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Background: Cell-free DNA (cfDNA) comprises short, double-stranded circulating DNA sequences released from dam-

aged cells. In people, cfDNA concentrations correlate well with disease severity and tissue damage. No reports are available

regarding cfDNA kinetics in dogs.

Objectives/Hypothesis: Cell-free DNA will have a short biological half-life and would be able to stratify mild, moderate,

and severe tissue injury. Our study aims were to determine the kinetics and biological half-life of cfDNA and to contrast

them with those of creatine kinase (CK).

Animals: Three groups of 10 dogs undergoing open ovariohysterectomy, surgery for cranial cruciate ligament rupture

(CCLR), or hemilaminectomy.

Methods: Plasma for cfDNA and CK analysis was collected at admission, at induction of anesthesia, postsurgery (time 0)

and at 6, 12, 24, 36, 48, 60, and 72 hours after surgery.

Results: The biological half-life of plasma cfDNA and CK were 5.64 hours (95% confidence interval [CI 95], 4.36–
7.98 hours) and 28.7 hours (CI95, 25.3–33.3 hours), respectively. In the hemilaminectomy group, cfDNA concentrations dif-

fered significantly from admission at 6–12 hours after surgery. Creatine kinase activity differed among the surgical groups

and reached a peak 6 hours after surgery. In the ovariohysterectomy and CCLR groups, plasma CK activity 72 hours after

surgery did not differ from admission activity of the ovariohysterectomy group. In contrast, in the hemilaminectomy group,

plasma CK activity after 72 hours did not return to the ovariohysterectomy group admission activity.

Conclusions and Clinical Importance: Plasma CK activity has a longer biological half-life than previously thought. In con-

trast to plasma CK activity, cfDNA has a short half-life and could be a useful marker for peracute severe tissue injury.
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Cell-free DNA (cfDNA) comprises short, double-
stranded DNA sequences, circulating unbound in

plasma.1 The source of cfDNA in the circulation still is
largely unknown. Release of cfDNA from cells after
apoptosis and necrosis,2 lysis of cells in the blood-
stream,3 and spontaneous release from cells under
stress4 are possible sources of cfDNA. In people, DNA
hydrolysis by DNAse 1 nuclease is the predominant
pathway of cfDNA clearance from the blood,5 leading
to a reported biological half-life of 157.6 minutes at
37°C.6

In 1948, the presence of cfDNA was reported in
human serum.7 Since then, increased concentrations of
cfDNA in blood and body fluids have been linked to
systemic lupus erythematosus8 and various cancers.9

Cell-free DNA concentrations correlated well with
tumor burden and response to radiation therapy.9 Cell-

free DNA has become widely studied in human medi-
cine and has utility as a clinical noninvasive biomarker
not only in cancer research but also in prenatal
diagnostics,10 organ transplantation,11 and in several
emergency conditions including stroke,12 myocardial
infarction,13 sepsis,14 and severe trauma.15–18 Because of
its short half-life, cfDNA is a reliable approximation of
the current status of tissue injury and abates as resolu-
tion occurs.6,15

In veterinary medicine, the focus of research on
cfDNA has mainly centered on its potential value in the
diagnosis, prognosis, and monitoring of the response to
treatment of cancer in dogs. Dogs with mammary
tumors or lymphoma have high concentrations of
cfDNA in the blood, and the concentration of cfDNA
is inversely correlated with remission time.19,20 The abil-
ity to detect cfDNA in canine blood led to the investi-
gation of cfDNA in other disease states.21,22 A
significant increase in the blood concentration of
cfDNA was found in diseased dogs, as compared to
healthy dogs, and a positive association between
cfDNA concentration and disease severity and survival
was observed.21 Both dogs with sepsis and those with
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moderate-to-severe trauma had significantly increased
cfDNA concentrations compared to healthy dogs,22 and
cfDNA concentration was associated with death in dogs
with immune-mediated hemolytic anemia.23

A short half-life and a good correlation with disease
severity would render cfDNA a useful tool to quantify
the extent of tissue injury. Based on current knowledge,
we hypothesized that, in dogs, cfDNA would have a
short biological half-life and its concentration would be
able to stratify mild, moderate, and severe tissue injury.
Accordingly, the aims of our study were to determine
the kinetics of cfDNA and its biological half-life. To
contrast with cfDNA, we estimated similar variables for
creatine kinase activity. We chose to approach the
hypothesis and aims using a model of controlled tissue
injury in dogs that underwent 3 types of surgeries asso-
ciated with mild, moderate, and severe tissue injury.

Materials and Methods

Animals

We collected plasma samples from dogs presented to the Mas-

sey University Veterinary Teaching Hospital between October

2015 and April 2017. Inclusion criteria were client-owned dogs

presented for cranial cruciate ligament rupture (CCLR) surgically

managed by tibial tuberosity advancement (TTA) or tibial pla-

teau leveling osteotomy (TPLO) surgical techniques, thoracolum-

bar disk disease decompressed by hemilaminectomy surgery (HL),

and bitches presented for an elective, open ovariohysterectomy

surgery (OVH). The surgeries were stratified according to per-

ceived tissue injury (mild, moderate, and severe) on the basis of

the extent of dissection required for each procedure. In an open

OVH, the incision is primarily through the linear alba although

there can be some injury to the rectus abdominis muscle and

crushing and stretching of uterine muscle. In a TPLO, there is

more extensive dissection with elevation of the pes anserinus, cra-

nial tibial, and popliteal muscles in addition to an arthrotomy.

The HL was considered the most severe trauma because of the

need to extensively elevate and transect epaxial musculature and

use Gelpi retractors for extended time periods during surgery.

Enrollment of 10 patients for each category in the study gave a

total of 30 patients. Table 1 presents the descriptive characteris-

tics of the dogs included in the study. The Massey University

Animal Ethics Committee approved the study (MUAEC protocol

15/50) and enrollment of patients required informed, signed client

consent.

Sample Collection

Each dog enrolled in the study had a 2 mL sample of whole

blood in ethylenediaminetetraacetic acid (EDTA) collected by

jugular venipuncture upon arrival (admission sample). A 16 G,

20 cm long indwelling IV catheter was placed in the lateral saphe-

nous vein after induction of anesthesia for the intended surgical

procedure. For each blood sample, we irrigated the indwelling IV

catheter with 5 mL 0.9% sodium chloride and aspirated back

1 mL of whole blood that was discarded. Plasma was harvested

from an additional 2 mL of whole blood that was placed in an

EDTA tube. At the end of blood collection, the indwelling IV

catheter was irrigated with 0.9% sodium chloride. Collection of

Table 1. The descriptive characteristics of the dogs included in the study.

HL CCLR OVH

Age (months)* 42 (9–128) 40 (18–96) 69 (5–144)
Sex M 7 5 0

F 3 5 10

Neuter E 1 2 0

N 9 8 10

Weight (kg)** 25 (7.7–43.5) 36 (8–45.6) 17.5 (7.7–33.4)
Breed Akita 1

Cocker Spaniel 1

Crossbreed 1

Dachshund 4

Dogue de Bordeaux 1

German Shorthaired Pointer 1

Golden Retriever 1

Harrier 5

New Zealand Heading Dog 1

Huntaway 1

Labrador Retriever 1 4

Lhasa Apso 1

Mastiff 1

Miniature Schnauzer 1

Pekingese 1

Rottweiler 1

Staffordshire Bull Terrier 1

Toy Poodle 2

HL, hemilaminectomy; CCLR, surgeries for cranial cruciate ligament rupture; OVH, open ovariohysterectomy; M, male; F, female; E,

entire; N, neuter.

Age and weight are presented as median (range).

*There is a statistically significant difference between the CCLR and OVH groups (P < 0.01).

**There were statistically significant differences between groups (P < 0.01).
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blood samples took place at the time of admission, after induction

of anesthesia, immediately after surgery ended and then at 6, 12,

24, 36, 48, 60, and 72 hours after surgery. At 72 hours, we also

collected a sample from the bag of 0.9% sodium chloride that had

been used to irrigate the catheter throughout the sampling period.

This sample served as a negative control to ensure that there was

no DNA contamination in the 0.9% sodium chloride before

sampling.

Sample Handling

Centrifugation of whole blood samples at 3,000 9 g for 15 min-

utes at 4°C facilitated harvesting the plasma. Equal volumes of the

harvested plasma were stored at �80°C until the time of analysis.

Cell-free DNA Analysis

We used the Qubit dsDNA HS Assay Kit and Qubit 2.0 fluo-

rimetera and quantified the plasma concentration of cell-free DNA

(cfDNA) as previously described.21 Plasma samples were thawed

in batches of 15–50 samples, and a volume of 20 lL was used for

the analysis. The Qubit assay utilizes a dye that fluoresces with a

higher intensity when bound to double-strand DNA (dsDNA),

and the recorded amount of fluorescence is proportional to the

amount of dsDNA in the sample. The dilution algorithm provided

by the manufacturer within the Qubit 2.0 determined the concen-

tration of the cfDNA. Calibration of the Qubit 2.0 with the pro-

vided standards preceded each run. We assayed a single sample

with a previously measured concentration of cfDNA that had been

previously separated into aliquots and stored at �20°C with every

batch of samples as an interassay control. The coefficient of varia-

tion determined the intra-assay precision on 22 samples run in

triplicates.

Creatine Kinase Analysis

A commercial veterinary diagnostic laboratoryb measured the

activity of plasma creatine kinase (CK) on a Roche/Hitachi

analyzer.c

Statistical Analysis

A priori power sample size analysis was performed by G*Power
version 3.1.9.8.d The analysis indicated that 9 dogs in each group

would suffice to detect a difference of 20% in plasma CK activity

on repeated measures of plasma CK activity on the same dog with

a power of 0.8 and alpha probability error of 0.05, assuming that

the correlation for the repeated measurements on the same dog

was 0.60.

All statistical analyses were performed by R 3.3.3.24 Distribu-

tion of data was assessed by visual inspection of the data on quan-

tile-quantile plots, histogram plots, and by the Shapiro-Wilk test.

To balance the “age” and “weight” variables, these continuous

variables were transformed into ordinal variables with approxi-

mately 3 equal parts; “weight” was subdivided into <20, 20–35,
and >35 kg and “age” was subdivided into <40, 40–80, and
>80 months.

Analysis of repeated measurements of cfDNA was performed

by the lmer() function of the lme4 package.25 The dependent vari-

able cfDNA was analyzed by a linear mixed model that included

the fixed effects of “surgery,” “time” and the interaction between

“surgery” and “time,” and the random effect of “dog.” The residu-

als were assumed to have expected mean zero, common variance

(r2
e ) across times and common covariances (rei;ej), where i and j

denote residuals at different times on the same dog. The variance

because of “dog” was assumed to have an expected zero value

with a common “dog” variance (r2
d). “Age,” “weight,” and “sex”

did not contribute significantly enough to the model to be included

in the final model (P > 0.05).

The dependent variable CK was analyzed with the same model

as cfDNA but also included the fixed effects of “age” and

“weight” with the same distributional properties for the residuals

of repeated measures on the same dog, as described above. “Sex”

effect did not contribute significantly enough to the model to be

included in the final model (P > 0.05).

The lsmeans() function of the lsmeans package26 was used to

obtain the least squares means and standard errors and was used

for Tukey’s pairwise mean comparisons.

To calculate the biological half-life of plasma cfDNA and CK,

we used the lme4 package lm() function to perform simple linear

regression on the log-transformed down slope of the least squares

means curves of plasma cfDNA and CK. The half-life was calcu-

lated from the following formula: t(1/2) = log(1/2)/coefficient of

regression slope.27

The correlation between plasma cfDNA and CK was evaluated

by the Spearman’s rank correlation q and Kendall’s rank

correlation s.

Table 2. Least squares mean of plasma cell-free DNA
(lg/L) in 30 dogs, stratified by the perceived severity of
tissue trauma at surgery (10 dogs per group).

Time Lsmean SE 95% CI

HL

Admission 648 144 363–932
Induction 570 144 286–854
Post-Op 734 138 462–1,007
6 1,458 138 1,185–1,730
12 1,446 138 1,174–1,719
24 1,074 144 789–1,358
36 770 144 485–1,055
48 645 144 360–929
60 675 144 390–960
72 607 144 322–892

CCLR

Admission 776 138 503–1,048
Induction 749 138 477–1,022
Post-Op 758 138 486–1,031
6 756 138 483–1,028
12 819 138 546–1,091
24 856 138 583–1,128
36 873 138 601–1,146
48 859 138 587–1,132
60 735 138 463–1,008
72 835 138 563–1,108

OVH

Admission 611 138 338–883
Induction 623 138 350–895
Post-Op 673 138 400–945
6 787 138 514–1,059
12 794 138 521–1,066
24 789 138 516–1,061
36 773 138 501–1,045
48 723 138 451–996
60 688 138 416–960
72 695 138 422–967

HL, hemilaminectomy; CCLR, surgery for cranial cruciate liga-

ment rupture; OVH, open ovariohysterectomy; Lsmean, least

squares mean; SE, standard error; CI, confidence interval.
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Results

Plasma Cell-free DNA

The least squares means of plasma cell-free DNA
(cfDNA) concentrations at the various time points of
the study are shown in Table 2.

Between-group Comparisons

Plasma cfDNA concentrations (lg/L) were signifi-
cantly higher in the hemilaminectomy (HL) group, com-
pared to both the CCLR and open ovariohysterectomy
(OVH) groups at 6 hours (1,458 � 138 versus
756 � 138 and 787 � 138; P = 0.001 and P = 0.002)
and 12 hours (1,446 � 138 versus 819 � 138 and
794 � 138; P = 0.004 and P = 0.003; Fig 1). No signifi-
cant differences were identified between the CCLR and
open OVH groups at any time.

Within-group Comparisons

In the HL group, plasma cfDNA reached a peak at
6 hours through 12 hours and rapidly returned to
admission concentrations by 72 hours. In contrast,
in the open OVH and CCLR groups, plasma
cfDNA reached a shallow peak at 12 and 36 hours,
respectively.

In the HL group, significant differences were
observed between times 6 hours through 12 hours com-
pared to the other time points (other than 24 hours
postoperatively; Fig 1). Within the CCLR and open
OVH groups, there were no differences between any of
the time points.

The calculated biological half-life of plasma cfDNA
was 5.64 hours (CI 95, 4.36–7.98 hours).

Plasma CK

The geometric means are shown in Table 3, which
were derived from back transformation of the least
squares means of log plasma CK at the various time
points of the study.

Between-group Comparisons

Overall, a significant difference was identified between
the HL and open OVH groups (estimate 1.03,
P = 0.013).

A significant difference in the log plasma CK activity
was observed between the HL and open OVH groups at
6 hours through 72 hours (estimate 1.182, P = 0.017;
estimate 1.178, P = 0.017; estimate 1.536, P = 0.002; esti-
mate 1.284, P = 0.010; estimate 1.302, P = 0.008; esti-
mate 1.063, P = 0.037; estimate 1.129, P = 0.025,
respectively).

Within-group Comparisons

In the HL and open OVH groups, plasma CK
reached a peak at 6 hours in comparison with the
CCLR group in which plasma CK reached a peak at
12 hours. In the HL group, plasma CK did not return
to admission activity by 72 hours. In contrast, in the
CCLR and open OVH groups, plasma CK reached
admission activity at 72 hours.

Within the HL and CCLR groups, the period of
6 hours through 24 hours was significantly different

Fig. 1. Least squares means of plasma cell-free DNA. Different letters for the same number indicate P < 0.05 within the group. “*”
indicates P < 0.05 between hemilaminectomy and the other 2 groups per time period. Post-op, postoperative period; HL, hemilaminectomy;

CCLR, surgeries for cranial cruciate ligament rupture; OVH, open ovariohysterectomy.
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from the periods of admission, induction, immediately
postoperative, 60 and 72 hours (Fig 2). Within the open
OVH group, the period of 6 hours through 12 hours
was significantly different from the period of admission,
induction, 48, 60, and 72 hours (Fig 2).

The calculated biological half-life of plasma CK was
28.7 hours (CI 95, 25.3–33.3 hours).

Correlation between cfDNA and CK

Moderate-to-strong correlation was observed between
plasma CK and cfDNA for all surgeries and time inter-
vals, for all surgeries at the down slope from 6 to
72 hours, and for the HL surgery at the down slope
from 6 to 72 hours (Table 4).

Discussion

The aims of our study were to determine the kinetics
of plasma cfDNA and its biological half-life. The results

indicate that after substantial tissue damage, plasma
cfDNA concentrations increased sharply at 6 hours for
a period of approximately 6 hours and then decreased
abruptly to baseline concentrations. Plasma cfDNA did
not increase significantly when mild or moderate tissue
damage occurred. The lack of increase in cfDNA post-
surgery in the CCLR and OVH groups also could be a
consequence of the different trauma type experienced
during these surgeries, which is mainly traction and
compression of soft tissues, as opposed to HL where
there is substantial blunt dissection and retraction of
the muscle by Gelpi retractors to expose the surgical
site. Alternatively, the differences between the CCLR
and OVH groups and the HL group could be secondary
to the proportion of injured tissue. The fact that
cfDNA plasma concentrations were increased for only a
short period of time implies that in dogs, plasma
cfDNA is a marker of substantial peracute tissue injury.
Also, it is less sensitive to milder forms of tissue injury,
and it is less sensitive in the later phases after an acute
insult, as was apparent in our results in which cfDNA
plasma concentrations returned to baseline after
12 hours (Fig 1).

Our results are in agreement with the previous studies
indicating that plasma cfDNA is a marker associated
with peracute inflammation. In our study, plasma
cfDNA did not differ among groups in the immediate
postoperative period even though the times it took to
complete OVH, TTA and TPLO, and HL were differ-
ent. We speculate that there is a temporal association
between the early phase of inflammation and the
increase in plasma cfDNA concentration at 6–12 hours.
In the early phase of inflammation, inflammatory
cytokines increase vascular permeability because of acti-
vation of the endothelium.28 The activated endothelium
contracts and the intercellular gaps become wider.
Therefore, cfDNA that leaked from injured cells into
the interstitial space could diffuse rapidly along its con-
centration gradient and its plasma concentration would
increase. Thus, we argue that cfDNA is a good indica-
tor of early inflammation and tissue damage. In con-
trast, we expect that in chronic inflammation, despite
increased permeability of the inflamed vascular bed,
there would be insufficient amounts of cfDNA to diffuse
into the circulation because of fibrosis and scarring.
Hence, we postulate that chronic inflammation would
not be associated with high plasma cfDNA concentra-
tions. This hypothesis is supported by a recent meta-
analysis that compared plasma cfDNA among 4 groups:
healthy controls, acute inflammation, chronic inflamma-
tion, and acute infections.29 In the metanalysis, the
cfDNA concentration in chronic inflammatory condi-
tions was substantially lower than in acute inflamma-
tion and infection, yet still higher than the control. A
similar trend was recently identified in dogs.21 In that
study, small but statistically significant differences were
observed between healthy control dogs when compared
to dogs with chronic and acute disease conditions. Dogs
with acute disease conditions had significantly higher
plasma cfDNA concentrations than did dogs with
chronic disease conditions. The authors defined chronic

Table 3. Geometric mean (GM) of plasma creatine
kinase activity (IU/L) in 30 dogs, stratified by the per-
ceived severity of tissue trauma at surgery (10 dogs per
group).

Time GM 95% CI

HL

Admission 229.5 125.8–419
Induction 202.6 111–370
Post-Op 373.5 207.5–672
6 1192.9 662.2–2,149
12 1129.7 627.2–2,035
24 1074.5 588–1,964
36 574.4 314.4–1,050
48 497.4 272.2–909
60 315.1 172.3–576
72 298.9 163.4–547

CCLR

Admission 108.4 59.8–197
Induction 147.3 81.5–266
Post-Op 199.4 110.1–361
6 640.7 353.7–1,161
12 751.1 414.6–1,361
24 731 401.3–1,332
36 504.7 277.5–918
48 339.5 186.3–618
60 221.9 121.8–404
72 110.1 60.4–201

OVH

Admission 125.4 69.3–227
Induction 139.3 76.9–252
Post-Op 195.8 108.1–355
6 365.8 202–663
12 347.9 191.6–632
24 231.2 127.4–419
36 159 87.8–288
48 135.3 74.6–245
60 108.8 59.8–198
72 96.7 53.2–176

HL, hemilaminectomy; CCLR, surgeries for cranial cruciate

ligament rupture; OVH, open ovariohysterectomy; GM, geometric

mean; CI, confidence interval.
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versus acute disease based on the history but did not
report the associate conditions.

Previous studies have characterized the kinetics of
plasma CK. In 1 study, the 3 canine isoforms of CK were
purified and their half-lives determined after an IV
injection.30 This pharmacokinetic study indicated that
the half-life of plasma CK in dogs was 119.5 minutes.30

We calculated the time plasma CK would reach 50% of
its peak activity after surgery. In marked contrast to the
previously described study, we found that for all surg-
eries, the biological half-life of plasma CK was
28.7 hours (CI 95, 25.3–33.3 hours). This estimated bio-
logical half-life should be considered when monitoring
trends in plasma CK activity. The estimated biological
half-life is different than the pharmacologic half-life. The
biological half-life takes into account CK released from
the primary insult and CK that further leaks from myofi-
ber damage induced by local ischemia, thrombosis, and
inflammation. Thus, in a clinical setting, the biological
half-life would better predict the decrease in serum CK

activity after an isolated insult. Deviation from that pre-
diction should alert the clinician to possible ongoing mus-
cle damage. In dogs, plasma CK activities are assumed to
be proportional to the extent of muscle injury. This
assumption is based on a single pharmacokinetic study in
which the supernatants of dog muscle homogenates were
injected IV and IM into 6 dogs.31 In another study, serum
CK activity was measured over 48 hours after HL and
OVH.32 Similar to our study, clear stratification in serum
CK activity was observed according to the type of sur-
gery. In that study, serum CK activity after HL did not
return to baseline at 48 hours. We followed plasma CK
activity longer than in the previous study32 and found
that, in the HL group, plasma CK activity did not return
to baseline even after 72 hours. Both our study and the
previous study32 indicate that plasma CK activity is pro-
portional to the extent of muscle injury and that the bio-
logical half-life is approximately 28 hours.

To our knowledge, ours is the first study to estimate
the time it takes plasma cfDNA to reach 50% of its
peak concentration in a clinical setting. We found that
the biological half-life of plasma cfDNA was
5.64 hours. The short biological half-life of plasma
cfDNA combined with the long half-life of plasma CK
could permit differentiation of progressive tissue injury
from acute nonprogressive injury. For example, after
substantial trauma, progressive tissue injury might
result from thrombosis or compartment syndrome.
Monitoring plasma CK activity might not be useful
because of the duration of time that it would take to
return to baseline. In that scenario, co-measurement of
plasma cfDNA along with CK activity would indicate if
there is substantial ongoing tissue injury.

Fig. 2. Least squares means of log plasma creatine kinase. Different letters for the same number indicate P < 0.05 within the group. “*”
indicates P < 0.05 between hemilaminectomy and the ovariohysterectomy group per time period. “#” indicates P < 0.05 between hemil-

aminectomy and the cranial cruciate ligament rupture surgery group per time period. Post-op, postoperative period; HL, hemilaminectomy;

CCLR, surgeries for cranial cruciate ligament rupture; OVH, open ovariohysterectomy.

Table 4. Correlation coefficients between plasma
creatine kinase and cell-free DNA.

Spearman’s

Rank

Correlation q P Value

Kendall’s

Rank

Correlation s P Value

All surgery 0.53 0.003 0.38 0.003

All surgery

6–72 hours

0.47 0.040 0.35 0.030

HL surgery

6–72 hours

0.96 0.003 0.9 0.003

HL, hemilaminectomy.
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In conclusion, plasma cfDNA has a short biological
half-life, and plasma CK has a longer biological half-
life than previously thought. Plasma cfDNA could be a
useful marker for peracute severe tissue injury. Combin-
ing measurement of plasma cfDNA with CK activity
may allow differentiation of progressive tissue injury
from acute nonprogressive injury.
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