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Land management strategies can 
increase oil palm plantation use 
by some terrestrial mammals in 
Colombia
Lain E. Pardo   1,2, Mason J. Campbell   2, Michael V. Cove   3, Will Edwards2, 
Gopalasamy Reuben Clements4,5 & William F. Laurance2

While the conservation role of remaining natural habitats in anthropogenic landscapes is clear, the 
degree to which agricultural matrices impose limitations to animal use is not well understood, but vital 
to assess species’ resilience to land use change. Using an occupancy framework, we evaluated how oil 
palm plantations affect the occurrence and habitat use of terrestrial mammals in the Colombian Llanos. 
Further, we evaluated the effect of undergrowth vegetation and proximity to forest on habitat use 
within plantations. Most species exhibited restricted distributions across the study area, especially in oil 
palm plantations. Habitat type strongly influenced habitat use of four of the 12 more widely distributed 
species with oil palm negatively affecting species such as capybara and naked-tailed armadillo. The 
remaining species showed no apparent effect of habitat type, but oil palm and forest use probabilities 
varied among species. Overall, generalist mesocarnivores, white-tailed deer, and giant anteater were 
more likely to use oil palm while the remaining species, including ocelot and lesser anteater, showed 
preferences for forest. Distance to nearest forest had mixed effects on species habitat use, while 
understory vegetation facilitated the presence of species using oil palm. Our findings suggest that 
allowing undergrowth vegetation inside plantations and maintaining nearby riparian corridors would 
increase the likelihood of terrestrial mammals’ occurrence within oil palm landscapes.

Agricultural expansion is one of the major drivers of global habitat fragmentation and habitat loss1,2. This pro-
cess has had clear negative effects on biodiversity worldwide2–4. However, the intensity of the effects of land-use 
change on native fauna depends on the type of agriculture replacing natural ecosystems, as well as other landscape 
or local factors such as the type of crop, the total area of remaining vegetation and its spatial configuration and 
the potential availability of new resources5–7. Some agroecosystems, for example, can facilitate the occurrence of 
generalist species8–10, while others may act as barriers or ecological traps with elevated risk of mortality for rare 
and specialized species11,12. Therefore, understanding how agroecosystems limit animal movement or occurrence 
is fundamental for determining species’ survival under increasing agricultural expansion.

Oil palm has become one of the most important agricultural products in the world. However, the increased 
cultivation of this crop has had negative effects on the biodiversity of tropical regions such as Southeast Asia13,14. 
Oil palm cultivation is increasing in Latin America (Neotropics)15,16, where Colombia is the largest producer 
with ~500,000 ha currently under cultivation17. Contrary to Southeast Asia, most recent Latin-American and 
Colombian oil palm expansion has taken place in previously transformed lands16,18; which has minimized the 
impact on biodiversity. Nevertheless, there is concern that oil palm plantations will expand into natural areas, 
especially in savannas of the eastern Llanos region, or Orinoco Basin18–20.

Worldwide, geographic ranges of mammal species have reduced by ~30%, especially in locations of intensive 
human activities (e.g. agriculture and settlements)21. Colombia is globally ranked among the five most mammal 
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diverse countries, with 518 species recorded to date22. However, little is known about the natural history and dis-
tribution of most of Colombia’s terrestrial mammals23,24, especially in human-dominated landscapes. The lack of 
mammal studies (especially camera trapping) is particularly evident in the Llanos and Amazon regions25 despite 
the Llanos region containing ~68% of the Colombian mammal diversity (including Chiroptera)26. This region 
has also become the most attractive area for implementation of agribusiness development (such as oil palm) 
in Colombia18,27. The western Llanos, for example, is a large area composed of different ecosystems, including 
savanna, wetlands and “morichales” (native palm agglomerations), mixed systems of native and introduced grass-
land and riparian forest28. This mixed system or mosaics has suffered a long history of disturbance by several agri-
cultural processes, particularly grazing, that have cleared savannas and reduced the width of riparian forests19,29. 
After pastures, oil palm is currently the most important crop in this region of western Llanos and it is predicted 
to continue expanding27.

Evaluating the probability that a species will occupy areas of different land-uses provides an estimation of the 
degree of resistance (or permeability) imposed by the surrounding agricultural matrix. In other words, how dif-
ficult is it for an animal to travel through the matrix? Previous studies in other taxa have shown that proximity to 
riparian forest increase spillover rates from forest to oil palm by increasing the probability of animal species (e.g. 
beetles, ants, birds) to occur in oil palm matrixes (e.g.30–33). Although, investigations into the potential impacts 
of oil palm production on Colombian fauna have recently increased32,34–37, there is still a paucity of information 
evaluating mammal species responses to oil palm plantations. This information is important, since the capacity 
of protected areas to function as a mechanism for biodiversity conservation in the long-term is limited, given the 
increasing rate of degradation occurring in these areas38,39, and the surrounding landscapes40,41.

Due to the rapid expansion of oil palm in Colombia, there is an urgent need to assess the ability of mammals 
to tolerate and traverse the matrix of oil palm cover and to identify management practices that can reduce its 
biodiversity impacts. Here, we compared the habitat use of terrestrial mammals between riparian forest and oil 
palm plantations in the eastern plains of Colombia. In this way, we evaluated whether the oil palm matrix acts 
as a movement barrier (or habitat filter) for these species and, if so, the degree to which this occurs. Further, 
we determined whether local habitat variables and management regimes: distance to forest and the presence of 
undergrowth vegetation, increased the likelihood of species occurrence within oil palm habitats.

Results
General patterns of mammalian distribution in the study area.  Twenty-three terrestrial species 
of medium and large mammals and two species of arboreal primates were detected across the study area (Fig. 1, 
Table 1, see37 for details). Most of the species in the study area were rare in the landscape and only five species 
were detected at more than 50% of all surveyed sites (naïve occupancy without accounting for detectability). 

Figure 1.  Study area and location of sample sites (n = 56) across the Llanos region in Colombia (Grey area 
indicates other land-uses, mainly pasture).

https://doi.org/10.1038/s41598-019-44288-y


3Scientific Reports |          (2019) 9:7812  | https://doi.org/10.1038/s41598-019-44288-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

These were: giant anteater (Myrmecophaga tridactyla), lesser anteater (Tamandua tetradactyla), crab-eating fox–
here after fox (Cerdocyon thous), ocelot (Leopardus pardalis), and common opossum (Didelphis marsupialis).

In oil palm plantations, only two species occupied more than 70% of the sites with the giant anteater being 
the most widely distributed species (naïve occupancy 91%) followed by the fox (naïve occupancy = 79%; Table 1). 
Jaguarundi (Puma yagouarondi) was detected at nearly 40% of the oil palm sites, but the remaining species 
detected in the oil palm plantations were rare. Nine out of 17 (53%) species detected within oil palm sites occu-
pied less than 10% of the sites (Table 1). In forested sites, however, seven species occupied more than 70% of the 
sites: giant anteater, lesser anteater, nine-banded armadillo–here after armadillo (Dasypus novemcinctus), ocelot, 
spiny rat (Proechimis spp), agouti (Dasyprocta fuliginosa), lowland paca–here after paca (Cuniculus paca), and 
common opossum. Within forested sites, seven out of 23 species (30%) occupied less than 10% of the sites.

Effects of habitat type on species habitat use.  Only 12 of the 23 identified species had sufficient detec-
tion records for analyses. Based on their weight of evidence (Σωi), an effect of habitat type on habitat use (Ψ) was 
detected for only four of these species: naked-tailed armadillo (Cabassous unicinctus), capybara (Hydrochoerus 
hydrochaeris), common opossum, and spiny rat; all displaying a strong negative effect of oil palm (β coefficient) 
on the probability of habitat use (Table 1). We observed no effect of habitat type (i.e. support for the model based 
on constant occupancy was higher) in the six remaining species: ocelot (Σωi = 1), fox (Σωi = 1), crab-eating rac-
coon (Procyon cancrivorus)–here after raccoon (Σωi = 0.70), white-tailed deer (Odocoileus cariacou; Σωi = 0.71), 
and to a lower extent nine-banded armadillo (Σωi = 0.61), and jaguarundi (Σωi = 0.55). However, the models 
suggested that habitat type had an important influence on the detection probabilities of many species (Fig. S1, 
Table S2).

There was no single best model explaining the effect of habitat type for either species of anteaters. The weight 
of evidence (Σωi) for the model that had constant habitat use [Ψ (.), p(hab)] received similar support as the model 
containing habitat type [Ψ (hab), p(hab)] (Table S1). However, the two anteaters species showed different response 
directions for the effect of habitat type, with occupancy for giant anteater displaying a positive association with 
oil palm (β = 2.12 ± 2.60 SE), whereas occupancy for the lesser anteater exhibited a negative association with oil 
palm (β = −1.64 ± 0.97SE) (Table 1).

Common name Scientific name

Occupied sites Naive Occupancy Overall estimated occupancy
Habitat 
preference

Forest 
(n = 23)

Oil Palm 
(n = 33)

Study 
area Forest

Oil 
Palm

Est. Ψ (Sd) 
study area

Est. Ψ (Sd) 
forest

Est. Ψ (Sd) 
oil palm

Beta oil palm 
(SE)

Giant anteater Myrmecophaga tridactyla 19 30 0.88 0.83 0.91 0.90 (0.04) 0.86 (0.07) 0.94 (0.06) 2.12 (2.60)

Lesser anteater Tamandua tetradactyla 20 16 0.64 0.87 0.48 0.72 (0.16) 0.90 (0.13) 0.59 (0.17) −1.64 (0.97)

Nine-banded armadillo Dasypus novemcinctus 16 3 0.34 0.70 0.09 0.57 (0.10) 0.69 (0.09) 0.49 (0.25) −2.32 (1.15)

Naked-tailed armadillo Cabassous unicinctus 9 0 0.16 0.39 0.00 0.19 (0.23) 0.47 (0.13) 0 —

Crab-eating fox Cerdocyon thous* 6 26 0.57 0.26 0.79 0.60 (0.28) 0.27 (1.71) 0.82 (3.41) 2.57 (0.72)

Jaguarundi Puma yagouaroundi 5 13 0.32 0.22 0.39 0.91 (0.10) 0.80 (0.21) 1 (#) —

Ocelot Leopardus pardalis* 16 12 0.50 0.70 0.36 0.72 (0.01) 0.72 (0.11) 0.71 (0.18) −1.73 (0.85)

Puma Puma concolor 2 1 0.05 0.09 0.03 — — — —

Greater grison Galictis vittata 1 2 0.05 0.04 0.06 — — — —

Tayra Eira barbara 2 0 0.04 0.09 0.00 — — — —

Crab-eating raccoon Procyon cancrivorus* 4 7 0.20 0.17 0.21 0.42 (0.20) 0.37 (0.22) 0.46 (0.23) 0.36 (0.95)

Coati Nasua nasua 2 0 0.04 0.09 0.00 — — — —

White-tailed deer Odocoileus virginianus* 6 12 0.32 0.26 0.36 0.57 (0.17) 0.45 (0.19) 0.65 (0.21) 0.79 (0.95)

Red-brocket deer Mazama spp 0 1 0.02 0.00 0.03 — — — —

Collared peccary Pecari tajacu 1 1 0.04 0.04 0.03 — — — —

Spiny rat Proechimis spp 21 2 0.41 0.91 0.06 0.40 (0.06) 0.88 (0.07) 0.06 (0.04) −4.21 (1.21)

Agouti Dasyprocta fuliginosa 18 0 0.32 0.78 0.00 0.69 (0) 0.67 (5.78) 0 −4.75 (1.13)

Lowland paca Cuniculus paca 23 1 0.43 1.00 0.03 0.43 (0.07) 1 (#) 0.03 (0.03) —

Capybara Hydrochaerus hydrochaeris 8 3 0.20 0.35 0.09 0.20 (0.05) 0.36 (0.10) 0.09 (0.05) −1.62 (0.77)

Coendu Coendu spp 1 0 0.02 0.04 0.00 — — — —

Squirrel Sciurus spp 9 0 0.16 0.39 0.00 — — — —

Common opossum Didelphis marsupialis 22 12 0.61 0.96 0.36 0.49 (0.27) 0.80 (3.32) 0.27 (1.69) −3.62 (1.10)

Four-eyed opossum Philander opossum 1 0 0.02 0.04 0.00 — — — —

Table 1.  Naïve occupancy, model-averaged estimates of overall habitat use Ψ )ˆ  and habitat preference of 23 
terrestrial mammals detected in oil palm-dominated landscapes in the Llanos region, Colombia. Positive Beta 
values suggest preference for oil palm and negative values suggest preference for forest. *Overall occupancy 
model did not converge, therefor Ψ̂  for study in these species is from null model [Ψ(.), p(.)], and for each habitat 
from Ψ(cov), p(.). Therefore, parentheses is SE and not SD. — = Data Deficient. Models using species with less 
than 4 detections resulted in convergence issues and high uncertainty. # = SD extremely high.
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Habitat use probability between oil palm and riparian forest.  Seventeen mammal species occurred 
in both oil palm and forest. However, only 10 species had sufficient sample sizes (i.e. >3 occurrences) to compare 
estimated habitat use probabilities between both ecosystems – Ψ (habitat), p(habitat). From these species, six had 
lower probability of oil palm use when compared to forest: capybara, spiny rat, armadillo, common opossum, 
ocelot and lesser anteater. Moreover, the first three of those species were the least likely species to use oil palm, 
according to the estimated probabilities of habitat use Ψ( )ˆ  (Fig. 2). Further, for these six species, habitat use was 
on average 2.2 (range 1.4–3.6) times higher for forest than oil palm. In contrast, fox, raccoon, white-tailed deer 
and giant anteater were the most likely species to use or occupy oil palm plantations, with habitat use probabilities 
being on average ~2 times greater there than inside forest (range 1.4–3.0) (Fig. 2).

Although the estimated habitat use of jaguarundi was four times greater in oil palm than in forest, these esti-
mates were associated with high SEs (inside oil palm). For the eight species that were so infrequently detected 
that the models did not converge, naïve occupancy suggested larger differences between oil palm and forest. For 
example, the paca was only detected at one site inside oil palm but occupied all forested sites. Similarly, spiny 
rats occupied almost all forested sites and were detected in only two oil palm sites. However, other species were 
equally rare in both habitats (e.g. puma [Puma concolor], grison [Galictis vittata]). Estimated detection probabili-
ties were below 0.2 for 11/13 species, particularly inside oil palm (7/11 species), while white-tailed deer, raccoon, 
fox and jaguarundi exhibited higher detection probabilities inside oil palm (Fig. S2).

Effects of variables on habitat use within oil palm sites.  Ten species had sufficient frequency of detec-
tions to examine occupancy within oil palm. We found strong evidence in support of no effect of understory 
vegetation or distance to nearest forest on habitat use in giant anteater and fox (Table 2, Fig. 3). Undergrowth 
vegetation had a positive effect on the habitat use of the remaining eight species with particularly strong sup-
port (Σωi > 0.5) for the lesser anteater, armadillo, and white-tailed deer. Distance to nearest forest patch had 
the greatest influence on raccoon and capybara habitat use (Σωi > 0.66), with positive and negative associations 
with increasing distance, respectively. Ocelot too was strongly negatively affected by increasing distance to for-
est. However, modeling for habitat use of the ocelot also revealed a similar level of support for models including 
constant habitat use (Fig. 3). Four species showed a negative relationship between distance to forest and habitat 
use probability (armadillo, ocelot, white-tailed deer and capybara), whereas three species showed a positive rela-
tionship (jaguarundi, raccoon, common opossum) (Figs 3 and 4). For jaguarundi and the common opossum 
both distance to forest and presence of undergrowth vegetation had the same level of support and direction of the 
effect, but their null models had higher support, suggesting limited influence of these variables on their habitat 
use (Fig. 3).

Discussion
We found that the mammal community in the oil palm producing region of the Llanos in Colombia is composed 
mostly of generalist species, with restricted distributions and very low detection probabilities (especially for most 
species within oil palm). These results are supported by the findings of other research on different taxonomic 
groups in Colombia that have reported a negative relationship between oil palm and biodiversity metrics such 

Figure 2.  Estimated habitat use probability (Ψ̂ ) of selected species between oil palm and riparian forest in the 
Llanos region of Colombia. Model Ψ (cover), p(cover) was used to compare across species. Note: only 10 of  
the 17 shared species were suitable for analysis (>3 detections per habitat). For rare species or those with 
convergence issues see Table 1. Some common names have been shortened to facilitate interpretation, see 
Table 1 for scientific and common names. Confidence intervals are shown to assess the precision of the 
estimated occupancy, caution is advised if interpreted as “significance” testing (i.e. overlap of confidence 
intervals do not necessarily suggest no evidence of difference (“not significant”; see Helman and Stern 2006,  
and http://mikemeredith.net/blog/1303_Comparison_of_confidence_intervals.htmo).
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as richness, occupancy, and abundance32,34,37,42. However, eight out of twelve species were not significantly influ-
enced by habitat type, which suggests that some species are able to use and move across the oil palm matrix.

Understanding the probability that species use human altered environments or agroecosystems helps to eval-
uate the extent of impacts and conservation prospects for wildlife-friendly agriculture. We found that oil palm is 
more likely used by generalist mesopredators, anteaters, and deer, whereas seed dispersers (e.g. paca and other 
rodents), some omnivores (e.g. armadillos) and marsupials were less likely to use oil palm, suggesting they are 
more sensitive to forest conversion to oil palm. As such, our findings highlight the importance of retaining sec-
ondary forest in agroindustrial landscapes to support terrestrial mammal occurrence. These findings reinforce 
the critical importance of riparian forests to maintain biodiversity, and support previous findings in different geo-
graphic locations and diverse taxa32,43,44. In the following paragraphs, we briefly discuss the possible mechanisms 
behind the most conspicuous patterns detected in the western Llanos, where contrary to other regions, ~80% of 
oil palm expansion has taken place on reclaimed pasture and crop lands20.

Anteater and armadillo species habitat use.  The giant anteater commonly used oil palm. This pat-
tern clearly contrasts with the results of Mendes-Oliveira et al.45, who found negative associations for this spe-
cies in the Brazilian Amazon oil palm plantations. While the giant anteater is categorized as Vulnerable by the 
International Union for Conservation of Nature–IUCN46, we found they are widely distributed throughout both 
oil palm plantations and forest habitats. This habitat flexibility corresponds with other research suggesting that 
intermediate human disturbance and resultant habitat heterogeneity seem to be favorable to giant anteaters47. 

Species/Model Δ AIC AIC w k −2 log like Intercept SE Beta1 SE Beta2 SE

Giant anteater

Ψ(.), p(.) 0.00 1.00 2 298.29

Lesser anteater

Ψ(veg), p(.) 0.00 0.53 3 165.42 −0.73 0.76 2.03 1.14

Ψ(.), p(.) 1.62 0.23 2 169.47

Nine-banded armadillo

Ψ(veg), p(.) 0.00 0.42 3 36.02 −23.65 4.38 22.74 4.38

Ψ(.), p(.) 0.79 0.28 2 38.81

Ψ(veg + dist), p(.) 1.78 0.17 4 35.80 −26.10 4.77 28.33 4.57 −0.50 0.79

Fox

Ψ(.), p(veg) 0.00 1.00 3 274.77

Jaguarundi

Ψ(.), p(.) 0.00 0.50 2 118.25

Ψ(veg + dist), p(.) 0.71 0.35 4 113.93 −12.47 9.14 22.13 # 1.79 1.37

Ocelot

Ψ(dist), p(.) 0.00 0.43 3 104.74 46.00 # −6.44 #

Ψ(.), p(.) 0.16 0.40 2 107.33

Ψ(veg), p(.) 1.87 0.17 3 106.61 0.61 1.57 25.57 #

Crab-eating Raccoon

Ψ(dist), p(.) 0.00 0.45 3 76.94 −11.34 5.21 1.65 0.83

Ψ(.), p(.) 1.23 0.24 2 80.17

Ψ(veg + dist), p(.) 1.59 0.20 4 76.53 −12.72 5.41 0.83 1.29 1.77 0.82

White tailed deer

Ψ(veg), p(.) 0.00 0.64 3 119.14 −1.88 1.13 3.28 1.73

Ψ(veg + dist), p(.) 1.79 0.26 4 118.33 6.56 17.90 3.51 2.81 −1.31 2.76

Capybara

Ψ(veg + dist), p(.) 0.00 0.45 4 39.58 −4.57 16.54 22.07 14.28 −3.20 1.68

Ψ(dist), p(.) 0.10 0.42 3 41.68 16.44 10.01 −3.10 1.74

Common opossum

Ψ(.), p(.) 0.00 0.43 2 162.84

Ψ(dist), p(.) 1.24 0.23 3 161.65 −4.58 3.46 0.63 0.53

Ψ(veg), p(.) 1.38 0.21 3 161.79 −1.05 0.68 0.81 0.81

Table 2.  Model selection results evaluating the effect of understory vegetation (veg) and distance to forest patch 
(dist) on estimated habitat use (Ψ) and detection probabilities (p) for selected species within oil palm plantations 
in the eastern plains of Colombia (n = 33 sites). Only the top supported models (Δ AICc < 2) are shown. Notes: 
Δ AICc: difference in AIC values between each model with the lowest AIC model (best model); AICω: Akaike 
weight.; k: number of parameters in the model; SE: standard error. Understory vegetation is a binary covariate 
with 0 = clean or low understory vegetation (the intercept), and 1 = medium to high understory (beta), 
nearest distance to forest in log10, # = high standard errors, this does not affect the direction or effect of the 
untransformed beta estimate (Hines, 2006).
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This pattern suggests that food availability for giant anteaters is not a limiting factor inside oil palm plantations, 
a contention supported by the relatively high diversities and abundances of ant species found in this crop32,48. On 
the other hand, jaguars (Panthera onca) have a strong preference for giant anteaters in their diet (i.e. 75% of the 
biomass consumed) in central Brazil49 and capture frequencies of giant anteaters tend to increase when jaguars 
are absent47. Therefore, it is also possible that the apparent absence (no detections) of jaguars in the current study 
area could, in part, facilitate the high occurrence of giant anteaters in the area. The fact that giant anteaters tend 
to be more common in savanna-like ecosystem than rainforest50 may also contribute in generating this difference 
between the Amazon and the Llanos oil palm landscapes.

Contrary to the giant anteater, the lesser anteater displayed a preference for forested habitats. This is despite 
the fact that the giant and lesser anteaters display similar dietary requirements (i.e. obligate insectivores)50. Like 
the giant anteater, lesser anteaters forage terrestrially, however they also use trees for nesting and foraging51,52, 
which may in part explain their preference for forest. Further, lesser anteaters feed mainly on arboreal ants and 
termites, while giant anteaters mainly eat terrestrial ant species and tend to eat less termites53. Oil palm trees 
typically lack termite nests (LEP pers. obs.), so it is probable that the availability of food resources for the lesser 
anteater is reduced inside oil palm plantations which would negatively impact their occurrence within them. 
Although the lesser anteater was able to cross oil palm plantations, their occurrence was reduced as the distance 
to forest increased, suggesting a scale-dependent effect of oil palm permeability for the species.

As with the lesser anteater, oil palm does not appear to offer enough resources for species such as armadillos. 
This was reflected by the low probabilities of detection in oil palm sites. Naked-tailed armadillos, for example, 
prefer complex vegetation associated with riparian forests running through savanna type habitats54. Similarly, 
although the nine-banded armadillo is commonly detected in sites associated with various land-use matrices (e.g. 
agricultural landscapes) in the Neotropics8,55, reduced leaf litter and decomposing soil inside oil palm plantations 
most likely limits food resource availability for this species (e.g. soft-bodied invertebrates, fruits, seeds, and small 
vertebrates56,57. High rates of disturbance associated with farming activity (e.g. harvesting, motor vehicles etc.) 
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Figure 3.  Cumulative Akaike weight, (Σωi), for support of the influence of undergrowth vegetation and 
distance to nearest forest patch on the occupancy of selected medium and large mammals inside oil palm 
plantations in Colombia. Positive or negative signs indicate the direction of the effect for distance to nearest 
patch. Undergrowth vegetation had a positive effect in all species. *Σωi calculated for top-ranked models Δ 
ACIc < 2.

Figure 4.  Estimated effect of distance to nearest forest on habitat use probability of selected species. Figure 
represents the effect on different species that showed strong evidence for the influence of distance to forest with 
left panel representing the cumulative effect on armadillo, ocelot, white-tailed deer, and capybara, whereas right 
panel represents the positive cumulative effects on jaguarundi, raccoon, and common opossum. Note: species 
were grouped to make predictions more precise. Individual species develop wide confidence intervals due to 
sparse data inside oil palm, which limits interpretation of the effects of the variable. Selection of species was 
based on Σωi from Fig. 3.
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and vulnerability to mesopredators (e.g. fox, ocelots) could also play an important role in limiting use of oil palm 
habitat by nine-banded armadillos.

Herbivore, frugivore, and granivore mammal species habitat use.  Paca and agouti are two 
medium-sized frugivores and important seed dispersers in the study area. These species were detected exclusively 
within forested sites and commonly encountered within them, most likely because oil palm does not provide the 
necessary fruit/seed resources for them. Additionally, their limited dispersal ability and small home ranges58,59 
reduce their probability to cross the oil palm matrices in search of riparian forest patches. Considering the impor-
tant role these species play in forest maintenance and regeneration60,61, their vulnerability to conversion of for-
ested ecosystems to oil palm plantations could alter ecosystem processes (also see37). Similar patterns were shown 
for other seed dispersers such as spiny rats, which exhibited high habitat use of forested sites compared to oil palm 
plantations, and squirrels that were also only ever detected in forest sites. As such, if oil palm expansion replaces 
native vegetation in the Llanos, it may threaten seed dispersing mammalian fauna, and as a consequence threaten 
the regenerative capacity of the local forested ecosystems.

Top and mesopredator mammal species habitat use.  One top predator and eight mesopredators 
(seven carnivores and common opossum) were detected in the study. Individual species within this group exhib-
ited varying responses to the oil palm landscape. Pumas (Puma concolor) were rarely detected (see62), which 
limit further inferences, but this finding corresponds with other research that suggest that top predators are able 
to traverse oil palm plantations (e.g. pumas, jaguar and tiger)45,63–65. These findings, however, do not constitute 
evidence that oil palm is suitable as permanent territories for apex predators. Moreover, in all of the above cases, 
oil palm sites were relatively close to forest habitats, which suggests that the retention of natural forest is critical to 
maintain top predator occurrence on the landscape (see also66,67).

The higher habitat use probabilities within oil palm plantations for some mesopredators (e.g. fox, jaguarundi, 
raccoon) confirms their ecological flexibility and thus ability to occupy several types of land-cover/use including 
agroecosystems10,50,68. Fox, in particular, clearly preferred oil palm habitats which is consistent with previous find-
ings37,42,45. Mechanisms underlying this ecological flexibility may include their omnivorous diet and opportunistic 
feeding behaviors that allows them to consume a wide range of fruits, insects, amphibians, reptiles, crustaceans 
and rodents50,69,70. Further studies are required to elucidate whether fox habitat use is also influenced by oil palm 
fruit, as previous research suggests foxes may consume this fruit as they have been recorded consuming similar 
palm fruits and seeds69,71.

Although there is a lack of information on small rodents within oil palm plantations in Colombia, they have 
been reported as a pest in Southeast Asian plantations72. Since the diet of mesopredators often includes a high 
proportion of small rodents68,69, it is likely that the potential availability of rodents could increase oil palm use 
by this group of carnivores. Apart from rodents, the presence of other potential prey items (such as armadillos, 
reptiles and invertebrates) reported inside oil palm42,50,68, may also play a crucial role in high oil palm use by 
mesopredators.

Similar to the jaguarundi, ocelots are obligate carnivores highly tolerant of anthropogenic systems8,45,73,74. 
However, ocelot displayed higher use of forest sites than of oil palm, while jaguarundi preferred oil palm. This dif-
ference in habitat selection between the species could be related to spatial segregation, which has been previously 
suggested as a way to minimize competition among mesocarnivores75. It is unclear, though, whether ocelots may 
use oil palm for passage rather than as permanent territories for hunting. Dietary studies would help to elucidate 
whether the coexistence of these two species is achieved through resource partitioning.

Habitat use within oil palm plantations.  Within oil palm plantations the existence of understory vege-
tation was related to increased habitat use by the majority of species, and tended to have a stronger effect than the 
distance a site was from forest. This finding may occur because understory vegetation can increase habitat hetero-
geneity inside plantations thereby promoting diversity and trophic interactions at different scales (reviewed by76). 
Undergrowth vegetation in the oil palm plantations in this study was found to be especially important for deer, 
which suggests these resources could be important in terms of foraging or sheltering from predators or hunters77.

The low contribution of distance to forest in determining the habitat use of some species within oil palm 
plantations could reflect their adaptability to oil palm. This hypothesis corresponds with those of previous studies 
showing attributes such as quality (in terms of resource availability) and cover type seemed to be more important 
for species occurrence than measures of isolation from forest patches7,8. Our finding, however, contrasts with 
that of Yue et al.31 who found that distance to forest was the most important factor in determining occupancy of 
the mammalian assemblage in Sabah (Malaysian Borneo). It is difficult to make direct comparison between this 
study and Yue et al.31 since they compared distance to forest patch with canopy cover, oil palm height and their 
interaction, but not vegetation inside plantations as we did.

An important exception in the effect of distance to forest was the capybara whose habitat use was 3.6 times 
greater in riparian forest than in oil palm, and decreased with increasing distance to nearest forest patch, with 
detections never occurring further than 357 m from remnant forest. This finding supports the notion that cap-
ybaras are dependent on forested habitats and waterways, despite also being a common species in open natural 
savannas elsewhere in the country78,79.

The relationship between habitat use and proximity to forest varied among species. Four out of seven species 
showed a negative relationship between distance to nearest forest patch and habitat use (armadillo, ocelot, white 
tailed deer, and capybara). This relationship suggests that these species may freely move inside oil palm but never 
occur far from the native forest. Similarly, Menses-Oliveira et al.45 identified that the median distance from the 
nearest forest edge for any mammal detected in their oil palm study was 960 m. In our study, the average distance 
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from the nearest forest edge for rare species (those with insufficient data to model; <3 sites; e.g. greater grison, 
puma, red brocket, peccary, paca) was 430 m (SD 169 m), supporting the contention that rare species that occur 
in oil palm are restricted to locations close to natural forest.

Further, species with a negative association with distance to the forest showed very low probabilities of habitat 
use beyond 1000 m distance from forest edges. In other words, there are likely spillover effects from forests to oil 
palm plantations, though these are limited to relatively short distances from the forest. It is important to note 
that the maximum distance to the nearest forest in the study area was ~2400 m. Therefore, it is unknown whether 
these effects could be more accentuated when the closest forest patches are at greater distances. In this sense, 
Pardo et al.80 found potential tipping points or thresholds on species composition of some species as oil palm 
cover percentage extended for more than half of the landscapes (scales of 2 km2 approximately). This clearly sug-
gests that larger areas of oil palm isolated from nearby forest may decrease the probability of mammals occupying 
oil palm and therefore may reduce the ability to move across the landscape.

Clearly, the majority of the mammals in the study area are not likely to use oil palm as a permanent habitat 
compared to forested ecosystems (see also37). However, to assess the direct impacts of oil palm cultivation on 
Colombian biodiversity, it is important to consider the effects of previous land-use types, as well as hunting 
history on the current patterns of diversity (see81,82). Oil palm in Colombia has been implemented mostly in 
lands previously modified for other human uses–particularly in the last two decades16,20. Therefore, the responses 
shown in this study could be influenced by the accumulation of historical processes of land-use changes (e.g. rice, 
cattle pastures) and not solely the effect of oil palm. It is likely that the species now occupying oil palm plantations 
are “survivors” (sensu Prugh et al.7) that are more readily adaptable to this agricultural ecosystem or that are 
attracted to this “new” ecosystem. The inability to detect more sensitive species (e.g., tapirs [Tapirus terrestris], 
jaguars, giant armadillo [Priodontes maximus]) in the study area may support this hypothesis.

The production of oil palm in already transformed lands may positively or negatively affect some of the rela-
tionships between resilient species across this new anthropogenically transformed landscape. For instance, rac-
coons and foxes tend to prefer forest rather than pastures83, while in the study area they tended to prefer oil palm 
over forest. Therefore, future research is required to monitor the dynamics taking place among these assemblages 
and compare the effects of other crops on mammalian communities with that of oil palm (e.g. pasture, rice, soy 
etc.). Future studies will also benefit from evaluating the influence of proximate land uses and configuration of 
the entire landscape mosaic, as well as using multiple approaches for assessing functional connectivity within oil 
palm landscapes (e.g. using Graph or Circuit theory).

Methods
Study area.  This study was conducted in the Llanos region of Colombia. The ~2,000 km2 study area is located 
in the department of Meta, in rural land surrounding the towns of Restrepo, Cumaral, Cabuyaro, Acacias, Castilla 
la Nueva and San Carlos de Guaroa. Elevations in the area range between 194–394 m (Fig. 1). This area has a long 
history of human activity and contains a heterogeneous pattern of land-cover including natural ecosystems of 
differing successional status interspersed by human land uses, such as livestock grazing and crop production. The 
predominant land-use is oil palm followed by cattle grazing and then other minor crop systems (see27). The rem-
nant native vegetation in the region consists of secondary riparian forest strips (known locally as gallery forest) of 
differing sizes and ages, some of which experience seasonal flooding.

Survey design.  We sampled 33 sites inside oil palm plantations (hereafter: oil palm) and 23 sites within 
riparian forests (hereafter: forest) with sampling effort proportionate to the spatial extent of these habitat types 
within the study area (Fig. 1). Sites within each habitat were a minimum of 2 km apart to ensure the spatial inde-
pendence of samples. The criterion that sites be separated by >2 km was imposed as it exceeds the minimum rec-
ommended inter-site distance for inventories of terrestrial mammals in the Neotropics84–86 and encompasses the 
average expected diameter of the home ranges of the most common species found in the study area26,42. Surveys in 
oil palm plantations were restricted to those planted before 2006 to avoid the confounding influence of plantation 
age. All surveys were conducted during the dry season, between September 2014 and January 2016.

Camera trapping.  We deployed seven Reconyx HC500 HyperfireTM digital camera traps at each site (sam-
pling unit) to detect terrestrial mammals (>0.5 kg). This sampling design of seven camera traps was found in a 
pilot study conducted in the study area (Pardo et al. not publ.) to improve estimates of the sampling completeness 
when compared with the traditional practice of using a single camera per site87. In the forest, camera traps were 
spaced ~250 m apart along transects and were set close to animal trails and natural funnels where possible. Due 
to the homogeneous nature of oil palm plantings, cameras in this land-use type were placed at similar spacing 
as in the forests but arranged in a zigzag pattern in an attempt to maximize spatial coverage. We pooled the data 
derived from the seven cameras at each site into a single sample and used this as the sample unit for estimating 
species occupancy (see below).

All cameras were fixed to trees or wooden poles with a steel cable (PythonTM, US) and were configured to the 
following criteria: high-sensitivity sensor, a 1-second interval between consecutive pictures (3 per trigger), no 
delay or quiet period between triggers. Cameras were installed a minimum distance from the potential path of the 
animal (e.g. trails) of 1 m and 25–30 cm height, depending on the terrain. Cameras were active for 30 to 40 days 
without baiting. Only terrestrial mammals were considered for analyses and were identified using the most recent 
taxonomic classification of Colombian mammals22.

Habitat use and detection probability.  To evaluate the effects of oil palm on habitat use and detection 
probabilities of terrestrial mammalian species, we used a single season likelihood-based occupancy modeling 
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protocol as developed by MacKenzie et al.41. This framework allows for the determination of factors that affect the 
distribution or habitat use of a particular species based on detection/non-detection data along temporal replicates 
(i.e. detection histories) at different sites. Furthermore, occupancy analyses explicitly account for imperfect detec-
tion (p < 1) and therefore facilitate evaluations of changes in detection probabilities and likelihood of species’ use 
of particular habitats (e.g.41,88). Since we were interested in the entire terrestrial mammal community, the criteria 
and assumptions about independence between sites within the occupancy framework were flexible (i.e. sites 
might not be closed to changes in occupancy). Thus, occupancy (Ψ) in this study is interpreted and referred to as 
habitat, or site, use probability41. Detection histories were constructed using the compiled photographs from eight 
survey occasions, each formed by the combination of five camera survey days across all seven cameras per site.

We aimed to answer two questions. First, we evaluated whether habitat type (oil palm versus forest) was a 
determinant driver for habitat use (Ψ) and detection probability (p) across the study area (n = 56 sites). Second, 
we selected only those sites within oil palm (n = 33) to assess how two habitat characteristics of this monoculture 
influenced species habitat use: distance to nearest forest patches (m) (log10 transformed) and understory vegeta-
tion (high = 1 or low = 0). Due to relatively small sample size and limited variation within oil palm plantations, 
we could not include other features of the structure of the plantations such as height or canopy cover. However, 
since the oil palm structure is evidently homogeneous, these factors do not likely influence medium to large-sized 
mammals habitat use, as has been shown for other biodiversity measures (e.g.37).

To assess the influence of the explanatory variables in the above questions, we used a model selection frame-
work based on Akaike’s Information Criterion corrected for small sample size (AICc)89. We evaluated the models 
for goodness-of-fit against 1,000 simulated bootstrap datasets90. All models within Δ AICc < 2 were consid-
ered to have substantial support as the most likely factors influencing Ψ and/or p89. We used the software pro-
gram PRESENCE 3.191 for all analyses of occupancy and model selection. Models that did not converge were not 
included in the model selection process. In cases where overdispersion was detected (which occurred only for 
the crab-eating fox), QAICc was used for model selection. The relative importance of the effect of each variable 
on species occupancy was assessed by summing the cumulative Akaike weight of evidence (Σωi) of those models 
containing the variable, using a cutoff of Δ AICc < 2. We also used a model-averaging approach to estimate an 
overall value of occupancy for the entire study area and for each habitat type.

To evaluate the effect of habitat type, we constructed four models allowing habitat use (i.e. occupancy - Ψ) 
and detection probabilities (p) to vary according to habitat type. If the null model for Ψ (i.e. constant habitat use) 
appeared among the top candidate models with sufficient Σωi, then we concluded that habitat had no strong 
(“significant”) effect on the occupancy, and hence oil palm plantations had no apparent influence on determining 
habitat use probabilities. Further, to clearly understand how habitat use of each species differed between oil palm 
and forest, we used the model Ψ (habitat), p(habitat) as a unifying criterion. This model provides information on 
the probabilities of species using any of both habitats while accounting for likely differences in detection proba-
bilities due to the differences in habitat structure. This model was also commonly among top-ranking models in 
six of the 12 species (Table S1). Preliminary analyses showed that models constructed for species detected in less 
than three sites resulted in model convergence issues. Estimation of Ψ and p was not possible for these species and 
naïve occupancy is reported instead (i.e. the proportion of sites where species were detected without accounting 
for imperfect detection).

To understand the effect of the selected variables on habitat use of species within oil palm, we first evaluated 
the likely effects of undergrowth vegetation on detection probabilities (p) (i.e. the animal can be present but not 
detected due to vegetation surrounding the camera). To do this, we allowed p to be constant or vary according 
to undergrowth vegetation while maintaining the habitat use parameter–Ψ identified in the global model (all 
variables) [i.e. Ψ (undergrowth + distance to forest), p(constant)] vs Ψ (undergrowth + distance to forest), p(un-
dergrowth)]. The best model for p was then used in the subsequent model selection of Ψ. Untransformed beta 
coefficients from these models were used to evaluate the direction and magnitude of the effect of the variables 
on Ψ estimates, which are presented for each of the top-ranking models. We combined the detection history of 
species with similar direction in response to distance to forest (only those with strong evidence, Δ AICc < 2) to 
improve the precision of the estimates inside oil palm due to the low occurrences of species and to facilitate the 
visual interpretation of the results.

Conclusions
We aimed to compare the habitat use and detection probabilities of terrestrial mammals between oil palm plan-
tations and riparian forests in the Colombian Llanos. We found a reduction in diversity of terrestrial mammals 
associated with low probabilities of habitat use of oil palm plantations by most species. However, some species 
such as giant anteater, omnivorous mesopredators, and white-tailed deer seemed to prefer oil palm over riparian 
forest. Due to the variable, species-specific responses we report, caution must be exercised against a “one size 
fits all” solution and generalizations across all mammal species. Our results suggest that oil palm plantations in 
Colombia could be made more suitable for the majority of the resident mammal species with the provision of 
undergrowth vegetation and by ensuring remnant forests are retained in their proximity. The high habitat use 
found in forested habitats, even in those species positively associated with oil palm cover (e.g. giant anteater) 
implies that oil palm plantations alone would be insufficient for the persistence of wild mammals. Therefore, a 
heterogeneous landscape with interspersed native vegetation is required to maintain connectivity and habitat use 
by mammals across the oil palm matrix in Colombian landscapes. To fully understand the impacts of oil palm 
in Colombia it is important to recognize the regional landscape context and the history of land-uses prior to the 
implementation of oil palm.
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Data Availability
The datasets generated during and/or analysed during the current study are available in the espaces repository, 
https://espaces.edu.au/lepardov/scientific-report-publication_repository.

References
	 1.	 Campbell, B. M. et al. Agriculture production as a major driver of the earth system exceeding planetary boundaries. Ecol. Soc. 22, 8 

(2017).
	 2.	 Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–16 

(2014).
	 3.	 Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl. Acad. Sci. 

107, 16732–16737 (2010).
	 4.	 Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
	 5.	 Cosentino, B. J., Schooley, R. L. & Phillips, C. A. Connectivity of agroecosystems: Dispersal costs can vary among crops. Landsc. 

Ecol. 26, 371–379 (2011).
	 6.	 Franklin, J. F. & Lindenmayer, D. B. Importance of matrix habitats in maintaining biological diversity. Proc. Natl. Acad. Sci. USA 106, 

349–50 (2009).
	 7.	 Prugh, L. R., Hodges, K. E., Sinclair, A. R. E. & Brashares, J. S. Effect of habitat area and isolation on fragmented animal populations. 

Proc. Natl. Acad. Sci. USA 105, 20770–5 (2008).
	 8.	 Daily, G. C., Ceballos, G., Pacheco, J., Suzán, G. & Sánchez-Azofeifa, A. Countryside biogeography of neotropical mammals: 

conservation opportunities in agricultural landscapes of Costa Rica. Conserv. Biol. 17, 1814–1826 (2003).
	 9.	 Muhly, T. B. et al. Humans Strengthen Bottom-Up Effects and Weaken Trophic Cascades in a Terrestrial Food Web. PLoS One 8, 

e64311 (2013).
	10.	 Nogeire, T. M., Davis, F. W., Duggan, J. M., Crooks, K. R. & Boydston, E. E. Carnivore Use of Avocado Orchards across an 

Agricultural-Wildland Gradient. PLoS One 8, 1–6 (2013).
	11.	 Battin, J. When Good Animals Love Bad Habitats: Ecological Traps and the Conservation of Animal Populations. Conserv. Biol. 18, 

1482–1491 (2004).
	12.	 Maddox, T., Priatna, D., Gemita, E. & Salampessy, A. The conservation of tigers and other wildlife in oil palm plantations. ZSL 

Conservation Report No. 7. (The Zoological Society of London, 2007).
	13.	 Fitzherbert, E. B. et al. How will oil palm expansion affect biodiversity? Trends Ecol. Evol. 23, 538–545 (2008).
	14.	 Danielsen, F. et al. Biofuel Plantations on Forested Lands: Double Jeopardy for Biodiversity and Climate. Conserv. Biol. 23, 348–358 

(2009).
	15.	 Dammert, J. L. Cambio De Uso De Suelos Por Agricultura a Gran Escala En La Amazonía Andina: El Caso De La Palma Aceitera. 

(USAID-ICAA, 2014).
	16.	 Furumo, P. R. & Aide, T. M. Characterizing commercial oil palm expansion in Latin America: land use change and trade. Environ. 

Res. Lett. 12, 024008 (2017).
	17.	 Fedepalma. Anuario Estadístico 2014. La agroindustria de la palma de aceite en Colombia y en el mundo: 2009–2013. (Fedepalma, 

2014).
	18.	 Pardo, L. E., Laurance, W. F., Clements, G. R. & Edwards, W. The impacts of oil palm agriculture on Colombia’s biodiversity: what 

we know and still need to know. Trop. Conserv. Sci. 88, 828–845 (2015).
	19.	 Etter, A., Sarmiento, A. & Romero, M H. In Ecosystem Function in Savannas. Measurements and Modeling at Landscape to Global 

Scales (eds Hill, M. J. & Hanan, N. P.) 383–402 (2011).
	20.	 Castiblanco, C., Etter, A. & Aide, T. M. Oil palm plantations in Colombia: a model of future expansion. Environ. Sci. Policy 27, 

172–183 (2013).
	21.	 Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate 

population losses and declines. 6089–6096, https://doi.org/10.1073/pnas.1704949114 (2017)
	22.	 Ramírez-Cháves, H., Suárez-Castro, A. & González-Maya, J. F. Cambios recientes a la lista de los mamíferos de Colombia. Notas 

Mastozoológicas 3, 1–20 (2016).
	23.	 Trujillo, F., Beltrán, M., Diaz-Pulido, A., Ferrer, A. & Payan, E. In Biodiversidad de la cuenca del Orinoco: bases científicas para la 

identificación de áreas prioritarias para la conservación y uso sostenible de la biodiversidad. (eds Lasso, C. A., Usma, J. & Trujillo, F.) 
311–336 (Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, WWF Colombia, Fundación Omacha, 
Fundación La Salle e Instituto de Estudios de la Orinoquia (Universidad Nacional de Colombia) 2010).

	24.	 Andrade-Ponce, G. P., Montaño-Salazar, S. M., Riveros-Loaiza, L. M., Ramírez-Cháves, H. E. & Suárez-Castro, A. F. Estado del 
conocimiento y prioridades de investigación sobre las familias Canidae, Mephitidae y Procyonidae (Mammalia: Carnivora) en 
Colombia. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 40, 500–513 (2016).

	25.	 Díaz-Pulido, A. et al. In Biodiversidad 2016. Estado y tendencias de la biodiversidad continental de Colombia. (eds Moreno, L. A., 
Andrade, G. I. & Ruíz- Contreras, L. F.) (Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, 2017).

	26.	 Ferrer, A. et al. Lista de los mamíferos de la cuenca del río Orinoco. Biota Colomb. 10, 179–207 (2009).
	27.	 Romero-Ruiz, M. H., Flantua, S. G., Tansey, K. & Berrio, J. C. Landscape transformations in savannas of northern South America: 

Land use/cover changes since 1987 in the Llanos Orientales of Colombia. Appl. Geogr. 32, 766–776 (2012).
	28.	 Lasso, C. A. et al. Biodiversidad de la cuenca del Orinoco: bases científicas para la identificación de áreas prioritarias para la 

conservación y uso sostenible de la biodiversidad. (Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, WWF 
Colombia, Fundación Omacha, Fundación La Salle e Instituto de Estudios de la Orinoquia Universidad Nacional de Colombia, 
2010).

	29.	 Madriñán, L. F., Etter, A., Boxall, G. D. & Ortega-Rubio, A. Tropical alluvial forest fragmentation in the eastern lowlands of 
Colombia (1939–1997). L. Degrad. Dev. 18, 199–208 (2007).

	30.	 Gray, C. L., Slade, E. M., Mann, D. J. & Lewis, O. T. Do riparian reserves support dung beetle biodiversity and ecosystem services in 
oil palm-dominated tropical landscapes? Ecol. Evol. 4, 1049–1060 (2014).

	31.	 Yue, S., Brodie, J. F., Zipkin, E. F. & Bernard, H. Oil palm plantations fail to support mammal diversity. Ecol. Appl. 25, 2285–2292 
(2015).

	32.	 Gilroy, J. J. et al. Minimizing the biodiversity impact of Neotropical oil palm development. Glob. Chang. Biol. 21, 1531–1540 (2015).
	33.	 Prescott, G. W. et al. Reducing the impacts of Neotropical oil palm development on functional diversity. Biol. Conserv. 197, 139–145 

(2016).
	34.	 López-Ricaurte, L., Edwards, D. P., Romero-Rodríguez, N. & Gilroy, J. Impacts of oil palm expansion on avian biodiversity in a 

Neotropical natural savanna. Biol. Conserv. 213, 225–233 (2017).
	35.	 Ocampo-Peñuela, N., Garcia-Ulloa, J., Ghazoul, J. & Etter, A. Quantifying impacts of oil palm expansion on Colombia’s threatened 

biodiversity. Biol. Conserv. 224, 117–121 (2018).
	36.	 Tamaris-Turizo, D. P., López-Arévalo, H. F. & Romero Rodríguez, N. Efecto de la estructura del cultivo de palma de aceite Elaeis 

guineensis (Arecaceae) sobre la diversidad de aves en un paisaje de la Orinoquía colombiana. Rev. Biol. Trop. (Int. J. Trop. Biol 65, 
1569–1581 (2017).

https://doi.org/10.1038/s41598-019-44288-y
https://espaces.edu.au/lepardov/scientific-report-publication_repository
https://doi.org/10.1073/pnas.1704949114


1 1Scientific Reports |          (2019) 9:7812  | https://doi.org/10.1038/s41598-019-44288-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

	37.	 Pardo, L. E., Campbell, M. J., Edwards, W., Clements, G. R. & Laurance, W. F. Terrestrial mammal responses to oil palm dominated 
landscapes in Colombia. PLoS One 13, e0197539 (2018).

	38.	 Laurance, W. F. et al. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290–294 (2012).
	39.	 Sloan, S., Jenkins, C. N., Joppa, L. N., Gaveau, D. L. A. & Laurance, W. F. Remaining natural vegetation in the global biodiversity 

hotspots. Biol. Conserv. 177, 12–24 (2014).
	40.	 Gardner, T. A. et al. Prospects for tropical forest biodiversity in a human-modified world. Ecol. Lett. 12, 561–582 (2009).
	41.	 MacKenzie, D. et al. Occupancy Estimation and Modeling: Inferring patterns and dynamics of species occurrence. (Elsevier Academic 

Press)., https://doi.org/10.2981/0909-6396(2006)12[450:OEAMIP]2.0.CO;2 (2006)
	42.	 Pardo, L. E. & Payán, E. Mamíferos de un agropaisaje de palma de aceite en las sabanas inundables de Orocué, Casanare, Colombia. 

Biota Colomb. 16, 54–66 (2015).
	43.	 McShea, W. J. et al. The importance of secondary forest blocks for terrestrial mammals within an Acacia/secondary forest matrix in 

Sarawak, Malaysia. Biol. Conserv. 142, 3108–3119 (2009).
	44.	 Yaap, B. et al. Large Mammal Use of Linear Remnant Forests in an Industrial Pulpwood Plantation in Sumatra, Indonesia. Trop. 

Conserv. Sci. 9, 1–13 (2016).
	45.	 Mendes-Oliveira, A. C. et al. Oil palm monoculture induces drastic erosion of an Amazonian forest mammal fauna. PLoS One 12, 

e0187650 (2017).
	46.	 Miranda, F., Bertassoni, A. & Abba, A. Myrmecophaga tridactyla. IUCN Red List Threat. Species e.T14224A4 (2014).
	47.	 Quiroga, V. A., Noss, A. J., Boaglio, G. I. & Di Bitetti, M. S. Local and continental determinants of giant anteater (Myrmecophaga 

tridactyla) abundance: biome, human and jaguar roles in population regulation. Mamm. Biol. 81, 274–280 (2016).
	48.	 Sanabria, C., Lavelle, P. & Fonte, S. J. Ants as indicators of soil-based ecosystem services in agroecosystems of the Colombian Llanos. 

Appl. Soil Ecol. 84, 24–30 (2014).
	49.	 Sollmann, R. et al. Note on the diet of the jaguar in central Brazil. Eur. J. Wildl. Res. 59, 445–448 (2013).
	50.	 Emmons, L. H. Mamíferos de los bosques húmedos de América Tropical. Una guia de campo. (FAN, 1999).
	51.	 Gallo, J. A. et al. First study on food habits of anteaters, Myrmecophaga tridactyla and Tamandua tetradactyla, at the southern limit 

of their distribution. Mammalia 81, 601–604 (2017).
	52.	 Brown, D. D. et al. Selection and spatial arrangement of rest sites within northern tamandua home ranges. J. Zool. 293, 160–170 

(2014).
	53.	 Sandoval-Gómez, V. E., Ramírez-Cháves, H. E. & Marin, D. Registros de hormigas y termitas presentes en la dieta de osos 

hormigueros (Mammalia: Myrmecophagidae) en tres localidades de Colombia. Edentata 13, 1–9 (2012).
	54.	 Bonato, V., Martins, E. G., Machado, G., da-Silva, C. Q. & dos Reis, S. F. Ecology of the Armadillos Cabassous unicinctus and 

Euphractus sexcinctus (Cingulata: Dasypodidae) in a Brazilian Cerrado. J. Mammal. 89, 168–174 (2008).
	55.	 Cove, M. V., Spínola, R. M., Jackson, V. L., Sàenz, J. C. & Chassot, O. Integrating Occupancy Modeling and Camera-Trap Data to 

Estimate Medium and Large Mammal Detection and Richness in a Central American Biological Corridor. Trop. Conserv. Sci. 6, 
781–795 (2013).

	56.	 Sikes, R. S., Heidt, G. A. & Elrod, D. A. Seasonal Diets of the Nine-banded Armadillo (Dasypus novemcinctus) in a Northern Part 
of Its Range. Am. Midl. Nat. 123, 383–389 (1990).

	57.	 da Silveira Anacleto, T. C. Food Habits of Four Armadillo Species in the Cerrado Area, Mato Grosso, Brazil. Zool. Stud. 46, 529–537 
(2007).

	58.	 Beck-King, H., Helversen, O. & Beck-King, R. Home Range, Population Density, and Food Resources of Agouti paca (Rodentia: 
Agoutidae) in Costa Rica: A Study Using Alternative Methods1. Biotropica 31, 675–685 (1999).

	59.	 Aliaga-Rossel, E., Kays, R. W. & Fragoso, J. M. V. Home-range use by the Central American agouti (Dasyprocta punctata) on Barro 
Colorado Island, Panama. J. Trop. Ecol. 24, 367–374 (2008).

	60.	 Camargo-Sanabria, A. A., Mendoza, E., Guevara, R., Martinez-Ramos, M. & Dirzo, R. Experimental defaunation of terrestrial 
mammalian herbivores alters tropical rainforest understorey diversity. Proc. R. Soc. B Biol. Sci. 282, 20142580–20142580 (2014).

	61.	 Dirzo, R. & Miranda, A. Contemporary neotropical defaunation and forest structure, function, and diversity. A sequel to John 
Terborgh. Conservation Biology 4, 444–447F1450. 4 (1990).

	62.	 Pardo, L. E., Clements, G. R., Edwards, W., Rojas-Rojas, A. V. & Laurance, W. F. Registros de puma (Puma concolor Linnaeus, 1771) 
en zona rural de San Carlos de Guaroa, Meta, Colombia. Rev. Biodivers. Neotrop. 7, 108–113 (2017).

	63.	 Azhar, B., Lindenmayer, D. B., Wood, J., Fischer, J. & Zakaria, M. Ecological impacts of oil palm agriculture on forest mammals in 
plantation estates and smallholdings. Biodivers. Conserv. 23, 1175–1191 (2014).

	64.	 Olarte-González, G. & Escovar-Fadul, T. First record of Puma concolor Linneus, 1771 (Carnivora: Felidae) preying Odocoileus 
virginianus (Zimmermann, 1780) on a palm-oil plantation in the Meta department, Colombia. Mammal. Notes 2, 8–10 (2015).

	65.	 Hudson, L. N. et al. The PREDICTS database: A global database of how local terrestrial biodiversity responds to human impacts. 
Ecol. Evol. 4, 4701–4735 (2014).

	66.	 Gonzalez-Maya, J. F. et al. In Plan de Conservación de Felinos del Caribe Colombiano: Los felinos y su papel en la planificación regional 
integral basada en especies clave (eds Castaño-Uribe, C., González-Maya, J. F., Zárrate-Charry, D., Ange-Jaramillo, C. & Vela-vargas, 
I. M.) 232 (Fundación Herencia Ambiental Caribe, ProCAT Colombia, The Sierra to Sea Institute, 2013).

	67.	 Polisar, J. et al. Jaguars, pumas, their prey base, and cattle ranching: Ecological interpretations of a management problem. Biol. 
Conserv. 109, 297–310 (2003).

	68.	 Tófoli, C., Rohe, F. & Setz, E. Jaguarundi (Puma yagouaroundi) (Geoffroy, 1803) (Carnivora, Felidae) food habits in a mosaic of 
Atlantic Rainforest and eucalypt plantations of southeastern Brazil. Braz. J. Biol 69, 871–877 (2009).

	69.	 De Arruda, A. & Motta-Junior, J. C. Food habits of two syntopic canids, the maned wolf (Chrysocyon brachyurus) and the crab-
eating fox (Cerdocyon thous), in southeastern Brazil. Rev. Chil. Hist. Nat. 77, 5–14 (2004).

	70.	 Giordano, A. J. Ecology and status of the jaguarundi Puma yagouaroundi: a synthesis of existing knowledge. Mamm. Rev. 46, 30–43 
(2016).

	71.	 Facure, K. & Giaretta, A. Food habits of carnivores in a coastal Atlantic Forest of southeastern Brazil. Mammalia 3, 499–502 (1996).
	72.	 Wood, B. J. & Fee, C. G. A critical review of the development of rat control in Malaysian agriculture since the 1960s. Crop Prot. 22, 

445–461 (2003).
	73.	 Cruz-Rodríguez, C., González-Maya, J., Rodríguez-Bolaños, A., Cepeda-Mercado, A. & Belant, J. L. Ocelot Leopardus pardalis 

(Carnivora: Felidae) Spatial Ecology In A Fragmented Landscape Of Columbia. Rev. Mex. Mastozoología Nueva época 5, 17–24 
(2015).

	74.	 Liévano-Latorre, L. F. & López-Arévalo, H. F. Comunidad de mamíferos no voladores en un área periurbana andina, Cundinamarca, 
Colombia. Acta Biológica Colomb. 20, 193–202 (2014).

	75.	 Di Bitetti, M. S., De Angelo, C. D., Di Blanco, Y. E. & Paviolo, A. Niche partitioning and species coexistence in a Neotropical felid 
assemblage. Acta Oecologica 36, 403–412 (2010).

	76.	 Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J. Biogeogr. 
31, 79–92 (2004).

	77.	 Gallina, S., Mandujano, S., Bello, J., López-Arévalo, H. & Weber, M. In Neotropical Cervidology: Biology and Medicine of Latin 
Amarican Deer (eds Barbanti, J. M. & González, S.) 393 (Jaboticabal, Brazil: Funep and Gland, Switzerland: IUCN, 2010).

	78.	 Camargo-Sanabria, A. A., Pardo, L. E., López-Arévalo, H., Sanchez-Palomino, P. & Caro, C. I. In El chigüiro Hydrochoerus 
hydrochaeris en la Orinoquía colombiana: Ecología, manejo sostenible y conservación (eds López-Arévalo, H. F., Sánchez-Palomino, 

https://doi.org/10.1038/s41598-019-44288-y
https://doi.org/10.2981/0909-6396(2006)12[450:OEAMIP]2.0.CO;2


1 2Scientific Reports |          (2019) 9:7812  | https://doi.org/10.1038/s41598-019-44288-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

P. & Montenégro, O.) 436 (Biblioteca José Jerónimo Triana No. 25. Instituto de Ciencias Naturales. Universidad Nacional de 
Colombia 2014).

	79.	 Herrera, E. A. & Macdonald, D. W. Resource Utilization and Territoriality in Group-Living Capybaras (Hydrochoerus hydrochaeris). 
J. Anim. Ecol. 58, 667 (1989).

	80.	 Pardo, L. E. et al. Identifying critical limits in oil palm cover for the conservation of terrestrial mammals in Colombia. Biol. Conserv. 
227, 65–73 (2018).

	81.	 Gardner, T. A., Barlow, J., Sodhi, N. S. & Peres, C. A. A multi-region assessment of tropical forest biodiversity in a human-modified 
world. Biol. Conserv. 143, 2293–2300 (2010).

	82.	 Harding, J. S., Bnfield, E. F., Bolstad, P. V., Helfman, G. S. & Jones, E. B. D. III Stream biodiversity: The ghost of land use past. Proc. 
Natl. Acad. Sci. 95, 14843–14847 (1998).

	83.	 Pineda-Guerrero, A., González-Maya, J. F. & Pérez-Torres, J. Conservation value of forest fragments for medium-sized carnivores in 
a silvopastoral system in Colombia. Mammalia 79, 115–119 (2015).

	84.	 Silveira, L., Jácomo, A. T. A. & Diniz-Filho, J. A. F. Camera trap, line transect census and track surveys: A comparative evaluation. 
Biol. Conserv. 114, 351–355 (2003).

	85.	 Team Network. Terrestrial Vertebrate Protocol Implementation Manual, v. 3.0. (Tropical Ecology, Assessment and Monitoring 
Network, Center for Applied Biodiversity Science, Conservation International, 2008).

	86.	 Tobler, M. W., Carrillo-Percastegui, S. E., Leite Pitman, R., Mares, R. & Powell, G. An evaluation of camera traps for inventorying 
large- and medium-sized terrestrial rainforest mammals. Anim. Conserv. 11, 169–178 (2008).

	87.	 Burton, A. C. et al. Wildlife camera trapping: A review and recommendations for linking surveys to ecological processes. Journal of 
Applied Ecology 52, 675–685 (2015).

	88.	 Nagy-reis, M. B., Estevo, A., Nagy-reis, M. B. & Nichols, J. D. When habitat matters: Habitat preferences can modulate co-occurrence 
patterns of similar sympatric species When habitat matters: Habitat preferences can modulate co-occurrence patterns of similar 
sympatric species, https://doi.org/10.1371/journal.pone.0179489 (2017).

	89.	 Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. (Springer, 
2002).

	90.	 MacKenzie, D. I. & Bailey, L. L. Assessing the fit of site-occupancy models. J. Agric. Biol. Environ. Stat. 9, 300–318 (2004).
	91.	 Hines, J. E. Presence-Software to estimate patch occupancy and related parameters (2006).

Acknowledgements
We are grateful to all companies for their valuable support and assistance during field work and for allowing us 
to work and stay on their lands, as well as the National Federation of Oil Palm Growers (FEDEPALMA) and the 
GEF/BID PPB “Biodiversity Conservation in the areas of oil palm plantations” project, for logistical collaboration 
and economic assistance. We are grateful to Mike Meredith for his assistance in the data analysis and Mattew 
Linkie for his recommendations on sampling design. Funding was provided by an Australian Laureate Fellowship 
awarded to Professor William F. Laurance (2010). The lead author also thanks COLCIENCIAS’s postgraduate 
scholarship scheme Francisco José de Caldas, Colombia.

Author Contributions
L.E.P., W.E., G.R.C. and W.F.L. designed the study. L.E.P. collected and cleaned field data. L.E.P. conducted all 
analysis with input from M.V.C. and W.E., L.E.P. wrote the first draft with input from M.V.C. and M.J.C. All 
authors revised and edited the preliminary versions.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-44288-y.
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-44288-y
https://doi.org/10.1371/journal.pone.0179489
https://doi.org/10.1038/s41598-019-44288-y
http://creativecommons.org/licenses/by/4.0/

	Land management strategies can increase oil palm plantation use by some terrestrial mammals in Colombia

	Results

	General patterns of mammalian distribution in the study area. 
	Effects of habitat type on species habitat use. 
	Habitat use probability between oil palm and riparian forest. 
	Effects of variables on habitat use within oil palm sites. 

	Discussion

	Anteater and armadillo species habitat use. 
	Herbivore, frugivore, and granivore mammal species habitat use. 
	Top and mesopredator mammal species habitat use. 
	Habitat use within oil palm plantations. 

	Methods

	Study area. 
	Survey design. 
	Camera trapping. 
	Habitat use and detection probability. 

	Conclusions

	Acknowledgements

	Figure 1 Study area and location of sample sites (n = 56) across the Llanos region in Colombia (Grey area indicates other land-uses, mainly pasture).
	Figure 2 Estimated habitat use probability () of selected species between oil palm and riparian forest in the Llanos region of Colombia.
	Figure 3 Cumulative Akaike weight, (Σωi), for support of the influence of undergrowth vegetation and distance to nearest forest patch on the occupancy of selected medium and large mammals inside oil palm plantations in Colombia.
	Figure 4 Estimated effect of distance to nearest forest on habitat use probability of selected species.
	Table 1 Naïve occupancy, model-averaged estimates of overall habitat use and habitat preference of 23 terrestrial mammals detected in oil palm-dominated landscapes in the Llanos region, Colombia.
	Table 2 Model selection results evaluating the effect of understory vegetation (veg) and distance to forest patch (dist) on estimated habitat use (Ψ) and detection probabilities (p) for selected species within oil palm plantations in the eastern plains of




