COASTS AND ESTUARIES
THE FUTURE

EDITED BY
ERIC WOLANSKI
JOHN W. DAY
MICHAEL ELLIOTT
RAMESH RAMACHANDRAN
Coasts and Estuaries

The Future
This page intentionally left blank
We dedicate this book to our grandchildren: Oliver, Grace, and Harry Wolanski; Olly, Dylan, and Mycah Elliott; and Daisy and Sunny Day; and to Ramachandran’s children Gowtham and Niveda Ramesh; we hope that they will enjoy healthy estuaries and coastal waters by 2050 and beyond and we hope that these will remain healthy to entrust to their children.
Contents

Contributors xix
About the Editors xxiii
Preface: Why This Book? xxv

1. A Synthesis: What Is the Future for Coasts, Estuaries, Deltas and Other Transitional Habitats in 2050 and Beyond?

Michael Elliott, John W. Day, Ramesh Ramachandran, Eric Wolanski

1. Introduction 1
2. Setting the Scene: The DAPSI(W)R(M) Framework 2
3. Current Status of Estuarine and Coastal Ecosystems 4
 3.1 Estuaries 4
 3.2 Deltas 7
 3.3 Wetlands, Lagoons, and Catchments 9
 3.4 Enclosed, Semienclosed, and Open Coasts 11
 3.5 Coral Reefs 12
4. Quantifying Changes: The Need to Accommodate Moving Baselines 13
5. Changes to Stressors: The Input of Physical, Chemical, and Biological Pollutants and the Extraction of Biological Resources 13
 5.1 Dredging 13
 5.2 Legacy Pollution 13
 5.3 Invasive Species 15
6. Additional Future Threats and Challenges 16
 6.1 Increasing Globalization and Human Population Growth 16
 6.2 Climate Change 17
7. Tools and Approaches for the Management of New Changes 17
 7.1 Monitoring to Inform Management 17
 7.2 Environmental Impact Modeling to Guide Management 19
 7.3 Community Involvement and Culture 19
8. Changes to Stressors: Responses to Increasing Coastal Populations, Their Environment, and Infrastructure 22
9. Sustainable Solutions 23
10. Conclusions 25
References 26

Section A

Estuaries

2. An Assessment of Saltwater Intrusion in the Changjiang (Yangtze) River Estuary, China

Maotian Li, Zhongyuan Chen

1. Introduction 31
 1.1 Water Transfer Projects 31
 1.2 Three Gorges Dam: Changing Hydrology at Seasonal Scales 33
 1.3 Sea Level Rise 33
2. Data Sources and Observation 34
 2.1 Discharge Variations 34
 2.2 Salinity Variations 34
 2.3 Water Diversion 36
 2.4 Tide Level 37
3. Discussions 39
 3.1 Freshwater Sources—Dry Season Shortage 39
 3.2 Salinity Distribution in Relation to Freshwater Availability 39
 3.3 Water Diversion—Present and Future Case 39
 3.4 Sea Level Rise—Equivalent to Increase in Salinity and Decrease in Discharge 40
4. Future Scenarios 40
5. Protecting Water Quality in Urban Estuaries: Australian Case Studies

Ryan J.K. Dunn, Nathan J. Waltham, Jianyin Huang, Peter R. Teasdale, Brian A. King

1. Introduction 69
2. Case Study Examples 72
 2.1 Port Jackson 72
 2.2 Gold Coast Broadwater (Southern Moreton Bay) 77
 2.3 Ross River Estuary 80
3. Considerations and Summary 82
4. References 84

6. Management of Megafauna in Estuaries and Coastal Waters: Moreton Bay as a Case Study

Janet M. Lanyon

1. Introduction 87
2. Moreton Bay: A Megafauna Case Study 87
3. Moreton Bay—Physical Characteristics 89
4. Moreton Bay Megafauna 89
 4.1 Sea Turtles 89
 4.2 Dugongs 90
 4.3 Whales and Dolphins 91
 4.4 Humpback Whales 92
 4.5 Southern Right Whales 92
 4.6 Dolphins 93
5. Protective Measures for Moreton Bay Megafauna 94
 5.1 Protective Legislation 94
 5.2 Management of Water Quality 94
 5.3 Monitoring Population Size and Trends 95
 5.4 Health Assessment of Wildlife 96
6. The Future 96
7. References 97

7. Peel-Harvey Estuary, Western Australia

1. Overview 103
2. The Peel-Harvey System 103
3. Historical Socio-Ecological Developments 105
4. Estuary Responses Over Recent Decades 107
 4.1 Hydrology and Water Quality 107
 4.2 Sediment Condition 109
Section B
Deltas

8. Arctic Deltas and Estuaries: A Canadian Perspective
Donald L. Forbes

1 Introduction 123
1.1 Sediment Balance and Delta Stability 124
1.2 Arctic Estuaries 125
2 Environmental Forcing 125
2.1 Crustal Motion 125
2.2 Ice in Arctic Deltas 127
3 Arctic Estuaries and Deltas 132
3.1 Fjords 132
3.2 Proglacial Deltas in Fjords 133
3.3 Incised Terraced Deltas on Low-Relief Coasts 135
3.4 Breached-Lake Estuaries of the Arctic Coastal Plain 135
3.5 Small Transgressive Deltas 137
3.6 Large Transgressive Deltas 138
4 Discussion 141
4.1 Arctic Tidewater Ice Fronts and Ice Shelves 141
4.2 Arctic Deltas 141
4.3 Sediment Supply 141
4.4 Vulnerability to Environmental Change 142
5 Conclusions 142
Acknowledgments 143
References 143

9. Delta Winners and Losers in the Anthropocene
John W. Day, Ramesh Ramachandran, Liviu Giosan, James Syvitski, G. Paul Kemp

1 Introduction 149
2 A Framework for Understanding the Development, Functioning, and Sustainability of Deltas and the Role of Energetic Forcing Events in the Functioning of Deltas 149
3 Perspectives on Delta Sustainability 150
4 Impact of Climate Change and Resource Scarcity on Deltas 151
5 Classification of Delta Types in Relationship to Sustainability 151
6 Delta Winners and Losers—Sustainability of Individual Deltas 153
7 Sustainability of Individual Deltas 154
8 Asian Deltas 154
8.1 Yangtze (Changjiang) 154
8.2 Mekong 154
8.3 Ganges 156
8.4 Other Indian Deltas 156
8.5 Mahanadi 156
8.6 Godavari-Krishna 157
8.7 Cauvery 157
8.8 Indus 157
9 European and African Deltas 157
9.1 Mediterranean Deltas 157
9.2 The Nile 158
9.3 Senegal and Pangani Deltas 158
9.4 Danube 159
9.5 Rhine-Meuse-Scheldt 159
10 American Deltas 159
10.1 Mississippi Delta 159
10.2 Usumacinta-Grijalva Delta 160
10.3 Rio de la Plata and the Parana Delta 160
10.4 Mackenzie Delta 160
11 Ranking Sustainability 161
12 Conclusions 161
Acknowledgments 162
References 162

10. Mississippi Delta Restoration and Protection: Shifting Baselines, Diminishing Resilience, and Growing Nonsustainability
John W. Day, Craig Colten, G. Paul Kemp

1 Introduction 167
2 Development of the Delta 167
13. A Brief Overview of Ecological Degradation of the Nile Delta: What We Can Learn

Zhongyuan Chen

1 Introduction 233
1.1 Human Impact on the River Basin: Reducing Sediment and Fresh Water, but Increasing Nutrients 233
1.2 Delta-Estuarine Responses 233
2 What We Can Learn? 234
Acknowledgments 236
References 236

14. Status and Sustainability of Mediterranean Deltas: The Case of the Ebro, Rhône, and Po Deltas and Venice Lagoon

John W. Day, Carles Ibáñez, Didier Pont, Francesco Scarton

1 Introduction 237
2 The Ebro Delta 239
3 The Rhône Delta 241
4 The Po Delta and Venice Lagoon 243
5 Discussion 246
6 Summary and Conclusions 247
References 247

15. Coastal Lagoons: Environmental Variability, Ecosystem Complexity, and Goods and Services Uniformity

Angel Pérez-Ruzafa, Isabel M. Pérez-Ruzafa, Alice Newton, Concepción Marcos

1 Introduction 253
2 Coastal Lagoons: Definition and Distribution 253
3 Lagoon Functioning and Environmental Variability 255
4 Lagoon Biota and Ecology 256
5 The Lagoon Paradox 260
6 Influence of Coastal Lagoons on the Adjacent Sea 261
7 Ecosystem Services Provided by Coastal Lagoons: Actual Status and Perspectives 261
8 The Future of Coastal Lagoons: Main Pressures and Impacts on the Lagoon Systems 266
9 Outstanding Future Threats: Eutrophication 267
9.1 Global Climate Change: Consequences for Coastal Lagoons 267
10 Final Remarks 268
Acknowledgments 270
References 270

16. The Everglades: At the Forefront of Transition

Fred H. Sklar, John F. Meeder, Tiffany G. Troxler, Tom Dreschel, Steve E. Davis, Pablo L. Ruiz

1 Introduction 277
2 The Geological Setting 278
3 The Eco-Hydrological Setting 281
4 The Eco-Economic Setting 284
5 Transition Awareness 286
Acknowledgments 288
References 288

17. Population Growth, Nutrient Enrichment, and Science-Based Policy in the Chesapeake Bay Watershed

Christopher F. D’Elia, Morris Bidjerano, Timothy B. Wheeler

1 Introduction 293
2 Description of the Watershed and Its Estuary 294
2.1 Environmental History Prior to 1950s 294
3 Nutrient Enrichment in the Chesapeake 295
3.1 The “Heinle” Report 297
3.2 Historical Trends in Nutrient Enrichment in the PR 297
4 The PR Case as a Driver of Chesapeake Bay Policy 302
5 The State of the Bay: What Was Accomplished Since 2020 Report Was Published, and What Is to be Expected in 2020 and Beyond? 304
References 308
18. The Senegal and Pangani Rivers: Examples of Over-Used River Systems Within Water-Stressed Environments in Africa

Awâ Niang, Peter Scheren, Salif Diop, Coura Kane, Cheikh Tidiane Koulibaly

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>311</td>
</tr>
<tr>
<td>2</td>
<td>The Senegal River Basin</td>
<td>311</td>
</tr>
<tr>
<td>2.1</td>
<td>Site Description</td>
<td>311</td>
</tr>
<tr>
<td>2.2</td>
<td>The Damming of the River as a Response to Environmental Degradation</td>
<td>314</td>
</tr>
<tr>
<td>2.3</td>
<td>The Consequences: Changes in the Hydrological Regime and Morphology, Hyper-Salinization of Lands, Flooding, Changes in Fish Population</td>
<td>315</td>
</tr>
<tr>
<td>2.4</td>
<td>Adaptation: How People Respond by Relocating and Developing Alternative Economic Activities</td>
<td>316</td>
</tr>
<tr>
<td>3</td>
<td>The Pangani River Basin</td>
<td>317</td>
</tr>
<tr>
<td>3.1</td>
<td>Site Description</td>
<td>317</td>
</tr>
<tr>
<td>3.2</td>
<td>Consequences: Environmental Degradation</td>
<td>317</td>
</tr>
<tr>
<td>3.3</td>
<td>Management Strategies</td>
<td>318</td>
</tr>
<tr>
<td>4</td>
<td>Conclusion</td>
<td>318</td>
</tr>
</tbody>
</table>

19. Damming the Mekong: Impacts in Vietnam and Solutions

Nguyen Huu Nhan, Nguyen Ba Cao

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>321</td>
</tr>
<tr>
<td>2</td>
<td>Hydropower Dam Network in the Mekong River Basin</td>
<td>321</td>
</tr>
<tr>
<td>3</td>
<td>The Vietnamese Mekong Delta</td>
<td>324</td>
</tr>
<tr>
<td>4</td>
<td>Dam Impacts on the Mekong Delta in Vietnam</td>
<td>327</td>
</tr>
<tr>
<td>4.1</td>
<td>The Impact on Water Resource in the Flood Season</td>
<td>327</td>
</tr>
<tr>
<td>4.2</td>
<td>The Impact on Water Resource in the Dry Season</td>
<td>327</td>
</tr>
<tr>
<td>4.3</td>
<td>Impact on Sediment Resources</td>
<td>329</td>
</tr>
<tr>
<td>4.4</td>
<td>The Morphological Changes</td>
<td>331</td>
</tr>
<tr>
<td>4.5</td>
<td>The Other Dam Impacts on the VMD</td>
<td>332</td>
</tr>
<tr>
<td>5</td>
<td>The Conceptual Solutions</td>
<td>334</td>
</tr>
<tr>
<td>5.1</td>
<td>Constraints and Approaches</td>
<td>334</td>
</tr>
<tr>
<td>5.2</td>
<td>The Nonengineering Solutions</td>
<td>335</td>
</tr>
<tr>
<td>5.3</td>
<td>Some Engineering Solutions Inland of the VMD</td>
<td>337</td>
</tr>
<tr>
<td>6</td>
<td>Conclusion</td>
<td>337</td>
</tr>
</tbody>
</table>

Section D

Enclosed, Semi-enclosed, and Open Coasts

20. Baltic Sea: A Recovering Future From Decades of Eutrophication

Anna-Stiina Heiskanen, Erik Bonsdorff, Marko Joas

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>343</td>
</tr>
<tr>
<td>1.1</td>
<td>Centennial of Changes in the Baltic Sea</td>
<td>343</td>
</tr>
<tr>
<td>1.2</td>
<td>Changing Governance Structures</td>
<td>344</td>
</tr>
<tr>
<td>1.3</td>
<td>Changing Ecosystem of the Baltic Sea</td>
<td>346</td>
</tr>
<tr>
<td>1.4</td>
<td>Holistic Framework for management of the Baltic Sea</td>
<td>347</td>
</tr>
<tr>
<td>2</td>
<td>Eutrophication</td>
<td>351</td>
</tr>
<tr>
<td>2.1</td>
<td>Drivers of Eutrophication</td>
<td>351</td>
</tr>
<tr>
<td>2.2</td>
<td>Urbanization and Wastewaters</td>
<td>351</td>
</tr>
<tr>
<td>2.3</td>
<td>Industrial Wastewaters</td>
<td>351</td>
</tr>
<tr>
<td>3</td>
<td>Food Production</td>
<td>352</td>
</tr>
<tr>
<td>3.1</td>
<td>Agriculture</td>
<td>352</td>
</tr>
<tr>
<td>3.2</td>
<td>Aquaculture</td>
<td>352</td>
</tr>
<tr>
<td>4</td>
<td>Nutrient Loading Pressures</td>
<td>352</td>
</tr>
<tr>
<td>5</td>
<td>Eutrophication Status</td>
<td>353</td>
</tr>
<tr>
<td>6</td>
<td>Eutrophication Impact on Human Welfare</td>
<td>353</td>
</tr>
<tr>
<td>7</td>
<td>Responses to Counteract and Manage Eutrophication</td>
<td>354</td>
</tr>
<tr>
<td>8</td>
<td>Future Outlook in Eutrophication Development</td>
<td>355</td>
</tr>
<tr>
<td>9</td>
<td>New Innovations Toward Sustainable Baltic Sea Future</td>
<td>356</td>
</tr>
</tbody>
</table>

21. The Black Sea—The Past, Present, and Future Status

Abdulaziz Güneroğlu, Osman Samsun, Muzaffer Feyzioğlu, Mustafa Dihkan

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>363</td>
</tr>
<tr>
<td>2</td>
<td>Geographic Setting and Coastal Geomorphology</td>
<td>364</td>
</tr>
<tr>
<td>3</td>
<td>Ecological State and Health of the Sea</td>
<td>366</td>
</tr>
<tr>
<td>4</td>
<td>Fisheries</td>
<td>370</td>
</tr>
<tr>
<td>5</td>
<td>Pollution (Marine Litter)</td>
<td>371</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>23.</td>
<td>Restoration of Estuaries and Bays in Japan—What’s Been Done So Far, and Future Perspectives</td>
<td>Osamu Matsuda, Tetsuo Yanagi</td>
</tr>
<tr>
<td>24.</td>
<td>Challenges of Restoring Polluted Industrialized Muddy NW European Estuaries</td>
<td>R. Kirby</td>
</tr>
<tr>
<td>25.</td>
<td>Can Bivalve Habitat Restoration Improve Degraded Estuaries?</td>
<td>Ian Michael McLeod, Philine S.E. zu Ermgassen, Chris L. Gillies, Boze Hancock, Austin Humphries</td>
</tr>
</tbody>
</table>
Section F
Coral Reefs

26. Successful Management of Coral Reef-Watershed Networks

Robert H. Richmond, Yimnang Golbuu, Austin J. Shelton III

1 Introduction: Importance of Land-Sea Interactions 445
2 Major Contributors to Watershed Discharges 446
3 Contents of Watershed Discharges 446
3.1 Freshwater 446
3.2 Sediment 447
3.3 Toxics 447
3.4 Nutrients 448
3.5 Pharmaceuticals 448
3.6 The Sum of Stressors and Implications for Interventions on Land 448
4 The Key Role of Coastal Oceanography 448
5 Case Histories 449
5.1 Maunalua Bay, Hawai'i 449
5.2 La Sa Fu'a Watershed in Humåtak, Guam 449
6 Remediation Measures 452
6.1 Humåtak Project 452
6.2 Community Engagement 452
6.3 Watershed Restoration Efforts and Its Effectiveness 453
7 Continuing Efforts 453
7.1 Palau: Ngerikil Bay 454
7.2 Enipein Watershed, Pohnpei 455
8 A Synthesis: Success and Failures of Different Approaches 456
9 Major Socioeconomic-Cultural Lessons Learned 456
10 The Future: Climate Change Issues 457
11 Evaluation of Mitigation: Metrics of Success 457
12 Conclusions 457
References 458

27. Challenges and Opportunities in the Management of Coral Islands of Lakshadweep, India

Purvaja, R., Yogeswari, S., Debasis, T., Hariharan, G., Raghuraman, R., Muruganandam, R., Ramesh Ramachandran

1 Introduction 461
1.1 India's Lakshadweep Islands 461
2 SWOT Analysis 462
3 Challenges 463
4 Interventions and Opportunities 469
5 Integrated Island Management Plan 470
5.1 Freshwater Requirement 470
5.2 Sewage 470
5.3 Solid Waste Management 471
5.4 Island Shoreline Protection 473
5.5 Conservation of Corals 473
6 Conclusions 475
Acknowledgements 475
References 475

1 Introduction—The State of the Great Barrier Reef 477
2 Terrestrial Pollution and Sources 479
3 Stressors and the Impacts 480
3.1 Fine Sediment 480
3.2 Nutrients 481
3.3 Pesticides 483
3.4 Other Pollutants 483
3.5 Risk Summary 483
4 The Current Water Quality Management Response and Progress 484
4.1 Governance 484
4.2 Ports and Shipping 484
4.3 Pollutant Loads Reduction 485
4.4 Crown-of-Thorns Starfish Management 487
4.5 Tree Clearing 487
5 The Future Based on Current Management Regime 488
6 What Would Success Look Like? 488
7 What Could Be Done to Improve Governance and Management? 490
8 A Way Forward 491
Acknowledgment 492
References 492
Section G
Over-Arching Topics

29. Estuarine Ecohydrology Modeling: What Works and Within What Limits?
Eric Wolanski

1. Introduction: The Need for Models 503
2. Models of Physical Processes 505
 2.1. Water Circulation Models 505
 2.2. Sediment Dynamics Models 505
3. Models of Nutrient Sequestration by Fine Sediment 508
4. Estuarine Ecohydrology Models 508
 4.1. Introduction 508
 4.2. The LOICZ Model 509
 4.3. NPZ Estuarine Ecosystem Models 510
 4.4. The UNESCO Estuarine Ecohydrology Model 511
 4.5. The Ecopath Model 512
 4.6. Harmful Algae Blooms Models 514
 4.7. Hypoxia Models 516
5. A Synthesis 516
6. References 518

30. Hypersalinity: Global Distribution, Causes, and Present and Future Effects on the Biota of Estuaries and Lagoons

1. Introduction 523
2. Meta-analysis of Hypersaline Estuaries, Lagoons and Coastal Embayments 524
3. Laguna Madre 525
 3.1. Morphology and Physicochemical Environment 525
 3.2. Anthropogenic Influences and Hypersalinity 528
 3.3. Effects of Hypersalinity on the Biota 529
 3.4. The Future With Climate Change 529
4. Lake St Lucia 530
 4.1. Morphology and Physicochemical Environment 530
 4.2. Anthropogenic Influences and Hypersalinity 530
 4.3. Effects of Hypersalinity on the Biota 532
 4.4. The Future With Climate Change 533
5. Coorong 533
 5.1. Morphology and Physicochemical Environment 533
 5.2. Anthropogenic Influences and Hypersalinity 535
 5.3. Effects of Hypersalinity on the Biota 536
 5.4. The Future With Climate Change 537
6. Stokes, Hamersley and Culham Inlets 537
 6.1. Morphology and Physicochemical Environment 537
 6.2. Anthropogenic Influences and Hypersalinity 537
 6.3. Effects of Hypersalinity on the Biota 539
 6.4. The Future With Climate Change 540
7. Summary 541
8. Acknowledgments 541
9. References 541

31. Alien Species Invasion: Case Study of the Black Sea
Nickolai Shalovenkov

1. Introduction 547
2. Alien Species Invasion of the Black Sea 547
 2.1. Phytoplankton Alien Species 547
 2.2. Zooplankton Alien Species 550
 2.3. Zoobenthos Alien Species 552
 2.4. Fish Alien Species 552
3. Gradients of Temperature and Salinity as Ecological Barriers 555
4. Large-Scale Currents and Alien Species 557
5. Trends of Invasion of Alien Species 558
6. Invasive Corridors of the Black Sea Basin 560
 6.1. The Atlantic and Indo-Pacific Corridors 560
 6.2. Ponto-Caspian Corridor 561
7. Invasions of Alien Species in the Black Sea—The Future 561
8. References 562

32. Coastal Fisheries: The Past, Present, and Possible Futures
Maria-Lourdes D. Palomares, Daniel Pauly

1. Introduction 569
2. Coastal Fisheries as a Key Component of Global Fisheries 569
3. Regional and Temporal Difference in Coastal Fisheries 571
4. Large-Scale Industrial Versus Small-Scale Artisanal and Recreational Fisheries 572
Contents

5 A Neglected Sector: Subsistence Fisheries 572
6 “Fishing Down” and Other Ecosystem Impacts of Coastal Fisheries 573
7 Coastal Fisheries and Climate Change 574
8 The Governance of Coastal Fisheries 575
Acknowledgments 575
References 576

33. Temperate Estuaries: Their Ecology Under Future Environmental Changes

Ducrotoy J.-P., Michael Elliott, Cutts N.D., Franco A., Little S., Mazik K., Wilkinson M.
1 Introduction 577
2 The Response of Estuarine Ecological Components to Climate Change 578
 2.1 Phytoplankton Primary Production 578
 2.2 Zooplankton 580
 2.3 Macroalgae and Microphytobenthos 580
 2.4 Angiosperms 582
 2.5 Benthic Invertebrates 583
 2.6 Fish 585
 2.7 Birds 587
3 Final Discussion and Conclusions 589
References 590

34. Plastic Pollution in the Coastal Environment: Current Challenges and Future Solutions

K. Critchell, A. Bauer-Civiello, C. Benham, K. Berry, L. Eagle, M. Hamann, K. Hussey, T. Ridgway
1 Plastic Pollution in the Marine Environment: An Emerging Contaminant of Global Concern 595
2 Sources and Methods of Dispersal of Microplastic Pollution in the Coastal and Marine Environment 596
3 Loss of Virgin Microplastics During Manufacture or Transport 596
4 Microplastics From Households—Fibers and Microbeads 596
5 Breakdown of Large Plastics 596
6 Microplastic Pollution in the Coastal and Marine Environment 598
 6.1 Dispersal and Accumulation Patterns 599
7 Governance Challenges and Current Approaches 599
8 A Circular Economy Approach for Marine Plastic Pollution 600
9.1 Waste Management and Marine Plastic 600
9.2 Reducing Plastic Pollution in the Oceans 604
9 Reducing Marine Plastic Pollution: Case Studies 604
10 Case Study 1: Banning Microbeads in Personal Care and Cleaning Products 604
11 Case Study 2: EPR 605
12 Behavioral Change—Littering and Plastic Pollution 605
13 Conclusion 606
References 607

35. Changing Hydrology: A UK Perspective

Peter E. Robins, Matt J. Lewis
1 Introduction 611
2 Sensitivity of UK Estuaries to River Flows 612
3 Past Trends and Future Projections for Hydrology 613
4 Potential Impacts to Estuaries From Changing Hydrology 614
 4.1 Flooding and Inundation 614
 4.2 Water Quality 615
 4.3 Habitats 615
5 Summary 615
References 616

Section H
Management of Change

John W. Day, John M. Rybczyk
1 Introduction 621
2 Global Climate Change: Past Trends, Future Predictions, and System Impacts 622
 2.1 Temperature 622
 2.2 Sea-Level Rise 622
3 Coastal Wetland Response to Temperature and Accelerated SLR 624
4 The Impacts of Changes in Freshwater Input on Coastal Ecosystems 625
5 Tropical Cyclones 626
6 Extreme Weather Events 627
Contributors

Numbers in parentheses indicate the pages on which the authors’ contributions begin.

Waqar Ahmed (213), National Institute of Oceanography, Karachi, Pakistan

A. Bauer-Civiello (595), College of Science and Engineering, James Cook University, Townsville, QLD, Australia

C. Benham (595), College of Science and Engineering, James Cook University, Townsville, QLD, Australia

K. Berry (595), College of Science and Engineering, James Cook University, Townsville, QLD, Australia

Morris Bidjerano (293), School of Public Policy and Administration, Walden University, Greenville, SC, United States

Sophie Blackburn (661), Department of Geography, King’s College London, London, United Kingdom

Erik Bonsdorff (343), Åbo Akademi University, Turku, Finland

J. Brodie (477), ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia

Nguyen Ba Cao (321), Vietnam Academy of Water Resources, Hanoi, Vietnam

Zhongyuan Chen (31, 233), State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, People’s Republic of China

Peter Clift (213), Louisiana State University, Baton Rouge, LA, United States

Craig Colten (167), Department of Geography and Anthropology, Louisiana State University, Baton Rouge, LA, United States

K. Critchell (595), College of Science and Engineering, James Cook University, Townsville; Marine Spatial Ecology Lab, University of Queensland, Brisbane, QLD, Australia

N.D. Cutts (577), Institute of Estuarine and Coastal Studies, University of Hull, Hull, United Kingdom

Christopher F. D’Elia (293), College of the Coast and Environment, Louisiana State University, Baton Rouge, LA, United States

A.P. Dale (477), The Cairns Institute, James Cook University, Cairns, QLD, Australia

Moslem Daliri (57), Department of Fisheries, Faculty of Marine and Atmospheric Sciences and Technologies, University of Hormozgan, Bandar Abbas, Iran

Steve E. Davis (277), Everglades Foundation, Palmetto Bay, FL, United States

John W. Day (1, 149, 167, 237, 377, 621), Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA, United States

J. Day (477), ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia

T. Debasis (461), National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, India

Omar Defeo (45), UNDECIMAR, Faculty of Sciences, University of the Republic, Montevideo, Uruguay, Montevideo, Uruguay

Mustafa Dihkan (363), Department of Geomatics, Faculty of Engineering, Karadeniz Technical University, Çamburnu, Trabzon

Salif Diop (311), Cheikh Anta Diop University, Dakar-Fann, Senegal

Sabine R. Dittmann (523), College of Science & Engineering, Flinders University, Adelaide, SA, Australia

Tom Dreschel (277), Everglades Systems Assessment Section, South Florida Water Management District, West Palm Beach, FL, United States

J.-P. Ducrotoy (577), Institute of Estuarine and Coastal Studies, University of Hull, Hull, United Kingdom

Ryan J.K. Dunn (69), Ocean Science & Technology, RPS, Gold Coast, QLD, Australia
L. Eagle (595), College of Business, Law and Governance, James Cook University, Townsville, QLD, Australia

Michael Elliott (1, 577), Institute of Estuarine and Coastal Studies, University of Hull, Hull, United Kingdom

Muzaffer Feyzioglu (363), Department of Marine Science and Technology, Faculty of Marine Sciences, Karadeniz Technical University, Cambunru, Trabzon

Donald L. Forbes (123), Geological Survey of Canada, Natural Resources Canada, Bedford Institute of Oceanography, Dartmouth, NS, Canada; Department of Geography, Memorial University of Newfoundland, St. John’s, NL; Department of Earth Sciences, Dalhousie University, Halifax, NS, Canada

A. Franco (577), Institute of Estuarine and Coastal Studies, University of Hull, Hull, United Kingdom

D. Ganguly (187), National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, India

Javier Garcia-Alonso (45), Department of Ecology, CURE, University of the Republic, Maldonado, Uruguay

Chris L. Gillies (427), The Nature Conservancy, Carlton, VIC; James Cook University, Townsville, QLD, Australia

Liviu Giosan (149, 213), Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, United States

Bernhard Glaeser (641), Freie Universitat; German Society for Human Ecology (DGH), Berlin, Germany

Yimnang Golbuu (445), Palau International Coral Reef Center, Koror, Palau

A. Grech (477), ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia

Abdulaziz Guneroglu (363), Department of Marine Ecology, Faculty of Marine Sciences, Karadeniz Technical University, Cambunru, Trabzon

C.S. Hallett (103), Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, WA, Australia

M. Hamann (595), College of Science and Engineering, James Cook University, Townsville, QLD, Australia

Boze Hancock (427), The Nature Conservancy, Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, United States

G. Hariharan (461), National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, India

Anna-Stiina Heiskanen (343), Finnish Environment Institute, Helsinki, Finland

K. Hennig (103), Department of Water and Environmental Regulation, Perth, WA, Australia

Claudia Teutli Hernández (377), Center for Research and Advanced Studies of the National Polytechnic Institute, Merida Campus, Mexico

Jorge A. Herrera-Silveira (377), Center for Research and Advanced Studies of the National Polytechnic Institute, Merida Campus, Mexico

M.R. Hipsey (103), Aquatic Ecodynamics, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia

Steeg D. Hoeksema (523), Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch; Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, Western Australia, Australia

Jianyin Huang (69), Natural and Built Environments Research Centre, School of Natural and Built Environments; Future Industries Institute, University of South Australia, Adelaide, SA, Australia

P. Huang (103), Aquatic Ecodynamics, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia

Austin Humphries (427), Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, Kingston; Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, United States

K. Hussey (595), Centre for Policy Futures, Faculty of Humanities and Social Sciences, The University of Queensland, St Lucia, QLD, Australia

Carles Ibáñez (237), Aquatic Ecosystems Program, IRTA, San Carles de la Rapita, Catalonia, Spain

Asif Inam (213), National Institute of Oceanography, Karachi, Pakistan

Marko Joas (343), Åbo Akademi University, Turku, Finland

Ehsan Kamrani (57), Department of Fisheries, Faculty of Marine and Atmospheric Sciences and Technologies, University of Hormozgan, Bandar Abbas, Iran

Coura Kane (311), Cheikh Anta Diop University, Dakar-Fann, Senegal

G. Paul Kemp (149, 167, 377), Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA, United States

Samina Kidwai (213), National Institute of Oceanography, Karachi, Pakistan

K.L. Kilminster (103), Department of Water and Environmental Regulation, Perth, WA, Australia

Brian A. King (69), Ocean Science & Technology, RPS, Gold Coast, QLD, Australia
R. Kirby (413), Ravensrodd Consultants Ltd., Liverpool, United Kingdom

Cheikh Tidiane Koulibaly (311), Cheikh Anta Diop University, Dakar-Fann, Senegal; University of Ibadan, Ibadan, Nigeria

Ahana Lakshmi (187), National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, India

Janet M. Lanyon (87), School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia

Ana L. Lara-Domínguez (377), Institutue of Ecology, Veracruz, Mexico

Diego Lercari (45), UNDECIMAR, Faculty of Sciences, University of the Republic, Montevideo, Uruguay, Montevideo, Uruguay

Matt J. Lewis (611), School of Ocean Sciences, Marine Centre Wales, Bangor University, Menai Bridge, United Kingdom

Maotian Li (31), State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, People’s Republic of China; Institute of Eco-Chongming Shanghai, China

S. Little (577), School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottinghamshire, United Kingdom

Amy Lauren Lovecraft (671), Center for Arctic Policy Studies, University of Alaska Fairbanks, Fairbanks, AK, United States

Concepción Marcos (253), Department of Ecology and Hydrology, Regional Campus of International Excellence “Mare Nostrum”, University of Murcia, Murcia, Spain

César Marques (661), National School of Statistical Science—Brazilian Institute of Geography and Statistics (ENCE/IBGE), Rio de Janeiro, Brazil

Osamu Matsuda (401), Graduate School of Biosphere Sciences, Hiroshima University, Higashihiroshima, Japan

K. Mazik (577), Institute of Estuarine and Coastal Studies, University of Hull, Hull, United Kingdom

John F. Meeder (277), Sea Level Solutions Center and Southeast Environmental Research Center, Florida International University, Miami, FL, United States

Chanda L. Meek (671), Department of Political Science, University of Alaska Fairbanks, Fairbanks, AK, United States

Ian Michael McLeod (427), TropWATER, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, QLD, Australia.

T. Morrison (477), ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia

R. Muruganandam (461), National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, India

Alice Newton (253), NILU-IMPACT, Kjeller, Norway; CIMA-Centre for Marine and Environmental Research, Gambelas Campus, University of Algarve, Faro, Portugal

Nguyen Huu Nhan (321), Vietnam Academy of Water Resources, Hanoi, Vietnam

Awa Niang (311), Cheikh Anta Diop University, Dakar-Fann, Senegal

Sara Morales Ojeda (377), Center for Research and Advanced Studies of the National Polytechnic Institute, Merida Campus, Mexico

Maria Lourdes D. Palomares (569), Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada

Daniel Pauly (569), Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada

Mark Pelling (661), Department of Geography, King’s College London, London, United Kingdom

Angel Pérez-Ruzafa (253), Department of Ecology and Hydrology, Regional Campus of International Excellence “Mare Nostrum”, University of Murcia, Murcia, Spain

Isabel M. Pérez-Ruzafa (253), Department of Plant Biology I, Complutense University of Madrid, Madrid, Spain

Didier Pont (237), Institute of Hydrobiology and Aquatic Ecosystem Management (IHG), University of Natural Resources and Life Sciences, Vienna, Austria

Ian C. Potter (523), Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute; School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia

B. Pressey (477), ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia

R. Purvaja (187, 461), National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, India

R. Raghuraman (461), National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, India

Ramesh Ramachandran (1, 149, 187, 461), National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, India
Robert H. Richmond (445), Kewalo Marine Laboratory, University of Hawaii at Manoa, Honolulu, HI, United States

T. Ridgway (595), Global Change Institute, The University of Queensland, St Lucia, QLD, Australia

R.S. Robin (187), National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, India

Peter E. Robins (611), School of Ocean Sciences, Marine Centre Wales, Bangor University, Menai Bridge, United Kingdom

Pablo L. Ruiz (277), South Florida Caribbean Network, National Park Service, Palmetto Bay, FL, United States

John M. Rybczyk (621), Department of Environmental Science, Western Washington University, Bellingham, WA, United States

Bonthu S.R. (187), National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, India

Osman Samsun (363), Faculty of Fisheries, Sinop University, Sinop, Turkey

Swati Mohan Sappal (187), National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, India

Francesco Scarton (237), SELC Società Cooperativa, Venezia, Italy

Peter Scheren (311), WWF Regional Office for Africa, Nairobi, Kenya

Nicolai Shalovenkov (547), The Centre for Ecological Studies, Russia

Moslem Sharifinia (57), Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), Gulf of Oman and Indian Ocean Research Center, Marine Biology Division, Chabahar, Iran

Austin J. Shelton III (445), Center for Island Sustainability and Sea Grant Program, University of Guam, Mangilao, Guam

Fred H. Sklar (277), Everglades Systems Assessment Section, South Florida Water Management District, West Palm Beach, FL, United States

Mary Divya Suganya (187), National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, India

James Syvitski (149), Community Surface Dynamics Modeling System, University of Colorado, Boulder, CO, United States

Syed Mohsin Tabrez (213), National Institute of Oceanography, Karachi, Pakistan

Peter R. Teasdale (69), Natural and Built Environments Research Centre, School of Natural and Built Environments; Future Industries Institute, University of South Australia, Adelaide, SA, Australia

Tiffany G. Troxler (277), Sea Level Solutions Center and Southeast Environmental Research Center, Florida International University, Miami, FL, United States

James R. Tweedley (523), Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute; School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia

F.J. Valesini (103), Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, WA, Australia

Nathan J. Waltham (69), Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), Division of Tropical Environments and Societies, James Cook University, Douglas, QLD, Australia

A. Wenger (477), School of Earth and Environmental Sciences, University of Queensland, St. Lucia, QLD, Australia

Timothy B. Wheeler (293), Bay Journal, Seven Valleys, PA, United States

Alan K. Whitfield (523), South African Institute for Aquatic Biodiversity, Grahamstown, South Africa

M. Wilkinson (577), Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, United Kingdom

Kim Withers (523), Department of Life Sciences, Texas A&M University, Corpus Christi, TX, United States

Eric Wolanski (1, 503), TropWATER and College of Marine & Environmental Sciences, James Cook University and Australian Institute of Marine Science, Townsville, QLD, Australia

Tetsuo Yanagi (401), International EMECS Center, Kobe, Japan

Alejandro Yáñez-Arancibia (377), Institute of Ecology, Veracruz, Mexico

S. Yogeswari (461), National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, India

Jing Zhang (213), State Key Laboratory in Estuarine and Coastal Research, Shanghai, China

Philine S.E. zu Ermgassen (427), School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom
About the Editors

Eric Wolanski is an estuarine oceanographer and ecohydrologist at James Cook University and the Australian Institute of Marine Science. His research interests range from the oceanography of coral reefs, mangroves, and muddy estuaries to the interaction between physical and biological processes determining ecosystem health in tropical waters. He has over 400 scientific publications, including 12 books, and technical reports. Eric is a fellow of the Australian Academy of Technological Sciences and Engineering, the Institution of Engineers Australia (ret.), and l’Académie Royale des Sciences d’Outre-Mer. He was awarded a Doctorate Honoris Causa by the catholic University of Louvain, another Doctorate Honoris Causa by the University of Hull, a Queensland Information Technology and Telecommunications Award for Excellence, and a Lifetime Achievement Award by the Estuarine & Coastal Sciences Association. Eric is an Editor-in-Chief of *Wetlands Ecology and Management*, *Treatise on Estuarine and Coastal Science*, the Honorary Editor of *Estuarine, Coastal and Shelf Science*, and a member of the editorial board of four other journals. He is also a member of the Scientific and Policy Committee of Japan's EMECS (focusing on the Seto Inland Sea) and the European Union DANUBIUS-PP Scientific and Technical Advisory Board, which is a pan-European distributed research infrastructure dedicated to interdisciplinary studies of large river–sea systems throughout Europe.

John Day is distinguished professor emeritus in the Department of Oceanography and Coastal Sciences at Louisiana State University. He has over 400 publications focusing on the ecology and management of coastal and wetland ecosystems, with emphasis on the Mississippi delta, as well as, among many, coastal ecosystems in Mexico and the impacts of climate change on wetlands in Venice Lagoon and in the Po, Rhone, and Ebro deltas in the Mediterranean. John is the coeditor of 14 books including *Estuarine Ecology*, *Ecological Modeling in Theory and Practice*, *The Ecology of the Barataria Basin*, *An Estuarine Profile*, *Ecology of Coastal Ecosystems in the Southern Mexico: The Terminos Lagoon Region*, *Ecosystem Based Management of the Gulf of Mexico*, *America’s Most Sustainable Cities and Regions—Surviving the 21st Century Megatrends*. John served as chair of the Science and Engineering Special Team on restoration of the Mississippi delta, on the Scientific Steering Committee of the Future Earth Coasts program, and a National Research Council panel on urban sustainability.
Michael Elliott is the professor of Estuarine and Coastal Sciences at the University of Hull, United Kingdom. He is a marine biologist with a wide experience and interests and his teaching, research, advisory, and consultancy work includes estuarine and marine ecology, policy, governance, and management. Mike has published widely, coauthoring/coediting 18 books/proceedings and >270 scientific publications. This includes coauthoring *The Estuarine Ecosystem: Ecology, Threats and Management*, *Ecology of Marine Sediments: Science to Management*, and *Estuarine Ecohydrology: An Introduction* and as a volume editor and contributor to the *Treatise on Estuarine & Coastal Science*. He has advised on many environmental matters for academia, industry, government, and statutory bodies worldwide. Mike is a past-President of the international Estuarine & Coastal Sciences Association (ECSA) and is an Editor-in-Chief of the international journal *Estuarine, Coastal & Shelf Science*; he has been adjunct professor and held research positions at Murdoch University (Perth), Klaipeda University (Lithuania), the University of Palermo (Italy), and the South African Institute for Aquatic Biodiversity, Grahamstown. He was awarded Laureate of the Honorary Winberg Medal of the Russian Hydrobiological Academic Society in 2014.

Ramesh Ramachandran is director of the National Centre for Sustainable Coastal Management at the Ministry of Environment, Forest and Climate Change, Government of India. His expertise includes coastal/marine biogeochemistry, conservation of coastal/marine biodiversity, and Integrated Coastal Zone Management. He has over 135 research publications and over 100 technical reports. Among the several awards Professor Ramesh has received are the University Grants Commission UGC-Swami Pranavananda Saraswathi Award in Environmental Sciences and Ecology for the Year 2007 (awarded in February 2010). He was the chair of the Scientific Steering Committee of LOICZ (currently renamed as Future Earth Coasts), member of the Scientific Steering Committee of the Monsoon Asia Integrated Regional Study, chairman of the International Working Group on Coastal Systems on the Role of Science in International Waters Projects of UNEP-GEF, as well as being affiliated with the Bay of Bengal Large Marine Ecosystem Programme of the FAO. He is currently the chair of the Global Partnership in Nutrient Management (GPNM) of UNEP.
Preface: Why This Book?

Coastal ecosystems are at the nexus of the Anthropocene, with enormous environmental issues, and inhabited by nearly half of the human population. These coastal systems and the surrounding human societies form coastal social-ecological systems that increasingly face enormous environmental issues from multiple pressures, which threaten their ecological and economical sustainability. The pressures are derived from hazards which then become risks where they impact the society and where, in some cases, human responses exacerbate the risks. There is only one big idea in managing these systems—how to maintain and protect the natural ecological structure and functioning and yet at the same time allow them to deliver ecosystem services which produce societal goods and benefits. The pressures include basically all human activities within the river catchments such as changes to land use and hydrology in the river catchment, and directly on coastal ecosystems from land claim, coastal sand mining, harbor dredging, pollution and eutrophication, overexploitation such as overfishing and extraction of groundwater, gas and petroleum extraction. In addition, coastal zones are impacted by climate change—this is not just the ‘usual’ culprits of sea level rise, ocean acidification, and increased temperature but also, just as important, changes in the rainfall-runoff of the river catchments, stronger coastal storms, and the changes to species distributions, including the influx of invasive species.

The problems faced by half of the humanity worldwide living near coasts are truly a worldwide challenge as well as an opportunity for science to study commonality and differences and provide solutions. During the five decades of monitoring the degradation of estuaries and coastal waters in the 20th century, coastal scientists studied the problems and issues arising along the coasts worldwide. Now, in the 21st century, the scientists need to use their science to help find solutions to these problems through science-informed management and innovation. The issues to solve are complex because they involve large areas, many users, and sociopolitical-environmental mosaics.

This book provides a typology of the human interaction with estuaries and coastal waters worldwide as a comprehensive description of what works and what does not work for estuaries and coastal waters worldwide and what remediation measures are possible and likely to succeed within limits. This is the first time that such a worldwide approach to estuarine and coastal sustainability has been initiated.

Thus the book addresses these real-life issues in order to learn from each other, by having a series of chapters written by the leading local experts detailing case studies from estuaries and coastal waters worldwide in the full range of natural variability and human pressures. The study sites are located in all the continents, except for the Antarctic, and several oceanic islands. This is followed by a series of chapters written by scientific leaders worldwide synthesizing the problems and offering solutions for specific issues graded within the framework of the socioeconomic-environmental mosaic. These include coastal fisheries, climate change, biophysical limits and energy costs, coastal megacities, evolving human-nature interactions, remediation measures for a number of worldwide issues such as mud and metal legacy as well as plastic pollution, integrated coastal management, and international water conflicts affecting estuaries, deltas, and coastal waters.

We wish to thank Jaclyn Truesdell and Lindsay Lawrence at Elsevier for their help in producing this book.

Eric Wolanski
John Day
Michael Elliott
Ramesh Ramachandran