Physiological changes in post-hatchling green turtles (Chelonia mydas) following short-term fasting: implications for release protocols

March, Duane, Ariel, Ellen, Munns, Suzanne, Rudd, Donna, Blyde, David, Christidis, Leslie, and Kelaher, Brendan P. (2019) Physiological changes in post-hatchling green turtles (Chelonia mydas) following short-term fasting: implications for release protocols. Conservation Physiology, 7 (1). coz016.

PDF (Published version) - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview
View at Publisher Website:


Relocation of sea turtle nests and the retention of post-hatchlings for head-starting programs are both commonly used to improve conservation outcomes and facilitate eco-tourism ventures. Currently, there is little literature surrounding the husbandry protocols required during these programs to optimize post-release outcomes. To assess the impact of varied feeding regimes on exercise performance, (which will hereafter be referred to as ‘fitness’), 40 10-month-old captive post-hatchling green turtles (Chelonia mydas) were divided into four groups of 10 and fasted for either 3, 9, 10 or 15 h. The animals were then subjected to a fitness test via repetitive use of the ‘righting reflex’ on land. Health assessments were conducted prior to the fitness test, including; heart rate, haematocrit (Hct), heterophil to lymphocyte ratio and the measurement of 11 biochemical analytes, including pH, partial pressures of carbon dioxide (PvCO2) and oxygen (PvO2), lactate, bicarbonate (HCO3−), sodium (Na+), potassium (K+), chloride (Cl−), ionized calcium (iCa2+), glucose and urea. Results were corrected for multiple comparisons and significant differences among groups were demonstrated for temperature, pH, HCO3−, iCa2+, urea and lactate. To investigate physiological relationships between analytes, correlation coefficients were calculated between fitness and glucose, fitness and lactate, glucose and lactate, pH and iCa2+, pH and K+, pH and PvCO2, pH and HCO3− and Hct and K+. Following correction for multiple comparisons, significant relationships were seen between pH and iCa2+ and pH and HCO3−. Post-hatchling turtles appear to enter a catabolic state when exposed to short-term fasting. While this did not have a direct impact on fitness, the production of an intense energetic output from a catabolic state may induce a physiological debt. This study suggests that handling that induces a physical response should be minimized and animals should be fed within 10 h of release.

Item ID: 58457
Item Type: Article (Research - C1)
ISSN: 2051-1434
Keywords: catabolic; fasting; fitness; post-hatchling; release
Copyright Information: © The Author(s) 2019. This is an Open Access article distributed under the terms of the Creative Commons Attribution (CC x 4.0) License.
Funders: Australian Government Research Training Program Scholarship
Date Deposited: 11 Jul 2019 04:38
FoR Codes: 41 ENVIRONMENTAL SCIENCES > 4104 Environmental management > 410407 Wildlife and habitat management @ 30%
41 ENVIRONMENTAL SCIENCES > 4104 Environmental management > 410401 Conservation and biodiversity @ 20%
31 BIOLOGICAL SCIENCES > 3109 Zoology > 310908 Animal physiology - biophysics @ 50%
SEO Codes: 96 ENVIRONMENT > 9608 Flora, Fauna and Biodiversity > 960802 Coastal and Estuarine Flora, Fauna and Biodiversity @ 100%
Downloads: Total: 930
Last 12 Months: 99
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page