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Abstract

GRK2 is an important protein involved in B-adrenergic receptor desensitization. In
addition, studies have shown GRK2 can modulate different metabolic processes in the
cell. For instance, GRK2 has been recently shown to promote mitochondrial biogenesis
and increase ATP production. However, the role of GRK2 in skeletal muscle and the
signaling mechanisms that regulate GRK2 remain poorly understood. Myostatin is a
well-known myokine that has been shown to impair mitochondria function. Here, we
have assessed the role of Myostatin in regulating GRK2 and the subsequent downstream
effect of Myostatin regulation of GRK2 on mitochondrial respiration in skeletal muscle.
Myostatin treatment promoted the loss of GRK2 protein in myoblasts and myotubes in a
time- and dose-dependent manner, which we suggest was through enhanced ubiquitin-
mediated protein loss, as treatment with proteasome inhibitors partially rescued
Myostatin-mediated loss of GRK2 protein. To evaluate the effects of GRK2 on
mitochondrial respiration, we generated stable cell myoblasts lines that overexpress
GRK?2. Stable overexpression of GRK2 resulted in increased mitochondrial content and
enhanced mitochondrial/oxidative respiration. Interestingly, although overexpression of
GRK2 was unable to prevent Myostatin-mediated impairment of mitochondrial
respiratory function, elevated levels of GRK2 blocked the increased autophagic flux
observed following treatment with Myostatin. Overall, our data suggest a novel role for
GRK2 in regulating mitochondria mass and mitochondrial respiration in skeletal

muscle.

Keywords: Myostatin, myoblast, GRK2, Mitochondria, autophagy
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Background

G protein-coupled receptor kinases (GRKs) are serine/threonine kinases initially
identified to participate in the process of G protein-coupled receptor desensitization
(53). GRKs comprise a family that can be partitioned into three groups through
sequence homology: GRK1/7; GRK2/3 and GRK4/5/6 (54). GRKI1 and 7 are found in
retinal rods and cones, respectively, and GRK4 is expressed in testis, cerebellum and
kidney (38, 53-55). However, ubiquitous expression of GRK2, 3, 5 and 6 is observed in
mammalian tissues (53-55). These kinases can phosphorylate specific amino acid
residues in the intracellular domain of activated receptors and lead to recruitment of
adaptor proteins (e.g. B-arrestins) in order to attenuate intracellular G protein signaling
(54, 63).

Recent studies have identified GRK2 as an emerging kinase involved in
regulating different cellular process through phosphorylation and/or association with
other proteins (13, 23, 26, 72). Moreover, GRK2 expression and activity is tightly
regulated and is altered during several pathological conditions, for example
hypertension, heart failure and inflammation (41, 49, 75). GRK2 has recently been
linked to mitochondrial function and biogenesis (18). Overexpression of GRK2 has
been shown to promote increased mitochondrial mass and further enhance ATP
production due to the ability of GRK2 to target and phosphorylate mitochondrial
proteins in HEK293 cells; whereas knockdown of GRK2 led to reduced ATP
production in skeletal muscle (18). Moreover, macrophages treated with LPS exhibited
enhanced GRK2 accumulation in mitochondria, which was associated with increased
mtDNA copy and reduced ROS production (65). Although several studies have helped
to delineate GRK2 function using different model systems, the function of GRK2 in
skeletal muscle metabolism remains to be fully elucidated.

Members of the TGF-B superfamily of secreted growth factors, including
GDF11 and Myostatin, have negative impact on skeletal muscle growth and
maintenance (11, 45). More specifically, Myostatin has been previously shown to
inhibit myoblast proliferation (58, 69), myogenic differentiation (27, 33), block protein
synthesis signaling and promote a reduction in myotube size (70). Moreover, elevated
levels Myostatin has been shown to promote loss of mitochondrial membrane potential

and impair mitochondrial function in cancer cells (39). Importantly, Myostatin is a
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potent inducer of skeletal muscle wasting and increased Myostatin activity has been
observed in different atrophic conditions (1, 42, 56).

Over the past 10 years, many studies have revealed the pathological mechanisms
involved in Myostatin-mediated atrophy in skeletal muscle. Specifically, McFarlane et
al. (2006) reported that Myostatin was able to block IGF1/PI3K/Akt signaling and
activate the transcription factor FoxOl, which increases the expression of
MAFbx/Atrogin-1 and MuRF1/Trim63 (44), two well-known muscle-specific E3
ligases that are associated with muscle atrophy (2, 12). Myotubular atrophy has also
been noted in human myotubes upon treatment with excess Myostatin (32, 40), which
was associated with increased levels of Atrogin-1 and MuRF1 (40). Additional work
has revealed that Myostatin signals through Smad3 to increase FoxO1 and Atrogin-1 to
promote the ubiquitination and subsequent loss of critical sarcomeric proteins, such as
myosin heavy chain (MyHC), during muscle wasting (40).

As GRK2 and Myostatin have been shown to regulate mitochondrial function we
sought to determine a potential role for Myostatin in regulating GRK2 and subsequent
mitochondrial respiration in skeletal muscle. In this report, we show that Myostatin
targets and suppresses GRK2 protein levels in muscle cells, through a mechanism
involving the ubiquitin-proteasome pathway. In the present study, we find that
Myostatin treatment leads to impaired mitochondrial respiration, which was associated
with mitochondrial fragmentation, enhanced autophagic flux and reduced mitochondrial
content in muscle cells. We have further unraveled a novel role for GRK2 in regulating
mitochondrial respiration in muscle cells. Overexpression of GRK2 in myoblasts also
led to increased mitochondrial fragmentation; however, unlike Myostatin, GRK2
overexpression was associated with enhanced mitochondrial respiration and increased
mitochondrial mass. Surprisingly, while overexpression of GRK2 was not able to
overcome the negative effect of excess Myostatin on mitochondria respiration; elevated
GRK2 levels resulted in increased mitochondria content and a reduction in the overt-
autophagic flux noted in the presence of excess Myostatin. Overall, these data reveal a
novel role for GRK2 in regulating mitochondrial respiration and mass in muscle cells
and reveal that increased expression of GRK2 may act to compensate, at least in part,

for the loss of mitochondria noted upon Myostatin treatment.
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Materials and Methods

Cell culture and treatments

Mouse C2C12 myoblasts were obtained from American Type Culture Collection
and their maintenance has been previously described (43). C2C12 myoblasts were
expanded in myoblast proliferation medium (10% FBS, 1% P/S, and DMEM;
Invitrogen) and differentiated into myotubes through serum withdrawal in
differentiation medium (DMEM, 2% HS, and 1% P/S; Invitrogen) for 96h, to ensure
complete differentiation of cultures. Doxycycline (2pg/ml) was added together with
differentiation medium in order to induce the stable overexpression of GRK2.
Recombinant Myostatin protein (Mstn) was purified from E. coli (62) and was used at a
concentration of 3ug/ml for cell treatments, unless otherwise stated. For proteasome
inhibitor studies C2C12 myotubes were treated with 3ug/ml recombinant Mstn for a
total period of 24h. To block the activity of the proteasome MG132 (Sigma, St. Louis,
MO) and Epoxomicin (Epox; Sigma) chemicals were added to C2C12 myotubes at
10pum and 100nM final concentrations, respectively, 10h prior to harvesting the cells.
The difference in total GRK2 seen in the absence of presence of the proteasome
inhibitors represents the content of GRK2 that is being degraded through the ubiquitin-
proteasome system (29, 34). One independent experiment was performed with MG132
with 3 biological replicates and one confirmatory experiment was performed with Epox.

To block the lysosomal pathway, 100uM of chloroquine (Sigma) was added to
myotubes in the presence or absence of Mstn (3ug/ml) for 12h. The difference in the
protein levels of LC3-II between samples treated with and without chloroquine
represents the level of autophagic flux in the cells (30, 77). Two different experiments

were performed, each with one biological replicate.

Generation of GRK2 stable cell lines

Full length murine Grk2 cDNA (NM_130863.2) was PCR-amplified using the
following primers: 5' - CC ACC GGT ATG CAG AAG TAT CTG GAG GAC CGA - 3'
and 5' - ACC TGT ACA TCA GAG GCC GTT GGC ACT GCC ACG - 3' and cloned
into the pGEM-T easy cloning vector (Promega). After sequence verification, Grk2 was
subcloned into the doxycycline-inducible PEM777 expression vector (28). Grk2-
PEM777 or empty-PEM777 (Control) were transfected into C2C12 myoblasts and cells
using Lipofectamine 2000 (Invitrogen), as previously described (28). Following 3 days

Downloaded from www.physiology.org/journal/ajpcell at James Cook Univ (137.219.203.165) on July 7, 2019.



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

of selection with puromycin (1ug/ml), stably transfected cells were harvested and

expanded for further experimental procedures in the presence of 2pug/ml doxycycline.

Assessment of mitochondrial respiration

Mitochondrial respiration was assessed in vitro using the XF“24 extracellular
flux analyser, and the XF Cell Mito Stress and Glycolysis Stress Test Kits, as per the
manufacturer’s protocol (Agilent Technologies, Santa Clara, CA, USA), and as
described previously (20, 52). For assessment of real-time mitochondrial respiration of
myotubes, myoblasts were seeded (10,000 cells/well) onto XF24 cell culture
microplates and differentiated to form myotubes, as outlined above, in the presence of
100ng/ml doxycycline for 48h. Cells were then treated with either 2pg/ml recombinant
Mstn protein or an equal volume of dialysis buffer (Control) for a further 24h. The
XF24 sensor cartridge was hydrated overnight at 37°C in a non-CO, incubator. 30
minutes prior to assay run, differentiation medium was replaced with Assay Medium
(Agilent Technologies, Santa Clara, CA, USA) and cells were incubated at 37°C in non-
CO; incubator. Three measurements of oxygen consumption rate (OCR) and
extracellular acidification rate (ECAR) were recorded pre- and post-injection of 1 pM
Oligomycin (Oligo), 0.5uM FCCP and 0.5uM Antimycin/Rotenone (Ant/Rot) (Agilent
Technologies, Santa Clara, CA, USA) (14).

Using the Wave Desktop 2.3 software, seven parameters of mitochondrial
respiration, basal OCR, ATP-linked OCR, OCR due to proton leak, maximal OCR,
spare respiratory capacity, non-mitochondrial OCR and ECAR, were calculated from
the bioenergetic profiles obtained from the XF24 extracellular flux analyzer, which has
been outlined in detail previously (22). Briefly, basal OCR refers to the total baseline
cellular respiration rate and includes respiration due to ATP production, proton leak
(leak of protons across the inner mitochondrial membrane) and oxygen consumption
due to non-mitochondrial processes (22). ATP-linked oxygen consumption is
determined through the addition of the ATP synthase inhibitor oligomycin, which
effectively shuts down ATP production due to oxidative phosphorylation. Any residual
mitochondrial respiration/oxygen consumption noted at this point can then be attributed
to proton leak (22). Maximal OCR is determined through the addition of the proton
ionophore (uncoupler) FCCP, which increases inner mitochondrial membrane
permeability to protons, increasing oxygen consumption and allowing for the

assessment of the maximal oxygen consumption/respiration possible in the cells (22).
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Spare respiratory capacity is calculated through determining the difference between
basal OCR and maximal OCR in the cells and this reflects the amount of extra oxygen
consumption/ATP-production that can be achieved by the cells in response to increased
energy demand (7). Non-mitochondrial respiration is the oxygen consumption due to
non-mitochondrial processes. Although not well defined, this has been attributed to
such processes as hydrogen peroxide production (3) and the enzymatic activity of
oxygenases (4). Assessment of extracellular acidification rate (ECAR) is primarily a
measure of acid release and is related to lactic acid formation during glycolysis (15).
Basal respiratory capacity was recorded at the third readout of OCR just prior to
oligomycin injection, whereas mitochondrial respiration due to proton leak was
recorded at 6™ OCR readout, which is just prior to FCCP injection. Maximal respiration
was recorded as the highest OCR measurement following FCCP injection. ATP-linked
respiration and spare respiratory capacity were calculated by subtracting OCR due to
treatment with oligomycin from basal respiration and basal respiration from maximal
respiratory capacity, respectively. Non-mitochondrial respiration was taken as the
minimum OCR measurement after injection of Ant/Rot and was subtracted from all
respiratory calculations. Values were normalized to total protein content. Two
independent experiments were performed to assess mitochondrial respiration, each

containing 5 biological replicates. Three measurements per timepoint were assessed.

RNA extraction and quantitative real time PCR (qPCR)

Isolation of total RNA from C2C12 myotubes was performed using TRIZOL
reagent, as per the manufacturer’s instructions (Invitrogen, Carlsbad, CA). Synthesis of
cDNA was achieved using the iScript system (Bio-Rad Laboratories, Inc., Hercules,
CA), according to the manufacturer's protocol. Quantitative real-time PCR (qPCR) was
undertaken using the SsoFast EvaGreen Supermix (Bio-Rad) and the CFX96 Real-Time
PCR system (Bio-Rad). Transcript levels of target genes were normalized against the
expression of the housekeeping gene Gapdh. Relative fold change in expression was
calculated using the AAcycle threshold (AACT) method. The sequences of the primers
used in this manuscript are given in Table 1. All oligos pertaining to this study were
purchased from Sigma Aldrich (Singapore). All qPCR in this study was performed once

with 3 biological replicates and two technical replicates per sample/treatment.

Immunoblotting (1B)
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Proteins were isolated from myoblasts and myotubes using protein lysis buffer
[5S0mM Tris, (pH 7.5), 250mM NaCl, 5SmM EDTA, 0.1% NP-40, Complete protease
inhibitor cocktail (Roche, Indianapolis, MN), 2mM NaF, ImM Na;VO,, and 1mM
phenylmethylsulfoxide (PMSF)]. Proteins were quantified using Bradford reagent (Bio-
Rad). A total of 25 pg of each protein lysate was resolved on 4-12% BIS-TRIS precast
gels (Invitrogen). Proteins were then transferred onto nitrocellulose membrane using
either the Invitrogen iBlot® 2 dry transfer system or the XCell II SureLock™ wet
transfer system (Invitrogen, Carlsbad, CA, USA). Membranes were then blocked
overnight at 4°C in 5% milk in 1x Tris-buffered saline-Tween 20 (TBST) and proteins
were hybridized with specific primary antibodies for 3h in 5% milk/1x TBST.
Membranes were then washed in 1x TBST, 5 times for 5 min each, before and after 1h
incubation with a 1:5,000 dilution of respective secondary antibodies, either goat anti-
rabbit horse radish peroxidase (HRP) (Catalogue No:1706515; Bio-Rad, Hercules, CA,
USA) or goat anti-mouse HRP (Catalogue No:1706516; Bio-Rad, Hercules, CA, USA)
antibodies.  Antibody-bound proteins were detected using Western Lightning
Chemiluminescence Reagent Plus (PerkinElmer, Boston, MA) and autoradiography
films (Kodak). Protein levels were quantified and analyzed using the GS-800 calibrated
densitometer (Bio-Rad) and analyzed using Quantity One imaging software (Bio-Rad).
Details of the primary and secondary antibodies used in this study are provided in Table
2. The specificity of the anti-LC3B antibody has previously been demonstrated using a
commercially available recombinant protein by Koukourakis et al., (2015) (31). The
anti-MFN1 antibody has been previously used to demonstrate increased levels of Mfnl
protein in liver tissue of high fat diet fed mice and in hepatocytes that display a swollen
mitochondrial morphology (25). Previous target-specific siRNA knockdown studies
have confirmed the specificity of the anti-P62 (76), anti-GRK?2 (61), anti-PARKIN (36,
67), anti-MFN2 (79), anti-DRP1 (37) and anti-FIS1 (46) antibodies used in the current
study. The number of experimental and biological replicates for IB analysis are detailed

in relevant figure legends.

Mitotracker Red staining and assessment of mitochondria morphology using confocal
microscopy

Following 72h doxycycline (2pg/mL) induction C2C12 myoblasts were seeded
onto 8-well Permanox chambered slides, at a density of 5,000 cells per well. After

overnight attachment, myoblasts were treated with recombinant Mstn protein (3pg/ml)
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for 24h. To identify mitochondria, myoblasts were incubated for 30 min with 200 nM
Mitotracker Red (CMX red Rosamine-based Mitotracker dye, Invitrogen). Cells were
washed 3 times with PBS and subsequently fixed with paraformaldehyde (4%) in
DMEM for 15 minutes. After fixation, cells were washed 3 times and were then
mounted using SlowFade antifade reagent containing DAPI and analyzed using
confocal microscopy (Nikon, 60X).

To analyze mitochondrial morphology in control and GRK2 overexpressing
C2C12 cells in the presence or absence of Mstn protein, the indices of mitochondrial
interconnectivity (area/ perimeter ratio per mitochondrion), which is a measure of
mitochondrial elongation, were quantified for each mitochondrion using the well-
validated NIH Image J macros (Mitochondrial and Mitophagy Morphology macros

(available at http://imagejdocu.tudor.lu/), as previously described (59), with minor

modifications. The particular Image J macro was originally described by Dagda et al.,
2009 (6) and importantly, has been used by several investigators since that time (5, 19,
66). Moreover, one recent study by Wiemerslage and Daewoo, (2016), further validated
the Mitochondrial Morphology macro in dopamine neurons and analyzed the
relationship and interdependency of individual parameters quantified by the macro
(number of mitochondria, area, elongation, interconnectivity) under various conditions
using principle component analysis (74). To quantify mitochondrial interconnectivity in
C2C12 cell, between 10-15 high resolution RGB images (TIFF, 1020 x 1020 pixels)
were captured for each condition using confocal microscopy and were analyzed for
mitochondrial morphology. In order to account for possible swelling of mitochondria,
the area/perimeter were normalized for the minor axis of an ellipse that was “fitted”
onto each mitochondrion analyzed by the macro. The interconnectivity ratio
[(area/perimeter ratio)/minor axis] per cell were averaged for 50-100 mitochondria per
cell, and subsequently averaged for the entire population size for each experimental
condition (25-30 cells). A low average interconnectivity ratio for a specific
experimental condition (e.g. Mstn treated cells relative to control untreated cells) is

indicative of mitochondrial fragmentation (fission).

Mitotracker Green Staining
Following 72h doxycycline induction C2C12 myoblasts were seeded onto 6-well
plates, at the density of 15,000 cells/cm’. The next day, cells were treated with 2pg/ml

recombinant Mstn protein or an equal volume of dialysis buffer (Control) and incubated
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at 37°C, 5% CO,. After 24h, myoblasts were stained with 150nM MitoTracker® Green
FM (Thermo Fisher Scientific, Waltham, MA, USA) for 20 minutes at 37°C. Cells were
washed twice with PBS and harvested in conical tubes by centrifuging at 300xg for 1
minute. Cell pellets were resuspended in PBS and FACS analysis was performed to
detect MitoTracker® Green FM fluorescence intensity using the FACSCanto™ II flow
cytometry system (BD Biosciences, Franklin Lakes, NJ, USA). Fluorescent intensity of
10,000 events from 3 replicate wells per experimental group were detected using the
FITC channel and represented as mean fluorescent intensity (MFI). Two technical

replicates were performed.

Statistical Analysis

Statistical analysis was performed using two-tail Student's-t-test and ANOVA,
using the Bonferroni post-hoc test. Data are expressed as mean =SEM and results were
considered significant at p<0.05. A description of experiment replicates is provided in

relevant figure legends.
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Results

Mstn promotes the loss of GRK2 protein via the Ubiquitin Proteasome Pathway (UPP)

Initially we investigated whether or not Myostatin can modulate GRK2
expression. Immunoblot (IB) analysis revealed that treatment of C2C12 myotubes with
recombinant Myostatin protein (Mstn) resulted in a ~70% decrease in GRK2 protein
content after 24h treatment (Fig. 1A). We further noted both a time- and dose-
dependent decrease in GRK?2 protein levels in both C2C12 myoblasts and myotubes
following treatment with Mstn (Fig. 1B and 1C). However, Mstn-induced loss of
GRK?2 protein was more pronounced in C2C12 myotubes compared to Mstn-treated
C2C12 myoblasts (Fig. 1B & 1C).

Since Mstn has been shown to increase the activity of the UPP to promote loss
of skeletal muscle proteins (44), we next evaluated whether or not Mstn promotes the
loss of GRK2 protein through the UPP. As shown in Fig. 1D and 1E, treatment of
C2C12 myotubes with Mstn resulted in reduced protein levels of GRK2. However,
treatment of C2C12 cells with two different specific proteasome inhibitors (MG132 and
Epoxomicin) was able to partially rescue the loss of GRK2 protein observed following
Mstn treatment. (Fig. 1D & 1E).

Taken together, these data suggest that Mstn is able to promote loss of GRK2

protein, through activation of the Ubiquitin Proteasome Pathway (see summary; Fig. 4).

GRK2 and Mstn have differential effects on mitochondrial mass and OXPHOS gene
expression in myotube cultures

It has been previously reported that GRK2 can target mitochondria in HEK293
cells to increase mitochondrial function and enhance ATP generation (18). On the other
hand, Myostatin is a myokine that promotes mitochondrial dysfunction and loss (39).
Thus, we next sought to determine: 1) the effect of GRK2 on mitochondrial mass and
respiration in muscle cells, and 2) whether or not GRK2 may play a role in Mstn
regulation of mitochondria. To facilitate this, we generated doxycycline-inducible
GRK2 overexpressing C2C12 cells, with GRK2 overexpression in myotubes
subsequently confirmed through both qPCR (Fig. 2A) and immunoblot analysis (Fig.
2B). It is worth noting that despite significant over expression of GRK2, Mstn treatment
was still able to reduce GRK2 protein levels, but not Grk2 mRNA expression, in
GRK2-overexpressing C2C12 myotubes (Fig. 2A & 2B). However, the levels of GRK2

11
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protein remained elevated above endogenous levels compared to the control cell line,
despite excess Mstn treatment (Fig. 2B).

Initially we assessed mitochondrial mass through MitoTracker Green FM
staining and subsequent FACS analysis. Results revealed a reduction in mitochondrial
mass in response to Mstn treatment and an increase in mitochondrial mass upon
overexpression of GRK2. (Fig. 2C). Conversely, a significant increase in mitochondrial
mass was observed in GRK2-overexpressing myoblast cultures upon treatment with
exogenous Mstn (Fig. 2C). Despite the increase in mitochondrial mass noted in control
GRK?2 overexpressing cells, the expression of critical OXPHOS genes (which encode
for subunits of Complex I and Complex V) was unaltered between untreated control
and GRK2 overexpressing myotube cultures (Fig. 2D). Unexpectedly, the expression of
the OXPHOS genes tended to increase in response to Mstn treatment (Fig. 2D), with the
greatest increase in OXPHOS gene expression noted in Mstn treated GRK2

overexpressing cells, when compared to Mstn treated control cells (Fig. 2D).

GRK2 and Mstn influence mitochondrial fission and fusion in myotube cultures

Next, we investigated the role of GRK2 and Mstn in mitochondrial
structure/dynamics through analysis of mitochondrial fission and fusion markers.
Western blot analysis revealed a significant reduction in the protein levels of
mitochondrial fusion markers, MFN1 and MFN2, upon Mstn treatment, in both control
and GRK2-overexpressing C2C12 myotubes (Fig. 3A & 3B). Furthermore, a significant
increase in the levels of the mitochondrial fission marker proteins Drpl and Fisl, and
the mitochondrial E3 ligase PARKIN were observed upon Mstn treatment of control
cells, with significantly increased levels of both Fisl and PARKIN also noted in Mstn
treated GRK2-overexpressing C2C12 myotubes (Fig. 3A & 3B). These data suggest that
Mstn treatment is associated with reduced mitochondrial fusion and increased
mitochondrial fission in C2C12 myotube cultures. A significant increase in the levels of
Fislwas also noted in untreated GRK2-overexpressing C2C12 myotubes, when
compared to untreated control cells; however, in contrast to what was observed
following Mstn treatment, the levels of Drpl and Parkin remained low and were in fact
slightly reduced in untreated GRK2-overexpressing C2C12 myotubes, when compared
to untreated controls (Fig. 3A & 3B). Interestingly, significantly increased levels of both
MFNI1 and MFN2 were observed in untreated GRK2-overexpressing C2C12 myotubes,
when compared to controls (Fig. 3A & 3B).

12
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We next stained control and GRK2-overexpressing myoblasts, treated with or
without Mstn protein, with Mitotracker Red to visualize mitochondria and to assess for
qualitative changes in mitochondria morphology (Fig. 3C).  Through using semi-
automated macros that determine the mitochondrial interconnectivity ratio
(area/perimeter normalized to the minor axis of an ellipse) (59), we observed that
untreated cells contained interconnected mitochondria, as evident by long tubular
mitochondrial networks (Fig. 3C & 3D). However, Mstn treatment of cells led to a
robust fragmentation of mitochondrial networks and a decreased mitochondrial
interconnectivity ratio (Fig. 3D). Paradoxically, inducible expression of GRK2 also
resulted in a decreased mitochondrial interconnectivity ratio per cell (Fig. 3D). The
combination of GRK2 overexpression and Mstn treatment resulted in a partial reversal
of mitochondrial fragmentation induced by GRK2 alone, back to levels similar to cells
treated with Mstn alone. However, the overall levels of fragmentation were still
significantly lower when compared to untreated control cells (Fig. 3D). Based on the
image analysis, our data shows that both GRK2 and Mstn treatment induce
mitochondrial fragmentation/fission; although the molecular mechanism through which
both proteins promote reduced mitochondrial interconnectivity is distinct, as per our

Western blot data (altered MFN1/2 levels and increased Drp1 vs. Fis 1 levels; Fig. 3B).

GRK2 overexpression prevents the increased autophagic flux observed in response to
Mstn treatment

It is well established that excess Myostatin leads to increased autophagy (35,
73). Mitophagy is the selective process by which damaged/defective mitochondria are
targeted for lysosomal-mediated degradation (30). Once different outer mitochondrial
membrane-localized proteins are ubiquitinated, by E3 ligases including Parkin,
mitochondria are “flagged” and targeted for degradation by the ubiquitin-binding
adaptor protein P62/SQSTM1, which in turn associates with LC3 in the autophagosome,
leading to the engulfment and degradation of mitochondria (51). During this process,
the LC3 isoform I is conjugated to phosphatidylethanolamine to form a membrane-
bound form of LC3, termed LC3-II, which remains bound to autophagosome until it is
targeted for degradation by the lysosome (68). To determine whether or not GRK2
plays a role in autophagy, we next assessed autophagic flux in dialysis buffer and Mstn
treated control and GRK2-overexpressing cells, in the presence or absence of

chloroquine, a lysosomotropic agent that inhibits autophagy (64). As observed in Fig.
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3E, chloroquine treatment resulted in the accumulation of both p62 and LC3-II in
control cells and of LC3-II in GRK2-overexpressing cells, consistent with a blockade in
autophagy (Fig. 3E). However, upon Mstn treatment, we observed a noticeable increase
in p62 and LC3-II accumulation in chloroquine treated control cells, when compared to
dialysis buffer treated controls (Fig. 3E), indicating increased autophagic flux in
response to Mstn treatment. Interestingly, no difference in p62 or LC3-II accumulation
was observed in Mstn treated GRK2-overexpressing cells in the presence of
chloroquine, when compared to control cells treated with chloroquine. These data
suggest that over expression of GRK2 prevents the overt-autophagic flux induced upon
Mstn treatment in myotube cultures, which is consistent with the increased

mitochondrial mass noted in Mstn treated GRK2 overexpressing myoblasts (Fig. 2C).

Mstn treatment impairs, while GRK2 overexpression increases, mitochondrial
respiratory capacity in C2C12 myoblasts

We next evaluated mitochondrial respiration in control and GRK2-
overexpressing myotubes by measuring OCR and ECAR by employing the XF24
Extracellular Flux Analyser (Agilent Technologies). In this system, OCR is used to
measure real-time mitochondrial respiration and ECAR is used to measure glycolysis
(14). Extracellular flux analysis revealed a significant reduction in overall OCR in
myotubes treated with Mstn (Fig. 3F & 3G). Subsequent quantification of real-time
OCR data revealed a significant reduction in basal OCR, ATP-linked OCR, which
reflects ATP production through oxidative phosphorylation, maximal OCR (maximal
respiration possible in the cells) and spare respiratory capacity (amount of extra ATP-
production that can be achieved by the cells in response to increased energy demand)
following Mstn treatment (Fig. 3G). In addition, Mstn treatment resulted in a significant
reduction in the OCR due to proton-leak (leak of protons across the inner mitochondrial
membrane) as well as non-mitochondrial respiration, which is OCR due to non-
mitochondrial processes in the cells (Fig. 3G). Interestingly, GRK2 overexpression led
to a significant increase in the OCR of C2C12 myotubes (Fig. 3F & 3G), with a
significant increase in basal OCR, maximal OCR, ATP-linked OCR and spare
respiratory capacity noted upon overexpression of GRK2 (Fig. 3G), suggesting that
elevated GRK2 has a positive effect on cellular respiration, enhancing maximal cell
respiration and the potential to produce extra ATP in times of increased energy demand

(Spare respiratory capacity). Importantly, we noted a statistically significant, albeit only
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a very modest, reversal of Mstn-mediated repression of maximal OCR and spare
respiratory capacity upon overexpression of GRK2 (Fig. 3G). The graph shown in Fig.
3H is a visual representation of the metabolic phenotype in cells and reveals that
untreated GRK2-overexpressing cells are more aerobic, when compared to untreated
control cells (Fig. 3H). In addition, analysis revealed that Mstn treatment resulted in a
robust increase in glycolysis and decreased aerobic respiration in myotube cultures, as
evident by the increase in ECAR and concomitant reduction in OCR, respectively.
Taken together these data suggest that while overexpression of GRK2 has a positive
effect on mitochondrial respiration and can block Mstn-mediated autophagy in muscle
cells, overexpression of GRK2 is not able to completely reverse the detrimental effect of

Mstn on mitochondrial respiration (see summary; Fig. 4).
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Discussion

In this report, we have undertaken studies to explore GRK2 function in muscle
cells and the role that GRK2 plays in Myostatin-mediated regulation of mitochondrial
respiration. Herein, we have shown that overexpression of GRK2 in muscle cells leads
to increased mitochondrial mass and respiration, as measured through oxygen
consumption rate. In addition, our data suggests that GRK2 modulates mitochondrial
dynamics, as inducible overexpression of GRK?2 altered the levels of key regulators of
mitochondrial fission and fusion and ultimately resulted in increased mitochondrial
fragmentation. Excess Mstn also altered the levels of mitochondrial fusion and fission
markers and further led to increased mitochondrial fragmentation; however, in contrast
to what was observed in GRK2 overexpressing myoblasts, excess Mstn resulted in
reduced mitochondrial mass, increased autophagic flux and impaired mitochondrial
respiration in muscle cells. Importantly, although elevated GRK2 levels was able to
prevent the Mstn-mediated increase in autophagic flux, overexpression of GRK2 was
unable to rescue the impaired mitochondrial respiration noted upon Mstn treatment.
Our findings support a beneficial role for GRK2 in increasing mitochondrial respiration
and preventing overt autophagy and loss of mitochondrial mass in skeletal muscle cells.

As we have observed that Mstn represses the protein levels of GRK2 (Fig. 1 &
2), but has no significant inhibitory effect on Grk2 mRNA expression (Fig. 2A), we
propose that Mstn regulates GRK2 levels post-transcriptionally. This is quite consistent
with the involvement of the ubiquitin-proteasome pathway (UPP) in Mstn-induced
repression of GRK?2 protein levels that we have described (Fig. 1D & 1E). Given this,
we propose that GRK2 protein may be targeted for degradation through the UPP in
response to Mstn treatment (Fig. 4). Myostatin has been shown to upregulate both
Atrogin-1 and MuRF1 E3 ligases to promote UPP-mediated protein degradation in
conditions of muscle wasting (40, 44), thus we speculate that Myostatin may signal
through the E3 ligases Atrogin-1 and/or MuRF1 to target and degrade GRK2 protein.
Moreover, Salcedo et al., 2006 have revealed that in HeLa and HEK-293 cells GRK2 is
targeted by the E3-ubiquitin ligase Mdm?2 for degradation through the UPP upon ,-AR
stimulation (60). Given that Mdm?2 is expressed in muscle cells (17) it is quite possible
that Myostatin may signal through Mdm2 to regulate GRK2. However, future studies
will need to be performed to further clarify the specific molecular mechanism(s)

through which Myostatin targets and represses GRK2 protein levels in muscle cells.
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It is important highlight that we noted a more pronounced repression of GRK?2
protein levels in Mstn treated myotube cultures, when compared to myoblast cultures
(Fig. 1B & 1C). Although the exact reason for this phenomenon remains to be defined,
it is noteworthy to mention that the levels of the canonical Myostatin signaling target
Smad3 (24) are increased during myogenic differentiation (9, 78). Thus, we speculate
that the greater inhibitory effect of Myostatin on GRK2 may be due to increased
availability of Smad3 and subsequent downstream signaling in myotube cultures.
However, future studies will need to be undertaken to confirm this.

Fusco et al. (2012), have recently shown that GRK2 overexpression in HEK-
293 cells led to increased ATP production and mitochondrial biogenesis and that loss of
GRK2 from skeletal muscle in vivo reduces ATP production (18). In agreement with
this, we find increased mitochondrial mass, oxygen consumption rates and cellular
respiration, which is consistent with enhanced mitochondrial respiratory function, in
GRK2 overexpressing skeletal muscle cells. Increased oxygen consumption was also
associated with reduced ECAR in GRK2 overexpressing myoblasts. Similar results
have been observed previously in myoblast cultures (10) and suggests that these cells
rely on oxidative phosphorylation, as opposed to glycolysis, to meet cellular energy
demands. In contrast, upon Mstn addition to control cells, we observed significantly
decreased oxygen consumption in muscle cells (Fig. 3F). In addition to reduced basal
mitochondrial respiration, Mstn treatment led to significantly reduced maximal
mitochondrial respiration when compared to controls. This could indicate diminished
availability of substrate (although comparable medium constituents are maintained
across all cell cultures), disruption of the electron transport chain or reduced
mitochondrial mass (22). In agreement with this, reduced mitochondrial mass was seen
in response to Mstn treatment of C2C12 cells (Fig. 2C). Together with reduced maximal
respiration we also noted reduced spare respiratory capacity upon Mstn treatment,
which suggests that Mstn treated cells may have reduced ability to respond to increased
energy demand, when compared to control cells. We further observed reduced ATP-
linked respiration upon Mstn treatment, which could indicate a reduced requirement for
ATP, reduced availability of substrate or importantly, impaired function of the electron
transport chain and subsequent oxidative phosphorylation (22). Moreover, reduced
OCR and a concomitant increase in ECAR was noted in Mstn treated cells, consistent
with a switch from predominantly aerobic respiration to glycolysis in these cells. Taken

together, these observations are consistent with previously published work, revealing
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that excess Mstn leads to mitochondrial dysfunction and reduced oxygen consumption
(39). Unexpectedly, despite increased mitochondrial mass we did not find a rescue of
Mstn-mediated impairment of oxygen consumption and cellular respiration upon
overexpression of GRK2, although a very minor rescue of maximal respiration and
related spare respiratory capacity was noted. Taken together, these data suggest that
overexpression of GRK2 is not able to compensate for the deleterious effect of Mstn on
mitochondrial respiration, and due to the increased mitochondrial mass noted,
conceivably leads to an accumulation of dysfunctional mitochondrial in these cells.

Increased expression of OXPHOS genes (Subunits of Complex I and IV) was
noted in both Mstn treated control cells (albeit not statistically significant) and Mstn
treated GRK2 overexpressing cells. A similar increase in complex IV OXPHOS gene
expression has been observed in fibroblasts derived from patients with ATP synthase
deficiency, independently of changes in mtDNA (21). Moreover, increased mRNA
expression of OXPHOS genes has been noted in diseases associated with additional
mitochondrial complex deficiencies (57). Therefore, we speculate that the increased
mRNA expression of OXPHOS genes observed in Mstn treated cells may act to
compensate for the reduced oxygen consumption/mitochondrial respiration noted in
response to Mstn treatment.

It is noteworthy to mention that a more pronounced increase in OXPHOS gene
expression was observed in GRK2-overexpressing cells following Mstn treatment.
Previous work by Sorriento et al. (2013) have revealed that macrophages treated with
LPS exhibit enhanced translocation and accumulation of GRK2 in mitochondria, which
in turn was associated with elevated expression of cytochrome b and NADHd (complex
III and I, respectively) (65). This may help to explain the OXPHOS gene expression
pattern noted in Mstn treated GRK2 overexpressing myoblasts. However, further
studies will need to be undertaken to confirm this hypothesis.

In eukaryotic cells, mitochondrial content is tightly controlled through pathways
that modulate  mitochondrial  biogenesis and  mitochondrial  clearance
(autophagy/mitophagy) (8). Mstn robustly increases autophagic flux in myoblasts (Fig.
3E). Moreover, we further find that Mstn treatment leads to mitochondrial
fragmentation (Fig. 3D), impaired mitochondrial respiration (Fig. 3F & 3G) and a
reduction in mitochondrial mass (Fig. 2C). Taken together these data suggest that Mstn
treatment disrupts mitochondrial respiration and leads to decreased mitochondrial mass

in muscle cells. It is important to mention that while the increased autophagic flux and
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decreased mitochondrial mass is consistent with enhanced autophagy-mediated
mitochondria clearance or mitophagy, a more direct measure of mitophagy would need
to be performed to confirm this. Interestingly, GRK2-overexpressing cells, when
treated with Mstn, exhibited decreased autophagic flux, which was supported by
reduced chloroquine-mediated accumulation of LC3-II and p62 in response to Mstn
treatment, when compared to controls. These data suggest that overexpression of
GRK2 blocks the overt-autophagic flux induced by Mstn treatment, which would most
certainly account for the increased mitochondrial content observed in Mstn treated
GRK2 overexpressing myoblasts (Fig. 2C). Furthermore, given that GRK2 reduces
autophagic flux in myoblasts and that Mstn treatment leads to a reduction in GRK2
protein levels in muscle cells, it is interesting to surmise that Mstn may repress GRK2
protein to facilitate autophagy-mediated clearance of mitochondria. However, further
work will need to be undertaken to validate this mechanism in muscle cells.

The processes of mitochondrial fusion and fission are tightly regulated and are
critically involved in governing mitochondria turnover, as evidenced by previous work
(71). Here, we show that GRK2-overexpressing cells exhibited increased levels of both
mitochondrial fusion (Mfnl/2) and fission (Fisl) proteins, suggesting that
overexpression of GRK2 promotes increased mitochondrial fission/fusion, which is
consistent with recent work assessing GRK2 function during ionizing radiation-induced
mitochondrial damage (16). In contrast to this, Mstn treatment tended to decrease the
levels of both Mfnl and Mfn2 in both control and GRK2 overexpressing myoblasts,
suggesting that Mstn treatment may impair mitochondrial fusion. In addition, Mstn
treatment led to elevated levels of the mitochondrial fission markers Drpl and Fisl.
However, it is interesting to note that while elevated Fisl levels were maintained in
Mstn treated GRK2 overexpressing myoblasts the Mstn-mediated increase in Drpl was
ablated in GRK2-overexpressing cells, revealing that GRK2 may have an inhibitory role
in controlling Drpl levels. Furthermore, given that Mstn treatment leads to elevated
Drpl and Fisl (Fig. 3A & 3B) and that overexpression of GRK2 increases the
expression of Fisl, but not Drpl (Fig. 3A & 3B), we propose that the changes in
mitochondrial dynamics observed in response to either Mstn treatment or GRK2
overexpression may occur through distinct mechanisms. Consistent with this, recent
studies have revealed that Fis1 can regulate mitochondrial morphology independently of

Drp1 (50).
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It is important to mention that despite differential regulation of fusion and fission
proteins by Mstn and GRK2, a similar reduction in mitochondrial interconnectivity,
consistent with increased mitochondrial fragmentation, was noted between GRK2
overexpressing myoblasts and Mstn treated control and GRK2 overexpressing cells,
when compared to untreated controls (Fig. 3D). Importantly, despite a similar level of
mitochondrial fragmentation, overexpression of GRK2 alone led to increased
mitochondrial respiration. We propose that the differences in mitochondrial respiration
observed may be linked to maintenance of mitochondrial membrane potential in GRK2
overexpressing cells. Most certainly, previous work has revealed that fragmentation of
mitochondria does not necessarily lead to reduced membrane potential (47) and more
importantly, overexpression of GRK2 has been linked with maintenance of
mitochondrial membrane potential in HEK293 cells in response to ionizing radiation-
induced damage (16). Moreover, we find that the levels of the E3 ligase Parkin, which
is recruited to damaged/defective mitochondria with low membrane potential to mediate
their removal by autophagosomes (48), remained unchanged in control GRK2
overexpressing cells.

In conclusion, here we have described a beneficial role for GRK2 in regulating
mitochondrial respiratory function and further reveal that excess GRK2 is able to
influence autophagic flux in skeletal muscle cells (Fig. 4). Although GRK2 has
previously been shown to have a protective role in response to acute mitochondrial
damage (16), we find that GRK2 is unable to prevent the significant deleterious effects

of Mstn treatment on mitochondrial respiration in muscle cells (Fig. 4).
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List of abbreviations used

adenosine triphosphate (ATP)

carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP)
delta delta cycle threshold (AACT)
deoxyribonucleic acid (DNA)

dulbecco’s modified Eagle’s medium (DMEM)
dynamin related protein 1 (Drpl)

electron transport chain (ETC)

epoxomicin (Epox)

extracellular acidification rate (ECAR)

fetal bovine serum (FBS)

forkhead box O (FoxO)

g protein-coupled receptor kinases (GRKs)
glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
growth differentiation factor (GDF)

Henrietta Lacks (HeLa)

horse serum (HS)

horseradish Peroxidase (HRP)

human embryonic kidney 293 (HEK)

insulin-like growth factor (IGF)

interferon gamma (IFN-y)

interleukin 1p (IL-1PB)

lipopolysaccharide (LPS)

microtubule-associated protein-light chain 3 (LC3)
mitochondrial DNA (mtDNA)

mitofusin 1 (Mfn1)

mitofusin 2 (Mfn2)

muscle atrophy f-box (MAFbx)

muscle ringer finger 1 (MuRF1)

myostatin (Mstn)

nicotinamide adenine dinucleotide dehydrogenase (NADHA)
oxidative phosphorylation (OXPHOS)

oxygen consumption rate (OCR)
penicillin/streptomycin (P/S)
phenylmethylsulfoxide (PMSF)
phosphatidyinositol 3 phosphate kinase (PI3K)
polymerase chain reaction (PCR)

quantitative real-time PCR (qPCR)

reactive oxygen species (ROS)

ribonucleic acid (RNA)

small mother against decapentaplegic homolog (SMAD)
standard error of mean (SEM)

transforming growth factor-p (TGF-p)
tris-buffered saline-Tween 20 (TBST)

tumor necrosis alpha (TNF-a)

ubiquitin proteasome pathway (UPP)

uncoupling protein (UCP)

B-adrenergic receptor (f-AR)
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Figure legends

Figure 1: Excess Mstn leads to reduced GRK2 protein levels. (A) left: immunoblot
(IB) analysis of GRK2 protein expression in C2C12 myotubes after 24h treatment with
(+) or without (-) Mstn. Relevant bands from the IB are shown. The levels of GAPDH
were assessed as a loading control. Right: densitometric analysis of protein levels
(GRK2) normalized to GAPDH levels. Values represent mean £ SEM; 5 biological
replicates from 3 independent experiments were performed and analyzed; *p<0.05.
Student t-test (B) IB analysis of GRK2 protein content in both myoblasts (left) and
myotubes (right) treated with (+) or without (-) Mstn over a time course (3, 6, 16, 24
and 48h). The levels of GAPDH were assessed as a loading control. For each myoblast
and myotube culture one independent experiment with one biological replicate was
performed. (C) IB analysis of GRK2 protein levels in the absence (-) or presence (+) of
increasing concentrations of Mstn protein (2, 3, 4 and Spg/ml) in both myoblasts (left)
and myotubes (right). The levels of GAPDH were assessed as a loading control. For
each myoblast and myotube culture one independent experiment with one biological
replicate was performed. (D) IB analysis of GRK2 protein levels in myotubes treated
with (+) or without (-) Mstn, in the presence (+) or absence (-) of the proteasome
inhibitor MG132 or vehicle control (DMSQO). The levels of GAPDH were assessed as a
loading control, n=3 biological replicates from one independent experiment. (E) IB
analysis of GRK2 protein levels in myotubes treated with (+) or without (-) Mstn, in the
presence (+) or absence (-) of the proteasome inhibitor Epoxomicin (Epox) or vehicle
control (DMSO). The levels of GAPDH were assessed as a loading control. One

biological replicate and one independent experiment was performed.

Figure 2: Overexpression of GRK2 leads to increased mitochondrial content in
muscle cells. (A) qPCR analysis of Grk2 expression in stable Control and GRK2
overexpressing C2C12 myotubes (GRK2) treated with (+) or without (-) Mstn for 24h.
Gene expression was normalized to the endogenous control, Gapdh, using the AACT
method. Values represent mean £ SEM; n=3 biological replicates from one independent
experiment; *p < 0.05 vs Control - Mstn and #p<0.05 vs. GRK2 - Mstn. One-Way
ANOVA with Bonferroni correction was used for multiple comparisons. (B) IB
analysis of GRK2 protein levels in Control and stable GRK2 overexpressing C2C12
myotubes (GRK?2) treated with (+) or without (-) Mstn for 24h. The levels of GAPDH
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were assessed as a loading control. Representative of at least 3 independent
experiments. (C) Graph showing quantitative analysis of mitotracker green staining in
Control and stable GRK2 overexpressing myotubes following treatment with (-) or
without (-) Mstn. Values represent mean = SEM (2065+ 5 for Control - Mstn, 1863100
for Control + Mstn, 2491+28 for GRK2 - Mstn and 2949+34 for GRK2 + Mstn); n=3
biological replicates from one independent experiment. *p < 0.05 vs. Control - Mstn.
#p<0.05 vs. GRK2 - Mstn and &p<0.05 vs. Control + Mstn. One-Way ANOVA with
Bonferroni correction was used for multiple comparisons (D) qPCR analysis of
mitochondrial encoded NADH dehydrogenase 1 (mt-Nd1), NADH dehydrogenase 4
(mt-Nd4), cytochrome ¢ oxidase I (mt-Col), cytochrome c oxidase II (mt-Co2) and
cytochrome ¢ oxidase III (mt-Co3) expression in Control and stable GRK2
overexpressing C2C12 myotubes (GRK2) treated with (+) or without (-) Mstn for 24h.
Gene expression was normalized to the endogenous control, Gapdh, using the AACT
method. Values represent mean £ SEM; n = 3 biological replicates from one
independent experiment; *p < 0.05 vs. Control - Mstn. #p<0.05 vs. GRK2 - Mstn. One-

Way ANOVA with Bonferroni correction was used for multiple comparisons

Figure 3: Overexpression of GRK2 in myoblasts enhances mitochondrial
respiration and reverses Mstn-induced autophagic flux. (A) IB analysis of
Mitofusin 1 and 2 (Mfn1/2), Dynamin-related protein 1 (Drpl), mitochondrial fission 1
protein (Fisl) and Parkin protein levels in Control and stable GRK2 overexpressing
C2C12 myotubes (GRK?2) treated with (+) or without (-) Mstn for 24h. The levels of
GAPDH were assessed as a loading control. n=3 biological replicates from one
independent experiment. (B) Densitometric analysis of IB for Mfn1/2, Drpl, Fisl and
Parkin protein levels, normalized to GAPDH, in Control and stable C2C12 myotubes
overexpressing GRK2 (GRK2) treated with (+) or without (-) Mstn for 24h. Values
represent mean = SEM. *p<0.05 vs. Control - Mstn. #p<0.05 vs. GRK2 - Mstn.
&p<0.05 vs. Control + Mstn. One-Way ANOVA with Bonferroni correction was used
for multiple comparisons (C) Representative confocal micrographs of Control and
GRK2 overexpressing myoblasts (GRK2) treated with (+) or without (-) Mstn and
stained with MitoTracker Red to visualize mitochondria. Nuclei were counterstained
with DAPI (Blue). Scale bar represents 40um. The insert (white box) in the lower left
image was zoomed 40% from the original image and the white arrows are pointing to

fragmented mitochondria (small and circular). (D) Quantitative imaged-based analyses
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of mitochondrial interconnectivity ratio [(Area/perimeter)/minor axis] in
paraformaldehyde fixed control and GRK2 overexpressing C2C12 cells treated with (+)
or without (-) recombinant Mstn protein. The bar graph shows data compiled from a
representative experiment (data represents mean values = SEM, n=20-35 biological
replicates per condition from one independent experiment). One-Way ANOVA with
Bonferroni correction was used for multiple comparisons. *p< 0.05. (E) IB analysis of
p62, LC3-I and LC3-II protein levels in control and stable GRK2 overexpressing
C2C12 myoblasts (GRK2) co-treated with (+) or without (-) Mstn for 12h in the
absence (-) or presence (+) of Chloroquine. The levels of GAPDH were assessed as a
loading control. Blots are representative of two independent experiments. (F) Graph
showing the real-time OCR in Control and stable GRK2 overexpressing C2C12
myotubes (GRK2) treated with (+) or without (-) Mstn, as assessed by the Seahorse
XF24 extracellular flux analyzer. Time points where Oligomycin (Oligo), FCCP and
Antimycin/Rotenone (Ant/Rot) were injected (arrows) and the rate number where each
OCR was measured are indicated. Values represent mean + SEM of three independent
measurements from 5 biological replicates. (G) Graph showing quantification of basal,
maximal, ATP-linked and non-mitochondrial (Non-mito.) respiration, spare respiratory
capacity (S.R.C) and respiration due to proton leak in Control and stable GRK2
overexpressing C2C12 myotubes (GRK2) treated with (+) or without (-) Mstn. All OCR
values were normalized to total protein. Values represent mean = SEM of three
independent measurements from 5 biological replicates. Two different experiments
were performed. *p<0.05 vs. Control - Mstn. #p<0.05 vs. GRK2 - Mstn. &p<0.05 vs.
Control + Mstn. One-Way ANOVA with Bonferroni correction was used for multiple
comparisons. (H) Graph showing OCR vs. ECAR in Control and stable GRK2
overexpressing C2C12 myotubes (GRK2) treated with (+) or without (-) Mstn. Values
represent mean = SEM of three independent measurements from 5 biological replicates.

Two different experiments were performed.

Figure 4: GRK2 regulates mitochondrial respiratory function and impairs Mstn-
mediated autophagy in muscle cells. Myostatin signaling (red lines and arrows) in
muscle cells results in loss of GRK2 protein through a mechanism involving the
ubiquitin-proteasome pathway. Furthermore, Mstn treatment leads to increased
mitochondrial fragmentation (consistent with mitochondrial fission), impaired

mitochondrial respiration and decreased mitochondrial mass, which was associated with
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increased autophagic flux in muscle cells. Taken together, we surmise that Mstn may
act to stimulate autophagy-mediated clearance of mitochondria, or mitophagy, in muscle
cells. Overexpression of GRK2 (green lines and arrows), although not able to overcome
Mstn-induced impairment of mitochondrial respiration, blocked the increased
autophagic flux promoted by Mstn. Moreover, elevated GRK2 levels resulted in
mitochondrial fragmentation, which was associated with an increase in both
mitochondrial mass and mitochondrial respiration. Given that overexpression of GRK?2
resulted in mitochondrial fragmentation and altered the levels of critical mitochondrial
fusions/fission proteins we speculate a role for GRK2 in regulating the balance between
mitochondria fusion and fission in muscle cells (indicated by the ?). Arrows represent

stimulation and blunt-ended lines represent inhibition.

33

Downloaded from www.physiology.org/journal/ajpcell at James Cook Univ (137.219.203.165) on July 7, 2019.



1051

Table 1

1052
Gene Symbol Forward Primer Sequence Reverse Primer Sequence
Grk2 AGAGGGACGTCAATCGGAGA | TTGCGGTACAGTTCCTGGTC
mt-Col GCACTGGTGGATGCCTTCT TCTCTCGGGACTCCTTGATGA
mt-Co2 ACGTGCAACACCTGAGCGGT | GAAGGTGTCGGGCAGCAGGG
mt-Co3 CTACCAAGGCCACCACACTC | TCATGCTGCGGCTTCAAATC
mt-Nd1 TCCGAGCATCTTATCCACGC GTATGGTGGTACTCCCGCTG
mt-Nd4 CCACTGCTAATTGCCCTCAT CTTCAACATGGGCTTTTGGT
Gapdh GATGATGACCCGTTTGGCTCC | ACGCTCGTGGAAAGAAAAGA
1053
1054  Table 1: Sequences of primers. Table displaying gene symbols and forward and reverse
1055  sequences of all primers used in the current study.
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1056 Table 2

1057
Antibody Company | Catalog No. | Dilution | Blocking Solution
anti-GRK2 Santa Cruz sc-562 1:1000 5% milk
anti-GAPDH Santa Cruz sc-32233 1:1000 5% milk
anti-PARKIN Abcam ab15954 1:1000 5% milk
anti-MFN1 Abcam ab126575 1:1000 5% milk
anti-MFN2 Santa Cruz | sc-100560 1:1000 5% milk
anti-FIS1 Santa Cruz $¢-98900 1:500 5% milk
anti-DRP1 Santa Cruz sc-32898 1:5000 5% milk
anti-P62 Abcam ab91526 1:5000 5% milk
anti-LC3B Abcam | NB100-2220 1:500 5% milk
Goat anti-Mouse HRP | Bio-rad 1706516 1:5000 5% milk
Goat anti-Rabbit HRP | Bio-rad 1706515 15000 5% milk
1058

1059  Table 2: Details of antibodies. Table displaying particulars of the antibodies used in the
1060  current study. Antibody name, source, catalog number, working dilution and blocking

1061  solution are provided.
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