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Introduction  

For an introduction to the theory of one-relator 

groups se Batunslag 1964, and Magnus, Karrass, and 

Solitar 1966, There are three Eain themes in the work 

which follows, 

The first theme is the determination of the ibelian 

subgroups of a one-relator group. This investigation 

was prompted by a conjecture of Baumslag 1964 that the 

additive group of rationals is not a subgroup of a one- 

relator group. The Abelian subgroups of one-relator 

groups have now boon completely determined; they are 

free Abelian of rank 2 or the additive group of n- 

adic rationals, n a positive integeroriflit CC11G 0US 

Theorem (See Theorem 1.2.3) Let G = gp(a, b, c, •., I 
R) be a torsion-free one-relator group. Then no non- 

trivial element has more than finitely many prime 

divisors. Moreover a non-trivial element is not divis- 

ible by more than finitely many powers of a prime p, if 

p is greater than the length of the relator. 

Thus the additive group of ratiQnals is not a sub- 

group of a torsion-free one-relator group, in fact; 

Corollary(See Corollary 1.2.4) The additive group of 

rationals is not a subgroup of a one-relator group. 

In the case of one-relator groups with torsion, 



one can say much more. 

Theorem (See Theorem 2.3.2) The Abelian subgroups of 

a one-relator group with torsion are cyclic. 

Corollary (See Corollary 2.3.3) The soluble subgroups 

of a one-relator group with torsion are cyclic. 

Corollari (See Corollary 2.3.4)  The centralizer of 

every non-trivial element of a one-relator group with 

torsion is cyclic. 

The second theme is the problem of extending the 

Freiheitssatz. This theorem, iroved by Magnus 1930, 

is the basic result in the theory of one-relator groups0 

Let 

gp(a, b, c, . .41 R(a, b, c, .. 

where R is cyclically reduced, and suppose the generator 

a occurs non-trivially in R. Then the Freiheitssatz 

states that b, c, ,.. freely generate a subgroup of G. 

But something more than this is true, and we seek to 

extend the fteiheitssatz by proving that, for some 

integer m 

b, cp 

freely generate a subgroup of G in certain rather 

general cases. The first result in this direction was 

obtained f or certain two generator groups by Mendelsohn 

and Ree 1967, Here we prove the following. 

Theorem (See Theorem 1.3.11) Let G = gp(a, b, c, .. I R) 
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where a, 'b, c occur non-trivially in R with aa(R) = 0, 

Then for one of the generators a, b, or c, (say b) 

there exists an integer in such that, for all integers 

a>m 

a, ba, 0, 

freely generate a subgroup of G. 

gain one can say more for groups with torsion. 

The basic result for such groups is the 

linTheoem,(See Theorem 2.1,1) Let G = gp(a, b, 

Rn) n > 1, where R is cyclically reduced. Suppose 

that two words W(a, b, ,.,), IT(b, o o ,), where T is a 

freely reduced word containing a non-trivially and V 

does not contain a, define the same element of G. Then 

W contains a subword which is identical with a eubword 

of R±n  of length greater than (n - 1)/n times the length 

of R11. 

From this theorem one can prove the following extension 

of the Freiheitssatz, 

Corollaa  (See Corollary 2.1,6) Let G = gp(a, b, c, 

i R) n > 1, where R is cyclically reduced involving 

a, b non-trivially, and suppose Pis any integer which 

does not divide the a-exponents in Rn. Then a, b, c, 

freely generate a subgroup of G. 

The third theme is concerned with algorithmic 

problems in one-relator groups; more specifically we 



are primarily concerned with the ward problem and the 

conjugacy problem in one-relator groups with torsion. 

These algorithmic problems, proposed by Dehii 1911 are 

fundamental problems in the presentation theory of 

groups. In general they are unsolvable0 For free 

groups both the word problem and the conjugacy problem 

are solvable. In 1932 Magnus used an ingenious applic-

ation of the Freiheitssatz to prove that one-relator 

groups have a solvable word. problem. However Magnus, 

Karrass, and Solitar 1966 pointed out that there are 

some unsatisfactory aspects of the solution, for the 

algorithm appears to be unnecessarily complicated. In 

the case of less than one-sixth grous investigated. by 

Greendlinger 1960 there is a simpler algorithm. Using 

the Spelling Theorem a trivial proof of the solvability 

of the :ord roblem for one-relator groups with torsion 

can be given, (See Corollary 2,14) and the algorithm 

vhich emerges is of the reQuired degree of simplicity, 

and provides a bridge between the work of Magnus and 

that of Tartakovskii 1949 and Greendlinger 1960, 

Another similar problem related to a problem of 

Lyndon 1962 is the following.; 

0orol1a 	(See Corollary 2.1.5) Let G = gp(a, b, c, 

i Rn) n > 1 and let W, Z be subsets of the generat-

ors. Then there is an algorithm to determine for an 
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arbitrary element g e G if g = w(\V)z(Z) for some words 
led 

VI, Z, 

As for the conjugacy problem very little has been 

done. Greendlinger 1960b, 1964 has proved the solvab 

ility of the conjugacy problem for less than one-sixth 

groups, and Soldatova 1967 has extended the result to 

certain less than one-fourth groups. The conjugacy 

problem for the free product of two free groups with a 

cyclic subgroup amalgeated has been solved by Lipschutz 

(unpublished) 	In this work we show that all one- 

relator groups with torsion have a solvable conjugacy 

problem, 

Theorem (See Theorem 3.2,3) Let G be a one-relator 

group with torsion Then the conjugacy problem and 

the extended conjugacy problem relative to the subgroup 

generated by any subset of the generators are solvable 

in G. 

The problem of finding an algoritlin to determine 

whether or not az arbitrary element of a group is a 

power has been investigated by Reinhart 1962 and by 

Lipschutz 1965 and 1968. We prove the following result. 

Theorem (See Theorem 3.3.1) Let G = gp(a, b, c, ... I R'1) 

n > 1. Given g E G there is an algorithm to determine 

the roots of g, 

There are a few miscellaneous results which emerge 



in the work. The first concerns the Frattini subgroup. 

Theorem (See Theorem 1 .3.12) A one-relator group has 

trivial Frattini subgroup if 

(a) it is torsion-free with more than two generators 

or 	(13) it has torsion with more than one generator. 

The next result concerns a residual property, 

Corolle 	(See Corollary 21.7) Let G = gp(a, 13, 0, 

i R) n > 1. Then G is residually a two-generator one- 

relator' group with torsion. 

The following theorem of Bauxaslag' and. Steinberg 1964 

may be proved quite easily. 

Theorem (See Theorem 1.3.7) Let w(x1 , x2, •,., X) b 

an element of a free group F freely generated by x17  x2, 

x which is neither a riroper power nor a 

primitive. If 91 1  92 7  ..., g, g, generate a free 

group S and are connected by the relation 

w(91 1  927 .,,, g) = g' 	m >1 

then the rank of S is at most n - 1. 

There is a common strata to these three main 

themes, naaely the technique for proving them. The 

technique is as follows. In a one-relator group with 

more than one generator occuring non-trivially in the 

cyclically reduced relator one can, without too much 

disrupt ion of the group, arrange for the exponent sum 

on one of the generators to be zero 4  Let S be such a 



one-relator group, and let N be the normal subgroup of 

0 generated by the remaining generators. This is usually 

a comelicated group, infinitcly generated and infinitely 

related. But it has one nice property,,  it is the 

direct limit of a chain of subgroups of N, 

N0, gp(N0,N1), gp(N 1  ,N0, 1), gp( 1  

where the N i are isomorphic one-relator groups, with 

the length of the relator loss than that of the original 

group G. VIe thus have a basis for an induction argument 

to prove the one-relator group 0 has some specified 

group theoritic property P. Thus the induction hypo-

thesis would be that all one-relator groups with 

relator length less than the length of the relator of 

0 have the property P. Now the normal subgroup N is 

well situated in 0, for it has infinite cyclic factor 

group. For the properties of interest here, we can 

show that in order to prove 0 has the property P it 

will suffice to prove that N has the property P. Ue 

now use the nice structure of N. By the induction 

hypothesis N0, and in fact each. Hir has the property P. 

Thus the first term in the chain above has property P. 

Does the second term, gp(N0, N1) have property F? 

Well the gp(N0, N 1 ) is a generalized free product of 

N0  and IT analgamating a subgroup generated by a common 

subset of the generators of N0  and N1, so the basic 



-10- 

problem is this; when does a generalized free product 

of to groups each having the property F, have property 

P. For example it is known (Neumann 1954) that the 

generalized free product of torsion-free groups is 

torsion-free. In order for some nroperty P of the 

factors to be inherited by a free irod.uct with amalgam-

ation it is usually necessary to put conditions on the 

amalgamated subgroup. For example the generalized 

free product of residually finite groups is residually 

finite if the amalgamated subgroup is finite. Thus we 

will have to find for each property P (and there will 

be a different one in each chapter) an appropriate type 

of subgroup, call it a i-subgroup, such that the follow-

ing proposition holds, 

iion1 If C = A * B ; J is the generalized 

free product of the factors A and B amalgamating the 

subgroup J, and A and B have the property P, and J is 

a s-subgroup of A and B, then C has the property P. 

For the groups with which we are concerned we 

know from the Freiheitssatz that the amalgamated sub-

group is free. But freeness is not usually sufficient. 

In our case we will need the following proposition 

Prop tion2 Any subset of the generators of a one-

relator group G- generates a i-subgroup of G. 

The Propositions 1 and 2 will then allow us to take one 
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step up the chain and prove gp(N0 , N1 ) has the property 

P. 
Now the third term of the chain, gp(N 11  N0, N ) 

is again a generalized free product, of the two factors 

gp(N0, N1 ) and N 1  amalgating a subgroup J 1  generated 

by a common subset of the generators of N0  and. N 1  

From the two preceeding paragraphs we know that both 

these factors have the property P. All we need in view 

of Proposition 1 is for the amalgamated subgroup to be 

a i-subgroup of both factors From Proposition 2, J 1  

is a i-subgroup of N 1 . In order for the amalgamated 

subgroup to be a i-subgroup of the first factor it 

suffices to have the following result, 

9titio3 A s-subgroup of a i-subgroup 'is a i-sub- 

group, and if C = JA * B ; Jj where the amalgamated 

subgroup J is a i-subgroup of the factors A and B, then 

the factors A and B are i-subgroups of C. 

With this result we can proceed to the third term in the 

chain, For N0  is by Proposition 3 a s-subgroup of gp(N0 , N1 ) 

and 	is by Proposition 2 a i-subgroup of N0, hence 

is a i-subgroup of gp(N0 , N1 ), One continues step-

ping up the chain by repeating these arguments, for 

each successive term is formed by a similar generalized 

free product construction. Hopefully the direct limit 

of the chain of groups with property P will also have 



property F. This then would prove that N has the 

property 
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Notation 

For the readers convenience we list some of the 

notations used, 

gp(a,b,c,,,. 	I 	...,R,...) the group generated by a,b,C,, 

with defining relators 

gp(X) the subgroup generated by 

the set X, 

gp(A,B,,.,) the subgroup generated by 

the subgroups A,B, . 

* B the free product of A and B. 

* B 	; 	J} the generalized free product 

of A and B wnalgamating a 

subgroup J. 

* B ; x = y} the generalized free product 

of A and B with x E A, y E B 

identified, 

A(g) the len,,7th of g as a word in 

a free group. 

I gi the length of g as a word in 

normal form in a generalized 

free product, 

aa(R) the exponent sum of the gen- 

crater a in the word R.  
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the Frattini subgroup of G. 

w(a,b,c,,. a ) a word in the letters a,b,o, 

Often this is a'bbrev- 

iated to vi, and thus is ident-

if ied with an element w in a 

group * 7e have tried to be 

as relaxed as iossible with 

regard to this notation, and 

will use words and elements 

interchangeably. Thus the 

equation 

w1(a,1,c) = w2(x1y,z) 

will denote that w1  (a,b, c) 

and 	 interpieted 

as ClCL!efltS of the group in 

question, are equal4 

the lifting transfoxiation, 

[G, G] 	 the commutator subgroup of G. 

(G) 	 the i-th tarm of the soluble 

series of G. 8 O() = G 

81(e) = EGI  Gle  
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er1 

on-freeone -relator 

The iroblem we are concerned with in this chapter 

is to determine what Abelian groups occur as subgroups 

of torsion-free one-relator groups. This problem has 

been solved; the Abelian subgroups are free-Abelian 

of rank < 2, or those subgroups of the additive group 

of rationale which are divisible by only finitely many 

primes, 

However, given a particular one-relator group one 

cannot say precisely what Abelian subgroups will occurt 

ihat one would like is an algorithm to determine what 

Abelian subgroups occur in a particular group presented 

as a one-relator group. It is conjectured that for 

torsion-free groups an Abelian subgroup which is not 

free Abelian will occur as a subgroup if and only if, 

to within cyclic permutations, the relator is a word of 

the form S 1 TST for some words S, T which do not 

commute as elements of a free group, and some integer 

a, Ia! > 1. It has been shovm that there is an algorithm 

to determine if a word H is of this form. 

As has been remarked in the introduction, the basic 

tool for proving our results is the generalized free 

product, and the appropriate condition to place on the 



amalgamated subgroup will now be studied 

ctionl,1 	The theory of p-pure subgrou.ps9 

A positive integer 1-1 > I is a divisor of an element 

g in a group G if there exists a root x e G such that 

= g, If the element g has a divisor n, then g is 

said to be divisible by n0 Let H be a subgroup of G. 

Then H is EzLure in G if for all g c G and integers r 
r 

such that gP 	H there exists an element h e  H such r 
that h 	= gP • Let iT be a set of prime nbers, Then 

H is i -pure in G if H is p-pure in G for all p 

Lermnal,1.1 A p-pure subgroup of a p-pure subgroup of 

G is a p-pure subgroup of G. 

Proof Let K be a p-pure subgroup of H and H a p-pure 

subgroup of G. 	Suppose 
r 

gP 	e 
r 

K. 	Then gP 	H and since 

H is p-pure in G there exists an element h E H such that r 	r 
= h 	. 

r 
Hence h 	e  K and since K is p-pure in H 

there exists an element k E K 
r 

= h r  such that kP 

Hence K is a p-pure subgroup of G. 

Lemma 	Let C be a generalized free product 

C = A * B ; KJ where the amalgamated subgroup K is 

a p-pure subgroup of A and B. Then A and B are p-pure 

subgroups of C. 

Proof From the symmetry between A and B in C it will 
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suffice to prove that A is a p-pure subgroup of C. 

Let a E A and suppose for some g e C, 
r 
= a, 

It must be shovm that there exists an element of A 

whose Pr_th power is a. Let Igi  denote the length of 

g when g is written in normal form. 

If Jgj is even then g is cyclically reduced so 
r 

= pjgj 	But lal 	1 hence ii = 0, This 

r implies g c i whence g is the required p -th root. 

If gj = 1 then g c A or g E B. If g 6A there 
r 

is nothing to prove, so suppose g B. Then gP E A 
r 

and gP 	B whence gP  E K. Since K is a p-pure sub- 

group of B there exists an element k E K such that 
r 	r 

k'L= gP = a, whence a has the required Pr_h root 

in A. 

If jgj is odd and (gj 	3 one proceeds by induction. 

Suppose inductively that the result has been established 

for all elements with length < n and let jg 	n where 

n is odd. 

It is possible to choose an element s, either in 

A or B such that 

	

g = s gs 	 Ig! < Igi. 
If s E A then 

= a 

or 
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gpr = sas 1  € 

By the induction hypothesis there exists an element 

a1  c A such that 

a1 	= sas 1  

hence 
r 	r (1 	p - -1p \S a1 s1  - 

Thus sa1 s is the required Pr_h root of a in A. 

If s E B, without loss of generality assume g 

when written in normal form begins with an element of 
r 

A. Then gP when written in normal form begins with 

an element of A But 

= a 
rV 

implies 
r 

gP = sas 1e AflB, 

By the induction hypothesis there exists an element 

b e B such that b 	 Nov 

	

= s1be = 
	

1r = a 

where I s 1 bs 1, 	1 . Hence from the above there exists 
in A the required Pr_th root of a. 

This comuletos the proof of Lemma 1.1.2, 

If A1  is a p-pure subgroup of A then A1  is a 

p-pure subgroup of C, using the notation of the previous 

Lemma. In particular K is a p-pure subgroup of C. Note 

also that free factors of a group are p-pure subgroups 

where p is any prime, 
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Lemma_1,1.3 Let C = 	* B ; J i where J is p-pure in 

A and B. If no non-trivial element of the factors A 

and B is divisible by all powers of the prime p then no 

non-trivial element of C is divisible by all powers of 

p. 

Proof Let v be any non-trivial element of C. If v is 

divisible by only finitely many powers of p then any 

conjugate of v will be divisible by only finitely many 

powers of p. It suffices therefore to assume v is 

cyclically reduced. 

If jvj > 1 where lvi denotes the length of v in 

normal form, then any root of v must be cyclically 

reduced with length > 1. Hence v has only a finite 

number of divisors since each divisor must divide lvi. 

If I vi 	1 assume without loss of generality that 

A. Prom Lemma 2.1,2, A is a p-pure subgroup of 0, 

and as there are only finitely many powers of p dividing 

V in A, there can be only finitely many powers of p 

dividing V in C. 

Lemma 1.1.4 Let C = A * B 	J1 where J isv-pure in 

A and B and is the set of all but a finite number of 

primes, If A and B are groups in which every non-trivial 

element is divisible by at most a finite number of primes, 

then every non-tiia1 element in C is divisible by at 

most a finite number of primes, 
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Proof The proof is similar to the proof of Lemma 1.1,3 

and so is omitted. 

Section 1.2 The Abelian subgroups of torsion-free 

one-relator groups. 

Te are now ready to aply the theory developed in 

the previous section to one-relator groups. It will be 

shown that any subset of the generators of a one-relator 

group generates a p-pure subgroup vthere p is any prime 

greater than the length of the relator. First we need 

a lemma to simplify the problem. 

a1.1 In order to prove that any subset of the 

generators of a one-relator group generates a p-pure 

subgroup where p is any prime greater than the length 

of the relator it suffices to prove that in all groups 

G = gp(a, b, ..., t I R) 

where R is a cyclically reduced word involving 

a, b, ..,, t non-trivially, the gp(b, ..., t) is p-pure 

in G- where p is any prime greater than 

Poof Let ii = gp(x1, x2)  ... I R) be any one-relator 

group. Viithout loss of generality one may assume P. is 

cyclically reduced. Let I y1, y21 	be any subset 

of the generators of H, and put 

= 9p(y11 	2' •,, 

If y1, y29 	is not a proper subset of Jx1, x2, ,,J 
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then Y = H and. so  Y is certainly a p-pure subgroup of 

H. If the set is empty there is iaothing to prove. 

Let 	y2, ..J be a proper non-empty subset of 

xi  , x2  , . . . 

Firstly suppose that every generator in H is in 

the set y11  y2, ,..}. Then the generators of H may 

be split into two disjoint subsets 

* 	, 	, z 2P . 

where no z-g'enerator appears in H. These two subsets 

generate free factors Y, Z respectively such that 

H = Y * Z. 

Hence I is a p-pure subgroup of H since it is a free 

factor of H. 

Secondly suppose that there exists a generator 

say x1  which is not in Jyl, y21  ..J but appears in H. 

Let X = gp(x1, ..., x1, 	•,j. It is clear 

that Y X; in fact, by the Freihoitssatz, I is a 

free factor of X. It will suffice therefore to prove 

that X is a p-pure subgroup of H. 

Let 

= gp(a, b, ..,, t I H) 

be obtained from H by deleting those generators which 

do not occur in H, and rewriting x as a and the remain-

ing generators apearing in H as b, ..., t in some 

order, Then 
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TI - 	* V 	, II - 	 , 	C, 	Li)), 

In order to prove that X is a ppure subgroup of 

H it will suffice to prove that the amalgamated subgroup 

is a p-pure subgroup of both G- and X. But it is a 

p-pure subgroup of X since it is a free factor of X. 

Hence the problem is reduced to proving gp(b, c, ..., t) 

is a p-pure subgroup of G- where the relator H of G is 

cyclically reduced and involves a, b, ..., t non-

trivially. 

Lemma 1.2.2 Let G = gp(a, b, •.. I H) be a one-

relator grouo with H cyclically reduced. Then any 

subset of the generators of G generates a p-pure sub-

group of G if p > ,k(R) 

Proof The lemma will be proved by induction on 

If H involves no more than one generator the lemma is 

trivially true. Suppose the lemma is true for all 

groups with relator length < X(R), By the previous 

lemma it will suffice to prove that 

H = gp(b, c, ..., 

is a p-pure subgroup of 

	

G = gp(a, b, c, 	.., t 	H) 

where p > X(R), and all the generators a, b, c, ..,, t 

appear nontrivially in H. For simplicity of notation, 

assume the generators of G are a, b, c, t. 

Suppose in G there exists an element g(a, b, c, t) 
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and an element w(b, c, t) c gp(b, c, t) such that for 

some integer r, 
r 

g p  

It will be shown that w has a pr_th root in gp(b, c, t). 

One now proceeds s in the proof of the Freiheitssatz. 

The proof is divided into various cases depending on 

the exponent sum of a in H. 

C2,s,e 	Let ua(R) = O 	Put N 	gp(b, c, t). Then an 

element of G belongs to N if and only if its exponent 

sum on ais zero. Since w E N then a(g) = 0. Thus 

to prove the lemma in this case it will suffice to 

prove that H is a p-pure subgroup of N. To obtain a 

presentation of N one uses a Reidemeistcr_Schreier 

rewriting process. Let 

-k k 	-k k 	-k k bk=a ba, ck=a ca, tk=a ta 

where k ranges over all integers. Then rewriting 

aRait one has a new word R where 	< 

Also rewriting w and g one obtains w(b0, c0, t0) and 

g(b, c, t) where i ranges over the integers. The 

g-symbol indicates that g(b, c, t) when rewritten 

changes to a different word entirely while w when 

rewritten has precisely the same word form except that 

the letters are subscripted by zero 

It must now be shown that w(b0, c02  t0) has a 

root in H = gp(b0, c0, t0), A iresentation for N is 



N = gp(b, 	c, t I R 	(all integers j)) 
As usual N is constructed from Usma1lert one-relator 

grouiis using a generalized free product construction. 

For each integer i define 

= gp(b, ..., 	c, t (all integers j) I R) 
where, without loss of generality zero and P are taken 

to be the smallest and largest b-subscripts respective-

1 in R. Then using the Freiheitseats N may be 

constructed as 
00 

N = ko £k, 	where 

K0  = N0  

K1  = K0 *N1  

K2 	K1 * N 	; 

and in general 

K2 	
= ix  2n-1 * IT_n 	-n 	 n / 0 

K 	- K *N 	J 1 2n+1 	2n 	n+1 	n+1 
where if i > 0 

Ji  = gp(b, ..., b + i, c, t (all integers j)) 

and if i < 0 

	

' b 	c, t (all integers j)). 

One is able to exploit the induction hypothesis 

because the building blocks N i which go into the 

construction of N are one-relator groups with a relator 

of shorter length than R. Hence p, being a prime > 

will be > 
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Remark Ne will frequently be using the process of 

constructing N from one-relator group as outlined 

above, but with minor variations. For this reason it 

is conveniónt to abbreviate the description in the 

following way. No will state what N and N0  are; thus 

N = p(b, c, t) 

and 

N0  = gp(b0, 4#01 b, c, t (all integers i) I H0), 

Ne will always use 0, 9 as the smallest and largest 

subscripts on the generator in H0  that is singled out 

as above. It is understood that K1, N, J1  are obtained 

in a similar manner to those above. 

To show H is a p-pure subgroup of N it will suff-

ice to show H is a p-pure subgroup of K1  for all positive 

integers i. Here it is convenient to introduce 

another induction argument. Inductively suppose that 

H, N m/2# Nm/2 are p-pure subgroups of K (m even) 

and 

H, N(1)/2, N(m+l)/2  are p-pure subgroups of Km 

(ni odd). 

Suppose ni is even, 

Then Km+i = {K * N(m+2)/2 ; J( +2)/21 and 

is a p-pure subgrou-p of N /2  and 

Sino N 	is a p-pure subgroup of K by the present 

induction hypothesis then J (m+2)/2 is a p-pure subgroup 
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and N(m+2)/2e Hence K and N 2)/2 are p-pure 

subgroups of Km+i• Since by the present induction 

hypothesis H is a p-pure subgroup of Km it follows 

that H is a p-pure subgroup of K 1, and N 
(m+2)/2 is 

a p-pure subgroup of K 1 . Since '_m/2 is a p-pure 

subgroup of Km then N /2 is a p-pure subgroup of 

K 1 . 

Suppose m is odd, 

Then 	- 
- m 

* 	
)/2 -(m~i)/2 and 

is a p-pure subgroup of b 	/2 and -(m+1) 
Since 	 is a p-pure subgroup of 

Kn by the present induction hypothesis, then 

is a p-pure subgroup of K 
m and N-(m-pl)/2 . Hence K m 

and 	-(m+1 )/2 are p-pure subgroups of Km+i 	Since by 

the present induction hypothesis H is a p-pure subgroup 

of Km it follows that H is a p-pure subgroup of 

and N-(m+l )/2 is a p-pure subgroup of K +1. Since 

is a p-pure subgroup of K 
m then 11(m+1)/2 is 

a p-pure subgroup of K 
m+1 

Putting these together one has 

H, N(m+l)/2 N(m+l)/2 are p-pure subgroups of 

K(m+l) if m+1 is even, and 

H, TIT 
	'(~1)/2 are p-pure subgroups 

of K m+1 if rn+1 is odd. It is easy to verify the 

hypothesis for in = 07 1, 2, This completes the proof 
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of the statement that H is a p-pure subgroup of 17 for 

all positive integers k. Hence H is a p-pure subgroup 

of N. Thus there exists in H an ele:raent h(b0, c, t) 

with 
r 

hP 	w, 

Thus h(b, c, t) is the required p1-th root of w in H. 

Case 2 Suppose C- has two generators a, b and 

Cr (R) 	0. Then equation (1) is 

g (a, b) = b • 	 2 

This relation in C- implies a free equality 

= n SRS1 	 = ±1 

where S are elements of the free group generated by 

a, b. Hence considerin exponent sums on both sides 

one has 

pra(g) 
= ( Ei)Ua(R) 

and 

prar 	- S = 

If 	= 0 then p r divides s and so bs/p is the 

required Pr_h root, 

If Z Ci  / 0 then pra ( g) a (p) = a(fi)(pra(g)  

Since p > a(R) one has p r divides pr  Cr (g) - s whence 

divides s, so b5 	is the required Pr_h root in 

gp(b). 

Suppose a(R) / 0 and ab(R) = ob(g) = 0. 

Here one takes 
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N =gp(a, c, t) 

and as before, constructs N from 

N0 	gp(a0, ..., 	c, t (all integers i) I H0), 

Using the same argument as in Case 1 one may prove 

gp(c, t (all integers i)) is a p-pure subgroup of N. 

The equation (1) when rewritten in N will be 
r 

c 	t 	- w 	t ' i' i' i' - 	i' i 
r where 1 ranges over the integers, hence has a p -th 

OV 

root in 	t1). This implies w has a Pr_th  root 

in gp(b, c, t) as was required., 

Case_4 Suppose 0 has more than two generators, 

0 and no generator has exponent sum zero on 

both g and. H. Let 

= p1, 	c(R) =YJ 

a = 2 , 	Ub 	= 	 a0(g) = 

Subcase4,1 Suppose a21  - a12 	0. Here one proceeds 

by embedding 0 in a larger group defined by 

= gp(a, 	, c, t j 	) 

where 

= R(a b 
12P2l b  21 l2 	b 1221  t) 

where 0 maps into G by the natural extension of 

a 	b 
p1 221  

b 
a2y 1-a1y2  

-> 
al P2  a2fl1  

0 -p0 

t -pt. 
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Note that = 0. 	Under this mapping the relation 
(1) becomes 

(a, b, 	c, t) 	= 	i(b, 	c, 	t) 

with ab() 
?110 

= 0. One now proves, as in Case 3 that w 

has a p -th root h in gp(, 	c, 
rIj 

Now 

* gp(b) ; b = b 
a9  -912  

and w,h are not conjugates of a power of t  for 

have ab() = a,() = 0. But , h commute so they,  

belong to the same factor, namely G. Hence 

flgp(, c, 

that is 

ii Egp(b, c, t). 

Thus w has the required Pr_th root in gp(b, c, t). 

Subcase4.2 Suppose a21  - 	= 0. Since 

if Y 	0 then 	= 0, contradicting the fact that no 

generator has exponent sum zero on both g and R. Thus 

one may assume a1 	, 	0. In this case one embeds 

G in a new group ZT defined by 

= gp(a, b, 	t 

where 
-y 	a 

= R(a 	b, 	1, t) 

under the natural extension of the mapping 

- a ac 

b -b 



eQ 

t -t* 

Nov,,,  a () = 0. The relation (1) becomes in G, 

gP (a, b, c, t) = (b, 0, t) 

and ac(s) = 0. Jgain one may proceed as in Case 3 to 

show that Lr has a Pr_th  root 	in gp(b, p, t). But 

since neither w
r1i

nor . are conjugate to a power of , 

it follows that iv,h belong to the sane factor G whero 

= 	* gp(c) ; c 

Thus h € G fl gp( b, ,, t), that is 

c gp(b, c, 

Thus in every case w has the reciuired Pr_th  root in 

gp(b, c, t) 	This corimlotes the proof of the Lemma. 

eoreml.2,3 Let G = gp(a, b, c, ... 	R) be a 

torsion-free one-relator group. Then no non-trivial 

element has more than finitely many prime divisors. 

Moreover a non-trivial element is not divisible by 

more than finitely many powers of a prime p, if p is 

greater than the length of the relator. 

Proof The theorem will be proved by induction on the 

length of the relator of G. If the length of the 

relator is 0 or 1 then the theorem is trivially true. 

Using the usual embedding process one may, without 

loss of generality, assume aa(R) = 0, and a, b occur 

non-trivially in B. where B. is cyclically reduced. 



Let N = gp(b, c, •..), and construct N in the 

ussal way from 

N0  = gp(b0, ..,, b, c1, 	(all integers i) I 

Now (R0) < A(R) so by inthiction no non-trivial element 

of N0  has more than finitely many prime divisors. More-

over a non-trivial element of N0  is not divisible by 

more than finitely many powers of a prime p if p is 

greater than the length of the relator Ro o Since G-/N 

is infinite cyclic it will suffice to prove the theorem 

for N. 

Inductively suppose it has been shown that every 

non-trivial element of Kkl  has in K 	only finitely 

many prime divisors, and is not divisible by more than 

finitely many powers of a prime p where p is greater 

than 

If It is even, say k = 2n 	0, then 

K=K *N J 
It 	k-i 	-n 	-n 

or if k is odd, sayk = 2n + 1, then 

FJ 

	

- k-i 	n+1 ' n+i ° 

In either case, by Lemma 1.2.2 the amalgamated sub-

group is a p-pure subgroup of both factors; in fact 

it is IT-pure where ir is the set of all primes greater 

than A(R0). One now uses Lemmas 141 .3 and 1 .1 .4 to 

conclude that each non-trivial element of K1  has only 

finitely many prime divisors, and is not divisible by 
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more than finitely many powers of a prime p, where p 

is greater than (R0). It has already been remarked 

that the result holds in K0(=110) so the result holds 

in Kk for any positive integer k. 

Since K1  is a p-pure subgroun of K then no element 

of 	can acquire new pr_th divisors in N. Hence every 

element of K1  is divisible in N by only finitely many 

powers of the prime p 	Since X, is a T-pure subgroup 

of N where IT is as above, then no element of Kk  can 

acquire more than finitely many now prime divisors 

Hence every element of K, is divisible in N by only 

finitely many primes. This completes the proof of the 

theorem, 

We can immediately confirm a conjecture of 

G. Baunslag 1964. 

The additive group of rationals is 

not a subgroup of a one-relator group. 

Proof Let G- be a one-relator group 

G = gp(a, b, c, ... 

If G is torsion-free then no non-trivial element is 

divisible by all the primes, so the additive group of 

rationals is not a subgroup of a torsionfroe one-

relator group. Suppose G has torsion. This implies H 

is a proper power, say H = ym, re an integer > 1 2  where 

V is not a proper power. Let F be the group freely 
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generated by the elements a, b, c, •.., and let N, N7m 

be the normal subgroups of F generated by the words V, 

respectively. From the Main Theorem of Cohen and 

Lyndon 1963 there is a transversal 

x = 	x, 

for F mod NV  such that 

= g(X( 	EX) I 

is freely generated by the elements VX, Now every 

element of F can be written xh where x E I, h 6 

Hence 

	

N/Nym = g(VX 	(v) 	all g 6  F) 

= gp ( VX  I (ym) , all.- 6 X, h 6 N) 

	

= gp(VX 	(Vffl)X all x 	x) 

	

= gp(X 	(Vx)m) 

Thus N/Nm is the free product of cyclic groups. 

Now G = F/Nm and put H = F/Nv. Then H has a 

present at ion 

H = gp(a, b, c, .., I V) 

and so is a torsion-free one-relator group. 

But 

H = F/Ny = (F/Nm) /( Nv/Nvm) 

where N is the free product of cyclic groups4 It has 

already been shown that no element of H is divisible 

by all the primes. Hence if an element g of G is divis-

ible by all the primes, it must be contained in N. 
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Since all the roots of g lie in N, and no non-trivial 

element of N is divisible by all the primes, then no 

element of 	is divisible by all the primes. This 

completes the proof of the corollary0 

N C Lyndon has showm that the cohomological 

dimension of a torsion-free one-relator group is < 2. 

Now the cohomological dimension of a free Abelian group 

of rank n is n, and of a direct product of an infinite 

cyclic group with a non-cyclic locally cyclic group is 

> 2, Since the cohomological dimension of a subgroup 

is less than or equal to the cohomological dimension 

of the group, it follows that the only Abelian subgroups 

of a torsion-free one-relator group are free Lbelian of 

rank 	2, or locally cyclic subgroups, in which every 

non-trivial element is divisible by at most finitely 

many primes. 

Section 1 ,3 An_extension of the Freiheitssatz, 

	

In this section we prove the following result 	if 

a one-relator group 	involves more than two generators 

non-trivially and one of them has zero exponent sum in 

the relator of G, then one can choose one of the 

generators, say x, and an integer m such that for all 

integers a > 	x 
a 
 and the generators other than x 

freely generate a subgroup of G. Because of the 



requirement that the exponent sum for one generator be 

zero, one is unable to use an induction argument in 

quito the eerie way as before. 

It will be useful to have the following notation 

let 

= gp(u, v, ,., ; a, b,.,, ; x, y,  

be a one-rolator group uere the generators are divided 

into three disjoint subsets, 7e call the generators 

u, v, •,. the to,-,:) generators, the a, b, 	the middle 

generators, and the x, y, ., the bottom generators, 

7e assume alwoys that a top and bottom generator, say u 

and x respectively, occur non-trivially in R where fi is 

cyclically reduced, ghen a group is considered in this 

way it will be called a trisected groups A grouw is 

called bisected if the set of middle generators is empty. 

Lemma 1.3.1 Let G be the trisected group (1) where u, 

x, y occur non-trivially in R. Then an equation 

.,,, a, b, ...) = Z(x, y, ..., a, b, ....) 

(2) 

where u occurs non-trivially in W implies that for some 

cyclic permutation of R, R is freely equal to a word in 

u, v, ..., a, b, 	w 

where iv is a word in x, y, ..., a, b, 

Proof The lemma will be proved by induction on 

The lemma is easily shovrn to be true for the first few 
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cases, Forexomole if N = uxuy then y = uxu and u, x 

freely generate G. Clearly no non-trivial word in uxu 

and x can have x removed thus establishing the lemma in 

this case, Suppose inductively the lemma is true for 

all relators with length < A(R), and that eqaation (2) 

takes place in G. It will be shown that N is of the 

required form. 

Case 1 Suppose a(R) = 0, Is usual let 

N = gp(u, v, •., a b, ..., y, ...) 
kx 

and construct II from 

1.40 	= 	gpt\uQ,vQ,W,a.,b.,.,,,y., ..., (all 	j) 	1; N0), 

Note that if generators other than those displayed in 

were to occur in N0  then equation (2) could not 

hold in G. 	For equation (2) takes place in N and 

expressed in terms of the generators of N will be 

.,a,b0, 	.) = 	Z(y1, 	,,a.,b., . 	. 
This equation takes place in N0. 	One now trisects 

as 

N0  = gp(u0,v0,.,, ; a0,b0,,., 	 (jO) 

The relator N0  has shorter length than that of R. so in 

order to apply the induction hywothesis it is only 

necessary to check that N involves non-trivially two 

bottom generators. But if for some integer r only y r 

occurs in the bottom generators then x must have occurred 

i 	i 	 -r r n N only n the word form x yx 	Thus taking 



w = one has that R is a word in a, v, a.., L b, 

,. •, vi. 

Thus one may assume two bottom generators occur 

in H0. Using the induction iypothoejs H0  is a word in 

a0 , Vol  s.., a0, b, ..., vi 

where vi is a word in y 	..., a, b, .. • Rewriting 

H0  as the relator H of 0 one has H is a word in 

a, v, G.0 9  a, b, .., vi 

where vi is a word in x, y, .,., a, by 
0.04 

Case 2 Suppose a(R) = r 	C, a(R) 	-s 	O 	Here 

one may embed C in a group H 

H = gp(u, v, . 	a, b,; 	, y, 	.. I RH), 
where H11  = R(u, v, 	., a, b, s.., 	

, 
under the usual mapping 

a 	a, v -v, 	a —> a, b -b soad 

x —> x 

y —* where z 	or 

By a suitable choice of z one can arrenge for RH to 

involve ,X non-trivially, Clearly equation (2) when 

mapped into II will have the same form:m. Since a(R) = 0 

one may then proceed as in Case 1 toprove that RH is 

a word in 

a, v, .•., a, b, Poo l  vi 

where vv is a word in , 	, ., a, b, •.. . Now RH is 

freely equal to R(u, v, ..., a, b, ., 	, 	
) so this 
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implies that P. is a word in 

a, v, 0 0 0 	a, b, 0 0 a I  w 

where w is a word mx, y, 	, a, 13, a,. • This 

completes the proof of the lemma, 

Let G- be a trioccieci group (1) and 

suppose there is an eauation 

Li v, S.., a, 	Z(x, y, 	b, o..) 

whore u occurs non-trivially in 7. Then for a suitable 

cyclic permutation of P., P. is a word in 

w, a, b, ••., z 

where w is a word in u, v, ..., a, b, ..., and z is a 

word in x, y, ..., a, b y  coo 

Proof if from among the top and bottom generators only 

u, x occur non-trivially in P. then the corollary is 

trivially true by taking w = u and z = x, If x and y 

occur non-trivially then by the lemma above, there 

exists a word 

z(x, y, ..., a, b, ...) 

such that for a suitable cyclic permutation of P., P. is 

a word in 

a, v, ..., a, b, ..., z. 

Similarly, or by smetry, if u, v occur non-trivially 

then there exists w(u, v, ..., a, b, ...) such that 

for a suitable pemutation of P. and one which will 

not break up any word z), P. is a word in 



7117 t 	a, 	b , 	 Z. 

LenlmalQ3,3 Let G be a triseeted group (i) and let H 

be a word 	in w, 	a, b, ,, 	x, 	y, 	... where w is a 

word in a, 	v, 	..,, 	a, 	b, .., 	. 	Then if H is the sub- 

group of G generated by w, 	a, 	b, 	..,, x, y, 	then H 

has the presentation 

gp(p, a, 	b, 	..., 	x, 	y, 	... I 	(s, 	a, b, 	..., 	X, 	y, ..)), 

under the mapingp -~w, a a, 	b 	-*b, ..., 	x 	-x, 

a 

Proof Now G = gp(u, v,  a, 	b, ; 	x, 	y, 	I ... 

..., 	a, 	by 	...), b, 	..., x, y, 	and by .,.)) 

Tietze transformations 

= 	gp ( p ,, 	, 	. , 	a, 	v, 	. 	. , a, 	b y 	4#0 2 	x, 	y, • 

(P 	, 	a a a, X, 	y, 	. a 

p=w(u, v, 	•, 	a, b, 	•a.), = 	a, 	Ub=b, 	..), 

= Ui -* B ; 

where 1 	gp(p, 	, 	, 	•a, X, 	y, 	•aa St, 	1, a*, 

X, 	y, ...)) 

and 

B = gp(u, v, ., 	a, a. , 	I 	') 

and J is the free subgroup freely generated by the 

identified elements 

a= a, 0 = b, •a. p =w(a, V, ..., a, b, ,a,). 

This decomposition of @ is possible since from the 

Freiheitssatz gp(w, , , •a.) is free in the first 
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factor. Thus the gp(w, a, b, 000, x, y, 	,) is the 

first factor which has the required presentation. 

o1lar1,3,4 Let C- be a trisected group (1) and 

suppose 

a, b, a..) = Z(x, y, ,.•, a, b, .,,) 
(3) 

Then if w(u, v, ..., a, b, •.) is as defined above, 

T is a word in w, a, b, 

Proof From above one has a decomposition for C- as a 

generalized free product, The right-hand side of 

equation (3) lies in one factor and the left-hand side 

of (3) lies in the other factor, Hence J(u, v, 

a, b, ..) lies in the amalgamated subgroup, which 

implies 71T is a word in w, a, b, ... 

In 1960 G-reendlinger showed that if C- is a less 

than one-sixth grou-o, that is a group for which any 

two defining relators taken from a symmetrized set 

either cancel less than one-sixth of each other or are 

inverse to each other, then if a and b are disjoint 

generators of C- with aa = b' 	1 for intagers a, A then 

= ±1 is a relator of G. One might have 

expected that in a one-relator group an equation 

= b where a, h are distinct generators would hold 
a 	

1 only if the relator itself was a conjugat 	
1  

e of a b 

for some integers a, 1 
	This however is not the 
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case for in 

gp(a, b 	abeb2 ) 

one can easily show 

a 2 = b. 

In fact it is an unsolved rohlem to determine all 

relators R(a, b) such that an equation aa  = b holds 

in gp(a, b I R(a, b)). Magnus 1930 and Steinberg 1962 

solved the problem for certain pairs of integers a,  fi. 

However the following corollary shows that the 

next best thing is true. 

Coro1Jer1,3.5 Let G be a bisected one-relator 

group 

= gp(u, v, ... ; x, y, ... 1 H) 

with a non-trivial set of equations 

= z(x, y, .0 .) 

where i e some index set. Then there exists an 

equation 

= Z(x, y, 

such that for all i 
n 	 n 

wi= 	, 

for SOnic integer n. 

That is to say any equation between disjoint sets 

of generators in a one-relator group is merely a power 

of some one equation in the same disjoint sets of 

generators, 7e refer to the equation J = Z as a basic 



disjoint equation. For different bisections of a group 

there may be different basic disjoint equations, Thus 

the corollary may be simply stated: every disjoint 

equation is a power of a basic disjoint equation, The 

proof follows easily from Corollary 1.3.4 by discarding 

the middle generators, 

7e now strengthen this result as follows. 

Lemma 	Lot G be a trisected group (1) and let 

Z(x,y, ,. .,a,b, 	 (4) 

be a basic disjoint equation, Then 

Z(x,y, 00 .,a,b, ,,,) 	(5) 

implies T  is a word in J,a,b,,,, 

Proof The lemma is proved by induction on A(R), If 

there are no middle generators the result is true by 

the previous lemma. Issume the lemma has been proved 

for all groups with relator length < A(R), and asswne 

some middle generators occur. 

Case 1 Suppose o(R) = 0. Let IT 	p(u, v,

by 

 

..,, y, ,.,) and construct N from copies of 

N0  = 

regarded as a trisected group. Igain note that 

will involve only those generators displayed otherwise 

equation (5) could not hold, 	en equation (5) is 

rewritten as an equation in N one has 

b , v0 , 	\,Tj, 	 a, 	, 
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which tekes place in N. Clearly this is a basic dis-

joint equation in N0. T-Lie relation (6) when rewritten 

as an equation in N is 

\J(u0, v0, ..., a0, b0, ..,) = 
	 ..., a,  b, ...). 

This equation also takes place in N0. By the induction 

hyothesjs 	is a word in (u0, v0, ...) and a09  b0, ... 

Interpreting this as a relation in 0 one sees that 

W(u v, ..., a, b, ,.,) is a word in 7(u 9  v, ..) and 

a, b, ... 

Case 2 Suppose aa(R) = 0. Let N = 9p0(u 9  v, 0* 

..., x, y, ...) and let 

N0  = gp(u0, v0, 	b, 	; x, y, ..., (all i) I R0). 

Aain only the generators displayed can occur in R0, 

Rewriting equation (5) one obtains 

W(u09  v0, ...) = Z(x, 	1, •0* •b, 900) 

which takes place in N0, and is a basic disjoint 

equation in N0. 	quation (5) when rewritten will be 

N. (u.
J 
 , v. , ..., b, ...) = Z(x. , y. 

1 	 1 
, 	..., b. , 	0..). 1- 1 	 U 	 1  

where each V.T involves u. 	or v., 	10 •I non trivially. 
1 

Now one observes that no VT. which is a word in the 

generators of N. 	can be in any other N., j 	L 

because by the Freiheitssatz one cannot eliminate any 

u. 	, 	v. 	, 	. One may now prove that each 	is a 
l 	1 

word inVT(u. 	, 
1 

V. 	, 	..,) 
J1 

and the 	b, 	..., by a 	induction 



argument on the integer in. If in = 	1 then 

U1(u 	v, 	
..., 	

b, 	...) = 	Zr%j(x ,  y, 	..., , 

and this takes place in N. 	. By the original induction 

hypothesis this implies W1  is a word in \U(u. 	, 	v. , 
1 1 

and b 
i 9 	 Suppose in > 1 and that the result has been 

established for all positive integers < in. 	Then taking 

the first factor 711  on the left hand side it is clear 

that 

= Z1(x, Yil ..., b, •..) 

But such a relation implies 	is a word in W(u. , v. 
1 	1 

.,.) and b, 	. Hence in equation (6) one may take 

to the right hand side and replace each W(u. , v. 
1 	l 

..,) by Z(x,..., b, ...). Thus one obtains 

11 
i2 W(u 	v 	..., b 	y, •• I b, 

But by the supplementary induction hypothesis this 

implies each W, i = 2, .., in is a word in w(u 

,..) and b, ,,, . 

Using the sane technique one can prove an interest-

ing result which is somewhat analogous to the result of 

reendlinger mentioned above. It is interesting because 

it is one of the rare occasions in one-relator groups 

when one can precisely determine the exact spelling of 

a relator from an equation in the group 

Lemma 1.3,6* Let G- be a bisected one-relator group 

= gp(u, v, . . . ; x, y, . .. I R) 



WIM 

and let V(u, v, 	,) = Z(x, y, ..) be a basic disjoint 

equation, If Z is not a proper power then for a suit-

able cyclic permutation of R, the relator R is 

.) 	y, 

The proof follows that used above with a slight variation 

(in the case when G involves only two generators u x), 

which thu reader can easily supply,  

This lemm is related to the following prob1em 

If a free group G is generated by elements a, b, c 

satisfying the equation 

kI 	in ab =c 

where 1k!, Jlj, jmj 	2, then the rank of G is at most 

1 	Lyndon 1959 proved this st at ement for I k 1 = 1 1 I = 

Im! = 2, Schenkman 1959, Stallings 1959, and Baumslag 

1960 for 1k! = Ill = Im!, SchUtzenberger 1959, and 

Lyndon and SohUtzenberger 1962 for the general case, 

and Bau.mslag and Steinberg 1964 for a generalization. 

Theorem 13,7 (Bawuslag and Steinberg 1964), Let 

w(x1, x2 , ,.,, x) be an element of a free group P 

freely generated by x1, x2 , •.., x., x which is neither 

a proper power nor a primitive,L. g1, g2, •., g, g 

generate a free group G and are connected by the relation 

/ 	 111 g1, 92, 	 g 	 m > 1 

then the rank of 0- is at most n - 1. 

Proof If the rank of 0- is n + 1 then any n + 1 generat- 



ors of G- freely generate G, in particular g1 , 922  ,.., 

g, Z. But this would imply that no non-trivial rel- 

ation exists between g1, 921  . 	g, contradicting 

the hypothesis. 

A necessary and sufficient condition for the 

rank G to be n is that w(x1 , x2, ,., xn)x has a 

primitive root R. For if it has a primitive root 

..,, x, x) then lot N = gP(R) and F/N is 

free of rank n, and is generated by the n + I elements 

x1 N, x2N, •,., XN, xN, 

satisfying the relation 

w(x1N, x2N, . 	XE = ( XN)m, 

Consider the homomorDhism Ec from F onto G- defined by 

= gi(i = l, 2, c.o, ii), x0=90 

Let h1 , h2, 	hn freely generate G. By a special 

case of G-rushko's Theorem there exists a free generat- 

ing set 	21 	 of F such that 

= h 	(i = 1 5, 2 9  ..., n), 	I. 

The kernel of 0 is the normal closure of y 	in F. 

But 

[w(x1 , x2, .,., xn)x_m] 0 = 1, 

Hence w(x1 , x2, ..., xn)x_m  has a primitive root 

Thus to rove the theorem it is sufficient to 

prove that w(x1 , x2, ,.., x)x 	does not have a 

primitive root. But by Lemma 1.3,6*any root must be a 



conjugate of w(x1 , x2 	X)_m. 	Since a conjugate 

of a primitive is a primitive it is sufficient to show 

that w(x1 , 	x2, 	•.., X)_m  is not priiuitiveQ But if 

it is primitive then 

= gp(g1, 	g2, g, 	g 	I w(g1, 	g2 	g)g_rn) 

is a free group 	and as mentioned before has rank < 

n + 1, ]fow 

/9p(w(91, g2, 

= gpç919 921 	g 	g1, 921 	' gn  ))gr(g 	g), 

Since w is not a primitive then the first factor cannot 

be generated by n - 1 elements (Magnus 19 ). But by 

the Grushko-Neumann theorem on the number of generators 

of a free product,/gp(w) cannot be generated by 

fewer than n + 1 generators, The same is therefore 

true of G, so vi(x1, x2 , 	 is not primitive. 

This proves the theorem, 

e now introduce the concept of a word descending 

in a group. 	Let 

No  = gp(a0, 	a.., a, 	b0, 	, b, 	• I 	R0) 

where the subscripts in R0  range from 0 to p inclusive. 

Then a word W(a1 , a, 	b1, 	.,, bW a.,) is said 

to descend one 	if 

.,a 	,b1, , . , ,b, ...) 	= 	
\7 	(a0, ap1  ,b0, 	. ,b 1  

if further we lift the word on the right by increasing 

the subscripts by 1, symbolized by P, thus 
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W (c b 	b 0 	
* • 0 
	

p 	

• • 	 * •0 ,C /Y 	 , 	• 	*, 	 PP 

and obtain a lifted word which descends another step, 

namely 

	

TT1 (a1  , . . ,a ,b, .. ,b, ,,.) = 172(a0, 	*ap1 1b0, e * 	 1' ' 
then VT(21, ..., a, b, ..., b, ,.,) is said to des- 

cend two steps0 Inductively one can define descension 

through k steps. 	amples to illustrate the various 

possibilities of descension follow. 

	

xIe1 Let 	= (a1a0) 2 , Here it is possible to 

show (see the 8pelling Theorem 2.1.1) that no non- 

trivial power of a1  will descend. Hence descension is 

impossible with this relator, 

x2le2 Let H0  = a12a0b0, Here a 1 2 descends one 

ste1, but no word in a1, b1  can descend more than one 

step. 
I 

gxmnle 3 Let B. = a a 	, Here a 	will descend 

	

0 1 0 	 1 
k steps0 Thus 

16 	8 	8 	4 	4 	2 	2 = 	a 0 	a1  =a0 	a1  =a0 91 a1  =a0  

descends four steps. 

Bxemple 4 L e t H = a 2a -2 Here a 2 descends infinite- 

	

0 1 0 	 1 
ly, 

2 	2 	2 	2 	2 

	

a1  =a0  a1  =a0 	•• 

In a similar way one defines an ascension of a 

word through k steps. 7e aim to determine the spelling 

of a relator B.0  when unbounded descension or ascension 



occurs. To this end we first prove 

Lemma 1.3.8 Let N0  = gp(a0, 	., a, b0, • 

I R0) and let w = w(a1, b, ..,) for integers i, 

0 	i 	, where w is not a proper power as a word in 

a free group. If w descends P steps then 

= T(w0, w1 , ..,, 

Proof Since v-T 	descends, by Corollary 1.3.5 there 

exists a basic disjoint equation which will clearly 

be, for some integer in 

Eta = z1(a0, ..., a 1 , h0, 	- 	0..). 	(7) 

There are two cases to consider. 

Case I Suppose vv, descends ii steps. Then 

=£ z1(a1, ..., a, b1 , ..., b, ..,). 

But this is to descend again so using Lemma 1.3.6, a, 

must occur in z lifted as wpm. This means that 

ap1  b1, .. occur in z1  in equation (7) as 
—11 

Thus equation (7) aay be refined to read 

(8) 

Now repeating the descension 

= 

(a1 , . . . ,a 1  ,b1  , . . . ,b 	1 •• , 	
m) 

= z1  (a1  , .. ,a 1  ,b1  , .. . ,b 1  , 

z1  (a0,.. 	a 2,b0, .. ,,b2, ... 

£ z1  (a2, . . ,a ,b2, ... ,b 	0 

0J 



Now in order for this last word to descend the a, b, 

must occur as This can happen only if 

P-21 occur in (s) as 	1-2 Thus equation (8) 

may be refined to read 

= 	z1(a0, 	•G., a 3, b b_3 	Wp- 	Wp ) 

(9) 

One repeats this argument until after i descensions 
in 	r i , m 	m 	 m *  - 	i '  

Case 2 Suppose w m 
 does not descend p+ 1 steps Then 

P 

one uses an argument similar to that above, until one 

strikes a step where no further descension is possible 

unless a power of 	is taJen0 But the effect of 

taking a power will introduce w 
P 

m  only if at that 

particular step, say the k-th step one has 

V1w r 
P 

where V is a word in a0, ..,, aP k_I, b0, •, 

WPmk, .., w' 	Taking the required power one then 

continues to show that V is a word in 
IWO 

m,  

Hence 

m-i r- 	 ii w =V w f whencew isawordinw,w 
P 	 p-k 	 p 	 0 11 

 

•, w 1 . This completes the proof of the lemma, 

ctually we have proved more than we set out to 

do. For in Case 2 above, if V is non-trivial it is 

not too difficult to see that no word will descend un-

boundedly. Thus we have in the notation of Lemma 1.3.8 



Lemma 1.3.9 If words w n descend unboundedly then 
p 

either 
in 	r w = w 

Ii 	0 
in 	in 	in 	 in or 	vi 	= 'Jt w0  , w1  , , * • 	

-1 
Lemma 1.3,10 Let N = gp(a , ..., a 	b , .., b 0 	0 	i 	0 	p 
I R0) and let w1 = w(a, b, ,..) for integers i, 

0 i 

n 	
V10, \71 	• , 	) 

then H0  is a word in w0, w1 , .., w for some cyclic 

permutation of H0 , 

Proof Let N0  be bisected with a, b, .., as the top 

generators, and the remaining generators as bottom 

generators, By Corollaries 1.3.2 and 1.3,4, for some 

cyclic permutation of H0 , H0  is a word in w and some 

root of W(w0, 	wp-I• But clearly a root of 

..., w 1 ) will be a word in w, W1 , ..., 
Hence H0  is a word in w0, w1 , .,, 

Theorem13,11  Let G = gp(a, b, o, .. J H) where a, 

b, c occur non-trivially in H with 	= 0. Then 

for one of the generators a, b, or c, (say b) there 

exists an integer in such that for all integers a > 

a, ba, c, 

freely generate a subgroup of G. 

Remark If a (H) / 0 the result may be false, for exenple a 
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if R is a2b2c2. Then there is for no integer m,a 

choice of a, b or c with the required freeness property0 

Proof Let N = gp(b, c, ..) and as usual let 

N0 = gp(b02 ..., b., 00, ..,, c, .., I R0) 

where 0, P are the least and greatest subscripts appear- 

ing in R for all b, c, ., 	The proof may be con- 

veniently divided into two cases, 

Case I Suppose there is a bound in1 on the number of 

steps in the descension of words in b 	cp ..., and a 

bound in2 on the number of steps in an ascension of 

words in b0, 00, .. . Let in be any integer > 

+ in2 + P 	It will be shown that if a is any 

integer > in, 
a 

a , b, c, 

freely generate a free group. For suppose 

. ( a I 
a 

b, c,  

where W is a non-trivial word. Since a(W) = 0 

this may be rewritten as an ecivation in N, 

W(ba, 
°an 	••') = 

for integers 111. This relation may be split into a 

product of subwords, each subvjord being a word in the 

generators of Nan for n integral. Thus 

1 	w1b an,'°an1 	W2 an2(b 	I 0an2 	) 0 * 4Wranr 0 an, ? 
where n1 ~' n2 	,.., / n1 . 

This relation is impossible in N. For it if takes 



A 

place in N0  (without loss of generality one may assume 

comes from N0  and N0  is the least such N.J. occuring), 

then one has a non-trivial relation in N0  which implies, 

by the Freiheitssatz that only the generators b07 00, 

occur non-trivially. This implies that a occurs 

trivially in R contradicting the hypothesis of the 

theorem 

Suppose it takes place in X 	9 * gp(N1, * 90 7  

Nk) ; 	Then 	lies in N0, and '2 lies in the sec- 

ond factor. Suppose inductively that no word W of length 

r can lie in any N. This is clearly true if r = 2 for 

w (i 	101 (i-S  C, ..*J2\U 	a' 	' na 
does not lie in N0  since W cannot descend sufficiently 

to lie in N0. Similarly one shows that Iff cannot 

ascend sufficiently to lie in any Nr to which VT2  can 

descend. Similarly one proves that 1 does not lie in 

N1  for any integer i, so 'W has length greater than I 

in 	This shows 	I and hence there can be no 

relation between aa, b, c, 

Case 2 Suppose unbounded ascension or descension 

occurs, 7ithout loss of generality let it be descension. 

Then for some word w and cyclic permutation of H, R0  

is a word in w0, w 1P .,., w, This iiiplies that R is 

a word 	in a, w(b, c, .,,), Define 

H = gp(a, w I _R (a, vî)), 
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Then G = JH  * gp(b, C 6 6, I .) ; w = w(b, 0, 

There are two cases to consider now. 

First suppose some letter b or c, say b occurs in 

w(b, c, •..) separated by some letter other than b. 

Then one can determine an integer m such that 
a 

b , c, *66, w(b, c, 	.6) 

freely generate a free subgroup in the group generated 

freely by b, c. 	This implies that 
a 

a, b , c, 

freely generate a free roup in Go For no word. in 

c ,. will be a power of w(b, c, 	,), hence will 

not lie in the amalgamated subgroup. So any non-

trivial word in a, ba, c, ,. will be of length ? 1, 

in the generalized free product above. 

Secondly, suppose b and c occur in w(b, c, ..) 

only once, that i S 

w(b, c, ..,) = V1 bV2cV3  

where V1 , V2, V 3  do not involve b or c, If P = 1 let 
G = gp(a, b, c, got I R(a, w(b, C, ..,))) 

= gp(a, b, c, $ a.., x I R(a, w(b, c, 	..fl, x = bV2c) 
= gp(a, x, c, god 	 R(a, V1 v3)) 

= gp(c) * gp(o, x, 	i R(a, V1xV3))6  

It will now be shown that a, b, 0a, 	
freely generate 

a free group for a > m = 2y, For suppose 
a i(a, b, c  
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Then T( a, xcV2,c a, •,, = 1. But it is impossible 

to eliminate c from this equation for between powers of 

o will occur words of the following types 

	

x 7 (a, • 0)x, W(a, 	), 	(a, 	0)x, xT(a, 

These words are non-trivial elements in the second 

factor. This follows immediately from the Freiheitssatz 

for the first two words. For the last two, a relation 

such as 

W(a, •)x = 1 

would imply that R(a, V1xV3) is \U (a, 	.)x, using 

Lemma 1,3,6*, But H, being a word in a, V1XV3, must 

have only one syllable a power of V1xV3, hence H has 

only one occurrence of a, contradicting the hyrothesis. 

Thus one has that VJ(a, xcV2 1 , c a, °'.) = 1 is 

impossible in G for non-trivial W, 

If 	/ 1 let 

H = gp(a, y, c, d, 	R(a, V12cv3fl, 

Then G= H * p(b) 	y = b}, Now if V(a, b, 
0a, 

 d, 

= 1 for a defined as above, one may rewrite this replac-

ing b by y, to obtain 

1 	2 b W2b 	Wb - = I 	 ( 0) 

where the words 	are non-trivial in a, y, 0a, 
 d, 

and P are integers 0 < 	< P. Now no factor 	is a 

power of y by the case just considered. Since no b Pi 

lies in the amalgamated subgroup, the length of the left 
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hand side of (iO)is strictly greater than zero, unless 

VJ(a, b, a,  d, 	is freely equal to the empty word 

This completes the proof of the theorem. 

In proving case 2 above we did not use the fact 

that aa(R) = O 	This result may be stated as 

Oorolla312 Let G = gp(a, b, c, 	(a, w(b, c, 

,fl) where a, b, c occur non-trivially in R, and where 

powers of a occur in 	separated by words in b, c, 

for every cyclic permutation of N, Then one can choose 

a generator b or c (say b) and an integer m such that 

for all integers a > in 

a, 	b a, c, 000 

freely generate a subgroup of G. 

Lemma 1 3.11 Let G = gp(a, b, c, 	.. I N)(R) = 0 , 	. 

Then G has trivial Frattini subgroup if 

(i) no element in N = gp(b, c, ..,), ascends 

or descends more than a bounded number of steps, 

or (ii) 0 has more than two generators. 

Using the Spelling Theorem proved in the next 

chapter, one has in particular 

Theorem 1.312 i one-relator group has trivial Frattini 

subgroup if 

(a) it is torsion-free with more than two generat- 

ors, 

or 	(b) it has torsion with more than one generator, 



Proof ofLenmia1,3, 	Let (c) be the Frattini sub- 

group of G, and let h e (G). Then h e  N since G/N 

is infinite cyclic. Define 

k = a_mhahamhamha2m , Li large 

Since (c) is normal in G, then k 	), Let g = ak. 

Then k, g, b, c, .., generates G, hence k b, c, ..J 

generates G, for k is a non-generator, being in 

Thus there exists a word J in g, b, c, 	• with 

b, c, 	0) = a 

Premultily by a said rewrite this relation in N. A 

typical segment will be, for some words 
T,  V2 

gV1(by c, 	. .)gV2(b, c, 	•)g1 , 	 (i) 

that is, with the usual notation for translated words, 

(1iM.h21h3ph2)V1(b0,c0, .• .)(h 1Ia21h3 1h2 	x 

V (b 	)(h 	h 	h 	h 2 	1 $ Cl, ,00 	
2m+1 3m+1 2m+1 m+1 

If no element in N ascends or descends unboundedly then 

choosing m sufficiently large, no cancellation or 

reduction can occur on the left hand side, assuming of 

course V2(b1,c1,,,,) 	1. This proves part (1). 

Suppose G has more than two generators. Since the 

Frattini subgroup of a non-trivial free product is 

trivial, without loss of generality assume that more 

than two generators (say for simplicity a, b, c only) 

occur non-trivially in R. Then it will be shown that, 

by taking a suitable conjugate of h, one can ensure 
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that h will not ascend nor descend unboundedly. For 

suppose 	
.

,c0, .,,, c 1) ascends unboundedly. 

Then one has a natural trisectjon of N0 and H0 is a 

word in 

w(b0, . . , ,b 1 , c0, ., . c) ,b1 , . . ,b1 '
°i' . . •, 

., ,b ,c, . 

and VT must be a word in 

r T a k e 	00 	(b0)...,b 1 ,c0,.,,c 	)c , and 717 is 

not a word in 

-i'o' •'0pij' 
Hence 777 does not ascend4 Vfithout loss of generality one 

may assume h neither ascends nor descends. 

If h neither ascends nor descends then reduction 

of the left hend side of (i) cua occur only if 

(a) V1(bO ,oOt -..)hM,.1 ascends unboundedly 

or (b) h2m+1V2(b1 ) c11 • .)h 1 a scends unboundedly, 

But if (a) holds then by choosing rn large enough, IT1 

must ascend unboundedly. Hence h~i must be a word in 

Wk kt1 ),1Pa,Wk 	l(bk 	 ) and a suitable 

conjugate of hhas just been chosen so that this does 

not occur. Similarly one proves (b), thus proving the 

lemma, 
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The fundamental result used in the theory of one-

relator groups with torsion is the Spel?ing Theorem 

proved in Section 2.1, In that section are also included 

an assortment of easy consecjuences of this theorem, one 

of which vastly improves the result on the freeness of 

the generators proved in Section 1.3. In Section 2.2 

we introduce the concept of malnormal subgroups and 

prove the appropriate theorems as outlined in the intro-

duction. In Section 2,3 we use inalnormal subgrouto 

determine the Abelian structure of one-relator groups 

with torsion '. 

Section 21 	ellin Theorem, 

Theorem_2,1.1 (The Spelling Theorem), Let 0- be the 

group 

0- = gp(a, b, . 	1 R) n > 1, 

where R is cyclically reduced. Suppose that two words 

W(a, b, ...), V(b, .,,), where VT is a freely reduced 

word containing a nontrivially and V does not contain 

a, define the same element of G. Then VT contains a 

subword which is identical with a subword of R±" of 

length greater than (n - 1)/n times the length of R3', 

Proof The theorem will be proved by induction on 



if A(R) < 4 or if N contains only one generator, then 

the theorem is obvious, since G is a free product of 

cyclic groups. Suppose therefore that N contains two 

or more generators when cyclically reduced, and assume 

the thoorem is true for all groups with relator length < 

There are three cases to consider. For simlicity 

of notation one may assurie that at most generators a, 

b, c, t occur in N, and further that a, b occur non- 

trivially in N. 

Case 1 Suppose a 
a 	 a(W) = 0 and 

so N, V belong to N = gp(b, c, t). Construct N in 

the usual way from 

NO  = gp(b03 ,..,b,c.,t. (all integers i) IR0n). 

Rewriting the relation N = V as a relation in N one 

has 

= V(b0,c0,t0) 	 (1) 

where, without loss of generality one assumes b, for 

some i / 0 2  Occurs non-trivially in 	• The word N1  is 

freely reduced. But in order to continue one requires 

a more ref mod result (cf. Hauptform of Magnus 1930) 

than Theorem 2.1.1; namely that the relation (1) in 

N implies N1  contains a subnord identical with a sub-

word of R±n  of length > (n - 1)/n times the length of 

R n  for some integer i. Jctually one may prove more 

than this, namely the following Lemma 2.1.2. Note that 
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one is still working within the proof of Theorem 2.1 .1 

so the induction hypothesis of Theorem 2.1,1 is still 

applicable, 

Leh'uiia 	In the notation above, let 

b 	'-V(b 	b 	ct 1 ' 	1 ' 	' P-i-k' i' i 

p+k? 0 

or 

= V2Q,.,b +kl,cj,ti) 

J2 + k > 0 

where 	is freely reduced and contains in 	= V1  

the generator b0  non-trivially, or in 	=V the 

generator bp+k non-trivially. Then 	contains a 

subword identical with a subword of RE, 	of length > 

- 1)x(R)/n for some integer i, 

Proof The lemma will be proved by induction on k. 

Since the proof for 	=V is similar to that for 

= V1  one need consider only 	• If k 	0 then 

V!1  = V1  is an ecjuation involving only generators from 

K0(= N0). Hence, using the induction hypothesis of 

Theorem 2 1 . 1, 	contains as a subword more than 

- 1)/n of 	+n itssume now that Lemma 2.1.2 has 

been established for all X. =gp(N3,...,N.) with 

0 	i < k, and let 

il-k
= N0 * gp (N1  , . . , Nk) 	J1  

Now V1  E P(N1 ,4..,N), hence so must H1 . L e t H1  be 
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written as 

1-17 	 P0b0 F1 b0 .,.b0 p, aj 	0 1 m 

where each F subword is a word 

and P0Fm are possibly empty. 

Firstly note that b0' E N0 but 10' / J1 by the 

induction hypothesis of Lemma 2.1.2, Secondly, any P 

which contains b with j > p as the maximum subscripted 

b-letter, and is in J will imply 

= V(bj~#V.#b py'ipY 
or Conjugating 

= 

and by the present induction hyothesis F contains as 

a subword more than (n - 1)/n of Ri±Il. Hence VT1 has 

the sane property. Thus one may assume that any P 

representing an element in 1 is actually a word in 

the generators of J1 , Let F1 ,.,,,P 	be consecutive 

F subwords which are in J 1 0 Then if the subword 

' - b 11P bil+l 	P 2 - 0 	i1 0 	''' i2 0 
is in 	t h e n 2 contains as a subword more than 

(n - 1)/n of R 0 +n by the ireeent induction hypothesis, 

Hence 	also has as a subword more than (n - 1)/n of 

This proves that I 	> 1 in the generalized 

free product or that VT1 contains as a subword more 

than (n - 1)/n of R±n 	Since 1VTI 	1, the lemma is 

proved. 
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We return to the 

2ofofTheoreri2,1. From Lemma 21,2, the equation 

W (b0,. . 	c,t1) = V(b, c0,t0) 

immediately inwlies W1  has a subword identical with a 

subword of Ri±fl  of length > (n 	1)X(R.n)/fl, Hence  r 

has the required suhword consisting of more than 

(n - )/n of R by the following lemmas 

Lemma 2,1.3 Suppose H is cyclically reduced with 

aa(R) = 0, and let 	be a freely reduced word with 

aa(Vi) = 0. In the usual way rewrite H, W as R0, 1-7 

0. 

If W is identical with a subword of R 	of length > 

(n - 1)(Rn)/n for some integer i, then 	contains a 

subword identical with a subword of R±rl of length > 

(n - 1)A(Rn)/n, even if one disregards ealy a terms 

which might occur at the beginning or end of W, 

Proof Let R. = (b j .V )n_lbV and 1 	i 	ji 
= (bV1)n 1b 	(taking the worst possible case), 

Rewriting one has 

aRnai = (abaa d1ya52)n 

where IT is assumed freely reduced, and V neither begins 

nor ends with a±1, and 

W = (abaJa_dlVas2)n_laJbaj 

Here A(Rn) = 

= 1-1[1 + Ii - sI+ ii - S21 + 

Now disregarding any a terms at the beginning and end 
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of 	one has 

= A[(baa 1Va' 2aJ)h] 

=(n-1)[1 + 11 -51 1+ Ij -s2 J+A(V)] +1 

= 1 + (n  

Hence H co1Tains the required subword. This completes 

the proof of Lemma 2.1 .3, 

He now return to Theorem 2 1 .1 and consider the 

remaining cases. 

Proof of Theorem 2.1 .1 

Case 2 	Suppose 	ab(R) 	= 0. Lot H = gp(a,c,t) 	and 

construct H from 

N o  = (all integers i) 

By prersultiplying 77, V by a suit 	le power of b, 	say 

one may ensure ab(brh) = 0 9  whence a(bry) 	= 01  

and b17 when freely reduced contains a. 	Rewriting 

brY = bV as an equation in H one obtains 

7ii(a,...,at,c.,t) 	=V1(c,t.), 

Clearly 	is freely reduced and contains some a 	non- 

trivially. 	By Lemma 2 .1 .2 VT contains as a subnord 

more than (n - 1)/n of R±n for some integer i. 	Hence 

contains a subword consisting of oore than (n - 1)/n 
of R±n 	this subword neither beginning nor ending with 

b. 	Hence 77 has as a subword more than (n - 1)/n of 

Cae3 	Suppose 	o(R) = a / 0, 	ah(R) = P / 0. 	As usual 

one considers the group 
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I 	 fl 	a ri = gp(a, x, c, t 	t (a, x , c, tfl. 

Using Tietze transfori:ations 

H = gp(y, x, C, t I R(YX,Xa,  c, t)) 
1 	- 13 	a 	 -. 	

1 Let R yx ,x , c, tj when cyclically rodacea be 

Rn y, c, t) 	Now rewrite the ecivation U = V as an 

equation in H under the monomorphisa of G into H map-

ping 

a -> yx, 10 	x 	c 	c, t 

Suppose on freely reducing U(yx,xa, c 	= 

Cr t) one obtains 

U (y, x, a, t) = iT1  (x, 	t) 

The process of freely reducing 7 to obtain 	will remove 

at most x tems, hence 	contains y non-trivially. 

Prom case 2 one may conclude that 	contains as a 

subword more than (n - 1)/n of ±n,  and this subnord 

neither starts nor ends with an x±1 	One easily shows 

that this implies 7(a, b, a, t) contains a subword 

identical with a subword of R+n with length > (n 

(Rn)/. 

This comolotes the proof of the Spelling Theorem. 

CoroflgJ,4 The word problem and the extended 

word problem are solvable in a one-relator group with 

torsion.. 

Proof Given G- = gp(a, b, a, 	. I R'1) n > 1 and two 

w o r d s 	and 2 in the letters a, 10, a, .., one must 
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'cc able to determine algorithmically 	
1 = 

elements of G This is equivalent to deciding if 

=1 in G. But in order for 	to be the 

trivial element in G, R1W2-1  mast, when freely reduced, 

be theemrty word, or contain asubword identical with 

more than (n - 1)/n of R±n. Replacing any such subword 

by the obviously shorter complementary word, one easily 

cteterminos if 12 
	

= 1. 

For the extended word problem one must determine 

algortIimically if an arbitrary word in the letters 

a, b, c, 	can be equal in G to a word V in some given 

subset of the generators of G. Clearly one nay use 

almost the some algorithm, 

Coro1r2,1,5 Let G = gp(a, b, c, ,,. I Rn) n > 1 

and let 7, Z be subsets of the generators. Then there 

is an algorithm to determine for an arbitrary element 

g e G ifg = vi(7)z(Z) for some words w, z. 

Proof If g = w(\7)z(Z) then w(TT)g = z(Z), 	/ithout 

loss of generality one nay asswoe w 1(R) begins with a 
Ry 

generator a, say, of J which is not in Z, for if 

coincides with Z the problem degenerates to the extended 

word problem. It will now be shown that in order for 

a to be removed from w 19, 	w) must be small. 

Firstly, lot w, g be words of minimal length 

representing elements of 	because the word problem 



is solvable in G one can always obtain algorithmically 

a word of minimal length representing an element of G.  

By a reduction of a word will be meant the process of 

replacing a largest possible subviord which is identical 

with a subword of R±n of length > (n - i)A(Rn)/n, by 

its complementary subword, or deleting a trivial relator 

= ±1, x a generator0 Then in reducing wg at 

most 2A(g) reductions are possible0 For suppose one 

can perform k reductions. Let B = length of wg when 

no further reductions are possible, Now 

L < A(g) + A(w) - 

since every reduction will decrease the length of a 

word by at least I 	But w 	= (171 1g)g 1  hence 

A(w 1) 	B + 

That is 

A() < B + A(g) 

or 	 A(g) + X(w) - it + A(g) 

hence 	it < 2A(g) 

Secondly, the final seent of w that con be 

altered by reductions of vr19 is of length at most 
2(g)A(Rn) 	For since g, w are reduced and w 1  is 

minimal then the reductions of w 1g can involve at 

most 2X(g) reductions and each reduction after the 

first must be possible because of the effect of the 

previous reductions. Thus the first reduction can alter 



at most the last X(Rn) letters of w, The second 

reduction can alter at most the next A(R) letters of 

w, and so on. 	Altogether there can be at most 

2A(g)A(Rn) 	letters altered, 

Since the first letter of w 	is not in 5, all of 

must be affected by reductions of wg. 	Thus 

A(vi) 	2A (g )A(Rm), 	Although G nay be infinitely 

generated it suffices to have VT involving at most the 

generators occurring in g and R. 	Thus the algorithm is 

simply, given g, test for the finitely many words w(%) 

w)g = z(Z) 

the extended word problem), 

In 1962 Lyndon posed the problem (Problem 3,6) 

Let F be free on a set 7 of generators and let R E  F 

and N = gP(R). Let 7 and Z be subsets of X. Is 

a recursive subset of F? This question is answered in 

the affirmative for N a proper power, by the corollary 

above. Lyndon points out that a solution of this 

problem enables one to extend both the Magnus solution 

of the extended word problem and the Hauptform of the 

word problem. 

Although our proof of the Spelling Theorem uses 

the Freiheitssatz it should be pointed out that our 
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induction hypothesis is stronger than the Freiheitssatz 

and the proof could easily be presented so as to avoid 

using the Preiheitssatz. The Spelling Theorem allows 

one to generalize the Freiheitssatz as follows. 

Collar,1.6 Let G 	gp(a, b, c, 	1 R"), n > 1, 

where R is cyclically reduced, involving a, h non-

trivially, and suppose P is any integer which does not 

divide the a-exponents in Rn.  The, 

b, c, 

freely generate a subgroup of G. 

Proof 	Consider any freely reduced word 
/3 

in a 	b, 	... , 

If 7 represents the identity element in 0, then 7 

contains a subword identical to a subword of R±n  of 

length > (n - 1)X(Rn) 	This can occur only if Rn  is 
[aaX(b, 	, 	for some integer 	a and word X in 

b, 	c, 	. 	. 	7ithout loss of generality one may assume 
the relator is 

c, 	 a 	> 	0. 

The corollary will be proved by induction on 

The corollary is clearly true if X(Rn) 4, 	Inductively 

assume the result is true for all groups with length < 

A(Rn) 

Case 1 	Suppose R involves two generators a and b only. 

Here the relator is (aabr)2, 	and without loss of general- 

ity assume r > 0, and 0 involves only a, b. 	First embed 
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G in H = gp(x, y(x a(XaY)r)2) by mapping 
-r 	a a -x 	b -'xy. 

One now looks at N = gp1 (y) and as usual takes 

= 	 I (Y(rl)awYaYO)2). 

Now let (a ,b) be rewriten in H as i(x 	, x y) 

F o r T = 1, one recpiires that this equation takes place 

in N and written as a relation in y,  it must contain 

as a subword 

/ 

ta+k' k(r-1)a+k 
for some t e 	 Bt this subword when 

rewritten in H is 

(x_kx_tta+k...x_kyxkx_(r_1)a _kyx(r_i)a+k.,x ta_k 

yXtt)±1 

or 

xU [( ray)t+1 —ra (a)r_tJ+1v 

for some integers u, v. But this can occur as a sub-

word of 7(Xr,Xa) only if 7(a,b) contains as a sub 

word 

t+ a r-t b ab 

This is impossible since fi does not divide . 

Case 2 Suppose H involves more than two generators, 

say a, b, c, t. By using the usual embedding procedure 

one may, without loss of generality assume ab(R) = 0 

and generators of G are a, b, c, t. Let N = gp(a, c, t) 

and take 
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N0
I.D 

	 (all integers i) I EaQaX(ci,ti)]2) 

and 
00 

*N. 	ep(c.,tj} 1=—co i ' 	1 1 

On rewriting N(a, b, c, t) = 1 as a relation in N 

one obtain 

	

Aj mA 	VA(ci,t.) = 1, A,  a, rA integers 0  

ut if the word on the left-hcuid side is to be 1, then 

one can subdivide it into words in the components N, 

and some such subword must lie in theamalgamated sub-

group, Thus, for example, a submord 

r9 
+1 '''nv 	v 

where a +1 = a L)+2 = 	= a, must be a word in 

But this immediately implies a non-trivial relation in 

gp(afl,c,t.) which contradicts the induction hyrothesis. 

Thus case 2 is proved and so the corollary. 

An imsortant conjecture in the theory of one-relator 

groups which is still unconfirmed is that one-relator 

grouss with torsion are residually finite. One can show 

that such groups need not be residually torsion-free 

nilpotent, for example take 

	

/ 	 -1,-i 22 3 ah 0  

H e r e N =gp0(a, b2) has a presentation 

gp(x, y )  z 1 [y, 011 [x1, y1]y) 

under the mapping x 	a, y - b2, z bab, and clearly 

y is a non-trivial elepent contained in all terms of the 
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lower central series, 

In the direction of residual properties we can 

easily prove the following, 

CorollaL,1.7, Let G = gp(a, b, c, 	I R1(a, b, c, ,..) 

n > 1. Then G is residually a two-generator one-relator 

group with torsion. 

Proof VJithout loss of generality assume G has three 

generators a, ID, c each non-trivial in H and aa(R) = 0, 

Lot v(a, ID, c) he any non-trivial element of G, and 

without loss of generality assume v(a, ID, c) is a 

minimal word. Put 

m -2m m w=xyx yx 

where in is large compared to the lengths of H and v, 

Define 

H = gp(x, y I R(x, y, w)), 

and denote Rn(r 	)by n(X) when cyclically 

reduced. Note that 	= 0. The mapping 

a - x, ID - y, c 	vi 

defines a homomorphism of G onto H The corollary is 

proved if it can to shown that 

v 	(x,y) 	1, (x,y) freely reduced, 

If 	0 then 	I in H. Hence suppose a() 	0. 
Construct N = 9p1(y) in thc usual way XTQM  

N0 =gp(y0,.,.,y 

Let v be rewritten in tems of the generators of N 
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= 	 If = 1 then V contains as a 

subword m o r e than (n - 1)/n of 	by Lemma. 2.1.2. 

Hence by Lemma 2.1,3 iiore than (n - 1)/n of 	occurs 

as a subword of v, even if one disregards x tems at 

the beginning or end of the subvvord, (and this is the 

key observation). Hence, because in freely reducing 

v(x, y, w) only x teus can cancel, v contains as a 

subword more than (n - 1)/n of Rn, contradicting the 

supposed minimality of V . 

Sect ion 2.2 	The 

Let H be a sub2roup of a group E 	Then H is a 

malnormal subrowj of if for all g 

H / 1 implies g E H. 

It is clear from the definition that no element out-

side a malnomal subgroup H can commute with a non-

trivial element of H. In partioniar no non-trivial 

element of H can have a root outside H, so a malnormal 

subgroup is a u-pure subgroup for any sot iT of primes. 

Lemma 22.1 Let C = JA * 3 J 	aerc J is a malnormal 

subgroup of the factors A and B. Then A and B are mal-

normal subgroups of C. 

Proof From the symmetry between A and B in C it will 

suffice to prove that A is a malnorreal subgroup of C. 

S upp 0cc 

	

9 1a19 = a2, g 	, 1 / a1, 02 E  A. 
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Let cocci representatives of J in A and B be chosen and 

suppose the normal forms forg, a1, a2  are 

= SlS2,,SuJ 	a1 = t1 j1, a2  = t2 J 2  

her e t1  1 t2  e A' 	' 	
E J and 

i'  s2 , ..., Sn  are 

coset representatives alternating from A and B0 It is 

roqurod to prove that g c A. This will be done by 

induction on Igl, the length of g i: normal form. If 

Ig I = O,then g e J and so g 	A. Suppose that for all 

elements g E G it has boon shown that g 1a1g = a2  

implies g e  A if I g 1 < n, a1 , a2  non-trivial eloments 

of A. Let IgI = n > 0. Then 

tlJlSl)2 •*SnJ = a19 = 
	S152.95t2j2, 

If t1  = 1 then 

(s11j1s1)s20..s3 = 52 0  

and this implies s 1 E J, which is absurd since S is 

a non-trivial coset representative of J in A or B. If 

1 then (s1 1t1  j1s1)s2 ,.,s 	= s2000s5t2j2,  This 

implies s1, t1  belong to the same factor and 

sl  t1j1s1 = 	J. 

Hence 

52 00  

and by induction 

Hence 	 e A. This covers all possibilities 

and so proves the lemma. 



Clearly a malnormal subgroup of a iaalnormal sub-

group is & malnornial subgroup, hence any thalnormal sub- 

group of A is a malnorroal subgrou of C, in the notation 

above. 

Lemma 2.2,2 Let C = 	* B ; J where A and B have all 

soluble subgroups cyclic and J is a raalnormal subgroup 

of A and B, Then C has all its soluble subgroups 

cyclic, 

Proof Let P be any non-trivial soluble subgroup of C, 

of soluble length r. Let 8(CT) denote the commutator 

subgroup [CT, CTand define inductively 

1, 2 9  3, 	•, where 

= CT. Then 8r-1() 	= 6r() 	
The proof will 

be divided into two cases, 

Case 1 Suppose 3r-1(2) fl A 	1. Let S E 
8r-1(2) fl A, 

a 	1, and let g be any non-trivial element of F, Then 

every element of 8 1(P) coieautes with a and so lies in 

A, since A is a raalnormal subgroup of C. Hence 

A, so 8 1(p) fl A is a normal subgroup of P. Again mal-

normality implies P A and so P is a cyclic group. 

7ithout loss of generality one may now assume that 

has trivial intersection with A and B. 

Case 2 Suppose 81(p)  fl A = 1 	8r1() fl B. Let g 

and u be any non-trivial elements of 81(P), where in 

normal form 
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g 
= 512''n31' V. = t12•*tm 2 

where fl a >i 	J, iiJ s, t are coset 

reDresentives of J in A or B lying alternatively in 

A or B By taidny a suitable conjugate of F one can, 

without loss of generality, assuoothat g is cyclically 

reduced of length n > 1 	Then u is cyclically reduced 

of length m >1, since g and u coim:iute, and Jul 	0. 

Suppose u is chosen so that Jul is the minimal length 

of any non-trivial element of 	(2). Uithout loss 

of generality lot a have its coset representatives 
J P 

tu  belonging to A, B respectively, It will be shovm 

that r-1(2) = gp(u). For 

g = ugu 1  

= ug1  or 

f or some element g1  with jg1j < jgj, Using the natural 

induction on JgJ one proves g is a power of u. This 

proves 	_1(p) is a cyclic group generated by a. 

Suppose v is any non-trivial element of 

and suppose v has normal form 

v = r1r2 0.,r 

where j c J and r i are coset representatives in A or B 

alternatively, First it will be shovm that v is cyclic- 

ally reduced of length q > 1. For suppose r1, r E A. 

Then 

vUv_1  = U5 
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for some integer s, from the preceeding work. If s is 

positive then 

ivul 	lvi + juj 

and ju5vj = jvj + sjuj, 

This implies s = 1, hence vu. = uv, This iaplies that 

v is cyclically reduced of length > 1 or v E J. But J 

is a malnomal subgroup of C so v cannot belong to J 

since u does not belong to J. Hence v is cyclically 

reduced of length > 1. If s is negative then v 2  u = u5
2 
 v 
2  

and so the case where the exponent of u is positive is 

applicable, and thus v2  is cyclically reduced of length 

> 1. If r1, rd  c B, one may repeat the argument using 

instead of u. 

It has now been proved that every non-trivial element 

of 6r*2() is cyclically reduced with length > 1. Suppose 

w is a non-trivial element of 6r-2(2) ith minimal length 
2 , 

in 6 r- F), It will now be snown that 

r-2 6 	(P) = gp(w) 

For w 1uw = 115  for some integer, hence 

U = 

= wu 1 or 

for some element U1  with 1u11 < jul . Again using the 

natural induction on Jul one proves that u is a power 

of w. The argument may be repeated to prove that not 

only is every element of 6r1() a power of w but that 
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every elemon6 	r_2 	
a power of W. 	For 

= Wt,  

for some integer t, and so 

t+1 	-1 
V = 	11W W 

= wv1  or V 

for some element V1  with Ivi 	< lvi Once again one 

may use induction to prove v is a 	ower of w 	Thus 
r_2() 

is cyclic. This implies P is cyclic and com- 

pletes the proof of the lemma. 

Let C = 	E 	* B 	J. 	and suppose ga = hP 

I g 	I ihi 	and 
gC 

is cyclically, reduced of length > 1 

Then g = hg,where 1g11 	< 	j g j, 	and g is cyclically 

reduced. 

	

Proof Let g 	51520 '0
5n1 in normal form, Now h must 

be cyclically reduced of length > 1, say 

h 	= 	t1t 2 0 , # t 1111 j2 	where I < m < n. 

Then 

a 	 a 1 	 P-i 	P g = (s1s2..)1g 	= (t1t2 ,,,t32h 	= h 

Now this rolation implies that 

= 	1, 	2 = 2 ,0 0 4 1  s El = tm # 

Thus g = 

-I 
2 5m+1'''5n 

= hg1 	where g = 2 5m+i'''5n3 is cyclic.- 

ally recIued vith I g. I < Ig F. 

Lemma 224 Let C =tli* B ; J where 3 is a mal- 



-80- 

normal sibgroup of A and B. If A and B are gsoups in 

which the centralizer of every non-trivial element is 

cyclic then the sax-ic is true of C. 

Proof Let vi be any element of C. Vfithout loss of 

generality one may assume W is cyclically reduced, 

From Lemma 2,2,2, C has all Abelian subgroups cyclic. 

If w lies in A or B then the centralizer of w in C lies 

in the scxse subgroup since A and B are Llalnormo.l sub-

groups of C. Hence it suffices to assume that w has 

length > 1, and in fact no element of length < 2 is 

in the centralizer of w. Suppose w oommutes with two 

elements g, . Then there exist elements g, h such 
ev 

that 

g, vi E gp(g), 

and 

, w c gp(h). 

Thus ga = h for some integers a, 9 , and clearly g, h 

are cyclically reduced with I91 	Ihi > 1 or h1 	ig! 

> 1, 7ithout loss of generality supose jgj 	Ihi ,  

By Lemma 2,2,3 g = hg1  with [gil < lgI and g1  is cyclic- 

ally reduced of length > 1 or else is the identity 

element. Since 

191 1 + Ih 11 <Igi + Iht. 

one may use an induction argument on Igi + lhl to 

conclude that g and h commute. Hence g, 	commute, 



-81- 

Thus the centralizer of w is Abelian, and so is cyclic. 

The literature on Lialnormal subgrouis is small. 

In fact it was not until after the completion of this 

work that it was brought to my attention that Benjamin 

Baumslag 1965 had used them in his doctoral tnesis and 

named them malnormal. Tekla Lewin 1967 used mctlnonnal 

subgroups to derive certain results on P-groups and the 

final lemma above is contained in her work. Malnomal 

subgroups are used by Driscoll 1967, in her work on 

the conjugacy problem, and A.fliitmore 1967 in her work 

on the Frattini subgroup, 

Section 2.3 	The Abeliansu ereiotor 

&rsth torsion 

La2.3.1 Let 9- = gp(a,b,..,,c,t j R 	n > 1 where 

R is cyclically reduced. 

I, Any subset of the generators of 9- generates a 

malnormal subgroup of G. 

II. Suppose w1(a,b,...,c) is a word which when 

cyclically reduced involves a non-trivially, and 

.ct) is a word which when  cyclically reduced 

involves t non-trivially. Then w1  and w are not 

conjugtes in 9- if R involves a, t non-trivially. 

Proof The lemma will be proved by induction on A(Rn), 

If A(Rn) < 4 then the lemma is trivially true, as it 

is if R involves only one generator, Jithout loss of 
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generality assume II involves all the generators non-

trivially. To simplify the notation asse G involves 

at most generators a, b, a, t. 

Firstly consider I. Here it suffices to prove 

that H = gp(b, a, t) is a ralnoxna1 subgroup of G for 

one may easily prove a lemma analagous to Lemma 1.2.1. 

Case 1 Surpose G has two generators a b and a. (H) 	0 CD 

 

and g_lbmg  = br, g € G, m, r integers r 	0. It is 

required to prove that g is a power of b, Let 

N = gp(b) and construct N from copies of 

N0  = gp(b0 , .. . ,b J R0n) 

where 	< A(Rn), Now by induction 

= gp(b1,,..,b 

is a malnorinal subgroup of N0  and N1  and so N0  is a 

malnormal subgroup of K1  = gp(N0, N1) by Lemma 2.2.1, 

One continues as in the proof of Lemma 1.2,2 to prove 

that K. = gp(N0,,,,,N.) is a Llalnormal subgroup of N 

for all integers i. In particular N0  is malnormal in 
N. 

Assume a(g) 	= s 	0, g = a8 , and 

= (1) 
If s = 0, then 7 e N0  since N0  is a malnormal subgroup 
of N. Since by induction gp(b0) is malnomal in N0, 

then 9 = bop  for some integer 	, whence g is a power 
of b. If 0 < s < p then again g, N. 	But the equation 



(1) is impossible in N0  by the induction hypothesis 8  

If s = p + k, k > 0, then g e  K since Kk is malnormal 

in N. 7rite 

=No * gp(N1  ,. . ,N) ; 

Then b 	e N0 , b 	c gp(N11...,N), and equation (i) 

is possible only if b0  is conjugate in N0  to an 

element of J. This is iinpossibleby the induction 

hypothesis. 

Case 2 Suppose C- has two generators a and b with 

(R) 	0. 	ithout loss of generality one may assume 

%(R) = 0 (using the usual embedding if necessary). 

Here 

g_lbing  =b 	 (2) 

and without loss of generality one may assume o(g) = 0. 

One may aisame in is large and in > 0. Let N(  a) 

and construct N from 

No  = gp(a0,,..,a 1 R0 ). 

Let g be denoted by g0  when rewritten as an element of 

N. One may assume that of all words representing the 

sane element as g0, g0  has minimal length. If go  con-

tains some a1  without loss of generality assume g0  is 

a word. in 

	

A 	0. 

Then equ•Ltion (2) becomes 



This relation in N implies g has the generator a0  

removable, hence by Lernma 2.1.21  g0  has its length 

reducible, contradicting the choice of g0 . Thus g0  

involves no a i te= and so g is a power of b. 

se3 Suppose G has more than two generators, 7ithout 

loss of generality one may assume o(R) = 0. Let 

N = gP(a,c,t) and construct N from 

N0  = gp ( a0 , .. . , a, o , t ir (all mt eg ers m) I 

As before one proves that gp(c,t (all integers m)) 

is a malnormal subgroup of N. Suppose now 

9 1 w1 (b,o,t)9 = w2(b,c,t) 

where 

g = brg0,
V7

1 

	= b5 1 , w2  = 

for g0, 1 , 2 	N. 	Then 
-s-1s-r- 	r b 	g0 	bb 	wbg0 =w2 . 

Rewricing in N one has 

g0 (a15, c5,t) = w2( c,t)g0 	(a., c 	,tk) 

(3) 
Now if s = 0 then 

= w2(c1,t) 

whence g0  c gp(c,t 	(all i)). 	Hence g 	E  gp(b,c,t), 

Thus one may assume s ,L  0, and that of all words 

representing the sane element as g0 , g0  has minimal 

length. 	But equation (3) shows that some a 	term can 

be removed from g0 , contradicting the choice of g0. 
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Thus g0  does not involve a terms and so g e gp(b,c,t), 

This couDletes the proof of I. One now proves II. 

Case 4 Suppose G- involves only two generators a and b 

and g_lamg  = br. It is clear that a(R) 	0, a(R) / 0 

otherwise there is nothing to proves 7ithout loss of 

generality assume r is large. Let a(R) 

ab(R) = p As usual embed G in 

H = gpx,y R n1 x
1S 

,Xa Y)), 

by mapping a xfi 	 a 
, b - x y. The equation g 1 m a g = b r 

becomes in H 

-1 ni/9 	/ a r 91  x g = tXy) 

where g maps into g1  . 7ithout loss of generality assume 

ar > 0, and 	= 0. Let N = gp1(y) and construct 

N from 

N0  = 9p(y0, 	, 	I 

Since mfi = ar the equation above nay be written as a 

relation in N, 

ar_rar_2r'''YO 	(4) 
where g0  is g1  rewritten. One may assurie that 

is the word of minimal length representing the element 

91. Now either the minimal or maximal y, in 

can be removed, Hence this *ord has 

as a subword xx or more than half of R 	for some 

integer i. By choosing r sufficiently large one may 

assume that such a subword occurs entirely within 
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or 0(y). In either case this contradicts 

the Lainimality of 0(y). Thus g1  is a power of x, 

hence g is a power of a, in which case g l aUg  = b is 

impossible by the Spelling Theorem. 

Case 5 Suppose G involves more than two generators, 

\Vithout loss of generality assume ab(R) = 0. Let 

N = gp(a,c,t) and construct N from 

N0  = 	 (all integers i) 1 R0 ). 

Let g 1 w19 = w2 and suppose w1  =br 
	w2  = b 2  where 

W2  C N. 

Suppose r = 0. The relation now is 

= 2(c,t) 	 (5) 

vthero wl , w2  when cyclically reduced contain some 

t tenus, respectively. If i1,...,i2  lies in the range 

0, .. ,, p then 	, 	C N0, whence g C  N0. By the 

induction hypothesis this equation is impossible. 

Suppose that the relation (5) takes place in 

k > 0, 7ithout loss of generality 

assume that of all words representing conjugates of the 

element 	, the word Il(aQ,...,a +k,c.) has minimal 

length, and also a0, aP+k occur non-trivially in 71, 

Inductively assume that the relation (5) is impossible 

in Kkl. Put 

Kk = N0 * gp(N1 , • . ,N) 	J} 

	

Now W C J1. If 	is cyclically reduced then it must 



S 

be in one of the factors, This however implies 

= 

or 

c) 	= 	J(a1, 	. 	c1,t) 

for some word 	i. 	In either case w 	has a generator 

removable which implies 71  may be reduced in length 

contradicting the choice of 1-lence assume 	is 

not cyclically reduced. 	But by a trivial modification 

of g one may assume 

= u1  (a1 	•• 	
'°)0 	1u 	(a 

 , , . 
,e + , c) 	. .a0 m.  

where 	
° 	is non-trivial in u1 , 	If now 71 	is 

not cyclically reduced then w 	can be shortened, again 

contradicting the choice of wl  

Suppose r 	0. 	Let g 1b71g = b 1.71 	Te the 2, 

m-th power of both sides, a an integer, 
r-- 	m 	r- \m g 	b w1 j g 	b w2  

Since br1 does not involve t and when cyclically 

reduced contains a non-trivially, then (b1)m does 

not involve t and when cyclically reduced contains a 

non-trivially. 	Similarly (bJ2)m does not involve a 

and when cyclically reduced contains t non-trivially. 

Hence (b w1)a  and (b' w2)a  satisiy 1 the sane hypotnesis 

as for w1  and w2. 	Thus one may assume r is large. 	Let 

= b rl z1(a, 	• 	
,ei2, c) 

= b w2(t,ct) 



g = 

and every free reduction of a cyclic permutation of 

bi1  contains an a-tern. Asse 13  + r > 14  + p, The 

equation now is 

' 12' 11' . ,a, 	.. 

= i3+r' • 4+ 	tj3+r 	t 4+ )2(t ci). 

(6) 

Now the a with i < 1 + r appearing on the left hand 

side of (6) are removable. Tithout loss of generality 

one nay asswae the left hand side of (6) is freely 

reduced, hence 1 g contains a subword identical with a 

subword of 	of length > A(R n), One may assie 

g are written as words of minimal length. Since 

every subword which is more than half R. 
1  ±n contains 

some t for each t appearing in R, one is restricted 

in the choice of such R, nanely to those R with t in 

the range t,.,.,t.. Then such a subword is replaced 

to shorten 1 g no new letters will be introduced, certain-

ly no new t, Since no free cancellation can take place, 

the only q
i  that are removable are those ai appearing 

in this restricted set of R. If there is some ai not 

in this range with i < i3  + r then one is finished. 

Suppose there are no aother than the a which are 

removable together with a i in the range 

Then all the removable a. in w1  must occur at the end 



of w1  so take 

w1  = WX, g = X 1h 

where X involves only a1, c, and h involves c, t, 

The relation g-1r— b w1 g = b w2  may now be rewritten 

hXbrW1XXlh = 

or 

r 7  h Xb 	b 

Now a is removable from the left had-id side, hence a 

is removable from XbrW1. Since no t ocoure in Xb71  

the a is removable by free reduction. But this implies 

a is removable from a cyclic permutation of b 

( 	r1) by free reduction, contradicting an earlier 

remark, 

This completes the proof of Lemma 2,3,1. 

We now have all the results needed to determine 

the Abelian subgroups of a one-relator group with 

torsion, 

Theorem 2,3,2 The Abelian subgroups of a one-relator 

group with torsion are cyclic. 

Proof Let G = gp(a,b,c,,,, I R1') n >1. The theorem 

will be proved by induction on X(Rn) 	The theorem is 

true if A(Rn) 	4, as it is if R contains only one 

generator. issume therefore that R contains more 

than one generator when cyclically reduced. By means 

of the usual embedding process one may, without loss of 
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generality, asomme aa (R) = 0, Inductively asse the 

theorem has been proved for all groups with relator 

length < A(Rn). Let N = gp0(b, c, ..) and construct 

N using 

N0  = gp(b0,,..,b,c.,,,, (all integers i) I 

Since X(Rfl) < A(Rn) the only Abelian subgroups of N. 

are cyclic. The analgamated subgroup J1  is a malnormsl 

subgroup of both N0  and Ni. From Lemma 2.2.2 the only 

Abelian subgroups of K1  = gp(N0,N1) are cyclic. Similar-

ly one may show that the only Abelian subgroups of Kk = 

gp(N0,...,N) are cyclic. Since K1  is a malnomal 

subgroup of N no locally cyclic non-cyclic Abelian 

subgroups are contained in N. Hence the only Abelian 

subgroups of N are cyclic. 

Let A be an Abelian subgroup of 0 not contained 

in N. Then 

A/A fl N = NT/N 0/N = infinite cyclic group. 

Now A, being an Abelian infinite cyclic extension of a 

cyclic group is either cyclic or the direct product of 

a cyclic group and an infinite cyclic group, the latter 

infinite cyclic factor not in N. Suppose A is not 

cyclic. Let x, y be generators of A where 1 / y N, 

x = aE, r an integer 	d 	E N. Without loss of 

generality assume r is positive and large. Let y when 

written as an element of N be 



and assume this is the shortest possible word represent-

ing the element y, uid that b0,b +, p + k 0 are non- 
L 

trivial in y. One further assumes that of all possible 

non-Cyclic 11belian subgroups of G one has chosen that 

for whichp+ k is least. This implies that no conjugate 

of y has smaller p + k value than y0  has. Now 

X 1y 1xy = 

implies 

r— x a y axy=1 

xyxyQ = 1 	 (1) 
where y = YO(br, 	• ,br+p+T,ci + ,..j, Since r is 

large toke r > p + k. One now proves that equation (i) 

is impossible, 

By Lemma 2,3,1 this relation cannot take place in 

N0 . Hence suppose r + p + k > p. Then y0  and y are 

in X +r and since K +r is malnormal in N then 	€ 

Thus equation (i) takes place in Kk+r o Let 

K 	- 	 * '(N 	N k+r - 	0' 	'' 1k' 	'- ' k+1 ' ' a 	 J 
k+r' ' k+1 

Now y0  is in the first factor and y is in the second 

factor, hence y0  and y can be conjugates only if y0  is 

conjugate to an element of Jk+l, By t he choice of y 

	

this implies that 0 	P + k P - 1 and y0  € N0  and is 

conjugate in N0  to an element of J1, But again this is 

impossible by Lemma 2,3.1, Thus equation (i) is imposs- 
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ible, and the, theorem is proved. 

CorollarIT 	The soluble subgroups of a one-relator 

group with torsion are cyclic. 

Proof Suppose S is a rjetabelian subgroup of G where 

the notation of Theorem 2.3.2 is used, If SI\T t h e n 

by Lemma 2.2.2 and the usual argument, S is cyclic. 

Suppose therefore SN and let x E S but x / N. 

Clearly 	and so SS is cyclic generated by y, 

say. Then for some integer s 

x_lyxy_1 = ys. 

Then the elements 

_1 2 -2 
j, 	,yx 

generate a non-cyclic locally cyclic subgroup of G, 

unless for some integer r 

r -r 
xyx =y, 

in which case x and y generate a non-cyclic Abelian 

subgroup of G, contradicting the result of the previous 

theorem. Thus the only metoIelian subgroups are cyclic 

proving the corollary, 

CoL2.3,4 The centralizer of every non-trivial 

element of a one-relator group with torsion is cyclic. 

Proof Using the notation of Theorem 2.3,2 one first 

shows that the centralizer in N of every non-trivial 

element of N is cyclic. This is proved by the usual 
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induction argwnent together with Lemma 22.4, Since 

by the theorem above the Jbelian subgroups of G are 

cyclic, no element outside H can commute with a non-

trivial element inside N Hence the centralizer in 

of every element in N is cyclic, Let w / N and suppose 

w commutes with g and h. Then w commutes with g 1h 1gh 

which lies in N, hence g 1h 1gh = 1. Thus g and h 

generate a cyclic group, and the centralizer of w is 

cyclic. This proves the corollary, 
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oblern for one-relator 	ous 

with torsion 

lgoritIic solutions of the word problem, the 

conjugacy problem and the isomorphism problem were 

formulated and investigated by Dehn 1912. He showed 

all these problems were solvable for the one-relator 

groups 

G 	= gp(a1  ,b1, . ..,ak,b I [a1  ,b1]... [a,bk]), 

the fundamental groups of closed, orientable, two 

dimensional surfaces, In 1954 Novikov proved the con-

jugacy problem is unsolvable in general, even for a 

class of finitely presented groups having a solvable 

word problem. In this chapter we prove that the con-

jugacy problem, and the extended conjugacy problem in 

certain cases, are solvable for one-relator groups with 

torsion. 

We describe precisely vthat is meant by these 

problems . Let G be a group with a given presentation, 

that is 

= gp(x1  ,x2, .. . I R1  (x1  ,x2, ..), R2(x1  X2, 

where the x are a possibly irtfinite but recursively 

enumerable set of generators, and the R(x1x27,..) are 

a recursive set of defining relators of G. 

The conjugacy problem is as follows For any pair 
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of words w1  (x1  1x2, . , j, w2(x1  ,x21.,,) in the generators 

of G, give an effective procedure for determining in a 

finite number of steps whether or not w1  and w2  define 

conjugate elements of G. 

The extended conjugacy problem for G relative to 

a subgroup H is as follows: Let 

where the w are words in the generators of G. For an 

arbitrary element w(x1,x2,.,,) of G, give an effective 

procedure to determine in a finite number of steps 

whether or not w is conjugate to an element w of H, 

and if it is, to express w* in terms of the given gen- 

erators of H, 

In Section 3.1 we develop the basic theory of 

strongly_malnorml subgroups which plays a role similar 

to that of p-pure subgroups in Ohapter 1, and nialnormal 

subgroups in Chapter 2, In Section 3.2 we use strongly-

malnornial subgroups to solve the conjugacy problem for 

one-relator groups with torsion, and solve the extended 

conjugacy problem relative to any subgroup generated by 

a subset of the generators. 

In Section 3,3 we consider the problem of determin-

ing the roots of an element in a one-relator group with 

torsion. 



Section 3.1 The theory of strongly-malnormal subgroups, 

Let J and A be groups with given presentations, 

and let there be given an isomorphism of J into A. We 

say J is strongly-malnorxnal in A if 

J is a malnormal subgroup of A. 

the word problem is solvable in J for the 

given presentation of J, 

and(iii) given any pair of elements g, h E A as words 

in the generators of A, one can 

(a) algoriticaliy determine if there exist 

elements j, j1 	J such that jh = 9j1 , 

and (b) aloritiically determine j, j1  when they 

exist, as words in the given generators of J. 

Note that j, j1  will be unique if g / J. For, 

suppose there exists another pair k, k1 	J with 

kh = gk 1. Then 

k gk1  = h = j gj1 , 

hence 	9_1(jk
_l)g( 1j1 1)  = 1. 

Since J is malnomal in A and. g /J, then 

=k lil- = 1, 

thus proving the uniqueness of 

Note also that if J is a strongly_malnormal sub-

group of A, then we can solve the extended word problem 

of A with respect to J. and hence we can solve the word 

problem for A since the word problem for J is solvable. 



To see this, let g be any element of A given as a word 

in the generators of A Then One can decide if there 

exist elements j1 , j2 	J such that 

jlg = 1j2, 

and if so determine i1 j2. The element g E J if and 

only if j11 2 exist, in which ease 

= il_ l i2, 

and not only can we determine algoritbiiically if g is 

in J b u t we can write g as an element of J. 

If H is a strongly_malnorml subgroup of G then 

it will be understood that presentations for H and G 

are given and there is some effective procedure for 

writing an arbitrary word in the generators of H, as a 

word in the generators of G. 

Lemma 3.1.1 A strongly_malnormal subgroup K of a strongly-

malnormal subgroup H of G is a strongly_malnoral sub- 

group of G. 

Proof Firstly K is a malnormal subgroup of G. Secondly 

the word problem is solvable in K since K is strongly-

malnormal in H. Thirdly, let g1 , 92 E E. Since H is 

strongly_nialno 	in G one can determine if there 

exist h1 , h2 E H such that 

h1 g = g9h2, 

and if so, determine h1 , h2, If g1  / H then h1 , h2  are 

unique if they  exist, and so it suffices to determine 
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if h1 , h2  K. This can be done since the extended 

word problem of H with respect to K is solvable. 

If g1  E H then 92 E H if h1 , h2  exist. Hence 

g1 , g2  can be written as words in the generators of H. 

Then one can deteajne if 	h2  exist such that 

k2  e I and 

k1g1 	
9

21t
27 

 

and if so, determine k, L2. Thus, given 911 92 

one can determine if there exist k, k2  E  K such that 
k1g1  = 92k21  and if so, find k1 , k2, 

In Writing a generalized free product as 

C =2, * B ; 

we assume throughout this chapter 

(i) presentations for i, B, J are given, 

isomorphisms of J into 2L, and into B are 

given by a specific process which allows one 

to write an element of J as an element of A 

or B, 

(iii) the presentation for C has as generating 

syiibols those of A and B, as relators those 

of A and B together with the elements of A 

in J identified with those of B in J. 

In the case where J is stronlymalno 	in A 

and B, one can decide if an element of C is in A or B, 

and if it is, to write it as an element of A or B. This 
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implies that an element ,g of C can be vritten in reduced 

form 

g = 

where the gi  alternate from the factors A and B, and 

gi  / J. 

Lemma 3.1.2 Let C = A * B ; J where J is a strongly-

malnormal EUbgroup of A and B. Then A and B are 

strongly_malnoul subgroups of C, 

Proof By symmetry it will suffice to prove that A is 

strongly-malnormal in C. Firstly A is malnormal in C 

by Lemma 2.2.1. Secondly the word problem is solvable 

in A since J is strongly-malnor1a1 in A. Thirdly, let 

g, h be any elements of C and write g, h in reduced 

form 

g = 	 h = h1h2 ...h 

where the 	h 	A or B. It is necessary to decide 

if there exist elements a1, a 
2.E 

A such that 

- " h 	h 1b1b201abn 	1 2''m2' 

\Jithout loss of generality assume Igi 	Ihi. Suppose 

I gi > 2. There are various cases to consider. Suppose 

g = 	.., h = hAhB.. . (This is to be mt erpret ed 

as Then 

= hAil for some j, E 
J, and jhB = gBi2f j2 4E  

But there is an algorithm to dotermino 	i2  exist and 

if so, to determine jl,j2 ,Hence there is an algorithm 
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to determine if a1  exists and if so, to find a1. If a1  

exists it is unique so one can determine 2 h1a1g 

and decide if a2  e A. The remaining' cases are similar, 

Suppose Igj <2, If g E  A then a1g = ha2  implies 
h E  A. Therefore there is nothing to prove since 

1.9=h(h 19), 

or (ii) hBhA or (iii) hIhB... 	Consider these in 
turn 

a1g = hBa2 implies a1 	J and a2  E J so one 

can decide if a1, a2  exist and if so deter-

mine them. 

a19 = hBhAa2 implies a1 	J and a1g = hBjl 

for 	E J so one can decide if a1  exists 

and if so determine a1  , and hence a2  if it 

exists, 

(iii) a1g = hAhB...a2  implies a1 = hAil for  j, 	J 

and il1hB = 9j2  for 2 E  J . Hence one can 

again decide if a1, a2  exist and if so deter-

mine a1, a2 . This proves Iiemma 3.12, 

Lemnaa3,1,3 	et C = A * B ; Jj where J is a strongly_ 

malnomal subgroup of A and B. Then given g, h ' C one 

can 

(i) determine algorithrJically if there exist elem- 

ents a, b in A, B respectively such that 

ag = hb, 
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and (ii) determine a, b algoritiically if they exist. 

Moreover if a, b / J then a and b are unicjue unless 

g and h liez,  in different factors oroe (say g) is of 

the forn:..(in the notation above) while the other, h, 

is not of the form T 

Proof The proof is similar to that of Lemma 3.12, 

We now come to one of the key lemmas. 

Lemma 31,4 Let C = IA * B ; J where J is a strongly-

malnornial subgroup of A and B. If the conjugacy 

problem and the extended conjugacy problem relative to 

J are solvable in the factors A and B, then the con-

jugacy problem is solvable in C, and the extended con-

jugacy problem relative to A end B. 

Proof Since J is a strOnOL'ly-malnormcal subgroup of A 

and B then the extended word problem with respect to J 

is solvable in both A and B, and the extended word 

problem for C with respect to A and B. Let g, h be 

any pair of elements of C, and write them in reduced 

form 

= g1g2 4,.g, h = 

Without loss of generality ass1e g and h cyclically 

reduced, 

Case I Suppose I g I > i 	If g and h are conjugates 

then h must have the sane length as g and a cyclic 

permutation of one must be conjugate to the other by 
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an element of J. Thus it suffices to consider if there 

exists an element j c J such that 

= h1h2...h, 

This implies j 191  = h1 j1  for some j1  e J, which 

uniquely determines j. Thus there is an algoritbin to 

determine j. Finally one checks if jgj =h. 

Case 2 Suppose gj = 1, and g is not conjugate to an 

element of J. Suppose g € A. Then h lies in A and one 

can write g, h as elements of A. But by hypothesis one 

can determine if g, h are conjugates in A, hence one 

can determine if g and h are conjugates in C. 

Case 3 Suppose Jg 	1 and g is conjugate to an element 

of J. Then if g and h are conjugates, h must lie in one  

of the factors and g and h are each conjugate within one 

of the factors to an element of J. But the extended 

conjugacy problem relative to J is solvable by hypo-

thesis in both A and B, so one can determine j, j2 c J 

such that g and h are conjugate to j1,j2  respectively. 

Now if g and h are conjugates, then j, j2  are conjugates 

in C and since J is malnormal in C, then j1 , j2  are con-

jugates in J. But the conjugacy problem is solvable 

in J, so the conjugacy problem is solvable in C. 

The solution of the extended conjugacy problem for 

C relative to the factor A and B is easy. For one can 

cyclically reduce an element g € C, and if it is con- 
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jugate to an element of A say, then 19j < 1, If it lies 

in A one is finished. If it lies in B it must be con-

jugate in B to an element of J, and one can determine 

if this is so, and also determine some such element of 

J, since the extended conjugacy problem in A and B rel-

ative to J is solvable by hypothesis., 

Leana3.1,5 If K is a malnorroal subgroup of H, and H 

is C. malnormo,l subgroup of 0, and 0 has the extended 

conjugacy problem solvable relative to H, and H has the 

extended conjugacy problem solvable relative to K, then 

0 has the extended conjugacy problem relative to K 

solvable, 

Proof Let 	e G. One can determine if 3 is conjur'ate 
L) 

to an element h E H and if so determine h. If g is 

not conjugate to an element of H then g is not conjugate 

to an element of K. NOV,  one can determine if h is 

conjugate in H to an element k of K,and if so determine 

lc. If h is not conjugate in H to an element k e K then 

h is not conjugate in 0 to an element k E K, for H is 

malnornal in G.  
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Section 3.2 The Conjugacy Problem. 

In the previous section we proved the appropriate 

results as outlined in the introduction. He now follow 

the usual routine and apply these results to one-relator 

groups. First we prove a lemma to help simplify the 

work which follows, 

Iiemma3,2.1 In order to prove that any subset of the 

generators of a one-relator group H with torsion gen-

erates a subgroup, which, with the obvious presentation, 

is a strongly_malnormal subgroup of H, it suffices to 

prove that in all groups 

\ = gp/a,b4,,t 	Hn ) n > 1, 

where H is a cyclically reduced word in a,b,,..,t 

involving a,b, . ... ,t non-trivially, the 

gp(b ...,t) 

is a Strongly-malnorinal subgroup of G. 

Proof Let H = gp(x1 ,x2,.,, I R') n > 1, be any one-
relator group with torsion. Vlithout loss of generality 

assume H is a cyclically reduced word, Let [y1,y2,.j 

be any subset of the generators of H, and let Y = 

gp(y1,y2,,..), If the set y1,y2,,,j is not a proper 

subset of the generators then Y = H, and Y is strongly- 

malnornial in H. If the subset is empty, Y is agaii 
strongly_malnoial in H. 

Let y1,y2, 60 j be a proper non-empty subset of 
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the generators of H I1irstly supose that every gener- 

ator in H is in the set{y1  ,y2, ,} 	A presentation 

for Y is 

= 	gpy1,y2,,,. 	H n 

Then the generators of H may be split into two disjoint 

subsets, 

Y1 Y2 	Z1  Z2, 

where the z do not appear in H. These two subsets 

generate free factors 1, Z respectively such that 

H = y * Z.  

Hence Y is a strongly_malnorrilal subgroup of H by Lemma 

3.12, since the amalgamated subgroup (here trivial) is 

a strongly-malnormal subgroup of I and Z.  

secondly suppose there exists a generator say x 

which is not in 	 but is in H, Let 

and X is a free group on these generators by the 

Freiheitssatz. It is clear that I C X and is free and 

a free factor of X. Hence I is strongly-malnormal in 

X. It will suffice therefore to prove that X is strongly-

malnorinal in H. Let 

= gp(a,b,..,t 	Rn) n > 1 

be obtained from H by deleting those generators which 

do not occur in H and writing x = a and the reiaaining 

generators in H as b,...,t. Then 



H = { * X ; gp(b,..,,t) 

In order to prove X is strongly-malnormal in H it will 

suffjce, by Lemma 3.1.2, to prove that the amalgamated 

SU1vup is strongly-malnormal in both G and X But 

it is strongly-malnormal in X. Hence the problem is 

reduced to proving that gp(b,.,.,t) is a strongly-

malnorna1 subgroup of G, thus proving the lemma. 

LeEyaa 	Any subset of the generators of a one- 

relator group G with torsion generates a subgroup 

which, with the obvious presentation, is a strongly- 

malnormal subgroup of G. 

Proof Let G = gp(a,b,,,,,t I R) n > 1. In view of 

Lemma 3.2.1 it suffices to prove that H = 

is strongly-malnormal in Go Firstly H is malnormal in 

G by Lemma 2.3,1, Secondly H is freely generated by 

b,.,,t and so the word problem is solvable in H. 

Thirdly let g1, 92  be any pair of elements of L With-

out loss of generality assume g1, 92  are words of 

minimal length and involve the generator a non-

trivially. If for i = 11  2 and elements h i E H, 

A(h) > I = 2X(R11){A(g1) + 

then 

h2g2  g1h1  

or, ec!uivalen-tly 

g1h1g2 	h2, 
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For suppose A(h1) > 1. Then the middle of h1  is too 

far removed from its ends to be altered in reducing 

91h192 1, assaning of course h1  is minimal (see proof 

of Corollary 2.1.5). Thus the middle of h1  acts as a 

barrier to ensure that reduction of g1  and 92  do not 

affect one another. Hence if a can be removed from 

9 192 1  then a can be removed from g1h1  which implies 

H, contradicting the choice of g1  as a minimal 

word involving a. Thus there is an algorithm to 

.:imply determine for the finitely determine h1, h2;  

many h i with A(h) 1 and h minimal, if 

91h192 h2 	= 1. 

If for some h1, h2  this equation holds then h1, h2  are 

the required elements of H. Otherwise no elements h1, 

h2  exist, 

Theorem 3.2.3 Let G be a one-relator group with 

torsion. Then the conjugacy problem and the extended 

conjugacy problem relative to the subgroup generated 

by any subset of the generators are solvable in G. 

Proof The theorem will be proved by induction on the 

length of the relator, Let 

= gp(a,b,o,,., J R") i > 1. 

If A(R'1) is 2 or 3 the result is well kno, as it is 

if R involves only one-generator non-trivially. Assame 

R is cyclically reduced and involves a, b non-trivially. 
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Inductively assume the theorem proved for all groups 

with relator length < 

Firstly consider the conjugacy problem. Let g 

and h be any given elements of 	, and without loss of 

generality let theni be cyclically reduced. 	To simplify 

the notation assume at most a, b, c are the generators 
of G. 

Case I 	Suppose a(R) = 0, 	a(g) = 0, 	Let N = gp(b,c) 

and construct N from 

N0=gp(b0,,,,,,00,,0 	1R0) 

where not all of b0 c0,b,c 	need occur in R0, Then 

for g and h to be conjugate aa(h) = 0 so g, h E N. 

Suppose wgw = h where w = arL, N. 	Then 

= h 

Tgw = h 

where g is the element  agar written as a word in N, 

But it is easy to show that there is a bound on 

r. This will be established as a separate lemma. 

Lemma 3.2,4 In N defined as above let g(b ,...,b ,c , 
0 	r 0 

4$?cr) 	1and h 	,...,bI 	 be element 

of N written as words of minimal length. if r + < m 

then g and h are not conjugates in N. 

Proof If g and h are conjugates in N they are conjugates 

within Kk. Construct X as 
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= 	gp(N, 	. ,
Nr1l

1) * gp(&1, 	, . . ,N) 	j}, 

Now g first factor K 1, and h e second factor. n. 

They will be conjugates only if g is conjugate to an 
ZD 

element of J1 , This implies g is conjugate to an 

element of N 1 . Construct Km i as 

K - 	(N 	N 	) *N 1 - 	 a • * m-2 	n-i 	rn-i a 

Now g is conjugate to an element of Nm i only if g is 

conjugate to an element of Jwi' One continues in 

this fashion proving that g is conjugate to an element 

of Jm **aJ* Hence there is an element 	e 

conjugate to elements in Jm+i • ' a m 	if j0(  e J0 ) 

is cyclically reduced and is conjugate to an element 

of J1  then j0  E J
o nJ1 # For let j0  

con- 

jugates where b0, c0  are not both trivial in 

Clearly j0, j1  are conjugates in N0. If all the 

generators involved in R do not occur in j0, j1  then 
j0, j1  lie in a free group and are conjugates within 

this free group. Hence by cyclic reduction b0 , O can 

be removed from 3, contradicting the fact that j0  is 

cyclically reduced. Hence suppose all the generators 

in H0  do occur in j, j1 . By Lemma 23.1 the elements 

j0 , j1  are not conjugate in N0 . Hence b0, 00 can be 

removed from j0  implying 

j0E J0flJ1, 
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Similarly if j0  is conjugate to an element in 

then j0  c Jofl 	•,. 	J, Thus if j is in 	and 

is conjugate to elements in 	 then 

j EJ 
rn-p 	 rn 

and so j = 1. Hence g is trivial, contradicting the 

hypothesis. 

Proof of Theorem 3,2,3 (continued). The equation 

= h implies a bound on r, so it will suffice to 

solve the conjugacy problem for N. Suppose g, h e  Kk = 
gp(N0, . a ,Nk). If g, h are conjugates in N, then they 

must be conjugate in Kk since Kk is ralnormal in N. 

Hence it suffices to solve the conjugacy problem for 

This one does by induction on k. If k = 0 then 

K0  = N0  and from the original induction hypothesis N o t 

and in fact N for any integer i, has a solvable con 

jugacy problem. N o w 

K1  = 	* T 

and (1) J1  is strongly-nialnormal in N0  and N1, 

and (ii) the conjugacy problem is solvable in N0  and N1  

and( iii) the extended conjugacy problem in N0, N1  rel-

ative to 1 is solvable. 

Therefore, by Lemma 3.1.4 the conjugacy problem is 

solvable in K1 , and also the extended conjugacy problem 

relative to N0  and N1 . One continues in the usual 

fashion to prove Kk has a solvable conjugacy problem. 
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Case2 Suppose a(R) = 0, a(g) = r ' 0. If g and h 

are conjugates then aa(h) 	r, Let 

g 	r a g1 	,...,b1,c05,,,c1  , h = ar  h1  

. , Ci), 
and suppose x 1gx = h where x, g, h are words of 

minimal length. Then 

X 1g1  (b0, . . . ,b, CO3 * 
I, c1)x0  = h1  (b0, 	. ,b, c, .. 

where 	is axar written as a word in N. 7ithout 

loss of generality asswe r 0. It is clear from this 

that x0  does not involve b for i < 0; for if it did, 

the equation h1 1x 1g1  = 	shows that b, i <0 can 

be eliinated from the right hand side, contradicting 

the minimality of x. Similarly 
Xr does not involve 

i > 1. Thus x is a word 

Choose an integer a such that 

(a - 1)r >1. 

Then 91  = ag2(b0, . *bl+(rti-  1) 0O, 
and 	h = amrh2(b0,  . . . bl±(m 1) ' 9o' '' °l+(m-1 )r 
Note that in reducing 92  and h2, the bottom and the 

top generators cannot be removed, otherwise they could 

be removed from g1  or h1. Thus 921  h2  if not trivial 

involve letters from b0, 	,b1, 00, .. ., c 	and from 

which 

cannot be removed by reduction. Consider the equation 

X1(bmr ***frbl+(nl)rp0,...,cl ) x 
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, C) 

= h2(b0, 	bl+(m-l)r 0, . 9 , °l+(n 1)r' 
Suppose this takes place in K1 , 

K - 	 b 	c 	a 	* k 	- 	0''''' l+p' 0''''' l+p' 	l+1' 9 'b  l+(n-1)r' 

,)r 	gp(b11 	1b1, 01+1, * 

Cli 

= A * B ; ij says 

Let 92  = 	 h2  = t1t2...t , u, v > 0. 

Then X  (bmr?#ø*bl+(ml),C 	 C B 

and x(boP ov*yb 00,.. tcir) E A, 

But apart from a few exceptional cases (see Lemma 3.1.3) 

one can determine algorit1rical1y if x exists, and if 

so determine x uniuely. Thus one can determine if 

xgx = h The exceptional case nen g2, h2  lie in 

different factors is eliminated here, since 
92, h2  if 

not trivial involve letters from A and B not in J. 

Thus 1921,   f h2  > 1, unless 92, h2  are trivial. Thus 

the only exceptional case to consider is 

b 0' 	- 
2 - B 'A' 2 - B UA, S A' t2l CL, SB, B 	By 

and 5A' tA are not both trivial and 8B' tB are not 
both trivial, Then 

X, SBSA = tBtjXos hir

This implies 

XSB = t3 j(b11, 	,b1, 	.. , c1 ) 	(i) 
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on 

j l(131 	bl+p Ol+1 y 10, c1)t1x01 = sA 	(2) 

Now translate (1) by -nr obtaining 

xOsB(_mr) = tE(-rdr)J(bi+i_mr  o•bl+pr ci+i , 

0l+ 	 (3) 
where SB(mr), tB(_mr) denotes 5B' 3  translated by 

-mr. Multiplying (2) and (3) togeter to eliminate 

xo y one obtains 

= 1tt(_mr)j(_mr), 

or 

tA
zi.

jS  

Exiining the generators which occur on each side of 

this equation one sees that both sides can be reduced 

to a word in b0i**b1 rcO*,0l . This implies 

that all the letters of j on the left hand side can be 

removed, since j is a word in 

This implies that j is not too long a word since, assum-

ing j is minimal, there is a limit on the number of 

reductions possible in tAj3 $ Also j will surely 

involve only letters contained in N0,.,.,R1, tA or 

Hence there are only finitely meay possibilities for j. 

Thus one can decide algoritbJicelly if there exists an 

element i satisfying the above, eid hence determine if 

there exists an element x with xgx = h. 

3 Suppose a(R) 	3(R) 	0. Here one may 
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embed G in a larger one-relator group H in the usual 

way and solve the conjugacy problem in H. Now 

H = 	* p(b) ; b = b8i (as usual), 

If g1 , g2  are elements of G and are conjugates in H 

then they are conjugates in G.For
11  
	 are not 

conjugates in G they must be conjugate to elements of 

g), 	 i 	are conjugates in H. But 

conjugauing j1, j2 by elements of the second factor 

will not alter since this factor is cyclic. 

Hence it is clear that if j1 , j2  are conjugates in H, 

they are conjugates in G. This proves g1,g2  are 

conjugates in G if they are conjugates in H. This 

proves the conjugacy half of the theorem. 

Consider now the extended conjugacy problem for 

relative to a subgroup H generated by a subset of 

the generators of G. It suffices to prove the result for 

= gp(a,b,.c,,,,,t I Rn)  and H = gp(b,c,.,,t), where 

are the generators occurring non-trivially 

in R. Let g E  G and suppose without loss of generality 

that g is a minimal word. It is necessary to prove 

that one can decide if g is oonjugate to an element of 

H, and il so, to find such an element of H. If g does 

not involve a there is nothing to prove. Asswae there-

fore that g involves the generator a non-trivially, and 

that b occurs non-trivially in R. For convenience 
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again assume a, b, c are at most the generators in G. 

Case 4 Suppose aa(R) 	0 	If g is conjugate to an 

element of H then a(g) = 0. It is necessary to decide 

if there exist elements x € 0- and vi H such that 

x 1gx 

and if so, to find some such w. Let x = ary, where 

y 	N = gp(b, c). Then 

y_l(aga1)y = w, 

Now it has been shown that there is a bound on r, hence 

it suffices to solve the extended conjugacy problem for 

N with respect to gp(b0,c0). In fact it will suffice 

to prove K = gP(NQ,...,N) (where N0  has any of the 

usual definitions) has a solvable extended conjugacy 

problem relative to gp(b0,c0), 

Let g e K k, and without loss of generaltiy assume 

g is cyclically reduced as a word in the generalized 

free product 

= 	iN 0 	l,.,Nk) ; 

If fgj > 1, then g is not conjugate to an element of 

N0 . If Jg I = I and g N0 , one is finished by the 

induction hypothesis!  If g 	 then an 

easy induction argu.i-rient on k shows that one can deter-

mine if an elemertm gp(N1  , , ,N) is conjugate o an 

element of J1 , and if so, determine a conjugate j E 

Case 5 Suppose 0- has only two generators a, b, and 
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0. Here one must decide if g(a,b) is conjugate 

to a power of b, and if so determine that power. Let 
-1 	r x gx = 

Then x 19xb 	= H 	S 1R'S., for some words S i in 

a,b. Taking exponent suns 

Gra(g) Ei  
= ()a a (H) 

a(g) - r = 

Ifab(R) = 0 or if 	= 0 then r = a(g). Otherwise 

r = (a(R)a(g) - 

Thus one need only determine if g is conjugate to this 

particular power of 1. This has been showi to have an 

algoritbnic solution. 

Case 6 Suppose G has more than two generators and 

aa 	/ 0, ab(R) = 0, a(g) = 0. Suppose that 

x 1gx = w(b,c). 

\Tithout loss of generality assume ab(X) = 0. Clearly 

= 0. Let N = gP(a,c). Then g E N and is con- 

jugate in N to w(c). If g E NO = 	 I R) 

one is finished by the induction hypothesis. If g 
Kk 

cyclically reduce g as a word in 

=* 
	 ; J1 , 

and if it lies in 	 one uses an induction 

argwnent on k to show that w nay be algorithmically 

determined. If g, when cyclically reduced does not lie 

in gp(N1, • ,Nk) then g is not conjugate to an element 
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Vv, 

Case 1 Suppose G has· more than t-v-vo generators, aa(R) I- 0, 

and the exponent sums in R and g of b, c are not both 

zero. Let 

a ( R) = a
1 a 

a a ( g) = cc2 ab ( g) = (J 2 a c ( g) = Y 2 • 

I'f a 2y1 - a1 v2 I- 0, map G -+ B as follovrs, 

P1 Y2-/32 y1 
a"""" ~Q 

b 
~ Y1 - a1 Y2 

""""Q 
°1 /32- Ci2 /31 

c --7 Q.°R, • 

Hero g --7 g and R --7 E with aE (~) = a:i/l1) = 0. Let 

B = gp(~,£,£ I En). One may now solve the extended 

conjugacy problem in E relative to gp(£,£). Suppose 

g is conjugate in g to an element h € gp(J2,£). Yirite 

B as 

Then I h I ~ ·1 v1hen h is cyclically reduced. This implies 

h lies in Gorin gp[bl. If the latter occurs then g 

is trivial since aQ(~) = O, so assune h € G. It reraains 

to show that if ~ and h are conjugates in ;tl, they are 

conjugates in G. But this is obvious, for if g is con-

jugate to a power of b, then 2 is conjugate to a power 

of £ which, as remarked above, is impossible. 

If cc 2 y 1 - cc 1 v 2 = 0 then a1 f. 0 implies y1 f. 0. 

Here embed G in H by mapping 
-Y1 

a -> ~Q. 
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'0 - 
a 

c- a 
-y 	a 

and H = 	 R( 	 )) 

If g *g,  H - 	then or (g) = a() = 0. SLs before one 

can solve the extended conjugacy problem in H relative 

to gp(,), and then show that it is solvaJle in 

relative to gp(b,c). 

This completes the proof of the theorem. 

Section 3,3 The roots of an element. 

In this section we show there is an algorithm to 

determine the roots of an element g in a one-relator 

group with torsion. The problem of finding an algorithm 

to detemine whether or not an arbitrary element of a 

group is a power has been investigated by Reinhart 1962 

and by Lipschutz 1965 and 1967. 

Theorem 3.3.1 Let G = gp(a,b,c,.., I Rn) n > 1. Given 
g 	G there is an algorithm to determine the roots of 

g. 

Proof The theorem is proved by induction on 

If A(Rn) is 2 or if R involves only one generator then 

the problem is solvable. Assume the theorem proved 

for all groups with length less than X(Rn),  Without 

loss of generality assune H is cyclically reduced. 

Case 1 Suppose aa(R) = 0, a5() = 0. Let N = 

Then g E N, and without loss of generality let g 
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where 

Kk = k_l*N 	k 

(Any of the usual definitions for N0  will dot) 	Since 

is malnormal in N, the roots of g mu st lie in Kk. 

If g e  N then by the induction hypothesis one can find 

the roots of g. 	If gNk or g 	K11  proceed by 

induction on k. 	Hence suppose g 	but g / N,., and 

g Let g (without loss of generality) be 

cyclically reduced, 

g = 	51520**Sn  n > 1 

where s 	alternate from 	and Nk. 	Then a root of g 

will be 

k 	t < n, 

and is = 	 c 

But since J is strongly-malnornial in Ni:  and Kk1 , j 

can be determined. Thus one can algorithmically deter- 

mine all possible roots and check if any are indeed 

roots of g. 

Case 2 Suppose a(R) =0, a(g) = r. Let g = 

where g e N. Let a5h, h 4E N be a p-th root of g, 

p > 1, Assume g, h minimal words. Then without loss 

of generality assume r > 0 and in the usual notation 

for translated words, 

= h(1)...h2hh0. 
el.j

Now the minimum b ipcip-in h0  must coincide with those 
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of g, otherwise, writing h0 on one side it is clear rIj
that a minimal generator of h0 is removable, contra 

dicting the minimality of h. Similarly the maximum 

letters in h( 	must coincide with those of g. Hence rV 
for some integer q 

h0 = h0(b0, 	bq+so , a ecq+s a') 

and let 

g0 = g(b, a. a bq+ps c, . . ., Cq+Ps 

Now 	90 = 

hence 	g5 = h 5g0h0 1 

and so 	g55 = h25g 5h 5 1 

therefore gg = 

Also -h b2ps+s - 

therefore g25~5g5+5g5 = 

Continue until 

= 

where (n+1)ps>t+s, Then 

-1 ' 	( 
= h0. 

Now on the left hand side of this equation every letter 

in h
(n+1) \ ps can be removed. This iimDlies that there is 

an upper bound on A(h0), Since the only generators 

that can appear in h0 are those in the rege 

it is easy to see that one has a bounded 

number of possibilities for h. Thus an algorithm is 

obtainable in this cases 
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Case 3 Suppose aa(R) 	0, a(R) 	0. As usual embed 

G in H and solve the problem in H. Suppose H = 

* gp() ; b = 	If g = hP then g, h commute and 

so g, h lie in G or else g lies in G and is conjugate 

to a power of b. But by the previous theorem one can 

determine such a power of b. By the iiialnormality of 

gpb), any root of b2 is a power of b. Thus one can 

determine the roots of g. 

This coailetes the proof of the theorem, 
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