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Introduction

Por an introduction to the theory of one-relator
groups see Baumslag 1954, and Magnus, Karrass, and
Solitar 1966, There are three main themes in the work
which follows,

The first theme is the determination of the Abelian
subgroups of a one-relator group. This investigation
was prompted by a conjecture of Baumslag 1964 that the
additive group of rationals is not a subgroup of a one-
relator group. The Abelian subgroupg of one~relator
groups hove now been completely determined; they are
free Abelian of rank < 2 or the additive group of n-
adic rationals, n a positive integer.or finite cjcfic groups.
Theoren (See Theorem 1.2.3) Let G = gpla, b, ¢, «oul
R) be a torsion-free one-relator group. Then no non-
trivial element has more than finitely many prime
divisors. Iloreover a non-trivial element is not divis-
ible by more than finitely ﬁény powers of a prime p, if
p is greater than the length of the relator.

Thus the additive group of rationals is not a sub-
group of a torsion-free one-relator group, in fact;
Corollary (See Corollary 1.2.4) The additive group of
rationals is not a subgréup of a one-relator group.

In the case of one-relator groups with torsion,



one cen say much more,
Theorem (See Theorem 2.3.2) The Abelian subgroups of
a one-relator group with torsion are cyclic.
Corollary (See Corollary 2.3.3) The soluble subgroups
of a one-relator group with torsion are cyclic.,
Corollary (See Corollary 2.3.4) The centralizer of
every non-trivial element of a one-relator group with
torsion is cyclic.

The second theme is the problem of extending the
Freiheitssatz. This theorem, proved by Magnus 1930,
is the basic result in the theory of one-relator groups.
Let

G =gpla, b, ¢, ... | Rla, b, c, ...))
where R is cyclically reduced, and suppose the generator
a occurs non-trivially in R. Then the Freiheitssatz
states that b, ¢, ... freely generate a subgroup of G,
But something more than this is true, and we seek to
extend the Freiheitssatz by proving that, for some
integer n

am, b, ¢, ...
freely generate a subgroup of G in certain rather
general cases. The first result in this direction was
obtained for certain two generator groups by Mendelsohn
and Ree 1967. Here we prove the following.

Theorem (See Theorem 1.3.11) Let G = gpla, b, ¢, +.. | R)
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where a, b, ¢ occur non-trivially in R with oa(R) = 0,
Then for one of the generators a, b, or ¢, (say b)

there exists an integer m such that, for all integers

freely generate a subgroup of G.
Azain one can say more for grouns with torsion.

The basic result for such groups is the

o)

Spelling Theorem.(Ses Theorem 2.1.1) TLet G = gpla, b,

veo | Rn) n > 1, where R 1s cyclicaelly reduced. Suppose
that two words W(a, b, ...), V(b, ...), where W is a
freely reduced word containing a non-trivially end V
does not contain a, define the same element of G. Then
W contains a subword which is identical with a subword
of RE of length greater than (n ~ 1)/n times the length
of R™.

From this theorem one can prove the following extension
of the Freiheitssatz.

Corollary (See Corollary 2.1.6) Let & = gp(a, b, ¢, ...
| ") n » 1, where R is cyclically reduced involving

&, b non-trivially, and suppose £ is any integer which

B

, 0, ¢C,

0

does not divide the a-~exponents in R™. Then
..+ freely zenerate a subgroup of G.
The third theme is concerned with algorithmic

problems in one-relator groups; mnmore specifically we
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are primarily concerned with the word problem and the
conjugacy problem in one-relator groups with torsion,
These algorithmic problems, »nroposed by Dehn 1911 are
fundamental problems in the presentotion theory of
groups. In general they are unsolvable. For free
groups both the word problem and the conjugacy problen
are solvable., In 1932 Magnusvused an ingenious applic-
ation of the Freiheitssatz to prove that one-relator

T

groups have o solvable word problem. However Hagnus,

Karrass, and Solitar 1966 pointed out that there are
some unsatisfactory aspects of the solution, for the
algorithm appears to be unnecessarily complicated. In
the case of less than one-sixth groups investigated by
Greendlinger 1960 there is a simpler algorithm. Using
the Spelling Theorem a trivial proof of the solvability
of the Word problem for one-relator groups with torsion
can be given, (See Corollary 2,14) and the algorithm
which emerges is of the required degree of simplicity,
and provides & bridge between the work of Magnus and
that of Tartakovskii 1949 and Greendlinger 1960,
~Another similar problem related to a problem of

Lyndon 1962 is the following:

Corollary (See Corollary 2.1.5) Let G = gp(a, b, o,
cen | R™ n > 1 and let | W, Z be subsets of the gensrat-

=1 »r

ors, Then there is an alzorithm to determine for an



-

arbitrary element g € G if g = w g)z(é) for some words
W, Z.

As for the conjugacy problem very little has been
done. Greendlinger 1960b, 1964 has proved the solvabe
ility of the conjugacy problem for less then one-sixth

groups, and Soldatova 1967 has extended the result to
L) g ¥

O

certain less than one-fourth groups. The conjugzacy

0

problem for the free product of two free groups with a
cyclic subgroup amalgemated has been solved by Lipschutz
(unpublished). In this work we show that 2ll one-
relator groups with torsion have o solvable conjugacy
problem.,
Theorem (See Theorem 3.2.3) Let G be a one-relator
group with torsion. Then the conjugacy problem and
the extended conjugacy problem relative to the subgroup
generated by any subset of the generators are solvable
in G. |

The problem of finding an algorithm to determine
whether or not an arbitrary element of a group is a
power has been investigated by Reinhart 1962 and by
Lipschutz 1965 and 1968. ¥e prove the following result.
Theoren (See Theorem 3.3.1) Ict G = gpla, b, ¢, ... |RD)
n >1. Given g ¢ G there is an algorithm to debtermine
the roots of g.

There are a few miscellaneous results which emerge
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in the work. The first concerns the Frattini subgroup.
Theoren (Seec Theorem 1.3.12) A one-relator group has
trivial Frattini subgroup if

(a) it is torsion-free with more than two generators
or (b) it hes torsion with more then one zenerator,
The next result concerns a residual property.
Corollary (See Corollary 2.1.7) Let G = gpla, b, ¢, ...
|R"™) n > 1. Then G is residually o two-generator one-
relator’ group with torsion.
The following theorem of Baumslag and Steinberg 1964
mey be proved quite easily.
Theorem (Sce Theorem 1.3.7) Let W(Xj, Xy eons Xn) be
an element of a free group F frecly generated by ﬁj, Xo,
crey Xy X which is neither a proper power nor a
primitive., If 815 8oy cees By &, generate a free

group G and are commected by the relation

mn

W(gq, 8oy vees 8y) = 8 m > 1
then the rank of G is at most n - 1,

There is a common strata to these three main
themes, namely the techniqgue for proving them. The
technique is as follows. In a one-relator group with
more than one generator occuring non-trivially in the
cyclically reduced relator one can, without too much
disruption of the group, arranze for the exponent sum

on one of the generators to be zero, Let G be such a
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cne-relator group, and let N be the normal subgroup of
G generated by the remaining generotors. This is usually
a complicated group, infinitely generated and infinitely
related. But it has one nice property: it is the
direct limit of a chain of subgroups of N,
Nos 8 (Nogmj), gp(Nm?,NO,NT), gp(N“1,NO,N1,ﬂ2), x
where the N, are isomorphic one-relator zroups, with
the length of the relator less than that of the original
group G. Ve thus have o basis for an induction argument
to prove the one-relator zroup ¢ has some specified
group theoritic property P. Thus the induction hypo-
thesis would be that all one~relator groups with
relator length less than the length of the relator of
G have the property P. Now the normal subgroup N is
well situated in G, for it hos infinite cyclic factor
group. For the propertics of interest here, we can
show that in order to prove G has the property P it
will suffice to prove that W has the properﬁy‘g. e
now use the nice structure of N. By the induction
hypothesis NO, and in fact sach ﬁi,has the property'g.
Thus the first term in the chain above has pfoperty E.
Does the second term, gp(ﬁo, Nj) have property g?
Well the gp(NO, Nq) is a gencralized free product of
No and ﬁ1 amalgamating o subgroup generated by & common

subset of the generators of NO and Nj, 80 the basic
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problem is this; when does a gencralized free product

of two groups each having the property P, have property

lird

For example it is known (Weumann 1954) that the
generalized free product of torsion-free groups is
torsion-free, In order for some property P of the
factors to be inherited by = free product with amalgam-
ation it is usually necessary to put conditions on the
amolgamated subgroup., For example the gencraliszed

free product of residually finite groups is residually
finite if the amalgamated subgroup is finite. Thus we
will have to find for cach property g (and there will
be a different one in each chapter) an appropriate type
of subgroup, call it a g-subgroup, such that the follow-
ing proposition holds,

Proposition 1 If C = [A ¥ B ; J! is the generalized

free product of the factors A and B cmalzeamating the
subgroup J, and A and B have the property P, and J is
a g-subzroup of A and B, then C has the property P,

For the groups with which we are concerned we
know from the Freiheitssatz thaet the omelgamated sub-
group is free. But freeness is not usually sufficient.
In our case we will need the following provosition:

Proposition 2 Any subsct of the gencrators of a one-

relator group G generates a g-subgroup of G,

The Progositions 1 and 2 will then allow us to take one
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step up the chain and prove gp(NO, N1) has the property
b.

Now the third term of the chain, gp(N“1, Nys Nq)
is again a generalized free product, of the two factors
gp(NO, Nj) and Nw1 amalgamating a subgroup an generated
by a common subset of the generators of NO and E“1.
From the two preceeding raragraphs we know that both
these factors have the property g. All we need in view
of Proposition 1 is for the amalgamated subgroup to be
a %~subgroup of both factors. From Proposition 2, J__1
is a g»subgroup of N“1, In order for the amalgamated
subgroup to be a.%—subgroup of the first factor it
suffices to have the following result.

Proposition 3 A g-subgroup of a g-subgroup is a g-sub-

group, and if C = {A * B ; J} where the amalgamated

subgroup J is a %-sabgroup of the factors A and B, then

the factors A and B are g~subgroups of C.

With this result we can proceed to the third term in the
chain, For N, is by Proposition 3 a g~-subgroup of gp(NO, Nq)
and J__1 is by Proposgition 2 a g»subgroup of NO, hence

J~1 is a gusubgroup of gp(NO, Nj). One continues step-

ping up the chain by repeating these arguments, for

each successive term is formed by a similar generalized

free product construction. Hopefully the direct limit

of the chain of groups with property P will also have



-] 2

property P. This then would prove that N has the

®

property

g
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Notation

For the readers convenience we list some of the

notations used.

gp(a,b,c,... l,..,Ri,.,.) the group generated by a,b,C,...
with defining relators
S I
gp(X) the subgroup generated by
the sot X.
gp(A,B,...) the subgroup generated by
the subgroups 4,B,.., . 4
{4 % B the free product of A and B,
{A* B J} the generalized free product
of &4 and B amalgamating a
subgroup J.

% =y} the generalized free product

e
[
b

%
o
“e

of 4 and B with x ¢ A, v ¢ B
identified,

rMg) the length of g as & word in
a free group.

| gl the length of g as a word in
normal form in a generalized
free product.

aa(R) the exponent sum of the gen-

erator a in the word R.
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(@) the Frattini subgroup of G,
w(a,b,c,...) & word in the letters 2,b,c,

eso o Often this is abbrev-
iated to w, and thus is ident-
ified with an element w in a
group. Ve have tried to be
as relaxed as possible with
regard to this notation, and
will use words and celements
interchangeably. Thus the
equation

WT(a,b,c) = v, (%,7,%)
will denote that W1(a,b,c)
and WZ(X,y,Z> interpreted
as elements of the group in

question, are cqual,

£ the 1lifting transformation.
[G, G] the commutator subgroup of G.
5(G) the i-th term of the soluble

serics of &, BO(G) = G,
s'(e¢) = [q, al.
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Chapter 1

Torsion~free one-relator groups

The problem we are concerned with in this chapter
is to determine what Abelian groups occur as subgroups
of torsion-free one-relator groups. This problem has
been solved: the Abelian subgroups are free-Abelian
of rank < 2, or those subgroups of the additive group
of rationals which are divisible by only finitely many
primes,

However, given a particular one-relator group one
cannot say precisely what Abelian subgroups will occur!?
What one would like is an algorithm to determine what
Abelian subgroups occur in a particular group presented
as a one~relator group. It is conjectured that for
torsion-free groups an Abelian subgroup which is not
free Abelian will occur as a subgroup if and only if,
to within cyclic permutations, the relator is a word of
the form S™'T%ST for some words S5, T which do not
commute as elements of a free group, and some integer
o, lal > 1. It nas been shovm that there is an algorithm
to determine if a word R is of this form.

As has been remarked in the introduction, the basic
tool for proving our results is the generalized free

product, and the appropriate condition to place on the
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amalgamated subgroun will now be studied,

Section 1.1 The theory of p-nure subgrouns.
M & Ay

4L positive integer m > 1 ig & divisor of an element
g 1n a group G if there exists a root x ¢ ¢ such that
X = g. If the eclement g has a divisor n, then g is
said to be divisible by n. Iet H be a subgroup of G,
Then H iz p-pure in G if for all g € G and integers r

r
such that gp € H there exists an element h ¢ H such
r r

that hP = gp . Let 7 be a set of prime numbers. Then

H is w~pure in ¢ if H is p-pure in G for gll p € =,

Lemma 1.,1.1 A p-pure subgroup of a p-pure subgroup of

G is a p-pure subgroup of G.

Proof Let K be a p-pure subgroup of H and H a p-pure
subgroup of G. Suppose gpl € K. Then gpr € H and since -
H is p-pure in G there exists an clement h € H such that
gpr = hpr. Hence hpr € K and since X is p-pure in H
there exists an element k ¢ X such that kpr = hpr,

Hence K is a p-pure subgroup of G,

Lemms 1.1.2 TLet C be a generalized free product

C = {A * B ; Kl vhere the amalgamated subgroup K is
& p-pure subgroup of A and B. Then A znd B are p~-pure
subgroups of C,

Proof TFrom the symmetry between A and B in C it will



suffice to prove that A is a p-pure subgroup of C.
Let a ¢ A and suppose for some g € C,

r
g = a.

&)
It must be shown that there exists an element of A
whose pr~th power is a. Let |g| denote the length of
g when g is written in normal form.

If |gl| is even then g 1is cyclically reduced so
]gpf] = prlg{. But |a| < 1 hence lgl = 0, This
implies g ¢ A whence g is the required pr~th root,

If |g|l =1 then g ¢ A or g ¢ B, If g €A there
is nothing to prove, so suppose g ¢ B. Then gpr € A
and gpr € B whence gpf € K, ©Since X is a p-pure sub-
group of B there exists an element k¥ € XK such that

T r
kP = gp = a, vhence a has the required pr»th root
in A,

If |g| is odd and lg]l > 3 one proceeds by induction.
Suppose inductively that the result has been established
for all elements with length < n and let igf = n where
n is odd.

It is possible to choose an element s, either in

A or B such that

g = s 'gs lgl < lel.
If ¢ € 4 then
1 T
s %p s = g

oxr
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r

b _ -1 2
% = 38as € i,

By the induction hypothesis there exists an element

a1 € A such that

hence
1 * -1
(s” aqs)p =s 'aP g =a,

1
Thus s"1a1s is the required p -th root of a in A.
If s ¢ B, without loss of gencrality assume =
when written in normal form begine with an element of
A, Then §Pr when written in normal form begins with
an element of A. But
] pr
5 g s =a
implies
§p = sas”! ¢ A ) B.
By the induction hypothesis there exists an element
b ¢ B such that bpr = gpﬂ. Now
(s”jbs)pr = s"jbprs = s“1§prs = a
where ls*1bsl < 1., Hence from the above there exists
in A the required pr«th root of a.
This completes the proof of Lemma 1.1.2,
If A1 is a p-pure subgroup of A then .A_1 is a
p-pure subgroup of C, using the notation of the previous
Lemma. In particuler K is a p-pure subgroup of C. Note

also that free factors of a group are p-pure subgroups

where p is any prime,
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Lemmg, 1.1.3 Let C = {4 * B : J3 where J is p-pure in

A and B, If no nonwtriviai element of the factors A
and B is divisible by all powers of the prime p then no
non-trivial element of C is divisible by all powers of
D.

Proof Let v be any non-trivial element of C¢. If v is
divisible by only finitely meny powers of p then any
conjugate of v will be divisible by only finitely many
powers of p. It suffices therefore to assume v is
cyelically reduced,

If |v| > 1 where |v| denotes the length of v in
normal form, then any root of v must be cyclically
reduced with length > 1. Hence v has only a finite
number of divisors since cach divisor must divide lv 1.

If | v] <1 assunme without loss of generality that
v € A. From Lemma 2.1.2, A is a p-pure subgroup of C,
and as there are only finitely many powers of p dividing
v in &, there can be only finitely many powers of p
dividing v in C,

Lemma 1.1.4 TLet C = {A * B : J} where J is m-pure in

4 and B and 7 is the sct of all but a finite number of
primes. If A and B are groups in which every non-trivial
element is divisible by at most a finite number of primes,
then every non-tgivial clement in C is divisible by at

most a finite number of primes.
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Proof The proof is similar to the proof of Lemma 1.1.3

and so is omitted.

Section 1.2 The Abelian subgroups of torsion-free

one-relator groups.

Ve are now ready to apply the theory developed in
the previous section to one-relator groups., It will be
shown that any subset of the generators of a one-relator

roup gererates a p-purc subgroup where P 1ls any prime

0z

reater than the length of the relator., First we need

ga

a lemma to simplify the problem.

Lemmg 1.2.1 In order to prove that any subset of the

generators of a one-relator group zencrates a p-pure
subgroup where p is any prime greater than the length
of the relator it suffices to prove that in all groups
G =gpla, b, ..., t | R)
where R is a cyclically reduced word involving
&, b, ..., t non-trivially, the gp(b, ..., t) is p-pure
in G where p is any prime greater than A(R).
Proof Let H = gp(x,, X5, ... | ) ve any one-relator
group. WYithout loss of generality onec may agssume R ig
cyclically reduced., Tet §y1, Yos «+«} be any subset
of the generators of H, and put
T =8p(yys ¥o, «0)

If §y1, Yo, «-.} is not a proper subset of {xq, > SR

[
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then Y H and so Y is certainly a p-pure subgroup of

il

H. 1If the set is empty therc is nothing to prove.
Let Eyq, Tos ...} be a proper non-empty subset of
{X1, Xy, wesls

Firstly suppose that every generator in R is in
the set {yj, Yo, «-+}. Then the generators of H may
be split into two disjoint subsets

iy‘); Yoo ”-}7 {Z?’ 2o, cond
where no z-generator appears in R. These two subsets
generate free factors Y, Z respectively such that

H=7Y * 7,

Hence Y is a p-pure subgroup of H since it is a free
factor of H,.

Secondly suppose thet there exists a generator
say %; which is not in {y1, Yos ...} but appears in R,
ess)e It is clear

i+1?
thet Y< X; in fact, by the Freihecitssatz, Y is a

Let X = gp(xx, vees Xy g, X

free factor of X. It will suffice therefore to prove
that ¥ is a p-pure subgroup of H,
Let

G =gpla, b, ..., t | R)
be obtained from H by deleting those generators which
do not occur in R, and rewriting X; as & and the remain-
ing generators appearing in R as b, ..., t in some

order. Then
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H=1{6¢*X; golb, ¢, ..., t)1,

In order to prove that X is & p-pure subgroup of
H it will suffice to prove that the amalgamated subgroup
is a p-purc subgroup of both G end X. But it is a
p-pure subgroup of X since it is a free factor of X.
Hence the problem is reduced to proving gp(b, c, ..., t)
is a p-pure subgroup of G where the relator R of ¢ is
cyclically reduced and involves &, b, ..., t non-
trivially,

Lemma 1.2.2 Let G = gp(a, b, ... | R) be a one-

relator group with R cyclically reduced. Then any
subset of the gencrators of G generates a p-pure sub-
group of G if p > A(R).
Proof The lemma will be proved by induction on MR).
If R involves no more than one generator the lemma is
trivielly true. Suppose the lemma is true for all
groups with relator length < A(R). By the previous
lemma it will suffice to prove that

H=gp(b, ¢, ..., t)
is a p~pure subgroup of

G =gpla, b, ¢, «o., t | R)
where p > A(R), and all the generators a, b, ¢, vev,
appear non-trivially in R. For simplicity of notation,
essume the generators of G are a, b, c, t.

Suppose in G there exists an element gla, b, c, %)
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and an element w(b, c, t) € gp(b, ¢, t) such that for

some integer r,

xr

g = . (1)

It will be shown thet w has a p'—th root in gp(b, c, t).
One now proceeds &s in the proof of the Freiheitssatz,
The proof is divided into various cases depending on
ﬁa(R), the exponent sum of o in R.

Case 1 DLet o (R) = 0. Put N = ng(b, ¢, t). Then an
element of & belongs to ¥ if and only if its exponent
sum on a is zero. Since w € N then Oé(g) = 0. Thus
to prove the lemma in this case it will suffice to
prove that H is a p-pure subgroup of N. To obtain a
presentation of ¥ one uses a Reidemeister-Schreier
rewriting process. Let

k, k -k %k );

_ .=k, k _ = “kt o
b, = a “ba", Ce = @ ca, L) a

k
where k ranges over all integers. Then rewriting
-k, k
a "Ra~ one has a new word R, where A(Rk> < AMR),
. s 3o
Also rewriting w and g one obtains W(bo, Coy s to) and

t.) where i ranges over the integers. The

4 . .
E(bl’ Ci» i

g-symbol indicates that g(b, c¢, ) when rewritten

4

changes to a different word entirely while w when
rewritten has precisely the same word form except that
the letters are subscripted by zero.

It must now be shown that W(bo, Cqyo to) has a pruth

root in H = gp(bo, Cos to). 4 presentation for W is
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N = gp(bj, cy tj | Ry (21l integers j)).

As usual ¥ is constructed from "smaller' one-relator
groups using a generalized free product construction.
For each integer i define

N, = gp(bi, vee, b 59 tj (all integers j) l‘Ri)

prir ©
where, without loss of generality zero and K are taken
to be the smallesgst and largest b-subscripts respective-
ly in RO. Then using the Freiheitssatz N may be

constructed as
e o]

N = Q:% K, where
Ko = Wy
K, = {KO * W, J1}
Ky = 1By *W_, 5 J_1

ond 1n general

Koy = oy g *0_ 5 31 n# 0

(K, * N s I}

K
2n+1 2n n+1 n+1

where if i > O

J. = gp(bi, cees Do g cy tj (all integers j))
and if 1 < O
J; = gp(bi+1, ceey bu+i’ Cys tj (all integers j)).
One is able to exploit the induction hypothesis
because the building blocks Ni which go into the
construction of N are one-relator groups with a relator
of shorter length than R. Hence p, being a prime > AR),

will be > A(Ri).
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Remark We will frequently be using the process of
constructing N from one-relator group as outlined
above, but with minor variations., TFor this reason it
is convenieént to abbreviate the description in the
following way. We will state what W and NO are; thus

N = ng(b, c, t)
and ‘

Ny = ep(by, «cevy by, o, t; (21l integers i) | Ry) .
We will always use O, 4 as the smallest and largést
subscripts on the generator in RO that is singled out
as above, It is understood that Ki’ Ni’ Ji are obtained
in & similar manner to those above,

To show H is a p-pure subgroup of W it will suff-
ice to show H is a p-pure subgroup of Ki for all positive
integers 1. Here it is convenient to introduce
another induction argument. Inductively suppose that

H, N~m/2’ Nm/z are p-pure subgroups of K (m even)
and

H, N~(m+1)/2’ N(m+?)/2 are p-pure subgroups of Km
(m odd).

Suppose m is even,

Then Km+? = {Km * N(m+2)/2 : J(m+2)/2; and
J(m+2)/2 is a p-pure subgroup of Nm/z,and N{m+2)/2'
Since Nm/? is a p-pure subgroup of Kn by the present

induction hypothesis then J(m+2)/2 is a p-pure subgroup
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of Km and N<m+2)/2. Hence Km and N(m+2)/2 are p-pure
subgroups of Km+1' Since by the present induction
hypothesis H is a p-pure subgroup of Km, it follows
that H is a p-pure subgroup of Km+1, and N(m+2)/2 is
a p~pure subgroup of Km+1. Since H”m/g is a p-pure
subgroup of Km then N~m/2 is a p-pure subgroup of
Km+1'

Suppose m is odd.

Then L §Km * N«(m+?)/2 : J~(m+1)/2} and
J«(m+?)/2 is a p-pure subgroup of E~(m+?)/2 and
N~(m~1)/2’ oince N—(m+1)/2 is a p-pure subgroup of
Fn by the present induction hypothesis, then J~(m+?)/2
is a p-pure subgroup of Km and N~(m+1)/2' Hence Km
and Nm(m+1)/2 are p-pure subgroups of Km+1“ Since by
the present induction hypothesis H is a p~pure subgroup
of Km’ it follows that H is a p~pure subgroup of Km+1’
and N*(m+7>/2 is a p-pure subgroup of Km+?' Since
N(m+1)/2 is a p-pure subgroup of Km then N(m+1)/2 is
a p-pure subgroup of Km+1'

Putting these together one has

H, Nm(m+1)/2, N(m+3)/2 are p-pure subgroups of
K(m+?) if w+1 is even, and

H, Nw(ﬁiT_q)/g’ N(E?T+1)/2 are p-pure subgroups

of K if m+1 is odd., It is easy to verify the

m+1
hypothesis for m = 0, 1, 2, This completes the proof
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of the statement that H is a p-pure subgroup of {k for
all positive integers k. Hence H is a p-pure subgroup
of ¥, Thus there exists in H an element h(by, cqs ty)
with
r

hp = W,
Thus h(b, ¢, t) is the required prmth root of w in H,.
Case 2 Suppose G has two generators a, b and

o, (R) # 0. Then equation (1) is

LT ,
g2 (a, v) = v°, (2)
Thig relation in G implies a free equality
r €,
p -3 - ( L ‘“’1 o
g5 b7 = ? SiR S €, = A1

where Si are elements of the free group generated by
a, b. Hence considerinz exponent sums on both sides
one has
p 0 (2) = (2¢,)o_(R)
a*® i’ a !

and

1l

p" o, (g) (2¢)0, (R).

r
ro.. . Do
divides s and so bS/i is the

It Zfi = 0 then p
required pr~th root,

If 3¢, # 0 then po (W)Ub(R) =0 (R)(prﬁ (g) - o).
Since p > 0‘(R) one has p* divides 1 pto (g) - 8 whence
pr divides s, so bs/pr is the required p *_th root in
gp(D) .,

Case 3 Suppose oa(R) £ 0 and ob(R) = ob(g)

Here one takes
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N

il

gpgla, c, t)
and as before, constructs N from

c., t. (211 integers i) | RO).

Ny = gp(ao, cee, B i by

u’
Using the same argument as in Case 1 one may prove
gp(oi, By (21l integers i)) is a p-pure subgroup of N.
The equation (1) when rewritten in N will be

pr

) . . .) = wle., T,

g (ay, cyy ) = wley, B;)

. . r
where 1 ranges over the integers, hence W nas a p -th

. C . r
root in gp(ci, ti). This implies w has a p -th root
in gp(b, ¢, t) as was required,
Case 4 ©Suppose G has more than two generators,
Ua(R) # 0 and no generator has exponent sum zZero on

both g and R, Let

O'a(R) = ’»‘41’ Ub(R) = 61, GC(R) = y«z;
O'a<g) = Ci2, Ub(g) = ﬁz, Go<g> = 'V2.

Subcase 4.1 Suppose Gy = Gy Yy # 0. Here one proceeds
by embedding G in a larger group G defined by
G = gp(a, R, ¢, © lﬁ)

where
B1yo=Bov @oyq=0qy ayf o =aof
B 1Y27F2 1, b 2r17rre ¢ B w2772 1’ £)

~ ?

R = R(a

~

where G maps into G by the natural extension of
JF1vePary

a - a

Q

Yqa—0,7
b Ly 21T

o, B~ B
¢ »c b 172 T2

t -1,
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Note that cb(g) = 0. Under this mapping the relation
(1) becomes
T
gp (a, b, ¢, ) = wlb, ¢, %)

with ob(g) = 0, One now proves, as in Case 3 that W

has a pr-th root h in gp(h, c, t).
How

CoYy =0y
G = {G * gp(p) 3 b =D 2™ 2?

~

and

el

v, I are not conjugates of a power of b for g, h

2

have Gb(W> = ab(h) = 0. But g, h commute so they
belongmto the game factor, namely G. Hence
h € G Ngplk, c, t),
that is
h ¢ gp(b, c, t).
Thus w has the required proth root in gp(b, c, t).

Subcase 4.2 Suppose %Yy = %Y, = 0. Bince “ £ 0,

if vy, = 0 then vy, = 0, contradictine the fact that no
'} 2 F] o

generator has exponent sum zero on both g and R. Thus

one may assume @, £ 0, v, # 0. In this case one embeds
G in a new group § defined by

g = gp(a? b: C, t }£>

Where

R = R(a g*yq, b, gaT, )
under the natural extension of the mepping
2Fy1

®

a -

b -b
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Wow o (R) = 0. The relation (1) becomes in §,

r
P (EL, b, ¢, t) = E(by S t)

~

W W

and cﬁ(g) = 0., Again onc may proceed as in Case 3 to
show that y has a p -th root i in gp(b, ¢, t). But
since neither y nor h are conjugate to a power of g,
it follows that y, h belong to the same factor G where

G

~

1l

(G * gp(e) 5 c=¢ '}
Thus I ¢ ¢ Ngp(b, ¢, t), that is
h € gp(b, c, t).
Thus in every oaée w has the required pr-th root in
gp(b, ¢, t). This completes the proof of the Lemma.

Theorem 1.,2.3 Let G = gpla, b, ¢, ... | R) be a

torsion-free one~relator group. Then no non-trivieal
element has more than finitely many prime divisors,
loreover a non-trivial element is not divisible by
more than finitely many powers of a prime p, if p is
greater than the length of the relator.

Proof The theorem will be proved by induction on the
1eﬁgth of the relator of G. If the length of the
reletor is O or 1 then the theorem is trivially true.
Using the usual embedding process one may, without
loss of generality, assume aa(R) = 0, and a, b occur

non-trivially in R where R is cyclically reduced.
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Let N = ng(b, c, ...), and construct N in the
usual way from

\

et

fl

o = 5p(by, «ee, Dy Ciy o ees (211 integers i) | RO).
Now A(BO) < AMR) so by induction no non-trivial element
of NO has more than finitely many prime divisors. More-
over a non-trivial element of NO is not divisible by
more than finitely many powers of a prime p if p is
greater than the length of the relator RO. Since G/N
is infinite cyclic it will suffice to prove the theorenm
for N,

Inductively suppose it has been shown that every

non-trivial element of XK,

K1

has in Kk—? only finitely
meny prime divisors, and is not divisible by more than
finitely many powers of & prime p where D is greater
than A(RO).
If k¥ is even, say k = 2n # 0, then

*

x l
k-1 ~11

==

K = i K

or 1f k is odd, say k

9 J_ngy

I

2n + 1, then
K

k 5.

In either case, by Lemma 1.2.2 the amalgamated sub-

{XK, . * W :

k-1 n+1 Jn+1

group is a p-pure subgroup of both factors: in fact
it is m-pure where 7 is the set of all primes greater
than K(RO). One now uses Lemmes 1.71.3 and 1.7.4 to
‘conclude that each non-trivial clement of Kk has only

finitely many prime divisors, and is not divisible by
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more than finitely many powers of a prime p, where p
is greater then A(RO). It hos alrecady been remarked
that the result holds in KO(:NO) so the result holds
in Kk for any positive integer k,

Since Kk is @ p-pure subgroun of ¥ then no clement
of Kk can acquire new pr~th divisors in N, Hence every
element of Kk is divisible in N by only finitely many
powers of the prime p. Since X, is & wm-pure subgroup

i<y

of ¥ where 7 is as above, then no element of Kk can
acquire more than finitely many ncw prime divisors.
Hence every element of Kk is divisible in ¥ by only
finitely meny primes. This completes the proof of the
theorem,

We can immediately confirm a conjecture of
¢. Baumsleg 1964.

Corollary 1.,2.4 The additive group of rationals is

not a subgroup of a one-relator groun.
Proof TLet G be a one-reclator group
G = gola, b, ¢, ... | R).
If G is torsion-free then no non-trivial clement is

e

divigible by all the primes, so the additive group of
rationals is not a subgroup of a torsion-free one-
relator group. Suppose G hos torsion. This implies R
is a proper power, say R = Vm, m an integer > 1, where

V is not a proper power. DLet F be the group freely
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generated by the elements a, b, ¢, ..., and let NV, Nvm
be the normal subgroups of F generated by the words V,
7 respectively. From the Main Theorem of Cohen and
Lyndon 1963 there is a transversal
T=1,.., %, ...}
for F mod NV such that

Ny = gp(V¥(z € x) | ),
1s freely generated by the elements V=. INow every
element of F can be written x where x € X, h S.NV.
Hence

Ny/Mym = gp(VF | (V)8 211 g « 7)

= ep(7 | ("), allx ex, n em)

= gp(V* | (V)*, a11 x ¢ %)
= go(v" | (V9™

Thus NV/NVm is the free product of cyclic groups.

b

as o

(i

Now G = F/Nvm and put H = F/NV, Then H h
presentation

H=gpla, b, ¢, ... | V)
and g0 is a torsion-free one-relator group.
But

H= F/NV = (F/Nvm)/(Nv/Nvm) ~ G/N
where I is the free product of cyclic groups. It has
already been shown thet no element of H is divisible
by all the primes. Hence if an element g of G is divig-

ible by all the primes, it must be contained in N.
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Since all the roots of g lic in I, a2nd no non-trivisl
element of W is divisible by all the primes, then no
element of G is divisible by all the primes. This

N

completes the proof of the corollary.

G

R.C. Lyndon has shown that the cohomological
dimension of & torsion-free one-relator group 1s s 2.
Now the cohomological dimension of a frece fbelian group

]

of rank n is n, and of a dircct product of an infinite

I in

cyclic group with a non-cyclic locally cyclic group is

> 2. ©Bince the cohomological dimension of & subgroup

is less than or equal to the cohomological dimension

of the group, it follows that the only ibelian subgroups
of a torsion-free one-rclator group arc free iAbelian of
rank € 2, or locally cyclic subgroups, in which cvery
non-trivial element is divisible by at most finitely

many primes,

Section 1.3 An extension of the Freiheitssats.

In this section we prove the following result: if
a one-relator group G involves more than two generators
non-trivially and one of them has zero exponent sum in
the relator of G, then onc can choose one of the
generators, say x, and an integer m such that for all
integers a > m, X" and the generators other than x

freely generate a subgroup of G. Because of the
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requirement thet the exvoncnt sum for one generator be
zZero, omne 1ig unable to use an induction argument in
quite the seme way as before.

]

It will be useful to have the following notation:

G=gp(u, v, «vo 5 2, b, vvs 3 %, 7, ... |R) (1)
be a one-rclator sroup where the generators are divided
into three disjoint subsets. e call the generators
U, Vv, ... the top generators, the 2, b, ... the middle
generators, and the %, y, ... the bottonm zgencrators.

e assume always that a top and bottom generator, say u
and x respectively, occur non-tr ally in R vhere R is

~

cyclically rcduced. “Then a group 1is considered in this
wey it will be called a trisected group. A group is
called bisected if the set of middle generators is empty.

Lemma 1.3.1 Let & be the trisected group (1) where u,

X, ¥ occur non-trivially in R. Then an equation

4

Vj(u; V, a0 0y Eu, b; l*“') = Z(X7 y’ te a’ O’ A"'>

(2)
where u occurs non-trivially in W implics that for some
cyclic permutation of R, R is freely equal to o word in

U, Vv, veey, a8, b, vuu, w
where w is a word in x, y, ey 8y Dy, aas .
Proof The lemma will be proved by induction on A(R).

The lemma is easily showm to be true for the first few
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[

-1 .
cases., For example 1f R = uxuy then y = uxu and u, x

freely generate G. Clearly no non-trivial word in uxu

+

and ¥ can have x removed thus cstablis

el

1ing the lemma in
this case, BSuppose inductively the lemma is true for
all relators with length < A(R), 2nd that equation (2)
takes place in G, It will be shovm that R is of the
required form.,
Case 1 Suppose UX(R) = 0., As usual let

0 = gpg(u, Vo ey 2y Dy weny Ty owed)
and congtruct ¥ from

Hy = £p<uO’VO’°°°’a"bj"°"yj’"" (a1l 3) IERO).

J
Note that if generators other than those displayed in

T
4

e
hold in G. For equation (2) takcs place in ¥ and

were to occur in Ry then cquation (2) could not

cexpressed in terms of the gencrators of N will be
W(uOEVO,...,aO,bQ,.,.) = Z(yj,.c,,aj,bj,...).

This cquation takes place in jO‘ One now trisects

NO as

0y = gp(ao,vo,o.. 5 85sbgs e ;yi,,,.,aj,bj,... (3£0) | »

The relator RO has shorter length than that of R, so in

order to apply the induction hypothesis it is only

neccssary to check that R involves non-trivially two

bottom generators. But if for some integer r only b

occurs in the bottom generators then x must have occurred

I . -r T .
in R only in the word form x ~yx . Thus taking

O>°



W= X"ryxr one has that R iz a word in U, V, .., &, b,
vy W
Thus one may assune two botton generators occur
in RO. Using the induction hypothesis RO ig a word in
Ugs Vgs eees 8oy Dgy weee, W
where w is a word in Yis o5 25y by, ... . Rewriting
RO as the relator R of G one has R is & word in
Uy Vi eeoy @y D, vou, W

where w is o word in x, Ts eney &y, D, o, .
Case 2 Suppose aX(R) =r £ 0, ay(R) = -3 # 0. Here
one mey embed G in a group H

H=gplu, v, ... ; a, b, ... ;

w0 W
&
=
o

where Ry = R(u, v, ..., a, b, ceey, X7, 3
under the usual mapplng
U=u, v »-v, ..., 2 =»a, b =»b and

a
X >

X

5
X
ol

~ <l L . -

y » 2 where g =x'y or yx .

By a suitable choice of % one can arrange for RH to

involve %, y non-trivially. Clearly equation (2) when

napped into H will have the scme forn. Since GV(RH) =
5 1

one may then proceed as in Case 1 to prove that RH is

a word in

Uy Vi eevy @, b, vo., w
where w is a word in Sr Ly eeey Oy, by, ... . Now RH is

s .
freely equal to R(u, v, ..., o, b, cevy X, z) so this

=5
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inplies thet R is a word in
Uy Vy ooy &y Dy eoe, W
vhere w is o word in X, ¥, ..., @, b, ... . Thig

completes the proof of the lemnma.

Corollery 1.3.2 Let G be a trisccted group (1) and

suppose there is an equation
V(u, v, wevy g, b, wnl) = E(K, Y, el a8, b, w.l)
where u occurs non-trivially in 7. Then for o suitable
cyclic permutation of R, R is a word in
W, a4, b, .., Z
where w is a word in u, v, coey 2y b, ..., @nd z iz 2o

word in X, ¥, ..., 9, b, ... .

Proof If from among the top and bottom generators only

e

U, X occur non-trivially in R then the corollary is
trivially true by taking w = u and z = x. If x and y
occur non-trivially then by the lemma above, there
exists a word

2(X, T, vee, 2, b, +..)
such that for a suitable cyclic permutation of R, R is
a word in

Uy Vi, ooey, Oy b, oou, T
similerly, or by symnetry, if U, v occur non-trivially
then there exists w(u, v, ..., a, b, ...) such that
for a suitable permutotion of R (and one which will

not break up any word z), R is a word in
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V“], 69.», D, # ey Z

Lemma 1.3.3 Tet G be a trisected group (1) ond let R

P

be a word R in w, 2, b, ..., x, Yy «.. vhere w is o

word in u, v, ..., @, b, ... . Then if H is the sub-
group of G gencrated by w, =, b, seey Xy ¥, ... then H
has the pregentetion

gp(p, a, b, cve, X, ¥, ou. | Rlo, &, b, .ov, x, 7, ...)),
under the mapping p - w, a >a, b »b, ..., x =X,

T 2 ¥, ecv

Proof Wow & = gp(u, v, ... 5 2, b, vuvv 5 %, ¥, v.. |

> by wee, X, ¥, w0.)) and by

¢
¢
-
o
.
-

.
-
A
.
%)

R(w(u, v, ...,
Tietze transformations

G =gplp, 3, B, «vo, u, v, ..., 8, Dy veey X, 7, ee. |

p=uwlu, v, ..., a, b, ...), =2, b= D, ..,

{a 3B, J}

1

A

where A = gp(p, 7,
K, Ty eed))
and
B=gp(u, v, .v., 2, b, ... |.)

and J is the free subgroup freely generated by the
identificd clements

a=a,b=0" ..., p=wly, Vi eesy 2, b, ...,
This decomposition of G is possible since from the

Lo

Freiheitssatz gp(w, &, b, ...) is free in the first
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factor. Thus the gp(w, &, b, ..., %, ¥, ...) is the
first factor which has the required presentation.

Corollary 1.3.4 Let G be a trisected group (1) and

suppose
o, v, wooy a, b, .0) =34(x, ¥, ..., a, b, v..)

(3)

hen if w(u, v, ..., a, b, ...) is as defined above,

s

4 is o word in w, a, b, ... .
Proof TFrom above one has o decomposition for ¢ as a
generglized free product. he right-hand side of
equation (3) lies in one factor and the left-hand side
of (3) lies in the other factor. Hence Hu, v, «..,
a, b, ...) lies in the amalgamated subgroup, which
implies 77 is a word in w, 2, b, ... .

In 1960 Greendlinger showed that if G is 2 less
then one-gixth group, that is = group for which any

.

two defining relators teken from a gsymmetrized set
either cancel less than onc-sixth of each other or are

inverse to each other, then if a and b are digjoint

) ~

. (44 3 . )
generators of G with a = b £ 1 for integers o, f then
a b ~, € = £1 is a relator of &. One might hove

expected thot in a one-relator group an equation
o bﬂ*

< -

vhere 2, b are distinct generctors would hold
. e . Y. Py
only if the relator itself was a conjugate of a 'b

for some integers 2% ﬁ?' This however is not the
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case for in
gp(a, b | aba

one can easily show

2 b-3

In fact it is an unsolved problem to determine all
, ny o p .
relators R(a, b) such that an equation a = b° holds
in gpla, b | R(a, b)). Mognus 1930 and Steinberg 1962
solved the problem for certain peirs of integers ¢, £,
However the following corollary shows that the

next best thing is true,.

Corollary 1.3.5 Let G be o bisccted one-rclator

group
G =gp(u, v, .. 3 %, v, ... | R)
with a non-trivial set of equations
7
’v‘fi\u., V, aoo) = Zi<X’ y, oto)
where 1 ¢ some index get. Then thore exists an

cquation

il

;;‘Z(ui V, ;oo) :‘?‘(K’ y’ ‘..')

such that for all i
ns 4
- i
w, = W z, = &
i = 7 71 =
for some integer n, .
Thet is to say any equation between disjoint sets
of generators in a one-relator group is merely a power

of some one equation in the some disjoint sets of

generators. Te refer to the equation ¥ = Z as a basic

p—
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disjoint equation. For different bisections of a group
there noy be different bagic disjoint cquations. Thus
the corollary may be simply stated: every disjoint
equation is o power of o basic disjoint equation, The
proof follows essily fron Corollary 1.3.4 by discarding
the middle generstors.

“le now strengthen this resu

t

o

ML(U_,V,, '~) = Z_(X:yr coes Dy Dy

[
®
]

- basic disjoint equation. Then
Fu,v,oe,a,b,000) = 202,75, .00,0,0,...) (5)
implies ¥ is a word in Wea,b, e,

froof 'The lemme is proved by induction on AMR). If

there ore no middle generators the result is true by

the previous lemma, Asswie the lemma has been proved

for all groups with relator length < AM(R), and agsunme
some middle generators occur.

Case 1 Suppose UX(R) = 0, Let ¥ = ng(u, Ty wee, O,

by, <o, ¥, «..) and construct N from copies of

by

¢

Ny = rp(uO,vO,...;aO,bO,...;yi,...,a.,bj,...,j%O IRO)
regarded as a trisected group. 4Lgain note that RO
will involve only those generators displeyed otherwise
equation (5) could not hold. Vhen equation (5) is
rewritten as an equation in N one has

s Yo o) = gy eny By By, )



which takes place in NO. Clearly this is a basic dis
joint equation in NO‘ The relation (56) when rewritten
as an egquetion in N is

?‘:;‘(‘\,103 VO’ e vy ao, bo, o-e) :%(37i7 * s 0y a}_} bi, ...).

This equation also takes ploce in EO' By the induction

hyvothesis W is a word in E(uo, Vg, ee.) and 8gs by see -

=

Interpreting this as a relation in G one sees that
w(u, v, ..., &, b, ...) is a word in (u, v, ...) and
a9 ‘b! ® o @ »

Case 2 Suppose aa(R) =0, Let N = ng(u, V, ece, D,

ceey X, ¥, v..) and let

Ny = gp(uo, Vor e 3 By oeee 5 X, e, ..., (811 1) f RO).

Again only the generators displayed can occur in RO.

Rewriting equation (5) one obtains
E(uo, Vos eee) = §(X19 Fis ecosr By, ces)

“

which takes place in }O’ and is & basic disjoint

equation in NO. Zquation (5) when rewritten will be

AL

I Wolus , vy aee, b, wed) = 802, Yo, e, Dy eee).
i=1 i 73, Js i i
i i Y (6)
where each Wi involves j. or AEPEREER non trivially.
i i

Now onc observes that no X which is a word in the

generators of Nj_ can be in any other N., J# j.,
5
because by the Freiheitssatz one cannot eliminate any

A c s ese o One may now prove that cach W. isg 2

it di : i

word in g(uj ) Vs .+.) and the b., ..., by an induction
=717 T3y i
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argument on the integer m. If m = 1 then
vr( — 7
Vi U. ,'V'~ ) ° s 8y b-y a.’.) n[l(.zx’ y-, 00y bo, !l.)
~ i i
1 Jq Jq J L
and this takes place in N, ., By the original induction

hypothesis this implies WT is a word in W(u. , Vj s ees)
_ 34

=

and bi9 +o» o oSuppose m > 1 and that the result has been
established for all positive integers < m. Then teking
the first factor Wj on the left hand side it is clear

that

LACY vy vee, D ceu, D

31, j’ * L -
But such a relation implies W1 is a word in E(u. y Vo,
- 1 1
...) and b,y ... . Hence in equatiou (6) one may take

ao;) = ZT<Xi’ yi’ i,

W1 to the right hand side and replace each E(uj , V3 ,
- 1 1
.es) by £<Xi’ Yis ooy Dy .e.). Thus one obtains
m
i§2 Wi<uji, Vji, » ey bj; :o.) = Z<Xi’ y) ¢ oy bi’ "'>'

But by the supplementary induction hypothesgis this
implies each W.,, i =2, ..., m is a word in W(uj ,

i
Vi o, v.,) and Diy een s

i

Using the same technique one can prove an interest-
ing result which is somewhat analogous to the result of
Greendlinger mentioned sbove. It is interesting because
it is one of the rare occasions in one-relator groups
when one cen precisely determine the exact spelling of
a relator from an equation in the group

Lemms, 1.3.6% Let G be a bisected one-relator group

G = gp<u’ V’ ° &y ; X; y, LAY ] ! R)
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and let W(u, v, ...) = Z(x, ¥, ...) be a basic disjoint

equation. If Z is not a proper power then for a suit-

able cyclic permutation of Ri1, the relator R is

g(u? V, ees) é"T(x, Yy ees).
The proof follows that used above with a slight variation
(in the case when ¢ involves only two gencrators u, X),
which the reader can easily supply.

4

This lemm ig related to the following problem:
If 2 free group G is generated by clcements a, b, ¢
satisfying the cquation

k.1 m
ab = ¢

where [ k|, | 1], |m| > 2, thon the rank of ¢ is at mogt

1. Lyndon 1959 proved this statement for |k| = |1] =

lm| = 2, Schenkman 1959, Stallings 1959, and Baumslag
1960 for |k| = [1] = |mnl, Schiitzenberzer 1959, and

Lyndon and Schiitzenberger 1962 for the general case,

and Baumsleg and Steinberg 1964 for a generalization.

~

Theorem 1.3.7 (Baumslag and Steinberg 1964). Let

®
B

W(X1, Koy sy Xn> be an element of a free group F
freely generated by Xis Koy wen, X X which is neither
& proper powsr nor a primitive. If 815 8oy erey 8, 8

generate free group G and arc comnected by the relation

o)

W<g1, ggr veo, gn> = gm m > 1

then the rank of G is at most n ~ 1.

Proof If the rank of G is n + 1 then any n + 1 generat-




AT

ors of G freely generate G, in particular 815 805 ree,
8,1 & But this would imply that no non-trivial rel-
ation exists between 811 8oy covy By 8 contradicting
the hypothesis,

A necessary and sufficient condition for the
rank G to be n is that w(xq, Koy eney Xn)x"m has a

primitive root R. For if it has a primitive root

i1

R(Xi, X5y eeey X, X) then let W gpF(R) and F/N is
free of rank n, and is generated by the n + 1 elements
X1N, XZN, ooy XnN, X,
satisfying the relation
w0, %0, ..., x ) = (x0)®,
Consider the homomorphism ¢ from F onto G defined by
X4 =g (i =1,2, «oo, n), x¢ = g,
Let h1, h2, vaey hn freely generate G. By a special
case of Grushko's Theorem there exists a free generat-
ing set Tir Tos eees Tpuq of I such that
yi¢ = hy (i =1,2, ..., n), Vet = 1.

The kernel of ¢ is the normal closure of vy in F,

n+1
But

-

[W(XT, Koy veey xn)x o =1,

-

Hence w(x X eve as ¢ T .
nece w( 10 Xo, , Xn)X has a primitive root Y e

Thus to »rove the theorem it is sufficient to

-1

prove that W(X1, Koy eeey Xn)x does not have a

primitive root. But by Lemme 1.3,6%any root must be a
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Il o

conjugate of W(XT, Kos seey Xp)X . ®Dince a conjugate

of a primitive is a primitive it ig sufficient to show
~m . e .
that w(xq, Koy eeey X?)X is not nrimitive. But if

it is primitive then

; . ol o . ) il
G = g9(g1; gg) vy gn’ 3 I W(é19 529 v ey éﬁ>5 )
£

ree group, and as mentioned before has rank <

G/gvg(wlegy, g5y «vny 8))
= gp(%j? gg: oo ey gﬁ , W(g1: ge, o5 ey gn)>%gp<g ’ gm>r

Since w is not a orimitive then the First factor cannot
be generated by n - 1 elements (Mognus 1939). But by
the Grushko-Neumann theorem on the number of generators
of a free product, G/ng(w) cannot be generated by
fewer than n + 1 generators. The same ig therefore
true of G, so W(Xq, Koy ouey Xn)x"m is not primitive.
This proves the theorem.
‘e now introduce the concept of a word descending
in a group. Let
cony By, | R,)
where the subscripts in RO range from O to p inclusive.

Wy = gp(ao, cevs B, g,

oo, b ce.) is said

Then a word W(aT, e, & s

to descend one step if

W(a1,.,.,ap,b},...gbu,,..) = w1(ao,.e.,aﬂ*q,bo,,,,,bumqsne.).

If further we 1ift the word on the right by increasing

the subscripts by 1, symbolized by &, thus
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i -~ £ .
.{-1_,{(8,09coa,w’u‘-,;,bofcop,‘b#m.j,poc)!‘r‘%’il,}<a;,[’..q,au’bjgnto;—bﬂ;oo’>
and obtain a lifted word which descends another step,
namely

W
%

1<ai9""au’bT""’bu""> = g2(a0’“"’ap-T’bO’"”bu_T"">

then W(ea,, ..., 2, b., .., b, ...) is s2id o des-
1 2 17 K
cend two steps. Inductively one can define descension

through k steps. ZExamples to illustrate the various

possibilities of descension follow,

)

i ey - T e — @o o 2 2re i
;Jﬁua«lﬂgzle 1 Let RO = (gc,lu.o> . Hur\, 1

show (see the Spelling Theorem 2.1.1) that no non-

ot

is possible to

trivial power of 8, will descend. Hence descension is
impossible with this relator.

‘51 s = ,') 2 - 2 ]

sxample 2 Let RO = ay aObO. Here &y descends one
sten, but no word in 2y, b1 can descend more than one

;

step.

sremple 3 Let Ry = a,"ay . Here a, will descend
k steps. Thus

16 _ 8.0 & 2% - a, & @ = a, & a,” = a
0 1 0 1 0 1 0

W
o
)

I
P

ay
descends four steps,
P 2. =2 2 P
Lxample 4 TLet RO = 8,78y . Here 8, descends infinite-
1y,

2 2 2 2 2

81" = ay & &y = a, £ 817 el

In a similer way onc defincs an ascension of a
word through k steps. Ve aim to determine the spelling

of a relator RO when unbounded descension or ascension
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occurs. To this end we first prove
Lemma 1,3.8 Let Ny = gp(ao, ces B, by wee, by,
...) for integers i,

cee ] RO) and let W= W(ai, bi’

O <1 € pu, where w is not a »rover power as a word in
5 Rt N b

a free group. If w * descends 4 steps then

u
R T .
W, = Wwy, Wis o een, ‘ﬁzmj)'

. o
W

it IJ

exists a basic disjoint equation which will clearly

descends, by Corollary 1.3.5 there

be, for some integer m

m

W, = 21(ao, cevs By 4y Doy we, b ce)e ()

There are two cases to congider.
ot - ) . m 3]
Case 1 Suppose 7, descends u steps. hen

Yrm — rd 2 o)

‘%’/J - -4!,1 &IZ,I(CA,}, e e 0y au, b,}, ¢ s 04 bu, ‘.')‘
But this is to descend again so using Lemma 1.3.6, 2,

. . m .

bp, must occur in z4 lifted as W, This means that
a ., b » +e. Occur in z, in cquation (7) as w ™
-1 H -1 1 - M1
Thus equation (7) may be refined to read

m e
W, = 21(

Now repeating the descension

; m
aO’""%zuz’DO’°"’q4~2""’wu-1)’ (8)

T‘m A = p 4 m
‘/Ju - Z/I(ao’ﬁci’au“‘z,—bo’OQO’bym2"ﬁ.’X’\)}‘t*o]>

b

AR R

L
= Zi(a?’°“’au-1’b1”"’bu~7"°‘
Ej(aO"‘°’au-2’bo?°"’b ce W %1))
£ zq(az,p..,ap,bg,...,bu,...

ZW(aY,...,a““1,b1,'..,bu~1,o., W



-51—

Now in order for this last word to descend the a,, b,

m :
... must occur as v, « This can heppen only if Y

. m .
b, 5, «.. occur in (8) as Wpiz. Thus equation (8)
mey be refined to read
mo = m m
Tvrvr = a ® ¢ @ e p 2 ¢ % @ A v
U Zj(“os 3 ay__‘3= boa 5 b“_Bﬁ 3 wu__’Zy 'r‘u_"'})
(9)
One repeats this argument until after u descensions
_m e MM _m
‘"‘]u = “’(‘EJO 9 'f‘!,; 5 o s 8 \‘/u ”»; ) .

m
Case 2 Suppose W, does not descend g+ 1 steps. Then

one uses an argument similar to that above, until one
strikes a step where no further descension is possible
unless a power of me is taken. But the effect of
taking a power will introduce me only if at that

particular step, say the k-th step one has

- r
v 1w v
H
where V is a word in 8y ey aﬁ~k~1’ bo, .oy bu~k~1’
m m - . .
EEFIL I R W, Taking the required power one then

Lo . . m
continues to show that V is a word in Wiy s Wis eee,

m
wpl. Hence

- ; n . .
1 V  whence w is a word in Wwa, iy s

u —-k M
This completes the proof of the lemma.

m

W =V

u
vy W .

¥ IJ___‘,

Actually we have proved more than we set out to
do. For in Case 2 above, if V is non-trivial it is
not too difficult to sce that no word will descend un-

boundedly. Thus we have in the notation of Lemma 1.3.8
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Lemma 1.3.9 If words Wun descend unboundedly then

either
w = w Tt
gm0
LI _ we . m W o
or w " = Ty, PP me1)'
Lemma 1.3.10 Let Ny = gp(aO, ceey 8.y by e, by oees

| RO) end let w, = w(ai, b., ...) for integers i,

l’
It
n .

7 = W({w 77 .o V7

W, (Wa, v 1 , »&1~1)
then RO is a word in Ws Wis een, Vi, for some cyclic
permutation of RO.
Proof TLet NO be bisected with &,y bu’ .+e 28 the top
generators, and the remaining generastors as bottom
generators. By Corollaries 1.3.2 and 1.3.4, for some
cyclic permutation of RO’ RO iz a word in w, and some
root of W(w,, ..., W, 1). But clearly a root of
T(wn, v ony wa1> will be a word in Wiy s Wiy eoe, Wﬁ~?g

Hence R, is a word in w v ee e, W
0 = ok "—;’ b IJO

Iheorem 1,3,11 TLet ¢ = gp(a, b, ¢, ... | R) where a,

b, ¢ occur non-trivially in R with oa(R) = 0, Then

for one of the generators a, b, or ¢, (say b) there

exists an integer m such that for all integers @ > m
a, b, c, ...

freely generate a subgroup of G.

Remark If Oé(R) # 0 the result may be false, for example
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if R is agbzc%. Then there is for no integer m,a

choice of a, b or ¢ with the required freeness property.
Proof Tet N = ng(b, ¢, ...) and as usuzl let

N gp(b

O~ & )

where O, u are the least and greatest subscripts appear-

O, L] -bu’ Co, 40y C/J’ LR 2N ] ’R

O

ing in RO for al1 b, ¢, ... . The nroof may be con-
veniently divided into two cases.

Case 1 Suppose there is a bound m, on the number of
steps in the descension of words in bu’ cp, sy, and g
bound M, On the number of steps in an ascension of
words in bo, Cys «.. . Let m be any integer >

my + Wy + #. It will be shown that if a ig any

integer > m,

freely generate a free group. For suppose

(2%, b, e, ...) = 1

where ¥ is a non-trivial word. Since a%(W) =0
[ h

this may be rewritten =g an equation in W,

o, , c.

for integers n; . This relation may be split into a

,,,):1

product of subwords, each subword being a word in the

generators of Nan for n integral. Thus

,oao)

1=VW= W1(ban1’can1>"°)“2(ban2'oang’"')'*‘Wr(banr’canr

vhere n, # o # vue # n,.

This relation is impossible in N. For it if takes




place in NO (without loss of generality one may assume
W? comes from NO and NO is the least such Nan oceuring),
then one has a non-trivial relastion in NO which implies,
by the Freiheitssatz that only the generators bo, o
«+. OCcur non-trivielly. This implies that a occurs
trivielly in R contradicting the hypothesis of the

theoren,

Suppose it takes place in Kk = iNO *® gp(N15 ooy

T . Then W i o 3 4 y i ie ] S -
kk) ; J1§, Then W, lies in N, and W, lies in the sec

ond factor. Suppose inductively that no word T of length
r can lie in any Ni. This is cleerly true if r = 2 for

ota)
7

does not lie in NO since MZ cannot descend sufficiently

Cn a?

W ; . W
1(ogs ey wn Wb,
to lie in NO' Similarly one shows that W1 cannot
ascend sufficiently to lie in any Nr to which Wg can
descend. Similarly one proves thet W does not lie in
N, for any integer i, so ¥ has length greater than 1

i
in K

e This shows ¥ # 1 and hence there can be no

relation between aa, b, ¢, oo &

Case 2 Suppose unbounded ascension or descension

occurs. Without loss of generality let it be descension.
Then for some word w and cyclic permutation of RO, RO

is & word in s Wys o ees, Wu, This implies that R is

2 word R in a, w(b, ¢, ...,). Define

H = gpla, w | R(a, w)).

1
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Then G = {H * gp(b, ¢, ... | ) 3 w = w(b, ¢, +..)1.
There are two cases to consider now.

First suppose gsome letter b or Cc, say b occurs in
W(b,~c, ves) separated by some letter other than D.
Then one can deteraine zn integer m such that

b, C, vas, Wb, ¢, ...)
freely generate a free subgroup in the group genersted
freely by b, ¢, ... . This implies that

a, ba, Cy coe
freely generate a free group in G. TFor no word in
b ¢, ... will be a power of w(b, ¢, ...), hence will
not lie in the mmalgemated subgroup. So any non-

e . a .
trivial word in a, b , C, ... Will be of length =

—

in the generalized free product above.

Secondly, suppose b and ¢ occur in wib, ¢, ...)
only once, that is

wib, ¢, ...) = V.jbﬁvzcyv3

where V Vg, VS do not involve b or c. If B = 1 let

1
G =gpla, b, ¢, ... | R(a, (b, ¢, ...)))
= gpla, b, ¢, ..., x | R(a, w(b, c, cee)), X = bvgcy)
= gpla, x, ¢, ... | R(a, ijvg))
= gp(e) * gnla, x, ... | R(a, VixV,)).
It will now be shown that a, b, ca, ... freely generate
a free group for ¢ >m = 2y, TFor suppose

a

Wa, b, ¢, ...) = 1.
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- P - a , . . . .
Then W(a, xc /Vg 1, C, «..) = 1. But it is impossible
to eliminate ¢ from this equation for between powers of

will occur words of the following types

st

-1
x ﬁi(a, ve. )X, i\

These words are non-trivial elements in the second

(e, ..., Ve, L0z, K"iﬁj(a, cen
kS

factor. This follows immediately from the Freiheitssatz

for the first two words. TFor the last two, a relation
such as

”.(u ce )X = 1
would imply that R(a, V1XV3> is Wi(a, ...)x, using
Lemma 1.3.6%, But R, being a word in a, VTXV3, must
heve only one syllable a power of V KVB, hence R has
only one occurrence of a, contradicting the hypothesis,

Thus one hes that W(a, XC”YV2"1, ca, cee) = 1 is
impossible in G for non-trivial W,

If B £ 1 let

H = gp(c, Y, ¢, d, ... IR(&, V'vagoyv?)))‘

o

Then G = {H * gp(b) : y = Wi, Wow if Wa, b, ¢, ad, .,,)

= 1 for adefined as above, one may rewrite this replac-
ing bﬁ by v, to obtain
L. Pr B
Wb T, 2L, T = g (10)
1 2
where the words Wi are non-trivial in a, y, oa, d, ...

e

and ﬁi are integers 0 < ﬁ < f. HNow no factor a is a

,g.
power of y by the case just considered. Since no b *

lies in the amalgamated subgroup, the length of the left



hand side of (10)is strictly greater than zero, unless
W(a, b, c”, d, ...) is Treely ecual %to the empty word,
This completes the proof of the theorem.

In proving case 2 above we did not use the fect
hat o (R) = 0. This result may be stated as

Corollory 1.3.12 Let G = gpla, b, ¢, ... | R(a, wib, o,

.-+))) vhere 2, b, ¢ occur non-trivially in R, and wvhere
powers of a occur in R separated by words in b, ¢, ...
for every cyclic permutation of R, Then one can choose
a generator b or ¢ (say b) and an integer m such that
for all integers a>m

a, ba, Cy e

freely gencrate a subgroup of G.

Lemma 1.3.11 Let G = gpla, b, ¢, ... | R), Ga(R) = 0,
Then G has trivial Frattini subgroup if

(1) no element in ¥ = gra(b, ¢, ...), ascends
or descends more than o bounded number of steps,
or (ii) @ has more than two generators.

Using the Spelling Theorem proved in the nex
chapter, one has in particular

Theorem 1,3.,12 A one-relator sroup has trivial Frattini

subzroup if
(a) it is torsion-free with more than two generat-
ors,

or (b) it has torsion with more than one generator.



Proof of Lemma 1.3,11 ITet 2(¢) be the Frattini sub-

group of G, and let h ¢ G)., Then h € N since G/N
ig infinite cyclie., Define

= 2 ha e ™a™ma ™, n large,
Since ®(G) is normel in G, then k € 3(G). Tet g = a k.
Then {k, g, b, ¢, ...} generates ¢, hence {g, b, Cy wusl
generates G, for k is a non-generator, beinz in ().
Thus there exists a word ¥ in g, b, ¢, ... with

g, b, ¢, ...) =a ',

Premultiply by a end rewrite this relation in N. A
typical segment will be, for some words V1, V2, oo

gV (b, ¢, ..)gVs(b, ¢, ..0g7" (1)
that is, with the usual notation for translated vords,
(hthmh3mh2m)VT(bO’cO’°")<hm+1h2m+?h3m+7h2m+1) *

V2(b1’c1"">(h§;+1h§;+1h5%+1h£11>'
If no element in N ascends or descends unboundedly then
choosing m sufficiently large, no cancellation or
reduction can occur on the left hand side, assuming of
course Vz(b??c?,~.o) # 1. This proves part (1).

Suppose G has more than two generators. Since the
Frattini subgroup of a non-trivial free product is
trivial, without loss of generality assume that more
then two generators (say for simplicity a, b, ¢ only)
occur non~trivially in R, Then it will be showm that,

by taking a suitable conjugate of h, one can ensure
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that h will not ascend nor descend unboundedly. For
suppose g(bO”"’hh~1’CO’""Cy~1> ascends unboundedly,
Then one has a natural trisection of NO and RO is &
word in

B T T RIL MRD P SPPRPY PPN

Z(b,;,,...,b'u ?C'!J ”"CIJ>’
and ¥ must be o word in w,b1,...,b“_1,01,...,%1“1.
= T o= =L roo Ll
.La.ke b — CO ”(bQ”'."bu-—’;’cO’°"’Cu*1>co 3 aﬁd ¥ lS
not a word in
¢
‘l’?é;b@,aco,bu*,},co, .’.,Cu*‘q)’b'x’ e..,b'u”,l,c,], QOO’Cu“o]‘
Hence 7 does not ascend., Vithout losgs of generality one
may ossume h neither ascends nor descends.
If h neither ascends nor descends then reduction

of the left hend side of (1) cen occur only if

(a) V1(bO’QD*"')hm+1 ascends unboundedly

-1
2n+1

But if (2) holds then by choosing m large enough, V1

1 Y= :
or (b) h2m+1V2(b1,01,...)h ascends unboundedly,
must ascend unboundedly. Hence hm+1 must be a word in
1 » 2 ) e
Wk<0k’ck>’"”Wk+p~1(bk+u—1’Ck+pu1) and a suitable
conjugate of h has just been chosen so that this does
not occur. Similarly one proves (b), thus proving the

lennma,




Chapter 2

One-relator groups with torsion

The fundamental result used in the theory of dne~
relator groups with torsion is the Spelling Theorenm
proved in Section 2.1, In that section are also included
an assortment of easy consequences of this theorem, one
of which vastly improves the result on the frecness of
the generators proved in Section 1.3, In Section 2.2
we introduce the concept of malnormal subgroups and
prove the appropriate theorems as outlined in the intro-
duction., In Section 2,3 we use malnormal subgroups to
determine the Abelian structure of one-relator groups

with torsion.

section 2.1 The Spelling Theorer.

Theorem 2.,1.1 (The Spelling Theorem). ILet G be the

group

¢ =gpla, b, ... | B n > 1,
where R is cyclically reduced. Supposé that two words
W(a, b, ...), V(b, ...), vhere W is a freely reduced
word containing a non~trivially and V does not contain
a, define the same element of G. Then W contains a
subword which is identical with a subword of RE} of
length greater than (n - 1)/n times the length of R™.

Proof The theorem will be proved by induction on A(Rn).
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I1r A(Rn) < 4 or if R contains only one generator, then

the theorem is obvious, since G is a free product of

-\

)

se therefore that R contains two

o]

cyclic groups. uop

cyclically reduced, and assune

H
W
=
@
=

or more generato
the theorem is true for all groups with relator length <
MRBM). There are three cases to consider. For simplicity
of notation one may assume that ot most generators a,

b, ¢, t occur in R, and further that a, b occur non-
trivially in R.

Case 1 Suppose Ga(R) = 0. This implies ca(ﬁ) = 0 and

so W, V belong to N = ng(b, ¢, t). Construct § in

the usual way from

Hy = &p(bg, »ee,b 05,5, (all intcgers i) [ Ry™) .
Rewriting the relation W = V as o relation in N one
has

Hq(bi1,...,b12,ci,ti) = V(bo,co,to) (1)

where, without loss of generality one assumes bi, for
some 1 £ 0, occurs non-trivially in W1. The word WI is
freely reduced. But in order to continue One»requires
a more refincd result (cf. Hauptform of HMagnus 1930)
than Theorem 2.1.1; namely that the relation (1) in

N implies W1 contains a subword identical with a sub-
word of Riin of length > (n - 1)/n times the length of
Rin for some integer i, 4sctually one may prove more

than this, nemely the following Lemma 2.1,2, Note that
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one is still working within the proof of Theorem 2,1,
so the induction hypothesis of Theorem 2.1.1 is still
applicable,

Lemma 2.1.2 In the notation above, let

wi(bO"’°’bu+k’Ci’ti> = VT(b?"‘°’bu+k’Ci’ti)
v+ k20
or
NT(bO,.‘.,bu+k,ci,ti) = V2(bo,g,,,by+k~1,ci,ti)

v+ k >0
where W? is freely reduced and contains in W1 = V1
the generator bO non~-trivially, or in ﬂg = V2 the

generator b non-trivially. Then W? containsg a

Utk

- X . - +
subword identical with o subword of Rian of length >

(n - 1)A(Riﬂ)/n for sone integer i.
Proof The lemma will be proved by induction on I.

similar to that for

[62]

Since the proof for W1 = V2 i

17

iy o= V1 one need consider only W1 = V?' If ¥ € 0 then

W1 = V1 is an equation involving only senerators fronm
KO(: NO). Hence, using the induction hypothesis of‘
Theorem 2.1.1, K1 contains as & subword more than
+n 2 . T -

(n - 1)/n of Ry~ Assume now thet Lemma 2.71.2 has
been established for a1l K, = gp(NO,...,Ni) with
O < i <k, and let

K = (N * gp(My, oo, ) Iyts

Now V, « gp(Nj,...,Nk), hence so nmust Ty Let W, be



-63-

written as

[04 (64
- 1 2 m
7 = 1 61 =z
H? PO O P’]bO ."OO m, 7-{ O m 2 1,

where each P subword is a word in b1,.a.,b

b

pikr %100y
and PO,Pm are possibly empty.

fe A

.
Pirgtly note that by™ ¢ Ny but byt £ J, by the
induction hypothesis of Lemma 2,71.2. secondly, any P

which conteins bj with j > u as the moximum subscripted

b~letter, and is in J? will imply

P(bT,...,bj,ci,ti) = v(b1,.,.,b“,oi,ti)
or conjugating
P(bo,...,bjuq,cinj,ti*1) = V(bo,...,bynj,ci_1,ti“1)

and by the present induction hypothesis P contains as
s 3 - o +n ‘r b}

2 subword more than (n - 1)/n of R,=". Hence 7, hes

the same property. Thus onc ney assume that any P

representing an element in J1 is actually & word in

the generators of JT' Let Pi1,...,P12 be consecutive
P subwords Whioh are in J? Then if the subword

g, 1bOlT“,..P p o+

W=
; b 5%

2 T 0
is in J1 then Wg contains as a subword more than
+1n o, . L N - .
(n - 1)/n of Ry=" by the present induction hypothesis,
Hence ¥, also has as a subword more than (n - 1)/n of

+ . - S .
Ri“n‘ This nroves that [w1f > 1 in the zeneralized

r

free product or that Wy contains as o subword more

than (n - 1)/n of Riin. Since ]W1f < 1, the lemma is

proved,



e

We return to the

£roof of Theorem 2,1,1. From Lemno 2.1.2, the cquation

H’}(;‘)O?.‘.’bu‘*‘l{,ci’ti) = V(bO}cO’tO>
immediately implies WW has a subword identical with a
o i n -
subword of Riln of length > (n - 1)A(Ri )/n. Hence 7

has the required subword consistine of more than
O

(n - 1)/n of BE" by the following lemma,

D

Lot

Lemme 2.7.3 Suppose R is cycl

U

=

o (R) = 0, end let | a freely reduced word with
L

aa(W) = 0. In the usual way rewrite R, WV as RO’ WO.
I UO is identicel with a subword of Riin of length >
(n - DA(R.™) /0 for some interer i then W contains s
bl i SOm 1 “ae > £ v neta [
subword identical with a subword of RFZ} of length >
n . .
(n - 1ARY) /1, even if one disregerds any a terms
which might occur at the beginning or end of V.
n-1

Proof Let Ri = (ij ) bJV1 and

o N~ .

Ty = <ij1) 1b., (taking the worst possible casel),
Rewriting one has

~1 n_ 1 e I B So\n

R'a® = (a”Jpada P1ya”2)
where V is assumed freely reduced, and V neither begins
. +1 b |

nor ends with a-— and

- - -5 n-i -3, 3

7 = (a Jbaaa 1va52) 1& dpad,

Here A(R™) A(baja”SWVaSZ“j)ﬂ

il

:“’l[? + [J“ I+ IJ“‘Szg +)\‘(V)]0

51
NWow disregarding any a terms at the beginning and end




of 'V one hag

AME) = AllbadaT®1va®25= ) 0Ty

i

(n= D0+ 15~ sl + 15 - syl + AT + 1
T+ (n - 1)AERY /.

1

Hence W contains the required subword. his completes

We now return to Theoren 2.1.1 and consider the
remaining cases,

Proof of Theorem 2.1.1

Case 2 Sunpose c%(R) = 0., Let N

Lase <2 = ng(a,c,t) and
qa s . n
N, = gp(ao,.o,,ay,c. t. (211 integers i) | R ) .
By premultiplying 7, V by a suitable power of b, say
r . T
b7, one may ensure Ob(b V) = 0, whence Gb(b V) = 0,
and b"VW when freely reduced contains a. Rewriting

T r . Ce s
W = bV as an equation in § one obtains

T {a
”?<“i
1
W
1
trivially. By Lemma 2.1.2 W1 contains as a subword

b
c;,t.) = V1(oi,ti),

5000584i 9

Clearly i3 freely reduced and conteins sone a; non-

more than (n - 1)/n of Riin for some integer i. Hence
o . . . .
b7 contains a subword consisting of more than (n - 1)/n
+n . ) . e e
of R, this subword neither beginning nor ending with
o o e
b. Hence ¥ has as o subword more then (n - 1)/a of R&,

Case 3 Suppose OQ(R> = a £ 0, Ub(R) =fF £ 0. As usual

one consgiders the group



—BE

o(a, %, ¢, t | B%a, x% ¢, t)).

Using Tietze transfornations
- n - e
H=gply, %, ¢, t | R®M(yx" 5%, ¢, 1))
Tet R:n(-v'-ﬂ <% t) h e cvelically red d b
Le yx o ,x , c, when cyclically reduced be
n . . s o
R (x, ¥, ¢, t). HNow rewrite the equation W = V as an
equation in H under the monomorphisgz of ¢ into H nap -

_,“‘ﬁ ol e o+
a-=>yx ", b »x", ¢c=>c, t =1,

b

. . - a
Suppose on freely reducing 7(yx ﬁ,x , ¢, t) =
&4 .
V(x", ¢, t) one obtains
Sy, %, e, t) = Vj(x, c, t).
The process of freely reducing 7 to obtain ?? will remove
at most x terms, hence W1 contains y non-trivially.
From case 2 one may conclude that U1 contains as &
- -, 1 - +n pal 14 3 - -
subword more than (n - 1)/n of BX", ond this subword
. . + .
neither starts nor ends with an ij. One easily shows
that this implies 7(a, b, c, t) contains a subword
. . i + .
identical with a subword of RE™ with length > (n - 1)A
0 .
(R™) /a.
This completes the proof of the opelling Theoren.

Corollary 2,1.4 The word problem and the extended

word problem are solvable in & one-relator group with
torsion.

. n
Proof Given G = gp(a, b, ¢, ... | B n > 1 and two

™7

words WT and o in the letters a, b, ¢, ..., one must
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=7 Tr

be able to determine algorithmically if W= T, as
elements of G. This is equivalent to deciding if
S » ) . =T ™7 "'1
W, = in G. But in order for W,V t
172 ! - 12
triviel element in G, ¥132*1 must, when freely reduced,
be the empty word, or contain a subword idenbical with

) +1/}. ™ T . . o
more than (n - 1)/n of R=", Replacing any such subword
by the obviously shorter complementary word, one easily
determines if W,7,71 = 1.

For the extended word problem one must determine
algorithmically if an arbitrary word 7 in the letters
&, b, ¢, ... can be equal in G to 2 word V in some given

subset of the generators of G. Clearly one may use

alnost the same alzorithm,

Corollary 2.1.5 Let G = gp(a, b, ¢, ... | R n > 1

and let i, Z be subsets of the generators. Then there
~ ~
1s an algorithm to determine for an arbitrary eclement

g € G if g = w(i)=z(2) for some words w, z.

Proof If g = w()z(Z) then w™ (W)g = 2(2). Vithout
= ks % =]

oss of generality one mey assune W_?(E> beging with a
Rr7

et

o ~

generator a, say, of i\ which is not in Z, for if
-7 w7

s
ot
~

coincides with g the problem degenerates to the extended
word problem. It will now be shown that in order for
a to be removed from W*Tg, Mw) must be small.

Firstly, let w, g be words of minimal length

("(

representing elements of G; becouse the word problen
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is solvable in G one can elways obtain algorithnically

a word of minimal length representing an element of G.
By a reduction of a word will be meant the process of
replacing a largest possible subword which is identical
. T £~ +11 o o A, l’l -

with a subword of R~" of lenzth > (n - 1)A(R™)/n, by

its complementery subword, or deleting a trivial relator

¢ . . -
xx , €=+41, x a generator. Then in reducing w 1g at

H

most 2A(g) reductions are possible. TFor guppose one

. ~1
can perform k reductions. ILet L = length of w g when
no further reductions are pnossible, Now

L < Mg) + Mw) -k,

since every reduction will decrease the lenzth of a
word by at least 1. But w | = (W"'jig)g"1 hence
Moy <1 s Mg,
That is
AMw) < I+ A(g)
or  Alw) < Mg) + AMw) -k + A(g)
hence k < 2A(g).
Secondly, the final scgment of W"1 that can be

altered by reductions of w 'g is of length at most

X n . - ) B
2AM(g)A(R7). Tor since g, w™' are reduced and w-! is
ninimel then the reductions of w 'g can involve at
mostb ZA(g) reductions and each reduction after the

9

first must be possible because of the effect of the

previous reductions, Thus the first reduction can alter
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at most the last A(R™) letters of w™!. The second

reduction can alter at most the next A(RM) letters of

W*q, and so on. Altogether there cen be at most

2A(g)A(R™) letters altered.

)

ot

Since the first letter of w™! is not in Z, a1l of
w - must be affected by reductio of W”1g° Thus
M) < 2a(g)a(RM), Although G nay be infinitely

i

generated it suffices to have w involvi ing at most the
generators occurring in g and R, Thus the algorithm is
simply, given g, test for the finitely nmeny words w(’ )
if -
" (De = 2(2)
(the extended word problem! ).
In 1962 Lyndon posed the problem (Problem 3.6):
Let T be free on a set X of generators and let R € F
N

T = gpp(R). Tet 7 and Z be subs
. - ko

P i
b

& recursive subscet of F? This cuestion is answered in
the affirmative for R a2 proper power, by the corollary
above, ndon points out that a solution of this
problen enables one to extend both the Magnus solution
of the extended word problem ond the Hauptform of the

word problem,

1ling Theorem uses

{‘_ﬁ
O

Although our proof of the

Spe

the Freiheitssatz it should be ointed out thot our

Rt
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induction hypothesis is stronger than the Freiheitssatz
and the proof could easily be presented so as to avoid
using the Freiheitssatz., The Spelling Theorem allows

Fa)

¢ the Preiheitssatz as follows.

3

one to generali

Corollary 2.1.6 Let G = gpla, b, ¢, ... | RM), n > 1,

where R 1s cyclically reduced, involving a, b non-
trivielly, and suppose £ is any integer which does not
P . . n
divide the a-exponents in R™. Then
&, P, C, 4o
freely generate a subgroup of G,
. el 3 T 3 ‘G
Proof Consider any freely reduced word ¥ in a , Dy, coe &
If 7 represents the identity clement in G, then ¥
9yt 4- Tntor e N
conteins a subword identical to 2 subword of RET of
, n o PR,
length > (n - 1)A(R7)/n, This can occur only if RY is
o 2 . ) S
[2"X(Db, ¢, ...)]° for some integer @ and word X in
b, c$ «ee » Without loss of generality one nay assume
the Lelutor is

[2%K(Db, ¢, ...)]° ¢ > 0.

W

The corecllary will be proved by induction on A(R™),
The corollary is clearly true if A(R™) < 4, Inductively

assume the result is true for all groups with length <

Case 1 Suppose R involves two gencrators a and b oniy.
o . . ry2 - .
Here the relator is (a b )%, and without loss of general-

ity assunme r > 0, and G involves only 2, b. First embed
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el Xay)r)Z) by mapping

¢ in H = gp(x, y | (x
— a
a = X r, b » x"y,
One now looks at N = ng{y) and as usual takes
HO =
Now let ﬁ(aﬁ,b) be rewritten in H as (x~

0Q

DT T 1+ s (eiya | T (g ya e 5 70)
ﬁr, xgy).

For W = 1, one requires that this cquation takes place
in N, and written as a relation in Vi it must contain

as & subword

+1
<Yta+k'*'yky(r_1)a+k"*y(t+1)a+kyta+k)“

for some t ¢ {0,...,r-1}. But this subword when
rewritten in H is

<X~kx—tayxta+k’“kakaX~(r—1)a-kyx(r~1)a+k’ LmTe-k

L

£

yX_ta-{_k)iT

or

Xu[(Xay)t+1xﬂra(Xay)r~t]i1XV
for some integers u, v. But this can occur = a sub-
word of_U(X"ﬁr,Xay) cenly if W(aﬁ,b) contains 2s 2o sub-
word |

bt+1agbr~t’
This is impossible since f does not divide «.
Case 2 Suppose R involves more than two generators,
say a, b, ¢, t. By using the usual embedding procedure
one may, without loss of generality assume o (R) =0
and generators of G are a, b, ¢, t. Let N = ng(a, c, t)

and take
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T . 4 LI . i “; T °
W, = gp(ao»ci’ci’ (2ll integers i) | (e K(Gi,bi)} )
and
0
T= LA uy s enleg,t) .

On rewriting W(aﬁ, b, ¢, t) = 1 as o relation in N

one obtalin

n -
. TAP ’ _ O PR,
PPN Vh(ci’ti) =1, A, n, r, integers,

But if the word on the left-hond side is to be 1, then
one cen subdivide it into words in the components N
and some such subword nust lic in the omalgemated sub-
group. Thus, for example, a subword

G

7 a rv+'3[5>
Yy v+ Vv+

r vﬁv
v

.}lala

where = 2 must be a word in Ci’ti‘

O'V-!-? = a'v+2 = e e e v

But this imnediately implics a non-trivial relation in
gp(a%ﬁ,ci,ti) vhich contradicts the induction hypothesis.
Thus casc 2 is proved and so the corollary.

An important conjecture in the theory of onec-relator

]

groups which is still unconfirmed is that one-relator
groups with torsion arc residually finite. One can show
that such groups need not be residually torsion-free
nilpotent, for example take

gp(a, b | (a"?b"qab2>2).

]

G
Here T = gp,(a, bz) has a presentation
-1 -1 ~1
gp(x, v, z | [y, 27 11x"", vy "y)
under the mapping x - a, y - bz, A bab'T, and clearly

¥ 1s o non-trivial element contained in all terms of the



7 3m

lower central seriecs,
In the direction of residual propertices we caz
easlly prove the following,

Corollory 2.1.7. Let G = gpla, b, c, ... | R™(z, b, Cy wen)

n >1., Then G is residually a two-generator one~relator
group with torsion,
Proof Vithout loss of generality assume ¢ has three
generators a, b, ¢ each non-trivial in R and UQ(R) = 0,
Let v(a, b, ¢) be any non-trivial element of G, and
without losgs of generality assume v(a, b, c) is a
minimal word. Put

W = meX—Zmyxm
where m is large comparcd to the lengths of R and v.
Define

H = gP(X? J l Rll(X} I W));

4

end denote R'(x, v, w) vy BMx,y) when cyclically
reduced., Hote that ax(ﬁ) = 0. The mapping

a »>X, b->y, c->w
defines a homomorphism of G onto H. The corollary is

1

proved if it can be shown that

v - v(x,y) £ 1, Wx,y) freely reduced,
If Gx(s) # 0 then vV # 1 in H. Hence suppose OX(?) = 0,
Construct N = ng(y) in the usual way fron

1 = 7

NO = gp(yo,..,,yu | RQ (yO"”’yu>)'

Let v be rewritten in terms of the generators of N
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1

v = %(yi,1""’yi,2>' If ¥ = 1 then ¥ contains as a
subword more then (n - 1)/n of ﬁin by Lemma 2.1.2,
Hence by Lemma 2.1.3 more than (n - 1)/n of B occurs
as a subword of ¥, even if onec disregards x terms at
the beginning or cnd of the subword, (and this is the
key observation). Hence, becouse in freely recducing
v(x, vy, w) only x terms can cancel, v contains as a
subword more than (n - 1)/n of Rn, contradicting the
supposed minimality of v,

Section 2.2 The thcory of nalnormal su Erouns.

Let H be a subzroup of a group G. Then H is a
nelnormal subgroup of G if for all g € G

7“1Hgf7 H# 1 inplies

09
m
nwt

It is clear from the definition that no element out-
side a malnormal subzroup H can commute with a non-
trivial element of H. In particular no non-trivial
elenent of H cen have a root outside H, so a malnormal
subgroup is a 7 -pure subgroup for any sct 7 of primes.

Lemma 2,2,1 Let C = {A % B : J} where J is & nalnormal

subgroup of the factors A and B. Then A and B are nal-
normal subgroups of C,
£roof From the symmetry between 4 and B in C it will

uffice to prove that A is a malnormal subgroup of C,

0

Duppose

g a8 =25, g €G, 1 # 8y, 8y € A4,
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Let coset representatives of J in 4 and B be chosen and
suppose the normal forms for gz, 84y 8, are

g = 81520008_‘1;}’ 8‘,,’ fund t«}JT} a:g = tzjz

s j?’ j2 € J and Sqs Sps e.., B, 2TE

-
ot
no
m
I
P
-
Cly

1
coset represcentatives alternating from A and B, It is

(=

A

required to prove that g € A, T

[

ig will be done by

[Wiher}

induction on ]gl, the length of g in normal form. If

2 ~

lg] = O,then g ¢ J and so g € A, Suppose that for all

<
elements g € G it has beoen shown that g"Taqg = a5
implies g € A if lgf <n, a4, 2, non-trivial elcments

of A, Let [g! =n >0. Then

<t

. & - & :
tqa,}u,’gg.-.on;l = u,,Ig;\J = :\38,2 - S,]xagoocsna.tgtjgo

If t1 = 1 then

-1 . e .
(s7 stj)sz...sﬁg = S5...8 %53,

and this implies s, ¢ J, which is absurd since 84 is

1
a non-trivial coset representative of J in A or B. IFf
~

. =T, e e .
t, # 1 then (91 tTJTSq)Sz,..an = 8p.0.8 Jty),. This

implies S5 t1 belong to the same factor and

-1, . .
84 1:13181 = dy € J,

Hence
j S . e ) = 3 oonS "t j
I3PpeeeByd = 8, ndt2do
and by induction
8200:311;] E-i‘\-‘--

Hence 81S2'~'Snj € A, This covers all possibilities

and 80 proves the lemma.
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Clearly a nmalnormal subgroup of o melnormal sub-

group is = malnormal subzroup, hence ans malnormal sub-
S 1S ) Mo

O]

group of A is g malnormal subgroup of C, in the notation

Lerme 2.2.2 Let C = {A * B ;3 J} vhere 4 and B heve all

soluble subgroups cyclic and J is a malnormal subgroup
of 4 and B. hen C has all its soluble subgroups
cyclic,
Proof Let P be any non-trivial soluble subgroup of C,
of soluble length r. Let 8(G) denote the commutotor
subgroup [G, Gland define inductively
oh(a) = s(stN@)), 1 =1, 2, 3, ..., where
BO(G) = G, Then Sr"T(P) £ 1 = 85(P), The proof will
be divided into two cases.
Case 1 Suppose Br"T(P)(W A £ 1, Lot a e 8r“1(P)fW A,
a # 1, and let g be any non-trivial element of P, Then
every clement of Br"i(P) commutes with o and so lies in
A, since A is a malnornal subgroup of C. Hence Sr'T(P)C:
A, so0 8r"1(P)fW A is a normal subgroup of P. Agzain nal-
normality implies PC A and so P ig a cyclic group.
Vithout loss of generality one may now assume that
BI"T(P) hes trivial interscction with A and B.
Casc 2 Suppose Sr"T(P)(W A =1 = Sr"T(P)fﬁ B. Tet g
and u be any non-trivial clements of Sr"T(P), where in

normal form
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o o= g q i - Er i

5T SpSareeSpdyy U= Btot gy,
where n, n > 1, j?, 32 ¢ J, and S5 ti are coset
representatives of J in A or B lying alternstively in

A or B. By takinz a suitable conjugate of P one can,

o

without loss of generality, assume that g is cyclically
reduced of length n > 1, Then u is cyclically reduced
of length m > 1, since g 2nd u comuwiite, and lul #£ 0.
Suppose U is chosen so that qu is the minimal length
of dﬂy non-trivial element of &L~ ?(P) Without loss

of generality let u have its coscet ro cprescntatives t1
tm belonging to 4, B respectively, It will be shown
that 87=1(P) = zp(u). Tor

u- !

il
f=
0
—_
O
H
0q
—

b g, with [gﬂ <lgl. Using the natursl

induction on |g| one proves g is & power of u. This
-~ r"'? s s - ~ e - 3
proves 8 7' (P) is a cyclic zroup genersted by u.
~ . .. §T=2
PUppOsSe v 1s any non-trivial element of (P)
and suppose v has normal form
where j ¢ J and T; arc coset representatives in 4 or B
alternatively. First it will be shown that v is cyclic-
ally reduced of length g > 1. For suppose T4y rq € A,

Then



T

for some integer s, from the preceeding work. If s is
positive then

lval < |v]+ |ul
and  |uv| = |v] + slul.
This implies s = 1, hence vu = uv., This implies that
v is cyclicdlly reduced of length > 1 or v € J, But J
is a malnormal subzroup of € so v cannot belong to J
since u does not belong to J. Hence v is cyclically
reduced of length > 1. If s is negative then v2u = uSZV2

and so the case where the exponent of u is positive is

"
. 2 . . .
applicable, and thus v° is cyclically reduced of length
>1., If T rq € B, one may repeat the argument using
u instead of u.
It hes now been proved that every non-trivial element
r-2 . . . ; «
of §°7°(P) is cyclically reduced with length > 1. Suppose
w 1s a non~trivial clcement of 5r"2(P) with minimal length
. r-2 . -
in 8 7°(P), It will now be shown that
r-2
§77°(P) = gp(w).
For w’1uw = u~ for sone integer, hence
u = wusw'1
= wu, or u,w |
1 1 '
for some element u, with Iu1[ < Jul. Azain using the
netural induction on |ul one proves that u is a power

of w. The argument may be repeated to prove that not

only is every clement of 5r"1(P) a power of w but that
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. - .
every clement of 5T (P) is a power of w. Tor
- - t
W jvwv L W,
for some integer t, and so

+ -
v o= Wt 1VW L

= wt+jv or v W
1 1
for some element vy with ]vﬂ < ivio Once again one
mey use induction to prove v is a power of w. Thus
Sr“Z(P) is cyclic. This implies P is cyclic and com-
pletes the proof of the lemnma.
Lemma 2,2,3 Let C = {A * B ; J} and suppose ga = hﬂ,
g ] 2 |n| and z"is cyclically reduced of length > 1.
Then g = hg,, where lgjl < lgl, ana g, is cyclically
reduced,
Proof Tet g = 5152...511;]1 in normal form. Now h nust
be cyclically reduced of length > 1, say
h = tjtZ"’tmj2 vhere 1 < m € n.

Then

_ . - ﬁ 1 _ B

= <8182"'Sn)31g = (% tg...tm)gg =h ,
Now this recletion implies thot

81 :t’i’ S2:t2’ v 0y Sv.; :-b L4

il m
Thus g = t1t2...tmsm+1 .snj1
= h(j2~13m+1"‘snj)
= hg1 where g = jz“jsm+1...snj is cyclic—

4

ally reduced with [gql < fgé

Lomma 2.2:4 Let C = [A * B ; J} vhere J is a mal-
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normal subgroup of A and B. If A and B are groups in
which the centralizer of every non-trivial element is
cyclic then the same is true of C.

Proof Tet w be any element of €. Vithout loss of
generelity one may assume w is cyclically reduced.
From Lemma 2,2.2, € has all Abelian subgroups cyclic.
If w lies in A or B then the centralizer of w in C lies
in the same subgroup since A and B are mnalnormal sub-
groups of C. Hence it suffices to assume that w has
length > 1, and in fact no element of length < 2 is
in the centralizer of w. Suppose w commutes with two
elements g, L. Then there exist elements g, h such
that

g, w €gplg),

h, w € go(n).
o4 .
Thus g~ = hﬁ for some integers o, B, and clearly g, h
are cyclically reduced with |gl| > |n| > 1 or |n| = |l

> 1. Without loss of generality suppose |g| = |nl.

By Lemma 2.2,3 g = hg, with B4l < fg? and 8, is cyclic-
ally reduced of length > 1 or elsc is the identity
element. Since

lg;1 + Inl < lgl + |nl
one may use an induction argument on igl + |nl to

conclude that g and h commute. Hence g, h commute.
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Thus the centralizer of w is “belian, and so is eyclic.
he literature on malnormal subgroups is small.

In fact it was not until after the completion of this

work thot it was brought to my attention thot Benjanin

Baumslag 1965 had used them in his doctoral thesis ond

named them malnormal, Tekla Lewin 1967 used malnormsl

subgroups to derive certain results on D-groups and the

final lemma above is contained in her work. Malnormal

(

subgroups are used by Driscoll 1967, in her work on
the conjugacy problem, and A.Whitmore1967 in her work
on the Frattini subgroup.

ction 2,3 The Abelian subgroups of one-relator

groups with torsion.

Lemme 2.3.1 Let G = gp(a,b,...,c,t | B n > 1 where

R is cyclically reduced.
I, Any subset of the generstors of & generates a
malnormal subgroup of G,

IT. Suppose Wj(a,b,.Cq,c) is & word which when
cyclically reduced involves o non~trivially, and
wz(b,...,c,t) 1s & word which when cyclically reduced
involves t non-trivially. Then Wy and Wy are not
conjugates in G if R involves a, t non-trivially.
Proof The lemma will be proved by induction on A(RD).
If A(R™) < 4 then the lemna is trivielly true, as it

1s if R involves only one zenerator., ithout loss of
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generality assume R involves 211 the generators non-
trivially. To simplify the nototion assume G involves
ot most generators a, b, c, %,

Firstly comsider I. Here it suffices to prove
that H = gp(b, ¢, t) is o malnormal subgroup of G for
one mey easily prove a lemma analegous to Lemma 1.2.1.
Case 1 Suppose ¢ has two generators a2, b and o (R) = 0,
and g“1bmg =bY, g e G, m, r integers r £ 0. I% is
required to prove that g is = power of b. Let
N = ng(b) and construct N from copies of

n

. =g . N

Mo = ep(bg,een,d, | B
where A(Ron) < A%, Now by induction

Iy = gp(bT,...,b“)
is & malnormal subgroup of NO and N1 and so NO is a
maelnormal subgroup of K, = gp(NO, Nq) by Lemms 2.2,1,
One continues as in the proof of Lemma 1.2.2 to prove
that X, = gp(NO”"’Ni) is a walnormal subgroup of N
for all integers i. In particular NO is malnormal in
N,

Assume o (g) = s >0, g = 25, ana

=1, I r

g by g =D, (1)
If & = 0, then g « NO since NO is a malnormal subgroup
of N. Since by induction gp(bo) is malnormal in Nos

then g = bop for some integer p, whence g is a power

e

of b, If 0 <8 < g then again g E'NO, But the equation
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(1) is impossible in NO by the induction hypothesis.
If s = p+k, k >0, then g ¢ Kk since Kk'is malnormal
in N. TVrite

K, = (W, * gy, vn, ) SR
Then by" ¢ 1, b e go(Ny,.e0,l,), and equation (1)
is possible only if bOr is conjugete in NO to an
element of J1. This is impossible by the induction
hypothesis,
Case 2 Suppose G hos two generators o and b with
<g<R> # 0. Yithout loss of genérality one may assume
c%(R) = 0 (using the usual embedding if necessary).
Here

g g = vt (2)
end without loss of generality one may assume gb(g) = 0,
One may aossume n is large end m > O, TLet N = ng(a)
and construct N from

Ny = gp(ao,...,au ' ROn).
Let g be denoted by 8y when rewritten as an element of
N. One may assume that of all words representing the
seme element as 8y» 8p has minimal length, If gy con-
tains some 8 without loss of generality assunme 8o is
a word in

Qs e esdy, A2 0,

Then eguation (2) becomes

go<an’l,“.’ak+m) fooed go(ao’lic;a)u)l .
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This relation in N implies g, has the generator 20
removable, hence by Lemma 2.1.2, gy has its length
reducible, contradicting the choice of 80 Thus 8o
inveolves no a; term and so g is a power of b.

Uase 3 Suppose G has more thon two generators. Tithout
loss of generality one may cssunme Gb(R) = 0. Let
N = gp,(a,c,t) and construct N from

- Ny o= gp(ao,...,au,c. . (all integers i) | R
As before one proves that Op(c by (211 integers i))
is a malnormal subgroup of N, Suppose now

g"1w1(b,c,t)g = Wz(b,c,t)
where

g = brgo, Wy = bs%1, W, = b8§2
for g0,§1,W2 € N, Then

™%, %, g, = Wy
Rewriting in N one hags

-1 _ ~1 .
80 (241500545 byg) = Woley,ty )bo (25,05:%,)
eyt (3)
Now if s = O then
> ”1 . W > = W
8o (ai,c.,tk)W'(ci,t.)ga(ai,cj,tk) = w2(oi,ti)
whence g, ¢ 6p(c »t, (21l 1)). Hence g ¢ gp(b,c,t).
Thus one may assume s £ 0, and that of all words
representing the same element as 8ps &n has minimal
length. But equation (3) shows thot some a; term can

be removed from 8q» contradicting the choice of 8.
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Thus 8o does not involve 2y terms and so g ¢ gp(b,c,t).
This completes the proof of I. One now proves II.
Cose 4 Suppose G involves only two generators a and b
and g"?amg = b". It is clear that Ga(R) £ 0, ab(R) £ 0
otherwise there is nothinz to prove. ‘ithout loss of
generality assume v is large. Lot Ge(R) = -0,
ob(R) = B. LAs usual embed G in
H = gp(x,y | Rn(xﬁ,xay)),
by mapping a 9~Xﬁ, b - Xay. The equation g"jawg

becomes in H

where g maps into gy Without loss of generality assume
ar > 0, and ax(g1) = 0., Let N = ng(y) and construct
N from
n

IIO = gp(yO”."yﬂ l RO )0
Since mp = ar the equation above nay be written aos a
relation in W,

~1

2 3 2 > = LI ] i

0 (y1+ar>00<y1) Yoarory ap_or o) (4)
where g, is g4 rewritten. One may assume that go(yi)
is the word of minimal length representing the element
8y Now either the minimal or maximal 75 in

-1 - . R

I (yi+ar)go(yi) can be removed, Hence thig word has
a8 a subword XXN? or more than half of Riin for some
integer i. By choosing r sufficiently large one nay

assume that such a subword oeccurs entirely within
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-1 s . .
\ zither case o,
g (yi+ar) or go(yl). In cither case this contradicts
the minimality of go(yi). Thus 84 is a power of x,
- = a PR -1 1m_ r o,
hence g is a power of a, in which case g ag =Db is
inpossible by the Spelling Theorem,

Case 5 ®Suppose G involves more than two generators,

Vithout loss of generality assume cb(R) = 0, TLet

N = gp.(a,c,t) and construct W from

Ny = gp(ao,...,a“,ci,ti (all integers i) | Ron).
1

v = o pose W, = b W,, W. = b w. where

Let g W8 = Vi, and supposec W, o= b Wy, W, = b Wy where
Vg, Wy € N.

Suppose r = 0. The relation now is

== 1% e

a W1<a11""’ai2’ci>g = W2(ci,ti) (5)
where ﬁjg %2 when cyclically reduced contain some o
ti terms, respectively. If iq’-":ig lies in the range
O,...,u then %1, ﬁz € Ny, whence g < Ny. By the
induction hypothesis this equation is impossible.
Suppose that the relation (5) takes place in K =
gp(NO,...,Ny), k > 0. ¥ithout loss of generality
assune that of all words representing conjugates of the
element w,, the word W?(aO"“’ap+k'Ci) has minina

length, and also ag, occur non-trivially in W1,

a
u+k
Inductively assume that the relation (5) is inpossible

in Kk ' Put

K. = iNO * SP(N‘;:"';NIJ ’ J1§-

4

NOW'§2 € J1; If W1 is cyclically reducced then it must
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be in one of the factors. This however implies

%1(30,...,8, ’Ci) = r.({,u ,o.o,w C -ti)

u+k u?

or
w1(ao,...,au+k,ci} = w(a1,...,ak+u,ci,ti)

for some word W. In cithor case e has a generator

removable which implics W, may be rcduced in length

contradicting the choice of ¥1. Hence assume W, is

not cyelically reduced. But by a trivial modification

of g onc may assune

a &2
— 1 m
o= D a . s 00 s ) v .
‘;.T u1<u1,ooo, ﬂz{:’f'ﬂ’cl)ao u2(a']} ’ {’k_}_“’Cl) 8’0

where o5 £ 0, ak+y is non-trivial in Uy s If now ET is
not cyclicelly reduced then %1’oan be shortened, again
contradicting the choice of'%j.

Suppose r £ 0, Let g“Tbrﬁ?g = br§2. Teke the
m-th power of both sides, n an integer,

1(b )m - (br§2)m‘

bince br§1 does not involve ¢ and when cyclically
reduced contoins a non-trivially, then (b¥w W, ) does
not involve t and when cyclically redu ced contains a
non-trivially. Similarly (brﬁz)m doecs not involve a
and when cyclically reduced contains t non~trivially,
Hence (br§1)m and (br§2)m satisfy the same hypothesis
as for W and Vio Thus one nay assume r is large. Let

rsu-
Wy =D Wj(aiq,...,u ) Cy )

12
i o
b Wz(ti,ci)

=

<3
no

|
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= Z{a. e o0 g s c —t » 00 -t~ )
g b( 13’ b 14’ l’ 33’ 2 34
and every free reduction of o cyclic permutation of

br%1 contains an a-term. Assunmec 13 +r > 14 + 4, The
equation now is
’oaa’tj4>
)Wg(tl,c ).
(6)

Now the &y with i < 13 + I appearing on the left hand

)g(a,

13 » ©

"l’,a

W?(a.T,...,a

i57% 107°1775,

o
= a(s 13+r""’a 4+T’Cl+r’ 33+r""’

side of (6) are removable, Vithout loss of generality

one nay assume the left hand side of (6) is freely

reduced, hence E1g containg a subword identical with a

SubWO“Q of R m of length > ’A(Rin). One may assunme

W1, g arc written as words of mininal length. Since

every subword which is more than half Riin contains

sone tj for each tj appearing in Ri, one 1is restricted

in the choice of such Ri, nanely to those Ri with tj in

the range +. ,...,%. ., “hen such a subword is replaced
33 J4

to shorte en qu no new letters will be introduced, certain-

ly no new tj. Since no free cancellation can take place,

the only s that are removable are those &; appearing

in this restricted set of Ri. If there is some ay not

in this renge with i < 13 + r then one is finished,

Suppose there are no ay other than the 8y which are

removable together with a5 in the range ai3+r""’ai4+r‘

Then all the removable = in E? must occur at the end
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of Wq so take
e ard "T
Wy o= uix, g =X 'h

vhere X involves only &5 Ciy and h involves Css ti.

The relation g*1br§1g = brﬁz mnay now be rewritten
b O ¢ LI b,

or
™ (") = bR,

Now a is removable from the left hand side, hence a

. , . . T
i8 removable from thW Since no t occurs in Xbty

1° 1
the a 1s removable by free reduction, But this implies
& 1s removable from a cyclic permutation of br%T
(= brWTX) by free reduction, contradicting an earlier
remark,

This completes the proof of Lemma 2.3.1.,

Ve now have all the results needed to determine
the Abelian subgroups of a one-relator group with

torsion,

Theorem 2,3,2 The Abelian subgroups of a one~-relator
g I

group with torsion are cyclic,

Eroof Tet G = gp(a,b,c,... | B®) n >1. The theoren
will be proved by induction on A(Rn), The theorenm is
true if A(R™) < 4, as it is if R contains only one
generator. Assume therefore that R contains more
then one generator when cyclically reduced. By means

of the usual embedding process one may, without loss of
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generality, assume Ga(R) = 0., Inductively assume the
theorem has been proved for all groups with relator
length < AMR™), TLet N = gpe(P,c,...) and construct
N using

Ny = gp(bO,...,bu,Ci,... (all integers i) | Ron),
Since A(Rin) < MR™) the only Abelian subgroups of n,
are cyclic, The amalgamoted subgroup J1 is o malnormal
subgroup of both NO and Nj. From Lemma 2.2.2 the only
Abelien subgroups of K, = gp(NO,N1) are cyclic, Similar-
ly one may show that the only Abelian subzroups of Kk =
gp(NO,.,.,Nk) are cyclic. Since K_ is a malnormal
subgroup of I no locally cyclic non-cyclic Abelieon
subgroups are contained in N, Hence the only Abelian
subgroups of N are cyclic.

Let A be an Abelien subgroup of G not contained
in N. Then

A/AOYNW = AN/N < G/N = infinite cycliec group.
Now A, being an Abelian infinite cyclic extension of a
cyclic group is either cyclic or the direct product of
a cyclic group and an infinite cyclic group, the latter
infinite cyclic factor not in N. Suppose A is not
cyclic. Let x, y be generators of A wﬂere 1 £y €N,
X = a'X, r an integer and ¥ ¢ N. Tithout loss of
generality assume r is positive and large., Let y when

written as an element of N be yo(bO”"’bu+k’ci"“)
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and assume this is the shortest possible word represent-
ing the element y, and that bo,b e M+t k20 are non~
trivial in y. One further assumes that of all possible
non-cyclic ibelian subgrouns of G one hnog chosen that
for which p+ k is least., This implies thet no conjugate

of y has smaller p + k value than Yo has., Now
1_-1

Xy xy =1
implies
E"ja"ry“1ar§y = 1
or
g“?yr*1§yo = 1 (1)

where y, = yo(br,...,b Since r is

r+u+k’ci+r"")’
large teke r > u+ k, One now proves that equation (1)
is impossible,

By Lemme 2.3.1 this relotion cannot take place in

NO. Hence suppose r + 4 + k > ¢, Then Yo and Jp are
in K g is ma mal in 1 X €I .
in Kk+r nd since Ki+r is malnormal in N then x £k+r

Thus equation (1) tekes place in K pe Let
Gepp = Lep(Wg, .0, = LIS MR TR D N R P
Now Yo 1s in the first factor and ¥y is in the second
factor, hence Yo and Y, con be conjugates only if Yo is
conjugate to an element of Jk ] By the choice of y
this implies that 0 < p+ k € g - T and Yo € NO and is
conjugate in NO to an element of J1. But egain this is

impossible by Lemma 2.3.1. Thus equation (1) is imposs-
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ible, and the theorem is proved.

Corollary 2,3,3 The soluble subgroups of a one-relator

group with torsion are cyclic,

Proof Suppose S is a nmetabelian subgroup of ¢ where
the notation of Theorem 2.3.2 is used. If SN then
by Lemme 2.2.2 and the usual argument, 3 is cyclic,
Suppose therefore S<Z I and let x €8 but x £ W,
Clearly 88 < N, and so 88 is cyclic generated by y,
say. Then for some integer s

1 1

" yxyT = y°,

Then the elements

T, ny"?,x2yx"2,,..
generate o non-cyclic locally cyclic subgroup of G,
unless for some integer r

G

L ¥yX =Y,
in which case x* and y generate a non~cyclic Abelian
subgroup of G, contradicting the result of the previous
theorem., Thus the only metabelian subgroups are cyclic
proving the corollary,

Corollary 2.3.4 The centralizer of every non-trivial

element of a one-relator group with torsion is cyclic.
Eroof Using the notation of Theoren 2.3.2 one first
shows that the centralizer in I of every non-trivial

element of ¥ is cyclic. This is proved by the usual
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induction argument together with Lemms 2.2.4, Since
by the theorem above the Abelian subgroups of G are

cyclic, no element outside I con commute with a nomn-
trivial element inside N. Hence the centralizer in &

of every element in W is cyclic. Let w £ N and suppose

. . -1, =1

w commutes with g and h. hen w commutes with g 1h
3 s . ks ""1 - o

which lies in N, hence g~ 'h 1gh = 1. Thus g and h

gh

generate a cyclic group, and the centralizer of w is

cyclic, This proves the corollary,
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Chapter 3

The conjugacy problem for one-relator groups

with torsion

Algorithmic solutions of the word problem, the
conjugacy problem and the isomorphism problem were
formulated and investigated by Dehn 1912, He showed
all these problems were solvable for the one-relator
groups

G = gp(a1,b1,...,ak,b{ 1 [a1,b1]...[ak,bk]),
the fundemental groups of closed, orientable, two
dimensional surfaces. In 1954 Novikov proved the con-
Jugacy problem is unsolvable in general, even for a
class of finitely presented groups having a solvable
word problem., In this chapter we prove thet the con-
Jugacy problem, and the extended conjugacy problem in
certain cases, are solvable for one-relator groups with
torsion.

We describe precisely vhat is meant by these

problems. Let G be a group with o given presentation,

G = gp(x1,X2,.., | 31(X?,X2,,..), R2(X1’X2"‘°>"")
where the X, are a possibly infinite but recursively
enunerable set of generators, and the Ri(X1,X2,...) are
& recursive set of defining relators of ¢,

The conjugacy problem is as follows: For any pair



~95-

of words W1(X1,X2,.‘.), W2(X?,X2,...) in the generators
of G, give an effective procedure for determining in a
finite number of steps whether or not W, and Ws define
conjugate elements of G,

The extendeg conjugacy problem for G relative to
a subgroup H is as follows: Let

H = gp(wi(x?,xg,...), WQ(X?,Xg,.o.),..,)
where the W, are words in the generators of ¢. For an
arbitrary element W(X1,X2,...) of G, give an effective
procedure to determine in a finite number of steps
whether or not w is conjugate to an element w* of H,
and if it is, to express w* in terms of the given gen-
erators of H, |

In Section 3.1 we develop the basiec theory of
strongly-malnormal subgroups which plays a role similar
to that of p-pure subgroups in Chapter 1, and malnormal
subgroups in Chapter 2, In Section 3.2 we use strongly-
malnormal subgroups to solve the conjugacy problem for
one-relator groups with torsion, and solve the extended
conjugacy problem relative to any subgroup generated by
& subset of the generators.

In Section 3.3 we consider the problem of determin-
ing the roots of an element in & one-relator group with

torsion.
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section 3,1 The theory of strongly-malnormal subgroups,

Let J and A be groups with given presentations,

nd let there be given an isomorphism of J into A, We

)

say J 1s strongly-malnormel in A if
(i) J is a malnormel subgroup of A,
(ii) the word problem is solveble in J for the
given presentation of J,
end(iii) given ony pair of elements g, h € A as words
in the generators of A, one can
(2) algorithmically determine if there exist
elements j, 31 € J such that jh = gj1,
and  (b) algorithmically determine j, j1 when they
exist, as words in the given generators of J.
Note that j, j, will be unique if g # J. Tor,
suppose there exists another pair k, kq € J with

kh = gk Then

1.
i -
£ gkj =h = J ng:
hence g—j(jk“1)g(k131_1) = 1.
Since J is malnormal in 4 and g £J, then

-1 _ L o=1
= k3,7 = 1,

Jk
thus proving the uniqueness of j, 31.

Note also that if J is o strongly-malnornal sub-
group of &L, then we can solve the extended word problen

of A with respect to J, and hence we can solve the word

problem for L since the word problem for J is solvable,
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- To see this, let g be any element of A given as o word
in the generators of A, Then one coan decide if there
exist elements jq, 32 € J such that

31% = 132:
and i1f so determine jT’ 32. The element g € J if and
only if 31, 32 exist, in which case

g = jj~1

3o
and not only can we determine algorithmically if g is
in J but we can write g aos an element of Jd.

IfT H is a strongly-malnormal subgroup of G then
it will be understood thot presentations for H and G
are given and there is some effective procedure for
writing an arbitrary word in the generaotors of H, as a

word in the generators of G,

Lemme 3.1.1 A strongly-malnormal subgroup K of a strongly-

malnormal subgroup H of G is o strongly-melnormal sub-
group of &, |
Proof TFirstly K is a malnormsl subgroup of G, Secondly
the word problem is solveble in X since X is strongly-
malnormal in H, Thirdly, let 815 & € G. BSince H is
strongly-molnormal in G one can determine if there
exist hi’ h2 ¢ H such that

g = gohy,
and if so, determine h1, hz. 1T 84 £ H then hT’ h2 are

unique if they exist, and so it suffices to determine



~08

if h?’ h2 € K. This can be done since the extended
word problem of H with respect to K is solvable.
1t 8y € H then g, ¢ H if h7, h2 exist, Hence
€4» 8o can be written as words in the generators of H,
hen one con determine if k7, k2 exist such that
k1, <, € K and
k181 = gyly,
end if so, determine kj, 5. Thus, given 815 8y € G
one con determine if there exigst k1, k2 € K such that
k1g1 = ggkg: and if so, find kj, k2’
In writing a zeneralized free product as
C:Ux*B;J}
we assume throughout this chapter
(1) presentations for 4, B, J are given,
(ii) isomorphisms of J into A, and into B are
given by & specific brocess which allows one
to write an element of J ng an element of A
or B,
(iii) the presentation for ¢ has as generating
symbols those of A and B, as relators those
of A end B together with the elements of A
in J identified with those of B in J.
In the case where J is strongly-malnormal in A
and B, one can decide if on element of C is in A or B,

end if it is, to write it as an element of A or B, This
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implies that an element z of C can be written in reduced
form
8 = 8480+ 448,
where the g; alternate from the factors 4 and B, and
o, J,

Lemme 3,1.2 Let C = {4 * B ¢ I where J is 2 strongly-

nalnornel subgroup of A and B, Then A and B are
strongly-malnormal subgroups of C.

2roof By symmetry it will suffice +to prove that A is
strongly-malnormal in C. Firstly A is malnormal in C
by Lemma 2.2.1., Secondly the word problem is solvable
in A since J is strongly-molnormal in 4. Thirdly, let
2, h be any elements of ¢ and write g, h in reduced
form

g?gg"-gn; h = h,thz:o;h.jn

o
S

where the g., hi € A or B, It is necessary to decide

1

if there exist elements 8qy 85 € A such that
8,8,8 g = hh,...h &
181800+ +8y = Iyhp. . hyas,
Without loss of generality cssunme !gl < Inl, Suppose
lg] > 2, There are various coses to consider, Suppose

€ = 8;8p+++y b =hjhe... . (This is to be interpreted

8]

28 gy €A, gy € B and hy € &, hy ¢ B and so on). Then

248y = hydy for some ;¢ J, end 37 'ny = Epios i, € J.
But there is an algorithm to determine if jl’ 32 exist and

if so, to determine jT’ 32. Hence there is an algorithm
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to determine if 8, exists and if so, to find 2 It 2y

exists it is unique so one can determine Gy = h—1a7g

and decide if 8y € A, The remeining cases are similar,

g €

;}',5

Suppose fgf <2, If Then a8 = haz implies
h € A, Therefore there is nothing to prove since
1. =n(m™'g). If g ¢ B and g £ J then 1 is (i) ny

hB"' « Consider these in

or (ii) hBhA_ or (iii) h,

turn:

(1) a8 = hBa2 implies ay € J and a, € J so one
can decide if 8y, 8, exist and if so deter-
nine themn,

(ii) a1& = hgh,a, implies a, € J end 28 = hpj,
Tor j1 € J, so one can decide if a, exists

and if so determine 24, and hence 8, if it

exists,
(iii) 848 = hyhp...a, implies 8y = hyj, for j, € J

.= . .
and J hB = 8J, for Jo € J. Hence one can
again decide if Aqy 85 exist and if so deter-
mine 815 2n. This proves Lemma 3,1.2.

Lemma 3,1.3 Tet ¢ = {4 * B : J} where J is a strongly-

malnormal subgroup of A and B. Then given g, h € C one
can
(i) determine algorithnically if there exist elem-
ents a, b in A, B respectively such that

ag = hb,
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and (ii) determine a, b algorithmically if they exist.
Moreover if a, b £ J then o and b are unique unless
g ond h lie in different factors or one (say g) is of
the forﬁlggig(in the notation above) while the other, h,
is not of the form E§lﬁs
Proof The proof is similar to that of Lemme 3,1.2.
We now come to one of the key lemmas,

Lemms 3.,1.4 TLet C = [A % B ; I3 vwhere J is a strongly-

malnormal subgroup of A and B, If the conjugacy
problem ond the extended conjugacy problem relative to
J are solvable in the factors A and B, then the con-
Jugacy problem is solvable in C, and the extended con-
Jugacy problem relative to A and B,
Proof Since J is a strongly-malnornal subgroup of A
and B then the extended word problem with respect to J
is solvable in both A and B, and the extended word
problem for ¢ with respect to A and B. TILet g, h be
any pair of elements of C, and write them in reduced
form

g = ngZ"‘gn’ h = hjhg...hm. ;
Without loss of génerality assune g and h cyclically
reduced,
Case 1 Suppose fgl >1. If g and h are conjugates
then h must have the same length as g and a cyclic

pernutation of one must be conjuzate to the other by
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an element of J. Thus it suffices to consider if ®there
exists an element j ¢ J such tho

(0102...gn)j hihse.. .
Thig implies qu1 = h,J, for some j; € J, which
uniquely determines j. Thus there is an elgorithm +to
determine j. Finelly one checks if j~'gj = h.
Case 2 Suppose |[g| =1, and g is not conjugate to an
element of J. Suppose g € A. Then h lies in A and one
can write g, h as elements of A. But by hypothesis one
cen deternine if g, h are conjugstes in A, hence one
can determine if g and h are conjugates in C,
Case 3 Suppose }gl €1 and g is conjugate to an element

of J., Then if g and h are conjugates, h must lie in one

of the fa

f'J
ot

LCTOr

n

and g and h are each conjugabe within one

of the f

©®
ct

ctoxr

)]

to an element of J. But the extended
conjugacy problem relative to J is solvable by hypo-
thesis in both A and B, so one can de%ermiﬂe 31, j2 € J
such that g and h are conjuzaete to 31, 32 respectively.
How if g and h are conjugates, then j?, j2 are conjugates
in C and since J is malnormal in C, then 31, 32 are con-
Jugates in J, ‘But the conjugacy problem is solvable
in J, so the conjugacy problem is solvable in C.

The solution of the extended conjugacy problem for
C relative to the factor 4 and B is en .8y. For one can

cyclically reduce an element g ¢C, and if it is con-
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Jugate to an element of A say, then Eg! < 1. If it lies
in 4 one is finished. If it lies in B it must be con-
Jugate in B to an element of J, and one can determine

1f this is so, and also determine some such element of
J, since the extended conjugacy »nroblem in A and B rel-
ative to J is solvable by hypothesis.

Lemma 3.1.5 If X is a malnornal subgroup of H, and H

is & malnormol subgroup of G, and G has the extended
conjugacy problem solvable relative to H, and H has the
extended conjugacy problem solvable relative to K, then

G has the extended conjugacy problem relative to X

W~

T

solvable.

Froof Let g € G. One can determine if g is conjugate
to an element h ¢ H and if so determine h. If g is

not conjugate to an element of I then g is not conjugate
to an element of XK. Now one can deternine if h is
conjugate in H to an elementk of K,and if so determine
k. If h is not conjugete in H to an element k ¢ X then
h is not conjugate in @ to on element k ¢ K, for 0 is

malnormal in &,
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Section 3.2 The Conjugacy Problen.

In the previous section we proved the appropriate
results as outlined in the introduction. Ve now follow
the usuel routine and apply these results to one-relator
groups. First we prove a lemme to help simplify the
work which follows.

Lemmg 3.2.1 In order to prove that any subset of the

generators of a one-relator group H with torsion gen-
erates a subgroup, which, with the obvious presentation,
is a strongly-malnormsal subgroup of H, it suffices %o
prove that in all groups

G = gpla,b,.e.,t | R n s 1,
where R is a cyclically reduced word in a,Dyeu.,t
involving a,b,...,t non-trivially, the

gp(b, ...,t)
is a strongly-malnormal subgroup of G,
Proof Tet H = gp(xT,xz,... [ R™) n > 1, ve any one-
relator group with torsion. Without loss of generality
assume R is a cyclically reduced word. TLet {yj,yZ,.,.§
be any subset of the generators of H, and let Y =
gp(y1,y2,,..). If the set {yT,yg,...} is not a proper
subset of the generators then Y = H, and Y is strongly-
malnormel in H. If the subset is empty, Y is again
strongly-malnormal in H,

Let iyj,yg,...f be a proper non~empty subset of
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the generators of H. Tirstly suppose that every gener-
ator in R is in the set y:75,++.3. 4 presentation
for ¥ is

Y = gp(y1,y2,... | ™).

Then the generators of H may be split into two disjoint

g

subsets,

{371,372,“.3, EZ.},ZZ,-..g
where the zZ; do not appear in R, These two subsets
generate free factors Y, 7Z respectively such that

H=1Y* 2,
Hence Y is a strongly-malnormal subgroup of H by Lemma
3.1.2, since the amalgamated subgroup (here trivial) is
a strongly-malnormal subgroup of Y and 7.

Secondly suppose there exists a generator say X5
which is not in {y?,yg,...} but is in R, TLet

X = gp(xj,...,xi_1,xi+l,...)
and X is a free group on these generators by the
Freiheitssatz. It is clear that Y € X and is free and
a free factor of X. Hence Y is strongly-malnormal in
X, It will suffice therefore +to prove that I is strongly-
malnormal in H, TLet

¢ = gpla,b,...,t | R™) n > 1
be obtained from H by deleting those generators which
do not ocecur in R and writing X; = & and the remaining

generators in R as b,...,t. Then
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H=1{6*X; gp(b,...,t)],
In order to prove X is strongly-malnormal in H it will
suffice, by Lemma 3.1.2, to prove that the amalgamated
subgroup is strongly-melnormal in both G and X, But
it is strongly-malnormal in X, Hence the problen is
reduced to proving that gp(b,...,t) is a strongly-
malnormal subgroup of G, thus proving the lemmsa.

Lemma 3,2,2 Any subset of the generators of a one-

relator group G with torsion generates a subgroup
which, with the obvious presentation, is g strongly-
nalnormal subgroup of G.
L£roof Tet G = gp(a,b,...,t | R n > 1. In view of
Lemma 3.2.1 it suffices to prove that H = go(b, ...,t)
is strongly-malnormal in G, Firstly H is melnormal in
G by Lemma 2.3,1. Secondly H is freely generated by
bysve,t and so the word problem is solvable in H.
Thirdly let 811 &5 be any pair of elements of G. Withe-
out lossg of generality assume &1+ 8 are words of
minimal length and involve the generator a none
trivially. If for i = 1, 2 and elements hi € H,

Mhy) > 1= 22(R) [Mgy) + Meg,)]
then

o8y # &by
o0r, equivalently

-1
g81h18,  # h,.
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For suppose A(hj) > 1, Then the middle of h, is too
far removed from its ends to be altered in reducing
gjhjgz"T, assuming of course h1 is minimal (see proof
of Corollary 2.1.5). Thus the middle of h, acts as a
barrier to ensure that reduction of 81 and 8o do not
affect one another, Hence if a can be removed from
g1h1g2-1 then a can be removed from g,ih1 which implies
gq € H, contradicting the choice of g4 2s a minimal
word involving a., Thus there is an algorithm to
determnine h?’ h2; Sinply determine for the finitely
meny h, with A(hi) € 1 and h; ninimal, if

g4y, hy " = 1.
If for some h1, h2 this equation holds then h1, h2 are
the required elements of H. Otherwise no elements h?’
h, exist,

Theorem 3,2.3 Let G be a one-relator group with

torsion. Then the conjugacy problem and the extended
conjugacy problen relative +to the subgroup generated
by any subset of the generators are solvable in G.
Eroof The theorem will be proved by induction on the
length of the relator. Tet

G = gp(a,b,c,ee. | R™) n > 1.
1t A(Rn) is 2 or 3 the result is well known, as it is
if R involves only one-generator non-trivially. Assune

R is cyclically reduced and involves a, b non-trivially.



~108~

Inductively assume the theorem proved for all groups
with relator length < A(RY),
Firstly consider the conjugacy problem. Let g
and h be any given elements of G, and without loss of
generality let them be cyclically reduced., To simplify
the notation assume a2t most a, b, ¢ are the generators
of G,
Case 1 Suoppose Ua(R) = 0, Ua(g> = 0, Let N = ng(b,c)
and construct ¥ from
Ny = gp(bo,...,bu,co,...,oy | Ron)
where not all of bo,co,b“,cJu need occur in RO' Then
for g and h to be conjuzate Oé(h) =0so0og, h ¢N,
ouppose w”jgw = h where w = ary, w e N, Then
y“1a"rgarg -1
or
ijgrk = h
where 8, is the element a“rgar written as a word in N,
But it is easy to show that there is a bound on

r. This will be established asg a separate lemma.

Lemma 3.2.4 In N defined as above let g(bo,...,br,co,

~esyC.) # 1 and h(bm,...,bk+u,cm,...,ok+ﬂ) be elements
of ¥ written as words of minimael length., If v + u < n
then g and h are not conjugates in N,

Proof If g and h are conjugates in N they are conjugates

o L ~ i .
within &k' Construct &k as
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Kk = EQP(NO;;‘ame._T) * gp(ﬁm, .,,,I\'fk) ; ng ,

Now g € first factor K and h ¢ second factor.

m-1"’
They will be conjugates only if g is conjugate to an

element of Jm’ This implies g is conjugate to an

elenent of N Construct Ki

11

1<:m~_1 = {gp(‘NO,..,,'i\im__g) I-Im__1 : J121*1}.

m-1° as

Now g is conjugate to an element of I only if g is

-1

conjugate to an element of J One continues in

m-1"
this fashion proving that g is conjuzate to an element

of J J . Hence there is an element Jj e %ﬂ

m-—‘#"”’m -l

conjugate to elements in Jm»u+1""’Jm' If jo(f JO)
is cyclically reduced and is conjugate»to an element
of J, then j, ¢ Joﬂ Jy. For let g = 3O(bo,...,bﬂ_‘1,
CO""’C#~7) and j, = 31<b1="'3bp’°1»"'&cu> be con-
Jugates where bO’ c, are not both trivial in jo.
Clearly jo, j1 are conjugates in Nqye If all the
generators involved in RO do not occur in jO, j? then
jo, j1 lie in a free group and are conjugates within
this free group. Hence by cyclic reduction bo, Cy can
be removed from 30, contradicting the fact that jO is
cyclically reduced. Hence suppose all the generators
in RO do occur in jo, j?. By Lemma 2.3.1 the elements
jO’ 31 are not conjugate in NO. Hence bO’ ¢y can be
removed from jO implying

io € JOQ‘JT.
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Similaerly if 30 is conjugate to an element in J1"”’Jr

hen jo € J5 0 Jy 0 ... OJ.. Thus if j is in meu and

is conjugate to elements in J

j ed Nn...0J
M-y ul

and so j = 1, Hence g is trivial, contradicting the
hypothesis.
Proof of Theorem 3.2,3 (continued). The equation

i

g,.W = h implies a bound on r, so it will suffice to
solve the conjugacy problem for W. Suppose g, h € Kk =
gp(NO,...,Nk). If g, h are conjugates in W, then they
must be conjugate in Kk since Kk is malnormal in N.
Hence it suffices to solve the conjugacy problem for

K This one does by induction on k. If k = O then

-
KO = NO and from the original induction hypothesis NO,
and in fact Ni for any integer i, hes a solvable con-
Jugacy problem. Now
Ky = g = Ny s in
and (i) J, 1s strongly-malnormal in Ny 2nd W,
and (ii) +the conjugacy problem is solveble in NQ and N?
end(1ii) the extended conjugccy problem in Ny, N, rel-
ative to J1 is solvable,
Therefore, by Lemma 3.1.4 the conjugacy problem is
solvable in Kq, and also the extended conjugacy problenm
relative to NO and N}. One continues in the usual
fashion to prove Kk has a solvable conjugacy problem.
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Case 2 Suppose Oa<R) =0, ca(g) =r #£0, If g end h
are conjugates then aa(h) = r, Let
g = arg1(b0’""bl’OO""’Cl>’ h = arh1(bo,...,bl,
’co,...,cl),

1

and suppose X 'gx = h where X, g, h are words of

ninimal length. Then

-1 ]
X, g1(b0’""bl’CO""’Cl>XO = h?(b0’°"’bl’00""

. -

r . . N
where Xn 18 2 "Xa” written as a word in N. Without
loss of generality assume r » 0. It is clear from this

that . does not involve bi for i < 0; for if it did,

-1

—_ ~1 y - : N
r 81 = X, shows that bi’ 1 <0 can

the equation h1"jx
be eliminated from the right hand side, contradicting
the minimality of x. oimilarly X does not involve

b i > 1. Thus Xy 1s a word XO(bO""’blur’CO’°"’Cl

i!
Choose an integer m such thet

(m - Dr >1,

. jii) nr
Then g" = a’ gg(bo’""b1+(m.~1)r’00’""°1+(m—?>r)

. m _ _mr
aﬂd. h - hz(bo,a..,‘bl+(ln~1>r,co,0.¢,Cl+(m~1)r>o
Note that in reducing 85 and hz, the bottom and the
top generators cannot be removed, otherwise they could
be removed from 84 or hq. Thus 855 h2 if not trivial
involve letters from ibo,...,bl,co,...,clf and fronm
{b(m“1)r,a..,b1+<m_1>r,0<m~7)r,-..,Cl+(m~1)r}, which
cannot be removed by reduction. Consider the equation

-1,
X (bmr’""bl+(m~1)r’cmr"f"01+(m—1)r>x

-1

).
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"bl__r’ OO’

820005 D14 (1) 29 %05 00 Sy (g y )X (B e
'°"01«r>
=n

(bryeoe,b

2 P07 l+(m~1)r’CO’""Cl+(m-7)r>'

Suppose this takes place in KP’
A

e = tep(hgrueby sog,sennneg, ) * &0(D1y g0 v s Dy (n g) g

Cl+1""’01+(m—1)r) i gp(bl+1’""b1+u’01+1"”’
Cl+u)§
= {A*3B; J} say.

Let gy = 84850048, h2 = t?tg...tv, u, v >0,

Then X~1(bmr’"”bl+(m~1)r’cmr’""Cl+(m~1)r) © 5

and X(bO’"”bl—r’CO”’°’Ol~r) € 4,

But apart from a few exceptional cases (see Lemms 3.1.3)

one can determine algorithmically if x exists, and if

so determine x uniguely. Thus one can determine if

X*1gx = h. The exceptional case when 855 h2 lie in

different factors is eliminated here, since g5, h2 if

not trivial involve letters from A and B not in J.

Thus Igzl, fh2l > 1, unliess 85, h2 are trivial. Thus

the only exceptional case to consider is

o

— - o A
82 7 SpSus Bp = Tgly, sy, 8y € 4, sp, ty < B,
and S) tq are not both trivial =ngd Sps tB are not

both trivial. Then

-1 I
LnrSpSy = tptixy .

This implies

1 _ . 5 \
X Sp = tBJ(b1+1""’Dl+u’Cl+7’""cl+u) (1)
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and

1 -1
J (b1+1’""b1+u’°1+1’""01+u)tAXo =5, (2)

Now translate (1) by -mr obtaining

. =1 . _ Y s
%0 SB<"mr> - tB(’ml>3(b1+1—mr’""bl+u~mr’cl+%~mr’

where sB(mmr), tB(~mr) denotes sy, bty translated by
-nr.  Multiplying (2) and (3) togetier to eliminate
Xps One obtains
e .
-1 = " ] w111
spsp(-nr) = j tAtB( nr) j(-nr),
or
t "Tjs = t,(-mr) j(-nr)s ~'T(--mr).
A A B B
Examining the generstors which occur on each side of
this equation one sees that both sides can be reduced
to a word in bO”"’bl~r’cO""’Gl~r’ This implies
that all the letters of J on the left hend side can be
renm 31 i 1s a v L3 - vae
eroved, since j is a word in b1+1, ”bl+u’cl+1” 7C e
This implies that J 1s not too long o word since, assum-
ing j is minimal, there is a linit on the number of
-1

reductions possible in tA jsﬁ. Alsgo J will surely

involve only letters contained in HO,...,Rl, tA or s;.
Hence there are only finitely many possibilities for j,
Thus one can decide algoritimicelly if there exists an
elenent j satisfying the above, and hence determine if

there exists an element x with x“’gx = h.

Case 3 Suppose ga<R> £ 0, Gb(R) # 0. Here one may
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embed G in a larger one-reclator group H in the usual
way and solve the conjugacy problem in H, Now

H=16 % go(b) ; v = 1% (s usual),
If &1, &, are clements of G and are conjugates in H
then they sre conjugates in ¢. For if 81+ 8, are not
conjugates in G they must be conjugate to elements of
zp(b), say‘j1,32.INow Jis Jo are conjugates in H., But
conjugzating j1, 32 by clements of the second factor
will not alter 31, 32 since this factor is cyclic,
Hence it is clear that if 31, 32 are conjugates in H,
they are conjugates in G. This proves 845 8o are
conjugates in G if they are conjugates in H. This
proves the conjugacy half of the theoren,

Consider now the extended conjugacy problem for
G relative to a subgroup H genérated by a subset of
the generators of G, It suffices to prove the result for
G = gpla,b,c,..,,t | R™) ana u = gp(b,c,...,t), where
a,b,c,...,t are the generators occurring non-trivially
in R, Let g € ¢ and suppose without loss of generality
that g is a minimal word. It is necessary to prove
that one ean decide if g 1is oonjugate to an element of
H, and if so, to find such an element of H, If g does
not involve a there is nothing to préve. Asgume there»
fore that gvinvolves the generator a non-trivially, and

that b occurs non-trivially in R, For convenience
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again essume a, b, ¢ are at most the generators in G.
Case 4 Suppose aa(R) = 0. If g is conjugate to an

O. It is necessary to decide

il

element of H then ca(g)
1f there exist elements x € ¢ and w ¢ H such that

X gx = w,
and if so, to find some such w. Let x = ary, wnere
y €N = gpy(b, ¢). Then

y*?(a"rgar)y = w,
Now it has been shown that there is 2 bound on r, hence
it suffices to solve the extended conjugacy problem for
N with respect to gp(bo,co). In fact it will suffice
to prove K = gp(NO,...,Nk) (vhere Iy has any of the
usual definitions) has a solvable extended conjugacy
problen relative to gp(bo,co).

Let g €K _, and without loss of generaltiy assume
& 1s cyclicelly reduced as a word in the generaiized
free product

K, = iNO %* gp(l\TP...,Nk) : J1§.
If gl > 1, then g is not conjugate to an element of

N If |gl=1 and g « Ny, one is finished by the

0* . ©
induction hypothesis, If g e’gp(Nq,...,Nk) then an

easy induction argument on k shows that one can deter—
mine if an element in gp(N1,,..,Nk) is conjugate to an
element of J1, and if so, determine a conjugate j ¢ Jq.

Case 5 Suppose G has only two generators a, b, and
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e

Ga(R) # 0. Here one must decide if gla,b) is conjugate

to & power of b, and if so determine that power, Let

E-
- -1 ~ I fead 1
Then x Tgx S “iLTSi r S.,

for some words Si in
a,b. Teking exponent suns

7,(8) = (2¢,) 0 (R)

o(8) - r = (3¢,) 0 (R).
Ir GE(R) = 0 or if 2¢ = O then r = o,(g). Otherwise

= (o (R)oy(g) - o (g)o (R))o " (m).

Thus one need only determine if g 1s conjugate to this
particular power of b, This has been shown to have an
aigorithmic solution.
Case 6 Suppose G has more than two generators and
o (R) # 0, c%(R) =0, o(g) = 0. Suppose that

X“Tgx = w(b,c).
Without loss of generality assunme Ub(x) = 0, Clearly
ob(w) = 0. DLet N = gp.(a,c). Then g ¢ N and is con-
jugate in W %o w(c;). If g e Ny = gp(ao,...,au,ci | Ron),
one is finished by the induction hypothesis. If g E‘Kk,
cyclically reduce g as a word in

K= [N, * gp(N1,...,Nk) ; qu,
and if it lies in gp(NT,...,Nk) one uses an induction
argument on k to show that w nay be algorithmically
determined. If g, when cyclically reduced does not lie

in gp(Nq,.,.,Nk) then g 1s not conjugate to an element
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W,
Case 7 Suppose G has more than two generators, Ga(R) £ 0,
and the exponent sums in R and g of b, c are not both

zero, Let

Ua<R) = C¥1 Ub(R) = ﬁ,} GC(R> = ))1
aa(g) = o, ab(g) =y Uo(g) = Vo

If ayy, = %7, # 0, map G » § as follows,
F1va=Povy

a -~ ab

Ya= Y
by 212

C ﬁg"azﬁ
c - QQ&} 1.

g and R » R with Ob(g) = ob<g) = 0. Let
H = gpla,b,c | 5n). One may now solve the extended
conjugacy problem in H relative to 2p(k,c). Suppose

g is conjugate in H to an element h ¢ go(b,g). Vrite

i 2

as

AP oa= 0,y
H=1{G*gp(b) ; b =Y <71 12y

Then |h| <1 when h is cyclically reduced. This implies
h lies in G or in gpib}. If the latter occurs then g
is trivial since Ub(g) = 0, s0 assune h € G, I3t reméins
to show that if g and h are conjugates in {, they are

conjugates inG, But this is obvious, for if g is con-

[

jugate to a power of b, then g is conjugate to a power
of b which, as remarked above, is impossible.

If ayy, - a,v, = O then a, # 0 implies 2 £ 0,
Here cembed G in H by mapping

a = ag

~_
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b——}jg
64

c > g !

n, " 1
end H = gp(g,k,¢ | Rlge 'k, ')).

~

If g - g, R »R then Gg(g) = UQ(B) = 0. Ais before one

20a

can solve the extended conjugacy problem in H relative
to gp(k,c), and then show that it is solvable in G
relative to gp(b,c).

This completes the proof of the theorem.,

Section 3.3 The roots of an element.

In this section we show there is an algorithm to
determine the roots of an element z in a one-relator
group with torsion. The problem of finding an algorithm
to determine whether or not an arbitrary element of a
group is a power has been investigated by Reinhart 1962
and by Lipschutz 1965 and 1967.

Theoren 3.3.1 Let G = gp(a,b,c,... | R™ n > 1. Given

g ¢ G there is an algorithm to determine the roots of

g
Proof The theorem is proved by induction on AMRM).

If A(Rn) is 2 or if R involves only one generator then
the problem is solvable. Assume the theorem proved
for all groups with length less than A(Rn). Without
loss of generality assume R is cyclically reduced.

Case 1 Suppose Ga(R) =0, 0 (g) = 0. Let N = gpp(b,c,.c.).

Then g ¢ N, and without loss of generality let g € K,

&
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K J.

e = K ¥ N5 g

(Any of the usual definitions for Ny will do!) Since
Kk is malnormel in N, the roots of g nmust lie in Kk'

If g € N, then by the induction hypothesis one can find

0

the roots of g. If g €W, or g ¢ Kk~1 proceed by

Ik
induction on k., Hence suppose g ¢ Ky but g f'NF and
A A

g ¥ B4+ Let g (without loss of generality) be
cyclically reduced,

g = 8485...8 n > 1

n
where s; a@lternate fronm Kk 1 and Nk' Then a root of g

will be
3182...stj Jj € Jk’ t < n,
and  Jsg = sy 40, Jy € Iy

But since Jk is strongly-malnormal in Nk and Kk-?’ 3
can be determined. Thus one can algorithmically deter-
nine all possible roots and check if any are indeed
roots of g.

Cage 2 Suppose Ua(R) = 0, Ua(g) =r, Let g = arg
where g ¢ N. Let ash, h €N be a p-th root of g,

p > 1. Assune g, h minimal words, Then without loss
of generality assume r > 0 and in the usual notation
for translated words,

h_
2

;% = }1<13.~1>S.9.h25 hon

Now the minimum bi,oi,... in ho must coincide with those
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of g, oth

~

that a

dicting

letters in h(n—1)

rwise,
mininmal genersator

the ninimality of h.
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writing hO on one side it is clear

of ho is removeble, contra.
Similarly the maximum

must coincide with those of . Hence

for some integer g

ho :].Clo(‘bo’a.:,bq._*_s,cO’v",Cq+S}"')
and let
go‘: %(bO""’bq+pS’CO’"”Cq+ps"")'
Now 8y = h(p»?)s“'hsho
whence gy = hpnghO‘?
_ - -1
and so Cpst+s h2ps9pshps
erefor o o = > -1
therefore g . &, = hZPSép“gO?O .
Also g2ps+s - 3Ds°2psh2ps
refore o o 7 ~1
therefore Eops+sBps+e®s BPSgZprPSgOﬂO .
Continue until
g g g g h g h 1
nps+s®(n-1)ps+s®* Sps+s®s T (n+1)peBnps* 80
where (n+1)ps >t + s, Then
<gs "’gnns+s> (n+1)ps (g nps"'bo) hye

Now on the left haend side of this
in h(n+1)ps can be renoved.
an upper bound on A(ho).

that can appear in ho are those in the range bO”"’b

equation every letter
his implies that there is

Since the only generators

t+g?

CoreevsCpygrene it is casy to see that one has a bounded

number of possibilities for h,

obtainabl

Thus an algorithm is

in this case,
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Case 3 Suppose Ua(R) £ 0, Gb(R) # 0. As usual embed
G in H and solve the problem in H. Suppose H =

{e * gp(p) : v =1, 1Ir g = n® then g, h commute and
80 g, h lie in G or else g lies in G and is conjugate
to a power of b. But by the previous theorem one can
deternine such a power of b, By the malnormality of
gp(b), any root of b' is g vower of b. Thus one can

determine the roots of g.

This completes the proof of the theoren.
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