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ABSTRACT 

Cofferdams are temporary structures used in construction sites. Long-narrow (double-walled), 

circular, square and rectangular are the commonly seen cofferdam shapes, and flow rate and 

maximum exit hydraulic gradient are two of the main design parameters required. Commonly, 

these are evaluated through the 2D ground water flow model solved using flow nets or 

numerical methods. However, when the flow pattern is 3D, such as flow into the square or 

rectangular cofferdams, predictions by the 2D models underestimate the flow rate and 

maximum exit hydraulic gradient values considerably.  

 

Method of fragment (MoF) is an approximate technique which can be used for quick estimates 

of the flow rate and maximum exit hydraulic gradient values for double-walled cofferdams. 

The accuracy of the MoF solutions depends on the validity of the assumption that the 

equipotential line at the tip of the cut-off wall is vertical, dividing the flow domain into two 

fragments. In this research, validity of this assumption was assessed through the extensive 

numerical simulations, and it was found that, MoF predictions are within acceptable limits, and 

the effect of deviating from the assumption is always onto the conservative side. Further, MoF 

was extended to solve circular cofferdam problems, defining two new axisymmetric fragment 

types. Through a range of numerical simulations, design charts were developed to obtain the 

required axisymmetric form factors and normalised exit hydraulic gradient values. These were 

validated against detailed numerical solutions, analytical solutions, and experimental results 

reported in the literature. Also, a small-scale laboratory model was developed for analysing the 

circular cofferdam, and using that, series of tests were carried out. Then, the experimental 

results were compared against solutions derived using the proposed MoF solutions and showed 

a good agreement. Further, simple analytical expressions were developed and validated for the 
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form factors and normalised exit gradient estimations of both double-walled and circular 

cofferdams enabling quicker computations and the MoF be implemented in spreadsheets.  

 

In addition, a simple method for evaluating the cofferdam safety against possible piping failure 

is presented. Through a series of finite element simulations, simple expressions were developed 

and validated to estimate the maximum exit hydraulic gradient for both double-walled and 

circular cofferdams considering only the shortest seepage path, known as creep length. The 

proposed solutions, including mean, lower and upper bound values for the exit hydraulic 

gradient at a given creep length can be applied in both isotropic and anisotropic soil conditions.  

Using them, a first-order estimate of the required creep length to limit the exit hydraulic 

gradient to a specific value can be determined. Alternatively, for a given configuration of the 

cofferdam, the exit hydraulic gradient can also be estimated. These equations can be valuable 

tools for back-of-the-envelope calculations in the preliminary analysis while selecting the 

dimensions in a cofferdam. 

 

Furthermore, simple expressions were developed and validated for accurately estimating the 

flow rate and maximum exit hydraulic gradient values of square and rectangular cofferdams 

founding on an isotropic and homogeneous soil medium. However, when the soil medium is 

anisotropic and homogeneous, proposed solutions are still applicable with a reasonable level 

of accuracy. In the proposed solutions, the 3D flow effects of square and rectangular 

cofferdams have been incorporated through the correction factors. Suggestions are made to 

improve the expressions given in the Canadian Foundation Engineering Manual, widely used 

in practice.  
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The solutions proposed in this research can be very useful as a design tool in providing realistic 

first estimates of the flow rate and maximum exit hydraulic gradients of cofferdams, especially 

in preliminary assessments and for carrying out parametric studies, before going for a detailed 

analysis.  
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Chapter 1 Introduction 

1.1 General 

Excavations are used in construction sites to create foundations for structures such as buildings, 

bridges, dams etc. When an excavation takes place below the ground water level, it is required 

to control water seepage into the excavation to provide a dry and safe working environment to 

the workers within the excavations. Commonly used seepage controlling methods can be 

identified under three basic groups as follows (Powers 1992): 

1. Open pumping: a method that allows water to flow into the excavation and pumps them 

away from sumps and ditches.  

2. Predrain method: a method that lowers the ground water table before commencing the 

excavation using wells, well points or drains. 

3. Cut-off method: a method that cuts-off water entering into the excavation using a 

vertically driven structure. 

 

Open pumping is suitable for excavations where the slope is relatively flat (Kavvadas et al. 

1992). This is the cheapest method, but conditions should be favorable, i.e., flat and stable 

slope is required.  Otherwise, it can overrun the cost and delay the project. In worst scenarios,  

it can lead even to a catastrophic failure (Powers 1992).  Therefore, open pumping is not a 

feasible method for controlling water specially in urban areas.  The second method, predrain, 

involves lowering the ground water table below the excavation base level, and hence, it lowers 

the ground water table beyond the excavation boundary, too. This increases the effective stress 

in the surrounding area, and hence, settlement induced damages can occur to the surrounding 

structures. This risk associated with predarin reduces its potential as a seepage control method.  
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The third one is to apply a water cut-off structure using sheet piling walls, diaphragm walls or 

grout walls acting as a ground support structure, in addition to reducing the water entering the 

excavation (Powers 1992). Further, Kavvadas et al. (1992) defined some other unique 

advantages of water cut-off structures as below:    

1. It reduces water seepage into the excavation significantly because of vertically driven 

structures making barriers to the horizontal flow. This is due to the soil permeability is 

larger in horizontal direction compared to that in the vertical direction.   

2. It lowers the ground water table which is away from the excavation boundary only a 

small amount compared to that of the predrain method. So, there is less risk to adjacent 

structures by settlement induced damages.   

3. It decreases the exit hydraulic gradient considerably because vertical structures are 

driven well below the excavation base, and hence, provides adequate factor of safety 

with respect to possible hydraulic failure (heaving or piping). 

Due to above advantages, water cut-off structures are among the widely used seepage control 

methods. Water cutoff structures made using sheet piles are usually known as cofferdams and 

are most suitable for sandy soils and stratified soil systems (Powers 1992). Also, steel is the 

often seen material for sheet piles for its as high structural strength, driveability, water 

tightness, reusability and quick construction.  

 

1.2 Cofferdams 

Cofferdams are temporary structures and are constructed by making enclosures using walls of 

sheet piles driven into the ground. Long-narrow, circular, square and rectangular are the 

commonly seen cofferdam shapes in plan view. Fig. 1.1 shows the real applications of these 

types of cofferdams. In long-narrow type, length is considerably large compared to its width, 

and hence, the effect of the shorter sides is negligible. Therefore, this type of cofferdam is 
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termed as double-walled cofferdams (Harr 1962; Griffiths 1984; Banerjee and Muleshkov 

1992; Banerjee 1993), and the same term is used in this thesis also, to define the long-narrow 

cofferdams. Double-walled cofferdams are commonly used for constructions of foundations 

for bridge piers, concrete dams and harbour walls (King and Cockroft 1972).   For constructions 

of water treatment plant, sewers, bridge piers, and abutment and shaft, circular cofferdams are 

employed (Koltuk and Azzam 2016) while square or rectangular cofferdams are encountered 

with the foundation constructions for buildings, small bridges etc.  

 

 

Fig. 1.1 Cofferdam shapes: (a) long-narrow; (b) circular; (c) square; (d) rectangular 

(Fig. 1.1 a courtesy of Eng. L Wenzel, Wenzel Engineering, Inc., United States, Fig. 1.1 b 

courtesy of  Eng. P. Brady, Brady marine and civil, Australia, Fig. 1.1 c and d courtesy of Prof. 

N. Sivakugan, James Cook University, Australia) 
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All the cofferdam shapes discussed above are similar in the cross-sectional elevation view as 

shown in Fig. 1.2a where the seepage flow is taking place under the total head difference of h. 

Water seeping into the cofferdam generates the hydraulic gradient, and hence, excavation base 

failure can occur. Also, presence of a hydraulic gradient affects the stability of sheet pile wall, 

changing the distribution and magnitude of the water and earth pressure components (Kaiser 

and Hewitt 1982; Soubra et al. 1999; Benmebarek et al. 2006).  Therefore, seepage analysis is 

a vital factor for designing any shape of cofferdam, and flow rate Q and maximum exit 

hydraulic gradient 𝑖𝐸 are two important variables that are computed.  The flow rate is necessary 

to estimate the required pump capacity, maintaining the excavation base dry while exit 

hydraulic gradient is to assess the stability with respect to possible piping failure. Here, exit 

hydraulic gradient 𝑖𝐸 is the hydraulic gradient at the excavation base right next to the sheet pile 

wall (see Fig. 1.2a) since, exit hydraulic gradient is maximum at that point (Griffiths 1984).   

 

Flow into the cofferdams are actually three-dimensional (3D) for all the cases, but flow patterns 

are different. However, for double-walled cofferdams, it is considered as a parallel flow (top 

left one of Fig. 1.2b) ignoring the effect of the two shorter side. Therefore, these problems are 

analysed as 2D problems in the Cartesian plane. Flow pattern into the circular cofferdams is an 

axisymmetric one as shown in the top right of Fig. 1.2b; therefore, these problems can also be 

analysed as 2D problem, but in the cylindrical coordinate system.  The flow pattern of bottom 

left in Fig. 1.2b is for square cofferdams while the bottom right is for the rectangular cofferdam. 

3D analysis is required for these two cases. 
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Fig. 1.2 (a) Elevation; (b) plan views (section X-X) of a cofferdam under four possible flow 

patterns 
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1.3 Current State-of-the-Art 

For double-walled cofferdams, available seepage solution methods are the following: flow net, 

analytical, numerical, and method of fragments (MoF). Out of these methods, MoF proposed 

by Griffiths (1984) has a place as a simple and quick method to estimate flow rate and 

maximum exit hydraulic gradient. Also, it has the ability to incorporate the effect of soil 

anisotropy, too. However, the accuracy of this method depends on the validity of the 

assumption that the equipotential lines at tip of the sheet piles are vertical; therefore, the 

method’s accuracy varies with the cofferdam geometry.  

 

For cofferdam types where the flow patterns are 3D (circular, square and rectangular), there 

are no simple and accurate solution methods such as MoF. Drawing a flow net is a possible 

method, but it requires to consider 3D flow effect, and hence, it is a tedious task. Also, 

analytical solution is available only for circular cofferdams and was proposed by Neveu (1972) 

to provide only the flow rate estimations. Approximate solution methods proposed by Becker 

and Moore (2006) are available for circular and square cofferdams using correction factors to 

the corresponding values of double-walled cofferdam. However, the accuracy of this method 

is low since the correction factors cannot simulate the effect of 3D flow correctly. For 

rectangular cofferdams, only approximate solution method available is to consider it as a 

double-walled cofferdam. But, this approximation can jeopardize safety because actual flow 

into the rectangular cofferdam is 3D, and hence, what is predicted assuming a double-walled 

cofferdam underestimates the values of flow rate and maximum exit hydraulic gradient (Miura 

et al. 2000; Tanaka et al. 2000). Therefore, there is a perceived benefit of having a simple, but 

accurate seepage solution method for circular, square and rectangular cofferdam problems.  
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Considering all, it can be concluded that, although MoF provides simple and quick seepage 

solutions for double-walled cofferdam problems, it is still required to assess the effect of 

violating the assumption (that the equipotential line at the tip of sheet pile is vertical) on the 

accuracy of the result over a wider range of geometries. Also, it is very useful to have MoF 

solution method for circular cofferdams. Further, solution methods that can incorporate the 

effect of 3D flow into the square and rectangular cofferdams will also be more beneficial.  

 

1.4 Objectives and scope of research 

The primary goal of this study is to critically assess the adaptability of MoF as a seepage 

solution method for cofferdams of different geometries, with particular interest on the flow rate 

and maximum exit hydraulic gradient estimations. Following objectives are established in 

order to achieve the thesis aim.  

1. To assess the effect of violating the assumption that the equipotential line at the tip is 

vertical on the MoF solutions for double-walled cofferdams.  

2. To develop axisymmetric MoF solutions for circular cofferdams which are applicable 

to both isotropic and anisotropic soil conditions and validate them over wider range of 

geometries. 

3. To develop and validate a relationship between shortest seepage path (creep length) and 

maximum exit hydraulic gradient in both double-walled and circular cofferdams in 

order to use as the first-order approximations in ensuring the safety against piping. 

4. To develop and validate a simple and more accurate solution method for analyzing 

seepage into square cofferdams and compare against the existing solutions. 

5. To develop and validate a simple seepage solution method for rectangular cofferdams.  
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In this study, numerical, analytical and experimental techniques are used to compare against 

each other, and to validate the proposed solutions. The research will contribute to: 

1. Better understanding of the effect of violating the assumption (that the equipotential 

line at the sheet pile tip is vertical) on the accuracy of the MoF for double-walled 

cofferdams. 

2. Provide a simple and accurate seepage solution method to circular cofferdams. 

3. Enhance the safety of square and rectangular cofferdams using more accurate solution 

methods incorporating the effect of 3D flow. 

 

1.5 Relevance of the research 

Cofferdams are among the widely used hydraulic structures in waterfront construction sites. 

However, cofferdam failure induced by water seepage is also not a rare incident, and several 

researchers reported case histories on this (Bauer 1984; Tanaka et al. 1994; Tanaka et al. 2002; 

Cai and Ugai 2003; Tanaka 2003; Cai and Ugai 2004). Also, these failures are rapid with little 

advance warning and are responsible for catastrophic situations. Therefore, having a simple 

and accurate solution method is essential to minimize these incidents. Since, MoF is a simple 

and quick solution method, extending this further for double-walled and circular cofferdams 

will provide realistic first estimates of the flow rate and maximum exit hydraulic gradients. 

Further, proposing a method to predict the possibility for piping failure only considering the 

shortest seepage path in both double-walled and circular cofferdams will also be beneficial as 

a first-order solution method. 

 

Also, cofferdam design based on the 2D approximations while flow pattern is actually 3D has 

caused failure, and some case histories and laboratory model tests on this have been discussed 

by several researchers (Bauer 1984; Tanaka et al. 2002; Tanaka and Yokoyama 2005; 
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Bouchelghoum and Benmebarek 2011; Koltuk and Iyisan 2013; Tanaka et al. 2013). Therefore, 

seepage solutions proposed herein for square and rectangular cofferdams with incorporating 

the effect of 3D flow will be more effective for the designs at preliminary stage. 

 

1.6 Thesis overview 

Chapter 1 introduces cofferdam types and flow patterns, seepage solution methods, research 

problem, objectives, and the relevance of the research. Finally, the thesis overview is presented.  

 

In chapter 2, a review of previous studies that discuss the soil permeability, hydraulic failure 

mechanisms and existing solution methods for analyzing the cofferdam seepage problems are 

presented.  

 

Chapter 3 validates the MoF as a feasible seepage solution method for double-walled cofferdam 

and provides simple analytical equations to estimate the flow rate and exit hydraulic gradient 

values. The work reported in this chapter was published in: 

1. Madanayaka, T. A., and Sivakugan, N. (2016). "Approximate equations for the method 

of fragment." Int. J. Geotech. Eng., 10(3), 297-303. 

2. Madanayaka, T., and Sivakugan, N. "Simplified method of fragments based two 

dimensional seepage solution for the double-wall cofferdam." Proc., 19th Southeast 

Asian Geotechnical Conference, Kuala Lumpur, Malaysia, 1047-1051. 

3. Madanayaka, T., Sivakugan, N., and Ameratunga, J. (2017). "Validity of the method of 

fragments for seepage analysis in double-wall cofferdams." Proc., 19th International 

Conference on Soil Mechanics and Geotechnical Engineering, Seoul, South Korea, 

2921-2924.  
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Chapter 4 describes the development of axisymmetric MoF solution for circular cofferdams 

using the finite element computer package RS2 9.0, developed by Rocscience. It includes 

proposing new axisymmetric fragments with their form factors and exit hydraulic gradient 

charts to provide simple seepage solutions. Also, simple analytical expressions have been 

proposed for estimating the form factors and maximum exit hydraulic gradients. These 

expressions enable the MoF be implemented in spreadsheet, and hence, can be used as an 

effective tool for parametric studies. Some of the content from this chapter were published in:  

1. Madanayaka, T. A., and Sivakugan, N. (2017). "Adaptation of Method of Fragments to 

Axisymmetric Cofferdam Seepage Problem." International Journal of Geomechanics, 

ASCE (9), doi: 10.1061/(ASCE)GM.1943-5622.0000955. 

2. Madanayaka, T. A., and Sivakugan, N. “ Validity of the method of fragments for 

seepage analysis in circular cofferdams”  Geotechnical & Geological Engineering, 

(Draft ready for second submission). 

 

Chapter 5 proposes and validates simple solution methods to provide first-order 

approximations in ensuring safety against piping failure for double-walled and circular 

cofferdams just only considering the shortest seepage path. This chapter is being under the 

second review for the publication in International Journal of Geomechanics (ASCE) as 

Madanayaka, T. A., and Sivakugan, N. “Relationship between minimum creep length and exit 

gradient in cofferdams”.  

 

Chapter 6 discusses the development and validation of approximate solution methods to 

estimate the flow rate and exit hydraulic gradient for square and rectangular cofferdams 

considering the effect of 3D flow using the 3D finite element software package, RS3 2.0 

developed by Rocscience.  The work reported in this chapter has been published by the 
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Canadian Geotechnical Journal as Madanayaka, T. A., and Sivakugan, N. “Simple solutions 

for square and rectangular cofferdam seepage problems”. 

 

Chapter 7 provides a summary and conclusion of the research, and at the end, some 

recommendations suggested for future research.  
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Chapter 2 Literature review 

2.1 Overview  

Structural stability of the sheet piles and the bracing system is a main concern in evaluating the 

performance of cofferdams (Banerjee and Muleshkov 1992). As noted before, flow rate into 

the cofferdam and excavation base stability against hydraulic failure are also two other 

concerns which are equally important. Soil permeability k is a key parameter used in the 

Darcy’s law in order to estimate the flow rate into the cofferdams. For the homogeneous and 

isotropic soils, soil permeability does not have an effect on the excavation base stability, but 

for the anisotropic soils, it is a factor to be considered (Koltuk and Iyisan 2013). There are 

various solution methods available for estimating the flow rate and excavation base stability 

against hydraulic failures of cofferdams.  

 

This chapter gives a broad review emphasizing soil permeability, Darcy’s law and its range of 

validity, hydraulic failure mechanisms of cofferdams, and current seepage solution methods 

for various shapes of cofferdams. However, literature review is not limited only to this chapter. 

An extensive description of method of fragments (MoF) in double-walled cofferdams, 

axisymmetric flow net construction, application of method of fragments in 3D flow situations, 

and physical modeling of cofferdams is given in later chapters.  

 

2.2 Soil permeability 

Soil permeability k is the parameter used to measure the ability of a fluid passing through the 

soils. Water is the fluid involved mostly; therefore, the term, soil permeability is used to define 

the ability of water passing through the soils in this dissertation. Permeability is the soil 

property having the widest variation (Cedergren 1977) and Table 2.1 shows typical values of 

soil permeability for saturated soils.   
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Table 2.1 Typical values of soil permeability in saturated soils [adopted from (Das and 

Sivakugan 2016)] 

Soil type k (cm/s) 
Clean gravel 100-1 
Coarse sand 1.0-0.01 
Fine sand 0.01-0.001 
Silty sand 0.001-0.00001 
Clay <0.000001 

 

2.2.1 Factors affecting the soil permeability   

There are several factors that affect the soil permeability. Most of them are the soil properties 

and are listed  below (Das and Sivakugan 2016).   

• Pore-size distribution 

• Grain-size distribution 

• Void ratio 

• Roughness of the mineral particles 

• Degree of saturation 

Soil permeability is significantly lower when it is unsaturated compared to that for the saturated 

condition. The two fluid properties that can change the permeability are the dynamic viscosity 

𝜇  and unit weight 𝛾𝑤, and they are related to the soil permeability in the way of (Das and 

Sivakugan 2016): 

𝑘 =
𝛾𝑤

𝜇
𝐾̅                                                                                                                                              (2. 1) 

                     

where 𝐾̅ is the absolute permeability and is independent from the fluid properties.  

 

In clayey soils, some other factors should also be considered on the permeability assessment. 

They are, soil structure, ionic concentration, and thickness of water layers attached to the clay 
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particles (Das and Sivakugan 2016). In this review, permeability of clayey soils is not 

considered specifically, since cofferdams are generally applied in sandy soils.  

 

2.2.2 Laboratory determination of soil permeability 

In laboratory, constant head permeability test is used to determine the permeability of coarse-

grained soils (AS 1289.6.7.1; ASTM D2434) while falling head permeability test is used for 

fine-grained soils (AS 1289.6.7.2; ASTM D5856). For sandy soils, reconstituted samples are 

commonly used because undisturbed samples are difficult to obtain, but the soils require to be 

compacted to a specific density simulating the field condition (Sivakugan and Das 2009). Also,      

Hatanaka et. al. (1997; 2001) showed that there is no significant difference between the 

permeability values measured in undisturbed and reconstituted samples for sandy and gravelly 

soils. Therefore, laboratory permeability estimates using reconstituted samples are sufficient 

for most of the cofferdam designing purposes in sandy soils.  

  

Constant head test 

Fig. 2.1 shows the schematic diagram of a constant head test set-up where the flow direction is 

downward. In this test, water is allowed to drain until the flow rate has reached a steady state 

value at a constant head difference h. Then, total volume of water Q collected in a measuring 

cylinder for a known period t is measured. Then, Q can be expressed as: 

𝑄 = 𝐴𝑣𝑡                                                                                                                                               (2. 2)
                         

where A is the cross-sectional area of the soil sample, 𝑣 is the discharge velocity, and t is the 

duration of water collection. Applying Darcy’s law, 𝑣 = 𝑘𝑖 , where k is the soil permeability 

and i is the hydraulic gradient into Eq. 2.2, Q can be estimated as: 

𝑄 = 𝐴𝑘𝑖𝑡                                                                                                                                              (2. 3) 
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Note that, Darcy’s law will be discussed later (Sec. 2.3) in more detail. Also, i can be expressed 

as h/L where L is the sample length. Then Eq. 2.3 can be rewritten as: 

𝑄 = 𝐴𝑘
ℎ

𝐿
𝑡                                                                                                                                           (2. 4) 

                                                    

Thus, soil permeability k can be estimated by: 

𝑘 =
𝑄𝐿

𝐴ℎ𝑡
                                                                                                                                               (2. 5) 

      

 

Fig. 2.1 Schematic diagram of constant head test set-up [adopted from Das and Sivakugan 
(2016)] 
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Falling head test 

A schematic diagram of falling head test set-up is shown in Fig. 2.2. In this test, water is 

allowed to flow from standpipe through the soil specimen for a given time period t while head 

difference drops from h1 to h2.  

 

Fig. 2.2 Schematic diagram of falling head test set-up [adopted from Das and Sivakugan 
(2016)] 

Using Darcy’s law, equating the flow rate q through the sample and the standpipe, at any given 

time t can be expressed as: 

𝑞 = 𝑘
ℎ

𝐿
𝐴 = −𝑎

𝑑ℎ

𝑑𝑡
                                                                                                                           (2. 6) 

                        

where A and a are the cross-sectional area of soil specimen, and standpipe, respectively. Next, 

Eq. 2.6 can be rearranged in to the form:  
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𝑑𝑡 =
𝑎𝐿

𝐴𝑘
(−

𝑑ℎ

ℎ
)                                                                                                                                (2. 7) 

                                  

Then, Eq. 2.7 can be integrated considering the limits of time and head difference from 0 to t 

and h1 to h2, respectively, and hence, a relation to estimate the soil permeability can be derived 

as: 

𝑘 =
𝑎𝐿

𝐴𝑡
𝑙𝑛

ℎ1

ℎ2
                                                                                                                                       (2. 8) 

 

                    

2.2.3 Empirical relations for soil permeability 

Seelheim (1880) [vide Chapuis (2004)] suggested that the possibility of predicting the soil 

permeability k of granular soils using the squared value of an effective grain size. Since then, 

several studies have developed relations for estimating the k using experimental models 

(empirical relations), hydraulic radius theories, capillary models and statistical models; 

however, the equation proposed by Hazen (1930) is used widely because of its simplicity 

compared to other equations (Chapuis 2004). Hazen (1930) developed a relationship for the 

permeability of clean filter sand in the form given by: 

𝑘 (
𝑐𝑚

𝑠
) = 𝑐𝐷10

2                                                                                                                                    (2. 9) 
         

where, c is a constant and D10 is the effective grain size in mm. Several studies have suggested 

various values for the constant c, and some of the values given in geotechnical textbooks are 

shown in Table 2.2. However, Carrier (2003) pointed that the value of c can be varied by three 

orders of magnitude. Also having a small quantity of silts and clay may change the permeability 

significantly. Therefore, permeability value given by Eq. 2.9 is not very reliable. 
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Table 2.2 Proposed values for Hazen’s constant c 

 

 

 

 

 

 

 

 

The equation proposed by Kozeny (1927) and Carman (1938, 1956) gives reasonably good 

result in estimating the permeability of sandy soils and also, for some silts (Das 2013). The 

Kozeny-Carman equation is semi-empirical and semi-theoretical and gives the permeability k 

as: 

𝑘 =
1

𝐶𝑠𝑆𝑠
2𝑇2

𝛾𝑤

𝜇

𝑒3

1 + 𝑒
                                                                                                                     (2. 10) 

       

where, 

 Cs is the shape factor 

 Ss is the specific surface area 

 T is the tortuosity of flow channel 

 𝜇  is the dynamic viscosity of permeant 

 γw is the unit weight of water 

 e is the void ratio 

Further to above equations,  U.S. Department of the Navy (1974)  provides graphical solutions 

for estimating the permeability values of clean sand and gravel using the D10 and void ratio e 

values. This is also among the widely used methods due to its simplicity.  

Proposed by Constant c value 

Cedergren (1977) 0.9 – 1.2 

Holtz and Kovacs (1981) 0.4 – 1.2 

Terzaghi et al. (1996) 0.5 – 2.0 

Coduto (1999) 
 

0.8 - 1.2 

Das (2013) 1.0 – 1.5  

Das and Sivakugan (2016) 1.0 – 1.5 
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2.2.4 Permeability anisotropy  

Witt and Brauns (1983) identified three reasons which make the permeability anisotropic for 

most of the soils. They are, macro-stratification, micro-stratification, and flatness and 

orientation of particles. Anisotropy caused by macro-stratification can be estimated using 

thickness and permeability values of each layer, but for the micro stratification, in situ pumping 

test is required. The third one, effect of flatness and orientation can also be quantified using the 

measurements of number of particles (Witt and Brauns 1983). Hatanaka et. al. (1997; 2001) 

studied high quality undisturbed sands and gravelly soils and found that permeability in 

horizontal direction is larger than that of the vertical. However, maximum deference observed 

was 70%, and hence, sandy or gravelly soils can be assumed as isotropic in general. Therefore, 

in cofferdam designing, soil anisotropy is mainly encountered when the founding soil consists 

of layered (stratified) soil systems. For these stratified soil systems, considering an equivalent 

permeability is required.  

 

Equivalent permeability in stratified soil 

Consider the stratified soil system shown in Fig. 2.3 consisting of n homogeneous and isotropic 

soil layers with thickness of d1, d2, …, dn. Here, coefficients of permeability of individual layers 

are k1, k2, … kn. For horizontal flow direction (in the direction of stratification), total flow q 

through the cross-section of unit thickness in unit time can be written as: 

𝑞 = 𝑣(𝑑 × 1) = 𝑣1(𝑑1 × 1) + 𝑣2(𝑑2 × 1) + ⋯ + 𝑣𝑛(𝑑𝑛 × 1)                                            (2. 11) 
                      

where, 

     v = average discharge velocity through the entire soil bed 

    d = sum of the thickness of each layer 

 v1, v2, …vn = discharge velocities of flow in layers 1, 2, …, and n , respectively.  

From Darcy’s law, 
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𝑣 = 𝑘𝐻(𝑒𝑞)𝑖𝑒𝑞;  𝑣1 = 𝑘1𝑖1;  𝑣2 = 𝑘2𝑖2; … 𝑣𝑛 = 𝑘𝑛𝑖𝑛                                                                (2. 12) 
                                   

where,  

    𝑘𝐻(𝑒𝑞)  = equivalent permeability in horizontal direction 

         𝑖(𝑒𝑞) = equivalent hydraulic gradient  

i1, i2, …in = hydraulic gradient through layers of 1, 2, …, and n respectively.  

For the horizontal flow,  

𝑖𝑒𝑞 = 𝑖1 = 𝑖2 = ⋯ = 𝑖𝑛                                                                                                                  (2. 13) 
          

Substitution of velocity and hydraulic gradient relations given in Eq. 2.12 and 2.13, 

respectively in Eq. 2.11 gives 𝑘𝐻(𝑒𝑞) as: 

𝑘𝐻(𝑒𝑞) =
1

𝑑
(𝑘1𝑑1 + 𝑘2𝑑2 + ⋯ 𝑘𝑛𝑑𝑛)                                                                                         (2. 14) 

             

 

Fig. 2.3 Equivalent permeability determination in stratified soil 

 

For the vertical flow (in the perpendicular direction to the stratification), flow velocity is the 

same through all layers, and hence, 
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𝑣 = 𝑣1 = 𝑣2 = ⋯ = 𝑣𝑛                                                                                                                  (2. 15) 
     

Applying Darcy’s law, Eq. 2.15 becomes, 

𝑘𝑣(𝑒𝑞)

ℎ

𝑑
= 𝑘1

ℎ1

𝑑1
= 𝑘2

ℎ2

𝑑2
= ⋯ = 𝑘𝑛

ℎ𝑛

𝑑𝑛
                                                                                    (2. 16) 

              

where, 

    h = sum of the head losses in each layer  

h1, h2, …hn = head loss in layers 1, 2, …, and n, respectively.  

Also, 

ℎ = ℎ1 + ℎ2 + ⋯ + ℎ𝑛                                                                                                                   (2. 17) 

                                 

Solving Eqs. 2.16 and 2.17,   𝑘𝑉(𝑒𝑞) can be obtained as: 

𝑘𝑉(𝑒𝑞) =
𝑑

(
𝑑1

𝑘1
) + (

𝑑2

𝑘2
) + ⋯ + (

𝑑𝑛

𝑘𝑛
)

                                                                                            (2. 18) 

                 

From Eqs. 2.14 and 2.18, it can be showed that the equivalent permeability in horizontal 

direction 𝑘𝐻(𝑒𝑞) is greater than that in  vertical direction 𝑘𝑉(𝑒𝑞) . Harr (1962) proved this for 

two layers. In this dissertation, it is extended to three layers system where d1, d2, d3 and k1, k2, 

k3 are the thickness and coefficients of permeability of each layer, respectively. Assuming 

 𝑑1 𝑑2 =⁄  𝛿 and  𝑑2 𝑑3 =⁄  𝛽, and using Eqs. 2.14 and 2.18 𝑘𝐻(𝑒𝑞) > 𝑘𝑉(𝑒𝑞) can be written as:   

𝑘1𝛿 + 𝑘2 + 𝑘3 𝛽⁄

𝛿 + 1 + 1 𝛽⁄
>

𝛿 + 1 + 1 𝛽⁄

𝛿 𝑘1⁄ + 𝛿 𝑘2⁄ + 1 𝛽𝑘3⁄
                                                                            (2. 19) 

                                    

Then, Eq. 2.19 simplifies to the true statement given by: 

𝑘3𝛽2𝛿(𝑘1 − 𝑘3)2 + 𝑘2𝛿𝛽(𝑘1 − 𝑘3)2+ 𝑘1𝛽(𝑘2 − 𝑘3)2 > 0                                                 (2. 20) 
                                     

Similarly, it can be proved that kH(eq) > kV(eq)  for a layered system having any number of 

homogeneous and isotropic layers.   
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Griffiths (1984) introduced a factor R to treat the permeability anisotropy of the homogeneous 

single layer soil medium as: 

𝑅 = √𝑘𝑉 𝑘𝐻⁄                                                                                                                                     (2. 21) 

           

where 𝒌𝑽 and 𝒌𝑯 are the permeability coefficients of vertical and horizontal directions of soil 

medium, respectively. Therefore, seepage solution for the cofferdam where founding soil 

medium consists of thin, homogeneous and isotropic (within the layer) soil layers can be 

obtained considering the equivalent anisotropy factor 𝑹𝒆𝒒 given by: 

𝑅𝑒𝑞 = √𝑘𝑉(𝑒𝑞) 𝑘𝐻(𝑒𝑞)⁄                                                                                                                    (2. 22) 

        

 

2.3 Darcy’ law and range of validity  

A French engineer, Henry Darcy (1856) [vide Verruijt (1970)] proved a linear relationship 

between discharge velocity v and hydraulic gradient i for the laminar state flow as: 

𝑣 = 𝑘𝑖                                                                                                                                                 (2. 23) 

The range where the Darcy’s law is valid has been studied extensively using experimental 

works, and a detailed summary of these is given in Muskat and Wyckoff (1937). Reynolds 

(1883) observed that the relation between i and v is linear only at small velocities (laminar 

flow), and flow becomes irregular with increasing flow velocities. Also, he proposed a 

relationship between i and v for this condition as: 

𝑖 = 𝑎1𝑣 + 𝑏1𝑣𝑛1                                                                                                                               (2. 24) 
         

where 𝑎1 and 𝑏1 are constants. 𝑛1 is a variable between 1 and 2. However Lindquist (1933) 

[vide Harr (1977)] reported that 𝑛1 is exactly 2.  
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2.3.1 Reynolds number  

Reynolds number 𝑅𝑒 is the criteria used to determine the laminar range where the Darcy’s law 

is valid. There is a critical value for the Reynold number 𝑅𝑒𝑐𝑟, beyond which flow velocity v 

is no longer lineally proportional to the i. This concept was originally proposed by Stokes 

(1851), but the term,  Reynolds number is introduced by Sommerfeld (1908) [vide (Rott 1990)] 

considering its extensive applications by Reynolds (1883) for studying the flow behaviour 

through pipes and  is defined as: 

𝑅𝑒 =
𝑣𝐷𝜌

𝜇
                                                                                                                                          (2. 25) 

                                                   

where, 

v is the discharge velocity, cm/s 

D is the diameter of the median grain size, cm 

𝜌  is the density of water, g/cm3 

𝜇  is the dynamic viscosity of water, g/cm.s 

 

Critical Reynolds number (𝑅𝑒𝑐𝑟) 

In literature, a wider range of values has been suggested by various researches for the critical 

Reynolds number. For instance, the range was between 1 and 15 according to Bear (1972), 

Hassanizadeh and Gray (1987) and Ma and Ruth (1993) while it extends to 75 according to 

Scheidegger (1958). However, Muskat and Wyckoff (1937) recommended to consider 

Reynolds number equals to 1 as a safe lower limit ensuring the flow is laminar. Also, it was 

noted that the Reynolds number at which flow becomes turbulent is much higher than  the 

critical Reynolds number where the flow regime transfers from the Darcy flow to the nonlinear 

laminar flow condition (Chauveteau and Thirriot 1967; Seguin et al. 1998). Seguin et al. (1998) 

mentioned that the flow regime transition from Darcy flow to nonlinear laminar flow and 
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finally, nonlinear laminar flow to turbulent flow in a gradual process. Also, several researchers 

(Venkataraman and Rao 1998; Sidiropoulou et al. 2007; Moutsopoulos et al. 2009; Sedghi-Asl 

et al. 2014; Salahi et al. 2015; Li et al. 2017) have shown that this process can be represented 

by the Forchheimer equation (Forchheimer 1901). According to Cedergren (1977), 

Forchheimer equation can be presented in more general form and is given by: 

𝑖 = 𝑎𝑣 + 𝑏𝑣2                                                                                                                                    (2. 26) 
          

where a and b are constants and can be estimated through curve fitting. Van Lopik et al. (2017) 

showed that constant a equal to the reciprocal of the permeability (a = 1/k), and hence, linear 

section of the flow where the Darcy’s law is valid can be written as: 

𝑖 = 𝑎𝑣                                                                                                                                                 (2. 27) 
                  

Several studies have proposed empirical relationships for estimating the a and b, and a 

summary of them is given in Table 2.3.   

 

Recent studies on critical Reynolds number  

Recently, Van Lopik et al. (2017) studied nonlinear behaviour of uniformly graded coarse 

material ranged from medium sands to gravel, considering 11 samples where median grain size 

d50 varied between 0.39 mm to 6.34 mm. They found that Eq. 2.26 accurately predicts the 

nonlinear flow behaviour in all the cases, and the critical Reynolds number ranged between 

2.21 to 4.13 falling within the limit 1-15 recommended in the literature. Also, for sands, 

corresponding critical discharge velocities varied between 0.21 cm/s to 0.71 cm/s and increases 

while d50 value decreases. However, they have not studied the effect of relative density and 

shape of the particle on the critical Reynolds number. Therefore, a laboratory study was 

conducted in this dissertation, in an attempt to study the effects of relative density and particle 

shape on critical Reynolds number. 
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Table 2.3 Empirical relationships for the Forchheimer coefficients of a and b determination 

[adopted from (Van Lopik et al. 2017)] 

Proposed by a (s/m) b (s2/m2) 

Schneebeli (1955) 1100
𝜂

𝑔𝑑2
 12

1

𝑔𝑑
 

Ward (1964) 360
𝜂

𝑔𝑑2
 10.44

1

𝑔𝑑
 

Ergun-type 𝐴
(1−𝑛)2𝜂

𝑔𝑛3𝑑2  𝐵
(1−𝑛)

𝑔𝑛3𝑑
 

     Carman (1937) 𝐴 = 180 - 

     Ergun (1952) 𝐴 = 150 𝐵 = 1.75 

     Kovacs (1981) 𝐴 = 144 𝐵 = 2.4 

Macdonald et al. (1979)       180
(1−𝑛)2𝜂

𝑔𝑛3.6𝑑2  1.8
(1−𝑛)

𝑔𝑛3.6𝑑
 

Kadlec and Knight (1996) 255
(1−𝑛)𝜂

𝑔𝑛3.7𝑑2 2
(1−𝑛)

𝑔𝑛3𝑑
 

Sidiropoulou et al. (2007) 0.0033𝑑−1.5𝑛0.0603 0.194𝑑−1.27𝑛−1.14 

Geertsma (1974) - 0.005

𝑔
(𝐾̅10000)−0.5𝑛−5.5 

 

where, 𝜂 is the kinematic viscosity (m2/s), d is the median particle diameter (m),  𝑛 is the 

porosity, 𝑔 is the acceleration due to gravitational force (m/s2), and  𝐾̅ is the absolute 

permeability (m2).   

 

2.3.2 Laboratory study on Reynolds number 

The study was conducted using three types of material, namely zeolite, Leighton Buzzard sand, 

and glass beads. For each of the samples tested, index properties (moisture content, particle 

size distribution, specific gravity, minimum and maximum density values) were determined as 
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per the Australian standards and are given in Table 2.4. All three samples are uniformly graded, 

and glass beads and Leighton Buzzard sand are similar in grain size distribution as shown in 

Fig. 2.4.  Also, it was observed that the glass beads consist of well rounded particles compared 

to other two material studied. 

Table 2.4 Determined index properties 

Index property 
Sample Name 

Zeolite (A) Leighton Buzzard sand (B) Glass beads (C) 
Moisture content (%) 4.0 0.10 0.10 

d10 (mm) 1.71 0.64 0.62 
 

d30 (mm) 1.75 0.74 0.72 

d50 (mm) 1.80 0.85 0.85 

d60 (mm) 1.85 0.90 0.90 

Cu 1.08 1.41 1.45 

Cc 0.97 0.95 0.93 

Specific gravity 2.42 2.64 2.49 

Minimum density (g/cm3) 1.15 1.53 1.49 

Maximum density (g/cm3) 1.28 1.75 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.56 

 

  

Fig 2.4 Grain size distributions for three samples 
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Constant head permeability tests were conducted to study the flow behaviour for all three 

samples since material used are coarse-grained. The permeameter and constant head test set-

up were designed as per the Australian standard AS 1289.6.7.1 and are shown in Figs. 2.5 and 

2.6, respectively. The inner diameter of the permeameter was 100 mm while length of the 

sample height studied was 258 mm. Five tests were conducted at different relative density 

values covering two for zeolite at 69% and 90%, one for Leighton Buzzard sand at 50%, and 

two for glass beads at 23% and 83%. 

 

 

Fig. 2.5 Permeameter apparatus 
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Fig. 2.6 Constant head permeability test set-up 

 

Laboratory test results 

For each test, discharge velocity v values were determined for a range of hydraulic gradient i 

values changing the height of the overhead tank shown in Fig. 2.6, and observed i - v plots for 

all five tests are shown in Fig. 2.7.  Flow behaviors of all five cases given in Fig. 2.7 show an 

excellent agreement (R2 > 0.99) to the Forchheimer relation described by Eq. 2.26. Linear flow 

behaviour described by Darcy’s law (i = av) is also plotted in each case to show the deviation 

of flow from linear to nonlinear while increasing the flow velocity. Then Reynolds number was 

calculated using the discharge velocity given by Forchheimer relation at which relative 

difference between Forchheimer and Darcy’s velocity is 5%. This criteria was defined by  Van 

Lopik et al. (2017). In addition, minimum and maximum Reynolds number were also computed 
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using the minimum and maximum discharge velocity values obtained for each test, and the 

summary of the results including Forchheimer coefficients for each case is given in Table 2.5.  

 

Fig. 2.7 Observed Darcy and nonlinear flow behaviours  
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Table 2.5. Summary of the test results 

 

 

Results in Table 2.5 show that critical Reynolds numbers obtained in this study are between 

2.2 to 10.0 falling to the ranged recommended in the literature (1-15). Also, it increases with 

increasing the relative density Dr for a given sample (see Sample A and C). Further, critical 

Reynolds number for sample C is slightly higher than the sample B value, even though both 

samples are more or less identical in grain size distributions. This may be due to the pore 

structure difference between samples B and C since sample C particles are well rounded 

compared to the sample B. Also, it is noted that, effect of relative density of sample A is 

significant compared to that for the sample C. This was evident by larger deviations of critical 

Reynolds numbers and Forchheimer coefficients when relative density changing from 69% to 

90% of sample A while there is only a slight change in the critical Reynolds number and 

Forchheimer coefficients for the sample C with larger difference of relative density (23% to 

83%) between two tests.  This is also due to the pore structure difference at different relative 

density values. Sample C pore structure does not influence much with increasing relative 

density compared to the sample A since sample C particles are well rounded compared to the 

sample A. Also, critical velocity obtained for sand (sample B) in this study was 0.29 cm/s and 

is comparable to the values calculated for Van Lopik et al. (2017).  

a  (sm-1)b  (s2m-2) v min v max v cri .

1.80 69 25.0 1020.4 - 0.0040 0.0222 0.0012 7.2 39.9 2.2

1.80 90 55.2 494.5 53.9 0.0034 0.0214 0.0056 6.1 38.5 10.0

B 0.85 50 298.5 5069.4 310.0 0.0016 0.0133 0.0029 1.4 11.3 2.5

0.85 23 208.6 3276.6 - 0.0018 0.0164 0.0032 1.6 13.9 2.7

0.85 83 239.2 3375.5 249.9 0.0005 0.0197 0.0035 0.5 16.8 3.0
C

d 50
Dischrge velocityv  (ms-1) D r 

(%)

Forc. Coeff.
R emin R emax R ecrSample

A

Darcy 
Coeff.    

a  (sm-1)
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Further, there were multiple data points (more than 2 points) in Darcy region (velocity less than 

to critical discharge velocity) for the tests of sample A at relative density 90%, sample B at 

relative density 50% and sample C at relative density 83%. Therefore, these points were plotted 

in (i-v) graphs as shown in Fig. 2.8 and Darcy’s coefficient a values were obtained for each 

case through the linear regression analysis. These results (Darcy’s coefficient a values) were 

well comparable with the Forchheimer coefficients shown in Table 2.5 with the maximum 

relative error of 4%. This is similar to the agreement observed by Van Lopik et al. (2017).  

 

 

Fig. 2.8 i-v plots for laminar flow regime 
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In summary, it is observed that Forchheeimer equation represents nonlinear flow behavior more 

accurately, and assuming critical Reynolds number equals to one provides conservative upper 

limit for laminar flow regime in sandy soils. Also, critical velocity beyond which flow becomes 

nonlinear fall within 0.2 cm/s - 0.7 cm/s in most of the sandy soils. However,  Holtz and Kovacs 

(1981) concluded that, water flow velocity in most soils is adequately smaller compared to the 

observed velocity (0.2 cm/s - 0.7 cm/s), and hence, considering the laminar flow is a reasonable 

assumption in cofferdam seepage analysis in sands. Also, they mentioned that water is 

relatively incompressible for stress levels encountered in most seepage problems. Therefore, 

validity of Darcy’s law and soil/water incompressibility are reasonable assumptions for 

studying the seepage into cofferdams.   

 

2.4 Hydraulic failure mechanisms of cofferdams 

McNamee (1949) identified two excavation base failure mechanisms, namely, local failure and 

general upheaval. Local failure, also known as piping failure, initiates at the point downstream 

where the uppermost stream line emerges, i.e., next to the sheet pile wall on the excavation 

base. Although piping initiation involves only a small volume of soil, it progresses up to the 

upstream side, forming a free water channel and makes the structure fails within a short period. 

Conversely, general upheaving is a widespread failure where a soil prism adjacent to the sheet 

pile wall rises due to the upward hydraulic pressure acting on the prism base. This failure 

mechanism is known as heaving. 

 

2.4.1 Piping failure mechanism 

Harza (1935) studied the piping mechanism for hydraulic structures. It is more likely to happen 

in non-cohesive soil, and he suggested that the critical condition occurs when exit hydraulic 
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gradient 𝑖𝐸 is equal to the critical hydraulic gradient of soil 𝑖𝐶. Thus, he defined the factor of 

safety against piping 𝐹𝑝 as: 

𝐹𝑝 =
Critical hydraulic gradient (𝑖𝑐)

Maximum exit hydraulic gradient(𝑖𝐸) 
                                                                         (2. 28) 

      

As noted before in Sec. 1.2, for the cofferdams, 𝑖𝐸  is the exit gradient at the excavation base 

adjacent to sheet pile wall. The critical hydraulic gradient 𝑖𝐶 is the hydraulic gradient at which 

effective stress become zero, i.e., soil is at the boiling condition (Reddi 2003). Then, 𝑖𝐶 is given 

by:  

𝑖𝐶 =
𝐺𝑠 − 1

1 + 𝑒
                                                                                                                                       (2. 29) 

                                         

where, 𝐺𝑠 and e are the specific gravity and void ratio, respectively. 

 

2.4.2 Heaving failure mechanism 

Heaving mechanism was studied by Terzaghi (1943) using model tests for a single row of sheet 

piles. He found that the zone which is susceptible to heave is a prism adjacent to the sheet pile 

as shown in Fig. 2.9. He assumed that at the instant of failure, no frictional resistance between 

soil and the sheet pile wall, and hence, he defined the factor of safety against heaving (𝐹ℎ) as:  

𝐹ℎ =
𝑊′

𝑈
                                                                                                                                            (2. 30) 

                                                                                   

where, 𝑊′ is the submerged weight of the soil prism and U is the hydraulic uplift pressure. 

Considering the unit thickness of the prism, Eq. 2.30 can be written as: 

𝐹ℎ =

1
2 𝛾′𝑠2

1
2 𝛾𝑤𝑠ℎ𝑎

=
𝑠𝛾′

ℎ𝑎𝛾𝑤
                                                                                                                   (2. 31) 

                                  

where, γ′ is the submerged unit weight of soil, γw is the unit weight of the water, and ha is the 

average hydraulic (pressure) head at the prism base. Also, Terzaghi (1943) recommended 
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considering several prisms for other type of structures varying the prism height s' as 0 < s' ≤ s 

to determine the minimum safety factor value. However, Harr (1962) suggested to use Eq. 2.31 

applying the factor of safety value of the order of 4 to 5 for other structures; therefore, Eq. 2.31 

can be applied for cofferdam problems discussed in this ddissertation, too.  

 

Fig. 2.9 Failure due to heaving in front of a single row of sheet pile (Das 2013) 

 

2.4.3 Critical failure mechanism  

Out of the two mechanisms described above, it is not possible to determine which one is more 

likely to happen in a particular condition (McNamee 1949). However, he suggested that the 

piping is the criteria for the wider excavations while heaving is for the narrow excavations in 

homogeneous sand. Marsland (1953) conducted model experiments to determine the failure 

mode for the double-walled cofferdam geometry shown in Fig. 2.10 using both dense and loose 

homogeneous sands. In his extensive studies, it was concluded that in loose sand, heaving is 

the failure mode for narrow cofferdams while piping is for the wider cofferdams. Here, he 

defined a narrow cofferdam in such a way that 𝐷1 > 2𝐿, i.e., depth of sheeting penetration 𝐷1 

is greater than cofferdam width 2L. Further, in dense sand, he observed that piping was the 

dominant failure mode in both narrow and wider geometries.  
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Fig. 2.10 Experimental model geometry studied by Marsland (1953) 

 

Considering all, it can be concluded that piping is the most common failure mode except the 

case of narrow excavations in loose sands. However, narrow excavations are rarely applicable 

in practice since they are not economical, and hence, piping failure is the most significant 

excavation base failure mode in cofferdams. Therefore, excavation base stability assessment 

against heaving failure will not be considered specifically in this dissertation. Consequently, 

total flow rate Q and maximum exit hydraulic gradient 𝑖𝐸 are two important parameters to be 

determined for designing the cofferdams of any shape.  

 

2.5 Seepage solution methods for cofferdams 

There are various solution methods available for finding Q and 𝑖𝐸, but their applicability varies 

depending on the cofferdam shape. In all these methods, validity of Darcy’ law and soil/water 

incompressibility are assumed (Cedergren 1977), and also, the steady state condition is 

considered. 
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2.5.1 Seepage solution methods for double-walled cofferdams 

Seepage solution methods for double-walled cofferdams involve solving a Laplace equation in 

the two-dimensional Cartesian plane. Consider the flow element shown in Fig. 2.11 where the 

thickness is one unit.  

 

Fig. 2.11 Flow element in two-dimensions 

Under steady state condition, no change in storage, and hence, flow into the element should 

equals to the flow out. Therefore; 

𝑣𝑥(𝑑𝑧. 1) + 𝑣𝑧(𝑑𝑥. 1) = (𝑣𝑥 +
𝜕𝑣𝑥

𝜕𝑥
𝑑𝑥) (𝑑𝑧. 1) + (𝑣𝑧 +

𝜕𝑣𝑧

𝜕𝑧
𝑑𝑧) (𝑑𝑥. 1)                         (2. 32) 

                                      

where vx and vz are the velocity of flow in x and z directions, respectively. Then, Eq. 2.32 

further simplifies to:  

𝜕𝑣𝑥

𝜕𝑥
+

𝜕𝑣𝑧

𝜕𝑧
= 0                                                                                                                                  (2. 33) 

                                           

Using Darcy’s law in generalize form (Verruijt 1970) , 

 𝑣𝑥 = 𝑘𝑥

𝜕ℎ

𝜕𝑥
 𝑎𝑛𝑑 𝑣𝑧 = 𝑘𝑧

𝜕ℎ

𝜕𝑧
                                                                                                        (2. 34) 

         

where kx and kz are permeability coefficients of x and z directions, respectively, and h is the 

total hydraulic head. From Eqs. 2.33 and 2.34,  
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𝑘𝑥

𝜕2ℎ

𝜕𝑥2
+ 𝑘𝑧

𝜕2ℎ

𝜕𝑧2
= 0                                                                                                                      (2. 35) 

                                                                

For the isotropic soil, kx = kz, and hence, Eq. 2.35 simplifies to: 

𝜕2ℎ

𝜕𝑥2
+

𝜕2ℎ

𝜕𝑧2
= 0                                                                                                                                 (2. 36) 

       

This is the Laplace equation for 2D seepage problems. For the anisotropic soils, Eq. 2.35 can 

be rewritten to the form given by: 

𝜕2ℎ

(𝑘𝑧 𝑘𝑥⁄ )𝜕𝑥2
+

𝜕2ℎ

𝜕𝑧2
= 0                                                                                                                 (2. 37) 

          

Considering the substituting 𝑥′ = √𝑘𝑧 𝑘𝑥⁄ 𝑥 , Eq. 2.37 simplifies to the form of Laplace 

equation as: 

𝜕2ℎ

𝜕𝑥′2
+

𝜕2ℎ

𝜕𝑦2
= 0                                                                                                                               (2. 38) 

                        

There are three possible ways that can solve the Laplace equation in two-dimensional form for 

cofferdam seepage problems in Cartesian plane. A graphical solution (drawing a flow net) is a 

one method while analytical solutions or numerical simulations using finite element or finite 

difference software are the other two methods.  

 

Flow net solutions 

This is an approximate solution method and was formalized by Casagrande (1937). A flow net 

consists of flowlines (stream lines) and equipotential lines. A flow line represents the path of a 

water molecule starting at upstream side and finishing at downstream. The area covered by two 

adjacent flow lines is known as a flow channel. An equipotential line joins the points of same 

total head and intersects flow lines at 90.  There are thousands of flow lines, but for a flow net, 

small number of flow lines (3-5) are drawn ensuring the same flow within each flow channel. 
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Equipotential lines are selected maintaining the same total head difference between two 

adjacent equipotential lines. Fig. 2.12 shows the flow net of the double-walled cofferdam for 

the example 2.3 discussed in Craig (2004) founding in an isotropic soil medium. This was 

generated using the finite element package, RS2 9.0. 

 

Fig. 2.12 Flow net for the double-walled cofferdam in 2D Cartesian plane (Craig 2004) 

 

The total flow rate Q can be computed form the above flow net as follows. Considering the 

zone ABCD bounded by two adjacent equipotential lines and two adjacent flow lines, flow 

velocity from AB to CD  𝑣𝐴𝐵−𝐶𝐷 can be written as:  

𝑣𝐴𝐵−𝐶𝐷 = 𝑘
ℎ𝐴𝐵−𝐶𝐷

𝑏
                                                                                                                        (2. 39) 

               

where, k is the soil permeability, and ℎ𝐴𝐵−𝐶𝐷  is the head loss from AB to CD. Typically, this 

is analysed in 2D Cartesian co-ordinates system (treating the third dimension as infinite), and 

the flow rate through the zone ABCD ∆q is calculated by considering a unit thickness 

perpendicular to the plane as: 

∆𝑞 = 𝑘
ℎ𝐴𝐵−𝐶𝐷

𝑏
(𝑎. 1)                                                                                                                      (2. 40) 
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Since there are six flow channels, and the flow rate through each channel should be the same, 

the total flow rate Q per unit thickness perpendicular to the plane becomes: 

𝑞 = 6𝑘ℎ𝐴𝐵−𝐶𝐷

𝑎

𝑏
                                                                                                                              (2. 41) 

         

Also head loss over two adjacent equipotential lines ℎ𝐴𝐵−𝐶𝐷  can be written as:  

ℎ𝐴𝐵−𝐶𝐷 =
ℎ

𝑁𝑑
                                                                                                                                    (2. 42) 

             

where h is the total head loss over the cofferdam, and 𝑁𝑑 is the number of equipotential drops. 

Therefore, total flow rate Q can be written in a more general form as: 

𝑄 = 𝑘ℎ
𝑁𝑓

𝑁𝑑

𝑎

𝑏
                                                                                                                                     (2. 43) 

               

where 𝑁𝑓 is the total number of flow channels. Besides, flow nets are drawn forming curvilinear 

squares at every location (a/b =1 over entire flow net), and hence, Eq. 2.43 can be simplified 

further to: 

𝑄 = 𝑘ℎ
𝑁𝑓

𝑁𝑑
                                                                                                                                        (2. 44) 

                     

 

For the anisotropic soils, it requires to consider transformed section in horizontal direction 

multiplying the horizontal dimensions by √𝑘𝑉 𝑘𝐻⁄   where 𝑘𝑉 and 𝑘𝐻  are permeability 

coefficients of horizontal and vertical directions. Then, flow net can be drawn on transformed 

section using the similar procedure described above, and flow rate can be calculated using the 

Eq. 2.44, but k value should be considered as √𝑘𝑉 × 𝑘𝐻.  Also maximum exit hydraulic 

gradient can be estimated using the distance between last two equipotential lines l in the 

downstream side (see Fig. 2.12) and is given by: 



Chapter 2 

 

40 
 

𝑖𝐸 =
ℎ

𝑁𝐷𝑙
                                                                                                                                            (2. 45) 

                                              

Thus, it is clear that drawing a flow net is a trial and error process, and time can be wasted if 

the person who draws a flow net has less experience. Further, any small change in geometry 

requires that the entire flow net be redrawn. In addition, when the soil anisotropy is 

encountered, the complexity of drawing a flow net increases. Therefore, flow net solution is 

not a straight forward method.  

 

Analytical solutions 

Analytical solution involves conformal mapping technique using the Schwarz-Christoffel 

transformation. This method was originally proposed by Pavlovsky (1922). The first analytical 

solution for the double-walled cofferdam was given by Harr and Deen (1961) considering the 

case of infinitely deep pervious stratum. Later Harr (1962) proposed solution for the infinitely 

wide cofferdam where the pervious stratum is at a limited depth, i.e., for the single sheet pile 

wall. Next, King and Cockroft (1972) developed the solution for double-walled cofferdam 

problems for pervious stratum at  limited depth, but only for the two special cases, i.e., no 

excavation and full excavation. For partially excavation, his solutions are only approximations.  

At last, Banerjee and Muleshkov (1992) presented solutions for complete problems; however, 

their solution is more conservative, compared to the previous solutions by Harr and Deen 

(1961) and King and Cockroft (1972). Also, all these solutions require computing elliptic 

integral using tables; therefore, analytical solutions are not a convenient method to use in 

practice.   

 

Numerical simulation  

Using a finite element or finite difference software package, seepage solutions can be obtained. 

The numerical model required to simulate is only one-half of the cross section of double-walled 
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cofferdam considering the symmetry and is shown in Fig. 2.13. Here, L is the half-width of 

double-walled cofferdam. The analysis type is the plane strain. For the simulations, boundaries 

AB and CD should be considered as constant head boundaries with the total head difference of 

h while CE and EF are as impermeable boundaries.  In addition, sheet piles are required to be 

simulated by a thin layer of material with its permeability being orders of magnitude lower than 

the soil.  Several researchers have studied double-walled cofferdam seepage using a similar 

numerical model shown in Fig. 2.12 (Kavvadas et al. 1992; Cai and Ugai 2004).  

 

Fig. 2.13 Numerical model geometry for double-walled cofferdams 

 

2.5.2 Seepage solution methods for circular cofferdams 

Flow into circular cofferdams is symmetrical around the vertical axis running through the 

centre of the cofferdam. Therefore, circular cofferdam problems require to be analysed in a 

radial vertical plane of the cylindrical coordinate system (axisymmetric plane) as shown in Fig. 

2.14. Since, the cofferdam is axially symmetrical, soil properties and boundary conditions do 

not change with 𝜃. Therefore, seepage solution methods involve solving a continuity equation 

given by (Muskat 1938; Neveu 1972; Rao 1999; Merry and Du 2014): 

1 

𝑟

𝜕

𝜕𝑟
(𝑟𝑘𝑟

𝜕ℎ

𝜕𝑟
) +

𝜕

𝜕𝑧
(𝑘𝑧

𝜕ℎ

𝜕𝑧
) = 0                                                                                                (2. 46) 
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where, 𝑘𝑟 and 𝑘𝑧  are permeability coefficients of r (radial) and z (vertical) directions, 

respectively, and h is the total hydraulic head. For isotropic soils, Eq. 2.46 further simplifies 

as: 

1 

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕ℎ

𝜕𝑟
) +

𝜕2ℎ

𝜕𝑧2
= 0                                                                                                                  (2. 47) 

                             

Eq. 2.47 is the Laplace equation required to be solved for circular cofferdam seepage problems. 

Also, in the anisotropic case, substituting 𝑟′ = √𝑘𝑧 𝑘𝑟⁄ 𝑟 , Eq. 2.47 can be expressed in Laplace 

form in the new transformed coordinate system as: 

1 
𝑟′ 𝜕

𝜕𝑟′
(

𝑟′𝜕ℎ

𝜕𝑟′
) +

𝜕2ℎ

𝜕𝑧2
= 0                                                                                                                  (2. 48) 

                  

Here, both Eq. 2.47 and 2.48 can also be solved using flow nets, analytical approach or 

numerical simulation using a computer package.   

 

Fig. 2.14 Axisymmetric plane in cylindrical coordinate system for circular cofferdams    

Neveu (1972) 
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Flow net solutions 

Drawing a flow net for circular cofferdam problem is a difficult task compared to the double-

walled cofferdams. Here, it is required to consider the effect of 3D because flow rate estimation 

is per radian generally. Therefore, the zone bounded by two adjacent equipotential lines and 

two flow lines (see Fig. 2.12) for circular cofferdams should be satisfied the relation of  𝑎
𝑏

𝑟𝑧 =

1m  allowing the 3D effect at every zone, where the geometry configuration is in the unit of 

meter.  zr  is the radial length to the center of the zone, from the axis of symmetry.  Also, when 

the geometry is scaled up, all the flow lines have to be redrawn for axisymmetric flow nets 

while entire flow net remains unchanged for double-walled cofferdam. Thus, drawing a flow 

nets for axisymmetric case requires substantial effort and time compared to that for the double-

walled cofferdam. A more detail description will be given on drawing a flow net for circular 

cofferdams in Chapter 4.  

 

Analytical solutions 

There is little specific literature on analytical solutions for circular cofferdams. Neveu (1972) 

solved Laplace equation in cylindrical form (Eq. 2.47) using Green’s Theorem and developed 

design charts to estimate the flow rate into the circular cofferdams, but his solution does not 

provide exit gradient values. So, numerical simulation remains as the only method which can 

provide complete solutions required in practice.  

 

Numerical simulation 

For circular cofferdam also, a 2D finite element or finite difference software package can be 

used. The numerical model required, and the boundary conditions are similar to the case of 

double-walled cofferdams discussed in Sec. 2.5.1. In circular models, cofferdam radius r has 

to apply instead of L in double-walled models. The only difference is the analysis type, which 
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is the axisymmetric for circular cofferdams while plane strain is the required one for double-

walled cofferdams. Using this simulation procedure, several researchers have studied circular 

cofferdam seepage problems (Miura et al. 2000; Bouchelghoum and Benmebarek 2011).   

 

2.5.3 Seepage solution methods for square and rectangular cofferdams 

For square and rectangular cofferdams, flow pattern is 3D, therefore, solution methods require 

solving Laplace equation in three-dimensional form. Considering an elementary soil prism with 

the dimensions of dx, dy and dz, continuity equation in 3D form can be obtained using similar 

procedure discussed for double-walled cofferdams (Sec. 2.5.1) as: 

𝑘𝑥
𝜕2ℎ

𝜕𝑥2 + 𝑘𝑦
𝜕2ℎ

𝜕𝑦2 + 𝑘𝑧
𝜕2ℎ

𝜕𝑧2 = 0                                                                                                        (2. 49)

           

For the isotropic soils, Eq. 2.49 can be rewritten as: 

𝜕2ℎ

𝜕𝑥2
+

𝜕2ℎ

𝜕𝑦2
+

𝜕2ℎ

𝜕𝑧2
= 0                                                                                                                    (2. 50) 

                          

There is no literatures available on flow net or analytical solutions for the square or rectangular 

cofferdam problems. However, Chien (1952) presented a generalized relaxation formula that 

can be used for making 3D flow nets, but it is more complicated compared to the 2D flow nets. 

Therefore, 3D numerical simulation using a finite element or finite difference computer 

package (e.g., Plaxis 3D, FLAC3D, RS3) is the widely used solution method for solving Laplace 

equation in 3D form.   

 

Numerical simulation 

Considering the symmetry, only one of the four quadrants needs to study for square and 

rectangular cofferdams. The geometry of the numerical model required to analyse for square 

cofferdam is shown in Fig. 2.15 where B is the half-width of square cofferdam, s is the depth 

of the sheet pile and T is the thickness of the soil layer. In the simulations, impermeable 
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boundaries are applied for the vertical surfaces (see planes ACDEFG and AHIJKG of Fig. 2.15) 

considering the effect of symmetry, and for the bottom plane of the model. In addition, sheet 

pile wall can be simulated by a thin layer of material with its permeability being orders of 

magnitude lower than the soil. The ground level outside the excavation and excavation base 

level should be treated by constant head boundaries with the total head difference of h. For 

rectangular cofferdam, a similar model is applicable, and only difference required is to increase 

the half-length of one side keeping the shorter side with B.  Koltuk and Iyisan (2013) and 

Koltuk et al. (2015) studied seepage into rectangular and square cofferdam, respectively using 

a similar model shown in Fig. 2.15.  

 

Fig. 2.15 3D numerical model geometry for square cofferdams 

 

Considering all, it can be concluded that numerical simulation is the most powerful method for 

solving seepage problems for all cofferdam types considering the difficulties and limitations of 

the flow net and analytical solutions. As noted before, double-walled and circular cofferdam 
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problems can be studied using a 2D simulation package. For square and rectangular cases, 3D 

simulation is required, and hence, more expensive 3D computer package with technically 

sound person is required. Therefore, in practice, design charts developed using experimental 

or numerical analysis or approximate solutions based on method of fragments (MoF) are used 

most of the time, especially in preliminary stages of designs.   

 

2.5.4 Design charts  

Double-walled cofferdams 

Fox and McNamee (1948) proposed design charts on the basis of numerical solutions, 

providing the flow rate and exit gradient values for isotropic soils. Also, McNamee (1949) 

developed charts for estimating the maximum exit hydraulic gradient and penetration depth 

required using numerical solutions. Marsland (1953) presented design charts providing sheet 

pile penetration depth required to prevent piping or heaving failures for isotropic soils, and 

these charts have been applied by U.S. Department of the Navy (1982) as shown in  Fig. 2.16.   

 

Circular cofferdams 

Koltuk and Azzam (2016) developed design charts for circular cofferdams enabling solution 

for heaving failure assessment using numerical simulations.  

 

It was observed that most of the design charts available are for the case of double-walled 

cofferdams and to assess the potential of piping or heaving failure in isotropic soils. Also, no 

design charts available for estimating the flow rate and exit gradient for square or rectangular 

cofferdams, and also, the available charts for circular cofferdams are mainly for assessing 

potential heaving failure.   

 



Chapter 2 

 

47 
 

 

Fig. 2.16 Required penetration of cut-off wall against piping or heaving [adopted from U.S. 
Department of the Navy (1982)] 

 

2.5.5 Method of fragments (MoF)  

This is an approximate, semi-analytical solution method and was originally proposed by 

Pavlovsky (1956) for two-dimensional seepage problems. Later, Harr (1962, 1977) brought it 

to the attention of the western world.  This is an approximate method because its accuracy 

relies on the assumption that the equipotential lines at the critical points (e.g., tip of sheet pile) 

are vertical. Fig. 2.17 shows the concrete dam where the flow domain has been divided into 

three fragments via two vertical equipotential lines.   



Chapter 2 

 

48 
 

 

Fig. 2.17 Method of fragments for concrete dam 

Then dimensionless form factor (Φi) is defined for each fragment as   (Sivakugan and Alaghbari 

1993):  

𝛷𝑖 =
𝑁𝑑𝑖

𝑁𝑓
                                                                                                                                            (2. 51) 

                          

where, 𝑁𝑑𝑖 is the number of equipotential drops in the ith fragment, and 𝑁𝑓   is the number of 

flow channels. Considering the flow net theory, number of flow channels 𝑁𝑓  should equals for 

all three fragments while summation of equipotential drops 𝑁𝑑1, 𝑁𝑑2, and 𝑁𝑑3 of fragments 1, 

2, and 3, respectively gives the total equipotential drops over the entire flow domain. Also, 

head loss over fragments 1, 2, and 3 are h1, h2 and h3, respectively and sum of them should 

equals to the total head loss of h. Again, considering the flow net theory (see Eq. 2.44), flow 

rate beneath concrete dam shown in Fig. 2.17 can be written as: 

𝑄 = 𝑘ℎ
1

(
𝑁𝑑1 + 𝑁𝑑2 + 𝑁𝑑3

𝑁𝑓
)

                                                                                                         (2. 52) 

         

Using Eq. 2.51, Eq. 2.52 can be rewritten as:  

𝑞 =
𝑘ℎ

∑ 𝛷
                                                                                                                                             (2. 53) 
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Since flow rate through each fragment is the same, 

𝑞 =
𝑘ℎ

∑ 𝛷
=

𝑘ℎ1

𝛷1
=

𝑘ℎ2

𝛷2
= ⋯ =

𝑘ℎ𝑛

𝛷𝑛
                                                                                           (2. 54) 

                                                

Hence, head loss over a given fragment is given by: 

ℎ𝑖 =
𝛷𝑖ℎ

∑ 𝛷𝑖
𝑛
𝑖=1

                                                                                                                                     (2. 55) 

                 

 

Form factors 

From the Eq. 2.51, it is clear that form factor of any given fragment depends only on the 

fragment geomerty. Harr (1977) defined nine fragments covering both confined and 

unconfined flow scenarios. Here, first six fragments are for the confined flow and have already 

been discussed in Harr (1962). Table. 2.6 shows Harr’s six confined flow fragments and their 

form factor expressions. Griffiths (1984) condensed Harr’s six fragments into two, namely, 

Fragments A and B and also defined a new fragment type known as C providing solutions for 

some additional confined flow problems such as double-walled cofedrams which cannot be 

handled alone with Harr’s six fragments. Fragmanets A covers Harr’s fargments II and III while 

frgament B is for the fragments I, IV, V and VI. Table 2.7 shows geometries of these three 

fragments. He developed desigh charts for estimating the form factor values of three fragments  

and normalised exit hydraulic gradinet values of fragment C and also provided the facility to 

incorperate the anisotropy in soil permeability directly.  

 

Method of fragments (MoF) solutions for cofferdam problems 

Griffiths (1984) proposed method of fragments solutions for double-walled cofferdam using 

his fragment types A and C providing flow rate and exit hydraulic gradient estimations. This 

will be discussed in more detail in chapter 3. Also Griffiths (1994) discussed the applicability 
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of MoF in unsymmetric cofferdam problems, too. However, MoF solution for cofferdam 

problems presented in the literature is limited to the problems in 2D Cartesian plane (double-

walled cofferdams) and there are no MoF solutions available for circular, square or rectangular 

shapes of cofferdmas where the flow into the cofferdam is three dimensional (3D).  However, 

Sivakugan and Rankine (2012) and Sivakugan et al. (2013) have developed 3D MoF solutions 

for  analysing the seepage of  hydraulic mine fill stopes.  

Table 2.6  Confined flow fragments and their form factors, Harr (1962, 1977) 
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Table 2.7 Confined flow fragments by Griffiths (1984) 

 

 

Validity of method of fargments for confined seepage problems 

As noted before, accuracy of the MoF solutions depends on the validity of the assumpition that 

the equpotential lines at the critical points are vertical. Griffiths and Li (1986) assesed  the 

effects of assumption deviation on the accuracy of MoF solutions for dam seepage problems 

and found that MoF solutions are in good agrement with the finite element solutions although 

the assumption deviates noticeably. Further, Sivakugan and Alaghbari (1993) compared MoF 

solutions against flow net solutions analysing series of dam geometries and single sheet pile 

wall problem and have observed good agreement between both methods. Thefore, it is 
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concluded that MoF provides solutions with reasonable accuracy for most of the confined flow 

problems in 2D Cartesian plane. However, it is still required to assess the effects of assumption 

deviation on the MoF solutions for double-walled cofferdams.   

  

2.6 Summary and conclusions  

A review of literature on existing seepage solution methods for double-walled, circular, square 

and rectangular cofferdam  has been conducted. It was found that approximate solution 

methods (design charts or method of fragments) are commonly used in double-walled 

cofferdmas specially in preliminary stage of designs eventhough numerical simulation provides 

more accurate solutions. Also for the circular cofferdams, numerical solutions remains the only 

solution method even though it can be analysed in a 2D radial plane. Therfore, having a simple 

solution method for cricular cofferdams based on the MoF will be more benifical in preliminary 

designs.  

 

For the square or rectangular coferdams, 3D numerical simulation is the only available solution 

method. However, approximating them to 2D problems tends to understimate the flow rate and 

exit gradient significantly. Therefore, developing simple solution methods considering the 

effects of 3D flow will significantly improve the accuracy of approximate soluton methods.  
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Chapter 3 Validity of method of fragments (MoF) solutions for double- 

walled cofferdams 

3.1 Introduction 

Seepage analysis for double-walled cofferdams is a 2D problem and can be carried out in the 

Cartesian co-ordinates system, treating the third dimension as infinite. As discussed in Sec. 

2.3.3, flow rate 𝑞 and exit hydraulic gradient 𝑖𝐸  adjacent to the sheet pile wall are two key 

parameters required to be determined. Method of fragments (MoF) is the quickest method 

which can be used to estimate these two parameters, without sacrificing the accuracy much.  

 

3.2 Method of fragments (MoF) solutions for double-walled cofferdams 

Fig. 3.1 shows a double-walled cofferdam in the cross-sectional elevation view. Two sets of 

parallel sheet pile walls 2L distance apart are driven into the ground to a depth of s where the 

thickness of the soil layer is T, which is underlain by an impervious stratum. The excavation 

depth is given by s (0 <  < 1), and head loss over the flow domain is h. Due to symmetry, 

analysis of half the section along the centreline is adequate to estimate the flow rate q (per unit 

length) and the maximum exit hydraulic gradient 𝑖𝐸. So, total flow rate into the cofferdam is 

2q. Griffiths (1984) proposed MoF solutions dividing the flow domain (half the section) into 

fragment types A and C at the tip of the sheet pile wall using assumed vertical equipotential 

line (see Fig. 3.1 for right half section). Also, he developed form factor charts for fragment A 

and C as shown in Fig.3.2, and normalised exit hydraulic gradient chart for fragment C (Fig. 

3.3). 
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Fig. 3.1 Adoption of MoF for double-walled cofferdams 

 

 

Fig. 3.2 Form factor charts: (a) fragment A; (b) fragment C [adopted form Griffiths (1984)] 
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Fig. 3.3 Normalised exit gradient chart for  fragment C [adopted form Griffiths (1984)] 
 

3.2.1 Flow rate q estimation 

From Eq. 2.53, flow rate q per half the section can be calculated as:  

𝑞 =
𝑘ℎ

(𝛷𝐴 + 𝛷𝐶)
                                                                                                                                   (3. 1) 

           

where 𝛷𝐴 and 𝛷𝐶 are the form factor values of fragments A and C, respectively. Total flow rate 

Q per unit length of cofferdam is given by 2q and can be written as: 

𝑄 =
2𝑘ℎ

(𝛷𝐴 + 𝛷𝐶)
                                                                                                                                  (3. 2) 

                                                               

Design charts given in Fig. 3.2 provide the required form factor values for fragments A and C.  

Griffiths (1984)  has provided the facility to incorperate the anisotropy in soil permeability 

directly in these charts defining the term, soil anisotropy ratio R as √𝑘𝑉 𝑘𝐻⁄  . When the soil is 
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homogeneous and anisotropic (R ≠ 1), corresponding solutions can be obtained considering the 

cofferdam width L in the transformed section, i.e. LR (multiply L by R). Therefore, in this 

chapter, the half-width of the double-walled cofferdam is termed as LR in the more general 

form. Further, 𝑠/𝑇, 𝐿𝑅/𝑇 and 𝑖𝐸𝑠 ℎ ⁄ ratios required in fragment C charts (Figs. 3.2b and 3.3) 

should be calculated considering only the geometry of the fragment C region. So, these ratios 

are termed as 𝑠𝐶 𝑇𝐶⁄ ,  𝐿𝑅 𝑇𝐶⁄   and 𝑖𝐸𝑠𝐶 ℎ𝐶⁄  in a clearer way where  𝑠𝐶 =   𝑠 − 𝑠 and 𝑇𝐶 =

  𝑇 − 𝑠 while ℎ𝐶  gives the head loss within the fragment C region. Similarly, for the fragment 

A, s/T ratio should be termed as  𝑠𝐴 𝑇𝐴⁄ , but 𝑠𝐴 = 𝑠 and 𝑇𝐴 = 𝑇.  

 

3.2.2 Exit hydraulic gradient 𝑖𝐸  estimation 

Using Eq. 2.55, head loss over the fragment C (ℎ𝐶) can be calculated as: 

ℎ𝐶 =
𝛷𝐶ℎ

𝛷𝐴 + 𝛷𝐶
                                                                                                                                    (3. 3) 

         

Then, 𝑖𝐸  value can be obtained using the normalized exit hydraulic gradient values (𝑖𝐸𝑠𝐶 ℎ𝐶)⁄    

given in Fig. 3.3.  

 

3.3 Accuracy of MoF solutions for double-walled cofferdams  

As noted in the above section, MoF solutions involve dividing the flow domain (half-section) 

into two fragments using an assumed equipotential line at tip of the sheet pile (see Fig. 3.1). 

Thus, the accuracy of the solutions depends on the validity of this assumption.                                                                                        

Also, it is clear that the position of the equipotential line (at tip of the sheet pile) is controlled 

by geometric parameters of the cofferdam, i.e., LR, s, T and αs. Therefore, to assess the validity 

of this assumption, behaviors of equipotential lines over a wider range of geometries were 

studied using numerical simulation results.   
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3.3.1 Numerical modeling of double-walled cofferdams 

The 2D finite element program (RS2 V9.011) developed by Rocscience was used for the 

simulations, and the numerical model geometry used is shown in Fig. 3.4. Only a half section 

was studied considering the symmetry.  The parameters, h, L, s, αs and T are similar to those 

defined in Fig. 3.1. Le is the safe distances from sheet pile wall to the model boundary at which 

the boundary effect on the results is insignificant. For all the simulations, a homogeneous and 

isotropic soil model was applied (R = 1), keeping the soil permeability constant (10-5 m/s) 

within the entire model. In addition, permeable layer thickness T, and total head loss over the 

cofferdam h were also kept constant for all the runs, with values of 20 m and 10 m, respectively.  

 
 

Fig. 3.4 Numerical model geometry used for simulating double-walled cofferdams 
 

Further, it was assumed that the seepage flow into the excavation does not lower the ground 

water table, outside the excavation. This assumption is reasonable when the cofferdam is used 

for the offshore excavations as shown in Fig. 3.4. Moreover, this is a conservative assumption 

for the onshore excavations, where the water table is below the ground level, outside the 

excavation. When dewatering the inner excavation is in progress for onshore cofferdams, the 

water table outside the excavation starts to lower and reaches a steady state condition after 

some time. The transition time required depends on the soil permeability, depth of the sheet 

pile penetration below the water table and the width of the excavation (Kavvadas et al. 1992). 
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However, the most critical flow condition is encountered at the initial dewatering condition, 

and at which, flow rate, maximum exit hydraulic gradient and hydraulic pressure on the sheet 

pile wall are the highest. Fig. 3.5 shows the initial dewatering condition of onshore cofferdams. 

Therefore, all the designing parameters (flow rate, factor of safety against hydraulic failure and 

the strength of sheet pile wall) of onshore cofferdam must be based on this initial condition. 

Accordingly, numerical solution results of offshore cofferdams are applicable to the onshore 

cases, too. However, it is required to measure the parameters s, αs and T from the water table 

and not from the original ground level (see Fig. 3.5). Consequently, all simulations in this 

chapter were conducted for the offshore cofferdam models shown in Fig. 3.4.  

 

Fig. 3.5 Initial dewatering condition of double-walled cofferdams for the onshore excavations 

 

In all the simulations, planes of symmetry and impermeable bases were considered as 

impermeable boundaries. The ground level outside the excavation and the base of the 

excavation (line AB and CD, respectively in Fig. 3.4) were treated as constant head boundaries 

(i.e., equipotential surfaces) with the total head difference of h. In addition, a thin layer of 

material was used to simulate the sheet pile wall where its permeability is orders of magnitude 

lower than the soil material. Simulations were carried out as flow only problems (i.e., no 



Chapter 3 

 

59 
 

deformations) for a completely saturated soil, and a uniform mesh with four noded quadrilateral 

elements were used for meshing. Exit hydraulic gradient value for each model was calculated 

using the “Add Material Query” option available in RS2 V9.011. This option allows to define 

a query anywhere within the model in the form of a single point, a single line segment or an 

arbitrary polyline of number of line segments. Then, required data can be obtained for a 

particular point or a line depending on the defined query type. Therefore, in this study, a query 

(single point form) was defined for the point where the exit hydraulic gradient is sought. This 

is the point located on the excavation base adjacent to the sheet pile wall (see Fig. 3.4). Using 

these query points, 𝑖𝐸  values were calculated. Also, “discharge section” option available in RS2 

was used to calculate the q values.  

 

3.3.2 Sensitivity analysis and model validation 

Before using models for equipotential line behaviour analysis, a sensitivity analysis was 

conducted to ensure that the effect of selected safe distance for the model’s boundaries (Le) are 

negligible on the results (q and 𝑖𝐸). It showed that increasing the horizontal distance from the 

sheet pile wall to the outer boundary Le beyond 2T was insensitive, i.e. the percentage 

increment of q and 𝑖𝐸values when Le greater than 2T is less than 1%.  Therefore, all the models 

were run with Le equals 2T. Also, it was observed that increasing the half-width L beyond 2𝑇𝐶 

did not affect the results. Therefore, a double-walled cofferdam where the half-width L equals 

to 2𝑇𝐶 is equivalent to the case of single sheet pile wall (i.e., width of the cofferdam is infinite).    

 

Next, finite element model was calibrated against the results of the analytical solutions ensuring 

the validity of the size and type of finite elements, and the mesh type used. For the flow rate q 

comparison,  analytical solution proposed by King and Cockroft (1972) for the  no excavation 

(α = 0) condition was used while exit hydraulic gradient 𝑖𝐸 estimation values were compared 
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against the Harr (1962) solution for single sheet pile wall (LR/T = ∞). The geometries 

considered for the validation are shown in Table 3.1, and the comparison results are given in 

Fig. 3.6.  Numerical solutions are well agreed to the analytical solutions in both cases and 

deviate less than 5% in general. Therefore, it is verified that the accuracy of the numerical 

model for analysing the seepage beneath double-walled cofferdams is adequate. 

 
Table 3.1 Cofferdam geometries used for numerical model validations 

 

 

 

3.3.3 Accuracy assessment of the MoF solutions 

As noted above, the accuracy of the MoF solutions depends on the validity of the assumption 

that the equipotential line is vertical at tip of the sheet pile. To evaluate this, series of finite 

element model runs were carried out, and equipotential line was drawn for each case. The 

geometry range considered is shown in Table 3.2 while Fig. 3.7 shows the equipotential lines 

drawn.                                                        

 
Effect of the cofferdam width and depth of the cut-off wall 

In  Fig. 3.7, s/T  increases from left to right while  LR/T increases downwards. The equipotential 

lines  are  away  from the vertical for low values of  LR/T and  s/T  ratios. With increasing the  
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values of LR/T and s/T, the equipotential lines become closer to the vertical, making the 

assumption reasonable.  

 

 

Fig. 3.6 Double-walled cofferdam model validation: (a) flow rate; (b) exit hydraulic gradient 
 

Table 3.2 Double-walled cofferdam geometries used for equipotential lines behaviour 
studied 

 

 

0.1 0, 0.4, 0.8
0.4 0, 0.4, 0.8
0.8 0, 0.4, 0.8
0.1 0, 0.4, 0.8
0.4 0, 0.4, 0.8
0.8 0, 0.4, 0.8
0.1 0, 0.4, 0.8
0.4 0, 0.4, 0.8
0.8 0, 0.4, 0.8

αLR/T s/T

0.1

0.4

0.8
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Fig. 3.7 Behaviour of the equipotential lines with double-walled cofferdam geometry 

 

Effect of the excavation depth 

The effect of the excavation depth (αs) on the position of the equipotential line is also shown 

in Fig. 3.7. When increasing the excavation depths (α changing from 0 to 0.8) for any given 

𝐿𝑅/𝑇 particularly at low values of 𝑠/𝑇, the deviation of the equipotential line from the vertical 

is more pronounced, thus jeopardising the assumption. However, the difference between 

equipotential lines when α increases from 0 to 0.4 is only slight, with most of the deviation 

occurring for the range 0.4-0.8. Therefore, behavior of the equipotential line for moderate 

excavations is not significantly affected by the excavation depth (α from 0 to 0.4) and is mostly 

controlled by the cofferdam width (LR) and cut-off wall depth (s). Also, the difference between 
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the equipotential lines when α increases from 0.4 to 0.8 becomes low when decreasing the 

𝐿𝑅/𝑇 ratio and increasing the 𝑠/𝑇 ratio. So, the effect of the excavation depth on the validity 

of the assumption is a concern only when excavating to a considerably larger depth (α > 0.4) 

for the geometries where the value of 𝐿𝑅/𝑇 is high and 𝑠/𝑇 ratio is low.  On the other hand, 

one is unlikely to excavate to a larger depth when 𝐿𝑅/𝑇 is high, and 𝑠/𝑇 is low; hence, this 

kind of instances have very little practical significance. Therefore, the effect of the excavation 

depth is not significant on the accuracy of the MoF solutions in double-walled cofferdams for 

most geometries encountered in practice.  

 

3.3.4 Effects of assumption deviation on the seepage solutions 

For this analysis, series of finite element model runs were carried out to adequately represent 

most cases encountered in   practice. The finite element solutions obtained for the hundreds of 

trials do not make any assumptions about the equipotential line at the tip of the sheet pile being 

vertical. The values of q and 𝑖𝐸  computed from these runs were compared with those computed 

using the MoF charts developed by  Griffiths (1984).  

 

Effect of non-vertical equipotential line due to cofferdam width and cut-off wall depth 

Fig. 3.8 shows the comparisons of the normalized seepage quantity (𝑞/𝑘ℎ) and 𝑖𝐸  obtained by 

the MoF solutions with corresponding full numerical solutions for the series of geometries 

considered. Here, series of geometries (90 cases) were studied changing the 𝐿𝑅/𝑇 from 0.1 to 

1 and 𝑠/𝑇 from 0.1 to 0.9, while keeping the soil as isotropic (R = 1) and depth of excavation 

as zero (α = 0). 

 

Both comparisons show good agreement between the MoF solutions and the finite element 

solutions. Also, MoF predictions gives higher values compared to that given by the finite 
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element solutions for all the cases; hence, MoF solutions are always on the safe side (i.e., they 

are conservative). Further they differ by less than 10% compared to the corresponding finite 

element solutions for most of the cases (i.e., 87 and 79cases out of the 90 for 𝑞/𝑘ℎ and 𝑖𝐸, 

respectively). The few cases with the substantial deviation (10-20%) correspond to the 

geometries which are having less applicability in the practice where the cut-off wall depth is 

too low (𝑠 𝑇 ≤ 0.2)⁄  to ensure stability.  

 

Fig. 3.8 Comparison of predictions from MoF and full numerical model (Full NM) solutions 

when α = 0: (a) seepage quantity; (b) exit hydraulic gradient 

 

Effect of non-vertical equipotential line due to excavation depth  

Fig. 3.9 compares the 𝑞/𝑘ℎ and 𝑖𝐸 at three excavation depths (α =0, 0.4 and 0.8) predicted by 

MoF against corresponding full numerical model predictions for three different cofferdam 

widths of 𝐿𝑅/𝑇 = 0.1, 0.4 and 0.8 changing 𝑠/𝑇 from 0.1 to 0.9.  For two cases where α = 0 

and 0.4, the deviation of MoF solutions from the numerical results is less than 10%, and also, 

onto the conservative side. So, excavation depth effect is not significant on the results. 

Conversely, for α = 0.8, the deviation is slightly larger (relative errors between 10-20%) 

compared to α = 0 and 0.4, but MoF predictions are conservative in this case, too. Also, the 



Chapter 3 

 

65 
 

error decreases with increasing the 𝑠/𝑇 values. These two observations are in line with the 

conclusion made with the Fig. 3.7 above (i.e., effect of the excavation depth on the validity of 

the assumption is a concern only when excavating to a considerably larger depth). However, 

the effect of violating this assumption is always on the conservative side (i.e., both the 𝑞/𝑘ℎ 

and 𝑖𝐸 are overestimated).  

 

Fig. 3.9 Effect of cofferdam geometry on the accuracy of MoF solutions:                      

 (a) seepage quantity; (b) exit hydraulic gradient 
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Considering all above, it can be concluded that MoF is a sufficiently accurate tool for quick 

estimations of q and 𝑖𝐸  for the double-walled cofferdam problems. Even when the assumption 

is violated, q and 𝑖𝐸  are conservatively overestimated by less than 10% for most practical 

situations (s T > 0.2)⁄ ). Therefore, simple expressions are proposed herein to estimate the form 

factors of both fragments C and A, and 𝑖𝐸𝑠𝐶 ℎ𝐶⁄  for fragment C, which enable the 

implementation of the MoF in spreadsheets.  

 

3.4 Expressions for form factors and exit gradient estimations 

As noted before, two form factor charts shown in Fig. 3.2 and the normalized exit hydraulic 

gradient chart (in Fig. 3.3) can be used to obtain the MoF solutions for the double walled 

cofferdams. However, it is required to extrapolate or interpolate them to find the form factors 

and exit gradient values for some geometries. The graphical nature of the charts, developed for 

selected 𝑠𝐶 𝑇𝐶⁄  and 𝐿𝑅 𝑇𝐶⁄  values for fragment type C, makes the interpolation not easy, and 

also not very precise for some geometries. Therefore, an attempt is made to develop 

expressions for estimating the form factors and normalized exit hydraulic gradients of the 

fragment type C, and the form factors of special case of fragment type A with b = 0. These 

expressions enable quick estimations of q and 𝑖𝐸, without going for the graphical solutions. 

 

3.4.1 Expressions for fragment type C  

Observing the fragment C form factor chart (Fig. 3.2a), it can be concluded that the difference 

between form factor values when 𝐿𝑅 𝑇𝐶⁄  increasing from 1 to ∞ is only a slight, with most of 

the changes occurring for the range of 0.1-1. For the exit gradient too, the pattern is similar. 

Therefore, a geometry range was selected covering the situations where  𝑠𝐶 𝑇𝐶⁄  = 0.1 - 0.9, and 

𝐿𝑅 𝑇𝐶⁄  = 0.1 - 1.0 for the expressions development. Then, form factor and exit hydraulic 

gradient charts were redeveloped for the range mentioned above using the procedure described 
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in following paragraphs. Also redeveloped form factor chart covers few additional  cases where 

(a) 𝐿𝑅 𝑇𝐶⁄  = 0.1 and 𝑠𝐶 𝑇𝐶⁄  > 0.4, (b) 𝐿𝑅 𝑇𝐶⁄  = 0.15 and  𝑠𝐶 𝑇𝐶⁄  > 0.6, and (c) 𝐿𝑅 𝑇𝐶⁄  = 0.2 and 

𝑠𝐶 𝑇𝐶⁄  > 0.8 which cannot be handled using the form factor chart by  Griffiths (1984) shown in 

Fig. 3.2b.  

 

Fig. 3.10 shows the geometry of the numerical model used to simulate the fragment C using 

RS2 V9.011. The base of the fragment BC, the left boundary CD (i.e., vertical centerline) and 

the sheet pile AE were taken as impervious boundaries. The vertical boundary AB and the 

horizontal boundary DE were treated as constant head boundaries with the total head difference 

of ℎ𝐶 . Then, series of finite element runs (99 cases) were made covering the geometry range 

mentioned above (𝐿𝑅 𝑇𝐶⁄  = 0.1 - 1.0 and 𝑠𝐶 𝑇𝐶⁄  = 0.1 - 0.9), and q and 𝑖𝐸 values were computed 

for each case.  

 

Fig. 3.10 Numerical model geometry used for fragment C simulations 
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Form factor expression 

Using the computed flow rate q values, fragment C form factor 𝛷𝐶  value was calculated for 

each case via the relationship given by: 

𝛷𝐶 =
𝑘ℎ𝐶

𝑞
                                                                                                                                            (3. 4) 

          

Next, 𝛷𝐶  values were presented in a form of design chart as shown in Fig. 3.11. All these 

values were compared against the Griffiths (1984) values (shown in Fig. 3.2a) and found an 

excellent agreement (relative errors around 1% for all cases). Appendix A1 shows the Griffiths 

(1984) fragment C form factors and the derived fragment C form factors using finite element 

simulation in this dissertation.  Then, computed 𝛷𝐶 values were used to develop an expression 

for fragment C form factor. Considering form factor equations suggested by Harr (1962) for 

confined flow fragments (see Table 2.6), and the shape of the design chart shown in Fig. 3.11, 

form factor 𝛷𝐶 can be expressed in the form given by:  

𝛷𝐶 = ln (1 +
𝑠𝐶

𝑇𝐶
) + 𝑎(𝑠𝐶 𝑇𝐶⁄ ) + 𝑏                                                                                                (3. 5) 

                                     

where  a and b are functions of 𝐿𝑅 𝑇𝐶⁄ . Then a and b were determined by plotting them 

separately against 𝐿𝑅 𝑇𝐶⁄  as: 

𝑎 =
0.85

𝐿𝑅 𝑇𝐶⁄
                                                                                                                                          (3. 6) 

                     

𝑏 = 0.4𝑒𝑥𝑝−0.5𝐿𝑅 𝑇𝐶⁄                                                                                                                           (3. 7)
                     

Substituting Eqs. 3.6 and 3.7 into Eq. 3.5, 𝛷𝐶 can be rewritten as: 

𝛷𝐶 = ln (1 +
𝑠𝐶

𝑇𝐶
) + 0.85

𝑠𝐶

𝐿𝑅
+ 0.4 exp (−

𝐿𝑅

2𝑇𝐶
)                                                                          (3. 8)

     

For 𝐿𝑅 𝑇𝐶⁄  > 1, it is suggested to use Eq. 3.8 and reduce 𝛷𝐶 by 10%.  
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Fig. 3.11 Form factor 𝛷𝐶  values for fragment C (from finite element simulation) 

 

Exit hydraulic gradient expression 

Computed 𝑖𝐸 values were converted into normalised form, i.e., 𝑖𝐸𝑠𝐶 ℎ𝐶⁄  ,and then, were 

presented in the design chart shown in Fig. 3.12. These values also show an excellent agreement 

to the Griffiths (1984) values (relative errors were less than 1%), and hence, were used to derive 

the expression [Appendix A2 shows the Griffiths (1984) values and derived normalised exit 

hydraulic gradient values in this study].   
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Fig. 3.12 Exit hydraulic gradient values for fragment C (from finite element simulation) 

 

It appears that the exit hydraulic gradient patterns at various 𝐿𝑅 𝑇𝐶⁄ , 𝑖𝐸𝑠𝐶 ℎ𝐶⁄  can be expressed 

by the form defined as: 

𝑖𝐸𝑠𝐶 ℎ𝐶⁄ = 𝑐(𝑠𝐶 𝑇𝐶⁄ )𝑑(1 − exp−𝑠𝐶 𝑇𝐶⁄ )                                                                                        (3. 9)
      

Here also, c and d are functions of 𝐿𝑅 𝑇𝐶⁄  and were determined by plotting them separately 

against 𝐿𝑅 𝑇𝐶⁄  as:  

𝑐 = 1.5 − 0.75 𝐿𝑅 𝑇𝐶  ⁄                                                                                                                   (3. 10) 
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𝑑 = −(0.3 𝐿𝑅 𝑇𝐶 + 0.65) ⁄                                                                                                            (3. 11)
             

Using Eqs. 3.10 and 3.11, Eq. 3.9 can be rewritten as: 

𝑖𝐸𝑠𝐶 ℎ𝐶⁄ = 1.5 [
1 − exp(− 𝑠𝐶 𝑇𝐶⁄ )

(𝑠𝐶 𝑇𝐶⁄ )(0.3 𝐿𝑅 𝑇𝐶⁄ +0.65)
] (1 − 0.5

𝐿𝑅

𝑇𝐶
)                                                           (3. 12) 

         

For the case of 𝐿𝑅 𝑇𝐶⁄  > 1, it is suggested to use Eq. 3.12 since the predictions are conservative. 

 

3.4.2 Expression for fragment type A 

As noted before, type A fragment involved in the double-walled cofferdam is a special case 

with b = 0 (see Fig. 3.1 and 3.2a). Hence, this fragment can be modelled as a special case of 

type C with L =  as shown in Fig. 3.13. As discussed before, increasing L beyond 2𝑇𝐶 has 

little effect on the flow rate predictions, and hence, has insignificant effect on the form factor 

values. Therefore, form factors for the type A fragment with b = 0 were developed using the 

numerical simulations of same fragment C, but with 𝐿 = 2𝑇𝐶 when anisotropic ratio R = 1.  

Appendix A3 shows the Griffiths (1984) fragment A form factor 𝛷𝐴  values (at b = 0) and the 

derived fragment C form factor  𝛷𝐶 values (at 𝐿 = 2𝑇𝐶 ) in this study. Then established form 

factors for fragment A at b = 0 are shown in Fig. 3.14 as a function of 𝑠/𝑇 and can be 

approximated as:   

𝛷𝐴 = 0.43exp (
5

3

𝑠

𝑇
)                                                                                                                        (3. 13)
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Fig. 3.13 Fragment A geometries: (a) actual geometry; (b) equivalent fragment C geometry 

used for numerical simulations 

 

Fig. 3.14 Form factor Φ𝐴 values for fragment A at b = 0 (from finite element simulation) 
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3.4.3 Validation of proposed form factors and exit hydraulic gradient expressions 

Fig. 3.15 compares the 𝑞/𝑘ℎ and 𝑖𝐸 values predicted using the form factor expressions (Eqs. 

3.8 and 3.13) and the exit gradient expression (Eq. 3.12) against the corresponding values 

calculated by full numerical simulations. When the excavation α = 0.4, the relation between 

the predictions by proposed expressions and numerical solutions follow a trend that is similar 

to no excavation condition (α = 0), and the relative errors are less than 10% for both cases. For 

α = 0.8, deviation is slightly larger (10 -20% in general). However, the error decreases with 

increasing the 𝑠/𝑇 values. These observations are in line with the observations made with the 

Fig. 3.9 above, and hence, it can be concluded that q and 𝑖𝐸  predictions using the expressions 

proposed herein are reasonably accurate.   

 

3.5 Summary and conclusions 

The method of fragments (MoF) solutions for double-walled cofferdams relies on the 

assumption that the equipotential line at the tip of the sheet pile is vertical, which divides the 

flow domain into two fragments (A and C). An assessment is made in this chapter on the 

validity of this assumption and the effects of any violation on the computed values of flow rate 

q and the maximum exit hydraulic gradient 𝑖𝐸. It is observed that this equipotential line can be 

far from vertical, especially for low values of 𝐿𝑅/𝑇 and 𝑠/𝑇. However, it is shown that the 

MoF is adequate for reasonable estimates of the q and 𝑖𝐸 provided 𝑠/𝑇 > 0.2, with relative 

errors are less than 10%. Also, the effect of assumption deviation is always onto the 

conservative side. When 𝑠/𝑇 ≤ 0.2, MoF still provides conservative solutions, but their level 

of accuracy is low (relative errors are between 10-20%) when compared to the geometries with 

𝑠/𝑇 > 0.2. Although, the situations where 𝑠/𝑇 ≤ 0.2 are of no practical significance, and 

hence, this should not be a concern for using MoF in engineering practice.    
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Three simple analytical expressions (Eqs. 3.8, 3.12 and 3.13) have been proposed and validated 

to estimate the form factors and normalised exit gradient values of the fragment type C and the 

form factors of the fragment type A with b = 0, respectively. The direct application of the 

proposed expressions for fragment C (Eqs. 3.8 and 3.12) is limited to the geometries in the 

range of 0.1 ≤ 𝑠 𝑇 ≤ 0.9⁄  and 0.1 ≤ 𝐿𝑅 𝑇 ≤ 1⁄ ;  but it covers most of the practical situations. 

Also, for geometries with 𝐿𝑅 𝑇 > 1⁄ , suggestions have been made for estimating the form 

factors and normalised exit hydraulic gradients, with a slight error. Proposed Eq. 3.13 can be 

used to determine the form factor values of the fragment type A for any geometry in realistic 

situations, i.e. 0.1 ≤ 𝑠 𝑇 ≤ 0.9⁄ . One can directly apply these three expressions to find full 

seepage solutions for any geometry of the cofferdam without using the numerical modelling or 

MoF chart solutions. Further, these expressions can be implemented through spreadsheets for 

carrying out parametric studies and for quick determination of the flow rate q and the exit 

hydraulic gradient 𝑖𝐸.    
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Fig. 3.15 Comparison of proposed expressions solutions with full numerical model (NM) 

solutions: (a) seepage quantity; (b) exit hydraulic gradient 
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Chapter 4 Method of fragments (MoF) solutions for circular cofferdam 

seepage problems 

4.1 Introduction 

As discussed in chapter 1, circular cofferdams are widely used for construction of water 

treatment plant, sewers, bridge piers and abutments, and shaft.  Some of the significant case 

histories on the application of circular cofferdams have been reported by  Lefas and 

Georgiannou (2001), Parashar et al. (2007), Underwood and Weber (2011) and Tan and Wang 

(2015). In a circular cofferdam also, flow rate 𝑞 and maximum exit hydraulic gradient 𝑖𝐸  are 

two key parameters required to be determined. Seepage flow into circular cofferdams is three 

dimensional, but seepage analysis is commonly carried out as a 2D problem in the cylindrical 

coordinate system since the flow is symmetric about vertical axis of the cofferdam (i.e., an 

axisymmetric problem). As noted in Sec. 2.5.2, numerical simulation using a finite element or 

finite difference computer package is the widely used seepage solution method for circular 

cofferdams. Drawing a flow net is also a possible solution method, but it is a more difficult 

task compared to that of drawing a flow net in 2D Cartesian plane (i.e., flow net for double-

walled cofferdam). Method of fragments (MoF) appears to be another possible seepage solution 

method for circular cofferdams, but it requires proposing new axisymmetric fragments and 

developing their form factors and dimensionless exit hydraulic gradient values.  

 

4.2 Numerical simulation of circular cofferdams 

The 2D finite element program RS2 V9.011 developed by Rocscience was used for the 

simulations, and the model used is shown in Fig. 4.1. The parameter r is the cofferdam radius 

and 𝑟𝑒 is the safe distance from sheet pile wall to the model outer boundary at which the 

boundary effect on the results is insignificant.  Note that, cofferdam radius is termed as 𝑟𝑅 in 
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more general form in this chapter, which is similar to the case discussed for double-walled 

cofferdams where R is the soil anisotropy ratio. All the other parameters (s, T, αs and h) are 

similar to those defined in Fig. 3.1 for double-walled cofferdam. Analysing only the flow along 

a radial plane is adequate considering the axisymmetry, and the simulation procedure is similar 

to the one applied for the double-walled cofferdams as discussed in Sec. 3.3.1. The only 

difference was the analysis type, which is the axisymmetric for circular cofferdams while the 

plane strain was applied for double-walled cofferdams. Here also, soil model applied was the 

homogeneous and isotropic (R=1) keeping the soil permeability constant (10-5 m/s) within the 

entire model. Further, permeable layer thickness T, and total head loss over the cofferdam h 

were also kept constant for all the runs, with values of 20 m and 10 m, respectively. Also, all 

the simulations were conducted considering the offshore cofferdam model (Fig. 4.1) since the 

results are valid and conservative for onshore cases, too, as pointed in Sec. 3.3.1 for double 

walled cofferdam analysis.   

 

Fig. 4.1 Axisymmetric numerical model geometry used for circular cofferdams 

 

4.2.1 Axisymmetric numerical model validation 

The accuracy of the axisymmetric numerical simulation procedure for estimating the flow rate 

q and exit hydraulic gradient 𝑖𝐸 was validated against the extensive experimental study 
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conducted by the Davidenkoff and Franke (1965) using an electrical analogy model. The 

geometries considered for the validations are shown in Table 4.1.   

Table 4.1 Cofferdam geometries used for validating the axisymmetric numerical model for 

circular cofferdams 

 

Accuracy of flow rate  estimation  

For the validation, dimensionless flow rate values (𝑞/𝑘ℎ)  measured using the experimental 

models by Davidenkoff and Franke (1965) were  compared against the corresponding 

rR/T s/T α
0.13 0.00
0.13 0.50
0.25 0.00
0.25 0.50
0.50 0.00
0.50 0.50
0.80 0.00
0.80 0.50
0.11 0.00
0.11 0.51
0.26 0.00
0.26 0.50
0.51 0.00
0.50 0.50
0.80 0.00
0.80 0.50
0.21 0.05
0.21 0.52
0.51 0.02
0.51 0.51
0.80 0.00
0.80 0.50
0.51 0.05
0.51 0.52
0.76 0.03
0.76 0.52

3.27

Circular cofferdams

0.34

0.67

1.34
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dimensionless flow rate values (𝑞/𝑘ℎ) calculated by the author’s numerical simulations. Here, 

q is the flow rate per unit length along the perimeter of the circular cofferdam. The comparison 

results are shown in Fig. 4.2.   

 

Fig. 4.2 Axisymmetric numerical model validation for flow rate estimation of circular 

cofferdams 

 

Accuracy of exit hydraulic gradient estimation 

In experimental models, maximum exit hydraulic gradient 𝑖𝐸  value calculated is the average 

value of hydraulic gradient within the sheet pile enclosure, from tip of the sheet pile to the base 

of the excavation. Therefore, for the accuracy assessment, normalised average exit hydraulic 

gradient values (𝑖𝐸𝐴𝑣𝑔. ℎ⁄ ) derived using the experimental results by Davidenkoff and Franke 

(1965) were compared against the corresponding values calculated using numerical simulations 

for series of cofferdam geometries shown in Table 4.1. Davidenkoff and Franke (1965) defined 

the dimensionless parameter ∅𝑠 which describes the head loss from tip of the sheet pile (point 

P on Fig. 4.1) to the excavation base as a fraction of the total head loss over the cofferdam as:  
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∅𝑠 =
Head loss from pile tipto the excavation base

Total head loss (ℎ)
                                                              (4. 1) 

                                                        

Then, average exit hydraulic gradient 𝑖𝐸 𝐴𝑣𝑔. can be estimated as: 

𝑖𝐸 𝐴𝑣𝑔. =
∅𝑠ℎ

Length from pile tip to excavation base 
                                                                  (4. 2) 

                                       

Then, substituting the ∅𝑠 values measured by Davidenkoff and Franke (1965) into Eq. 4.2, 

experimental 𝑖𝐸 𝐴𝑣𝑔. values were calculated for the series of circular cofferdam geometries 

shown in Table 4.1. Next, for the same geometries, corresponding 𝑖𝐸 𝐴𝑣𝑔. values were 

calculated using the numerical simulation results. Here too, for each numerical model, ∅𝑠 value 

was calculated using the total head value measured at pile tip (see Eq.4.1), and then, relevant 

𝑖𝐸 𝐴𝑣𝑔. value was calculated as per the Eq. 4.2. For the assessment of model validity, 𝑖𝐸𝐴𝑣𝑔. ℎ⁄  

values calculated using the experimental and numerical results were compared as shown in Fig. 

4.3.  

 

Fig. 4.3 Axisymmetric model validation for average exit hydraulic gradient 𝑖𝐸𝐴𝑣𝑔. ℎ⁄  

estimation of circular cofferdams 



Chapter 4 

 

81 
 

In both cases (Figs. 4.2 and 4.3), the numerical model results are closely related to the 

experimental results. All the flow rate and exit hydraulic gradient predictions by the numerical 

simulations are within the ± 5% of the corresponding experimental results. Therefore, it is 

verified that the accuracy of the axisymmetric numerical model is adequate for analysing the 

seepage beneath the circular cofferdams.  

 

Next, a sensitivity analysis was conducted varying the distance to the outer boundary from the 

sheet pile wall 𝑟𝑒 between 2T to 6T for the series of cofferdam geometries. Results showed that 

increasing the distance beyond the 2T was insensitive on the q and 𝑖𝐸 results. Also  Pavlovsky 

(1922) [vide Neveu (1972)] showed that when  the ratio between the radial  distance to the 

outer boundary from the axis of symmetry (i.e., r + re) and the radius of  cofferdam r is about 

6, the velocity potential distribution and seepage quantity sufficiently represents the case of 

infinite  extension. Hence, it is recommended to use the distance to the outer boundary from 

the axis of symmetry as the larger of the two scenarios (i.e., 2T + r or 6r). 

 

4.3 Flow net solutions for circular cofferdams  

Fig. 4.4 shows a circular cofferdam in the elevation and the plan view. In the elevation view, 

both double-walled and circular cofferdams are similar (see Fig. 3.1 and 4.4a). But, for double-

walled cofferdams, flow rate is calculated considering a unit thickness perpendicular to the 2D 

Cartesian plane while it is computed per radian in circular cofferdams using the axisymmetric 

analysis (see Fig. 4.4b). Therefore, flow net diagram for a circular cofferdam (axisymmetric 

flow net) should also be drawn reflecting this.  

 

 

 



Chapter 4 

 

82 
 

 

Fig. 4.4 Circular cofferdam in axisymmetric configuration: (a) elevation view; (b) plan view 

 

Fig. 4.5a shows the flow net for half the section of double-walled cofferdam discussed in 

example 2.3 by Craig (2004). This was generated using the finite element package, RS2 V9.011. 

Note that, even though the finite element computer package has a facility to draw required 

number of equipotential lines without selecting the points manually, it is still required to select 

appropriate start or end points for corresponding flow lines manually on the uppermost (lines 

AB in Fig. 4.1) or lowest (line CD in Fig. 4.1) equipotential line, respectively forming  

curvilinear squares (a = b as shown in Fig. 4.5a) to ensure the accuracy of the flow net. 

Therefore, after simulating the double-walled cofferdam using equipotential RS2 V9.011, 

equipotential lines were generated considering 10 equipotential drops. Next, corresponding 

flow lines were generated selecting the end points manually on the lowest equipotential line 
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(line CD in Fig. 4.5a) because upward flow within the downstream (soil area surrounded by 

sheet pile walls) side is approximately one dimensional, and hence, equipotential lines closer 

to the excavation base are horizontal (see Fig. 4.5a). Therefore, shape of curvilinear squares 

should be approximately square along the equipotential line CD and hence, points for flow 

lines can be selected more easily and accurately. As discussed in Sec. 2.5.1, total flow rate Q 

per unit thickness can be calculated using Eq. 2.44 for the flow net shown in Fig. 4.5a as:  

𝑄 = 2𝑘ℎ
𝑁𝑓

𝑁𝑑
                                                                                                                                         (4. 3)

                

where 𝑁𝑓 and 𝑁𝑑  are the number of flow channels and equipotential drops of half the section.  

 

As noted before, an axisymmetric flow net should be drawn such that it enables computation 

of the flow rate per radian. Therefore, considering a zone bounded by two adjacent 

equipotential lines and two flow lines (which is similar to the zone discussed in Fig. 2.12 for 

double-walled cofferdam), flow rate per radian through this zone can be written as: 

𝛥𝑞 = 𝑘
ℎ𝑧

𝑏
(𝑎 × 𝑟𝑧)                                                                                                                             (4. 4) 

 

Here, ℎ𝑧 (= ℎ/𝑁𝑑) is the head loss within the zone, and  𝑟𝑧 is the arc length at the center of 

the zone, with the axis of symmetry being the center for the arc. Since the flow rate is computed 

per radian, the arc length is the same as the radial distance to the center of the zone (see Fig. 

4.4b). Then total flow rate Q per radian into the circular cofferdam can be defined using the 

similar way discussed for the double-walled cofferdam in Eq. 2.43 by: 

𝑄 = 𝑘ℎ
𝑁𝑓

𝑁𝑑

𝑎

𝑏
𝑟𝑧                                                                                                                                    (4. 5) 

 

To interpret the Eq. 4.5 into the more general form (similar to the Eq. 4.3), it is essential to 

maintain 𝑎
𝑏

𝑟𝑧= 1 m at every zone, where the geometry configuration is in the unit of meter.  As 
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noted before, for the double-walled cofferdams, 𝑎

𝑏
= 1 (see Fig. 4.5a) making a curvilinear 

square in each zone whereas, in axisymmetric flow, this ratio a/b is inversely proportional to 

the radial distance (𝑟𝑧) of the zone from the axis of symmetry.   

 

Fig. 4.5b shows the axisymmetric flow net drawn for the circular cofferdam having the same 

configuration to the double-walled cofferdam discussed in Fig. 4.5a. Here also, RS2 V9.011 

computer package was used, and equipotential lines were generated considering 10 

equipotential drops. As discussed before, for flow net in double-walled cofferdam, 

corresponding flow lines were generated selecting the end points manually on the lowest 

equipotential (line CD in Fig. 4.5a) line because here too, upward flow within the downstream 

is approximately one dimensional. However, it was required to maintain the relation  𝑎
𝑏

𝑟𝑧 = 1m 

for all the cases while this was a = b for the cofferdam drawn for double-walled cases. Fig. 4.5 

clearly shows the difference between the 𝑎
𝑏
 ratios for the two cases. Also, if entire flow net was 

drawn by hand, the time and effort required for axisymmetric flow net compared to that for the 

corresponding double-walled cofferdams is significantly higher, and also it is a more difficult 

task. Also, as pointed in Sec. 2.5.2, it is required to redraw all the flow lines of the axisymmetric 

flow net when the geometry is scaled up, while entire flow net remains unchanged for the 

double-walled cofferdam. Thus, flow net solution is not a convenient solution method for 

circular cofferdams, and hence, method of fragments (MoF) appears to be a better alternative 

seepage solution method.  
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Fig. 4.5 Flow nets: (a) double-walled cofferdam; (b) circular cofferdam 

 

4.4 Adaptability of method of fragments (MoF) solutions for circular cofferdams 

The axisymmetric method of fragments (MoF) approach to be developed herein is similar to 

the two-dimensional Cartesian one (MoF for double-walled cofferdam). Hence, equipotential 

line at the tip of the cut-off wall is required to be vertical, and the axis of symmetry acts as an 

impermeable boundary. Then, flow domain of a radial plane shown in Fig. 4.6 can be divided 
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into two fragments, namely, an inner fragment D and outer fragment E, which are joined at the 

assumed vertical equipotential surface along perimeter of the cofferdam. Therefore, accuracy 

of the MoF solutions for circular cofferdams also depends on the validity of this assumption 

(i.e., equipotential line is vertical at sheet pile tip). Consequently, it is important to see the 

behavior of the equipotential lines over a range of cofferdam geometries before developing the 

axisymmetric MoF solutions.  

 

Fig. 4.6 Proposed Axisymmetric fragment types: (a) fragment D; (b) fragment E 

 

4.4.1 Validity assessment of the assumption for equipotential line behaviour  

The procedure adopted here was similar to the one applied for assessing the validity of the 

same assumption for double-walled cofferdams. In a similar manner, behavior of the 

equipotential line at tip of the sheet pile was studied over a range of geometries shown in Table 

4.2. Fig. 4.7 shows the equipotential lines drawn for each case. The equipotential lines are away 

from the vertical for low values of 𝑟𝑅/𝑇 and 𝑠/𝑇 ratios and become closer to the vertical while 

increasing 𝑟𝑅/𝑇 and 𝑠/𝑇, making the assumption reasonable. Also, the excavation depth is a 

concern only when excavating to a considerably larger depth (α > 0.4) for the geometries where 

the value of 𝑟𝑅/𝑇 is high and 𝑠/𝑇 ratio is low. This pattern of equipotential lines behaviour 

for circular cofferdam is similar to the one observed for the double-walled cofferdams (see Fig. 
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3.7); therefore, it can be considered that MoF is a feasible solution method for circular 

cofferdam problems, too.   

Table 4.2 Circular cofferdam geometries used for equipotential lines behaviour studied 

 

 

 

Fig. 4.7 Behaviour of the equipotential lines with circular cofferdam geometries 

0.1 0, 0.4, 0.8
0.4 0, 0.4, 0.8
0.8 0, 0.4, 0.8
0.1 0, 0.4, 0.8
0.4 0, 0.4, 0.8
0.8 0, 0.4, 0.8
0.1 0, 0.4, 0.8
0.4 0, 0.4, 0.8
0.8 0, 0.4, 0.8

0.8

rR/T s/T α

0.1

0.4
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4.5 Development of  method of fragments (MoF) for circular cofferdams 

Similar to the form factors used in the MoF solutions for double-walled cofferdams, 

axisymmetric form factors denoted by 
𝐷

 and 
𝐸

 are used to represent the fragments D and E, 

respectively shown in Fig. 4.6.  

The main attributes of the form factors (
𝐷

 and 
𝐸

) must be: 

(a) They should be dimensionless numbers,  

(b) 
Cofferdam

= 
𝐷

+ 
𝐸

 

(c) The ratio of head losses (ℎ𝑖) and form factors 𝑖 are same for both fragments, i.e.,  

ℎ𝐷


𝐷

=
ℎ𝐸


𝐸

=
ℎ


𝐷

+ 
𝐸

 

where h = ℎ𝐷  + ℎ𝐸  = total head loss over the entire cofferdam, and ℎ𝐷 and ℎ𝐸  are the head 

losses within the fragments D and E. 

(d) when the geometry is scaled by x times, the form factors should remain the same.  

In circular cofferdams, when the geometry is scaled by x times, the total flow is also scaled by 

x times while the flow rate per unit length of perimeter remains the same at a constant head 

loss h. Therefore, to ensure that the form factor of any fragment 𝑖 remains the same when the 

geometry is scaled up, the flow rate per unit length of perimeter is used in defining the form 

factor. Also, both form factors are functions only of the cofferdam geometry described by 

embedded depth, radius, and thickness of the soil. Hence, form factor (
𝐷

 and 
𝐸

)  can be 

written as: 

𝛽𝐷 =
𝑘ℎ𝐷

𝑞𝐷
= 𝑓{𝑠𝐷 , 𝑟, 𝑇𝐷 , 𝑅} = 𝑓 {

𝑠𝐷

𝑇𝐷
,
𝑟𝑅

𝑇𝐷
}                                                                                 (4. 6a) 

       

𝛽𝐸 =
𝑘ℎ𝐸

𝑞𝐸
= 𝑓{𝑠𝐸 , 𝑟, 𝑇𝐸 , 𝑅} = 𝑓 {

𝑠𝐸

𝑇𝐸
,
𝑟𝑅

𝑇𝐸
}                                                                                  (4. 6b) 
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where, 𝑞𝐷 and 𝑞𝐸  are the flow rate per unit length of perimeter of fragment D and E, 

respectively. Also, 𝑠𝐷 and 𝑇𝐷 are the sheet pile embedded depth and the thickness of the soil 

layer thickness, respectively within fragment D while 𝑠𝐸 and 𝑇𝐸 are the same parameters within 

fragment E. However, 𝑠𝐸 = 𝑠 and 𝑇𝐸 = 𝑇 for fragment E (see Fig. 4.6). Also, flow rate through 

each fragment is the same, and hence,  

𝑞 =
𝑘ℎ𝐷

𝛽𝐷
=

𝑘ℎ𝐸

𝛽𝐸
=

𝑘ℎ

𝛽𝐷 + 𝛽𝐸  
                                                                                                           (4. 7) 

         

 

4.5.1 Development of design charts required for axisymmetric MoF solution 

Fig. 4.8 shows the geometry of the numerical models used to simulate the fragment D and E 

using RS2 V9.011. The two fragments separated along the joint shown as a dashed vertical line 

in Fig. 4.6 (which is assumed to be an equipotential line), and flow lines are assumed 

perpendicular to that. The bases of the two fragments (BC and BH), the left boundary CD (i.e., 

vertical centerline) of fragment D and the sheet pile surfaces (AE and AF) were taken as 

impervious boundaries. The vertical boundary AB and the horizontal boundary DE of the 

fragment D were treated as constant head boundaries with the head difference of ℎ𝐷. Similarly, 

for the fragment E, vertical boundary AB and the horizontal boundary FG were also treated 

with constant head boundaries where the difference is ℎ𝐸 .  The inner fragment D has a radius 

of r. The outer fragment E begins at radius of r and extends to 𝑟𝑒. The radial distance 𝑟𝑒 was 

selected as the larger of the two scenarios (i.e., 2T + r or 6r) as discussed in Sec. 4.2.  

 

Although fragments D and E are different in geometry, both geometries become similar when 

r equals infinity, and the situations can be simulated by a single sheet pile wall in 2D Cartesian 

system. Hence fragment D and fragment E form factors should be the same and equal to the 

case of single sheet pile wall when r equals infinity. Also fragment D exit gradient values at r 
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= ∞ should also be equal to the single sheet pile values. As noted in Chapter 3, single sheet pile 

wall can be simulated by the fragment C geometry (discussed for the double-walled 

cofferdams) with the fragment width L equals two times the permeable layer thickness 𝑇𝐶 (see 

Fig. 3.13). Hence, flow rate and maximum exit hydraulic gradient values of fragment C 

geometry at 𝐿 = 2𝑇𝐶 were used to derive the form factor values of both fragments D and E 

(𝛽𝐷 & 𝛽𝐸) and normalised exit hydraulic gradient values (𝑖𝐸𝑠𝐷 ℎ𝐷⁄ ) of fragment D when 𝑟𝑅/𝑇 

equals infinity. Fig. 4.9 shows the convergence of both form factors and 𝑖𝐸𝑠𝐷 ℎ𝐷⁄  values to the 

fragment C values while changing the 𝑟𝑅/𝑇 ratio as 1, 1.5, 2, 5 and 10.  

 

Fig. 4.8 Numerical model geometry used for axisymmetric fragments: 

(a) fragment D; (b) fragment E 
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Fig. 4.9 Convergence of axisymmetric form factor and dimensionless exit hydraulic gradient 

values to single sheet pile wall values: (a) form factors; (b) exit hydraulic gradient 

 

Design charts for formfactor estimations of fragments D and E 

Using the flow rate values obtained for both fragments, corresponding form factor values were 

calculated via Eq. 4.6 and are presented in the form of design charts shown in Fig. 4.10 and 

4.11, for the fragment D and E, respectively (Appendix B1 shows the calculated form factor 

values of fragment D while appendix B2 shows the fragment E values). These charts can be 

used for determining the flow rate q per unit length along the perimeter of circular cofferdams. 

The effect of the soil anisotropy, R is also incorporated in these charts. 
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Fig. 4.10 Form factor 𝛽𝐷 values for fragment D (from finite element simulation) 
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Fig. 4.11 Form factor 𝛽𝐸  values for fragment E (from finite element simulation) 

 

Design chart for exit hydraulic gradient estimations of fragment D  

Calculated 𝑖𝐸  values of fragment D were converted into the dimensionless form (𝑖𝐸𝑠𝐷 ℎ𝐷) ⁄ and 

are presented in Fig. 4.12 (see Appendix B3 for the calculated normalized exit hydraulic 

gradient values of fragment D). This chart can be used along with two form factor charts (Figs. 
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4.10 and 4.11) to determine the exit hydraulic gradient of any circular cofferdam geometry. 

Here, too, soil anisotropy effect R can be incorporated directly.   

 

Fig. 4.12 Exit gradient values for fragment D (from finite element simulation) 

 

4.6 Validation of MoF solutions for circular cofferdams 

The flow rate q and exit hydraulic gradient 𝑖𝐸  values predicted using the proposed 

axisymmetric MoF solutions were compared among the finite element solutions, analytical 
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solutions and experimental results reported in the literature.  Further, a small-scale laboratory 

model was developed for analysing the circular cofferdams, and using that, series of tests were 

carried out. Then, these experimental results were compared against the solutions derived using 

the proposed MoF solutions.  The finite element, analytical and experimental results used for 

the validations do not make any assumptions about the equipotential line at the tip of the sheet 

pile being vertical. Here, the term full numerical modelling (Full NM) is used to define finite 

element solutions as applied in chapter 3.  

 

4.6.1 Comparison against finite element solutions  

Fig. 4.13 shows the comparison of normalized seepage quantity (𝑞/𝑘ℎ) and 𝑖𝐸  obtained by the 

MoF solution with the corresponding finite element solutions (Full NM) for the series of 

geometries. Here, 108 geometries were studied changing the 𝑟𝑅/𝑇 from 0.1 to 1 and 𝑠/𝑇 from 

0.1 to 0.9 while keeping the soil as isotropic (R = 1) and depth of excavation as zero (α = 0). 

 

Fig. 4.13 Comparison of predictions from axisymmetric MoF and full numerical model (Full 

NM) solutions when α = 0: (a) seepage quantity; (b) exit hydraulic gradient 
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Both comparisons show strong relationship between the MoF solutions and the finite element 

solutions. Also, MoF solutions are always on the safe side, overestimating both q and 𝑖𝐸 

slightly, (i.e., they are conservative) and differ by less than 10% compared to the corresponding 

finite element solutions for most of the cases (i.e., 95 and 87 cases out of the 108 for 𝑞/𝑘ℎ and, 

𝑖𝐸 respectively). The few cases where the deviation is slightly larger (10-22%) correspond to 

the geometries having the less applicability in the practice (𝑠 𝑇 ≤ 0.2⁄ ). 

 

In addition, Fig. 4.14 compares the 𝑞/𝑘ℎ and 𝑖𝐸 at three excavation depths (α =0, 0.4 and 0.8) 

predicted by MoF against the corresponding numerical simulation results for three different 

cofferdam radii of 𝑟𝑅/𝑇 = 0.1, 0.4 and 0.8 changing 𝑠/𝑇 from 0.1 to 0.9.  For all three cases 

(α = 0, 0.4 and 0.8), the relation between the MoF predictions and numerical solutions follows 

a similar trend, i.e., MoF predictions are always conservative, and the error decreases with 

increasing the 𝑠/𝑇 and 𝑟𝑅/𝑇 values. In addition, for two cases where α = 0 and 0.4, deviations 

of MoF solutions from the numerical results are less compared to that for the case of α = 0.8. 

These observations are in line with the conclusion made with the Fig. 4.7 above (i.e., effect of 

the excavation depth on the validity of the assumption is a concern only when excavating to a 

considerably larger depth). However, the effect of violating this assumption is always on the 

conservative side (i.e., both the 𝑞/𝑘ℎ and 𝑖𝐸 are overestimated).  
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Fig. 4.14 Effect of cofferdam geometry on the accuracy of axisymmetric MoF solutions: 

(a) seepage quantity; (b) exit hydraulic gradient 

 

4.6.2 Comparison against analytical solutions  

Normalised seepage quantities 𝑞/𝑘ℎ estimated by the proposed axisymmetric MoF method are  

compared against the analytical solutions by the Neveu (1972) for the isotropic condition 

(R=1). The geometry range considered for the comparison is given in Table 4.3, and the 

comparison results are shown in Fig. 4.15.  
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Table 4.3 Cofferdam geometries used for axisymmetric MoF comparisons against analytical 

solution by Neveu (1972) 

 

 

When the excavation depth is zero (α = 0), the maximum deviation is about 12% for low depth 

of cut-off wall (s = 0.2T), and it is about 6% for other two cases (s = 0.5T and s = 0.8T).  For 

the excavation depth (α) is equal to 0.505, a slightly larger deviation of 19% is observed for s 

= 0.2T. This is due to further lowering of 𝑠𝐷 𝑇𝐷 ⁄ ratio of the fragment D                                             

[i.e. 𝑠(1 − )/(𝑇 − 𝑠)], and in this case it is 0.11. For the same excavation depth (α = 0.505), 

the maximum deviation is 8% for other two cases (s = 0.5T and s = 0.8T).  When α is equal to 

0.2 0.10
0.2 0.20
0.2 0.40
0.5 0.25
0.5 0.50
0.5 1.00
0.8 0.40
0.8 0.80
0.8 1.60
0.2 0.10
0.2 0.20
0.2 0.40
0.5 0.25
0.5 0.50
0.5 1.00
0.8 0.40
0.8 0.80
0.8 1.60
0.5 0.25
0.5 0.50
0.5 1.00
0.8 0.40
0.8 0.80
0.8 1.60

s/T rR/T

0.505

0.808

α 

0
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0.808, the maximum deviation is about 17% for s/T = 0.5 and 0.8. Also, for all these situations, 

MoF predictions are conservative (i.e., they are overestimate). In summary, proposed MoF 

solutions are agreed well with the analytical solutions of Neveu (1972). Also, when increasing 

the excavation depth, the level of discrepancy increases; however, this deviation is on the 

conservative side, overestimating the seepage quantity. These observations are similar to the 

observation made with MoF and finite element solutions comparison above. 

 

Fig. 4.15 Comparison of seepage quantities estimated by proposed axisymmetric MoF 

solutions against analytical solutions by Neveu (1972): (a) α=0; (b) α=0.505; (c) α=0.808 
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4.6.3 Comparison against experimental results 

In order to compare the proposed MoF solutions against the experimental results, an attempt is 

made to develop a small-scale laboratory model that can be used to study series of circular 

cofferdam geometries.  

 

Soil sample used  

Since cofferdams are widely applied in sandy soils, it was decided to use a sandy soil for all 

laboratory simulations. Also, it is important to select a sand type having particles sizes within 

a narrow range (poorly graded) since the permeability of these type of soils are less influenced 

by its packing density variation, and hence, less errors are encountered. So, grain size 

distributions tests were conducted for three sand samples as per the AS1289.3.6.1 to decide the 

most suitable sand type. Fig. 4.16 shows the grains size distribution graphs, and Table 4.4 gives 

the important grain sizes determined.   

 

Fig. 4.16 Grain size distributions for three sand samples 

 

Considering the Fig. 4.16 and the index parameters given in Table 4.4, it is clear that all three 

samples are poorly graded. However, sand 1 has the most uniform particle size distribution, 

and hence, its permeability is the least affected one from the variation of packing density. So, 

sand 1  was  selected  for  running the laboratory model, and hence, other  physical  properties  
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required were determined only for the sand 1. Series of tests were conducted as per the 

Australian standards listed in Table 4.5, and the determined physical properties are shown in 

Table 4.6.  

Table 4.4 Result of grain size distribution tests  

Index property 
Sample Name 

Sand 1 Sand 2 Sand 3 
d10 (mm) 0.10 0.13 0.17 

 d30 (mm) 0.16 0.18 0.26 
d50 (mm) 0.20 0.23 0.40 
d60 (mm) 0.22 0.26 0.50 
Cu 2.20 2.00 2.94 
Cc 1.16 0.96 0.80 

 

Table 4.5 Tests and the list of standards used for determining the physical properties of sand  

Tests Standard used 

Grain size distribution AS1289.3.6.1 

Moisture content AS1289.2.1.1 

Specific gravity AS 1289.3.5.1 

Maximum and minimum dry density AS1289.5.5.1 

 

Table 4.6 Physical properties of sand 1 

properties Sand 1 

Moisture content (%) 0.34 

Specific gravity 𝐺𝑠 2.67 

Minimum dry density 𝜌𝑑𝑚𝑖𝑛 (g/cm3) 1.37 

Maximum dry density 𝜌𝑑𝑚𝑎𝑥 (g/cm3) 1.59 

 

Using the maximum and minimum dry density values (shown in Table 4.6), minimum and 

maximum void ratio values (𝑒𝑚𝑖𝑛and 𝑒𝑚𝑎𝑥 , respectively) were estimated as: 
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𝜌𝑑𝑚𝑎𝑥 =
𝐺𝑠𝜌𝑤

1 + 𝑒𝑚𝑖𝑛
                                                                                                                             (4. 8) 

                       

𝜌𝑑𝑚𝑎𝑥 =
𝐺𝑠𝜌𝑤

1 + 𝑒𝑚𝑖𝑛
                                                                                                                             (4. 9) 

      

where, 𝜌𝑤 is the density of the water. Before running the laboratory model for cofferdam 

seepage analysis, it was required to define the relationship between the soil permeability k and 

the relative density (𝐷𝑟) since knowing the permeability of the sand at a given relative density 

was essential. It was decided to run all the laboratory tests at 𝐷𝑟 of 40% to minimize the error 

associated with changing the packing density of sand within the model. So, three constant head 

permeability tests (at 𝐷𝑟 of 20%, 35% and 50%) were conducted as per the AS 1289.6.7.1 using 

the permeability test apparatus shown in Fig. 4.17. For permeability estimations, sand 1 was 

assumed as a homogeneous and isotropic soil. This is a reasonable assumption as discussed 

before in chapter 2 based on the study conducted by Hatanaka et al. (1997). However, 

permeability in the horizontal direction can be higher than that of the vertical direction slightly, 

limiting the maximum difference to the 70% as noted by Hatanaka et al. (1997). Therefore, it 

is expected that the actual sand permeability can be slightly higher than the calculated value 

which is based on the vertical flow through the constant head test set-up (see Fig. 4.17).  

 

The diameter and the sample height of the permeameter used were 64 mm 700 mm, 

respectively. Then, it was essential to calculate the sand quantity (mass) required to fill the 

permeameter at a given relative density. For that, void ratio e at the required relative density 

was determined by: 

𝐷𝑟 =
𝑒𝑚𝑎𝑥 − 𝑒

𝑒𝑚𝑎𝑥 − 𝑒𝑚𝑖𝑛
                                                                                                                          (4. 10) 

      

Then, dry density of the sample at that particular relative density was calculated as: 
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𝜌𝑑 =
𝐺𝑠𝜌𝑤

1 + 𝑒
                                                                                                                                        (4. 11) 

           

Next, using the dry density values given by Eq. 4.11, soil masses required to fill the perimeter 

for three cases (𝐷𝑟 of 20%, 35% and 50%) were calculated. Then, calculated soil mass at each 

case was placed into the permeameter in seven equal layers (each 10 cm long), ensuring the 

uniform packing density. At relative densities of 35% and 50%, it was required to apply some 

compaction effort within the permeameter and which was achieved using a tamping rod on 

each layer. Then, three permeability values were determined for each case using the procedure 

described in Sec. 2.2.2 of chapter 2 and were plotted against the corresponding 𝐷𝑟 values in a 

graph as shown in Fig. 4.18. Using that graph, the relationship between permeability and the 

𝐷𝑟 was developed as:  

𝑘 = −0.0003𝐷𝑟 + 0.0238                                                                                                            (4. 12) 
        

 

 

Fig. 4.17 Constant head test set-up used for permeability values determination 
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Fig. 4.18 Relation between permeability and relative density (𝐷𝑟) 

 

Laboratory test set-up 

Fig. 4.19a shows the schematic diagram of the laboratory model (to scale), and Fig. 4.19b is a 

photograph of the same test set-up used for simulating the series of circular cofferdam 

geometries. The definitions of the parameters r, s, T and α shown in Fig.4.19a are same as the 

definitions given in Fig 4.1. The main components of the laboratory model apparatus are:  

1. A model circular cofferdam which is made of Perspex tube and has been fixed at the 

center of the larger tank using the bracing system shown in Fig. 4.19b.  

2. A larger tank made of plastic providing the boundary limits for seepage flow into the 

cofferdam 

3. A Constant head set-up, which includes a drain tube attached to the cofferdam (inner 

Perspex tube) and an overflow tube attached to the larger plastic tank to provide a 

constant hydraulic head difference for seepage flow into the cofferdam.  
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Fig. 4.19 (a) The schematic diagram of the laboratory test set-up (to scale); (b) a photograph 

of the test set-up 
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Using the test set-up shown in Fig. 4.19b, series of tests were conducted under two groups 

depending on the cofferdam radius used. The first group of tests were based on a larger Perspex 

tube having the inner diameter of 194 mm (i.e., radius of the cofferdam is 97 mm) while the 

second group of tests were relevant to the small Perspex tube with the radius of 50 mm. The 

wall thicknesses of the two Perspex tubes were 3 mm and 5 mm for the larger and smaller 

tubes, respectively. The dimensions of the tubes (inner diameters and radii) were selected 

ensuring that they are not significantly affecting the flow. Fand and Thinakaran (1990) [vide 

Van Lopik et al. (2017)] noted that Pipe diameter to be 40+ times larger than d50. In the two 

cases studied here, these ratios are 1000 and 500 for larger and smaller tubes, respectively. 

Further, the ratio between wall thickness and d50 is 15 for the larger tube while it is 25 for the 

smaller one. Therefore, it can be assumed that the flow within the inner Perspex tubes are not 

affected by their wall effects.  

 

Laboratory tests methodology 

Series of tests were conducted changing the cofferdam geometry (𝑟𝑅/𝑇, 𝑠/𝑇 and α) over a 

wider range. Noting that, anisotropy ratio R is equal to 1 in the laboratory simulations since the 

soil was assumed as isotropic. Table 4.7 shows the sequence of the series of tests conducted. 

For the first test, the geometry was selected as 𝑟𝑅/𝑇 = 0.8, 𝑠/𝑇 = 0.2 and α = .05.  Since r = 

97 mm, the required soil height T (outside the cofferdam) was 121 mm and the depth of the 

cofferdam required to be embedded was 24 mm. Accordingly, the larger Perspex tube was 

attached firmly at the center of the large tank using the bracing system shown in Fig. 4.19b. 

Next sand quantity required to fill the volume of larger tank (outside the inner tube) was 

calculated at the 𝐷𝑟 of 40% using the similar procedure discussed in Eqs. 4.8 - 4.11. Similarly, 

sand required for filling inner tube was also calculated at the same 𝐷𝑟 value keeping the α = 
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0.5. Next, pre-determined sand quantities were filled in both inside and outside the cofferdam 

in several layers ensuring that the sample was placed into the tanks at Dr of 40%. 

 

Table 4.7 Sequence of the laboratory tests conducted 

 

 

Next water was allowed to enter into the larger tank using a tap.  Then, overflow position was 

adjusted selecting the relevant hole (according to the hydraulic head difference required) 

among the 6 holes (drilled 5 cm apart vertically) on the wall of the larger tank (see Fig. 4.19b). 

Then, water started to flow into the cofferdam (inner tube) from the larger tank and was drained 

out by the outflow tube attached to the cofferdam.  After reaching a steady flow condition, flow 

rate into the cofferdam was measured using the water drain out over 300 seconds through the 

outflow tube. Three trials were conducted for each geometry, and the flow rate was calculated 

as the average of three trials. After completing the first test, existing ponding water in both 

1 0.097 0.80 0.20 0.50
2 0.097 0.60 0.40 0.00
3 0.097 0.60 0.40 0.00
4 0.097 0.40 0.60 0.25
5 0.097 0.40 0.60 0.25
6 0.097 0.40 0.60 0.00
7 0.097 0.40 0.60 0.00
8 0.097 0.30 0.70 0.25
9 0.097 0.30 0.70 0.25

10 0.097 0.20 0.80 0.25
11 0.097 0.20 0.80 0.00
12 0.050 0.60 0.40 0.00
13 0.050 0.40 0.60 0.00
14 0.050 0.30 0.70 0.00
15 0.050 0.20 0.80 0.25
16 0.050 0.20 0.80 0.00

1

2

αTest phase Test no r  (m) rR/T s/T
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inner and outer of the cofferdam was drained out completely using buckets and an electric 

pump. Next, the additional sand amount required to the test 2 geometry (i.e., 𝑟𝑅/𝑇 = 0.6, 𝑠/𝑇 

= 0.4 and α = 0) was filled on top of the sand which was used for the pervious test. Noting that 

inner tube (model cofferdam) is fixed, and hence, 𝑟𝑅/𝑇 value decreases and 𝑠/𝑇 value 

increases while filling the sand for the next test. Using the same procedure, 11 tests were carried 

out for the group 1 (using the larger Perspex tube). After completing the phase 1 tests, entire 

test set-up (bracing system, inner tube and sand) was dismantled and was cleaned. Then, tests 

of phase 2 were started using the small Perspex tube. The procedure applied for phase 2 tests 

was also similar to the one discussed above for phase 1.  In phase 2, five tests were carried out 

representing the geometries shown in Table 4.7. Appendix B4 shows the results of laboratory 

simulations of circular cofferdams. 

 

Comparison of the results 

Measured flow rate for 16 tests were compared against the flow rate predictions using the 

proposed MoF solutions as shown in Fig. 4.20. Note that normalized flow rate values (𝑞 𝑘ℎ⁄ ) 

were used for the comparison, and the permeability value required at Dr of 40% was estimated 

using Eq. 4.12.   Table 4.8 shows the relative errors (RE) calculated for each test. The definition 

used for the relative error calculations was: 

𝑅𝐸 =
(𝑞 𝑘ℎ⁄

𝑀𝑜𝐹
− 𝑞 𝑘ℎ⁄

𝐸𝑥𝑝
)

𝑞 𝑘ℎ⁄
𝐸𝑥𝑝

                                                                                                     (4. 13) 

   

where 𝑞 𝑘ℎ⁄
𝑀𝑜𝐹

 and 𝑞 𝑘ℎ⁄
𝐸𝑋𝑃

 are the normalized flow rate calculated by MoF and 

experimental results, respectively.         
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Fig. 4.20 Comparison of seepage quantities estimated by proposed axisymmetric MoF 

solutions against experimental results 

Table 4.8 Relative errors between experimental results and MoF Predictions 

 

In Fig. 4.20, MoF predictions were lower than the experimental values except for the first test, 

and the relative errors ranged between +11% and -41%. However, for 12 cases, relative errors 

1 11%
2 -10%
3 -23%
4 -26%
5 -28%
6 -28%
7 -28%
8 -30%
9 -32%

10 -41%
11 -26%
12 -5%
13 -19%
14 -21%
15 -41%
16 -36%

1

2

RE (%)Test phase Test no
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were less than 30% while it is 30-41% only for the 4 cases. Also, calculated R2 value for the 

experimental results corresponding to the 1:1 line was 0.81. These observations were not in 

consistent with the MoF comparisons against the numerical and analytical solutions discussed 

in Secs. 4.6.1 and 4.6.2 above. In those cases, MoF predictions were conservative, and the 

relative errors were within 10% in most of the cases. The two possible reasons for this variation 

of experimental results can be identified as follows. 

1. Normalized flow rate values for experimental results 𝑞 𝑘ℎ⁄
𝐸𝑋𝑃

 were calculated 

assuming the soil permeability as isotropic. But, as noted earlier in this section, even 

for sands, permeability in horizontal direction can be higher up to the 70%, and hence, 

actual normalized flow rate values can be slightly lower than the calculated values 

assuming the soil as isotropic.  

2. As noted before in test methodology section, all tests in a given phase were carried out 

in a continuous sequence. Therefore, completely unused sand was used only for the first 

test of each phase i.e., from the second test, only the additional sand amount required 

was filled on top of the sand which was used before for pervious tests. Therefore, there 

is a possibility of changing the soil permeability due to changing the soil structure with 

progressing the tests. This effect can be seen in increasing the relative error in both 

phases of tests (see Table 4.8) while progressing the tests (for instance, in Phase 1, RE 

started as +11% and changed up to -41% after 11 tests).  

 

Considering the two possible reasons mentioned above, it can be accepted that MoF predictions 

are comparable with the experimental results. However, for further verifications, MoF 

predictions were compared against another set of experimental data based on the study 

conducted by Davidenkoff and Franke (1965). As discussed before in Sec. 4.2.1, their 

experimental investigation was based on the electrical analogy model, and hence, soil 
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permeability corresponds to the inverse of the resistance of conducting material. So, it is more 

uniform within the conducting material used and also the material remains the same between 

the tests. So, the two limitations mentioned above with the laboratory model (studied using 

sands) were not affecting the electrical analogy model results, and hence, MoF predictions 

using isotropic soil model are well comparable with the experimental values. Fig. 4.21 shows 

the comparison of these experimental results (based on electrical analogy model) against the 

corresponding MoF predictions. Here also relative errors were calculated using Eq. 4.13 and 

are shown in Table 4.9. It was found that MoF predictions are higher than the experimental 

values for all the cases and deviate less than 10% for most of the cases (10 cases out of 13). 

The three cases where the deviations are larger than 10% correspond to the geometries having 

lower s/T values (see Table 4.9). These observations are strongly agreed to the MoF 

comparison result obtained against numerical and analytical results discussed in Secs. 4.6.1 

and 4.6.2, respectively. Further, calculated R2 value for the experimental results shown in Fig. 

4.21 corresponding to the 1:1 line was 0.95. This also confirms the strong relationship between 

the experimental results and MoF predictions. 

 

Fig. 4.21 Comparison of seepage quantities estimated by proposed axisymmetric MoF 

solutions against experimental results by Davidenkoff and Franke (1965) 
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Table 4.9 Relative errors between experimental results (using electrical analogy model) and 

MoF Predictions 

 

 

Considering all the MoF validation sections above, it can be concluded that MoF is a 

sufficiently accurate tool for quick estimations of q and 𝑖𝐸  for the circular cofferdam problems. 

Similar to the MoF solutions discussed in double-walled case, even when the assumption is 

violated, q and 𝑖𝐸  are conservatively overestimated by less than 10% for most practical 

situations (𝑠/𝑇 > 0.2) of circular cofferdams. Note that these model tests were only for 

comparing the flow rates. No attempt was made to measure the exit hydraulic gradient, which 

was validated by the other methods as shown in Sec. 4.6.1. 

 

4.7 Development of expressions for axisymmetric form factors and exit hydraulic 

gradient estimations 

The graphical nature of the developed design charts (4.10, 4.11 and 4.12) for selected 𝑠𝐷 𝑇𝐷,⁄  

and 𝑟𝑅 𝑇𝐷  ⁄  values for fragment type D, and  𝑠 𝑇⁄  and 𝑟𝑅 𝑇⁄   values for fragment type E require 

more time in estimating the form factor values for some geometries. Therefore, an attempt is 

made to develop expressions for estimating the form factor values of both fragment types and 

rR/T s/T α RE
0.105 0.00 8%
0.255 0.00 7%
0.255 0.50 8%
0.505 0.00 3%
0.500 0.50 4%
0.800 0.00 6%
0.127 0.00 13%
0.252 0.00 12%
0.250 0.50 16%
0.502 0.00 6%
0.500 0.50 10%
0.802 0.00 5%
0.802 0.50 5%

0.671

0.336



Chapter 4 

 

113 
 

the normalized exit hydraulic gradient values of the fragment type D. These expressions enable 

the quick estimations of q and 𝑖𝐸, without going for the graphical solutions, and they can be 

implemented in a spreadsheet for a parametric study. 

 

4.7.1 Fragment D form factor 

The form factor values given in Fig. 4.10 show an approximately linear relationship to the 

𝑠𝐷 𝑇𝐷⁄  values for a given 𝑟𝑅 𝑇𝐷  ⁄   within the range of   𝑠𝐷 𝑇𝐷⁄  = 0.1 - 0.9 and 𝑟𝑅 𝑇𝐷  ⁄ = 0.1 - 

1.0.  Hence, the form factor (𝛽𝐷) can be expressed for the above range of 𝑠𝐷 𝑇𝐷⁄  and 𝑟𝑅 𝑇𝐷  ⁄ as: 

𝛽𝐷 =  𝑎(𝑠𝐷 𝑇𝐷⁄ ) +  𝑏                                                                                                                    (4. 14)
         

where  a and b are functions of 𝑟𝑅 𝑇𝐷  ⁄ . By plotting a and b against 𝑟𝑅 𝑇𝐷  ⁄ separately, the 

relationships of the a and b to the 𝑟𝑅 𝑇𝐷  ⁄  can be written as: 

𝑎  =  2.4(𝑟𝑅 𝑇𝐷  ⁄ )−0.9                                                                                                                   (4. 15) 
                                                     

𝑏  =  0.5 - 0.2 (𝑟𝑅 𝑇𝐷  ⁄ )                                                                                                               (4. 16) 
        

Substituting Eqs. 4.15 and 4.16 into the Eq. 4.14, fragment D form factor (βD) can be rewritten 

as: 

𝛽𝐷 =  2.4 (𝑟𝑅 𝑇𝐷  ⁄ )−0.9(𝑠𝐷 𝑇𝐷⁄ ) +  0.5  −  0.2 (𝑟𝑅 𝑇𝐷  ⁄ )                                                    (4. 17) 
                                 

for   𝑠𝐷 𝑇𝐷⁄  = 0.1 - 0.9 and 𝑟𝑅 𝑇𝐷  ⁄ = 0.1 - 1.0 

 

4.7.2 Fragment E form factor  

The form factor values given in Fig. 4.11 show an approximately exponential relationship with 

𝑠/𝑇 for a given 𝑟𝑅/𝑇. Hence an expression for the form factor (𝛽𝐸) is proposed for the same 

geometry range considered for the fragment D form factor expression development as: 

𝛽𝐸 = 𝑐exp[𝑑(𝑠 𝑇⁄ )]                                                                                                                        (4. 18)  
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Here again, c and d are functions of 𝑟𝑅 𝑇⁄ , and were determined by plotting them against 

𝑟𝑅 𝑇 ⁄ , separately as: 

𝑐 = 0.086 ln(𝑟𝑅 𝑇⁄ ) + 0.35                                                                                                         (4. 19)
    

𝑑 = 1.683(𝑟𝑅 𝑇⁄ )−0.025                                                                                                                 (4. 20) 
                             

Substituting Eqs. 4.19 and 4.20 into Eq. 4.18, fragment E form factor ( E ) can be written as: 

𝛽𝐸 = [0.086 ln (𝑟𝑅 𝑇⁄ ) + 0.35]{exp[1.683(𝑟𝑅 𝑇⁄ )−0.025(𝑠 𝑇⁄ )]}                                     (4. 21) 

    

for   𝑠𝐷 𝑇𝐷⁄  = 0.1 - 0.9 and 𝑟𝑅 𝑇𝐷  ⁄ = 0.1 - 1.0 

 

4.7.3 Fragment D normalised exit hydraulic gradient  

The normalised exit hydraulic gradient  (𝑖𝐸 𝑠𝐷 ℎ𝐷⁄ ) values given in Fig. 4.12 can be related to 

𝑠𝐷 𝑇𝐷⁄  values for a given 𝑟𝑅 𝑇𝐷⁄  as: 

𝑖𝐸𝑠𝐷 ℎ𝐷⁄ = 𝑔(𝑠𝐷 𝑇𝐷⁄ )𝑗[1 − exp(− 𝑠𝐷 𝑇𝐷⁄ )]                                                                             (4. 22) 
     

where 𝑔 and j are functions of 𝑟𝑅 𝑇𝐷⁄  . Hence, relationships of g and j to the 𝑟𝑅 𝑇𝐷⁄  were also 

determined by plotting them separately  as: 

𝑔 = 1.53 − 0.5  𝑟𝑅 𝑇𝐷⁄                                                                                                                  (4. 23) 

For,  𝑟𝑅 𝑇𝐷⁄ < 0.25 

𝑗 = 0.27  𝑟𝑅 𝑇𝐷⁄ − 0.78                                                                                                               (4.24a) 

For,  𝑟𝑅 𝑇𝐷⁄  ≥ 0.25                

𝑗 = −0.15  𝑟𝑅 𝑇𝐷⁄ − 0.67                                                                                                           (4.24b)
   

Then 𝑖𝐸 𝑠𝐷 ℎ𝐷⁄  can be expressed as:  

For  0.1 ≤ 𝑟𝑅 𝑇𝐷⁄ < 0.25; 

𝑖𝐸𝑠𝐷 ℎ𝐷⁄ = [1 − exp(− 𝑠𝐷 𝑇𝐷⁄ )] (1.53 − 0.5
𝑟𝑅

𝑇𝐷
) (𝑠𝐷 𝑇𝐷⁄ )(0.27 𝑟𝑅 𝑇𝐷⁄ −0.78)                     (4.25a)                     

For 0.25 ≤ 𝑟𝑅 𝑇𝐷⁄ ≤ 1          

𝑖𝐸𝑠𝐷 ℎ𝐷⁄ = [1 − exp(− 𝑠𝐷 𝑇𝐷⁄ )] (1.53 − 0.5
𝑟𝑅

𝑇𝐷
) (𝑠𝐷 𝑇𝐷⁄ )(−0.15 𝑟𝑅 𝑇𝐷⁄ −0.67)                   (4.25b)                   
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The expressions proposed for the fragment D exit gradient estimations are also valid for the 

geometries where 𝑠𝐷 𝑇𝐷 ⁄ = 0.1-0.9 and 𝑟𝑅 𝑇𝐷⁄  = 0.1-1.0.  

 

4.7.4 Validation of the proposed expressions  

Fig. 4.22 shows the comparison of flow rate and exit gradient predictions against the numerical 

simulation results. Similar to the comparison of the results observed for MoF chart assessments 

(see Fig. 4.14), proposed expressions overestimate the seepage quantity and exit gradient for 

low cut-off wall depths (𝑠 𝑇⁄ ≤ 0.2)  with the range of difference in 10 - 20% in general.  When 

𝑠 𝑇⁄ > 0.2, for most of the cofferdam geometries, proposed expressions slightly overestimate 

the seepage quantity and exit hydraulic gradient by less than 10% deviation compared to the 

finite element solutions. For very few cases, predictions by the proposed expression are 

underestimated; however, they differ only by less than 5% for both the seepage quantity and 

exit hydraulic gradient. Most importantly, these expressions enable implementing the proposed 

axisymmetric MoF solution in spreadsheet; hence, authors suggested these expressions for 

quick estimate of seepage quantity and exit gradient for any realistic circular cofferdam 

geometry where 0.1 𝑠/𝑇  0.9 and 0.1𝑟𝑅/𝑇  1.   

 

In conclusion, solutions given by the proposed expressions are sufficiently accurate for most 

of the circular cofferdam geometries encountered in practice. They are valuable in parametric 

studies or sensitivity analysis to study the effect of certain dimensions on the flow rate or exit 

hydraulic gradient. All three expressions proposed for the fragment D form factor, fragment E 

form factor and fragment D exit hydraulic gradient are valid only when the ratio 𝑟𝑅/𝑇 is in 

between 0.1 to 1.0.  However, this range covers most of the typical cofferdam geometries, and 

only small portion of the range mentioned in the charts (i.e. 𝑟𝑅/𝑇 >1) cannot be computed 

using these expressions. Author suggests using the chart for these situations (𝑟𝑅/𝑇 > 1). 
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Fig. 4.22 Comparison of proposed expressions solutions with full numerical model (NM) 

solutions: (a) seepage quantity; (b) exit hydraulic gradient 

4.8 Summary and conclusions 

A simple method to solve seepage problems pertaining to the circular cofferdam has been 

presented.  It is based on the Method of fragments, and the accuracy relies on the assumption 

that the equipotential line at the tip of the sheet pile is vertical, which divides the flow domain 

into two fragments (D and E). An assessment is made in this chapter on the validity of this 
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assumption and the effects of any violation on the computed values of flow rate q and the exit 

hydraulic gradient 𝑖𝐸. It is shown that the equipotential surface is far from vertical at low 

cofferdam radius (𝑟𝑅/𝑇) and the low cut-off wall depth (𝑠/𝑇) and becomes closer to the 

vertical with increasing 𝑟𝑅/𝑇 and 𝑠/𝑇 where the accuracy of the MoF solution improves. 

However, it is observed that in spite of the assumption deviation, the flow rate and exit 

hydraulic gradient estimates from MoF are very good for most cofferdam geometries. 

 

Three design charts have been developed; two for estimating the form factors for each of the 

axisymmetric fragments (defined as “D” and “E”), and one for the dimensionless exit hydraulic 

gradient of fragment D. These form factor and exit hydraulic gradient charts represent efficient 

means of obtaining both the quantity of seepage and the exit hydraulic gradient, and for 

virtually any circular cofferdam geometry of practical interest. The outcomes of the proposed 

MoF solutions were compared against the detailed numerical solutions, analytical work of 

Neveu (1972), and experimental results. It is shown that the proposed axisymmetric MoF is 

adequate for reasonable estimates of the flow rate and exit gradient provided 𝑠 𝑇⁄ > 0.2, with 

relative errors less than 10%. When 𝑠 𝑇⁄ ≤ 0.2, MoF still provides conservative solutions, but 

their level of accuracy is low (relative errors are between 10 and 20%) when compared to the 

geometries with 𝑠 𝑇⁄ > 0.2. Although, the situations where 𝑠 𝑇⁄ ≤ 0.2 are of no practical 

significance, and hence, this should not be a deterrent for using MoF in engineering practice.   

 

In addition, three simple expressions were proposed to estimate the form factors and exit 

hydraulic gradients. These expressions make it possible to implement the axisymmetric MoF 

through spreadsheets or carry out parametric studies. The geometry range of cofferdams which 

can be treated directly with the proposed expression are limited to 0.1  𝑠/𝑇 0.9 and 

0.1𝑟𝑅/𝑇   1, which covers most practical situations.  For situations where 𝑟𝑅 𝑇⁄ > 1  , the 
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design charts provide reasonable solutions. The expressions were also validated against the full 

numerical solution, and it shows that the values predicted by proposed expression are 

satisfactory for most geometries. The extreme situations where the deviations are considerable 

have little practical relevance (𝑠/𝑇 ≤ 0.2); however, predictions by the expression are on the 

conservative side in these instances too.    
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Chapter 5 Relationship between minimum creep length and maximum exit 

hydraulic gradient in double-walled and circular cofferdams 

5.1 Introduction  

As noted in Sec. 2.3.1, piping is the most common hydraulic failure mode for cofferdams. 

When the maximum exit hydraulic gradient 𝑖𝐸 exceeds the critical hydraulic gradient 𝑖𝐶, piping 

failure initiates at the excavation base adjacent to the sheet pile wall. Then, it starts to erode 

the soil, progressing from downstream towards upstream, and hence, the length of the shortest 

seepage path from upstream to downstream (i.e., along the sheet pile wall) decreases. 

Therefore, average hydraulic gradient along the shortest seepage flow path is increased. 

Consequently, rate of soil erosion is also increased forming a free water channel from 

downstream towards upstream, and it leads to a complete and rapid structural failure in a short 

period of time with little advance warning. This phenomenon (piping failure) has been recorded 

around the world and is responsible for catastrophic situations (Bauer 1984; Tanaka et al. 1994; 

Tanaka et al. 2002; Cai and Ugai 2003; Tanaka 2003; Cai and Ugai 2004). Considering the 

severe consequences, a more conservative approach is applied using higher safety factors for 

designs against piping failure compared to the safety factors applied in other areas of 

geotechnical designs; for instance, safety factor for the slope stability assessment is around 1.3 

(Griffiths et al. 1996). 

 

5.2 Factor of safety applied against piping failure  

Eq. 2.28 showed that factor of safety (F) against piping failure can be defined as 𝑖𝐶 𝑖𝐸⁄ . Also, 

𝑖𝐶 is a function of the specific gravity 𝐺𝑠 and the void ratio e (see Eq. 2.29).  In sandy soils, 𝑖𝐶  

varies between 0.83 to 1.11 for the typical values of void ratios (0.5 to 1) and specific gravity 

(around 2.65). However, if these  information are not available, it is common to consider 𝑖𝐶  as 
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one for granular soils since it is an average value (Reddi 2003). Further, U.S. Department of 

the Army (1989) guideline suggested to use 𝑖𝐶  equals to 1. Therefore, 𝑖𝐶  is considered as 1 

throughout this chapter, too. Then Eq. 2.28 can be rewritten as:  

𝐹 =
1

𝑖𝐸 
                                                                                                                                                  (5.1) 

                          

Harr (1962) recommended that the factor of safety (F) of 4 to 5 is adequate to consider for the 

piping failure assessment. Also U.S. Department of the Army (1989) suggested that 𝑖𝐸 should 

not exceeds 0.3 to 0.4 for a safe structure against the piping failure. Hence, F values adopted 

by US Army Engineers Manual are in between 3.3 to 2.5 (using Eq. 5.1). In addition, Griffiths 

et al. (1996) have mentioned that it is required to have a larger F value of the order of 5 or 6 

considering the possible damages by the piping failure and uncertainty of the soil properties. 

Further, recent text books (Chen and Liew 2002; Das and Sivakugan 2016) suggested F in the 

order of 3 to 5. Considering all, F values in the order of 3 to 5 are applied for the piping failure 

assessment of cofferdams in this chapter. 

 

5.3 Line of creep method  

This is a crude method and can be used to assess the safety of hydraulic structures against the 

piping failure. This method is proposed by Bligh (1910) and is a more convenient and simpler 

method compared to other solution methods (flow net, MoF and numerical simulation) 

discussed before. Even though this is a crude method, it has a value as the simplest and quickest 

tool to provide a first order estimate of whether the structure is safe or not against possible 

piping failure. However, most of the discussions reported in the literature on the application of 

this method are limited to concrete or masonry dam problems (Terzaghi et al. 1996; Das 2013).  
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This is an empirically derived method. Fig. 5.1 shows the application of this method for a dam 

structure where the shortest seepage path from upstream to downstream is shown by the 

horizontal and vertical arrows. This shortest seepage path is termed as the creep length C, and 

it can be written for the dam structure shown in Fig. 5.1 as: 

𝐶 = ∑ 𝐿ℎ + ∑ 𝐿𝑣                                                                                                                          (5. 2) 
                    

where,  ∑ 𝐿ℎ and  ∑ 𝐿𝑣  are the sum of horizontal and vertical distances, respectively. In this 

method, a dam was considered safe, when the average hydraulic gradient 𝑖𝑎𝑣𝑔 (=  ℎ/𝐶) is less 

than a certain value, depending on the founding soil type.  Further, Bligh (1910) defined a term, 

called creep ratio 𝐶𝑐 as: 

𝐶𝑐 =  
𝐶

ℎ
                                                                                                                                                 (5. 3) 

                     

Next, he developed a guideline considering a data base of failed dams and dams that have not 

failed. In that guideline, a minimum value was recommended for 𝐶𝑐, and for a safe structure, 

calculated 𝐶𝑐 by Eq. 5.3 should be greater than the minimum value given in the guideline.  

 

Fig. 5.1 Line of creep method for a dam problem 
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Over time, it was understood that the vertical flow paths contribute more in reducing the 

average hydraulic gradient compared to the horizontal flow paths. The reason for that is the 

coefficient of permeability in the horizontal direction is always larger than that of the vertical 

direction. Further, head loss per unit vertical length along the creep line to that of the unit 

horizontal length is approximately equal to the ratio of 𝑘𝐻/𝑘𝑉 where 𝑘𝐻 and 𝑘𝑉 are the 

horizontal and vertical coefficients of permeability, respectively (Terzaghi et al. 1996). Lane 

(1935) considered the effect of permeability anisotropy and refined the line of creep method 

based on an extensive number of case histories in different soil conditions. In addition, he 

introduced the term known as weighted creep length 𝐿𝑤 , and it was defined for 𝑘𝐻/𝑘𝑉  of 3 as: 

𝐿𝑤 =
∑ 𝐿ℎ

3
+ ∑ 𝐿𝑣                                                                                                                           (5. 4) 

                      

Further, he suggested another term, weighted creep ratio 𝐶𝑤 as: 

𝐶𝑤 =
𝐿𝑤

ℎ
                                                                                                                                              (5. 5) 

           

For a safe structure against the piping failure, this ratio 𝐶𝑤   has to be greater than the series of 

values he suggested (given in the Table 5.1) for the different soil types.  

 

In summary, it is clear that, the line of creep method provides safety factor against piping failure 

just considering only the shortest seepage path (creep length C).  So, there is a perceived benefit 

in having a similar approximation for the cofferdam problems, since cofferdams are also among 

the frequently used hydraulic structures. Therefore, this chapter extends the line of creep 

method to cofferdam problems aiming to develop approximate solutions, to have a first order 

estimate of the safety factor with respect to piping failure for the double-walled and circular 

cofferdams. 
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Table 5.1. Lane’s recommended values for weighted creep ratio 𝐶𝑤 

Soil type 𝐶𝑤 

Very fine sand and silt 8.5 

Fine sand 7.0 

Medium sand 6.0 

Coarse sand 5.0 

Fine gravel 4.0 

Medium gravel 3.5 

Coarse gravels and cobbles 3.0 

Soft clay 2.5 

Boulders with some cobbles  

and gravels 

3.0 

Medium clay 2.0 

Hard clay 1.8 

Very hard clay 1.6 

 

 

5.4 Line of creep method for double-walled cofferdams  

For double-walled cofferdams, the shortest flow path is the flow line along the sheet pile wall 

from upstream to downstream, which is the creep length C. Fig. 5.2 shows the marked creep 

length for a double-walled cofferdam. The parameters L, s, T, αs and h are similar to those 

defined in Fig. 3.1 in chapter 3. Here, creep line contains only vertical flow paths; therefore, 

no adjustment is required involving the ratio of 𝑘𝐻/𝑘𝑉 , and hence, weighted creep length 𝐿𝑤  

should equal to the creep length C. So, creep length C and creep ratio 𝐶𝑐 terms are used in this 

chapter for the cofferdam analysis instead of the weighted creep length and weighted creep 

ratio terms. Note that, the thickness of the sheet pile has been ignored in calculating the C value 

since it is very low compared to the vertical length values, and also, the effect of ignoring it on 

to the conservative side. Accordingly, the C value for double-walled cofferdams can be defined 

as: 
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𝐶 = 𝑠 + (1 − 𝛼)𝑠                                                                                                                               (5. 6) 

Thus, the creep ratio 𝐶𝑐 for double-walled cofferdams is given as:         

𝐶𝑐 =
𝐶

ℎ
                                                                                                                                                  (5. 7) 

         

 

Fig. 5.2 Creep length calculation for double-walled cofferdams 

 

5.4.1 Relationship between creep length and maximum exit hydraulic gradient of double-

walled cofferdams 

Maximum exit hydraulic gradient 𝑖𝐸 and corresponding creep length C values were calculated 

for a range of double-walled cofferdam geometries using numerical simulations. The numerical 

model, parameters and the simulation procedure used are similar to the procedure described in 

Sec. 3.3.1 of chapter 3. Here 630 geometries were studied varying the 𝐿𝑅/𝑇 as 0.1, 0.15, 0.2, 

0.25, 0.3, 0.35, 0.4, 0.5, 0.6,0.7,0.8,1,1.5 and 2 while 𝑠/𝑇 was varied as 0.1, 0.2, 0.3, 0.4, 0.5, 

0.6, 0.7, 0.8 and 0.9. Also, five excavation depth simulations were analysed for each geometry, 

considering α as 0, 0.2, 0.4, 0.6 and 0.8. As noted in chapter 3, half-width of the cofferdam is 

termed as 𝐿𝑅 (multiply L by R) considering the model capability of treating the soil anisotropic 

(R ≠ 1). Also, as discussed in chapter 3, the geometry with 𝐿𝑅 𝑇⁄ = 2  is equivalent to the 

situation where cofferdam width is infinite (when the soil is isotropic). Further, geometries 
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where 𝐿𝑅/𝑇 and 𝑠/𝑇 are less than 0.1, and α is greater than 0.8 are not considered in this study, 

because they are having very little practical significance. Then, it was assumed that, the 

geometry range considered above is adequate to cover all cofferdam geometries of practical 

interest.   

 

All the simulations were run keeping the soil as homogeneous and isotropic(𝑅 = √𝑘𝑉 𝑘𝐻⁄ =

1). However, the range of the applicability of proposed solutions in this chapter is not limited 

to the isotropic condition. When the soil is homogeneous and anisotropic (R ≠ 1), 

corresponding solutions can be obtained by considering the cofferdam width L in the 

transformed section, i.e., 𝐿𝑅 as discussed before. In addition, soil layer thickness T, and total 

head loss h were kept constant for all the runs, with values of 20 m and 2.5 m, respectively. 

Before developing the relation between 𝑖𝐸 and C, a preliminary assessment was carried out to 

see the effect of 𝐿𝑅/𝑇 on  𝑖𝐸  by plotting the normalised  values (𝑖𝐸 ℎ)⁄  against 𝐿𝑅/𝑇 for 

different 𝑠/𝑇 and α values as shown in Fig. 5.3. It shows that the effect of 𝐿𝑅/𝑇 on  𝑖𝐸 ℎ⁄   is 

not significant when 𝐿𝑅/𝑇  0.5 compared to the case of 0.1 ≤ 𝐿𝑅/𝑇 < 0.5. Therefore, creep 

length analysis was done separately for 𝐿𝑅 𝑇 ≥ 0.5 ⁄  and for 0.1 ≤ 𝐿𝑅/𝑇 < 0.5. In total, 630 

geometries were considered (as noted before), and the calculated 𝑖𝐸 ℎ⁄  and C values are shown 

in appendix C1. The results of the creep length analysis for the two cases (𝐿𝑅 𝑇 ≥ 0.5 ⁄  and 

for 0.1 ≤ 𝐿𝑅/𝑇 < 0.5) are shown in Fig. 5.4. In Fig. 5.4a, coefficient of determination (𝑅2) is 

0.85 while it is 0.9 for Fig. 5.4b implying that the 𝑖𝐸  predictions are slightly more accurate for 

the case of 𝐿𝑅 𝑇 ≥ 0.5 ⁄ .  However, having 𝑅2 value of 0.85 for the case of 0.1 ≤ 𝐿𝑅/𝑇 < 0.5 

shows that the 𝑖𝐸   predictions using the relationship given in Fig. 5.4a is also a reasonable one.   

 

Therefore, relationships between 𝑖𝐸 ℎ⁄  and the creep length C for the two cases are: 

For 0.1 ≤ 𝐿𝑅 𝑇 < 0.5⁄ ,  
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𝑖𝐸

ℎ
= 0.89 𝐶−0.89                                                                                                                                 (5. 8) 

  

For 𝐿𝑅 𝑇⁄ ≥ 0.5, 

𝑖𝐸

ℎ
= 1.03 𝐶−1.09                                                                                                                                 (5. 9) 

Note that, for Eqs. 5.8 and 5.9 and rest of the equations described below for the double-walled 

cofferdams analysis, the values of h and C should be in meters. 

 

Fig. 5.3 Changing the normalised 𝑖𝐸  values with cofferdam width in double-walled 

cofferdams: (a) 𝑠/𝑇 = 0.2; (b) 𝑠/𝑇 = 0.4; (c) 𝑠/𝑇 = 0.8 
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Fig. 5.4 Normalised 𝑖𝐸 vs creep ratio 𝐶𝑐 relationship for double-walled cofferdams: 

(a) 0.1 ≤ 𝐿𝑅/𝑇 < 0.5; (b) 𝐿𝑅/𝑇 ≥ 0.5  

Using Eq. 5.1, Eq. 5.8 can be rewritten as:  

1

𝐹ℎ
= 0.89𝐶−0.89                                                                                                                              (5. 10) 

        

Then, the minimum value for C required at a given F can be derived as: 

𝐶 = 0.88(𝐹ℎ)1.12                                                                                                                             (5. 11) 
                             

Similarly, the minimum C value when  𝐿𝑅 𝑇⁄ ≥ 0.5 can be defined as: 

𝐶 = 1.03(𝐹ℎ)0.92                                                                                                                            (5. 12) 

For a double-walled cofferdam with a specified F value and a known head difference h, the 

required minimum C value against piping failure can be determined from Eqs. 5.11 or 5.12. 

Alternatively, for a given geometry, and hence, for the known C value, the safety factor F 
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against piping failure can be determined at a given h from the same two equations. While Eqs. 

5.8 and 5.9 (or 5.11 and 5.12) can be used for reasonable estimates of the F or C, there is some 

scatter coming from the less sensitive parameters (𝐿𝑅/𝑇, 𝑠/𝑇 and αs) that were not considered 

herein. Therefore, for a given C, it is desirable to know the possible range of the 𝑖𝐸. An attempt 

is made to establish the upper and lower bound values for 𝑖𝐸 based on the simulations carried 

out on 630 geometries.    

                                   

5.4.2 Upper and lower bound curves for  double-walled cofferdams 

Upper and lower bound curves were estimated considering two separate cases as defined in 

previous section, i.e., 0.1 ≤ 𝐿𝑅/𝑇 < 0.5 and 𝐿𝑅/𝑇 ≥ 0.5.  For the case 1 (0.1 ≤ 𝐿𝑅/𝑇 < 0.5), 

upper bound curve was estimated by fitting the data for the geometry of 𝐿𝑅/𝑇 = 0.1, since this 

is the lowest 𝐿𝑅/𝑇 value used in this analysis while 𝐿𝑅/𝑇 = 0.5 was considered for the lower 

bound curve estimation. Fig. 5.5 shows the best-fit lines, and the upper and lower bound curves 

estimated. The steps adopted for upper and lower bound curves estimation for the case 1 are 

outlined below. 

a. Upper bound curve   

1. All 𝑖𝐸/ℎ values of 𝐿𝑅/𝑇 = 0.1 were plotted against the C values.  

2. Best-fit line was estimated as 𝑖𝐸

ℎ
= 0.98𝐶−0.80 (see Fig. 5.5a). Since this is the 

average line of the data series, the upper bound line should also be in the form of  

𝑖𝐸

ℎ
= 𝑎𝐶−0.80 , where a is a constant and should be larger than 0.98. 

3. Using the MS Excel program, a value for the constant a was obtained through 

several trials satisfying the two conditions given below.  

I. All 𝑖𝐸/ℎ values of 𝐿𝑅/𝑇 = 0.1 at any given C value are smaller than to the 

corresponding value predicted by the proposed upper boundary line. 
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II. The point where the upper bound curve and actual data point exist at their 

closest, the deviation of 𝑖𝐸/ℎ value predicted by the upper bound equation 

from the actual value was limited to less than 1%.   

Using above steps, the best value obtained for constant a was 1.44.  The best-fit line and upper 

bound curve are shown in Fig. 5.5a.  

 

Fig. 5.5 Boundary curves for 0.1 ≤ 𝐿𝑅/𝑇 < 0.5:  

(a) Upper bound curve; (b) Lower bound curve 

b. Lower bound curve   

1. All 𝑖𝐸/ℎ values of 𝐿𝑅/𝑇 = 0.5 were plotted against the C values.   

2. Best-fit line was estimated as  𝑖𝐸

ℎ
= 0.94𝐶−1.01 (see Fig. 5.5b). As discussed before, 

equation of the lower bound line should also be in the form of  𝑖𝐸

ℎ
= 𝑏𝐶−1.01 , and 

hence, the constant b should be smaller than 0.94.  
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3. Here also, through the several trials using the MS Excel program, constant b was 

determined satisfying the two conditions given below.  

I. All 𝑖𝐸/ℎ values of 𝐿𝑅/𝑇 = 0.5 at any given creep length are larger than to 

the corresponding value predicted by the proposed lower bound line.  

II. The point where the lower bound curve and actual data point exist at their 

closest, the deviation of 𝑖𝐸/ℎ value predicted by the lower bound equation 

from the actual value was limited to less than 1%.   

Using above steps, constant b was determined as 0.65, and Fig. 5.5b shows the best-fit line and 

lower bound curve.  

 

Then, two equations of lower and upper bound curves for the case 1 (0.1 ≤ 𝐿𝑅/𝑇 < 0.5) are 

summarised below.  

The lower bound is as: 

𝑖𝐸

ℎ
= 0.65𝐶−1.01                                                                                                                               (5. 13) 

                             

The upper bound curve is given by: 

𝑖𝐸

ℎ
= 1.44𝐶−0.80                                                                                                                               (5. 14) 

            

Also Fig. 5.6a shows that all the 𝑖𝐸/ℎ points (360 points), corresponding to the extensive range 

of geometry (0.1 ≤ 𝐿𝑅 𝑇 < 0.5⁄ , 𝑠/𝑇 = 0.1 to 0.9 and α =0 to 0.8) are covered by these two 

curves. 

  

For the case 2 (𝐿𝑅/𝑇 ≥ 0.5) also, same steps outlined above were applied for determining the 

boundary curves. Upper bound curve was estimated by fitting the 𝑖𝐸/ℎ values of 𝐿𝑅/𝑇 = 0.5 
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while 𝐿𝑅/𝑇 = ∞ was applied for the lower bound curve estimations.  The two curves derived 

for the case 2 are given below.  The equation for the lower bound curve is as: 

𝑖𝐸

ℎ
= 0.73𝐶−1.15                                                                                                                               (5. 15) 

                                   

The upper bound curve is given by: 

𝑖𝐸

ℎ
= 1.41𝐶−1.01                                                                                                                                                                                    (5. 16) 

         

Fig. 5.6b shows all the 𝑖𝐸/ℎ relevant to the case 2 (𝐿𝑅 𝑇 ≥ 0.5⁄ , 𝑠/𝑇 = 0.1 to 0.9 and α =0 to 

0.8) are confined to the zone defined by these two curves (Eqs. 5.15 and 5.16).  

 

Fig. 5.6 Both upper and lower bound curves for normalised 𝑖𝐸  of double-walled cofferdams: 

(a) 0.1 ≤ 𝐿𝑅/𝑇 <  0.5; (b) 𝐿𝑅/𝑇 ≥ 0.5 
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5.4.3 Validation of the proposed solutions for double-walled cofferdams 

For the validation, extensive number of cases (630) in a wider range of geometry were analysed 

through the steps given below. 

1. A factor of safety F = 4 is considered, implying maximum allowable exit gradient 𝑖𝐸 of 

0.25 (see Eq. 5.1).  

2. Minimum creep ratio 𝐶𝑐  values were calculated for the two cases (0.1 ≤ 𝐿𝑅/𝑇 < 0.5 

and 𝐿𝑅/𝑇 ≥  0.5) using the C values given by Eqs. 5.11 and 5.12, respectively at a total 

head loss of 2.5 m. For 0.1 ≤ 𝐿𝑅/𝑇 < 0.5, 𝐶𝑐 value calculated was 4.6 while it was 3.4 

for 𝐿𝑅/𝑇 ≥  0.5. 

3. Then 𝑖𝐸 values calculated by the numerical simulation of series of cofferdam 

geometries were plotted against the corresponding 𝐶𝑐  values for the two cases 

separately as shown in Fig. 5.7. The red vertical lines drawn at the minimum 𝐶𝑐 values 

(4.6 and 3.4) calculated in point 2 above and the blue horizontal line at 𝑖𝐸 = 0.25 divides 

the plot area of each graph into four zones (Z1, Z2, Z3, and Z4).   

 

Zone Z1 represents the cases where the creep ratio 𝐶𝑐 is insufficient, and hence, unacceptably 

high 𝑖𝐸 are likely. Zone Z4 represents the cases where the 𝐶𝑐 is adequate to ensure the 𝑖𝐸 is 

lower than 0.25, confirming F > 4. Zone Z2 includes 𝐶𝑐 values which are less than the minimum 

required value, and 𝑖𝐸 values which are within the maximum allowable limit (i.e., safe against 

piping). Therefore, ideally no points should lie within zone Z2 since the geometries where 𝐶𝑐 

values are smaller than the minimum required should be unsafe with 𝑖𝐸 greater than 0.25. 

Similarly, in Zone Z3 too, no  points should lie if the model works perfectly because all the 

geometries with larger 𝐶𝑐  than the minimum required are safe, and hence, all the 𝑖𝐸 values 

should be lower than to the maximum allowable value of 0.25.     
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Fig. 5.7 Validity assessment for double-walled cofferdams: 

(a) 0.1 ≤ 𝐿𝑅/𝑇 < 0.5 ;(b) 𝐿𝑅/𝑇 ≥ 0.5  

   

Validation results for the case of 0.1 ≤ 𝐿𝑅/𝑇 < 0.5 (see Fig. 5.7a) shows that, out of the 315 

cases considered, 275 cases fell within zones Z1 and Z4, with 10 and 30 falling in Z2 and Z3, 

respectively. For the cases with 𝐿𝑅/𝑇 ≥ 0.5 (see Fig. 5.7b), 288 fell within zones Z1 and Z4, 

with 13 and 14 reporting in Z2 or Z3.  As mentioned before, ideally no points should lie within 

zones Z2 and Z3, but here few points are reported in zones Z2 and Z3 for both Figs. 5.7a and 

5.7b cases implying that the model predictions are wrong for these cases. That is due to this 

study has considered only the most critical parameter (i.e., creep length) for the solutions 

development and has ignored the effect of ignoring other less sensitive parameters such as 

excavation depth αs, cofferdam width LR, and sheet pile embedded depth s on maximum exit 

hydraulic gradient.    
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Note that, effects of reporting some 𝑖𝐸  points in zone Z2 which are slightly lower than 0.25 

are onto the conservative side; however, effects of points reported in zone Z3 are unsafe. 

Similar assessments were conducted for the other two F values (3 and 5) considered in this 

study, and the results summary is shown in Table 5.2. It shows that, proposed model predictions 

are reasonably good since 87% or more of the data are within the expected zones (zone Z1 and 

Z4) for all three F values. Less than 10% predictions are on the unsafe side (Zone Z3). 

Considering all, it can be concluded that proposed model provides sufficiently accurate 

predictions for cofferdam stability against piping failure just by considering their creep length 

C values.  

Table 5.2 Summary of the validity assessment for double-walled cofferdams 

F  h 
(m) 

Allowable 
max. 𝑖𝐸 𝐿𝑅/𝑇 Min. 𝐶𝑐     

Number of points in zones Total No.  
points 

1&4 2 3 

3 2.5 0.33 
< 0.5 3.4 282 15 18 315 
≥ 0.5 2.6 297 7 11 315 

4 2.5 0.25 
< 0.5 4.6 275 10 30 315 
≥ 0.5 3.4 288 13 14 315 

5 2.5 0.2 
< 0.5 6.0 277 11 27 315 
≥ 0.5 4.2 291 6 18 315 

 

5.5 Line of creep method for circular cofferdams  

For circular cofferdams also, the shortest flow path (creep length C) is exactly same as that 

discussed for the double-walled case (given in Eq. 5.6) since both cofferdam types are similar 

in the sectional view (see Figs. 3.1 and 4.1). Therefore, Eqs. 5.6 and 5.7 can be used to estimate 

the C and 𝐶𝑐 values, respectively for circular cofferdams, too. Also, for the creep length 

analysis, the procedure followed here was similar to that described above for double-walled 

cofferdams analysis. Noting that, cofferdam radius is termed as rR in the more general form as 

discussed in chapter 4, allowing for the permeability anisotropy.  
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5.5.1 Relationship between creep length and maximum exit hydraulic gradient of circular 

cofferdams  

Maximum exit hydraulic gradient 𝑖𝐸 and corresponding creep length C values were calculated 

for a range of circular cofferdam geometries using numerical simulations. The numerical model 

geometry, parameters and the simulation procedure applied are exact to the procedure given in 

Sec. 4.2 of chapter 4. The ranges of the 𝑠/𝑇 and α varied were similar to the range considered 

for the double-walled case discussed in Sec. 5.4.1. Total number of cofferdam geometries 

studied were 675 varying 𝑟𝑅/𝑇 as 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.5, 

2 and ∞. When cofferdam radius r tends to infinity, 𝑖𝐸 values were calculated using the double-

walled cofferdam model of infinite width (single sheet pile wall) as discussed in Sec. 3.3.2 of 

chapter 3.   

 

Before developing the relation of 𝑖𝐸 and C, a preliminary assessment was carried out to see the 

effect of 𝑟𝑅/𝑇 on  𝑖𝐸 as discussed for the double-walled case. From Fig. 5.8, it is evident that 

when 𝑟𝑅/𝑇 ≥ 0.5, its influence on 𝑖𝐸 ℎ⁄  is insignificant compared that for the case of 0.1 ≤

𝑟𝑅/𝑇 < 0.5. Therefore, similar to the double-walled case, the creep length analysis was carried 

out separately for 0.1 ≤ 𝑟𝑅/𝑇 < 0.5 and 𝑟𝑅/𝑇 ≥ 0.5. Appendix C2 shows the calculated 𝑖𝐸 ℎ⁄  

values and corresponding creep length values for the 675 cases considered. The results of the 

analysis are shown in Fig. 5.9. It shows that, coefficient of determination (𝑅2) is slightly lower 

for the case of 0.1 ≤ 𝑟𝑅/𝑇 < 0.5 (see Fig. 5.9a) compared to that for the 𝑟𝑅/𝑇 ≥ 0.5 shown 

in Fig. 5.9b, confirming that the prediction are slightly more accurate with 𝑟𝑅/𝑇 ≥ 0.5. 

However, having 𝑅2 value of 0.82 for the case of 0.1 ≤ 𝑟𝑅/𝑇 < 0.5 while it is 0.84 for 𝑟𝑅/𝑇 ≥

0.5 ensure that both relationships are reasonable to estimate the  𝑖𝐸 values only considering 

single parameter, i.e., creep length C. 
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Then, Fig. 5.9 was used for defining the relationships of 𝑖𝐸 ℎ⁄  to the C in two cases as follows.  

For  0.1 ≤ 𝑟𝑅 𝑇 < 0.5⁄ , 

𝑖𝐸

ℎ
= 1.17𝐶−0.85                                                                                                                               (5. 17) 

For 𝑟𝑅 𝑇⁄ ≥ 0.5,      

𝑖𝐸

ℎ
= 1.05𝐶−1.0                                                                                                                                 (5. 18) 

                                                                        

 

Fig. 5.8 Changing the normalised 𝑖𝐸  values with cofferdam width in circular cofferdams:    

(a) 𝑠/𝑇 = 0.2; (b) 𝑠/𝑇 = 0.4; (c) 𝑠/𝑇 = 0.8 
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Fig. 5.9 Normalised 𝑖𝐸  vs creep ratio 𝐶𝑐 relationship for circular cofferdams:  

(a) 0.1 ≤ 𝑟𝑅/𝑇 < 0.5; (b) 𝑟𝑅/𝑇 ≥ 0.5 

Also noted that, for all the equations proposed for circular cofferdams also, values of h and C 

should be in meters. Similar to the Eqs.5.11 and 5.12 developed for the double-walled 

cofferdams, minimum C value required at a given F for circular cofferdams can be defined 

using Eqs. 5.17 and 5.18 as:  

For  0.1 ≤ 𝑟𝑅 𝑇 < 0.5⁄ , 

𝐶 = 1.20(𝐹ℎ)1.18                                                                                                                             (5. 19) 
  

For 𝑟𝑅 𝑇⁄ ≥ 0.5,     

𝐶 = 1.05𝐹ℎ                                                                                                                                       (5. 20) 
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5.5.2 Boundary curves for circular cofferdams 

Here also, lower and upper boundary curves were defined considering the two cases (0.1 ≤

𝑟𝑅/𝑇 < 0.5 and 𝑟𝑅/𝑇 ≥ 0.5), separately as shown in Fig. 5.10. The procedure adopted here 

was similar to the procedure discussed for the double-walled cofferdams problems in Sec. 

5.4.2.  

 

Fig. 5.10 Both upper and lower bound curves for normalised 𝑖𝐸 of circular cofferdams: 

(a) 0.1 ≤ 𝑟𝑅/𝑇 < 0.5; (b) 𝑟𝑅/𝑇 ≥ 0.5 

For 0.1 ≤  𝑟𝑅/𝑇 < 0.5, equations for these curves are as follows.  The lower bound curve is 

as: 

𝑖𝐸

ℎ
= 0.70𝐶−0.90                                                                                                                               (5. 21) 

                                     

The upper bound curve is given by: 
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𝑖𝐸

ℎ
= 2.86𝐶−0.87                                                                                                                                                                                    (5. 22) 

                             

For 𝑟𝑅/𝑇 ≥ 0.5, lower bound curve is defined as:  

𝑖𝐸

ℎ
= 0.73𝐶−1.15                                                                                                                               (5. 23) 

                 

The upper bound curve is given by: 

𝑖𝐸

ℎ
= 1.6𝐶−0.90                                                                                                                                  (5. 24) 

          

 

5.5.3 Validation of the proposed solutions for circular cofferdams  

Here, 675 cases (315 for 0.1 ≤ 𝑟𝑅/𝑇 < 0.5 and 360 for 𝑟𝑅/𝑇 ≥ 0.5) were analysed through 

the same procedure discussed for double-walled validation in Sec. 5.4.3. Fig. 5.11 shows the 

validation results for the factor of safety F = 4 and the total head loss of 2.5 m. Most of the 

geometries (273/315 in Fig. 5.11a and 323/360 in Fig. 5.11b) were reported in the zones Z1 

and Z4 making the model predictions are correct. However, few points reported in the zone Z2 

(15 for 0.1 ≤ 𝑟𝑅/𝑇 < 0.5 and 8 for 𝑟𝑅/𝑇 ≥ 0.5), giving wrong predictions, but they are 

conservative. Further, 27 and 29 data points in Fig. 5.11a and 5.11b, respectively fell into the 

zone Z3 giving wrong and unsafe predictions. However, most of the points located in the zone 

Z3 are closer to the maximum allowable exit gradient; hence, their actual F values are not far 

from the required minimum.  A similar analysis was conducted for three F values (3, 4, and 5), 

and the results are shown in Table 5.3. In summary, more than 85% of the prediction are within 

zone Z1 and Z4 while less than 11% predictions are on the unsafe side for all three F values 

considered.  
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Fig. 5.11 Validity assessment for circular cofferdams: 

(a) 0.1 ≤ 𝑟𝑅/𝑇 < 0.5; (b) 𝑟𝑅/𝑇 ≥ 0.5 

 

Table 5.3 Summary of the validity assessment for circular cofferdams 

F  h 
(m) 

Allowable 
max.𝑖𝐸 𝑟𝑅/𝑇 Min. 𝐶𝑐     

Number of points in zones Total No.  
points 

1&4 2 3 

3 2.5 0.33 
< 0.5 5.2 268 15 32 315 
≥ 0.5 3.2 332 9 19 360 

4 2.5 0.25 
< 0.5 7.3 273 15 27 315 
≥ 0.5 4.2 323 8 29 360 

5 2.5 0.2 
< 0.5 9.5 294 14 7 315 
≥ 0.5 5.3 312 15 33 360 

 

  

5.6 Approximate creep ratios for cofferdams 

Creep ratio 𝐶𝑐 is a practical parameter that can be used in the preliminary designs for assessing 

the safety against piping failure. It is the additional creep length required per unit increase in 
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the total head (see Eq.5.7). The 𝐶𝑐 recommended by Bligh (1910) and Lane (1935) were based 

on an extensive database of more than 200 case histories, where they also considered the soil 

type. The study reported herein is based on the series of finite element simulations for a 

homogeneous soil medium; therefore, 𝑖𝐸 value is independent from the soil type and is a 

function only of the cofferdam geometry and total head difference. In addition, cofferdams are 

widely applied for sandy soils, and hence, creep ratio values proposed in this study are mainly 

for sandy soils with critical hydraulic gradient 𝑖𝐶 approximately equals to unity, implying 𝑖𝐸 is 

the reciprocal of the factor of safety F against piping. So, soil type is not distinguished in this 

study, and the estimated 𝐶𝑐 for cofferdams are shown in Table 5.4 at three F values (3, 4 and 

5) and three total head loss h values of 2.5 m, 5 m and 10 m.  

 

For circular cofferdams with 𝑟𝑅/𝑇 ≥ 0.5, from Eq. (5.20) it can be seen that the creep ratio 

𝐶𝑐 is independent of h. For all other cases, the 𝐶𝑐 is no more a constant; it varies, but only 

slightly with h. When the F equals to 4, 𝐶𝑐 values of double-walled cofferdams ranged between 

4.6 to 5.5 for h values varying from 2.5 m to 10 m for the case of 0.1 ≤  𝐿𝑅/𝑇 < 0.5, with an 

average value of 5.1 (see Table 5.4). Also, average 𝐶𝑐 value for the case of 𝐿𝑅/𝑇 ≥ 0.5 is 3.2.  

Similarly, when the F equals to 4, average 𝐶𝑐 values while changing the h values from 2.5m to 

10m for the circular cofferdams are 8.3 and 4.2 for the cases of 0.1 ≤ 𝑟𝑅/𝑇 < 0.5 and 𝑟𝑅/𝑇 ≥

0.5, respectively.  It can be seen from Table 5.4 that the 𝐶𝑐 is influenced slightly by the head h 

and thus, varies in a narrow range. Therefore, it is suggested to use appropriate value for h in 

Eqs. 5.11, and 5.12 for doubled walled cofferdams and Eqs. 5.20 and 5.21 for circular 

cofferdams for computing the minimum required creep length C values.     

  

As mentioned before, 𝐶𝑐 values obtained in this study are valid only for the sandy soils and 

depend on the F and h values. However, weighted creep ratio values 𝐶𝑤 proposed by Lane 
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(1935) are empirical values, and there is no relationship showing F values to the creep ratios. 

They predict whether structure is safe or not against piping. Therefore, proposed 𝐶𝑐 values in 

this study cannot compare directly with the values given by Lane (1935). For the three F values 

(3, 4 and 5) considered in this study, 𝐶𝑐  values ranged between 2.4 to 7 for the double-walled 

cofferdams while it varies from 3.2 to 12.1 for the circular cofferdams. The 𝐶𝑐 values proposed 

by Lane (1935) for coarse to fine sand vary from 5 to 7 (see Table 1) and are still in comparable 

range with estimated 𝐶𝑐 values for the double-walled cofferdams in this study. 𝐶𝑐 values for 

the circular cofferdams are based on the three dimensional flow into the excavation, and hence, 

they are not comparable to the historical data because Lane (1935) values have been derived 

considering the two dimensional flow condition.     

Table 5.4 Summary of the estimated creep ratio Cc values for cofferdams 

F LR/T 
or rR/T h (m) 

Min. C (m) Creep ratio 𝐶𝑐 (C/h) 

Double-
walled Circular Double-

walled Circular 

3 

< 0.5 
2.5 8.4 12.9 3.4 5.2 
5 18.3 29.3 3.7 5.9 
10 39.7 66.4 4.0 6.6 

≥ 0.5 
2.5 6.6 7.9 2.6 3.2 
5 12.4 15.8 2.5 3.2 
10 23.5 31.5 2.4 3.2 

4 

< 0.5 
2.5 11.6 18.2 4.6 7.3 
5 25.2 41.2 5.0 8.2 
10 54.8 93.2 5.5 9.3 

≥ 0.5 
2.5 8.6 10.5 3.4 4.2 
5 16.2 21.0 3.2 4.2 
10 30.7 42.0 3.1 4.2 

5 

< 0.5 
2.5 14.9 23.6 6.0 9.5 
5 32.4 53.5 6.5 10.7 
10 70.4 121.3 7.0 12.1 

≥ 0.5 
2.5 10.5 13.1 4.2 5.3 
5 19.9 26.3 4.0 5.3 
10 37.7 52.5 3.8 5.3 
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5.7 Summary and conclusions 

A simple method for evaluating the cofferdam safety against possible piping failure is 

presented. Both doubled-walled and circular cofferdams founded on a homogeneous granular 

soil where the depth of soil layer is finite were studied separately. The proposed solutions can 

be applied in both isotropic and anisotropic soil conditions. Using them, a first-order estimate 

of the required creep length C to limit the maximum exit hydraulic gradient 𝑖𝐸  to a specific 

value can be determined. Alternatively, for a given configuration of the cofferdam, maximum 

possible 𝑖𝐸 can also be estimated thus defining the factor of safety against piping. The values 

reported include the mean, and the upper and lower bounds. The equations and curves are 

summarised in Fig. 5.12. Eqs. 5.15 and 5.23, defining the lower bound curves, are the same for 

the double-walled and circular cofferdams. All eleven equations are of the form of: 

𝑖𝐸

ℎ
= 𝑎𝐶𝑏                                                                                                                                           (5. 25)  

                  

where, a and b are constants.  

 

The solutions proposed in this chapter have considered only the shortest seepage path (creep 

length C) value for estimating the piping potential at a given total head value of cofferdams. 

However, it is noted that, 𝑖𝐸 is also a function of width and radius of the double-walled and 

circular cofferdams, respectively. The effect of ignoring the cofferdam width/radius on the 

proposed solutions have been minimised by considering the geometries in two separate groups 

as, 0.1 ≤ (
𝐿𝑅

𝑇
𝑜𝑟 

𝑟𝑅

𝑇
) < 0.5   and (𝐿𝑅

𝑇
𝑜𝑟 

𝑟𝑅

𝑇
) ≥ 0.5 .   

 

The proposed equations were validated using series of finite element simulations. These 

equations can be valuable tools for back-of-the-envelope calculations in the preliminary 

analysis while selecting the dimensions in a cofferdam.  
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Fig. 5.12 Summary of the equations and curves for the double-walled (DW) and circular 

(Cir.) cofferdams: (a) 0.1 ≤ (
𝐿𝑅

𝑇
𝑜𝑟 

𝑟𝑅

𝑇
) < 0.5; (b) (𝐿𝑅

𝑇
𝑜𝑟 

𝑟𝑅

𝑇
) ≥ 0.5    
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Chapter 6 Simple solutions for square and rectangular cofferdam seepage 

problems 

6.1 Introduction 

Square or rectangular shape enclosures are among the commonly seen cofferdam shapes. They 

are encountered with excavations for building foundations, small bridges or river pier 

foundations. In these cofferdams, flow into the excavation is three-dimensional, and hence, 

flow paths in all directions give higher flow rate and exit hydraulic gradient values than what 

is predicted using a 2D analysis, assuming a double-walled cofferdam. Therefore, 2D 

approximation considering the situation as a double-walled cofferdam can jeopardize the 

safety. Hence, 3D numerical simulation using a finite element or finite difference computer 

package has a place as the most accurate seepage solution method for square or rectangular 

cofferdams. But it requires an expensive 3D simulation package, and hence, approximate 

solution methods are applied as a tool for preliminary estimates of seepage solutions for square 

and rectangular cofferdams.   

 

6.2 Seepage solutions for square cofferdams 

There are two approximate solution methods practiced in industry for estimating the flow rate 

and exit hydraulic gradient values for square cofferdams.  

1. Axisymmetric approximation, considering square cofferdam is equivalent to the 

corresponding circular one of the same width (i.e., B = r) (Tanaka and Yokoyama 2005; 

Bouchelghoum and Benmebarek 2011). 

2. Predicting flow rate and exit hydraulic gradient values of square cofferdams applying 

correction factors to the corresponding values of double-walled cofferdams as proposed 

by Becker and Moore (2006) in the Canadian Foundation Engineering Manual (CFEM 

2006). 
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In the first part of this chapter, accuracy of these two approaches are assessed using the flow 

rate and exit hydraulic gradient values calculated through the 3D simulations of series of square 

cofferdam geometries.  

  

6.2.1 Numerical simulations of square cofferdams 

The 3D finite element program RS3 2.0 developed by the Rocscience was used for the 

numerical simulations.  The geometry of the numerical model applied for the square cofferdam 

is shown in Fig. 6.1a. Here, only one of the four quadrants was analysed considering the 

symmetry. The definitions of the parameters (h, B, s, T) and the boundary conditions applied 

are similar to those defined in Fig. 2.15 of chapter 2. 𝐵𝑒 is the safe distance from the sheet pile 

wall to the model’s boundary, and αs is the excavation depth where 0 ≤ 𝛼 < 1. In square 

cofferdams, two important exit hydraulic gradient values were considered, namely, 𝑖𝐸𝐶  and  

𝑖𝐸𝑀 . 𝑖𝐸𝐶  is the exit hydraulic gradient at the corner of the cofferdam where two sheet pile walls 

meet while 𝑖𝐸𝑀  gives exit hydraulic gradient at the mid-point of the sheet pile wall (see 

Fig.6.1a). For all the simulations, a homogeneous and isotropic soil model was applied. Also, 

soil permeability k and total head loss h were kept constant as 10-5 m/s and 10m, respectively 

for all the models.  Simulations were carried out as flow only problems for a completely 

saturated soil, and a graded mesh with ten-noded tetrahedral elements was used for 3D 

meshing. The mesh used is shown in Fig. 6.1b. 
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Fig. 6.1 Numerical model used for square cofferdams: (a) model geometry; (b) 3D mesh  

 

Numerical model validation 

Before using the 3D model for seepage analysis, it was calibrated against the results of the 

extensive experimental study conducted  by the Davidenkoff and Franke (1965) using the 

electrical analogy model. For the validation, flow rate and exit hydraulic gradient (𝑖𝐸𝐶 and 𝑖𝐸𝑀) 

values calculated using 3D simulations were compared against the experimental results for the 

series of square cofferdam geometries shown in Table 6.1. For the flow rate comparison, 

dimensionless form (𝑞𝑠/𝑘ℎ) was considered while normalised forms (𝑖𝐸𝐶 𝐴𝑣𝑔./ℎ and 𝑖𝐸𝑀 𝐴𝑣𝑔./

ℎ) were analysed for the exit hydraulic gradients validations. Here, 𝑞𝑠  gives flow rate per meter 

perimeter length of the square cofferdam. Note that, 𝑖𝐸𝐶 𝐴𝑣𝑔. and 𝑖𝐸𝑀 𝐴𝑣𝑔. values used for the 

comparison are the average exit hydraulic gradient values and were calculated using the same 

procedure discussed in Sec. 4.2.1 of chapter 4 for circular cofferdams. As noted in Chapter 4, 

these are average values of the hydraulic gradients within the sheet pile enclosure, from the 

sheet pile tip to the floor of the excavation. Fig. 6.2 shows the comparison results. Flow rate 

and exit hydraulic gradient values calculated using numerical simulations are well agreed to 

the corresponding experimental results. In the flow rate estimations, numerical simulation 

results deviate less than 10% from the experimental values while all the average exit hydraulic 

gradient values (at mid and corner points) are within ± 5%.    
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Table 6.1 Cofferdam geometries used for validating the 3D numerical model for square 

cofferdam  

 

 

 

 

B/T s/T α
0.12 0.06
0.11 0.45
0.22 0.03
0.21 0.47
0.42 0.02
0.41 0.49
0.14 0.14
0.13 0.46
0.24 0.06
0.22 0.45
0.44 0.03
0.43 0.47
0.84 0.02
0.83 0.49
0.28 0.15
0.26 0.47
0.47 0.07
0.45 0.46
0.87 0.04
0.85 0.48
0.70 0.15
0.66 0.47
0.94 0.10
0.88 0.47

1.34

3.36

0.34

0.67
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Fig. 6.2 Square cofferdam model validation: (a) flow rate; (b) average exit hydraulic gradient 

at middle of a side 𝑖𝐸𝑀 𝐴𝑣𝑔./ℎ ;  (c) average exit hydraulic gradient at corner 𝑖𝐸𝐶 𝐴𝑣𝑔./ℎ 
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In terms of the degree of accuracy of the experimental  results,  Davidenkoff and Franke (1965) 

stated that their results can be within the ±5% considering the errors in electrical measuring 

instruments and the influence of electrolysis and diffusion of the model. Further, they have 

mentioned that solving square cofferdam problems using the electric analogy is difficult 

compared to the circular cofferdams. This is due to the difficulty of the experimental model of 

square cofferdam since it requires to ensure that the model simulates the total head value at tip 

of the sheet pile increases from mid of the wall to the corner (approximately linear). However, 

this can simply simulate in circular cofferdam model since total head values at tip of the sheet 

pile along the cofferdam perimeter remains constant. Therefore, it is expected that the accuracy 

of experimental results is slightly low with square cofferdams (especially for flow rate 

estimation) compared to that for the circular cofferdams. This is observed in our comparison 

analysis also since the numerical estimations of the flow rate for the circular cofferdams deviate 

within ±5 % as shown in chapter 4 (see. Fig. 4.2) while this is within ±10% for the square 

cofferdams. Consequently, it can be concluded that the 3D model proposed above for 

simulating the square cofferdams is within the sufficient accuracy for analysing the seepage 

beneath the square cofferdams.    

 

Sensitivity analysis  

Next, a sensitivity analysis was conducted to determine the safe distance from sheet pile wall 

to the model’s boundary (𝐵𝑒) ensuring that its effect on the seepage results is insignificant. Fig. 

6.3 shows the sensitivity analysis results conducted for nine geometries considering three 𝐵/𝑇 

values of 0.2, 0.5 and 0.8 at 𝑠/𝑇 = 0.5.  For each 𝐵/𝑇, three excavation depth values were also 

considered (α = 0, 0.4 and 0.8) since these combinations give representative results for all cases. 

Next, for each geometry, the distance 𝐵𝑒  was varied by increasing the (𝐵 + 𝐵𝑒)/𝐵 ratio from 

2 to 6. The safe distance for 𝐵𝑒 was selected in the way that percentage increment of flow rate 
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𝑞𝑠 and exit gradient values (𝑖𝐸𝑀 and 𝑖𝐸𝐶) when the geometry changing from one-step of        

(𝐵 + 𝐵𝑒)/𝐵 to the next step is around 1% or lower. Analysis showed that it is negligible the 

increments of values when (𝐵 + 𝐵𝑒)/𝐵 ratio changing from 5 to 6 for all the cases (see Fig. 

6.3a for 𝑞𝑠, 6.3b for 𝑖𝐸𝑀  and 6.3c for 𝑖𝐸𝐶). Therefore, 𝐵𝑒  was selected when the ratio (𝐵 +

𝐵𝑒)/𝐵 equals or greater than 5, and hence, the distance 𝐵𝑒  should be equal or larger than 4B. 

Then, proposed 3D numerical model was used to assess the accuracy of the two approximate 

solutions methods discussed in Sec. 6.2.      

 

Fig. 6.3 Sensitivity analysis results for square cofferdams: (a) flow rate; (b) exit hydraulic 

gradient at mid-point 𝑖𝐸𝑀; (c) exit hydraulic gradient at corner 𝑖𝐸𝐶 
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6.2.2 Accuracy assessment of current approximate seepage solution methods for square 

cofferdams 

For the assessment of two approximate solution methods mentioned in Sec. 6.2, series of square 

cofferdam geometries (45 cases) were studied considering three 𝐵/𝑇 values, three 𝑠/𝑇 values 

and five excavation depths (α = 0, 0.2, 0.4, 0.6 and 0.8). The range of geometries studied is 

shown in Table 6.2. For each geometry, actual flow rate 𝑞𝑠 and exit gradient values (𝑖𝐸𝐶 and 

𝑖𝐸𝑀 ) calculated using 3D simulations were compared among the estimated values by the two 

methods mentioned in Sec. 6.2. All 3D simulations were carried out considering the offshore 

cofferdam model (Fig. 6.1a) since the results are valid and conservative for onshore cases also, 

as pointed in chapters 3 and 4. In each case, 𝑞𝑠 , 𝑖𝐸𝐶 and 𝑖𝐸𝑀  values were calculated. Next, for 

each square geometry studied, corresponding double-walled (Cartesian flow) and circular 

cofferdams (axisymmetric flow) were analysed (i.e., r = B for the circular cofferdam and L = 

B for the double-walled one) using the 2D numerical simulation procedures discussed in 

chapter 3 and 4, respectively. For each of the circular and double-walled cofferdam, flow rate 

(𝑞𝑐 and 𝑞𝑑) and maximum exit hydraulic gradient 𝑖𝐸 values were calculated. Here,  𝑞𝑐 is the 

flow rate of circular cofferdam per meter length of the perimeter while  𝑞𝑑 is the flow rate per 

meter length of half the section of double-walled cofferdam.  

 

Accuracy assessment for flow rate estimation  

For the assessment also, 45 cases shown in Table 6.2 were considered. Then, flow rate values 

of square cofferdams 𝑞𝑠 calculated using numerical simulations were plotted against the 

corresponding flow rate values of 𝑞𝑐 and 𝑞𝑑 , separately as shown in Fig. 6.4. For the square 

cases, cofferdam perimeter equals to the 8B while this is 2πr for the circular cofferdams. Both 

𝑞𝑐 and 𝑞𝑑 show strong linear relationships to the 𝑞𝑠.   
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Table 6.2 Geometry range used for square cofferdam analysis 

 

 

 

Fig. 6.4 Relationships between 2D flow rates (𝑞𝑐 and 𝑞𝑑) to the 3D flow rate 𝑞𝑠 into square 

cofferdam: (a) axisymmetric flow; (b) Cartesian flow 

From Fig.6.4a,  

𝑞𝑠 = 1.07𝑞𝑐                                                                                                                                         (6. 1)  

B/T s/T

0.50 0,0.2,0.4,0.6,0.8

0.20 0,0.2,0.4,0.6,0.8

0.50 0,0.2,0.4,0.6,0.8

0.80

α

0.80 0,0.2,0.4,0.6,0.8

0.20

0.50

0,0.2,0.4,0.6,0.8

0.80

0.20

0.50

0.80

0,0.2,0.4,0.6,0.8

0,0.2,0.4,0.6,0.8

0,0.2,0.4,0.6,0.8

0.20 0,0.2,0.4,0.6,0.8
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Then, total flow rate 𝑄𝑠  into the square cofferdam can be estimated multiplying 𝑞𝑠 by the 

perimeter and hence: 

𝑄𝑠 = 1.07𝑞𝑐8𝐵 = 8.56𝑞𝑐𝐵                                                                                                             (6. 2) 
     

For square cofferdam approximated as an equivalent circular cofferdam of the same width (i.e., 

r = B), the total flow into the excavation 𝑄𝑠 is given by: 

𝑄𝑠 = 𝑞𝑐2𝜋𝐵 = 6.28𝑞𝑐𝐵                                                                                                                   (6. 3) 

Therefore, from Eqs. 6.2 and 6.3, it can be seen that treating a square cofferdam as an equivalent 

circular cofferdam underestimates the flow rate by 27%. 

 

Similarly, from Figure 6.4b, 𝑄𝑠 can be estimated using the flow rate values of double-walled 

cofferdams  𝑞𝑑 as: 

𝑄𝑠 = 0.97𝑞𝑑8𝐵 = 7.7𝑞𝑑𝐵                                                                                                               (6. 4) 
          

Next, the expression proposed in the CFEM (2006) for predicting the flow rate into the square 

cofferdam using double-walled figures was compared against the 𝑞𝑠 − 𝑞𝑑   relation found in 

this study (Eq. 6.4). Considering the half width of the square cofferdam as B, the expression in 

the CFEM (2006) can be presented as: 

𝑄𝑠 = 0.7 [
𝑘ℎ

𝛷𝐴 + 𝛷𝐶
] 8𝐵                                                                                                                    (6. 5) 

           

The term [ kh

ΦA+ΦC
] provides the flow rate per meter length into the half section of double-walled 

cofferdam using the method of fragments (MoF) where 𝛷Aand 𝛷C are the form factors of the 

fragments A and C (see Fig. 3.1 and Eq. 3.1). Chapter 3 found a very good similarity between 

numerical model simulation results and MoF solutions for series of double-walled cofferdam 

geometries. Therefore, the term  [ 𝑘ℎ

𝛷A+𝛷C
] in Eq. 6.5 can be replaced by the numerical simulation 

result 𝑞𝑑 for the double-walled cofferdams, and hence the CFEM (2006) expression becomes:    
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𝑄𝑠 = 0.7𝑞𝑑8𝐵 = 5.6𝑞𝑑𝐵                                                                                                                 (6. 6) 
                  

Comparing Eqs.6.4 and 6.6, it is clear that CFEM (2006) predictions are significantly lower 

than the predictions by the 𝑞𝑠 − 𝑞𝑑 expression (Eq. 6.4) developed in this study. To compare 

these two equations further (to see their deviation from the actual flow rate), predictions by 

Eqs. 6.4 and 6.6 are plotted against the actual total flow rate 𝑄𝑠 (determined from the 3D 

numerical model), in a same graph as shown in Fig. 6.5. It shows that, most predictions by Eq. 

6.6 are underestimates, i.e., 37/45 (82%) with maximum deviation of 40%. Also, only 12 points 

remain within the range of ± 15% while 8 points are overestimated limiting the maximum 

deviation to 32%. However, for Eq. 6.4, 25 points (56%) remain within ± 15% while maximum 

underestimation limits to 16%. Here 19 points are overestimated extending maximum deviation 

up to 83%. Note that, the few cases where overestimations are largest (i.e. > 50%) for the cases 

having less significance in practice (𝑠/𝑇 < 0.2).  

 

Fig. 6.5 Deviation of the flow rate predictions of square cofferdam by Eq. 6 and Eq. 8 from 

the actual flow rate 
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Considering all, it can be concluded that Eq. 6.4 predicts the flow rate better compared to the 

expression proposed in the CFEM (2006). Also, CFEM (2006) uses 𝛷A and 𝛷𝐶  (referred to as 

1 and 2) without explicitly saying that they are the form factors used in MoF. Fig. 6.6 shows 

the geometry of double-walled cofferdam and the form factor chart used in CFEM (2006). It 

suggests computing these form factors from this chart by treating the two fragments (fragments 

A and C discussed in chapter 3) similar to the fragment C, but they are not similar. Fragment 

C has a width of L while fragment A extends to infinity horizontally (see Fig. 3.1). Since form 

factor is a measure of the resistance to the flow based on the geometrical constraints (i.e., flow 

boundaries), not considering the infinite lateral extent of the fragment A overestimates A and 

hence, underestimates the flow rate. Also fragment A form factors are only a function of the 

s/T, as pointed in Sec. 3.4.2 of chapter 3. However, CFEM can still be used to estimate 𝛷𝐴  

using the same chart but based on  𝑑1/𝑇1 and 𝑇2/𝑏 = 0. Note that, 𝑑1/𝑇1 and 𝑑2/𝑇2 ratios used 

in CFEM (see Fig. 6.6) are the same ratios defined as 𝑠/𝑇 and 𝑠𝐶/𝑇𝐶 in chapter 3 while b 

represents the half-width of cofferdam which is defined as L in this dissertation.   

 

Fig. 6.6 Double-walled cofferdam geometry and form factors chart used in CFEM (2006) 

[adopted from (CFEM 2006)] 
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Accuracy assessment for exit hydraulic gradients estimations  

For the assessment, 𝑖𝐸𝑀 and 𝑖𝐸𝐶 values calculated by 3D numerical simulation were plotted 

against the 𝑖𝐸  values (obtained using 2D numerical simulations) of corresponding circular and 

double-walled cofferdams in Fig. 6.7. Fig. 6.7a shows the relation based on the 𝑖𝐸 values of 

circular cofferdams where the left one is for the 𝑖𝐸𝑀  and right one is for the 𝑖𝐸𝐶. The 

corresponding results based on the 𝑖𝐸 values of double-walled cofferdams are shown in the Fig. 

6.7b. Here also, both circular and double-walled 𝑖𝐸 values show strong linear relationship with 

both 𝑖𝐸𝑀 and 𝑖𝐸𝐶. 

 

Fig. 6.7 Relationships between 2D exit hydraulic gradient 𝑖𝐸 values and 𝑖𝐸𝑀 and 𝑖𝐸𝐶  values 

of square cofferdams: (a) circular cofferdam; (b) double-walled cofferdam 

From Fig. 6.7a, 

𝑖𝐸𝑀 = 0.9𝑖𝐸                                                                                                                                           (6. 7) 
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𝑖𝐸𝐶 = 1.24𝑖𝐸                                                                                                                                         (6. 8) 
                                                      

Then, it is observed that treating a square cofferdam as an equivalent circular cofferdam 

overestimates 𝑖𝐸𝑀 by 11% (see Eq. 6.7); however, it underestimates 𝑖𝐸𝐶 by 19% (see Eq. 6.8). 

Therefore, approximate solution 1 discussed in Sec. 6.2 (replacing a square cofferdam by the 

equivalent circular one) is not recommended.   

 

From Fig. 6.9b,   

𝑖𝐸𝑀 = 1.26𝑖𝐸                                                                                                                                        (6. 9) 
                                

𝑖𝐸𝐶 = 1.75𝑖𝐸                                                                                                                                      (6. 10) 
          

CFEM (2006) provides Eqs. 6.11 and 6.12 for determining 𝑖𝐸𝑀 and 𝑖𝐸𝐶, respectively, and they 

are in very good agreement with Eqs. 6.9 and 6.10.  

𝑖𝐸𝑀 = 1.3𝑖𝐸                                                                                                                                        (6. 11) 
                             

𝑖𝐸𝐶 = 1.7𝑖𝐸                                                                                                                                         (6. 12) 

However, 𝑖𝐸𝑀 and 𝑖𝐸𝐶values given in CFEM are the average values of the hydraulic gradients 

at the mid-point and corner. These values are averaged over the entire embedment depth (1 −

𝑠) within the cofferdam enclosure. The values computed from Eqs. 6.9 and 6.10 are determined 

exactly at the point of exit and hence the true exit hydraulic gradients. The average values 

computed over the embedment depth can be expected to be less. 

 

Next a detailed analysis was carried out to assess the accuracy of Eqs.  6.7 - 6.10 comparing 

the predictions by above equations to the actual values obtained by 3D simulation for the square 

cofferdam geometries shown in Table 6.2. Fig. 6.8a shows the comparisons based on the 

circular cofferdam relations (Eqs. 6.7 and 6.8) while Fig. 6.8b is for the double-walled 

cofferdam case (Eqs. 6.9 and 6.10). For the 𝑖𝐸𝑀 estimation, predictions using 𝑖𝐸 of circular 
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cofferdam (Fig. 6.8a left) is more accurate than the double-walled one (Fig. 6.8b left). In Fig. 

6.8a left, all the predictions are within ± 10% while only 27out of 45 predictions by Eq.6.9 

(Fig. 6.8b left) are within ± 10%. In addition, 14 predictions by Eq. 6.9 are on the unsafe side 

with the deviation exceeding 10%, and the maximum deviation being 25%. Therefore, Eq. 6.7 

is better than Eq. 6.9 for estimating 𝑖𝐸𝑀.   

 

Fig. 6.8 Comparison of the exit gradient predictions using 2D flow patterns: (a) circular 

cofferdam; (b) double-walled cofferdam 

In the 𝑖𝐸𝐶  estimations, most of the predictions by both Eqs. 6.8 and 6.10 are on the conservative 

side, i.e., 36/45 and 35/45 predictions from Eq. 6.8 and Eq. 6.10, respectively, overestimating 

the 𝑖𝐸𝐶. However, most of the predictions (30/45) by the Eq. 6.10 are within the ± 15% while 

it is only (20/45) for the Eq. 6.8. Also, maximum deviation to the unsafe side is 22% by the Eq. 

6.8, but this is within 15% for Eq. 6.10 predictions. In contrast, maximum overestimate 

prediction by the Eq. 6.8 is 28% while it is 37% with the Eq. 6.10. Therefore, between the two 
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methods (Eqs 6.8 and 6.10), one is not significantly better than the other. Also, in Fig. 6.8 or 

from the Eqs. 6.7 - 6.10, it is observed that 𝑖𝐸𝐶  and 𝑖𝐸𝑀  are related as: 

𝑖𝐸𝐶

𝑖𝐸𝑀
= 1.38                                                                                                                                      (6. 13) 

                              

This relation is useful since one exit hydraulic gradient can be determined from the other for 

square cofferdams.   

 

Considering all, it can be concluded that existing approximate solution methods (mentioned in 

Sec. 6.2) tend to underestimate the seepage solutions of square cofferdams and hence, are not 

accurate enough for the preliminary estimations. Therefore, following solutions are proposed 

using the above analysis.  

 

6.2.3 Proposed solution method for square cofferdams  

Flow rate estimation 

From, Fig. 6.4, it is clear that, the 𝑞𝑠 − 𝑞𝑐 relation is stronger than the 𝑞𝑠 − 𝑞𝑑 relation, with 

slightly higher coefficient of determination (R2). For a detailed assessment of the accuracy of 

the two relations  (𝑞𝑠 − 𝑞𝑐 and  𝑞𝑠 − 𝑞𝑑),   total flow into the square cofferdam 𝑄𝑠 computed 

using Eqs. 6.2 and 6.4 were compared in Fig. 6.9 with the actual values determined from the 

3D numerical simulations. For this comparison also, same 45 geometries shown in Table 6.2 

were considered. In Fig. 6.9a, 30 points out of the 45 (67%) are within the ± 15% while it is 25 

(56%) in the Fig 6.9b. In addition, maximum underestimation of the flow rate is 11% for the 

Eq. 6.2 (Fig. 6.9a) while this is 16% for the Eq. 6.4 (Fig. 6.9b). Further, maximum 

overestimation is by 37% for Eq. 6.2 with only 8 cases greater than the 30%. In Fig.6.9b (for 

Eq. 6.4), maximum overestimation was 83% with 8 cases exceeding 50%. Therefore, it can be 
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concluded that deriving the flow rates for a square cofferdam based on circular cofferdam (Eq. 

6.2) is better than those derived from the double-walled cofferdam (Eq. 6.4).  

 

Fig.6.9 Comparison of the flow rate predictions for square cofferdams using 2D flow 

patterns: (a) circular cofferdam; (b) double-walled cofferdam 

Exit hydraulic gradients estimation  

As noted in Fig. 6.8, Eq. 6.7 is more accurate for estimating the exit gradient 𝑖𝐸𝑀 at the mid-

point of the square cofferdam, and numerical simulation or method of fragment (MoF) 

solutions given in chapter 4 can be used for finding the corresponding 𝑖𝐸 value of circular 

cofferdam. In predicting the 𝑖𝐸𝐶 both double-walled based or circular based relationships 

(Eqs.6.8 or 6.10) can be used, depending on which of the 2D exit gradient values is available. 

Alternatively, 𝑖𝐸𝐶 can be determined as 1.38 𝑖𝐸𝑀(see Eq. 6.13). For both cases, 2D numerical 

simulation or MoF solutions provide the necessary value for the equivalent circular or double 

walled cofferdam.   

 

Further, flow patterns into the square, circular and double-walled cofferdams were compared 

studying the equipotential lines behaviour for a series of geometry. Fig. 6.10a shows the 

distribution of equipotential lines at h/10 intervals of square cofferdams at three cofferdam 
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widths (𝐵/𝑇 = 0.2, 0.5 and 0.8) for the 𝑠/𝑇 = 0.5 and α = 0.4. Fig. 6.10b shows the equipotential 

lines distribution for the corresponding circular cofferdams (i.e., B = r) while Fig. 6.10c gives 

corresponding distributions for double-walled cofferdams (i.e., B = L). It shows that there is 

good similarity between flow patterns into the circular and square cofferdams than between 

square and double-walled cofferdams. That is due to both flow patterns into the circular and 

square cofferdams are 3D while it is 2D in double-walled case. Therefore, it is confirmed that 

applying a correction factor to the seepage solutions of circular cofferdams (Eqs. 6.2, 6.7 and 

6.8) can be used to predict more accurate seepage solutions for square cofferdams than the 

predictions given by correction factors applied to double-walled (2D) figures (Eq. 6.4, 6.9).    

 

Fig. 6.10 Equipotential lines distributions: (a) square cofferdams; (b) circular cofferdams;     

(c) double-walled cofferdams 

 

In Summary, it can be concluded that the flow rate into a square cofferdam is better predicted 

using 𝑞𝑐 computed for a circular cofferdam of the same width by Eq. 6.2 than 𝑞𝑑 computed for 
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the corresponding double-walled cofferdam using Eq. 6.4 or 6.6. The 𝑞𝑐 for the circular 

cofferdam can be determined through the 2D simulation as the axisymmetric problem or more 

easily, via the method of fragment (MoF) solution proposed in chapter 4. However, current 

industry practice, (i.e., replacing the square cofferdam by an equivalent circular one without 

applying the correction factor) is discouraged since flow into a circular cofferdam is about 27% 

less than the flow into a square cofferdam of the same width (see Eqs. 6.2 and 6.3). 

 

6.3 Seepage solution for rectangular cofferdams 

As discussed previously, the only accurate solution method available for rectangular 

cofferdams is the 3D numerical simulation. However, due to the cost and advanced resource 

requirement for 3D simulation, these problems are solved as 2D problems in Cartesian 

coordinate system (i.e., as double-walled cofferdams). Nevertheless, this approximation is 

unsafe especially when the cofferdam length is not considerably larger than its width since the 

actual flow into the cofferdam is in three-dimensional in these situations. This can significantly 

underestimate the exit hydraulic gradient and the flow rate values. Therefore, a thorough 

analysis was performed in this section to identify a safe length to width ratio at which 2D 

approximation is reasonable (neglecting the effects of two shorter sides) and also to develop 

accurate solution method when the length to width ratio is low (i.e., it is required to consider 

3D flow effect into the cofferdam) for rectangular cofferdams. 

 

6.3.1 Numerical simulations of rectangular cofferdams 

Fig. 6.11 shows the numerical model used for rectangular cofferdam analysis using the 3D 

finite element program (RS3 2.0) developed by Rocscience.  Here also, only a quadrant was 

analysed, taking the advantage of symmetry. The boundary conditions and the parameters h, s, 

αs and T are defined in the same way discussed for the square cofferdam modelling (see Fig. 
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6.1a left). Here B is the half-width of the shorter side of the cofferdam while l represents the 

half-length of the longer side. Therefore, the ratio 𝑙/𝐵 equals to the length/width ratio of 

cofferdam. 𝐵𝑒 and 𝑙𝑒 are the distances from the sheet pile wall to the model’s boundaries of 

shorter and longer side, respectively.   

 

All the numerical runs were carried out as flow only problems, and a graded mesh was applied 

with ten-noded tetrahedral elements for meshing. The distances 𝐵𝑒 and 𝑙𝑒 were selected through 

a sensitivity analysis in a similar way discussed for the square cofferdam analysis, i.e., further 

increasing of 𝐵𝑒  and 𝑙𝑒 beyond the selected values increase the flow rate and exit hydraulic 

gradient values only by 1% or lower. Analysis showed that it is negligible the increments of 

values when (𝐵 + 𝐵𝑒)/𝐵 and (𝑙 + 𝑙𝑒)/𝑙 ratios changing from 5 to 6 for all the geometries. 

Therefore, the distances 𝐵𝑒 and 𝑙𝑒 were selected as equal or larger than 4B and 4l, respectively. 

In all the simulations, values of T and h were kept constant, with 20 m and 10 m, respectively. 

The soil was treated as completely saturated and isotropic (R = 1) with permeability of 10-5 

m/s.   
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Fig. 6.11 Numerical model geometry used for rectangular cofferdams 

 

6.3.2 Accuracy assessment of double-walled approximation to the seepage solutions for 

rectangular cofferdams  

For the analysis, seven 𝑙/𝐵 ratios were considered as 1, 1.5, 2, 3, 5, 10 and 20, assuming that 

the geometries where 𝑙/𝐵 ratio greater than 20 are rarely seen. For each 𝑙/𝐵 ratio, 45 

geometries were analysed, considering three 𝐵/𝑇 values (0.2, 0.5 and 0.8), three 𝑠/𝑇  values 

(0.2, 0.5 and 0.8) and five excavation depths αs (for α 0, 0.2, 0.4, 0.6 and 0.8), similar to the 

way that the square cofferdams were analysed. In each case, flow rate and the three exit 

hydraulic gradient values adjacent to the sheet pile walls (𝑖𝐸𝐶, 𝑖𝐸𝑆   and 𝑖𝐸𝐿) were calculated. 𝑖𝐸𝐶 

is the exit hydraulic gradient at the corner of the rectangular cofferdam while 𝑖𝐸𝑆  and 𝑖𝐸𝐿  give 

exit hydraulic gradients at the mid-points of the shorter side and longer side, respectively (see 

Fig. 6.11). Next, for each rectangular geometry, flow rate 𝑞𝑑 (per meter length of perimeter of 
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half the section) and exit hydraulic gradient 𝑖𝐸 of the corresponding double-walled cofferdam 

were calculated.  

 

Accuracy assessment for flow rate estimation  

For the assessment, 315 geometries were considered with 45 for each of the seven l/B ratios.  

Then calculated flow rate for the rectangular cofferdams using the 3D simulation was divided 

by relevant l value (neglecting the flow across the shorter side) to find the flow rate per meter 

length along the longer side 𝑞𝑟 for each model, considering the double-walled approximation. 

Then, for each the 𝑙/𝐵 ratio, 𝑞𝑟 values were plotted against the corresponding flow rate of the 

double-walled cofferdams 𝑞𝑑, in separate graphs. The graph for 𝑙/𝐵 = 3.0 is shown in Fig. 

6.12. Appendix D1 shows the graphs for rest of the 𝑙/𝐵  ratios considered in this dissertation. 

Fig. 6.12 shows strong linear relationship between 𝑞𝑟 and 𝑞𝑑 in the form of   𝑞𝑟 = 𝑎𝑞𝑑 .  Also, 

it shows that, approximating a rectangular cofferdam having the 𝑙/𝐵 ratio of 3 to the 

corresponding double-walled cofferdam tends to underestimate the flow rate by 32%. The 

multipliers calculated for other 𝑙/𝐵 values are given in Table 6.3.   

 

Fig. 6.12 Relationship between double-walled flow rate to the 3D flow rate into rectangular 

cofferdam at 𝑙/𝐵 = 3 
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Table 6.3 Summary of the flow rate analysis of rectangular cofferdam  

l/B a R2 

1 1.94 0.92 

1.5 1.71 0.94 

2 1.61 0.95 

3 1.48 0.96 

5 1.37 0.97 

10 1.29 0.97 

20 1.25 0.97 

 

Results in the Table 6.3 show that even for 𝑙/𝐵 as high as 20, assuming 𝑙/𝐵 as infinite 

(approximating the rectangular cofferdam to the double-walled one) tends to underestimate the 

flow rate by about 20%, requiring a multiplication factor a of 1.25. Note that, derived a value 

here is the average value for 𝑙/𝐵 = 20 covering a wider range of geometries, i.e., three 𝐵/𝑇 

values (0.2, 0.5 and 0.8), three 𝑠/𝑇 values (0.2, 0.5 and 0.8) and five excavation depths αs (for 

α 0, 0.2,0.4,0.6 and 0.8). Therefore, the ratio 𝑙/𝐵 , at which, the shorter side can be neglected, 

and the problem can be treated as a double-walled, depends on 𝐵/𝑇, 𝑠/𝑇 and . However, it is 

not possible to arrive at a single limiting value of 𝑙/𝐵 within the range considered in this study 

(𝑙/𝐵 ≤ 20) beyond which such approximation holds in terms of flow rate estimation. 

 

Accuracy assessment for exit hydraulic gradients estimation  

The 45 geometries shown in Table 6.2 were considered again at the same l/B ratios (1, 1.5, 2, 

3, 5, 10 and 20) discussed above making a total of 315 geometries to assess the accuracy of 

exit hydraulic gradient predictions. For each geometry, three exit gradient values mentioned 

previously (𝑖𝐸𝐶, 𝑖𝐸𝑆  and 𝑖𝐸𝐿) were determined using the 3D simulation. Next, for each 𝑙/𝐵 ratio, 

these three exit gradient values were plotted in three separate graphs against the exit hydraulic 
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gradient 𝑖𝐸 values of corresponding double-walled cofferdams. The graph for 𝑖𝐸𝐶 at 𝑙/𝐵 = 3 

is shown in Fig. 6.13, and here, 𝑖𝐸𝐶 relates strongly to the corresponding 𝑖𝐸 of the double-

walled cofferdam in the form of  𝑖𝐸𝐶 = 𝑏𝑖𝐸. All three exit hydraulic gradient values (𝑖𝐸𝐿, 𝑖𝐸𝑆  

and 𝑖𝐸𝐶) for each case of 𝑙/𝐵 showed similarly strong relation to the  𝑖𝐸 of double-walled 

cofferdams. Appendices D2 and D3 show the plotted graphs for 𝑖𝐸𝐿 and 𝑖𝐸𝑆 for all the 𝑙/𝐵 

ratios while appendix D4 shows the graphs of rest of the 𝑙/𝐵 ratios (except 𝑙/𝐵 = 3) for 𝑖𝐸𝐶 .    

The summary of the analysis is given in Table 6.4.      

 

Fig. 6.13 Relationship between double-walled exit gradient to the actual exit gradient values 

of rectangular cofferdams at 𝑙/𝐵 =  3 

The results show that the highest exit gradient values are reported for the corner (𝑖𝐸𝐶) where 

the seepage forces concentrate more strongly compared to the mid sections of the two sides. 

Also, the second largest exit hydraulic gradient is reported for 𝑖𝐸𝑆 i.e., at the mid-point of the 

shorter side while 𝑖𝐸𝐿  is the lowest. This is due to the higher concentration of streamlines at the 

shorter side compared to that for the longer side.  So, 𝑖𝐸𝐶  and 𝑖𝐸𝑆 are the two important exit 

gradient values in terms of piping failure assessment.  

 



Chapter 6 

 

169 
 

For 𝑙/𝐵  3, b remains constant for all three locations, implying that the 𝑖𝐸𝐶, 𝑖𝐸𝑆  and 𝑖𝐸𝐿 values 

remain constants too. Also, for the 𝑖𝐸𝐶  and 𝑖𝐸𝑆  estimations, the two critical locations, there is 

only a slight reduction in b value when 𝑙/𝐵 changes from 1 to 3. Therefore, even for 𝑙/𝐵 values 

as high as 20, the two critical exit hydraulic gradients 𝑖𝐸𝐶 and 𝑖𝐸𝑆 are significantly higher than 

what is derived from a 2D approximation, (neglecting the effects of shorter sides), and hence, 

assuming as a double-walled cofferdam is not recommended for exit hydraulic gradients 

estimation for any values of 𝑙/𝐵 in terms of 𝑖𝐸𝐶 and 𝑖𝐸𝑆. 

Table 6.4 Summary of the exit gradient estimation relations for rectangular cofferdam 

l/B 
iEL iES iEC 

b R2 b R2 b R2 

1 1.26 0.97 1.26 0.97 1.75 0.97 

1.5 1.15 0.98 1.22 0.98 1.69 0.97 

2 1.10 0.99 1.21 0.98 1.68 0.97 

3 1.05 0.99 1.19 0.98 1.67 0.97 

5 1.02 0.99 1.19 0.98 1.66 0.97 

10 1.00 0.99 1.19 0.98 1.66 0.97 

20 1.00 0.99 1.19 0.98 1.66 0.97 

 

 

6.3.3 Proposed solution method for rectangular cofferdams  

Flow rate estimation 

The variation of a against 𝑙/𝐵 is shown in Fig. 6.14, and using that, the relationship between a 

and 𝑙/𝐵 can be defined as:  

𝑎 = 1.81(𝑙 𝐵⁄ )−0.14                                                                                                                         (6. 14) 
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Accordingly,  total flow rate into the rectangular cofferdam 𝑄𝑟 when 0 < 𝑙 𝐵 ≤ 20⁄   can be 

estimated as: 

𝑄𝑟 = 𝑎𝑞𝑑4𝑙 = 4𝑎𝑞𝑑𝑙                                                                                                                      (6. 15) 

As noted before, it is uncommon to see  a rectangular cofferdams with 𝑙/𝐵 ratio greater than 

20; however, authors suggest using a = 1.19 predicted by Eq. 6.14 at 𝑙/𝐵 = 20 for any 

geometries having a larger  𝑙/𝐵 ratio than 20.  

 

Fig. 6.14 Relationship of a value to the 𝑙/𝐵 ratio 

 

The proposed solution method (Eq. 6.15) was validated at l/B = 3 covering a wider geometry 

range for 𝐵/𝑇, 𝑠/𝑇 and α (45 cases shown in Table 6.2) through the steps mentioned below.  

1. Estimated a value at l/B =3 from Eq. 6.14, and it was 1.55. 

2. Predicted the total flow rate  𝑄𝑟 from the Eq. 6.15 and compared the predictions against 

the actual flow rate estimated by the 3D simulation for all 45 cases. The comparison 

result is shown in the Fig. 6.15.  

In Fig. 6.15, most of the predictions (28/45) are within ±15% limiting the maximum 

underestimation is less than 5%. Also, for the 9 cases, where the flowrate is overestimated by 

25% or more the geometries correspond to cases having very little significance in practice 
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where B/T = 0.2 and s/T values equal to 0.5 and 0.8. Overall, proposed Eq. 6.15 provides 

reasonable estimates of flow rate, and the few predictions where deviations are large are on the 

conservative side.  

 

 

Fig. 6.15 Comparison of the flow rate predictions for rectangular cofferdam at 𝑙/𝐵 = 3 

Exit hydraulic gradients estimation  

Using the results shown in Table 6.4, b can be conservatively taken as 1.75 and 1.26 for 𝑖𝐸𝐶 

and 𝑖𝐸𝑆  estimations, respectively for all 𝑙/𝐵 values. Accordingly, following equations are 

proposed for 𝑖𝐸𝐶 and 𝑖𝐸𝑆 for all rectangular cofferdams:     

𝑖𝐸𝐶 = 1.75𝑖𝐸                                                                                                                                      (6. 16) 

        

𝑖𝐸𝑆 = 1.26𝑖𝐸                                                                                                                                       (6. 17) 
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However, the change of b for 𝑖𝐸𝐿  estimation is considerable compared to the 𝑖𝐸𝐶 and 𝑖𝐸𝑆   

estimations. Then, a graph was plotted for estimating the b value for the 0 < 𝑙 𝐵 ≤ 3⁄   as shown 

in Fig. 6.16.   

 

Fig. 6.16 Relationship of b value to the 𝑙/𝐵 ratio on 𝑖𝐸𝐿  estimation 

The relation of b to the 𝑙/𝐵 is given as:  

𝑏 = 1.25(𝑙 𝐵⁄ )−0.16                                                                                                                         (6. 18) 
   

Accordingly, 𝑖𝐸𝐿 can be estimated when 0 < 𝑙 𝐵 ≤ 3⁄  as: 

𝑖𝐸𝐿 = 𝑏𝑖𝐸                                                                                                                                            (6. 19)
                                              

When the 𝑙/𝐵 ratio is greater than 3, it is suggested to conservatively use same b value when 

𝑙/𝐵  is at 3. Also, at 𝑙/𝐵 = 3, b  1 and hence, a rectangular cofferdam can be analysed as 

corresponding double-walled one, but only for estimating the 𝑖𝐸𝐿 for 𝑙/𝐵 ≥ 3.  As noted before, 

engineer should be more interested in 𝑖𝐸𝐶 and 𝑖𝐸𝑆 since any potential piping may occur at the 

corner or at the middle of short side where exit hydraulic gradient are highest. So, there is no 

significance of approximating a rectangular cofferdam to the corresponding double-walled one 

only for estimating the 𝑖𝐸𝐿. 
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The proposed solutions for the exit hydraulic gradient estimations of rectangular cofferdams 

[Eqs. 6.16, 6.17, and 6.19] were also validated considering the same 45 geometries used before 

for flow rate estimation validation at 𝑙/𝐵 = 3. Here, 𝑖𝐸𝐶, 𝑖𝐸𝑆  and 𝑖𝐸𝐿  were estimated using Eqs. 

6.16, 6.17 and 6.19, respectively and then were compared against the actual values calculated 

by 3D simulations.  Fig. 6.17 shows the validation results. In the 𝑖𝐸𝐶 estimation, 29 cases 

predicted by the proposed Eq. 6.16 are within ±15% while maximum underestimation is limited 

to 7% (Fig. 6.17a). Also 12 cases overestimated 𝑖𝐸𝐶 by more than 25%, but most of them are 

for the geometries with no significance in practical applications, i.e., 𝐵/𝑇 = 0.2. For the 𝑖𝐸𝑆 

estimations, 43/45 predictions are within ±15% (see Fig. 6.17b) while all the prediction for 𝑖𝐸𝐿 

(by Eq. 6.19) are within ±10% (Fig. 6.17c).  Therefore, it is concluded that proposed Eqs. 6.16, 

6.17 and 6.19 predict exit hydraulic gradient values for the rectangular cofferdams in good 

level of accuracy, and the few cases where the deviations are significant are always on the safe 

side.  
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Fig. 6.17 Comparison of the exit hydraulic gradient predictions for rectangular cofferdams:                 

(a) 𝑖𝐸𝐶; (b) 𝑖𝐸𝑆; (c) 𝑖𝐸𝐿 
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6.4 Summary and conclusions 

Simple solutions for estimating the flow rates and exit hydraulic gradients of square and 

rectangular cofferdams are presented. Both square and rectangular cases were studied 

separately. The proposed expressions for flow rate estimations are in the form of: 

𝑄3𝐷 = 𝑎𝑞2𝐷𝐶                                                                                                                                    (6. 20) 
                                                                                                                         

where 𝑄3𝐷 is the total flow rate into the square or rectangular cofferdam, a is a constant, and C 

is the perimeter length of the square cofferdams while it is the length of the two longer sides 

for rectangular cofferdams. 𝑞2𝐷 is the flow rate per meter length along the perimeter of the 

circular or double-walled cofferdam. When estimating the flow rate for a square cofferdam, it 

is suggested to use 𝑞2𝐷 from the circular cofferdam, with a = 1.07 (see Eq. 6.2). For a 

rectangular cofferdam, 𝑞2𝐷  values should be determined from the corresponding double-

walled cofferdam where a varies between 1.19 and 1.81 depending on the 𝑙/𝐵 ratio (see Eq. 

6.14). Also, it is not safe to consider a rectangular cofferdam as equivalent to the double-walled 

one even with l/B ratio as high as 20 in terms of flow rate estimation.  

 

In both square and rectangular cofferdams, it is shown that the exit hydraulic gradient is the 

maximum at the corner. Expressions for the exit hydraulic gradient at the corner 𝑖𝐸𝐶 and mid-

points of the two sides within the excavation are proposed (in rectangular cofferdams, one for 

short side 𝑖𝐸𝑆 and one for the long side 𝑖𝐸𝐿). All three exit gradients are of the form 

𝑖3𝐷 = 𝑏𝑖2𝐷                                                                                                                                         (6. 21) 
         

where 𝑖3𝐷 is the exit hydraulic gradient for the square or rectangular cofferdam, b is a constant, 

and 𝑖2𝐷 is the exit hydraulic gradient of the circular cofferdam for the square cases while it is 

for the double-walled cofferdam for the rectangular cases. In square cofferdams, b = 1.24 for 

the corner and b = 0.90 for the mid-point of any side. In rectangular cofferdams, b = 1.75 for 
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the corner and 1.26 for the mid-point of the short side, and these are independent of the 𝑙/𝐵 

ratio, and hence, there is no maximum value for 𝑙/𝐵 beyond which the problem can be assumed 

as double-walled cofferdam. For the mid-point of the long side in rectangular cofferdams, b 

varies between 1.05 and 1.25 depending on 𝑙/𝐵 (see Eq. 6.18). However, when the 𝑙/𝐵 ≥ 3, a 

rectangular cofferdam can be considered as a double-walled one, but only for estimating the 

exit hydraulic gradient value at the mid-point of the long side 𝑖𝐸𝐿. 

 

The proposed expressions were validated using series of finite element simulations and are 

very valuable for accurately estimating the flow rate and exit hydraulic gradient values when 

the flow pattern is in three-dimensional as in square or rectangular cofferdams. The solutions 

proposed in this chapter are applicable for the situation where the soil medium is isotropic and 

homogeneous, i.e., uniform soil thickness along the depth. However, when the soil medium is 

anisotropic and homogeneous, proposed solutions are still applicable with a reasonable 

accuracy since the MoF provides the facility to incorporate anisotropic condition in 

determining the form factors for both double-walled and circular cofferdam cases. For that, it 

requires to calculate relevant 2D solutions using the MoF first, and   then, proposed equations 

for the square or rectangular cofferdams can be used for finding the appropriate 3D solutions.  

The solutions proposed herein can be very useful as a design tool in providing reasonable 

estimates of the flow rate and exit hydraulic gradients, especially in preliminary assessments 

and for carrying out parametric studies, before going for a detailed analysis.  
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Chapter 7 Summary, Conclusions and Recomendations  

This chapter presents a summary of the dissertation, conclusions and recommendations for 

possible future research.  

 

7.1 Summary 

The aim of the dissertation was to develop simple seepage solutions for double-walled, circular, 

square and rectangular cofferdams using a simple solution method known as Method of 

fragments (MoF).   

 

Cofferdams are widely used as temporary water cut-off structures into the excavations in 

construction sites. Through a review of literature, it was found that flow rate and maximum 

exit hydraulic gradient are two of the main design parameters required for any shape of 

cofferdam, and, piping is the most common hydraulic failure mode.  Further it showed that 

flow into double-walled cofferdams can be analysed using a two-dimensional (2D) flow model 

in the Cartesian plane while it is required to consider three-dimensional (3D) flow models for 

circular, square and rectangular cofferdams. However, for circular cofferdams, 2D flow model 

can still be applied considering the problem in a radial plane (i.e., axisymmetric analysis). 

Literature review showed that MoF provides simple and quick seepage solutions for double-

walled cofferdams while numerical simulations remains as the only accurate solution method 

for circular, square and rectangular cofferdams.  

 

Griffiths (1984) developed MoF solutions for double-walled cofferdams, and in this method,  

half the flow domain of double-walled cofferdam is divided into two fragments namely, 

fragments A and C, using an assumed vertical equipotential line at tip of the sheet pile. Then, 

flow rate and maximum exit hydraulic gradient values are estimated using dimensionless 
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parameters known as form factors defined for each of the fragment. These form factors are 

functions only of the fragment geometry, and hence, MoF provides simple solutions. However, 

the accuracy of the MoF solutions depends on the validity of the assumption that the 

equipotential line at the tip of the sheet pile is vertical. Therefore, assessing the validity of MoF 

solutions for double-walled cofferdams is crucial to improve the applicability of MoF.  Further, 

there is a perceived benefit of having a similar solution method for circular, square and 

rectangular cofferdam problems. Therefore, this research was divided into four parts based on 

cofferdam shapes studied for the development of seepage solutions.  

 

The first part of the research evaluated the accuracy of the MoF solutions for double-walled 

cofferdams assessing the validity of the assumption (equipotential lines behaviour), and the 

effects of assumption deviation on the seepage solutions. For that, series of cofferdam 

geometries were simulated using the finite element software RS2 9.0 developed by Rocscience, 

and then, equipotential line behavior was studied. Next, numerical results were compared with 

the corresponding MoF solutions to see the effects of assumption deviation on the seepage 

solutions. It was found that, the assumption deviates considerably (i.e., equipotential lines are 

far from vertical) especially for low values of cofferdam width (𝐿𝑅/𝑇) and sheet pile embedded 

depth (𝑠/𝑇); however, equipotential lines become closer to the vertical when increasing the 

𝐿𝑅/𝑇 and  𝑠/𝑇 making the assumption to a reasonable one. In addition, excavation depth 𝛼𝑠 

has not significantly affected the equipotential line behaviour for moderate excavation depths 

(i.e., 𝛼𝑠 ≤ 0.4). Also, the effects of deviating the assumption were always on the conservative 

side providing higher flow rate and exit hydraulic gradient values. Therefore, MoF is a 

sufficiently accurate tool for estimating the seepage solutions for double-walled cofferdams. 

Next, MoF solutions were simplified further, defining three simple analytical expressions to 

estimate the form factors of the two fragments A and C and the dimensionless exit gradient 



Chapter 7 

 

179 
 

values of fragment C eliminating the use of MoF chart solutions. These expressions enable 

MoF be implemented through spreadsheets, and hence, are very useful for carrying out 

parametric studies for quick determination of the flow rate and the maximum exit hydraulic 

gradient values.  

 

In the second part of the research, a new solution method was developed to solve seepage 

problems pertaining to the circular cofferdams introducing an axisymmetric MoF solution 

method. Thus, two new axisymmetric fragment types (defined as fragments D and E) were 

developed considering the flow domain of a radial plane using an assumed vertical 

equipotential surface along the perimeter of the circular cofferdam. Hence, the accuracy of the 

axisymmetric MoF solutions depends on the assumption that the equipotential line at the tip of 

the sheet pile is vertical making a cylindrical equipotential surface along the perimeter of the 

cofferdam. So, the accuracy of the assumption on vertical equipotential surface was assessed 

studying the series of cofferdam geometries simulated using finite element software RS2 9.0. 

At this point, the analysis type was axisymmetric. It was observed that the accuracy of the 

assumption decreases when decreasing the values of cofferdam radius (𝑟𝑅/𝑇) and sheet pile 

embedded depth (𝑠/𝑇) and increases while increasing the 𝑟𝑅/𝑇 and  𝑠/𝑇. Here also, effect of 

excavation depth 𝛼𝑠 is not a concern for moderate excavations (i.e., 𝛼𝑠 ≤ 0.4). 

 

Next, three designed charts were developed including two for the axisymmetric form factor 

estimations of fragments D and E and one for the dimensionless exit hydraulic gradient 

estimations of fragment D using the series of numerical simulations of the two fragment 

geometries. The outcomes of the proposed axisymmetric MoF solutions were compared against 

the detailed numerical solutions, analytical work of Neveu (1972), and experimental results, 

and it was found that the axisymmetric MoF solution method is adequate for reasonable 
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estimates of the flow rate and exit hydraulic gradient of circular cofferdams. Then, 

axisymmetric MoF solution was simplified further developing three simple analytical 

expressions to estimate the form factors and exit hydraulic gradients. These expressions enable 

the axisymmetric MoF be implemented through spreadsheets, and hence, provide quicker 

determination of seepage solutions. This is very useful particularly for carrying out parametric 

studies.  

 

Third part of the research involved developing a first-order solution method to evaluate the   

safety against a possible piping failure for doubled-walled and circular cofferdams. The 

solutions provided the required shortest seepage path (creep length C) to limit the maximum 

exit hydraulic gradient to a specific value ensuring the safety against the piping failure. 

Alternatively, for a given configuration of the cofferdam, exit hydraulic gradient can also be 

estimated thus defining the factor of safety against piping. The exit hydraulic gradient values 

proposed include the mean, upper and lower bounds.  

 

In the final part of the research, simple solutions were developed for estimating the flow rates 

and exit hydraulic gradient values of square and rectangular cofferdams. Proposed solutions 

for square cofferdams involved applying correction factors to the seepage solutions of 

corresponding circular cofferdams while the solutions for rectangular cofferdams applied 

correction factors to the corresponding solutions of double-walled cofferdams. These 

correction factors were developed relating the actual seepage solutions for the series of square 

and rectangular cofferdam calculated using the 3D numerical simulations (by RS3 2.0 

developed by Rocscience) to the corresponding solutions derived for circular and double 

walled cofferdams using the RS2 9.0. The solutions proposed for square and rectangular 

cofferdams can be very useful as a design tool in providing accurate estimates of the flow rate 



Chapter 7 

 

181 
 

and exit hydraulic gradients, especially in preliminary assessments and for carrying out 

parametric studies, before going for a detailed analysis. 

 

7.2 Conclusions 

The main conclusions of the study are divided into four sections depending on the solution 

methods proposed for various cofferdam shapes in this dissertation.   

 

7.2.1 Method of Fragments (MoF) solutions for double-walled and circular cofferdams 

• MoF solutions provide efficient means of obtaining both the quantity of seepage and 

the exit hydatic gradient for virtually any double-walled or circular cofferdam geometry 

of practical interest.   

• MoF solutions can be applied for cofferdams founded on a homogeneous soil medium 

in both isotropic and anisotropic soil conditions where the depth of soil layer is finite, 

and the thickness of soil layer is uniform.  

• When the founding soil consists of two layers, MoF solutions can still be applied for 

double-walled cofferdams in conjunction with the solution method proposed by 

Polubarinova-Kochina (1962) for a two layered system.  

• MoF predictions are also always on the conservative side, and relative errors are within 

10% for most of the cases provided s/T > 0.2. When s/T ≤ 0.2, MoF still provides 

conservative solutions, but their level of accuracy is low (relative errors are between 10 

and 20%). However, these geometries are corresponding to the cases having low sheet 

pile embedded depth (s/T ≤ 0.2), and hence, are of no practical significance.  Therefore, 

this should not be a deterrent for using the MoF solutions in engineering practice. 
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• Predictions given by the developed analytical expressions for form factors and 

normalised exit hydraulic gradient estimations have the same level of accuracy to the 

predictions given by MoF chart solutions; therefore, these expressions can be used to 

find full seepage solutions for any geometry of the double-walled or circular cofferdam 

without using the numerical modelling or MoF chart solutions. 

 

7.2.2 Creep length solutions for piping failure assessment of double-walled and circular 

cofferdams 

• The proposed creep length solution methods can be applied for double-walled and 

circular cofferdams founded on a homogeneous soil medium in both isotropic and 

anisotropic conditions where the soli layer is finite and uniform in thickness. 

• These solutions provide reasonable first estimate for a possible piping failure in both 

double-walled and circular cofferdam cases by just considering only the shortest 

seepage path (creep length). 

• The proposed equations can be valuable tools for back-of-the-envelope calculations in 

the preliminary analysis while selecting the dimensions in a cofferdam. 

  

7.2.3  Approximate seepage solutions for square cofferdams 

• Currently used approximate solution methods for square cofferdams tend to 

underestimate the flow rate and exit hydraulic gradient values considerably. 

• The relation of the flow patterns into the circular and square cofferdams is stronger than 

that between the square and double-walled cofferdams. Therefore, applying a 

correction factor to the seepage solutions of circular cofferdams provides more accurate 

seepage solutions for square cofferdams than the predictions given by correction factors 

applied to the seepage solutions of double-walled cofferdams. 
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• Exit hydraulic gradient values are highest for the corner 𝑖𝐸𝐶 where the seepage forces 

concentrate more intensely while it is lowest at the mid sections of the two sides  𝑖𝐸𝑀. 

• Solution given in CFEM (2006) for estimating the flow rate and exit hydraulic gradient 

can be improved with the new solutions developed in this study.  

• The ratio 𝑖𝐸𝐶 

𝑖𝐸𝑀 
= 1.38, and hence, one exit hydraulic gradient can be determined from 

the other for square cofferdams. 

 

7.2.4 Approximate seepage solutions for rectangular cofferdams 

• It is unsafe to assume a rectangular cofferdam as a double-walled cofferdam even for 

length to width ratio (𝑙/𝐵) as high as 20 since it underestimates both flow rate and exit 

hydraulic gradient values.   

• Highest exit gradient values are reported for the corner (𝑖𝐸𝐶) while the second largest 

exit hydraulic gradient 𝑖𝐸𝑆 is reported at the mid-point of the shorter side while exit 

hydraulic gradient at the mid-point of the longer side  𝑖𝐸𝐿  is the lowest.  

• There is only a slight reduction of exit hydraulic gradient at the two critical locations 

(𝑖𝐸𝐶  and 𝑖𝐸𝑆) when increasing the 𝑙/𝐵 ratio. Therefore, even for 𝑙/𝐵 values as high as 

20, the two critical exit hydraulic gradients 𝑖𝐸𝐶 and 𝑖𝐸𝑆 are significantly higher than 

what is derived from a 2D approximation (considering as double-walled cofferdam), 

and hence, it is not safe to consider a rectangular cofferdam to the corresponding  

double-walled cofferdam at any value of 𝑙/𝐵 ratio.  

 

7.3 Recommendation for future research 

Even though this dissertation has provided seepage solutions covering most of the cofferdam 

geometries encountered in practice, still there are some potential research areas that can be 
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considered for the future. They are summarised below in the sequence of the cofferdam shapes 

discussed in this dissertation.  

 

7.3.1 Method of Fragments (MoF) solutions for double-walled cofferdams  

As noted before, MoF solutions can be applied for double-walled cofferdams founded on a soil 

medium having a range of soil conditions, i.e., both isotropic and anisotropic soils in a 

homogeneous soil medium, and two layered soil system. However, in some cases, founding 

soil may consists by three or more soil layers, and hence, it is beneficial to extend the MoF 

solutions to investigate the cases having multiple soil layers (three or more). Also, as noted in 

chapter 2, cofferdams are widely applied in granular soils; however, a thin layer of clay can be 

encountered within the granular media, and also, the founding soil medium may not be uniform 

in thickness. Therefore, MoF solutions could also be extended to address these two issues.  

 

7.3.2 Method of Fragments (MoF) solutions for circular cofferdams  

The axisymmetric MoF solutions can also be applied for cofferdams founded on a soil medium 

having similar conditions discussed above for double-walled cofferdams. However, when the 

founding soil consists by two soil layers, analytical solution method proposed by Polubarinova-

Kochina (1962) cannot be incorporated with axisymmetric MoF since it is only applicable for 

flow scenarios in the 2D Cartesian plane. So, future studies are required to extend the 

axisymmetric MoF solutions for multi layered system including two or more layers. Also, as 

pointed for double-walled cofferdam, it is beneficial to focus future research to extend the 

axisymmetric MoF method to address the situations where the founding soil medium contains 

a thin layer of clay and is not uniform in thickness.  

 



Chapter 7 

 

185 
 

7.3.3 Creep length solutions for piping failure assessment of double-walled and circular 

cofferdams 

Creep length solutions developed in this dissertation are applicable for double-walled and 

circular cofferdams founded on a homogeneous granular soil medium; therefore, exit hydraulic 

gradient values are independent from the soil permeability and hence, are independent from 

the soil type. Also proposed solutions have considered only the most critical parameter (i.e., 

creep length) for the solutions development; however, it was noted that exit hydraulic gradient 

values are influenced slightly by two other less sensitive parameters (excavation depth and 

sheet pile embedded depth). Therefore, future research could be conducted focussing to 

incorporate the effect of soil type and the effect of less sensitive parameters on to the creep 

length solution method proposed in this study.   

 

7.3.4 Seepage solutions for square and rectangular cofferdams 

The proposed solutions for square and rectangular cofferdams are directly applicable for an 

isotropic and homogeneous soil medium. However, homogeneous and anisotropic cases can 

also be treated using the same correction factors since required corresponding 2D solution 

provides the facility of incorporating the anisotropic effect. However, it may be useful to 

investigate the accuracy of the correction factors proposed in this study (for the isotropic soils) 

when the founding soil medium is homogeneous and anisotropic. Also, proposed solutions for 

rectangular cofferdams can also be used to estimate the seepage solutions for elliptical 

cofferdams, but it is a very approximate prediction. Therefore, future research can be directed 

to develop more accurate correction factors for the cofferdams where the shapes are elliptical 

and also, more irregular.  
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7.4 Final comments 

Throughout this dissertation, seepage solutions for most of the cofferdam shapes encountered 

in practice have been simplified significantly without losing much of the accuracy. Also 

proposed solutions can address the soil conditions considered in practice generally for most of 

the preliminary and parametric studies and hence, are very useful as practical tools to quick 

estimate of seepage solutions.   
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Appendix A1 

Comparison of Griffiths (1984) fragment C form factor values with the 

derived values in this desertion  

Table A1.1 Griffiths (1984) fragment C form factor 𝛷𝐶  values  

𝑠𝐶 𝑇𝐶⁄  
𝐿𝑅 𝑇𝐶⁄  

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.50 0.60 0.80 1.00 

0.1 1.450 1.090 0.920 0.830 0.760 0.700 0.660 0.610 0.570 0.530 0.510 

0.2 2.460 1.760 1.430 1.240 1.100 1.000 0.930 0.830 0.760 0.690 0.650 

0.3 3.460 2.430 1.930 1.630 1.430 1.290 1.180 1.040 0.940 0.840 0.790 

0.4 4.440 3.100 2.430 2.030 1.780 1.580 1.440 1.250 1.140 0.990 0.920 

0.5   3.760 2.940 2.440 2.100 1.870 1.690 1.470 1.320 1.160 1.070 

0.6   4.440 3.440 2.830 2.450 2.170 1.960 1.690 1.520 1.340 1.240 

0.7     3.950 3.240 2.790 2.470 2.230 1.920 1.744 1.530 1.440 

0.8     4.440 3.670 3.180 2.820 2.570 2.230 2.030 1.800 1.710 

0.9       4.200 3.650 3.300 3.000 2.680 2.500 2.230 2.120 
 

 

Table A1.2 Developed fragment C form factors 𝛷𝐶  values using finite element simulations    

𝑠𝐶 𝑇𝐶⁄  
𝐿𝑅 𝑇𝐶⁄  

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.50 0.60 0.80 1.00 

0.1 1.424 1.095 0.929 0.828 0.758 0.708 0.669 0.613 0.576 0.532 0.509 

0.2 2.425 1.764 1.433 1.234 1.101 1.006 0.935 0.835 0.770 0.695 0.658 

0.3 3.425 2.430 1.933 1.635 1.436 1.295 1.189 1.044 0.951 0.846 0.795 

0.4 4.425 3.097 2.433 2.035 1.771 1.583 1.443 1.252 1.132 0.997 0.932 

0.5 5.426 3.764 2.933 2.436 2.106 1.873 1.700 1.466 1.319 1.157 1.080 

0.6 6.427 4.431 3.435 2.839 2.446 2.169 1.965 1.691 1.521 1.335 1.247 

0.7 7.427 5.099 3.940 3.250 2.797 2.481 2.250 1.942 1.752 1.546 1.448 

0.8 8.428 5.774 4.461 3.689 3.185 2.837 2.584 2.249 2.044 1.823 1.719 

0.9 9.452 6.513 5.079 4.243 3.705 3.336 3.068 2.716 2.502 2.271 2.163 
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Appendix A2 

Comparison of Griffiths (1984) fragment C normalised exit hydraulic 

gradient  values with the derived values in this desertion  

Table A2.1 Griffiths (1984) fragment C normalised exit hydraulic gradient  𝑖𝐸𝑠𝐶/ℎ𝐶 values   

𝑠𝐶 𝑇𝐶⁄  
𝐿𝑅 𝑇𝐶⁄  

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.50 0.60 0.80 1.00 

0.1 0.733 0.695 0.675 0.665 0.660 0.655 0.654 0.650 0.647 0.645 0.644 

0.2 0.826 0.766 0.728 0.704 0.687 0.677 0.669 0.660 0.652 0.644 0.642 

0.3 0.876 0.823 0.782 0.748 0.725 0.709 0.692 0.676 0.663 0.647 0.639 

0.4 0.904 0.860 0.824 0.790 0.764 0.742 0.723 0.696 0.678 0.650 0.636 

0.5 0.923 0.885 0.853 0.823 0.795 0.771 0.750 0.716 0.690 0.651 0.630 

0.6 0.937 0.902 0.873 0.847 0.818 0.793 0.770 0.730 0.695 0.646 0.617 

0.7 0.946 0.917 0.888 0.861 0.833 0.807 0.780 0.734 0.690 0.632 0.597 

0.8 0.952 0.925 0.896 0.869 0.839 0.808 0.774 0.720 0.671 0.602 0.561 

0.9 0.954 0.923 0.887 0.850 0.810 0.772 0.735 0.670 0.612 0.535 0.493 
 

Table A2.2 Developed fragment C normalised exit hydraulic gradient  𝑖𝐸𝑠𝐶/ℎ𝐶 values using 

finite element simulations       

𝑠𝐶 𝑇𝐶⁄  
𝐿𝑅 𝑇𝐶⁄  

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.50 0.60 0.80 1.00 

0.1 0.732 0.694 0.674 0.667 0.661 0.655 0.656 0.653 0.649 0.647 0.646 

0.2 0.826 0.768 0.729 0.705 0.689 0.678 0.670 0.660 0.653 0.645 0.642 

0.3 0.876 0.824 0.783 0.751 0.728 0.710 0.696 0.677 0.664 0.647 0.639 

0.4 0.904 0.861 0.823 0.791 0.765 0.743 0.725 0.697 0.676 0.650 0.634 

0.5 0.921 0.885 0.852 0.822 0.795 0.772 0.751 0.715 0.688 0.650 0.628 

0.6 0.934 0.902 0.873 0.846 0.819 0.794 0.771 0.729 0.694 0.645 0.616 

0.7 0.943 0.915 0.889 0.862 0.835 0.808 0.782 0.733 0.691 0.631 0.596 

0.8 0.949 0.924 0.897 0.868 0.838 0.807 0.776 0.719 0.671 0.600 0.559 

0.9 0.952 0.921 0.886 0.849 0.810 0.771 0.735 0.668 0.613 0.537 0.494 
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Appendix A3 

Comparison of Griffiths (1984) fragment A form factor values with the 

derived values in this desertion   

Table A3.1 Griffiths (1984) fragment A form factor 𝛷𝐴 values when b = 0 

s/T  𝛷𝐴 

0.1 0.480 

0.2 0.610 

0.3 0.710 

0.4 0.840 

 0.5 0.990 

0.6 1.150 

0.7 1.350 

0.8 1.620 

0.9 2.050 
 

Table A3.2 Derived fragment C form factor 𝛷𝐶 values when 𝐿 =  2𝑇𝐶 using finite element 

simulations     

s/T  𝛷𝐶 

0.1 0.483 

0.2 0.618 

0.3 0.741 

0.4 0.866 

0.5 1.000 

0.6 1.154 

0.7 1.349 

0.8 1.612 

0.9 2.050 
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Appendix B1 

Developed axisymmetric form factor values of fragment D  

Table B1.1 Developed fragment D form factors 𝛽𝐷 values using finite element simulations     

𝑠𝐷 𝑇𝐷⁄  
𝑟𝑅/𝑇𝐷 

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.50 0.60 0.70 0.80 1.00 2.00 ∞ 

0.1 2.462 1.811 1.482 1.284 1.151 1.056 0.982 0.878 0.805 0.752 0.712 0.652 0.549 0.482 

0.2 4.462 3.140 2.482 2.089 1.825 1.636 1.494 1.295 1.159 1.065 0.993 0.895 0.721 0.618 

0.3 6.465 4.473 3.482 2.888 2.490 2.209 1.996 1.699 1.501 1.361 1.257 1.115 0.876 0.740 

0.4 8.459 5.806 4.488 3.688 3.158 2.780 2.496 2.101 1.839 1.654 1.518 1.336 1.031 0.864 

0.5 10.459 7.145 5.482 4.488 3.826 3.352 2.998 2.504 2.180 1.951 1.784 1.561 1.196 0.999 

0.6 12.457 8.476 6.482 5.288 4.492 3.925 3.501 2.913 2.527 2.257 2.063 1.803 1.380 1.155 

0.7 14.452 9.807 7.482 6.089 5.163 4.504 4.011 3.335 2.893 2.587 2.366 2.074 1.599 1.347 

0.8 16.448 11.130 8.488 6.900 5.849 5.109 4.556 3.798 3.307 2.969 2.727 2.405 1.888 1.610 

0.9 18.460 12.499 9.540 7.783 6.627 5.813 5.214 4.383 3.868 3.508 3.246 2.902 2.348 2.045 
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Appendix B2 

Developed axisymmetric form factor values of fragment E  

Table B2.1 Developed fragment E form factors 𝛽𝐸  values using finite element simulations     

𝑠/𝑇 
𝑟𝑅/𝑇 

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.50 0.60 0.70 0.80 1.00 2.00 ∞ 

0.1 0.192 0.232 0.262 0.285 0.303 0.317 0.329 0.349 0.364 0.376 0.385 0.400 0.436 0.482 

0.2 0.226 0.276 0.314 0.343 0.367 0.385 0.402 0.429 0.449 0.466 0.479 0.500 0.548 0.618 

0.3 0.260 0.319 0.364 0.399 0.427 0.450 0.470 0.502 0.528 0.548 0.564 0.590 0.652 0.740 

0.4 0.298 0.367 0.418 0.459 0.492 0.518 0.542 0.580 0.610 0.633 0.653 0.683 0.757 0.864 

0.5 0.346 0.424 0.483 0.530 0.568 0.598 0.626 0.670 0.704 0.731 0.754 0.789 0.875 0.999 

0.6 0.407 0.497 0.565 0.619 0.662 0.697 0.728 0.779 0.818 0.849 0.875 0.915 1.013 1.155 

0.7 0.494 0.599 0.677 0.739 0.790 0.829 0.865 0.922 0.966 1.002 1.031 1.077 1.188 1.347 

0.8 0.630 0.756 0.849 0.921 0.979 1.026 1.066 1.132 1.183 1.223 1.256 1.307 1.432 1.610 

0.9 0.905 1.063 1.175 1.262 1.331 1.387 1.434 1.510 1.568 1.615 1.652 1.710 1.841 2.045 
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Appendix B3 

Developed normalised exit gradient values of  fragment D  

Table B3.1 Developed fragment D normalised exit gradient  𝑖𝐸𝑠𝐷/ℎ𝐷 values using finite element simulations     

𝑠𝐷 𝑇𝐷⁄  
 𝑖𝐸𝑠𝐷/ℎ𝐷 

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.50 0.60 0.70 0.80 1.00 2.00 ∞ 

0.1 0.823 0.775 0.746 0.728 0.715 0.706 0.700 0.688 0.684 0.679 0.675 0.676 0.660 0.651 

0.2 0.897 0.853 0.817 0.789 0.768 0.753 0.740 0.721 0.711 0.699 0.693 0.681 0.658 0.640 

0.3 0.928 0.894 0.863 0.836 0.814 0.794 0.779 0.754 0.737 0.723 0.712 0.696 0.660 0.631 

0.4 0.946 0.919 0.892 0.869 0.847 0.828 0.812 0.784 0.763 0.745 0.731 0.708 0.658 0.620 

0.5 0.956 0.933 0.912 0.892 0.872 0.854 0.838 0.810 0.785 0.765 0.747 0.719 0.653 0.605 

0.6 0.963 0.944 0.926 0.908 0.891 0.874 0.858 0.829 0.803 0.779 0.758 0.723 0.642 0.584 

0.7 0.969 0.952 0.935 0.920 0.904 0.888 0.873 0.842 0.813 0.786 0.761 0.719 0.622 0.555 

0.8 0.973 0.958 0.942 0.927 0.912 0.895 0.878 0.844 0.810 0.779 0.749 0.701 0.588 0.514 

0.9 0.975 0.960 0.943 0.925 0.905 0.885 0.863 0.822 0.779 0.740 0.706 0.650 0.525 0.446 
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Appendix B4 

Laboratory simulation results of circular cofferdam   

Table B4.1 Laboratory simulation results of circular cofferdam 

r (mm) 𝑟𝑅/𝑇 𝑠/𝑇 α h (mm) 
Flow rate (m3/s) 

Trial 1 Trial 2 Trial 3 Average 
97 0.80 0.20 0.50 57.0 3.03E-06 3.01E-06 3.01E-06 3.02E-06 
97 0.60 0.40 0.00 57.0 1.84E-06 1.87E-06 1.86E-06 1.86E-06 
97 0.60 0.40 0.00 107.0 4.06E-06 4.09E-06 4.11E-06 4.09E-06 
97 0.40 0.60 0.25 57.0 1.50E-06 1.47E-06 1.50E-06 1.49E-06 
97 0.40 0.60 0.25 107.0 2.88E-06 2.87E-06 2.87E-06 2.88E-06 
97 0.40 0.60 0.00 57.0 1.36E-06 1.36E-06 1.34E-06 1.35E-06 
97 0.40 0.60 0.00 107.0 2.54E-06 2.51E-06 2.52E-06 2.52E-06 
97 0.30 0.70 0.25 57.0 1.07E-06 1.04E-06 1.07E-06 1.06E-06 
97 0.30 0.70 0.25 107.0 2.04E-06 2.04E-06 2.04E-06 2.04E-06 
97 0.20 0.80 0.25 57.0 7.72E-07 8.00E-07 7.82E-07 7.85E-07 
97 0.20 0.80 0.00 57.0 6.05E-07 5.90E-07 5.95E-07 5.97E-07 
50 0.60 0.40 0.00 54.0 8.62E-07 8.60E-07 8.65E-07 8.63E-07 
50 0.40 0.60 0.00 54.0 5.92E-07 5.86E-07 5.85E-07 5.88E-07 
50 0.30 0.70 0.00 54.0 4.38E-07 4.26E-07 4.21E-07 4.28E-07 
50 0.20 0.80 0.25 54.0 3.95E-07 3.89E-07 3.78E-07 3.87E-07 
50 0.20 0.80 0.00 54.0 3.38E-07 3.36E-07 3.31E-07 3.35E-07 
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Appendix C1 

𝒊𝑬/𝒉 values of double-walled cofferdams 
 

Table C1.1 Normalised exit hydraulic gradient 𝑖𝐸/ℎ of double-walled cofferdams 
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Appendix C2 

𝒊𝑬/𝒉 values of circular cofferdams 
 

Table C2.1 Normalised exit hydraulic gradient 𝑖𝐸/ℎ of circular cofferdams 
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Appendix D1 

Relation of double-walled cofferdam flow rate to the rectangular flow rate 

 

 

Fig. D1.1 Relationship between double-walled flow rate to the 3D flow rate into rectangular 

cofferdam 
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Appendix D2 

Relation of double-walled cofferdam 𝒊𝑬 to the 𝒊𝑬𝑳 of rectangular cofferdams  

 

Fig. D2.1 Relationship between double-walled 𝑖𝐸 to the actual 𝑖𝐸𝐿 of rectangular cofferdams  
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Appendix D3 

Relation of double-walled cofferdam 𝒊𝑬 to the 𝒊𝑬𝑺 of rectangular cofferdams  

 

Fig. D3.1 Relationship between double-walled 𝑖𝐸 to the actual 𝑖𝐸𝑆 of rectangular cofferdams  
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Appendix D4 

Relation of double-walled cofferdam 𝒊𝑬 to the 𝒊𝑬𝑪 of rectangular cofferdams  

 

Fig. D4.1 Relationship between double-walled 𝑖𝐸 to the actual 𝑖𝐸𝐶 of rectangular cofferdams  
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