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Abstract 

We have calculated the thermalisation time for an electron swarm in gaseous xenon using a 
multi-term time-dependent Boltzmann equation (BE), for a range of instantaneously applied 
reduced electric fields 1Td<E/N<1000Td. Starting from a Maxwellian electron energy 
distribution function (EEDF) at room temperature for a given E/N, the time-evolution of the 
EEDF and associated electron swarm parameters (drift velocity We, mean energy <ε>, 
ionisation coefficient ki, excitation coefficient kex) are followed as they converge to steady-
state values. For all values of E/N considered, the individual swarm parameters are found to 
converge at different rates. For E/N>5Td, they converge in order We (fastest), <ε>, kex, and ki 
(slowest). The time taken for the slowest swarm parameter to converge to an acceptable level 
(e.g. to within 90% of its steady-state value) is used universally as the benchmark for 
evaluating the thermalisation time τth. This time is found to be strongly dependent on the 
value of the reduced electric field E/N, dropping by almost 5 orders of magnitude for 
increasing E/N fields 1Td<E/N<1000Td. As a key outcome from this work, the calculated 
thermalisation times τth.p are expressed as a general formula, as a function of both the 
reduced electric field E/N and a user defined convergence level between 80-99%. We also 
show that ballpark estimates of thermalisation times, based on the inverse of the collision 
frequency for energy dissipation 1/νe(ε) at typical average electron energies, are likely to be 
unreliable if applied to the heating phase. We also undertake a brief analysis of the cooling 
phase when the electric field is instantaneously removed from the plasma (i.e. field-free) after 
it evolves to steady-state conditions during the previous heating phase. Finally, we compare 
calculated thermalisation times with the typical risetimes of the voltage pulse waveforms for 
several experimental “nanosecond” pulse excited plasma discharge devices.  
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1. Introduction 

For the broad range of weakly-ionised collision-dominated 
medium- to high-pressure plasmas (p=0.01-5bar) operating in 
the non local thermodynamic equilibrium (non-LTE) regime, 
the time taken for an electron swarm to reach a state of 
equilibrium (or thermalise) with an instantaneously applied 
constant electric field in the range E/N=10-300Td is very 
short, typically less than 10-9s [1] [2] [3] [4]. Thus, to 
undertake time-dependent numerical modelling of these non-
LTE plasmas driven by relatively slow time-varying voltage 
waveforms (τ>>10-9s), a steady-state Boltzmann code is 
usually sufficient to deduce the electron energy distribution 
function (EEDF) and the requisite electron swarm parameters 
as a function of the reduced field E/N [2] [5] [6] [7]. Recently, 
however, plasmas driven by fast transient voltage pulses (e.g. 
risetimes >100V.ns-1, 1-10ns duration) are being rapidly 
developed, as reviewed in 2017 in [8]. It is not yet clear 
whether the EEDFs in these new fast transient plasmas deviate 
significantly from “thermalised” due to the rapid change of 
E/N in time. If the EEDFs are not fully thermalised during this 
heating phase, numerical modelling must be undertaken 
instead using a fully time-dependent Boltzmann code which is 
significantly more computationally intensive [9] [10] [11] 
[12]. For a given electric field E/N applied instantaneously to 
an electron swarm, the principal challenge is therefore to 
evaluate the electronic thermalisation time (τth). This key 
parameter can be then directly compared with the typical 
risetimes of fast voltage pulses with comparable peak electric 
fields. Such comparisons would allow the identification of 
operating criteria for the establishment of thermalised and 
non-thermalised plasmas under fast transient excitation, and 
thereby provide a sound basis for selecting the appropriate 
numerical model based on either steady-state or time-
dependent Boltzmann codes. In addition, knowledge of the 
EEDF relaxation time is also of topical importance for the 
experimental determination of the electric fields at sub-
nanosecond resolution in fast transient plasmas [13] [14] [15] 
[16].  

To date, studies of the temporal relaxation of the EEDF 
following the instantaneous application of an electric field 
with fixed amplitude have been reported only for a few select 
values of the electric field in a given gas, for example, 
E/N=60Td in He, Xe [12], E/N=1.5Td, 24Td and 60Td in Ne 
[11] [17], E/N=60Td in Ar [9], E/N=60Td in N2 [12],  
E/N=76Td in N2 [17], E/N=1000Td in N2 [18], E/N=500Td in 
air [4], E/N=100Td, 300Td, 1000Td, and 3500Td in air [16]. 
Furthermore, τth values were evaluated in only a few cases 
[12] [17] [18], but in one instance were also found to have a 
significant dependence on E/N [16]. To undertake a more 
comprehensive study, we have calculated the time taken for 
electrons to become thermalised for a given E/N over a broad 
range of fields 1Td<E/N<1000Td which are applicable to 
most weakly-ionised medium- to high-pressure plasma 

discharges. We have numerically solved the multi-term, 
spatially-homogenous Boltzmann equation [19], subject to an 
instantaneously applied but thereafter constant (time-
independent) electric field, to follow the EEDF as it evolves 
from an initial room-temperature Maxwellian distribution 
toward the steady-state. Transport quantities such as the mean 
electron energy <ε> and electron drift velocity We have been 
calculated at each time, together with the volume production 
rates for electronic excitation kex and ionisation ki. These 
swarm parameters are tracked in time until they converge to 
steady-state values. Finally, an overall thermalisation time is 
defined in terms of the time taken for the slowest evolving 
parameter to reach a satisfactory level of convergence. Xenon 
was chosen as the target gas for two reasons; firstly, fast-
risetime pulsed medium-pressure Xe plasmas have been 
investigated extensively for use as efficient vacuum-
ultraviolet (λ~172nm) lamps [20] [21] [22], and secondly, 
understanding the time-evolution of the EEDF toward 
thermalisation in the presence of large variations in the 
electron momentum transfer cross-section associated with the 
deep Ramsauer minimum in a heavy rare-gas [23] is of 
particular interest [24]. Lastly, fast transient plasmas operating 
with peak voltages substantially higher than the minimum 
breakdown voltage may utilise very high electric fields 
E/N=103-104Td [25], and an additional manifestation of non-
equilibrium type behaviour will be associated with the 
production of high-energy runaway or ballistic electrons in the 
bulk plasma [18] [26]. However, the study of this regime is 
beyond the scope of the current work, and we have restricted 
the present calculations to electric fields below E/N<1000Td. 
Previous Monte-Carlo studies [27] [28] suggest no significant 
production of runaway electrons occurs for electric fields 
below this limit. 

We begin this paper by describing the time-dependent 
Boltzmann code in section 2. A discussion of the convergence 
of the EEDF and transport properties with the number of 
Legendre polynomial terms is given in section 3.1. The results 
showing the time-evolution and ultimate convergence of the 
EEDFs and swarm parameters towards steady-state in 
response to an applied electric field (heating phase) are given 
in section 3.2. A brief analysis of the thermalisation of the 
EEDF following the removal of an electric field (the cooling 
phase) is given in section 3.3. A comparison between our 
evaluated τth values and the nanosecond pulse risetimes used 
in several experimental systems in given in section 3.4. 
Finally, the results are summarised in section 4. 

2. Multi-term solution of Boltzmann’s equation 

2.1 Theory 

The fundamental kinetic equation used in this paper (and 
previously [29] [30] [31]) for describing the electron swarm 
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evolution is the spatially-homogenous Boltzmann equation for 
the velocity-space distribution function, 𝑓𝑓 ≡ 𝑓𝑓(𝒗𝒗, 𝑡𝑡) [32] i.e.,  

 

�
𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝑒𝑒𝑬𝑬
𝑚𝑚𝑒𝑒

∙
𝜕𝜕
𝜕𝜕𝒗𝒗
�𝑓𝑓 = −𝐽𝐽(𝑓𝑓),                       (1) 

 
where 𝑡𝑡 is the time, 𝒗𝒗, 𝑒𝑒 and 𝑚𝑚𝑒𝑒 are the velocity, charge and 
mass of the electron respectively. 𝐽𝐽(𝑓𝑓) represents the 
Boltzmann collision operator, and describes the effect of 
collisions on the distribution function [33]. Solving equation 
(1) for the distribution function yields the relevant information 
about the system, e.g. macroscopic transport properties such 
as mean energy, drift velocity and average collision rates can 
then be found via averages over the ensemble as detailed in 
equations (6)-(9). 

The application of an electric field introduces a preferred 
direction into the electron system, such that the angular 
dependence of the velocity component can be represented by 
a Legendre polynomial expansion [34], i.e. 𝑓𝑓(𝒗𝒗, 𝑡𝑡) ≡
𝑓𝑓(𝑣𝑣, 𝜇𝜇, 𝑡𝑡) where 𝜇𝜇 = 𝑬𝑬 ∙ 𝒗𝒗, and 

 

𝑓𝑓(𝒗𝒗, 𝑡𝑡) = �𝑓𝑓𝑙𝑙(𝑣𝑣, 𝑡𝑡)𝑃𝑃𝑙𝑙(𝜇𝜇)
∞

𝑙𝑙=0

,                      (2) 

 
where 𝑃𝑃𝑙𝑙 is the 𝑙𝑙-th Legendre polynomial [35]. Equation (1) 
can then be decomposed into the following set of coupled 
partial differential equations for the 𝑓𝑓𝑙𝑙 ≡ 𝑓𝑓𝑙𝑙(𝜀𝜀, 𝑡𝑡) in energy-
space, 
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where 𝜀𝜀 = 1
2
𝑚𝑚𝑒𝑒𝑣𝑣2, 𝐽𝐽𝑙𝑙 is the Legendre decomposition of the 

collision operator, and  
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In practice, one must truncate the series (2) at a sufficiently 

high index 𝑙𝑙 = 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚. The history of charged particle transport 
in gases has been dominated by the “two-term approximation” 
[36], i.e., where only the first two terms have been included. 
The assumption of quasi-isotropy necessary for the two-term 
approximation is violated in many situations, particularly 
when inelastic collisions are included [37] or when higher 
order moments are probed [29]. Such an assumption is not 
necessary in our formalism. Rather, 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚  is treated as a free 
parameter to be increased until some convergence or accuracy 

criterion is met. Further discussion on the 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 requirements 
for electrons in Xe is given in section 3.1. 

To solve equation (3) we require the collision operators for 
all of the relevant collision processes, and their representations 
in terms of Legendre polynomials, 𝐽𝐽𝑙𝑙. In this work we assume 
a weakly-ionised plasma, akin to pre-breakdown conditions, 
and consider elastic, electronic excitation and ionisation 
collisions. e-e Coulomb collisions, and e-Xe* de-excitation 
collisions, are not included. If we assume that the neutral 
background gas is at rest and in thermal equilibrium at a 
temperature Tg, then the background medium has a 
Maxwellian distribution in velocity-space such that the 
collision operator is linear [33] i.e.,  

 
𝐽𝐽 = 𝐽𝐽𝑒𝑒𝑒𝑒 + 𝐽𝐽𝑒𝑒𝑒𝑒 + 𝐽𝐽𝑖𝑖 .                             (5) 

 
The explicit form of the various collision operator components 
are given in the Appendix. 
     The collision operators incorporate microscopic scattering 
information via scattering cross-sections. The set of electron 

 

 
 

Figure 1. (a) Electron impact cross-sections for xenon from [38] as a 
function of electron energy ε: elastic momentum transfer - 𝑄𝑄𝑚𝑚(𝜀𝜀), 
total excitation summed over all Xe* excited states - Σ𝑄𝑄𝑒𝑒𝑒𝑒(𝜀𝜀), 
ionisation to Xe+ - 𝑄𝑄𝑖𝑖(𝜀𝜀), and total inelastic - 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝜀𝜀) =Σ𝑄𝑄𝑒𝑒𝑒𝑒(𝜀𝜀) 
+𝑄𝑄𝑖𝑖(𝜀𝜀). Runaway electrons can occur for energies where 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝜀𝜀) 
falls with increasing ε (i.e. ε>63eV in Xe). (b) Electron collision 
frequencies for elastic momentum transfer - 𝜈𝜈𝑚𝑚(𝜀𝜀), and energy 
dissipation - 𝜈𝜈𝑒𝑒(𝜀𝜀) at atmospheric pressure. 
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impact cross-sections for xenon were taken from the LXCat 
database [38], and are shown collectively in figure 1(a). Note 
that each inelastic cross-section is treated separately in the 
Boltzmann calculations. The associated collision frequencies 
for momentum transfer 𝜈𝜈𝑚𝑚(𝜀𝜀) and for energy dissipation 𝜈𝜈𝑒𝑒(𝜀𝜀) 
have been calculated using the formulae in [17], and are given 
in figure 1(b).  

A ballpark estimate of the thermalisation time of the 
electrons in a cooling plasma (field-free) can be easily 
calculated from the inverse of the collision frequency for 
energy dissipation τth~1/𝜈𝜈𝑒𝑒  [17] [39]. Such estimates have also 
been directly compared with the risetimes of pulsed electric 
fields [1] [15] [16] in order to gauge whether the electrons are 
thermalised in the heating phase of fast transient plasmas. 
However, it is not clear whether the kinetic processes 
associated with electron thermalisation are necessarily the 
same for both the cooling and heating phases. In fact, the 
results in [17] for Ne and N2 (at E/N~30Td and E/N=76Td, 
respectively) suggest that τth values can be 1-2 orders of 
magnitude larger for the cooling phase than for the heating 
phase. We will examine this issue briefly for the case of xenon 
in section 3.3. 

The macroscopic quantities of interest in this work are the 
electron number density ne, flux drift velocity We, mean 
energy <ε>, and the excitation kex and ionisation ki 
coefficients, which can be calculated from the EEDF via [33], 
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where 𝜈𝜈𝑒𝑒𝑒𝑒 and 𝜈𝜈𝑖𝑖 are the collision frequencies for individual 
electronic excitations and for ionisation respectively, which 
are related to the corresponding cross-sections 𝑄𝑄𝑒𝑒𝑒𝑒 and 𝑄𝑄𝑖𝑖 via 

 

𝜈𝜈𝑒𝑒𝑒𝑒,𝑖𝑖(𝜀𝜀) = 𝑁𝑁𝑄𝑄𝑒𝑒𝑒𝑒,𝑖𝑖(𝜀𝜀)�
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The Σ in equation (9a) indicates the summation over all the 
electronic excitation processes. 

A common theme in this work is the thermalisation (or 
relaxation) time. We define the parameter 𝜏𝜏𝑡𝑡ℎ as the largest 
solution of 
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where 𝜑𝜑 is one of the macroscopic transport quantities defined 
in equations (7)-(9), 𝜑𝜑𝑆𝑆𝑆𝑆 is the associated steady-state value, 
and 𝑋𝑋 ∈ [0,1]. 𝜏𝜏𝑡𝑡ℎ for a given value of X then represents the 
time required for a transport coefficient 𝜑𝜑 to reach 
(𝑋𝑋 × 100)% of the equilibrium value.  

 
2.2 Numerical considerations and boundary conditions 

 
The numerical techniques employed to solve the coupled 

system of partial differential equations (3) has been described 
previously [19] [29]. Briefly, equation (3) is discretised using 
a centred finite difference scheme in energy-space, and an 
implicit Euler scheme in time. We employ the boundary 
conditions recommended by the extensive studies of Winkler 
and co-workers [11] [40] [41] for the multi-term Legendre-
decomposed Boltzmann equation, i.e., 

 
𝑓𝑓𝑙𝑙(𝜀𝜀 = 0, 𝑡𝑡) = 0,   odd l                   (12𝑎𝑎) 
𝑓𝑓𝑙𝑙(𝜀𝜀 = 𝜀𝜀∞, 𝑡𝑡) = 0, even l                 (12𝑏𝑏) 
𝑓𝑓𝑙𝑙(𝜀𝜀 > 𝜀𝜀∞, 𝑡𝑡) = 0,  all l                     (12𝑐𝑐) 

 
where 𝜀𝜀∞ represents a sufficiently large “cut-off” energy 
which is not known a priori. In practice we choose this cut-
off value to be such that 𝑓𝑓0(𝜀𝜀∞, 𝑡𝑡) ≤ 10−10 × max�𝑓𝑓0(𝜀𝜀, 𝑡𝑡)�, 
for all 𝑡𝑡.  

The situation considered first is the “heating” of an 
ensemble of electrons in room-temperature (Tg=293K) 
thermal equilibrium with xenon gas via an instantaneously 
applied electric field. The initial EEDF is thus a thermal 
Maxwellian distribution 𝑓𝑓𝑀𝑀𝑀𝑀: 
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𝑓𝑓𝑙𝑙(𝜀𝜀, 𝑡𝑡 = 0) = 0 𝑙𝑙 ≥ 1                                             (13𝑏𝑏) 
 

which has an initial average energy <ε> = 3
2
𝑘𝑘𝑏𝑏𝑇𝑇𝑔𝑔, where 𝑘𝑘𝑏𝑏 is 

the Boltzmann constant.  
In section 3.3, the field-free “cooling” of the electron 

ensemble from the steady-state conditions achieved in the 
associated heating phase is considered. That is, the initial 
condition for 𝑓𝑓𝑙𝑙(𝜀𝜀, 0) in the cooling phase is given by the 
numerical solution to the corresponding heating phase steady-
state 𝑓𝑓𝑙𝑙(𝜀𝜀,∞). 
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Figure 2. Temporal evolution of the electron drift velocity We and 
mean energy <ε> for a reduced field E/N=50Td using 4-, 6-, 8-, 16-, 
and 32-term approximations in the multi-term BE code, and the 
Monte-Carlo simulation. 
 
3. Results and Discussion 
 
3.1 Convergence: dependence on the number of 
Legendre terms  
 

Initially, the time-dependent multi-term Boltzmann code 
was used to undertake a preliminary set of calculations for a 
typical field strength (E/N=50Td) to determine the influence 
(if any) of the number of terms of Legendre polynomials used 
to evaluate the swarm parameters. A set of results showing the 
evolution of the electron drift velocity We and the mean energy 
<ε> towards steady-state are shown in figure 2. For the 4-, 6- 
and 8-term approximations, both We and <ε> exhibit severe 
oscillatory behaviour around t.p~10-11s.bar which is not seen 
when using the higher 16- and 32-term approximations. 
However, on reaching steady-state (t.p >10-10s.bar), the values 
of We and <ε> are found to be identical for all five cases. The 
results for both the 16- and 32-term appear to be converged, 
and at all times differ by <1%. They are both in excellent 
agreement with the results from a Monte-Carlo simulation (see 
[42] for details). Overall, these findings are broadly consistent 
with the analogous multi-term BE calculations reported in 
[11] [12] for He and Ne at E/N=60Td. They evaluated EEDFs 
and swarm parameters using strict 2-, 4-, 6-, and 8-term 
approximations, and found that to achieve converged results 
over the full relaxation period required the use of 6-8 terms. 
They also reported [11] discrepancies indicating non-
convergence of the EEDF in neon at higher fields E/N~150Td, 
despite using the 8-term approximation. In the current study, 
we have used the 16-term approximation to evaluate the set of 

  
 
Figure 3. Time-evolution of the mean electron energy <ε> towards 
steady-state for selected values of the reduced electric field E/N. 
 
swarm parameters for the range of reduced electric fields 
1Td<E/N<1000Td (section 3.2). Despite the apparent 
convergence of the swarm parameter values at all times for our 
16-term calculations, we did observe some residual 
discrepancies in the low energy region (ε<1.5eV) of the EEDF 
at E/N=50Td. These discrepancies were not observed when 
using the 32-term approximation, which was therefore 
adopted to evaluate the corresponding EEDFs. An apparent 
convergence of transport quantities despite failures in the 
distribution functions was previously demonstrated in [43] for 
ion transport.  
    For the cooling phase (section 3.3), the lack of electric field 
completely decouples the equations for the 𝑓𝑓𝑙𝑙 components and 
we reverted to a 2-term approximation as the decoupled higher 
order terms do not contribute to the transport quantities 
considered in this paper. 
 
3.2 Relaxation in a constant electric field (heating 
phase) 
 
    The time-dependence of the key swarm parameters <ε>, 
We, ki, kex as they evolve towards their final steady-state 
values are shown collectively in figures 3-5 for selected values 
of the reduced electric field between 1-1000Td. It is 
immediately clear that the time signatures of the resulting 
curves are strongly dependent on the magnitude of the applied 
electric field, with the time to reach steady-state decreasing by 
around 5-orders of magnitude from ~10-7s to 10-12s (at 1bar 
Xe) as the field increases from E/N=1Td to 1000Td. By 
t.p~10-7s.bar, the mean electron energies (figure 3) have 
reached their steady-state values for all chosen values of E/N, 
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Figure 4. Time-evolution of the electron drift velocity We towards 
steady-state for selected values of the reduced electric field E/N. 
 
and they remain below 10eV, indicating that the majority of 
the electrons will have energies well below those normally 
associated with the runaway regime (figure 1(a)). 
The time-dependences of the electron drift velocity We are 
shown in figure 4, and all generally follow the same behaviour 
although on differing time-scales. The drift velocities increase 
linearly initially, reach a peak value at an intermediate time, 
before falling back toward a constant steady-state value at 
later times. For low E/N≤4Td, We values also plateau for a 
brief period at early times. The overshoot in We is found to 
occur for all values of E/N, and can reach an order of 
magnitude or more above the final steady-state value when 
E/N<120Td. This tendency for the drift velocity to overshoot 
its steady-state value during relaxation has been reported 
previously in [9] for an applied field E/N=24Td, and in [44] 
for the case of a step-change in electric field (E/N=0.5Td to 
1.0Td). It is discussed below in more detail for the case of a 
typical field E/N=50Td. The time-dependent behaviour of the 
ionisation and excitation coefficients are shown in figure 5 for 
the same range of E/N values. At low E/N (<60Td), the 
excitation coefficient is the dominant inelastic collision 
process (i.e. kex>>ki), and it is consistently several orders of 
magnitude larger than the ionisation coefficient. The 
coefficients trend towards parity as the field increases up to 
E/N=1000Td. Overall, the results in figures 3-5 show that by 
t.p~10-7s.bar, steady-state conditions are reached for the 
evolving swarm parameters for all values of E/N (>1Td). At 
steady-state, the corresponding set of field-dependent electron 
drift velocities We,ss can be directly compared with 
experimental measurements, as shown in figure 6, as well as 
reduced Townsend coefficients αT/N derived from the 
ionisation coefficients ki,ss and higher order terms as detailed 
in the caption. The current results are in excellent agreement 

 
Figure 5. Time-evolution of the volumetric ionisation (ki) and 
excitation (kex) coefficients towards steady-state for selected values 
of the reduced electric field E/N. 
 
with the measurements of We reported in [45] [46] [47] [48] 
covering 1Td<E/N<612Td. For the reduced Townsend 
ionisation coefficient, our results are in close agreement with 
those of [47] [49] [50] for 60Td<E/N<690Td, and in 
reasonable agreement (~25% higher) with the data in [51] for 
lower fields 25Td<E/N<36Td. 
    The electron thermalisation time τth can be evaluated by  
 

 
 
Figure 6. Steady-state (s/s) values of the electron drift velocity We,ss 
and reduced Townsend ionisation coefficient αT/N from the current 
work compared with experimental results of Sasic [45], Patrick [46], 
Makabe [47], Brooks [48], Bhattacharya [49], Jacques [50], and 
Specht (direct) [51] from the LAPLACE database [52]. The 
Townsend ionisation coefficient has been calculated to second order 
[53] from higher-order hydrodynamic quantities as described in [54] 
[55]. 
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Figure 7. Time-evolution of the swarm parameters towards their final 
steady-state values for a reduced electric field E/N = 50Td. Indicative 
times are denoted by coloured crosses on the curve for We/We,ss, 
which correspond to EEDFs shown in figure 8. The cumulative 
growth of electron density ne/ne,t=0 is also shown (green line).  
 
first setting an appropriate benchmark to denote a satisfactory 
level of convergence of the swarm parameters towards their 
final steady-state values. However, it is also informative to 
understand the kinetic processes at play that lead to 
thermalisation. These two tasks can be undertaken by studying 
in detail the time-evolution of the various parameters for a 
typical (mid-range) value of the electric field, E/N=50Td.  
 
3.2.1 Kinetic processes during thermalisation 

 
A direct comparison of the degree of convergence of the 

swarm parameters towards steady-state values (at E/N=50Td) 
is shown in figure 7. The corresponding EEDF profiles at the 
selected times illustrated in figure 7 (crosses) are depicted in 
figure 8. Initially, We rises linearly with time and climbs to a 
transient peak at t.p~3x10-12s.bar at which time the EEDF 
clearly contains a large fraction of electrons at energies ε=0.3-
0.8eV, matching the Ramsauer minimum of 𝑄𝑄𝑚𝑚(𝜀𝜀) in Xe 
(figure 1(a)). It is well known that this cross-section minimum 
is directly linked to a significant (>20x) increase in electron 
mobility µe for weak DC fields E/N~0.03-1.0Td compared to 
the relatively constant value for higher fields E/N>4Td [46] 
[56]. For later times t.p>3x10-12s.bar, electrons reach energies 
corresponding to the rapidly rising part of 𝑄𝑄𝑚𝑚(𝜀𝜀) 
(0.6<ε<6.0eV) resulting in a steady reduction of We (and µe) 
with time. At t.p~10-11s.bar, We values exhibit a small plateau 
as electrons reach energies ε>6.0eV (corresponding to a 
decreasing 𝑄𝑄𝑚𝑚(𝜀𝜀) in figure 1(a)), before eventually falling 
toward their constant steady-state values at late times (t.p>10-

10s.bar). The EEDFs in figure 8 show that the low energy 
region ε=0-3eV converges toward steady-state well before the 
high energy region ε>8.3eV, the lowest threshold for inelastic  

 
Figure 8. Electron energy distribution function (normalised) at 
E/N=50Td from 32-term calculations for selected times (in units 
sec.bar) towards steady-state, as also indicated in figure 7 (crosses). 
The energy thresholds for the lowest electronic excitation (∆εex 
=8.315eV) and for ionisation (∆εi=12.13eV) are shown as dashed 
lines.  
 
collisions. This delay explains the relatively late rise of the 
ionisation ki and excitation coefficients kex in figure 7 (i.e. 
t.p>2x10-11s.bar). We also note that despite the ionisation 
coefficient reaching its steady-state value by t.p~10-10s.bar, 
electron multiplication/growth does not begin significantly 
until considerably later at t.p~10-9s.bar, i.e. the timescale set 
by ionisation is much larger than the time to reach the steady-
state ionisation rate.   
    Lastly, we make two minor observations. Firstly, for the 
steady-state EEDF (t.p=7.2x10-10s.bar), the fraction of high 
energy electrons at ε>63eV (figure 1(a)) is entirely negligible. 
Even at the highest field E/N=1000Td, this fraction rises to 
~0.04%, thus we find no evidence of runaway electrons for 
fields up to 1000Td, confirming the results in [27]. Secondly, 
we do not see any evidence of a reversal of polarity of the drift 
velocity at early times, as found in the numerical simulations 
in [12] (for Xe at E/N=60Td) and [9] (for Ar at E/N=60Td) in 
the case of an instantaneously applied electric field. However, 
our finding is also consistent with previous reports [9] [57] 
that associate the appearance of a transient negative drift 
velocity with the adoption of a starting EEDF (at t=0) 
containing only relatively high energy electrons (e.g. ε=14-
16eV [12]; ε=4.5-6.5eV [9]). Under such conditions, the 
EEDF acquires an “inverse shape” with df0/dε>0 at electron 
energies slightly higher than the Ramsauer minimum, as 
discussed by [24]. Our initial EEDF has comparatively low 
mean energy <ε>~0.038eV. 
    Steady-state conditions are ultimately reached at late times 
when the energy gain and loss processes for the electron   
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Figure 9. Energy gain (We.e.E), excitation losses Σ(<𝑄𝑄𝑒𝑒𝑒𝑒.𝑣𝑣 >.N.∆εex) 
ionisation losses <𝑄𝑄𝑖𝑖.𝑣𝑣>.N.∆εi (∆εi=12.13eV+<ε>), and “elastic 
losses” 2me/M <νm(ε -1.5kbTg)>. 
  
swarm come into balance, as depicted in figure 9 for 
E/N=50Td in the region t.p>10-10s.bar. Of the energy gained 
by the electrons from the electric field, it is clear that it is 
mostly lost through excitation process to produce Xe* states 
(~98%), with ionisation and elastic collisions each accounting 
for ~1%. Moreover, across the range of reduced electric fields 
1-1000Td under current investigation, the principal energy 
losses at steady-state are collectively through inelastic 
collisions, as shown in table 1. Elastic collisions are only 
important for fields E≤25Td, but become the dominant loss 
mechanism for E/N<6Td. Thus, a key result from this study is 
that for applied electric fields 25Td<E/N<1000Td, steady-
state conditions are reached during the process of 
thermalisation when energy gained from the electric field is 
almost entirely balanced by energy losses due to inelastic 
collisions. 
 

E/N (Td) Ionisation 
(%) 

Excitation 
(%) 

Inelastic 
(% total) 

Elastic 
(%) 

1000 64.9 35.1 100.0 <0.01 
250 31.9 68.1 100.0 <0.05 
50 1.2 97.9 99.1 0.9 
25 <0.03 97.0 97.0 3.0 
10 <0.01 83.5 83.5 16.5 
8 0 74.7 74.7 25.3 
6 0 56.0 56.0 44.0 
5 0 39.2 39.2 60.8 
4 0 17.1 17.1 82.9 

Table 1. Fractional energy losses for an electron swarm in xenon at 
steady-state in reduced fields 4Td<E/N<1000Td.  

  

 
Figure 10. Thermalisation time (τth.p) as a function of the applied 
electric field E/N on the basis of the time taken for a given swarm 
parameter to reach 90% of its steady-state value. Note for E/N<3Td, 
the value of ki is undefined. For E/N=1Td, the value of kex is 
undefined. 
 
3.2.2 Criterion for evaluating thermalisation time τth 
 
    For a typical electric field of E/N=50Td, the results in figure 
7 indicate that the drift velocity We is the first parameter to 
reach a steady-state, closely followed by the mean energy <ε>, 
and then in order the excitation and ionisation coefficients kex 
and ki. The slight differences in convergence times have a 
significant impact. For example at 4.6x10-11s.bar, the 
convergence of We/We,ss and <ε>/<ε>e,ss both exceed 90%, but 
kex/kex,ss and ki/ki,ss are only partially converged, at 45% and 
27%, respectively. 

The thermalisation time for an individual swarm parameter 
to reach 90% of its final value at steady-state is shown in 
figure 10 for 1Td<E/N<1000Td. For E/N<3Td, the value of ki 
is undefined as the magnitude of the EEDF sampling the 
ionisation cross-sections is below the cut-off threshold.  For 
E/N=1Td, both ki and kex are undefined. For a given E/N, the 
results show that the four parameters have a spread of 
individual thermalisation times that are consistently within a 
factor of ~2.5x when comparing the fastest and the slowest to 
converge. An acceptable measure of the relaxation of the 
electron swarm requires that the overall thermalisation time be 
chosen on the basis of the parameter 𝜑𝜑 that is last to converge. 
Thus, we use the ionisation coefficient 𝜑𝜑=ki for 
3Td<E/N<1000Td, the excitation coefficient 𝜑𝜑=kex for 
E/N=2Td, and the drift velocity 𝜑𝜑=We for E/N=1Td. The 
calculated thermalisation time τth.p representing the 
convergence of 𝜑𝜑 toward its final value at steady-state is 
shown in figure 11 for fields 1Td<E/N<1000Td, and for 
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Figure 11. Thermalisation time (τth.p) as a function of the applied 
electric field E/N on the basis of the time taken for the slowest 
converging parameter 𝜑𝜑 to reach a given percentage of its steady-
state value 𝜑𝜑𝑆𝑆𝑆𝑆. Solid lines are calculated from equation (14). The 
inverse of the collision frequency for energy dissipation (1/νe(<ε>)) 
at p=1bar is also shown (dashed line). 
 
various degrees of convergence of 80%, 90%, 95% and 99%. 
The resulting values of τth.p in figure 11 are found to vary by 
almost 5 orders of magnitude over the 3 order-of-magnitude 
range of the reduced electric field. Nevertheless, the data 
points can be closely fitted by the following formula, which 
additionally allows τth.p to be evaluated according to the 
desired level of convergence of 𝜑𝜑/ 𝜑𝜑𝑆𝑆𝑆𝑆 between 80% and 
99%: 
 

𝜏𝜏𝑡𝑡ℎ .𝑝𝑝 (𝑠𝑠𝑠𝑠𝑠𝑠.𝑏𝑏𝑏𝑏𝑏𝑏) =  2.2608 × 10−8 �𝑙𝑙𝑙𝑙 �𝛽𝛽 �
𝑋𝑋
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𝐸𝐸
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�                   (14) 

 
where X (with 0.8<X<0.99) is the deviation of the value of 𝜑𝜑 
from the asymptotic value at steady-state  𝜑𝜑𝑆𝑆𝑆𝑆, E/N is in Td,  
and β, γ and φn are dimensionless coefficients as follows: 
φ1=1.0706, φ2=-1.7721, φ3=0.48419, φ4=-0.06156, 
φ5=3.0306x10-3, β=1.7424 and γ=0.20239. 
     Lastly, ballpark estimates of the thermalisation time 
evaluated from the inverse collision frequency for energy 
dissipation 1/νe(ε) at 1bar (from figure 1(b)) are also shown in 
figure 11. We have taken ε as the mean energy of the EEDF at 
steady-state conditions (i.e. <ε>=1.8-9.3eV). These ballpark 
estimates are clearly in poor agreement with our final results, 
except for low fields E/N<4Td. The cause of this disagreement 
can be understood from the results in section 3.2.1 which 

showed that for E/N>25Td, thermalisation times are 
predominantly linked to the rate of energy loss via inelastic 
collisions, thus involving only higher energy electrons with 
ε>∆εex. This comparison suggests that thermalisation times for 
the heating phase derived directly from 1/νe(ε) values, with ε 
chosen to represent a typical or average energy of the EEDF, 
are likely to be unreliable. 
 
3.3 Field-free relaxation (cooling phase) 
 
    For comparison with the results in section 3.2.1 which 
described relaxation processes during the heating phase 
following the application of a typical electric field, we briefly 
analyse the analogous processes for a cooling plasma from the 
moment this electric field is instantaneously and completely 
removed (field-free). The scenario represents the idealised 
case of the evolution of a weakly-ionised plasma during the 
trailing edge of a nanosecond voltage pulse. In reality, if the 
magnitude of the applied electric field is sufficient to cause 
electrical  breakdown, analysis of the subsequent relaxation of 
the plasma following the removal of the electric field should 
also include a number of secondary processes, notably e-e 
(Coulomb) collisions, de-excitation or superelastic collisions, 
recombination heating, and space-charge induced electric 
fields [20] [58]. However, the inclusion of these processes in 
BE calculations requires modelling of the temporal evolution 
of the species population densities (e.g. [ne], [Xe*], [Xe**], 
[Xe+]) which is beyond the scope of the current work. 
Previously, field-free relaxation of a weakly-ionised plasma 
following the instantaneous removal of an electric field has 
been investigated in [17] in Ne and N2 whilst relaxation due to 
a step-reduction of an electric field has been studied in [59] 
for Ne and H2. The influence of e-e Coulomb collisions on the 
relaxation of weakly ionised Xe plasmas (for field-free 
conditions) has been investigated in [24].  
    The temporal evolution of the swarm parameters 
immediately after removal of the electric field (50Td) is 
shown in figure 12. The corresponding EEDFs at selected 
times during the cooling phase are given in figure 13, whilst 
the associated energy loss processes are depicted in figure 14. 
At early times, it is clear that the drift velocity decays very 
quickly (figure 12), due to the large momentum transfer 
collision frequency, e.g. νm~1011-1013s-1 at 1bar (figure 1(b)). 
High energy electrons (ε>∆εex) dissipate their momentum the 
most rapidly (νm~1013s-1 at 1bar or τ~10-13s.bar) whereas 
electrons with energy near the Ramsauer minimum (ε~0.6eV) 
lose their momentum more gradually (νm~1011s-1 at 1bar or τ 
~10-11s.bar). The fast decay of the drift velocity is immediately 
followed by the rapid depletion of high energy electrons in the 
EEDF (ε>∆εex) due to inelastic collisions (figure 13), thereby 
effectively quenching the ionisation rate, and then the 
excitation rate (figures 12 and 14). This rapid quenching of the 
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Figure 12. Time-evolution of the swarm parameters after removal of 
the electric field starting at steady-state values (at t=0) for E/N=50Td. 
Indicative times are denoted by crosses on the curve for <ε>/<ε>t=0. 
Coloured crosses correspond to the EEDFs shown in figure 13. 
 
high energy region of the EEDF is virtually complete by 
t.p=10-10s.bar (consistent with the collision frequency for 
energy loss at 1bar 1/νe~10-10s at ε~8.5eV, figure 13). The 
plasma then begins a second (much slower) period of cooling 
as electrons with energies below the first excitation potential 
(ε<∆εex) start to cool to ambient temperatures (ε~0.038eV). 
This second stage is characterised by a timescale 4-5 
 

 
Figure 13. Electron energy distribution functions (normalised) at 
E/N=50Td for selected times (in units s.bar) after steady-state, as also 
indicated in figure 12 (crosses). The energy thresholds for the lowest 
electronic excitation (∆εex=8.315eV) and for ionisation 
(∆εi=12.13eV) are shown as dashed lines, and the collision frequency 
for energy dissipation νe(ε) at p=1bar (chained line). Note: 
discontinuities in EEDFs between 8-10eV coincide with energy 
thresholds for different Xe* states. 

 
Figure.14. Excitation losses Σ(<𝑄𝑄𝑒𝑒𝑒𝑒.𝑣𝑣>.N.∆εex), ionisation losses 
<𝑄𝑄𝑖𝑖.𝑣𝑣>N∆εi (∆εi=12.13eV+<ε>), and “elastic losses” 2me/M <νm(ε 
-1.5kTg)>. Coloured crosses correspond to the EEDFs in figure 13. 
 
magnitudes longer than that for both momentum dissipation 
and quenching of the inelastic collision rate, and the slow 
cooling rate is completely driven by the rate of the elastic 
collisions, as shown in figure 14. The slowed rate of cooling 
of <ε> between times t.p=10-7-10-6s.bar is due to electrons 
cooling to energies corresponding to the Ramsauer minimum, 
which effectively acts as bottleneck in terms of the overall 
relaxation time. A similar result for a cooling Xe plasma was 
reported in the numerical modelling in [24]. They also found 
that the bottleneck could be partially alleviated by including 
e-e collisions into their model with a fractional ionisation 
[e]/[Xe]=10-7.     
    Lastly, applying the criterion that the thermalisation time be 
derived from the slowest evolving swarm parameter, τth for the 
cooling phase of the plasma must be defined in terms of the 
decay of the mean energy <ε> (figure 12) instead of ki as used 
for the heating phase. In the case of E/N= 50Td, the time taken 
for <ε> to fall by 90% towards the thermal equilibrium value 
in a cooling plasma yields τth.p =1.632x10-6s.bar. This is very 
close to a ballpark value estimated from the reciprocal of the 
slowest energy dissipation rate (1/νe)~3.2x10-6 at 1bar and 
ε~0.6eV (figure 13). However, compared to our calculated 
thermalisation time for the heating phase at E/N=50Td 
τth.p=8.53x10-11s.bar (figure 11), the relaxation time for the 
cooling phase is around ~20,000 times slower. 
 
3.4 Comparison of thermalisation times with 
“nanosecond” excited plasmas (experimental) 

  
In table 2, we summarise the operating conditions for 

several experimental fast-pulse excited plasma discharge 
systems. These medium- to high-pressure Xe2

* excimer lamps 
are based on micro hollow-cathode or dielectric barrier  
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Ref. Pressure 
p(bar) 

E/N (Td) 
at voltage 

peak 

Voltage 
pulse 

risetime 
τrise(ns) 

τth(ns) τrise/τth 

Moselhy 
[60] 

0.53 150-275 4 0.025-
0.0094 

160-
425 

Moselhy 
[21] 

0.53 570 10 0.0032 3100 

Lee  
[61] 

0.8 300 6 0.0054 1100 

Carman 
[62] 

0.5-2.5 140-65 100 0.03- 
0.022 

3300-
4500 

Table 2. Comparison of the risetimes of “nanosecond” voltage pulses 
in xenon from experiment (τrise) and calculated electron 
thermalisation times τth from equation (14) for X=90%, at the same 
E/N and gas pressure.  
 
discharges, and are used to generate vacuum-ultraviolet light 
at λ~172nm [21] [60] [61] [62]. The discharges all utilise fast-
pulse voltage waveforms evolving at nanosecond timescales 
to achieve optimal performance in terms of VUV output and 
electrical efficiency. Fundamentally, if the risetime (τrise) of 
the high-voltage pulse applied to the discharge is 
demonstrably slower than the calculated thermalisation time 
(τth) for the heating phase, then the EEDF will be fully 
thermalised during the entire leading edge of voltage pulse. 
The results in table 2 clearly show that for these experiments, 
τrise>>τth (or τrise/τth>>1), so in all cases the EEDF would have 
been fully thermalised. Furthermore, since all τth values are 
found to fall in the range 3-30ps, a further reduction of the 
experimental risetimes to τrise to ~1ns (i.e. through the use of 
faster pulse generators [63]) would not, in these cases, lead to 
non-thermalised plasmas. 
 
4. Conclusion 
 

We have evaluated the thermalisation time for an electron 
swarm in gaseous Xe using a multi-term time-dependent 
Boltzmann equation, for a range of instantaneously applied 
reduced electric fields 1Td<E/N<1000Td. Starting from a 
Maxwellian shaped EEDF at room temperature at a given E/N, 
the time-evolution of the distribution function and associated 
electron swarm parameters (drift velocity We, mean energy 
<ε>, ionisation coefficient ki, and excitation coefficient kex) 
were followed as they converged to steady-state values. 
Initially, we trialled 4-, 6-, 8-, 16-term, and 32-term BE 
calculations together with a Monte-Carlo simulation. The 4-, 
6-, and 8-term calculations gave rise to oscillatory behaviour 
in We and <ε> at intermediate times, which was mitigated 
using a higher number of terms or the MC method. Thus, the 
main results in this study were evaluated using 16-term and 
32-term BE calculations. Steady-state values for both We and 
the reduced Townsend ionisation coefficient (αT/N) have been 
verified against recent experimental measurements and were 
found to be in excellent agreement. For the range of electric 

fields 25Td<E/N<1000Td, the thermalisation process (during 
the heating phase) was completed when energy supplied to the 
electrons from the electric field came into balance with the 
energy losses predominantly due to inelastic collisions. For 
very low fields E/N<6Td, energy gained by electrons from the 
electric field was balanced by energy losses mainly due to 
elastic collisions. For all values of E/N, the individual swarm 
parameters were found to converge towards their steady-state 
values at slightly different rates. For E/N>5Td they converge 
in order We (fastest), <ε>, kex, and ki (slowest). The time taken 
for the slowest swarm parameter  to converge to an acceptable 
level (e.g. to within 90% of its steady-state value) was used 
universally as the benchmark for evaluating the thermalisation 
time τth. This time was found to be strongly dependent on the 
value of the reduced electric field E/N, dropping by almost 5 
orders of magnitude for increasing electric fields 
1Td<E/N<1000Td. As a key outcome from this work, the 
calculated thermalisation times τth.p (s.bar) have been 
expressed as a general formula, as a function of both the 
reduced electric field E/N and a user defined convergence 
level  between 80-99%. We have also shown that ballpark 
estimates of thermalisation times, based on the inverse of the 
collision frequency for energy dissipation (1/νe(ε)) at typical 
average electron energies, are likely to be unreliable if applied 
to the heating phase. 

We also undertook a brief analysis of the cooling phase 
when the electric field was instantaneously removed from the 
plasma (i.e. field-free) after it had evolved to steady-state 
conditions during the previous heating phase. For a typical 
electric field E/N=50Td, the EEDF was found to relax in two 
distinct stages. Initially, the high energy region of the EEDF 
above the lowest excitation energy ε>∆εex was rapidly 
depleted due to inelastic collisions. The lower part of EEDF 
ε<∆εex cooled over a substantially longer time period (several 
orders of magnitude slower than the first stage) being 
regulated by the energy losses associated with only elastic 
collisions. In this case, the last swarm parameter to reach a 
satisfactory convergence toward steady-state was the mean 
energy <ε>. The overall relaxation time of the plasma during 
the cooling period (field-free) was consistent with a ballpark 
estimate based on the inverse of the collision frequency for 
energy loss τth~1/νe(ε) with ε~0.6eV (corresponding to the 
Ramsauer minimum in Xe).  

Finally, we compared calculated thermalisation times with 
the typical risetimes of the voltage pulse waveforms for 
several experimental “nanosecond” pulse excited plasma 
discharge devices. The results showed in all cases that the 
EEDFs would have been fully thermalised during the leading 
edge of the voltage pulse. Further work to calculate the 
thermalisation times for the other rare gases Kr, Ar, Ne, He, 
as well as N2 and O2, is currently being undertaken for future 
publication. 
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Appendix 
 

The solution to equation (3) requires explicit expressions 
for the Legendre-decomposition of the elastic, excitation and 
ionisation collision operator terms. The elastic collision 
operator, 𝐽𝐽𝑙𝑙𝑒𝑒𝑒𝑒, is given by the Davydov operator [64]: 

 
𝐽𝐽𝑙𝑙𝑒𝑒𝑒𝑒(𝑓𝑓𝑙𝑙)

= �−
2𝑚𝑚𝑒𝑒
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𝜕𝜕𝜕𝜕
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𝜈𝜈𝑒𝑒𝑒𝑒𝑙𝑙 (𝜀𝜀)𝑓𝑓𝑙𝑙(𝜀𝜀)                                                        𝑙𝑙 ≥ 1
  (𝐴𝐴1) 

 
where 𝑀𝑀 is the mass of the neutral background particles, and 
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where 𝑄𝑄(𝜀𝜀, 𝜇𝜇) is the differential elastic scattering cross 
section. 𝜈𝜈𝑒𝑒𝑒𝑒1 ≡ 𝜈𝜈𝑚𝑚 can be identified as the well-known 
momentum-transfer collision frequency. 

The collision operator for a given conservative inelastic 
process, which in this work only encompasses electronic 
excitations, 𝐽𝐽𝑙𝑙𝑒𝑒𝑒𝑒, is given by the Wang-Chang et-al 
semiclassical operator [65]: 

 

𝐽𝐽𝑙𝑙𝑒𝑒𝑒𝑒(𝑓𝑓𝑙𝑙) = �𝜈𝜈𝑒𝑒𝑒𝑒(𝜀𝜀)𝑓𝑓0(𝜀𝜀) − �
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  (𝐴𝐴3) 

 
where 𝜀𝜀′ = 𝜀𝜀 + ∆𝜀𝜀𝑒𝑒𝑒𝑒,  ∆𝜀𝜀𝑒𝑒𝑒𝑒 is the threshold energy for the 
excitation and 𝜈𝜈𝑒𝑒𝑒𝑒 is given in equation (10). Here super-elastic 
collisions have been neglected by virtue of the threshold 
energy being large compared to the background gas thermal 
energy.   

In contrast to elastic and excitation collisions, electron-
impact ionisation is a particle non-conserving process. For the 
simplest case of the post-ionisation energy being shared 
equally between the (indistinguishable) scattered and ejected 
electrons the ionisation collision operator is [66]:  
 

𝐽𝐽𝑙𝑙𝑖𝑖(𝑓𝑓𝑙𝑙) = �𝜈𝜈𝑖𝑖(𝜀𝜀)𝑓𝑓0(𝜀𝜀) − �
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   (𝐴𝐴4) 

 
where 𝜀𝜀′′ = 𝜀𝜀

2
+ ∆𝜀𝜀𝑖𝑖, ∆𝜀𝜀𝑖𝑖 is the threshold energy for the 

excitation and 𝜈𝜈𝑖𝑖 is given in (10). Electron-impact ionisation 
is not especially sensitive to the exact form of the post-
ionisation energy-sharing [29] [67]. 
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