have been used in other 

studies examining functional diversity, vulnerability, and redundancy on fish assemblages in 

tropical ecosystems (Micheli et al 2014, Mouillot et al 2014). Based on main items 

consumed, I characterized diet into seven trophic categories: macroalgal herbivorous (i.e., 

fish eating large fleshy algae and/or seagrass), carnivorous (including fish and cephalopods), 
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invertivorous targeting mobile invertebrate (i.e., benthic species such as crustaceans), 

herbivorous-detritivorous (i.e., fish feeding on turf or filamentous algae and/or undefined 

organic material), omnivorous (i.e., fish for which both vegetal and animal material are 

important in their diet), invertivorous targeting sessile invertebrates (i.e., corals, sponges, 

ascidians), and planktivorous (i.e., fish eating small organisms in the water column). Period 

of activity had three ordered categories: nocturnal, both diurnal and nocturnal, and diurnal. I 

categorized mobility based on three ordered subgroups: mobile within a reef, sedentary 

(including territorial species), and mobile between reefs. Schooling was coded using five 

ordered categories: large (>50 individuals) groups, medium (20-50 individuals), small (3-20 

individuals), pairing or solitary. Vertical position in the water column was coded using three 

ordered categories: bentho-pelagic, pelagic, and benthic. Fish size was coded using six 

ordered categories: 0-7 cm, 7.1-15 cm, 15.1-30 cm, 30.1-50 cm, 50.1-80 cm, and >80 cm 

(Mouillot et al 2014). 

Each unique combination of these six traits is considered a distinct functional entity (which 

may be comprised of one or more species) (Mouillot et al 2014). For example, of the 245 

species sampled, I derived 163 unique functional entities. Associations between functional 

traits and fishing gears (based on abundance data) were examined using Principal Component 

Analysis (PCA) based on fourth root transformation of Wisconsin double standardized data. 

In this standardization, the fourth root of each element is calculated after each element is 

divided by its column maximum and then divided by the row total. This standardization is 

recommended for ordination of species data that exhibit substantial differences in sample 

sizes across sampling units (Legendre & Gallagher 2001).  

Functional structure 

A trait-based ordination analysis was used to describe variation in fish assemblage functional 

structure among gear types. To build a multidimensional functional space (Mouillot et al 
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2013), I performed a Principal Coordinates Analysis (PCoA) using a functional entity x traits 

matrix. Functional entity coordinates on the first four principal axes (PC) of this PCoA were 

used to construct a synthetic multidimensional ordination based on pairwise Gower‘s 

distances between functional entities (Legendre & Legendre 2012) (Fig. 10). Gower‘s 

distances allows mixing different types of variables while giving them equal weight 

(Legendre & Legendre 2012). A square root correction for negative eigenvalues was applied 

for Euclidean representation of distance relationships among functional entities in order to 

avoid biased estimations of distances (Legendre & Legendre 2012). Although there is no rule 

to choose a priori the number of dimensions, spaces with higher dimensionality (i.e., with at 

least four dimensions) provide the best assessment of functional diversity (Maire et al 2015). 

I therefore selected a posteriori the first four dimensions of the ordination, keeping a 

manageable number that reduced computing time and allowed graphical representation.  

I adapted three widely used functional ecology indices to describe how gears target specific 

functions: functional volume (FV), functional redundancy (FR), and rarely targeted 

functional entities (RFEs). I define FV for each gear as the proportion of the functional space 

the gear occupies relative to that of all fish caught (Villéger et al 2008). Functional 

redundancy (FR) is the mean number of individuals per functional entity. The RFE index is 

expressed as the proportion of functional entities that constitute less than 1% of catch (total 

number of individuals) within a gear. With np being the relative abundance of a functional 

entity in a gear, I express RFEs as the following ratio:  
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Ng denotes the total number of individuals in a gear, FE the total number of functional 

entities, and ni the number of individuals in a functional entity i (Mouillot et al 2014). I also 

compute the number of unique functional entities targeted by the different gear types. 

Potential for ecological impact of escape slot traps  

To determine the potential for escape slot traps to have an ecological impact, I used a number 

of approaches.  Firstly, I determined the catch component being released by escape slot trap, 

relative to unmodified basket traps.  This component is represented by the catch that was 

landed specifically by basket traps but not escape slot traps. Having identified the catch 

component being released by escape slot traps, I then examined whether or not other gear 

types are targeting this component. In so doing, I was able to determine specific gear types 

that could potentially benefit, constrain or even offset conservation outcomes associated with 

escape slot traps. All comparisons and overlaps are based on the number of functional 

entities, FV, and number of species.  

When examining the number of functional entities targeted by the different gears, I found a 

very long tail in the distribution i.e., although each gear type caught dozens of functional 

entities, the majority of the catch was typically comprised of only a few functional entities. 

Consequently, I provide complementary analyses of the gear types by: (i) the entire catch, (ii) 

the dominant 75% (i.e. the catch making up the fewest functional entities), and (iii) the 

dominant 50% of the catch (i.e. the 50% making up the fewest functional entities).  

I then quantified the dominant (i.e. 75% of catch) functional traits on the catch component 

that is not targeted by other gear types to determine key functional groups of fish that will be 

retained in the ecosystem with full conversion to escape slot traps. Secondly, I present 

proportions of the number of unique functional entities and rarely targeted functional entities 
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across all gear types. This analysis was further expanded to include corresponding values of 

FV and number of species for the unique and rarely targeted functional entities.  

I also computed the number of functional entities, FV, and number of species captured by 

pairs of escape slot trap and other six gears. The results were compared with pairs between 

basket traps and the other five gears. Overlap in composition of functional entities between 

gears was visualised using Venn diagrams based on all catch, 75% and 50% of catch. 

Because of the complexity in interpreting Venn diagrams with more than four elements, I 

only present numbers and proportions of overlaps from the resultant groupings. Functional 

volumes were computed as the percentage of total FV targeted by all gears from the first four 

dimensions of the ordination. 

Robustness analysis 

To determine whether my results are robust to the extent of categorization of functional traits, 

I reran all analyses using all combinations of five traits out of six. I avoided reducing the 

number of traits lower than five so as to retain important dimensions of the functional space 

defining fish niches (Mouillot et al 2013). As such, an over simplistic definition of functional 

entities was avoided. I further performed a crude categorization potentially inducing high 

functional redundancy (many species in each functional entities) whereas a fine 

categorization would lead to few species in each functional entity (Mouillot et al 2014). In 

this analysis, I reduced the number of categories for each trait and reran all analyses with 64 

functional entities (crude categorization) instead of 163 (fine categorization). For, example, 

instead of using all six categories on body size, I reran the analysis testing the association 

between gears and three size categories. Specifically, I used the following crude categories: 

diet [invertivores (mobile benthos, sessile, and plankton), primary consumers (omnivores, 

detritivores, and herbivores), and piscivores]. Size classes (0–15 cm, 15.1–50 cm, and >50 

cm), schooling behaviour [gregarious (>20 individuals), small groups (2–20 individuals), and 
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solitary], mobility (mobile versus sedentary), period of activity (diurnal/diurnal-nocturnal 

versus nocturnal), and position in the water column (benthic/bentho-pelagic versus pelagic) 

(Mouillot et al 2014). To show the robustness of my findings, I present the distribution of 

functional entities contained in the entire catch, in addition to the number functional entities 

and species in 50, 75, and 99% of the catch considering the reduced number of functional 

entities for each gear. I also show the proportion of rarely targeted functional entities (see 

Appendix). 

Simulated random assignment models 

I tested whether the observed values of rarely targeted functional entities were significantly 

different from the null hypothesis that individuals are randomly distributed into functional 

entities. In each of the seven gears, I simulated a random assignment of individuals to 

functional entities while ensuring that each functional entity had at least one individual. I 

simulated 999 random assemblages for each gear, and, for each simulation, I computed the 

rarely targeted functional entities while the number of individuals and the numbers of 

functional entities were kept constant. Analysis relied on R packages vegan, ade4, FD, and 

cluster (version 3.4.5). Figures were plotted in R and sigma plot (version 11).  

 
Results 

Associations of gears with functional traits  

Escape slot trap and basket trap targeted a majority of benthic herbivorous-detritivores 

moving with the reefs (e.g., rabbitfishes and parrotfishes) (Fig. 11). Sessile invertivores (e.g., 

wrasses and porgies) and diurnal species were largely captured by spearguns.  A combination 

of other nets that largely includes ring nets and cast nets as well as hook and lines harvested 

species moving in large groups feeding on plankton (e.g., mackerels and jacks). Gillnet and 

beachseines were largely associated with pelagic species (e.g., mackerels and jacks).  
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Figure 11. Principal component analysis of functional entities contained in the entire 
catch (n=163 functional entities). Coloured dots represent functional entities captured 
by the seven gear types analysed. Colour gradient represent functional entities 
shared across a range of gear combinations. Black dots represent unique functional 
entities targeted by a single gear. LargeG (>50 individuals) groups, MedG (20-50 
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individuals), SmallG (3-20 individuals) indicate size of fish schools. Fish size is 
coded using six categories: 0-7 cm (S1 – absent in my data), 7.1-15 cm (S2), 15.1-
30 cm (S3), 30.1-50 cm (S4), 50.1-80 cm (S5), and >80 cm (S6). „Both‟ denotes 
species active during the day and night. 

 
Patterns of association between gears and traits did not change much when considering the 

dominant 75% of the catch compared to those of all catch (Fig. A2a). For example, spearguns 

were consistently associated with diurnal species (Fig. A2a). However, in addition to 

herbivorous-detritivores, other herbivorous species that feed on macroalgae seemed to be 

predominantly harvested by traps (i.e., escape slot traps and basket traps). Considering 50% 

of the catch, all types of nets (i.e., gillnets, beachseines and other nets exhibited substantial 

similarities in trait composition (Fig. A2b). Substantial deviations in trait composition were 

observed between hook and line and spearguns. Considering the dominant 75 or 50% of the 

catch, other nets were consistently associated with pelagics (Fig. A2a & b). 

Functional diversity 

I detected substantial variability in the number of functional entities (functional diversity) 

targeted by gear types, ranging from 86 for spearguns to 57 for hook and line (Fig. 12). 

Distribution of individuals among functional entities is largely skewed with a few functional 

entities containing a large number of individuals, while the majority of functional entities 

contain relatively few (Fig. 12). Having shown that abundance is heavily packed in few 

functional entities across all gear types, I decided to compare functional diversity in the 

dominant catch, i.e., 75% and 50% of the total catch in each gear. Here, I show that escape 

slot traps host the fewest functional entities in 50% (2 functional entities; six species) and 

75% of catch; hosting 6 functional entities representing 31 species (Fig. 12). The proportion 

of rarely targeted functional entities ranges between 11.9% for beachseine and 25% for 

basket trap, and observed values are all significantly higher than expected when abundance is 

randomly assigned to functional entities (Fig. 12; Fig. A3).  Functional redundancy i.e., mean 
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number of individuals per functional entity ranges between 39.3 in escape slot traps to 16.3 in 

gillnets (Fig. 12) with a species-functional entity gradient between 1.41 escape slot traps to 

0.87 for speargun.  
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Basket trap

0 20 40 60 80

%
 o

f c
at

ch

0

10

20

30

40

50

75% (10 FE: 27sp)

84

25%

50% (3 FE: 10sp)

99% (71 FE: 105sp)
Nb. FE

RFE

FR. 36.8
Nb. Sp 118

Hook & line

0 10 20 30 40 50 60

75% (10 FE: 17sp)

57

12.3%

50% (4 FE: 7sp)

99% (49 FE: 67sp)
Nb. FE

FR. 23.3

RFE

Nb. Sp 75

Speargun

0 20 40 60 80

75% (12 FE: 26sp)

86

15.1%

50% (4 FE: 9sp)

99% (75 FE: 101sp)
Nb. FE

FR. 18.5

RFE

Nb. Sp 18.5

Gillnet

0 10 20 30 40 50 60

%
 o

f c
at

ch

0

10

20

30

40

50

75% (15 FE: 23sp)

59

11.9%

50% (6 FE: 11sp)

99% (52 FE: 64sp)
Nb. FE

FR. 16.3

RFE

Nb. Sp 71

Beachseine

Rank of functional entity
0 10 20 30 40 50 60

75% (15 FE: 21sp)

64

12.5%

50% (6 FE: 11sp)

99% (54 FE: 63sp)
Nb. FE

FR. 17.1

RFE

Nb. Sp 73

Other nets

0 10 20 30 40 50 60

75% (14 FE: 22sp)

59

13.6%

50% 6 FE: 11sp)

99% (52 FE: 70sp)
Nb. FE

RFE

FR. 22.5
Nb. Sp 77



167 
 

Figure 12. The distribution of fish individuals into functional entities is displayed for 
each gear type. The number of functional entities (“Nb FE.”) present in each gear is 
shown at the bottom right of the distribution. Functional redundancy (FR) (i.e., mean 
number of individuals per functional entity) and number of species are displayed at 
far right top corner. The light grey dashed line illustrates number of functional entities 
contained in 50% of catch. The grey dashed line illustrates number of functional 
entities contained in 75% of catch while the black dashed line illustrates number of 
functional entities contained in 99% of catch. Rarely targeted functional entities 
(RFE) i.e., functional entities contained in 1% of total number of individuals captured 
in each gear is illustrated in double arrows displayed at far right bottom corner. 

 

Functional space  

The distribution of functional traits on the functional space shows that social grouping 

broadly changed from left to right along the first axis of the PCoA, whereas fish body-size 

and mobility increased from top to bottom along the second axis of the PCoA (Fig. 13). 

Herbivores, detritivores and omnivores, typically associated closely with the benthos, were 

positioned top-left in the functional space; sedentary, territorial and macroalgal herbivores 

were positioned middle right; paring invertivores targeting sessile invertebrates typically 

active during the day were positioned to the top right; invertivores targeting mobile 

invertebrates typically mobile within the reef in the top-right; planktivores in the middle-

right; and larger carnivores that are largely pelagic and typically mobile across reefs were 

located in the bottom-left.  

The first four dimensions of the PCoA cumulatively explained 47.5% of the projected inertia 

in the distribution of fish species traits (first two independent axes accounted for 29.7% of the 

variance). Explained variances are not more than 17% per axis (Fig 13). In examining the 

amount of functional space removed by the different gear types, I show that escape slot trap 

occupy the least FV of about 18% of the functional space whereas other gears occupy 

between 26 and 51%, considering the dominant 75% of catch. Nets in general (i.e. gillnets, 

beachseines, and other nets) filled more functional space (44.6-50.7%), but did so targeting 

relatively fewer species (71-77 species) than the escape slot trap.  
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Figure 13. Distribution of functional entities is shown in functional space from a 
Principal Coordinate Analysis on functional traits based on all catch. 163 computed 
functional entities (black dots) plotted in the first two dimensions (four total) of 
functional space defined by six traits: body size (arrow indicating increasing body 
length), diet; mobility (red text); time of activity (sun and moon); social grouping 
(arrow indicating increasing size of fish school); and position in the water column 
(blue text). Illustrations and text show the position of average trait levels in the 
functional space. Distribution of functional entities is shown in functional spaces for 
each gear from a Principal Coordinate Analysis on functional traits (bottom convex 
hulls). Colour filled points are functional entities present in the catch of each gear 
while grey filled points are functional entities absent in the 75% catch of each gear. 
The total convex hull, including the 245 species split into 163 functional entities, is 
enclosed by grey continuous lines joining vertices of the convex hull that shape 
edges. Continuous coloured lines outline the functional volume (FV) determined by 
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coloured points representing the most abundant functional entities comprising 75% 
of the catch for each gear. Coloured text in the bottom convex hulls show FV for the 
first two dimensions whereas black text indicate FV considering all four dimensions. 
FV is expressed as a percentage relative to all fish caught. Black points are 
functional entities representing the most abundant functional entities comprising 50% 
of the catch for each gear. 

 

Gear overlaps  

Basket traps and escape slot traps together targeted 94 functional entities although the two 

trap types share 60 representing 64% overlap. Of the 34 functional entities that were not 

shared by the two trap types, 24 were specifically caught by basket traps whereas only 10 

were caught escape slot traps (Fig. 14). This means that escape slot traps release 24 

functional entities representing 27 species – a catch component that can safeguard about 60% 

of assemblage functioning susceptible to trap fishing. Overlaps in gear selectivity indicate 

that two thirds (i.e., 16/24 functional entities) of the catch being released by escape slot traps 

is targeted by other gear types (Fig. 14). These overlapping functional entities carry about 

47% of the total FV targeted by all fishing activities and about 59% of the FV that can 

potentially be removed by trap fishing. Zooming in across other gear types targeting the catch 

released by escape slot traps, I found that spearguns have the highest overlap, targeting 10 of 

the functional entities released by escapes slot traps. Of these, 5 (31.3%) are unique to 

spearguns, while five additional functional entities also overlap with hook and line and other 

nets. Hook and line and other nets independently target one and two functional entities 

respectively. Hook and line, gillnet, and beachseine together target the other three functional 

entities released. The one third that survives (8 functional entities) carry a FV of about 39% 

relative to all fishing activities (Fig. 14).  

Full conversion to escape slot traps (all both basket traps are converted to escapes slot traps), 

targeted a new suite of assemblages representing six species, six functional entities, hosting 

16% of assemblage functioning.  Importantly, this new catch component represents a 
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reduction of about 29% of the total FV affected by trap fishing if basket traps are used. Of 

concern is that partial conversion (where both basket traps and escapes slot traps were used in 

a site) led to an increase in the number of functional entities removed from six to 14. These 

new functional entities represented by 17 species affected more than 44.7% of assemblage 

functioning.  

The four functional entities that were shared between escape slot traps and other gears host a 

mere 8.7% of the total FV affected by all fishing activities. Of the 14 functional entities that 

are only caught by the two trap types, differences in dominant traits emerge in terms of size, 

diet and schooling behaviour. Therefore, besides retaining smaller sized fish, other benefits 

associated with full conversion to escape slot traps is the retention of solitary species and fish 

feeding on mobile invertebrates (Fig. 14).  

There were 19 functional entities that were commonly targeted by all the gears used in Kenya 

representing 12% of the functional diversity in this fishery. This shared component included 

45 out of 245 total species, representing an 18% overlap among gear types. This catch 

component host 47.9% of the total FV targeted by fishing. Speargun had the highest number 

of unique functional entities (12) representing 49.2% of the FV removed by fishing (Table 

11). Other gears caught between one (other nets) and eight (basket traps) unique functional 

entities potentially affecting up to 38% of assemblage functioning. Interestingly, unique 

functional entities associated with nets such as gillnets and other nets occupied the least 

amount of FV (<4%) (Table 13). Only escape slot trap and gillnet target unique functional 

entities that removed less than 20% of the total FV affected by fishing (Table 13). Turning to 

the FV present in the rarely targeted functional entities, escape slot trap targeted the least, i.e., 

19.9%, all other gears targeted >22% of the total FV.  
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Figure 14. Overlaps in catch composition between escape slot trap and basket trap. Venn diagram captures overlaps between the 
two trap types. Bar graphs (A and B) represent proportion of unique functional entities (FEs) targeted by the two trap types. Number 
of species, functional entities, and proportion of functional volume (FV) present catch component targeted by other gears for each 
trap type is shown as black bars. Empty bars show similar values for the two traps types but on the catch component that is not 
captured by other gears. Twenty-four functional entities captured specifically by basket trap represent the catch component being 
released by escape slot trap. Dominant traits in unique functional entities not captured by other gears are shown in boxes below bar 
graphs. Functional entities caught specifically by escape slot trap but absent in other gears denote new assemblage functioning 
targeted by trap fishing. 

Escape slot trap: Dominant traits retained (6 FEs) 
• Sessile invertivores
• 30 – 44 cm
• Medium schooling groups
*Full conversion removes 15.9% of FV (6 FEs; 6sp)

Basket trap: Dominant traits retained (8 FEs) 
• Mobile invertivores
• 15 – 29 cm
• Solitary
*Partial conversion removes 44.7% of FV (14 FEs; 17sp)
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Table 13. Summary of number of species, functional entities (FEs), and functional volume (FV) on unique and least functional 
entities captured by each gear. Similar proportions are also presented for combinations of catch targeted by pairs of the two trap 
types and other gears.    

  
    

Pairs of trap types and other gears 

  Unique FEs Rarely targeted FEs Basket trap 
 

Escape slot trap 
 Fishing gear No. FEs(species) % FV No. FEs(species) % FV No. FEs(species) % FV No. FEs(species) % FV 

Escape slot trap 6(6) 16 6(6) 19.9 60(114) 66.4 
  Basket trap 8(9) 37.9 13(13) 48.8 

  
60(114) 66.4 

Hook and line 7(7) 21.5 8(8) 39.2 35(77) 67.2 28(66) 56.6 
Speargun 12(12) 49.2 11(12) 55 52(102) 73.4 41(87) 57.1 
Gillnet 3(4) 3.6 7(7) 22.2 32(72) 58 33(74) 60.4 
Beachseine 7(9) 20.1 10(10) 53.2 34(67) 59.4 33(67) 55.3 
Other nets 1(1) - 7(7) 32.5 32(70) 53.1 28(66) 53.1 
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Highest proportions of FV present in the rarely targeted functional entities across gear types 

were however found in basket traps (48.8%), beachseine 53.2%, and spearguns (55%). 

Regarding pairing, results show that all pairs between the two trap types and the other five 

gears removed >60% of the total FV fishing regardless of the trap type. However, there were 

minimal reductions in FV for pairs between escape slot traps and other gears relative to those 

with basket traps (Table 13).  For example, a combination of basket traps and spearguns 

removed almost the highest amount of FV (73.4%) that can potentially be affected by a pair 

of two gears. However, this proportion was reduced to 57.1% with the use of escape slot traps 

and speargun (Table 13). 

Robustness analysis 

Using the crude functional categorisations, the level of rarely targeted functional entities is 

surprisingly very close to that observed with a much finer categorization (Fig. A3 & A4). The 

observed distribution of abundance between functional entities is more right skewed than 

expected, with a long tail with few individuals (Fig. A4). Overall, my sensitivity analyses 

show the consistent and uneven distribution of some functional entities, whatever the number, 

the identity, and the categorization of traits. I also reran all analyses with all combinations of 

five traits out of six (Fig. A4). Whatever the combination, all patterns are still close to those 

observed with six traits (Fig. A4).   

 
Discussion 

Understanding the ecosystem impacts of conservation remains critical in the natural resource 

management context (Hughes et al 2017). In the fisheries context, understanding impacts of a 

fishing gear to the ecosystem is essential before making recommendations on whether or not 

a gear should be promoted, modified, restricted or banned (Hall et al 2000, Mangi et al 2007, 

Morgan & Chuenpagdee 2003). Here, a functional approach was used to examine potential 
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ecological implications of a gear based conservation intervention (i.e. escape slot trap) in a 

multi-gear coral reef fishery. Unlike in previous studies, my analysis includes other gear 

types that often operate concurrently within the same ecosystem. In so doing, this analysis 

determines whether other gears could potentially complement, constrain or offset key 

ecosystem benefits associated with escape slot traps. Overall, I show that using escape slot 

traps has real potential to lead to environmental improvements. Fish assemblages in escape 

slot traps are more functionally redundant (tendency of species to perform similar functions) 

and a vast majority occupy the least functional volume (i.e., functional space occupied 

relative to that of all fish caught). However, given the extent of overlaps in gear selectivity, 

switching to escape slot traps may not achieve conservation targets in the Kenyan multi-

species coral reef fishery unless certain gear types are excluded. Implications of the results 

are discussed in turn. 

Traps account for about 40% of the total fishing effort in the Kenyan marine artisanal fishery 

(Mbaru & McClanahan 2013). Results of my analysis and those of previous studies confirm 

that fish assemblages captured in basket traps contain the highest number of species (Hicks & 

McClanahan 2012). However, in addition to high species diversity, I show that fish 

assemblages in basket traps have high functional diversity relative to all other gear types 

except spearguns. These results alone can perhaps justify the need to regulate the basket trap 

fishery. Though the inclusion of escape gaps in traps was primarily meant to allow juveniles 

and narrow-bodied species (i.e. bycatch) to exit (Johnson 2010, Mbaru & McClanahan 2013). 

Here, I show that in addition to bycatch reduction, fish assemblages in escape slot traps are 

not only functionally redundant but a majority of the catch occupy the least FV compared to 

all other six-gear types. FV removed by unique functional entities is lower in escape slot traps 

compared to that of other gear types, except for gillnets. A combination of basket trap and 

speargun removes almost the highest proportion of FV (73.4%) relative to pairs between 
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other gear types. This proportion is marginally reduced to a FV 57.1% if an escape slot trap is 

used with speargun. Only a hand full of new functional entities that account for a mere 8.7% 

of the total FV affected by fishing will be removed from the ecosystem if all basket traps 

were converted to escape slot traps. This represents a substantial reduction (22%) of the total 

FV that can potentially be removed by trap fishing. Apart from gillnet, all other gear types 

have more FV in the unique, and rarely targeted functional entities compared to that of escape 

slot traps. Switching to escape slot traps can also retain key functional groups of fish, i.e., 

smaller sized fish, those that feed on mobile invertebrates and are solitary in nature. Taken 

together, these results indicate that the inclusion of escape slot in traps can potentially lead to 

environmental improvements in terms of biodiversity protection and assemblage functioning.   

Considering the extent of overlap observed across all gear, it is however unlikely for the 

Kenyan coral reef fishery to achieve sustainability if the status quo remains. Foremost, I 

showed that other gear types catch two thirds of the catch released by escape slot traps – a 

scenario that can potentially constrain ecosystem gains associated with the conservation 

intervention. No case can be made even on the one third that survives because the amount of 

FV targeted by other gears within the catch component released by escape slot traps (~47%) 

is higher than the FV that is removed when only basket traps are used (~38%). Testing the 

effect of using different combinations of pairs of gears in light of the conservation 

intervention, I found that using the two trap types concurrently (i.e., pairing basket traps and 

escape slot traps) removes the highest amount of FV (66.4%) than all other pairs between 

escape slot traps and other gear types. This means that having basket traps and escape slot 

traps within the same fishery (or any other combination of two gears) can easily offset 

conservation gains associated with escape slot traps because all pairs remove >60% of the 

total FV. This proportion surpasses by far the FV of 37.9% that trap fishing can potentially 

safeguard when only escape slot traps are used. It is also recognized that a combination of 
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gillnet and escape slot trap can remove a slightly higher number of species and FV relative to 

basket trap and gillnet. Taken together, these results indicate that gear overlaps in selectivity 

are likely to constrain potential ecosystem benefits associated with gear-based conservation 

interventions such as escape slot traps (Condy et al 2014). In light of these findings, it is 

evident that escape slot traps can only make modest environmental improvements only if 

coupled with gear bans. 

My functional approach unveiled key linkages among different fishing gears, species 

targeted, and their ecological function that could shape future assessments on ecological 

implications of fishing gear to the coral reef ecosystem. In almost all instances, there were 

very minimal differences in the number of species present among gears in the specific catch 

components analysed. However, clear differences were illuminated between gear types based 

on functional entities and FV. For example, comparison between basket trap and escape slot 

trap based on functional traits did not show any statistically significant difference in trait 

composition. Although in the broader context this finding may imply that the prime target 

species of basket trap and escape slot trap fishers remain fairly unchanged, the reality is much 

more complex. Indeed, I show that escape slot traps captured significantly fewer functional 

entities than basket traps and that their dominant catch occupies much smaller functional 

volume than basket traps. Relying on species or individual traits alone would have led to 

inconclusive findings on the differences in selectivity and the effect of different fishing gears 

on the marine ecosystem. Thus, these results collectively emphasize the importance of the 

functional approach in assessing the effect of fishing on assemblage functioning.  

Previous studies have shown that species diversity, functional diversity, and assemblage 

functioning are intricately linked (Mouillot et al 2013, Villéger et al 2008). Here, I show that 

these relationships in fished assemblages are not linear.  For example, I show that beachseine 
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target slightly lower number of species than other nets yet had more functional entities that 

occupy slightly less FV. Escape slot trap had the third highest number of species yet had less 

functional entities compared to speargun that had more species. In addition, escape slot trap 

occupy the lowest FV compared to all gear types. This implies that capturing a high number 

species may not strongly contribute to loss of assemblage functioning as previously thought 

(Cumming et al 2006, Murawski 2000, Wackernagel & Rees 1998). The conclusion that 

massive erosion of species by highly species diverse fishing gears directly translates into 

outright depletion of ecosystem functions as we have thought before (Carpenter et al 2008, 

Hughes et al 2003, Knowlton & Jackson 2008) deserves further investigation. I also 

recognize that functional volume removed by unique functional entities and rarely targeted 

functional entities can significantly amplify the effect of specific fishing gears on assemblage 

functioning. This potential compounding effect is manifested in fish catches among basket 

trap, hook and line, speargun, and beachseines.  This means that reduction of selectivity even 

at a lower threshold can potentially lead to substantial alteration in assemblage functioning.  

Conclusion 

I highlight the viability of escape slot traps as a sound fisheries conservation tool in coral reef 

fisheries. However, I highlight critical competitive interactions that could undermine the 

potential ecological impact of escape slot traps in coral reef ecosystems. Focusing on one 

gear, and showing how that gear impact ecosystem functioning of environment may be 

insufficient as other gears may constrain or even offset the anticipated ecosystem gains. In 

areas where this conservation intervention is embraced, I recommend total conversion to 

escape slot traps for the real environmental impact to be felt in the long term. In this fishery, 

nets, including gillnets and beachseines, target the greatest breadth of functional diversity. 

Prohibiting spearguns would effectively double the number of functional entities not affected 

by trap fishing. In light of this information, I therefore support the prohibition of beachseine 
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and speargun in Kenya because increased usage of these gears can have far reaching 

ramifications in terms of eroding functional diversity in the coral reef fishery.  
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Chapter 7: General discussion 

This thesis contributes knowledge and further understanding on how conservation 

innovations diffuse among people, affect people‘s wellbeing, and their potential to contribute 

to ecological sustainability. Prior to this thesis, a major gap existed in integrating network 

science in the study of conservation diffusion. Although there have been methodological 

guidelines (Pietri et al 2009, Ramirez-Sanchez 2011b), empirical studies are rare and results 

have often been inconclusive. Here, I contribute to this body of work by integrating decades 

of social science theory on diffusion of innovations with novel breakthroughs in social 

network analysis to offer a clearer understanding of the factors that shape conservation 

diffusion over time, using a case study of a conservation-oriented fishing gear modification in 

Kenya. I then draw on social network theory and methods to develop specific criteria for 

selecting key stakeholders to facilitate diffusion related conservation objectives. Additionally, 

a second major gap existed in that studies that analysed consequences of conservation 

suffered from lack of methodological robustness and rarely pointed to clear cut arguments 

about net outcomes (Beauchamp et al 2018a, Biedenweg & Gross-Camp 2018). The second 

half of the thesis evaluates consequences of adopting this conservation by: (i) demonstrating 

how adoption or non-adoption of conservation affect people‘s wellbeing; (ii) by showing 

whether adoption of conservation can potentially lead to environmental improvements. 

Together, findings of this study substantially increased our understanding on the factors that 

shape adoption patterns in conservation diffusion, key players in conservation diffusion, and 

the social and environmental consequences of conservation diffusion. 
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Summary of the findings 

Gap 1: Limited studies have examined the effect of social networks on the conservation 

diffusion process 

I addressed this gap in chapter 3 using emerging tools in network analysis that explore the 

combined effect of social networks and socioeconomic factors (i.e., personal and 

socioeconomic status attributes) on diffusion processes (Lusher et al 2013, Wang et al 2014). 

I found that network processes to a large extent contributed to adoption, particularly during 

the early stages of the conservation diffusion process. By showing that communication 

behaviour (measured via social network) is a strong predictor for early adopters, my results 

seem to challenge a long-standing notion in diffusion research that communication behaviour 

is key for late adopters (Rogers 2010, Valente 1996b) 

My two-step modelling approach in the longitudinal analysis of conservation diffusion 

yielded three additional key findings that depart from traditional views, as highlighted below. 

Firstly, my initial regression framework including a wide range of socioeconomic factors 

(i.e., personal and socioeconomic status attributes) showed a number of socioeconomic 

factors that were important for early and late adoption. However, by integrating social 

networks in the analysis, only a constricted range of socioeconomic status attributes emerged 

as important predictors of adoption behaviour over time. All personal attributes (i.e., traits 

that revolve around perceptions) were no longer significant when social networks were taken 

into account – perhaps emphasising the point that social networks can play a major role in 

moderating some personal attributes that may act as barriers and/or drivers for adoption 

(Greiner et al 2009).  

Secondly, there were minimal differences in socioeconomic status attributes between early 

and late adopters when social networks were taken into account. This finding also seems to 
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challenge the longstanding theory of diffusion, which argues that a wide range of 

socioeconomic factors tend to distinguish early and late adopters (Barham et al 2004, Läpple 

& Van Rensburg 2011, Rogers 2010). Here, I instead provide evidence suggesting that 

socioeconomic status attributes that distinguish between early and late adopters may not be as 

broad as previously thought once social networks are accounted for.  

Thirdly, I did not find a direct node-to-node network contagion effect; instead, I showed that 

the adoption status of network partners in strong cohesive groups had significant effects on 

early adoption. This suggests that network clusters can provide more efficient injection points 

in complex contagion process such as the one studied here. These findings further advance 

our understanding of the role of communication behaviour in diffusion processes in the 

context of conservation and beyond. I highlighted two key observations that could have 

possibly contributed to these surprising results. First, my research explicitly measured 

communication behaviour rather than relying on proxies, as has been the case in previous 

research (Rogers 2010). Second, my study relies on data from fishers who are known to 

display peculiar habits (e.g., being risk seekers) and therefore may not be representative of 

the general population (Cinner et al 2010). In other words, findings might be specific to this 

particular intervention and the social-ecological setting, and should therefore be generalized 

with care. 

Implications for conservation: In the Kenyan context, findings from this analysis should be 

taken into account to increase uptake of escape slot traps through target populations. Beyond 

the Kenyan case study, my findings strongly suggest, that for policy measures to be effective 

in dissemination of conservation interventions, localized social cliques can be harnessed to 

provide critical injection points to jumpstart conservation diffusion processes. Considerable 

waste could be avoided in conservation diffusion processes if resources are invested in early 

adopters that are influential to other potential adopters as demonstrated by my findings. 
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Gap 2: No specific criteria exist for selecting key stakeholders to facilitate more widespread 

adoption and diffusion of conservation interventions 

In chapter 4, I addressed this gap by identifying key socioeconomic factors associated with 

individuals that are ideally placed to facilitate four distinct diffusion related conservation 

objectives (i.e., key players): (1) rapid diffusion of conservation information, (2) diffusion 

between disconnected groups, (3) rapid diffusion of complex knowledge or initiatives, and 

(4) widespread diffusion of conservation information or initiatives over a longer time period. 

A key finding here was that depending on the conservation objective, different 

socioeconomic factors were more or less important for selecting key players. This means that 

the inclusion and/or exclusion of certain stakeholders can, and should be tailored to the 

specific conservation goal at hand when conservation programs are rolled out. 

Having identified the key players (i.e., individuals identified using social network analysis) 

for the four distinct diffusion related conservation objectives, I then tested the framework to 

investigate whether the socioeconomic attributes of the key players I identified match the 

ones typically selected to facilitate conservation diffusion (i.e., current players). Results show 

considerable discrepancies between current players and key players. I highlighted potential 

misalignment of effort and missed opportunities for progressing more effective conservation 

diffusion. Essentially, this could be one reason sustainability goals have been difficult to 

achieve, at least in the Kenyan context where this empirical work was conducted.  

In addition to aligning specific stakeholders to specific conservation objectives, my findings 

also demonstrate the value of network science in disaggregating the two-step flow diffusion 

model in the conservation context (Nisbet & Kotcher 2009). Disaggregating the diffusion 

related conservation objectives showed that different socioeconomic factors emerge as 

important in selecting key players to achieve certain conservation objectives instead of 

others. Coarsely aggregating all diffusion related conservation objectives as one diffusion 
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process would have led to the conclusion that all conservation diffusion processes are equally 

influenced by individuals exhibiting certain socioeconomic factors. The sort of conservation 

diffusion strategy advocated here has the added benefit of being somewhat less vulnerable to 

fragmentation even if the role of one type of stakeholder is lost or ineffective (Borgatti & 

Foster 2003). 

Implications for conservation: Investing in the right stakeholders as specialized 

communication channels can potentially lead to more progressive and effective conservation 

diffusion processes. Using key players in conservation diffusion can potentially save 

conservation practitioners a great deal of time, effort, and financial resources that are 

currently lost when resources and efforts are misaligned to certain stakeholders that are not 

ideally placed to influence the masses as highlighted in the Kenyan case study.  

Gap 3: Little understanding of the impact of conservation diffusion on people 

I addressed this gap in chapter 5 by evaluating outcomes of conservation using the 

multidimensional wellbeing framework (Gough & McGregor 2007). The design of this 

chapter was guided by a BACI (before-and-after control intervention) framework that 

combined controls with baselines.  Precisely, I wanted to know whether wellbeing outcomes 

differ among adopters relative to non-adopters of escape slot traps and controls (i.e., villages 

where escape slot traps were not introduced) over time. Across multiple domains of 

wellbeing, I found no evidence that adoption did any harm to people that adopted. Indeed, 

there were modest improvements in material and subjective livelihood wellbeing for adopters 

of the escape slot trap over time. The variations I found in wellbeing experiences (in terms of 

magnitude of change) among adopters, non-adopters, and controls across the different 

domains over time affirms the dynamic and social nature of wellbeing. The alternative 

approach in evaluating relational wellbeing using an indicator of relational balance (i.e., 

reciprocity - tendency that two people that are connected speak to each other) as captured in 
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the network theory, can potentially challenge the traditional approach on how relational 

wellbeing has been conceptualized in impact evaluation research (Chapter 5). Findings 

provide a more holistic picture of the consequences of conservation diffusion processes on 

human associated communities. 

Implications for conservation: On the Kenyan case study, findings suggest that the 

intervention studied satisfies the cardinal rule for environmental policy makers that 

conservation should at the very least do no harm to the local populations affected by 

interventions (Biedenweg & Gross-Camp 2018). At a time when fisheries conservation 

interventions face a legitimacy crisis (Finkbeiner et al 2017), my evaluation provides wider 

legitimacy and support towards marine biodiversity conservation efforts particularly in rural 

economies where adoption of conservation interventions remain a fundamental challenge. 

Beyond the Kenyan case study, findings emphasize the need for environmental policy to use 

multiple indicators of wellbeing in addition to baselines in future evaluation research.  

Gap 4: Linkages between use of conservation-friendly fishing technologies and assemblage 

functioning is still unclear 

In chapter 6 I employed a functional trait-based approach to connect traits to fishing gears in 

multi-species coral reef fisheries (Mouillot et al 2013). Here, I wanted to determine whether 

escape slot traps (the conservation intervention studied in my previous chapters) remove and 

potentially compete with other gears for fishes with unique combinations of functional traits 

(functional entities). Across all gears, I found that escape slot traps target the least breadth of 

functional diversity, potentially affecting the smallest volume of assemblage functioning 

(Chapter 6). From an ecological viewpoint, these findings indicate that the escape slot trap 

can be a viable conservation tool in coral reef fisheries (Sinclair et al 2002, Tillin et al 2006). 

However, considering the extent of overlap in trait composition between escape slot trap and 

other gears - especially in the dominant catch – my analysis suggests that other gear types can 
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potentially constrain or offset key ecosystem benefits associated with escape slot traps 

(Chapter 6). In the present case, this finding indicates that switching to escape slot traps (i.e., 

adopting the intervention) may not achieve conservation targets in the Kenyan multi-species 

coral reef fishery if the status quo in terms of gear utilization prevails.  

By disaggregating catch into proportions, I found that unique and rarely targeted species in 

fished assemblages carried a higher proportion of functional diversity even for some selective 

gears such as hook and lines and spearguns. The minimal differences I found in functional 

diversity across gear types based on total catch and dominant catch suggest that total catch 

might provide weak insights on differences in gear selectivity whereas dominant catch alone 

cannot be used as a broad-scale indicator of potential impact of fishing on assemblage 

functioning. These findings could shape future assessments on ecological implications of 

fishing in multi-gear and multi-species fisheries. 

Implications for conservation: These findings highlight the need to manage fishing of rare 

taxa with potentially important ecological functions because overfishing these species can 

potentially lead to substantial alteration in assemblage functioning. Future conservation 

priorities in coral reef fisheries should include monitoring of other gears such as hook and 

lines that are traditionally assumed to be selective, especially on the type and size of hooks 

used. This recommendation is supported by my findings that showed reduction of selectivity 

even at a lower threshold could significantly alter assemblage functioning (Chapter 6). 

Findings further reemphasize the need to restrict or regulate the use of spearguns among other 

less selective nets such as beachseines (McClanahan & Mangi 2004). Policy makers 

advocating for the upscaling of conservation interventions should equally consider other 

intervening or broader contextual factors that can capture the benefits of interventions, that 

can render conservation efforts ineffective. 
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Cross-cutting insights on diffusion of innovations theory 

Potential spillover of benefits 

Within experimental sites (i.e., where the escape slot trap was introduced), I observed some 

degree of similarity in wellbeing conditions between adopters and non-adopters (Chapter 5).  

Spillover of conservation gains (benefits) within experimental sites is the most likely 

explanation for this finding (Chapter 5), which is supported by my ecological analysis 

(Chapter 6). Specifically, I found that two thirds of the fish assemblages released by escape 

slot traps are actually harvested by other gear types, including those that used unmodified 

basket traps (Chapter 6). In other words, conservation and associated economic benefits of 

using escape slot traps (the intervention) within experiments were largely passed on to fishers 

using other gears, suggesting potential spillover of benefits to other trap fishers that did not 

adopt the escape slot trap. 

Diffusion research stresses the need to analyse consequences of innovation adoption (Rogers 

2010).  As mentioned previously, adjustments to the diffusion of innovations theory has 

narrowed down the list of categories for adoption consequences to public vs. private goods 

(Miller 2018, Wejnert 2002). Private goods are benefits associated with one party and not 

available for others, whereas public goods are benefits associated with the entire social 

system (Sable & Kling 2001). It is against this background that this thesis endeavoured to 

analyse the social and environmental consequences of the conservation intervention. The 

double prong examination of the consequences of conservation diffusion on people and the 

environment not only demonstrated the intricate links between the two domains, but also 

illustrated how benefits or costs are reflected among target population. 

Asymmetric importance of social networks 

Social networks can capture both the quantity and quality of social relationships among 

individuals (Borgatti et al 2009). In this study, I integrated social networks to better 
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understand factors that influence conservation diffusion (chapter 3), identify key stakeholders 

to facilitate conservation transfer (Chapter 4), and investigate the consequences of 

conservation diffusion on people‘s wellbeing (Chapter 5). My novel examination of the 

combined effect of personal attributes, socioeconomic status, and social networks on 

conservation diffusion affirmed that adoption behaviour can be more socially constructed as a 

product of endogenous network processes (i.e., network position, network structure, and 

social influence) and exogenous socioeconomic factors (e.g., personal, sociodemographic, or 

socioeconomic status attributes) (Chapter 3). Drawing from the theoretical foundations of 

various centrality measures described in network science, I disaggregated conservation 

diffusion processes into four distinct conservation objectives (Chapter 4). Different 

socioeconomic factors emerged as important in selecting ‗key players‘ to achieve certain 

conservation objectives instead of others - suggesting that implementation of conservation 

goals is highly context-specific and cannot be generalized (Chapter 4). Guided by the recent 

literature that highlights the intricate link between reciprocity and social relational balance 

(Tóth et al 2018), I compared the number of reciprocated social network ties (an indicator of 

relational wellbeing) (Chapter 5) between adopters of the escape slot, and non-adopters 

within experiments and control villages where the conservation intervention was not 

introduced. Variations in the magnitude of change among adopters, non-adopters, and control 

villages were not statistically significant over time, highlighting that neither the presence of 

the intervention in experimental villages nor adoption of the escape slot trap was sufficient to 

significantly reshape social relationships among fishers studied (Chapter 5).  

Findings from the three chapters clearly demonstrated the value of the network approach in 

interdisciplinary research such as the current study. Future diffusion studies can integrate the 

network processes adopted in chapter 3 to better understand how social networks relate to 

behaviour change. Beyond conservation diffusion, the framework for selecting key players I 
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developed in chapter 4 can be applied in many research and intervention areas, such as 

community development studies, participatory research, community intervention, and 

behaviour change to mitigate the problem of stakeholder identification in ways that avoid 

blueprint approaches. The network property used in chapter 5 (i.e., reciprocity - tendency that 

two people that are connected speak to each other) deemphasizes the numeric properties of 

social networks, and can be applied to any evaluation design regardless of the intervention or 

the number of network nominations made by a respondent. 

Potential interaction between innovation consequences and dis-adoption 

Although my examination of the consequences of adoption showed no harm on the people 

that adopted (Chapter 5), about 16% of the adopters abandoned the use of the escape slot trap 

after some time (Chapter 3). In theory, personality traits, socioeconomic status, and 

communication behaviour (e.g., position in the network) can be associated with dis-adoption, 

as I found here (Chapter 3). However, diffusion of innovation theory also argues that changes 

that occur to an individual as a result of adopting innovations could be the ultimate arbiter to 

determine whether or not people maintain innovations over time (Rogers 2010). The minimal 

improvements that were observed in some domains of wellbeing and the lack of clear cut 

―losses‖ on the part of adopters (that can be attributed to the intervention) can perhaps 

explain the large number of fishers that maintained the use of escape slot traps over time 

relative to those that dis-adopted. However, the lack of substantial gains in wellbeing 

conditions among adopters over time could perhaps provide an additional explanation for dis-

adoption in this diffusion process (Chapter 5).  

Indeed, my ecological analysis found that other fishers including basket trap fishers (i.e., non-

adopters who did not modify their traps) to a large extent benefited from the presence of the 

intervention by harvesting part of two-thirds of the catch released by adopters of escape slot 
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traps (Chapter 6). This indicates that adopters could lose out in terms of catch quantities to 

fishers who decide not to adopt the escape slot trap. By uncovering these interactions on 

catch landed between adopters and other fishers (including those that did not modify their 

traps), perhaps an additional explanation can be found for dis-adoption in this diffusion 

process. This situation effectively implicates the absence of adequate enforcement capacity as 

a possible reason for the poor rates of success even in well-designed conservation strategies 

with a high degree of legitimacy (Bergseth & Roscher 2018). Thus, policy discussions and 

actions that overemphasize the need to scale up conservation interventions should 

concurrently prioritize empirical investigations of the underlying local dynamics that can 

potentially undermine adoption and diffusion processes.  

Emerging themes on diffusion of innovations theory 

Diffusion process can be similar in multiple social systems 

I observed consistent adoption rates and patterns across all experimental villages where the 

escape slot trap was introduced (Fig. A5). Adoption trajectories (i.e., diffusion process) show 

asymptote plateaus on the S-shaped curves sixteen months after inception of the intervention 

(Fig. A5). Rate of adoption has precipitated interests from researchers because people do not 

always adopt innovations at the same time (Rogers 2003). In theory, different social systems 

could adopt a single innovation either similarly or differentially (Boyne et al 2005). Different 

innovations could also be adopted either similarly or differentially within a single social 

system (Van Slyke et al 2004). 

This study investigates a diffusion process based on a single innovation across four fishing 

villages. Though the fishing villages may be contextually similar (i.e., all represent social-

ecological settings dominated by fishing communities), they cannot be assumed to be entirely 

identical in terms of socioeconomic conditions (Chapter 2). Moreover, respondents from the 
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four fishing villages exhibited different socioeconomic conditions as demonstrated by their 

variations in communication behaviour (social networks), personal, and socioeconomic status 

attributes (Chapter 3, 4, and 5). Yet, despite this diversity in socioeconomic conditions across 

the multiple units of analysis, diffusion processes were almost identical across all sites. 

Evidence now exists that shows diffusion processes for a single innovation can be similar 

even in different social systems where participants exhibit different socioeconomic 

conditions.  

Right communication channels can make a difference in diffusion process? 

In the present diffusion process, the same implementer introduced the intervention across all 

four fishing villages. Although the four fishing villages are organized as beach management 

units that sometimes engage in collective conservation actions (Chapter 2), there was no 

collective adoption at the village level. In other words, adoption was largely an individual 

decision though some degree of social influence was observed within cliques (Chapter 3). 

The time taken (i.e., sixteen months) to achieve stability in the diffusion process such as the 

one studied here may or may not be ideal depending on the type of innovation to be diffused 

or the objective of the diffusion process (Fig. A5).  For example, some conservation 

interventions may require rapid uptake especially in cases where certain species or habitats 

under emergency threat need protection (Haddow et al 2013, Kapucu 2008). 

Previous empirical studies on adoption rates have shown that 49 - 87% of the variance in rate 

of adoption is explained by perceived attributes of an innovation14. Thus, it is important to 

                                                             
14 Initial studies identified five characteristics innovations that determine their rate of spread, i.e., relative 
advantage, complexity, trialability, observability compatibility (Rogers 1995). These characteristics are 
perceived qualities of innovations either relative to the existing ideas they supersede, or whether their attributes 
are consistent with the existing values and needs of potential adopters, or whether their nature are easier or 
difficult to use, or whether their use can be experimented with on a limited basis or whether their adoption 
effects can be observed by others (Rogers 1995). However, given the increasing diversity of innovations in 
recent times, other characteristics such as flexibility, riskiness, and stickiness factor of innovation have also 
been used in some cases to explain patters of adoption for some unique social and technological innovations 
(Gladwell 2006).  
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note that adoption of the escape slot trap innovation could have also been influenced by 

several attributes of the innovation highlighted in the diffusion of innovations literature, such 

as complexity and relative benefit (Rogers 1995). Since my study examined a single 

innovation, these factors would have essentially been held constant in my analysis. Future 

studies examining, for example, escape slot traps with differing levels of complexity, would 

be required to explore the influence of these attributes on the adoption of these traps. 

In addition to these attributes, other variables such as the nature of the social system, type of 

innovation decision15, nature of communication channels, and extent of change agents‘ 

promotion efforts affect the relative speed with which an innovation is adopted (Rogers 

1995). Being a single innovation that was adopted in a similar way across all social systems, 

not much can be done on the intervention itself (other than re-invention) and the social 

systems to affect the relative speed of adoption. However, possible readjustments can be 

made on the ―nature of communication channels‖ and ―extent of change agents‘ promotion 

efforts‖ in light of the diffusion of innovations theory. By highlighting potential 

misalignment of effort and missed opportunities in the current stakeholder engagement 

process in Kenya (Chapter 3), a key question emerges. Can adjustments to the ―nature of 

communication channels‖ increase the rate of adoption of a single innovation in social 

systems? Future research on this question is warranted.  

My study also showed that innovation knowledge is key for early adopters whereas lack of it 

can hinder adoption altogether (Chapter 3). This means that although identifying the right 

intermediaries is important in diffusion processes, there are opportunities for improving the 

―nature of communication channels‖ in the two-step flow diffusion model. Based on my 

                                                             
15 Type of innovation decision can be three-fold (i.e., optional, collective, and authority). Optional innovation 
decisions involve one or fewer individuals in making innovation adoption decision. Collective innovation 
decision require many more persons or organizations to make adoption decisions (i.e., through consensus). 
Authority innovation-decision occurs by adoption among very few individuals with high positions of power 
within an organization and forced upon individuals (Rogers 1995). 
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findings, it is important for change agents (e.g., conservation practitioners) to engage 

intermediaries with better understanding of the innovation because initial innovation 

knowledge can be incredibly important during early stages of diffusion processes (Chapter 3). 

In light of the diffusion of innovations theory, a better way to reinforce the ―extent of change 

agents‘ promotion efforts‖ is by increasing contacts between change agents and potential 

adopters (Rogers 2003). In the current context, this can be achieved by having more periodic 

and sustained engagements in order to increase access and transfer of expert knowledge about 

conservation to the local people. 

Nature of diffusion process for complex contagions 

One of the main areas of interest in diffusion research is understanding how diffusion 

processes occur (i.e., nature of diffusion processes) (Rogers 2010). It is well acknowledged 

that although behaviours and states diffuse through social networks, the nature of social 

influence or ―contagion effects‖ can occur in several ways. This analysis is based on a 

conservation intervention that sought to implement behaviour change in selected fishing 

villages which in theory would be considered a complex conservation innovation (Mbaru and 

Barnes 2017) and therefore follow a complex contagion diffusion process (Centola 2018). 

Adoption trajectories (i.e., diffusion process) suggest that an average of sixteen months might 

be required before the diffusion process becomes self-sustaining (Fig. A5). There was no 

direct node-to-node network contagion effect; instead, diffusion processes occurred between 

network partners in strong cohesive groups (Chapter 3). This finding is in line with earlier 

studies that argued adoption or diffusion of complex contagions may be conditional on the 

decisions made by a fraction of peers (Centola & Macy 2007, Valente 1996c). One ‗infected‘ 

neighbour appears insufficient to influence adoption or diffusion of complex contagions (Hill 

et al 2010, Wejnert 2002). Future research on diffusion of complex contagions can devote to 
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analysing how properties of interventions, the nature of communication channels, and extent 

of change agents‘ promotion efforts affect their rate of adoption.   

Incentives can be counter-productive in diffusion process 

In this study, I had instances where some fishers were given the innovation to carry out 

experimental fishing on a trial basis. As indicated in innovation diffusion theory, this can be 

considered as offering incentives because the new gear was provided at no cost. Diffusion 

research has held the view that offering incentives can be a strategy for getting to the critical 

mass of early adopters who are often needed to accelerate diffusion processes (Valente & 

Davis 1999). In contrast to this longstanding view, my study showed that people who were 

provided with escape slot traps either constructed their own escape traps late or did not 

acquire additional escape slot traps altogether (Chapter 3). In other words, offering subsidies 

did not necessarily induce an automatic shift towards more sustainable fishing methods. The 

contribution of my research to the growing body of diffusion literature is apparent by 

showing that providing incentives may be counterproductive in some diffusion processes 

such as the one studied here. In the context of conservation, this result may have significant 

implications to environmental policy makers that aim towards increased subsidies for 

adoption of fisheries conservation interventions. 

Implementation of escape slot traps as a fisheries conservation strategy in Kenya  

Several key points of concern regarding the implementation of escape slot trap must be 

discussed. Firstly, my ecological findings demonstrate that even if escape slot traps are 

enforced, optimal environmental benefits can only be realized if coupled with gear bans. 

Indeed, I demonstrated that prohibiting spearguns can effectively double the number of 

functional entities (i.e., unique combinations of functional traits) affected by fishing (Chapter 

6). This means that in order to transform the Kenyan fishery to sustainable levels in the 

foreseeable future, implementation will have to affect the wellbeing of other subgroups in the 
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system, i.e., speargun fishers. However, spearguns are prohibited in Kenya (McClanahan & 

Mangi 2004). Therefore, by showing how spearguns undermine potential environmental 

benefits associated with the escape slot trap, my results seem to support existing fisheries 

regulations that prohibit the use of speargun. This therefore means the pursuit of ecological 

conservation outcomes associated with escape slot traps can be achieved without the need to 

pass additional laws that require prohibition of the gears earmarked for removal from the 

fishery based on my analysis. Instead, enforcing existing laws on gear bans will suffice. 

However, where a lack of support makes exclusion of spearguns untenable, alternative 

strategies such as gear exchange programs can be explored in order to minimise the impact 

on the wellbeing conditions of other members of the fishing community (Chapter 5). These 

recommendations could be extended to cover other countries given the strong parallels in 

fishing behaviour in small-scale coral reef fisheries around the globe (McClanahan 2015). 

Implementation of many conservation programs requires participation of numerous actors in 

social-ecological systems (Pannell et al. 2006b; Fisher et al. 2018). By showing that private 

good can be maximized through public good, there is a need for collective action 

interventions such as trust, norms of reciprocity, transitivity in networks, monitoring of 

monitors to improve adoption rates (Finkbeiner et al 2017, Ostrom 1990, Reed et al. 2009).  

Indeed, the lack of collective action has been cited as a key constraint that can potentially 

threaten the success of conservation efforts and sustainability processes designed for 

restoration, biodiversity protection, or poverty alleviation (Finkbeiner et al 2017, Song et al 

2018). 

Future directions 

Throughout my thesis, I have drawn on a number of theories not routinely considered in 

conservation diffusion research. In doing so, I have challenged a number of long-standing 

notions on diffusion research but also highlighted the utility of the network approach to 
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conservation diffusion research. As mentioned previously, adoption behaviour is influenced 

by characteristic of adopters and sometimes the characteristic of the innovation itself. Given 

the diversity of conservation objectives, future studies that explore a wide range of 

conservation interventions that integrate characteristics of conservation interventions are 

warranted.  

It is evident that dis-adoption of conservation interventions can occur among people over 

time. Here, I found a direct positive relationship between material style of life and fishers that 

abandoned the use of escape slot traps after sometime. My results further showed that higher 

closeness centrality is a unique characteristic of dis-adopters. In theory, these results indicate 

that any unfavourable opinion about the conservation practice from dis-adopters could 

quickly and efficiently spread to other members of the network (Costenbader & Valente 

2003, Mbaru & Barnes 2017). Future research that looks into whether dis-adopters can 

indeed retard or slow down conservation diffusion processes (e.g., rate of adoption) is 

warranted.  

While acknowledging the complexity of social-ecological settings, differences associated 

with conservation objectives, and diverse landscape of relevant stakeholders, my study 

proposed a specific criteria for selecting key stakeholders to facilitate distinct conservation 

objectives. In practice, my guidelines for engagement with the right stakeholders should be 

ruminated by managers and other conservation practitioners in ways that ensure fair 

representation of diverse interests, minimize marginalization, and avoid inflaming conflicts 

between groups. Tracking how my guidelines perform with conservation diffusion processes 

over time (e.g., the rate of adoption around key players) is thus an exciting avenue for future 

research.  
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My longitudinal and multidimensional approach (with controls) complements the guiding 

principles for evaluating the impacts of conservation interventions on human wellbeing 

(Woodhouse et al 2015). Findings showed net outcomes associated with the conservation 

intervention studied varied in terms of magnitude, based on adoption status, across multiple 

domains of wellbeing over time. This affirms that wellbeing outcomes are dynamic, changing 

through time or in the course of an intervention (Woodhouse et al 2015). Findings therefore 

emphasizes the need for future evaluation studies to use multiple indicators in addition to 

controls and baselines when assessing people‘s wellbeing in evaluation research. Despite my 

rigorous sampling design, the presence, absence, or adoption of the conservation intervention 

could not explain all trends observed in this analysis. Future studies that integrate 

socioeconomic conditions that are related to people‘s wellbeing at the community scale are 

warranted. 

Key findings unveiled in my ecological analysis that added the trait-based approach to 

standard analyses can provide a concrete foundation for the formulation of the Ecosystem 

Approach to Fisheries Management in tropical multi-species fisheries. Future research that 

follows on and further develops the functional approach adopted here is warranted. 

Concluding remarks 

The success of conservation interventions often depends on the multifaceted and sometimes 

competing interests and motivations that affect resource use decisions by local people 

(Beauchamp et al 2018b, Biedenweg & Gross-Camp 2018). Yet despite an extensive 

literature exploring the effects of conservation on human livelihoods, there is a lack of robust 

evidence about how conservation should be rolled out, who should be involved, for what role, 

who benefits, or who loses out. These questions have remained unanswered for decades. 

Consequently, implementation of conservation continues to suffer poor rates of adoption, 
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even where the need is obvious. In cases where conservation ideas and practices spread, 

adoption is often random and opportunistic (Weeks et al 2014). The aims of my study were to 

develop a better understanding on how people adopt conservation innovations (specifically 

gear-based management), and determine key social and environmental consequences of doing 

so. Addressing these aims provided some answers to the critical questions highlighted above. 

The approaches used to address this aim represent substantial departures from traditional 

approaches used to study conservation diffusion processes in social-ecological systems. My 

thesis thus has the capacity to change the way conservation diffusion and consequences of 

conservation on people and the environment is understood. Despite the current competitive 

interactions among gear used in the coral reef fishery studied, I found no evidence that escape 

slot traps did any harm to the local populations affected by intervention. This case study 

contributes to the growing body of works on impact evaluation of conservation and 

substantially improves our understanding on the outcomes of fisheries conservation in the 

context of major change. This analysis also provides wider legitimacy to the paradigm shift 

from the old era of outright gear prohibition to gear modification as new frontier in gear-

based management in fisheries (Condy et al 2015). Finally, I have highlighted substantial 

discrepancies in the way conservation is currently implemented and how ideally it should. 

My new framework will not only enable resource manager‘s better implement conservation 

but also mitigate the problem of stakeholder identification in conservation diffusion in ways 

that avoid blueprint approaches and panacea. 
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Appendix  

Table A1. Summary of RV coefficients including the adjusted and standardized coefficients. Means and variances of the RV 
coefficient distribution and the p-values are also presented. 

  
 

Coefficients 

   Sampling period Site RV Adjusted RV Standardized RV Mean Variance p-value 
 Time 1 vs Time 2 B 0.51 0.31 4.15 0.12 0 0.01 
  C 0.38 0.29 8.27 0.12 0.001 0.001 
  D 0.49 0.42 4.02 0.09 0.001 0 
 F 0.58 0.44 4.05 0.17 0.001 0.01 
Time 1 vs Time 3 B 0.38 -0.26 -2.05 0.12 0 0.01 
  C 0.42 0.33 10.01 0.14 0.001 0 
  D 0.53 0.37 3.29 0.08 0.002 0.001 

 
F 0.52 0.29 3.09 0.14 0.001 0.01 

 Time 2 vs Time 3 B 0.49 0.29 3.27 0.11 0.001 0.01 
  C 0.34 0.25 7.33 0.13 0.001 0 
  D 0.38 0.23 0.78 0.05 0.001 0.001 

 
F 0.45 0.37 10.35 0.14 0.001 0.01 
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Table A2. Exponential random graph model parameter estimates and standard 
errors. * = parameter estimate is greater than two times the standard error in 
absolute, indicating that the effect is significant. A positive activity parameter indicate 
that nodes with the attribute tend to have higher network activity (i.e., more ties) than 
nodes without the attribute. Interaction parameter denotes homophily for binary 
attributes. A positive interaction parameter indicate that nodes with attribute tend to 
have ties with each other. Difference parameter denotes homophily for continuous 
attributes. A negative difference parameter indicate homophily (i.e., a smaller 
difference in attribute between the two node is associated with the presence of a tie). 
T-ratios for the chi-square Goodness of Fit (GOF) were all smaller than 2.0 standard 
deviation units from the mean. 

Effects Parameter Standard error T-ratio 
Structural effects (endogenous) 

  
 

Edge -5.23* 0.85 -0.029 
Star2 0.04 0.12 0.639 
ASA 0.61* 0.29 0.069 
ATA 0.76* 0.18 0.041 
Actor relation effects (exogenous) 

  
 

Agency - Activity -0.06 0.2 0.622 
Agency - Difference 0.17 0.22 0.484 
Risk orientation - Activity 0.08 0.09 0.187 
Risk orientation - Difference -0.06 0.16 -0.007 
Formal leadership - Activity 0.3* 0.15 0.167 
Formal leadership - Interaction -0.54 1.23 -0.201 
Material style of life - Activity 0.2* 0.08 0.326 
Material style of life - Difference 0.17 0.17 0.157 
Occupational multiplicity - Activity -0.05 0.12 -0.061 
Occupational multiplicity - Difference -0.05 0.22 0.054 
Education - Activity -0.01 0.03 0.101 
Education - Difference -0.14* 0.06* -0.104 
Innovation knowledge - Activity 0.14* 0.07* 0.319 
Innovation knowledge - Difference -0.3* 0.15 -0.208 
Provision of incentives - Activity -0.24 0.31 -0.271 
Provision of incentives - Interaction 0.58* 0.21 -0.302 
 

 

 

 

 



222 
 

Key findings of exponential random graph models (ERGMs) 

Once accounting for the positive effect of having prior knowledge of the innovation, I show 

that being active or connected to other actors that are equally active in the network still had a 

significant positive effect on adoption. In other words, even when network activity and 

network clustering (i.e., homophily) is taken into account, having knowledge of the 

innovation still significantly contributed to adoption (Table A2). I found no evidence of 

homophily or activity effects associated with occupational multiplicity (Table A2). No 

network effect was collinear with occupational multiplicity either (Table 6). There were 

homophily effects associated with fishers that were provided with incentives and activity 

effects associated with opinion leadership and material style of life, however, no network 

effects were collinear with these attributes (Table A2).  



223 
 

Table A3. Model parameter estimates. Early adopters and late adopters coefficient estimates are based on multinomial logit model 
whereas dis-adopters are based on RELOGIT model. 

Predictors Early adopters 

  
Late adopters 

  
Dis-adopters 

    B se RRR se(RRR) B se RRR se(RRR) B se P value 
Agency 0.89 0.66 0.42 0.27 -0.21 0.34 1.23 0.42 -19.3 6.14 0.01** 
Risk orientation 0.93* 0.42 0.67 0.28 0.39 0.36 1.47 0.53 0.06 7 0.93 
Formal leadership 0.06 0.63 1.06 0.66 0.4 0.52 1.49 0.78 -0.6 0.14 0.01** 
Material style of life -0.55 0.47 0.58 0.28 -0.41 0.4 0.67 0.27 0.66 0.32 0.05** 
Occupation multiplicity 1.04 0.43 2.82 1.21 0.95** 0.37 0.96 0.36 -0.4 9.88 0.38 
Education -1.26* 0.45 0.78 0.35 -0.14 0.4 0.88 0.35 0.07 2.45 0.56 
#Traps 0.25 0.44 1.28 0.57 -0.11 0.38 0.91 0.35 -0.05 0.45 0.34 
Innovation knowledge 1.22** 0.43 3.38 1.45 0.66 0.36 1.93 0.69 0.14 1.81 0.69 
Age 0.24 0.47 1.27 0.59 0.35 0.42 1.42 0.59 -0.01 0.35 0.84 
Provision of incentives 0.58 0.42 1.79 0.75 2.2** 0.39 1 0.39 0.42 3.73 0.42 
 

Log-likelihood: 365.02; Pseudo-R2: 0.71 

Relative risk ratios (RRR) are reported, standard errors (se) of relative risk ratios are reported in parenthesis and are calculated as 
se(RRR) = exp(β) x se(β). ** p<0.05; * p<0.1. 
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Table A4. Results of the auto-logistic actor attribute model (ALAAM) for the adopter groups on network attributes. * = parameter 
estimate is greater than two times the standard error in absolute, indicating that the effect is significant. 

Network attribute Early adopters Late adopters Non-adopters 

  Parameter Standard error Parameter Standard error Parameter Standard error 
Density -2.06* 0.39 -2.31* 0.92 2.1* 0.87 
Popularity 0.52* 0.21 -0.24 0.2 -0.73* 0.21 
Direct social influence -0.17 0.21 0.69 0.44 0.16 0.5 
Activity 0.11* 0.05 0.09 0.1 0.1 0.15 
Network clustering 0.53* 0.21 0.1 0.15 0.12 0.76 
Contagion within groups              1.3* 0.54 0.22 4.2 1.3 2.4 
Individual covariate       
Agency   -0.17 0.12 -0.13 0.08 
Risk orientation 0.51 0.3   0.84 0.55 
Occupation multiplicity   0.36* 0.05 0.58 0.33 
Education -0.07 0.04   0.19 0.14 
Innovation knowledge 0.32* 0.15   -0.12* 0.02 
Provision of incentives   0.8* 0.23 0.75* 0.18 
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Table A5. Summary of group level network metrics on graphs for the six villages. T0, T1, and T2 denote network data collected at 
time one (i.e., baseline surveys), time one (i.e., first follow-up surveys), and time two (i.e., second follow-up surveys) respectively. 

Network data Village A Village B Village C Village D Village E Village F 

  T0 T1 T2 T0 T1 T2 T0 T1 T2 T0 T1 T2 T0 T1 T2 T0 T1 T2 
# actors 85 84 88 127 152 146 102 113 111 78 85 111 116 73 76 112 82 116 
# ties 102 124 96 147 316 200 141 210 161 114 142 161 173 119 118 171 134 186 
# unique ties 88 104 90 139 276 176 113 184 133 98 126 133 153 93 102 157 116 170 
# duplicated  ties 14 20 6 8 40 24 28 26 28 16 16 28 20 26 16 14 18 16 
# actors in a connected component 46 76 66 104 152 142 83 113 92 74 85 92 112 67 74 107 77 111 
# ties in a connected component 61 118 77 132 316 198 120 210 140 111 142 140 170 112 117 167 130 182 
Network diameter 5 9 9 5 7 11 6 7 10 6 5 10 11 8 9 8 10 8 
Average geodesic distance 4.15 4.2 4.54 5.55 3.48 5.16 4.33 3.41 4.09 3.95 3.42 4.09 3.89 3.72 3.86 3.82 3.76 3.75 
Average path length 2 2 2.1 1.84 1.77 1.93 2.48 2.2 2.7 2.5 2.1 2.2 4.39 4.1 3.9 2.3 2 1.9 
Network density 0.03 0.04 0.03 0.02 0.03 0.02 0.03 0.04 0.03 0.04 0.04 0.03 0.03 0.04 0.04 0.03 0.04 0.03 
Average clustering coefficient 0.09 0.1 0.04 0.05 0.21 0.1 0.14 0.15 0.16 0.06 0.13 0.16 0.04 0.16 0.07 0.06 0.15 0.09 
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Table A6. Analysis of all overlaps based on key players identified in each site. C = closeness centrality, B = betweenness centrality, 
D = degree centrality, E = eigenvector centrality. Expected number of key players = total number of nodes expected to be identified 
as key players in each site. Observed number of key players = actual number of nodes identified as key players, (+n) denotes 
number of nodes selected outside respondents list. Respondents selection probability = probability of the key player algorithm to 
select nodes from the respondents list. Observed % of distinct key players = percentage of non-overlapping nodes.  Level 2 = 
overlaps between two centrality metrics, Level 3 = overlaps between three centrality metrics, Level 4 = overlaps between four 
centrality metrics. 

Description A B C D E F Overall 
Expected number of key players 40 40 40 40 40 40 240 
Observed number of key players 40 40+3 40 40+1 40+5 40+4 253 
Respondents selection probability 1 0.94 1 0.98 0.89 0.91 0.96 
Observed number  of overlapping  key players  21 25 18 19 18 20 121 
Observed %  of distinct key players 52.5 62.5 45 47.5 45 50 50.42 
Total overlaps 11 14 12 13 13 12 29.66 
% overlap 27.5 32.56 30 31.71 28.89 27.3 29.7 
Number of distinct key players 19 15 22 21 22 20 119 
Overlapping centrality metrics % overlaps (n) 
E_C 0(0) 7.2(1) 7.2(1) 0(0) 0(0) 7.2(1) 3.6(3) 
D_C 0(0) 0(0) 7.2(1) 21.5(3) 0(0) 0(0) 4.8(4) 
D_E 7.2(1) 21.5(3) 0(0) 7.2(1) 14.3(2) 0(0) 8.4(7) 
D_E_C 7.2(1) 0(0) 0(0) 7.2(1) 0(0) 0(0) 2.4(2) 
B_C 28.6(4) 50(7) 7.2(1) 14.3(2) 14.3(2) 21.5(3) 22.7(19) 
B_E 0(0) 0(0) 7.2(1) 7.2(1) 7.2(1) 7.2(1) 4.8(4) 
B_E_C 0(0) 14.3(2) 0(0) 7.2(1) 14.3(2) 7.2(1) 7.2(6) 
B_D 0(0) 0(0) 14.3(2) 0(0) 7.2(1) 0(0) 3.6(3) 
B_D_C 21.5(3) 0(0) 7.2(1) 0(0) 0(0) 7.2(1) 6(5) 
B_D_E 0(0) 7.2(1) 7.2(1) 14.3(2) 0(0) 21.5(3) 8.4(7) 
B_D_E_C 14.3(2) 0(0) 28.6(4) 14.3(2) 35.8(5) 14.3(2) 17.9(15) 
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Levels of overlap % overlaps (n) 
Level 2 50(2) 60(3) 62.5(5) 57.1(4) 80(4) 42.9(3) 58.4(21) 
Level 3 25(1) 40(2) 25(2) 28.6(2) 0(0) 42.9(3) 27.8(10) 
Level 4 25(1) 0(0) 12.5(1) 14.3(1) 20(1) 14.3(1) 13.9(5) 
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Table A7. Parameter estimates for predictors of keyplayers.  

  Closeness 
Covariates B Bias Std. Error P value  
Formal leadership 1.67 0.02 0.42 0.03 
Material style of life -0.01 0.01 0.17 0.98 
Education -0.03 0.01 0.05 0.45 
Fishing experience 0.02 0.01 0.02 0.2 
Productive assets 1.52 0.02 0.33 0.04 
  Betweenness 
Covariates B Bias Std. Error P value 
Formal leadership 1.96 0.02 0.42 0.01 
Material style of life -0.03 0.01 0.16 0.79 
Education 0.01 0 0.06 0.87 
Fishing experience 0.02 0 0.02 0.14 
Productive assets 1.22 0.01 0.83 0.39 
  Degree 
Covariates B Bias Std. Error P value 
Formal leadership 1.53 0.01 0.41 0.08 
Material style of life 1.21 0.01 0.16 0.07 
Education 0.04 0 0.06 0.36 
Fishing experience 0.02 0 0.02 0.17 
Productive assets 0.11 0.01 0.33 0.67 
  Eigenvector 
Covariates B Bias Std. Error P value 
Formal leadership 0.84 0.01 0.44 0.11 
Material style of life -1.22 0.02 0.17 0.07 
Education 1.09 0.01 0.06 0.05 
Fishing experience 0.02 0 0.02 0.11 
Productive assets 1.76 0.01 0.34 0.01 
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Table A8. Summary statistics (i.e., mean, standard deviation, minimum, maximum, 
and percent proportions) of control variables included in the regression frameworks. 
Description of variables as in Table 3. 

Variable Statistic Control Adopters Non-adopters 
  N 73 (29.2%) 105 (42%) 72 (28.8%) 
Formal leadership Leaders 8 (11%) 17 (16.2%) 12 (16.7%) 
Occupational multiplicity Minimum 1 0 1 
  Maximum 4 4 3 
  Mean 2.4±0.8 2.4±0.9 2.3±0.8 
Education Minimum 0 0 0 
  Maximum 12 12 12 
  Mean 5.6±3.6 4.1±3.7 5.3±3.6 
Age Minimum 18 18 18 
  Maximum 75 82 79 
  Mean 39±13.7 43±16.3 39±13.2 
Fishing dependency Fishing dependent 70 (95%) 101 (96.2%) 70 (97.2%) 
Marital status Married 66 (90.4%) 93 (88.6%) 66 (91.7%) 
Credit access Credit accessed 64 (87.7%) 90 (85.7%) 61 (84.7%) 
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Table A9. Summary of results of analyses testing for the differences in baseline 
values for the different domains of wellbeing between adopters and non-adopters 
relative to control villages (parallel trends assumption). Material style of life is a score 
computed from a number of household items as stand-alone attributes for indicators 
of wealth. Reciprocity captures the number of reciprocated ties based on fishing and 
information sharing ties. Levels of satisfaction regarding food and income (i.e., 
subjective livelihood wellbeing), social relationships with other community members 
(i.e., subjective social cohesion), and work enjoyment and identity (i.e., subjective 
work wellbeing) are denoted as livWB, cohWB, worWB respectively.  

       Kruskal-Wallis ANOVA result 

Wellbeing dimension Test variable Mean of rank H P - value 
Material style of life  Adopter 109.47 10.747 0.005 
  Non-adopter 103.38 

    Control 138.68 
  Reciprocity Adopter 115.69 0.804 0.437 

  Non-adopter 119.41 
    Control 113.13 
  livWB Adopter 118.02 0.194 0.908 

  Non-adopter 114.08 
    Control 114.72 
  cohWB Adopter 114.41 0.371 0.831 

  Non-adopter 119.79 
    Control 114.76 
  worWB Adopter 116.98 0.609 0.738 

  Non-adopter 119.3 
    Control 111.22 
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Table A10. Coefficients of the General linear mixed model Ordinal regression 
frameworks testing the effect of adoption, non-adoption on wellbeing. 

a. Material wellbeing (MSL) - Time 1 (General linear mixed model)  

  Estimate Std. Error t value 
(Intercept) 1.673 0.731 2.288 
Controls -0.141 0.217 -0.651 
Non-adopters -0.097 0.217 -0.449 
Formal leadership 0.089 0.255 0.350 
Occupational multiplicity 0.148 0.119 1.240 
Education -1.280 0.458 -2.797 
Age -0.005 0.008 -0.632 
Fishing dependency -0.050 0.028 -1.790 
Marital status 0.132 0.334 0.395 
Credit access -0.226 0.252 -0.896 
 

b. Material wellbeing (MSL) - Time 2 (General linear mixed model) 

  Estimate Std. Error t value 
(Intercept) 3.173 0.876 3.623 
Controls -0.393 0.249 -1.577 
Non-adopters 0.221 0.249 0.888 
Formal leadership 0.134 0.294 0.458 
Occupational multiplicity 0.134 0.135 0.993 
Education -0.080 0.032 -2.486 
Age -0.024 0.009 -2.801 
Fishing dependency -1.763 0.571 -3.089 
Marital status 0.429 0.376 1.140 
Credit access -0.101 0.301 -0.336 
 

c. Subjective livelihoods wellbeing (livWB) - Time 1 (Ordinal regression model)  

             

  Estimate Std. Error z value Pr(>|z|) 
Controls -0.526 0.324 -1.622 0.105 
Non-adopters -0.633 0.300 -2.113 0.035 
Formal leadership -0.145 0.362 -0.402 0.688 
Occupational multiplicity -0.130 0.166 -0.783 0.434 
Education -0.929 0.659 -1.411 0.158 
Age 0.007 0.011 0.693 0.488 
Fishing dependency -0.016 0.040 -0.401 0.688 
Marital status -0.561 0.450 -1.247 0.212 
Credit access 0.549 0.372 1.475 0.140 
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d. Subjective livelihoods wellbeing (livWB) - Time 2  (Ordinal regression model)  

            
  Estimate Std. Error z value Pr(>|z|) 
Controls -0.468 0.312 -1.498 0.134 
Non-adopters 0.044 0.287 0.155 0.877 
Formal leadership -0.049 0.341 -0.143 0.887 
Occupational multiplicity -0.034 0.160 -0.216 0.829 
Education -0.939 0.681 -1.378 0.168 
Age 0.021 0.010 2.132 0.033 
Fishing dependency 0.021 0.040 0.525 0.600 
Marital status -1.118 0.423 -2.644 0.008 
Credit access 0.293 0.360 0.814 0.415 
 

e. Subjective work enjoyment wellbeing (worWB) - Time 1 (Ordinal regression 
model)  

  Estimate Std. Error z value Pr(>|z|) 
Controls -0.348 0.312 -1.116 0.265 
Non-adopters -0.079 0.293 -0.271 0.786 
Formal leadership -0.214 0.358 -0.599 0.549 
Occupational multiplicity -0.039 0.163 -0.240 0.811 
Education 0.366 0.614 0.596 0.551 
Age 0.004 0.010 0.410 0.682 
Fishing dependency -0.037 0.038 -0.969 0.332 
Marital status 0.236 0.444 0.531 0.596 
Credit access 0.430 0.357 1.204 0.228 
 

f. Subjective work enjoyment wellbeing (worWB) - Time 2 (Ordinal regression 
model)  

  Estimate Std. Error z value Pr(>|z|) 
Controls -0.481 0.312 -1.543 0.123 
Non-adopters -0.264 0.283 -0.933 0.351 
Formal leadership -0.311 0.353 -0.881 0.378 
Occupational multiplicity 0.225 0.154 1.464 0.143 
Education 0.556 0.651 0.854 0.393 
Age -0.006 0.010 -0.580 0.562 
Fishing dependency -0.059 0.039 -1.508 0.132 
Marital status 0.081 0.428 0.190 0.849 
Credit access -0.205 0.342 -0.600 0.549 
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g. Subjective social cohesion (cohWB) - Time 1 (Ordinal regression model)  

  Estimate Std. Error z value Pr(>|z|) 
Controls -0.234 0.317 -0.737 0.461 
Non-adopters -0.126 0.300 -0.418 0.676 
Formal leadership -0.016 0.350 -0.047 0.963 
Occupational multiplicity 0.054 0.167 0.323 0.747 
Education -0.614 0.634 -0.968 0.333 
Age 0.008 0.011 0.786 0.432 
Fishing dependency -0.017 0.040 -0.416 0.678 
Marital status -0.248 0.461 -0.539 0.590 
Credit access 0.452 0.366 1.236 0.216 
 
 

h. Subjective social cohesion (cohWB) - Time 2 (Ordinal regression model)  

  Estimate Std. Error z value Pr(>|z|) 
Controls -0.707 0.320 -2.206 0.027 
Non-adopters -0.307 0.302 -1.019 0.308 
Formal leadership -0.582 0.368 -1.582 0.114 
Occupational multiplicity 0.195 0.163 1.195 0.232 
Education -1.233 0.689 -1.790 0.074 
Age -0.015 0.010 -1.441 0.150 
Fishing dependency -0.067 0.040 -1.692 0.091 
Marital status 0.214 0.463 0.463 0.643 
Credit access -0.272 0.367 -0.739 0.460 
 

i. Relational wellbeing (reciprocity) - Time 1 (General linear mixed model) 

  Estimate Std. Error t value 
(Intercept) 0.611 0.537 1.139 
Controls 0.014 0.292 0.047 
Non-adopters 0.244 0.154 1.577 
Age 0.008 0.005 1.438 
Occupational multiplicity -0.021 0.085 -0.247 
Fishing dependency 0.008 0.021 0.406 
Formal leadership -0.021 0.038 -0.546 
Education -0.254 0.325 -0.783 
Marital status -0.473 0.241 -1.960 
Credit access -0.309 0.177 -1.748 
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j. Relational wellbeing (reciprocity)  - Time 2 (General linear mixed model) 

  Estimate Std. Error t value 
(Intercept) -0.479 0.556 -0.861 
Controls 0.280 0.262 1.069 
Non-adopters 0.070 0.155 0.453 
Formal leadership -0.007 0.038 -0.181 
Occupational multiplicity 0.037 0.085 0.439 
Education 0.539 0.354 1.520 
Age 0.000 0.005 -0.027 
Fishing dependency 0.000 0.021 0.019 
Marital status -0.054 0.233 -0.231 
Credit access -0.210 0.185 -1.136 
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Figure A1. Correlations between actual and perceived change in the three domains 
of subjective wellbeing. 
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a. b.



237 
 

Figure A2. Principal component analysis of functional entities contained in (a) 75% 
(n=29 functional entities) and (b) 50% of catch (n=11 functional entities). Colour 
gradient represent functional entities shared across a range of gear combinations. 
Abbreviations used are explained as follows: LargeG (>50 individuals) groups, MedG 
(20-50 individuals), SmallG (3-20 individuals) indicate size of fish schools. Fish size 
is coded using six categories: 0-7 cm (S1 – not present in my data), 7.1-15 cm (S2), 
15.1-30 cm (S3), 30.1-50 cm (S4), 50.1-80 cm (S5), and >80 cm (S6). Both denotes 
species active during the day and night. 
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Figure A3. Robustness analyses. First, I considered the six possible combinations of 
five traits out of six. Second, I decreased the number of categories considered for 
each trait (a crude categorization of functional entities potentially inducing high 
functional redundancy). For each of these seven changes in trait combinations, I 
computed the two functional diversity indices presented in the manuscript (i.e. 
functional richness and rarely targeted functional entities). (a) Functional entities 
richness in each of the seven gears, expressed as a percentage relative to the total 
number of functional entities present in all individuals. For each gear, the full-
coloured bar shows the richness computed with six traits. The square above each 
full-coloured bar shows the richness when considering fewer categories per trait. The 
light-coloured bar on the right of each full-coloured bar shows the mean value (± SD) 
with five traits only. Colour codes for gears are as in Fig. 10. (b) Rarely targeted 
functional entities presented as the percentage of individuals that constitute less than 
1% of total number of individuals captured in a gear. Horizontal dashed lines 
symbolize the index values measured on all individuals. (c) Number of functional 
entities in all individuals captured by all gear. The dark bar on the left shows the 
pattern observed with six traits. The white square shows the decrease in number of 
functional entities after reducing the number of categories per trait. The light-gray bar 
on its right shows the mean value obtained with five traits only (± SD). The six cases 
with five traits are shown with empty bars on the right with the name of the trait 
removed at the bottom (Pos, position in the water column; Diet; size; Mobil, mobility; 
Act, period of activity; Sch, gregariousness). The potential number of functional 
entities given the number of traits and number of categories in each trait is shown at 
the top of each bar. (d) Functional richness in each of the seven gears computed as 
the volume of the functional space filled and expressed as a percentage relative to 
the functional space filled considering 75% of catch. The coloured empty squares 
within each full-coloured bar shows the richness when considering fewer categories 
per trait. The light-coloured bar on the right of each full-coloured bar shows the mean 
value (± SD) with five traits only. (e) Rarely functional entities (percentage of 
functional entities with less than 1% of total number of individuals captured in a gear) 
along the abundance gradient. The values obtained with six traits are represented 
with coloured points. The values obtained with fewer categories per trait are 
represented as empty squares. The mean value obtained with five traits (± SD) is 
symbolized by the coloured squares. Colour codes for gear are as in (a).  
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Figure A4. The distribution of fish individuals into functional entities is displayed for 
each gear type. The number of functional entities (“Nb F.E.”) present in each gear is 
shown at the bottom right of the distribution. Functional redundancy (FR) (i.e., mean 
number of individuals per functional entity) is shown at the top far right corner. The 
light grey dashed line illustrates number of functional entities contained in 50% of 
catch. The grey dashed line illustrates number of functional entities contained in 75% 
of catch while the black dashed line illustrates number of functional entities 
contained in 99% of catch. Rarely targeted functional entities (RFE) i.e. functional 
entities contained in 1% of total number of individuals captured in each gear is 
illustrated in double arrows displayed at far right bottom corner.  
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Figure. A5. S-shaped adoption curve of cumulative adopters overtime (black dotted 
curve). Grey solid curve shows a logistic function describing the diffusion process.  
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