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A B S T R A C T

In this study, a spatially-explicit agent-based modelling framework GEOFIL was developed to predict lymphatic
filariasis (LF) transmission dynamics in American Samoa. GEOFIL included individual-level information on age,
gender, disease status, household location, household members, workplace/school location and colleagues/
schoolmates at each time step during the simulation. In American Samoa, annual mass drug administration from
2000 to 2006 successfully reduced LF prevalence dramatically. However, GEOFIL predicted continual increase in
microfilaraemia prevalence in the absence of further intervention. Evidence from seroprevalence and trans-
mission assessment surveys conducted from 2010 to 2016 indicated a resurgence of LF in American Samoa,
corroborating GEOFIL’s predictions. The microfilaraemia and antigenaemia prevalence in 6-7-yo children were
much lower than in the overall population. Mosquito biting rates were found to be a critical determinant of
infection risk. Transmission hotspots are likely to disappear with lower biting rates. GEOFIL highlights current
knowledge gaps, such as data on mosquito abundance, biting rates and within-host parasite dynamics, which are
important for improving the accuracy of model predictions.

1. Introduction

Lymphatic filariasis (LF) is a parasitic vector-borne disease targeted
for global elimination. In American Samoa, the disease is pre-
dominantly transmitted by several mosquito species, including the
highly efficient day-biting Aedes polynesiensis and night-biting Aedes
samoanus. Larval worms develop over a period of up to one year into
adult worms in the lymphatic system (Taylor et al., 2010). The adult
worm can be reproductively active for 4–6 years (Ottesen, 2006),
producing millions of microfilariae (Mf) that circulate in the blood and
infect mosquitoes during biting events. The Mf then develop into L3
larvae in mosquitoes, which can be transmitted to humans in sub-
sequent biting events. A person infected with LF may be asymptomatic
but infectious to others for many years (Dreyer et al., 2000; Nutman,
2013).

Under the Pacific Programme to Eliminate LF (PacELF) initiated in

1999, seven rounds of mass drug administration (MDA) were under-
taken in American Samoa from 2000 to 2006 (Lau et al., 2014; Ichimori
and Graves, 2017). The WHO recommends post-MDA surveillance using
transmission assessment surveys (TAS), which use critical cut-off values
of numbers of antigen-positive children aged 6–7 years to determine
whether transmission has been likely interrupted in defined evaluation
units (World Health Organization, 2011). American Samoa passed the
TAS 1 and TAS 2 in 2011 and 2015 (Won et al., 2018) but failed TAS 3
in 2016 (Sheel et al., 2018). Recent research evidence from both human
and entomological surveys also suggests that transmission is still oc-
curring (Lau et al., 2014; Schmaedick et al., 2014; Lau et al., 2016,
2017). Persistent transmission in American Samoa may be due to one or
more of the following: 1) ineffective or incomplete coverage of the MDA
program, either overall or in certain age or gender groups; 2) effective
MDA in only parts of the islands, resulting in residual areas of ongoing
transmission and subsequent spread to other areas; 3) standard TAS
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target thresholds are not low enough for interruption of transmission in
this context; and 4) reintroduction of parasites from external sources,
e.g. from neighbouring LF-endemic countries.

Mathematical and computational models can assist researchers and
program managers to better understand transmission dynamics. The
three key models of LF, EPIFIL (Chan et al., 1998; Norman et al., 2000),
LYMFASIM (Plaisier et al., 1998) and TRANSFIL (Irvine et al., 2015),
have been widely used to assess the prospects of elimination (Stolk
et al., 2003; Michael et al., 2006; Stolk et al., 2013; Stone et al., 2014;
Smith et al., 2017). However, none of the current models directly ad-
dresses Aedes-type transmission in the Pacific, and spatial aspects of
transmission were not considered in their modelling frameworks (Stolk
et al., 2015). This has restricted the understanding of LF transmission
dynamics and spatial clustering of infections, especially at low pre-
valence. Furthermore, recent studies have raised concerns about the
recommended target threshold (< 1% antigenaemia, Ag) for post-MDA
TAS (Lau et al., 2014; Harris and Wiegand, 2017), the utility of school-
based surveys of young children versus community-based surveys for
determining ongoing transmission (Sheel et al., 2018; Harris and
Wiegand, 2017), and the expected size of residual hotspots of trans-
mission (Lau et al., 2014).

In this study, a spatially-explicit agent-based modelling framework
(GEOFIL) was developed using comprehensive data sources in
American Samoa, where LF is diurnally subperiodic (Mf always present
in the blood, but at greater densities in the day time) and transmitted
mainly by both day and night biting Aedes mosquitoes. GEOFIL was
characterized by a statistically realistic population, long-term popula-
tion dynamics (including demographic changes), high-resolution geo-
graphic location information (American Samoa Department of
Commerce, 2018), extensive daily commuting networks (Xu et al.,
2018) and a spatially heterogeneous risk of infection with higher risk
centered around locations of infectious individuals. GEOFIL was de-
signed to predict the infection status of every individual in the synthetic
population, tracking information such as age, gender, household loca-
tion, household membership, workplace/school locations and collea-
gues/schoolmates. GEOFIL provides not only valuable insights into LF
transmission dynamics, but is also a highly flexible framework to in-
vestigate potential intervention strategies, including country-wide
MDA, targeted test and treat programs for high risk individuals or
groups, the effectiveness of snowball surveillance (e.g. testing family
members and near neighbours of infected people), and vector control
programs. With moderate adjustment, the modelling framework can
also be applied to a variety of infectious diseases, especially those with
long incubation and infectious periods, or diseases with spatial het-
erogeneity in risk.

2. Material and methods

2.1. Population dynamics

The population generation algorithm is based on previous work to
develop a synthetic population in American Samoa (Xu et al., 2017),
with some improvements to make the algorithm more realistic and
flexible. Instead of building households based on individuals in the
synthetic population, households were generated based on family units
in this study. A family unit is composed of a couple or a single (un-
married or divorced) adult, with possible underage children (< 15
years) and unmarried adult children. The large household size identi-
fied in survey data (Xu et al., 2017) indicates that some households are
likely to be composed of multiple family units in American Samoa. Our
family unit approach allows us to optimize the family and household
structure for the synthetic population. A second improvement on our
prior work is related to the age structure of the synthetic population.
Instead of assuming uniformly distributed individuals in each age
group, the new algorithm uses kernel smoothing to produce a more
realistic population structure, with smooth transition between

individual ages. Furthermore, household sizes were sampled from a
zero-truncated Poisson (ZTP) distribution. The ZTP parameter was de-
termined using maximum-likelihood estimation to fit to survey data.
The application of ZTP makes the synthetic population generation al-
gorithm more applicable to other census populations with limited
household details.

The model population is characterized by major dynamic processes
including population renewal (birth/death), couple formation and se-
paration, relocation within American Samoa, and migration. Age-spe-
cific fertility rates were based on the projections in the International
Database program (IDB) from the United States Census Bureau (The
United States Census Bureau, 2018), while sex-specific mortality rates
were based on the life table in the 2015 American Samoa Statistical
Yearbook (American Samoa Department of Commerce, 2015), as-
suming an annual mortality improvement of 1%. Existing couples se-
parated with a fixed small probability each year, with the female
partner and any underage children assumed to move to a new house-
hold. The major change from the previous model is related to the
movement of individuals between households. A large household with
multiple family units can now divide into two smaller households with
a probability depending on both the household size and household
stability. Each year, a household experiencing an expansion whose
number of members was more than the observed average household
size ( = − −Λ λ e/(1 )h

λ from the survey data) was deemed to be un-
stable. An unstable household was able to fracture into two households
in accordance with a given probability. To determine the fracture
probability, a second threshold (Θh) was defined as the minimum
household size with which, in case of a fracture, there exist two gen-
erated households whose joint probability is larger than the probability
of the original household according to the ZTP. The household fracture
probability (qh) was defined as: =q 0.2h , ≤ <Λ s Θh h h; =q 0.8h ,

≥s Θh h, where sh is the size of household h. If the size of the largest
family unit (su) of the household was within a reasonable range
( ≤ <max s s1/3 { }/ 2/3u h ), the largest family unit was assumed to move
to an empty residential building to form a new household if the
household fractured with probability qh.

2.2. Employment and school attendance

The cultural relationship between the Samoan islands implies many
similarities between American Samoa and Samoa. As the labor force
participation rates (LFPRs) by age group in American Samoa were not
available, the LFPRs (Samoa Bureau of Statistics (SBS) and Ministry of
Commerce Industry and Labour (MCIL), 2014) of Samoa were used to
estimate the employment ratio in each age group. However, American
Samoa has stronger policies on ancestral land rights and fewer people
work in the agricultural industry. Therefore, instead of the overall
LFPRs of Samoa, the LFPRs from urban areas in Samoa (see Supple-
mentary Fig. S1 online) were used.

For any individual i of age, let pa be the LFPR at a and ϕa be the
employment status at a ( =ϕ 1a employed, otherwise 0). The probability
of individual i being employed at age a given the employment status at
age −a 1 ( −p ϕ ϕ( )a a 1 ) is given by:

• if > −p pa a 1: = = =−p ϕ ϕ( 1 1) 1a a 1 , = = =−p ϕ ϕ( 1 0)a a 1
− −− −p p p( )/(1 )a a a1 1 ;

• if < −p pa a 1: = = =−p ϕ ϕ( 0 0) 1a a 1 , = = =−p ϕ ϕ( 0 1)a a 1
− −− −p p p( )/(1 )a a a1 1 .

The schooling system provides compulsory elementary (Grade 1–8)
and secondary (Grade 9–12) school education in American Samoa.
However, there is still a small number of children who leave secondary
school and participate in the labor force. The American Samoa
Community College (ASCC) offers some two-year programs to sec-
ondary school graduates. In this model, several assumptions were made
about the school attendance:
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• individuals aged 6–13 years would enrol at the nearest elementary
school (based on Euclidean distance);

• individuals aged 14–17 years who were not employed would enrol
at the nearest secondary school (based on Euclidean distance);

• individuals aged 18–19 years who were not employed would enrol
at the ASCC.

2.3. Commuting networks

A radiation model (Simini et al., 2012) was used to predict daily
commuting patterns. The average flux Tij from location i to location j is
given by ⟨ ⟩ = + + +T T m n m s m n s/(( )( ))ij i i j i ij i j ij , where mi and nj are
the population of location i and j ; sij is the total population in the circle
of radius rij centered at i (excluding the source and destination popu-
lation); and = ∑ ≠

T Ti j i ij. A distance matrix ×Dn n (where n is the total
number of locations) is required to construct radiation models. Each
element dij represents the distance from location i to, where =d 0ii and

=d dij ji. Either Euclidean or road distance can be used to formulate the
distance matrix. In this study, road distance was preferred considering
the mountainous landscape of the main island of American Samoa
(Tutuila). An embedded problem of the radiation model is that the
predicted commuting networks miss some important commuting hubs
with small resident populations. For example, Atu’u is a small village
where the largest non-government employer on the island (a tuna
cannery) is located. In recent years, an average of 17.6% of the total
employed population worked in the cannery (American Samoa
Department of Commerce, 2015), greatly in excess of the employment
capacity predicted by the local resident population. The number of
cannery workers who resided in each village was found to be propor-
tional to village size (Xu et al., 2018). The radiation model was there-
fore revised to calibrate the commuting flux to Atu’u to match the total
employment in the cannery by randomly assigning workers to Atu’u
proportional to the population of each village.

2.4. Risk of infection

Due to the inefficiency of transmission of LF (Hairston and de
Meillon, 1968), the likelihood of being infected after one mosquito bite
is extremely small. The household, workplace and school are the three
most important locations where transmission could occur. Although the
time spent in the workplace/school was usually less than that in the
household, the mosquito biting rates were assumed to be the approxi-
mately the same (see Table 1). This assumption is made for two reasons:
firstly, the day-biting mosquitoes are highly efficient and there is po-
tential bed-net protection (Irvine et al., 2018) during the night; sec-
ondly, there are no available data on the relative biting efficiency be-
tween the day-biting and night-biting mosquitoes in American Samoa,

and thus a parsimonious assumption is reasonable. Sensitivity analysis
was also used to investigate the impact of varying mosquito biting rates.

For each infectious individual, mosquitoes can take in Mf during a
blood meal and eventually become infective if they survive the extrinsic
incubation period (lm). Infective mosquitoes disperse to the neighbor-
hood area based on their flight range. Therefore, only individuals
within the maximum flight distance (dmax) of mosquitoes centered at
the location of the infectious individual are at risk of infection (see
Fig. 1). To estimate the distribution of infective mosquitoes, a linear
dispersal factor ( fd) was defined by: = −f d d1 /d max . For LF in Amer-
ican Samoa, the area at risk is relatively small due to the short flight
range of ˜100m for Aedes mosquitoes (Lau et al., 2016; Jachowski,
1954; Hapairai et al., 2013).

For any location j, the prevalence of infective mosquitoes (rj) is the
weighted average of the prevalence of infectious individuals in the
neighborhood area centered at j:

=
∑ ∑ ×

∑
× ×

∈ ∪ ∈

∈ ∪

( )( )
r

c I N f

f
p p

/
j

k L j i M i i k d

k L j d
L if

{ }

{ }
3

j k

j

where Lj is a location within dmax of j; Mk is the set of members at k; ci is
the relative exposure to mosquitoes of individual i; Ii is an indicator
function (1 if infectious, otherwise 0); and Nk is the number of total

Table 1
Model Parameters for Estimating Risk of Infection.

Parameter Value Description References

dmax 100 meters Maximum flight range of Aedes mosquitoes (Lau et al., 2016; Jachowski, 1954; Hapairai et al.,
2013)

lm 13 days Length of extrinsic incubation period (Paily et al., 2009)
lp 6-12 months Length of prepatent period (Ottesen, 2006)

li 4-6 years Length of infectious period (Ottesen, 2006)
γ −λ v (0.13)/75 Daily death rate of mated worm in prepatent period (Hairston and de Meillon, 1968)
sm 0.6 Mosquito survival probability of each feeding cycle (3 days) (Graves et al., 1990)
pL3 smlm/3 Probability of mosquitoes surviving through the extrinsic incubation period

pif 0.3881 Probability that mosquitoes which survive through the extrinsic incubation period are
infective

(Krishnamoorthy et al., 2004; Erickson et al., 2013)

pb 0.1412 Probability of presence of mated worms due to an infective mosquito bite (Hairston and de Meillon, 1968)
c 0.0-1.0 Relative mosquito exposure of individuals aged ≤ 15 years. Kernel smoothed based on:

0.25 (0–4 yro), 0.75 (5–15 yro).
(Stone et al., 2015)

b1 70 Number of effective mosquito bites per person during working hours (Jachowski, 1954; Ramalingam, 1968; Hapairai et al.,
2015)b2 70 Number of effective mosquito bites per person during off-work hours

Fig. 1. Risk of infection centered on the locations of infectious individuals. The
red dots (i, j and k) represent the household/workplace/school locations of
infectious individuals. A cone risk area is shaped by each infectious individual.
In this case, susceptible individuals at location c are at risk from i, j and k;
susceptible individuals at location a are at risk from i and j ; susceptible in-
dividuals at location b only are at risk from j ; while susceptible individuals at
location d have no risk of infection (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article).
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individuals at k; pL3 is the probability of mosquitoes surviving through
the extrinsic incubation period; and pif is the probability that mosqui-
toes that survive through the extrinsic incubation period are infected
(see Table 1).

The rate of infection during working hours for an individual i at
location j is given by: = × × ×w b c r pij j i j b1 , where b j1 is the number of
effective mosquito bites at j during working hours; ci is the age-de-
pendent relative mosquito exposure of i ; rj is the prevalence of infective
mosquitoes at j ; and pb is the probability that an infective mosquito
bite will lead to a mated pair of worms. Correspondingly, the rate of
infection during off-work hours is = × × ×w b c r pij j i j b2 . Due to in-
sufficient information about the spatial heterogeneity in mosquito
biting rates, we assumed the same rate throughout the island (e.g.,
simply b1 and b2). However, we retain j in the model for use in future
scenarios when this information becomes available.

Hairston and de Meillon (1968) argued that the accumulation of
parasites in the human body was unlikely and pb was estimated to be
0.0325. However, our estimation indicates the rate of receiving in-
fective mosquito bites is much higher in American Samoa (Schmaedick
et al., 2014; Jachowski, 1954; Ramalingam, 1968; Hapairai et al., 2015)
compared to Yangon (formerly Rangoon) Hairston and de Meillon
(1968). People would most likely contract the male and female worms
from multiple bites instead of one single bite, and pb was re-estimated.
Based on the data in Hairston and de Meillon (1968), pb was estimated
to be between 0.0837 (probability of receiving both sexes of worms in
an infective bite) and 0.1987 (probability of receiving a single sex of
worm in an infective bite). With no further knowledge, pb was assumed
to be the average of the two probabilities in our model.

The mated worms will circulate in the lymphatic and blood vessel
system and the individual will finally become infectious if the mated
worms survive through the prepatent period (lp) with probability

= − ×p e γ lp and produce microfilariae. The length of the infectious
period was assumed to be 4–6 years (Ottesen, 2006). The parameters
for estimating the risk of infection are summarized in Table 1.

2.5. Mf and Ag prevalence

Only Mf positive individuals contribute to transmission of LF in the
population. However, it is more difficult to detect Mf than to detect
antigen and antibody, especially at low Mf density (Southgate, 1992).
Consequently, rapid diagnostic tests for circulating filarial antigen are
the primary tools used in TAS (Gass et al., 2012). However, as there are
still many unknowns about how long the antigen remains detectable
after the Mf positive stage, Ag prevalence was not explicitly modelled in
our framework. To validate our model based on the Ag prevalence in
the surveys, the ratio between the Ag prevalence and Mf prevalence was
estimated. The ratio is affected by the level of Ag/Mf prevalence and
whether MDA had been conducted. A recent study of LF in Papua New
Guinea (Berg Soto et al., 2018) indicated that an exponential function
can be used to interpret the ratio between the two prevalence values.
Based on the survey data in 2007 (Coutts et al., 2017), 2014 (Lau et al.,
2017) and 2016 (Sheel et al., 2018), we adopted an exponential func-
tion = × +−R e5.8464 2.77T0.153 , where R is the estimated ratio of Ag/
Mf prevalence; T is the number of years since the last MDA to estimate
the relationship between Ag and Mf prevalence (see Supplementary Fig.
S2 online).

2.6. Transmission scenarios

Two scenarios were developed based on the observed Ag prevalence
by villages in a 2010 seroprevalence survey (Lau et al., 2014). For
transmission scenario A, the rate ratio was estimated to determine if the
Ag prevalence of a village differed from the overall Ag prevalence of all
other villages at 1% significance level. In case of significant difference,
the Ag prevalence of that village was used to initialize the village po-
pulation; otherwise, the village population was initialized based on the

overall Ag prevalence. For transmission scenario B, all the villages were
simply assumed to follow the observed Ag prevalence by villages in the
2010 survey. Due to persistent transmission prior to 2010, a consider-
able proportion of people may have been in the prepatent stage in 2010.
The prevalence of prepatent individuals was assumed to be one-sixth of
the Mf prevalence considering the relative length of the prepatent stage
and infectious stage (see Table 1).

3. Results

3.1. Population dynamics

The simulated population of American Samoa decreased from 2010
to 2030 by an average annual rate of 1.27% (Supplementary Fig. S3(a)
online), based on the census population (American Samoa Department
of Commerce, 2015), mortality rates (American Samoa Department of
Commerce, 2015) and age-specific fertility rates (The United States
Census Bureau, 2018). The simulated population was found to decrease
more slowly than in the estimation from the United States Census Bu-
reau (average annual rate −1.58%) (The United States Census Bureau,
2018). Population ageing was identified in the simulation. The simu-
lated age distribution was consistent with the observed trend in the last
two population censuses. More details on the simulated population
dynamics are given in Supplementary Fig. S3 online and our previous
work (American Samoa Department of Commerce, 2015).

3.2. Employment and school attendance

Using our model, the employment ratios of males and females aged
15–69 years were estimated to be 56.5% and 36.3%. The overall em-
ployment ratio was 46.4% in the model, close to 47.8% reported in the
census (American Samoa Department of Commerce, 2015). The total
number of employed persons was estimated to be 15,510, in line with
census data (16,616) (American Samoa Department of Commerce,
2015). Based on school attendance assumptions, the total number of
students was estimated to be 16,785, with 10,034 primary students
(Year 1–8), 4876 secondary students (Year 9–12) and 1875 college
students (student ratio= 5.4:2.6:1.0). Student numbers and the student
ratio are consistent with the census data (total 17,885, student
ratio= 4.9:2.1:1.0) (American Samoa Department of Commerce,
2015).

3.3. Commuting networks

The commuting network from the residence villages to the work-
place villages was previously investigated and analyzed (Xu et al.,
2018), indicating that workers commuted daily across the whole of the
main island of Tutuila, with work hubs drawing from villages across the
island. The daily commuting network for adult workers surveyed in
2010 is given in Fig. 2(a). The population covered by the network is
51,864, about 93.4% of the total population in American Samoa. The
work hubs were villages with the largest populations, such as Tafuna,
Pago Pago and Fagatogo, plus the village of Atu’u (where a tuna can-
nery, the largest non-government employer, is located). In Fig. 2(b), the
major commuting routes for adult workers were predicted by a revised
radiation model using road distances extracted from Google Map API
(Anon, 2018). The simulated commuting network captured all of the
important commuting hubs in the survey data. Although the simulated
commuting network covers all villages in the island, commuting flux
among pairs of villages was highly heterogeneous.

3.4. Transmission scenario A

The Ag prevalence in Fagali’i was found to be significantly higher
than other villages ( =RR 10.13, <p 0.01). Therefore, at the beginning
of the simulation (in 2010), Mf prevalence in the adult population
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(≥15 years) was assumed to be 4.76% in Fagali’i and 0.47% in other
villages, based on the observed Ag prevalence in the 2010 survey (Lau
et al., 2014) and the estimated ratio of Ag/Mf prevalence of 6.46. As-
sumptions were made for the Ag prevalence in children as there were
no available data. The Mf prevalence in 8–14 year-old (yo) children was
assumed to be half of the adults, according to the observed lower pre-
valence in children in a 2014 survey (Lau et al., 2017), and we assumed
no Mf positive individuals in 0–7 yo children.

The simulated transmission dynamics over 2010–2030 were shown
in Fig. 3(a). The overall Mf prevalence was 0.36% (0.31–0.41%) in
2010 and the corresponding Ag prevalence was 2.33% (2.00–2.65%).
With no interventions, the overall Mf prevalence would increase to
8.58% in 2030. The Mf prevalence in 6-7-yo children was much lower
than the overall prevalence. The Mf prevalence in the two suspected
hotspots (Fagali’i and Ili’ili/Vaitogi/Futiga) identified in the 2010
survey (Lau et al., 2014, 2017) was shown in Fig. 3(b). The Mf pre-
valence in Fagali’i was found to be much higher than the overall pre-
valence, but the prevalence in Ili’ili/Vaitogi/Futiga did not differ from
other villages. The prevalence of infective mosquitoes at specific loca-
tions was explicitly calculated in GEOFIL. The Supplementary Fig S4

showed the prevalence of infective mosquitoes in each village. The
patterns agreed well with results of a previous entomological survey
(Schmaedick et al., 2014).

In Fig. 4(a), the simulated Ag prevalence in adults was explored.
The simulated Ag prevalence in adults was 3.21% (90% range:
2.75–3.65%) in 2010 and 5.07% (3.78–6.11%) in 2016. The observed
data indicated the Ag prevalence was 3.2% (95% CI: 0.6–4.7%) in 2010
(Lau et al., 2014) and 6.2% (4.5–8.6%) in 2016 (Sheel et al., 2018). In
Fig. 4(b), the simulated Ag prevalence in 6-7-yo children was compared
to the data from TAS. The Ag prevalence in 6–7 yo was projected to be
0.19% (0–0.47%) in 2011, 1.01% (0.40–1.88%) in 2015 and 1.05%
(0.38–1.93%) in 2016. The TAS suggested the prevalence to be 0.20%
(0–0.8%) in 2011 (Won et al., 2018), 0.1% (0–0.3%) in 2015 (Won
et al., 2018) and 0.7% (0.3–1.8%) in 2016 (Sheel et al., 2018). In
Fig. 4(c), the simulated Ag prevalence in Fagali’i was investigated. The
Ag prevalence in Fagali’i was simulated to be 22.98% (10.47–39.52%)
in 2010 and 20.44% (7.07–34.65%) in 2014. The observed data in-
dicated the Ag prevalence in Fagali’i was 30.8% (9.1–61.4%) in 2010
(Lau et al., 2014) and 17.2% (8.6–29.4%) in 2014 (Lau et al., 2017). In
Fig. 4(d), the simulated Ag prevalence in Ili’ili/Vaitogi/Futiga was

Fig. 2. Commuting network in 2010: (a) based on 2010 survey (reproduced from Ref. Xu et al. (2018); (b) simulated with radiation model (top 60 major routes only).
The directed lines represent commuting routes from residence villages to workplace villages.

Fig. 3. Transmission scenario A: simulated (sim.) Mf prevalence in: (a) 6-7-yo children and the overall population; (b) two suspected transmission hotspots. Results
were based on 50 simulations, with 90% range indicated by the bars.
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compared to the observed data. The simulation indicated the Ag pre-
valence was 2.27% (1.43–2.86%) in 2010 and 3.20% (1.89–4.52%) in
2014. The survey suggested the prevalence was 15.6% (5.3–32.8%) in
2010 (Lau et al., 2014) and 2.4% (1.2–4.4%) in 2014 (Lau et al., 2017).

The dynamics and evolution of the transmission risk map was
shown in Fig. 5(a)–(c). The Mf prevalence was found to be highly
heterogeneous among villages throughout the simulation period. To
show the dynamics of LF transmission, a video of locations of house-
holds with Mf positive individuals every 30 days is available in the
supplementary information online.

3.5. Transmission scenario B

All villages were assumed to follow the observed Ag prevalence by
village in the 2010 survey (Lau et al., 2014) in transmission scenario B.
Mf positive individuals were present in 17 villages (see Fig. 5(d)). The
overall Mf prevalence was 0.37% (0.33–0.41%) in 2010 and the cor-
responding Ag prevalence was 2.39% (2.13–2.62%). The simulated
transmission dynamics over 2010–2030 were shown in the Supple-
mentary Fig. S5. In the Supplementary Fig. 5(c)–(f), the simulated Ag
prevalence was compared to the observed data from surveys conducted
from 2010 to 2016 (Lau et al., 2014; Won et al., 2018; Sheel et al.,
2018; Lau et al., 2017). All simulated Ag prevalence agreed well with
the data, except for the Ag prevalence in the suspected transmission
hotspot Ili’ili/Vaitogi/Futiga, which suggests that Scenario A is more
likely compared to Scenario B. In contrast to scenario A, Ili’ili/Vaitogi/
Futiga was assumed to have a higher initial transmission setting in
scenario B. The results suggested that Ili’ili/Vaitogi/Futiga may not
have higher prevalence than the overall population in 2010, implying
that the contiguous villages of Ili’ili/Vaitogi/Futiga were likely not a
transmission hotspot, in agreement with data from the 2014 survey
(Lau et al., 2017). Fig. 5(d)–(f) showed the dynamics and evolution of
the transmission risks based on scenario B.

3.6. Sensitivity analysis

Sensitivity tests were conducted based on the transmission scenario

A. The results showed the Mf prevalence was very sensitive to the
mosquito biting rates (see Fig. 6). With lower biting rates during both
working and off-work hours, the overall Mf prevalence would increase
at a much lower rate (Fig. 6(b)) and the hotspot Fagali’i was expected to
disappear (Fig. 6(d)).

With no data on the relative mosquito biting rates during working
and off-work hours, GEOFIL assumes identical biting rates during each
period. Sensitivity analysis was conducted to investigate whether dif-
ferent mosquito biting rates during working and off-work hours would
lead to distinct infection patterns in adults and children. The
Supplementary Fig. S6 showed that mosquito biting rates during
working and off-work hours have similar effects on the Mf prevalence in
adults and children, thus we cannot infer transmission patterns based
on the prevalence data.

4. Discussion

In this study, a fully dynamic spatially-explicit agent-based model-
ling framework was developed to simulate LF transmission in American
Samoa, based on a synthetic population, commuting networks and
spatially heterogeneous risks of infection. The predicted commuting
networks, based on the radiation model (Simini et al., 2012), along with
road distances from Google Map API (Anon, 2018), were able to re-
plicate the commuting patterns identified in an empirical study (Xu
et al., 2018). Based on the seroprevalence in the 2010 survey (Lau et al.,
2014), and assuming no further interventions (e.g. MDA) are con-
ducted, GEOFIL predicted a continuously increasing prevalence of Mf in
the human population from 2010 to 2030. The Mf prevalence was
highly sensitive to mosquito biting rates. With lower biting rates,
transmission hotspots were likely to disappear.

In 2015, TAS 2 was undertaken and Ag prevalence in 6-7-yo chil-
dren was 0.1% (0–0.3%) (Won et al., 2018). However, GEOFIL esti-
mated an Ag prevalence of 1.01% (0.40–1.88%) in this age group, i.e.
American Samoa should have failed the 2015 TAS based on the simu-
lation. The discordance between the TAS 2 results and model estimates
could be explained by chance, sampling issues, lower sensitivity of
detection of Ag in 6–7 yo children leading to poorer accuracy in the

Fig. 4. Transmission scenario A: simulated (sim.) and observed (obs.) Ag prevalence in: (a) adults (≥15 yo); (b) 6–7 yo school children; (c) Fagali’i; (d) Ili’ili/Vaitogi/
Futiga. Results were based on 50 simulations, with 90% range indicated by the bars. For the observations, the bars indicated the 95% confidence interval.
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prevalence estimates, or it may signal that our model needs further
refinement.

As the first spatially explicit agent-based model of LF, we modelled

the prevalence of Mf positive individuals in the population, rather than
the average worm load as in other models (Chan et al., 1998; Norman
et al., 2000; Plaisier et al., 1998). To fit the model output to Ag

Fig. 5. Mf prevalence by villages in transmission scenario A/B in 2010, 2020 and 2030. Different color scales are used to make the spatial heterogeneity in Mf
prevalence more clear. Results were based on 50 simulations.

Fig. 6. Sensitivity analysis of mosquito biting rates during working (W) and off-work hours (O), simulated Mf prevalence of Scenario A in: (a)(b) the overall
population; (c)(d) Fagali’i. Results were based on 50 simulations, with 90% range indicated by the bars.
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prevalence in the surveys, we estimated Ag prevalence based on the Ag/
Mf ratios estimated in a recent study using data from Papua New
Guinea (Berg Soto et al., 2018). However, the ratio of Ag/Mf prevalence
(see Supplementary Fig. S2 online) may vary between settings (e.g.,
when predicting pre-control Ag prevalence and trends during MDA). To
estimate the risk of infection at any specific location, the prevalence of
infective mosquitoes was explicitly estimated based on the weighted
average of the prevalence of infectious individuals in the neighboring
area. This approach allowed us to validate GEOFIL using mosquito
trapping data from a separate study (Schmaedick et al., 2014). When
estimating commuting patterns, we found that the radiation model
(Simini et al., 2012) did not capture known commuting hubs without
essential adjustments, highlighting limitations of population density in
capturing all travel features for small population centers.

One of the primary differences between GEOFIL and other models
(EPIFIL, LYMFASIM and TRANSFIL) is that the transmission probability
in other models is dependent on the average Mf load in the population.
In GEOFIL, on the other hand, the rate of infection only depends on
mosquito exposure, prevalence of infective mosquitoes and probability
of presence of mated worms due to an infective mosquito bite.
However, none of these parameters are dependent on the Mf density in
the human body. Therefore, GEOFIL may overestimate the transmission
capacity, especially at low worm load (e.g. post MDA). The dependence
between the transmission capacity and the Mf density needs to be
further investigated before applying GEOFIL for MDA strategies.

There are limitations in the ability of GEOFIL to replicate some of
the observations from the field surveys. Firstly, in the 2016 survey, the
Ag prevalence in males was much higher than in females (Sheel et al.,
2018). Possible reasons include males spending more time outdoors
(resulting in higher exposure to mosquitoes), lower rates of participa-
tion in MDA (Liang et al., 2008), hormonal reasons, and immunological
reasons (Brabin, 1990). Although a relative risk of exposure could be
added, there are currently limited data on risk exposures to para-
meterize such a difference. Secondly, mosquito biting rates during
working and off-work hours were based on mosquito trapping experi-
ments in the 1950s and 1960s (Jachowski, 1954; Ramalingam, 1968)
and a recent experiment in Samoa conducted in 2011 (Hapairai et al.,
2015). The biting rates were assumed to be homogeneous throughout
the island, given a lack of data. As simulations are quite sensitive to
mosquito biting rates, vector abundance data are likely to improve the
precision of spatial model predictions and explain the emergence of
transmission hotspots. Thirdly, the population was projected long into
the future. The population structure relies on projections of demo-
graphics from the U.S. Census Bureau, which may not be accurate.
Fourthly, there are still many unknowns concerning LF parasite dy-
namics in the human body, especially the accumulation and mating of
male and female worms in the lymphatic system. The probability that
an infective bite leads to the presence of mated worms can only be
estimated. Finally, there is intensive population mobility between
American Samoa and Samoa (Xu et al., 2018). The importation risk of
LF may be significant. However, due to limited data on the Mf pre-
valence in Samoa, importation is currently not included in GEOFIL.

In conclusion, we have developed a highly flexible and extendable
spatially-explicit agent-based modelling framework. The flexible po-
pulation layer makes it easy to change population configurations to
investigate future LF disease burden under different demographic sce-
narios. The high-resolution spatial locations make it possible to in-
vestigate hotspot size and the risk of infection due to the presence of
infectious individuals in the neighboring area. The modeling framework
further highlights some important knowledge gaps, such as mosquito
abundance data and knowledge of within-host parasite dynamics,
which are important for improving the accuracy of LF transmission
models.
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