
ResearchOnline@JCU

This is the author-created version of the following work:

Heidarpur, Moslem, Ahmadi, Arash, Ahmadi, Majid, and Rahimi Azghadi,

Mostafa (2019) CORDIC-SNN: on-FPGA STDP learning with Izhikevich neurons.

IEEE Transactions on Circuits and Systems I: Regular Papers, 66 (7) pp. 2651-

2661.

Access to this file is available from:

https://researchonline.jcu.edu.au/57388/

© 2019 IEEE

Please refer to the original source for the final version of this work:

https://doi.org/10.1109/TCSI.2019.2899356

SUBMITTED TO IEEE TCAS I 1

CORDIC-SNN: On-FPGA STDP Learning with
Izhikevich Neurons

Moslem Heidarpur, Student Member, IEEE, Arash Ahmadi, Senior Member, IEEE,

Majid Ahmadi, Life Fellow, IEEE, and Mostafa Rahimi Azghadi, Member, IEEE

Abstract—This paper proposes a neuromorphic platform for
on-FPGA online Spike Timing Dependant Plasticity (STDP)
learning, based on the COordinate Rotation DIgital Computer
(CORDIC) algorithms. The implemented platform comprises two
main components. First, the Izhikevich neuron model is modified
for implementation using the CORDIC algorithm, simulated
to ensure the model accuracy, described as hardware, and
implemented on FPGA. Second, the STDP learning algorithm is
adapted and optimized using the CORDIC method, synthesized
for hardware, and implemented to perform on-FPGA online
learning on a network of CORDIC Izhikevich neurons to demon-
strate competitive Hebbian learning. The implementation results
are compared with the original model and state-of-the-art to
verify accuracy, effectiveness, and higher speed of the system.
These comparisons confirm that the proposed neuromorphic
system offers better performance and higher accuracy while
being straightforward to implement and suitable to scale.

Index Terms—Izhikevich neuron, biological neuron model,
CORDIC, digital implementation, neuromorphic, STDP, FPGA,
online, on-FPGA, spiking neural network.

I. INTRODUCTION

H IGHLY parallel, energy efficient, fault tolerant, and

compact neuromorphic learning systems promise al-

ternative devices for solving engineering problems [1] and

powerful tools to understand properties of biological neural

networks [2]. Several such systems have already been intro-

duced and used [3]–[7] for various applications such as pattern

cognition, signal processing, and autonomous robots [8]–[13].

These neuromorphic systems typically include a large num-

ber of neurons, synapses and their interconnecting structure

on hardware. They provide real-time simulation, regardless of

the size of the network, are parallel, and energy efficient [14].

The performance of such systems at a higher level depends on

the neuron, synapse and learning models and at a lower level

on the circuits realizing such units [15].

Current neuromorphic research has led to the development

of a plethora of models to mimic real neurons with differ-

ent levels of abstraction in biological details. Biologically-

plausible models, such as Hodgkin Huxley [16] describe

cellular phenomena and properties of the individual bio-

logical components. Such low-level models, impose more

computation cost, making it difficult to simulate large-scale

M. Heidarpur, A. Ahmadi, and M. Ahmadi are with the depart-
ment of Electrical and Computer Engineering, University of Wind-
sor, Ontario, Canada (e-mail:{heidarp@uwindsor.ca,m.ahmadi@uwindsor.ca,
arash.ahamadi@uwindsor.ca).

M. Rahimi Azghadi is with the College of Science and Engi-
neering, James Cook University, Townsville, QLD 4814, Australia (e-
mail:{mostafa.rahimiazghadi@jcu.edu.au).

networks. On the other hand, biologically-inspired models

such as Izhikevich [17] and models in [18]–[22], aim to

mimic the biological neurons to the best degree of accuracy.

Such models can reproduce most of the firing patterns of

real neurons and are easier to couple to other spike-oriented

units. Moreover, high-level Integrate and Fire (IF) [23] is

another computationally efficient neural model, but cannot

exhibit many essential features of the biological neurons

as observed in experiments [24]. As far as neuromorphic

computing is concerned, simpler models are cheaper, faster,

and more energy efficient. Nevertheless, the choice of models

depends on the application of the device to be designed. To

perform computations with SNNs only a simple IF or Expo-

nential IF (EIF) may be enough to act as a thresholding box.

However, for research in neuroscience, biologically plausible

models have higher flexibility in mimicking biology. Here, we

have chosen the Izhikevich neuron for simulation and Field

Programmable Gate Array (FPGA) implementation, because

while being computationally efficient, it produces biologically

plausible firing patterns.

After selecting the neuron model, a proper Spiking Neural

Network (SNN) topology should be chosen. This depends

on a number of factors such as the level of abstraction,

the targeted application, available hardware, and the learning

algorithm. A variety of spiking network topologies have been

used in neuromorphic systems such as recurrent [25], feed-

forward [26], winner-take-all [27], and probabilistic [28]. Sub-

sequently, the SNN learning method should be selected based

on factors such as network topology, whether the learning

should be on-chip or off-chip, be supervised or unsupervised,

etc. Previous hardware implementations of SNN adopt many

of these approaches [29]–[32]. Among them, Spike-Timing

Dependent Plasticity (STDP) is the most favored for unsu-

pervised online training of feed-forward networks which is

believed to be closer to biology [33]. As a result, many

neuromorphic architectures have used various techniques to

implement STDP-based spiking networks [34]–[39]. Similarly,

this paper uses a novel technique based on CORDIC algorithm,

described in the following sections, to realize an online STDP-

learning architecture in hardware.

Considering hardware implementation platforms, they could

be divided into three major categories as analog [6], [34],

[36], [40], [41], digital [4], [7], [42] or mixed analog-digital

[3], [35], [37] systems, each with its advantages and dis-

advantages. Two classes of digital systems are FPGAs and

Application Specified Integrated Circuits (ASICs). Comparing

these two classes, logic components in FPGA devices could

SUBMITTED TO IEEE TCAS I 2

easily change with a configuration bitstream result from HDL

synthesizers providing a cheap and flexible platform. In ASIC

devices, on the other hand, a simple change in design could

result in a new development cycle, which is expensive and

prolonged. However, when using FPGAs as the implementa-

tion platform, one should take into consideration the limited

FPGAs resources, which makes it crucial to employ them

effectively for the best performance and the lowest cost.

To that end, the first challenge is to implement the neuron

model as efficient and fast as possible. This paper utilizes

CORDIC to calculate Izhikevich neuron differential equations.

CORDIC is used to exclude the use of multipliers which are

area-intensive and slow arithmetic operators in FPGAs. In

order to increase the performance and size of the network,

several techniques have been previously utilized to decrease

the multiplication cost. These include bit serial and reduced

range precision multipliers, stochastic-based neurons, replac-

ing multiplication with add & shift operations, and Look Up

Tables (LUTs) [43].

A number of FPGA implementations of Izhikevich neuron

are available in literature. In [44], a rotate-and-fire digital spik-

ing neuron model has been implemented that can reproduce

five type of inhibitory responses as an asynchronous sequential

logic circuit. In [45], an asynchronous cellular automata-

based neuron model is presented. In [46], the continuous

nullclines are approximated to cellular space for a low-cost

neuron implementation. Reference [47] presents a piece-wise

linear approximation [48] of the Izhikevich model to achieve

multiplier-less hardware for lower cost and higher speed.

Further, reference [49] utilizes CORDIC algorithm to design

a low power digital circuit for this neuron. Compared with

previous works, the CORDIC-based method presented here

results in neurons requiring fewer resources and operating at

a higher frequency.

In addition, to implement the STDP algorithm, the CORDIC

exponential core in [50] was adopted to compute STDP

function with high precision while requiring low resources.

Different method have been used by researchers to imple-

ment STDP algorithm. One of the common methods is to

use Address-Event Representation (AER) data protocol [35].

Reference [51] utilizes piece-wise linear approximation (PWL)

technique to implement the exponential term in STDP and a

counter to store spike events. Moreover, a dedicated plasticity

processor was used in [52]. In another paper, authors used a

simplified multiplier to reduce the STDP implementation cost

[53]. In this work, to implement the STDP algorithm, the

CORDIC exponential core in [50] was adopted to compute

STDP function with high precision while requiring low re-

sources. To account for the spike timings required for STDP,

a shift register was utilized to store the firing times of pre

and post-synaptic neurons in order to determine the time

differences and calculate synaptic weight updates. This is a

novel technique that exploits a distributed memory to realize

biological networks.

The rest of this paper is organized as follows. Section II

reviews the Izhikevich neuron and STDP learning algorithm

and further presents CORDIC modified models, computer sim-

ulations, and investigation of accuracy through errors analysis

and studying the network behaviors. Section III discusses

FPGA implementation procedure and compare achieved result

with previous works. Finally, Section IV concludes the paper.

II. CORDIC NEURON AND NETWORK MODEL

A. CORDIC Izhikevich

1) Izhikevich neuron: Izhikevich neuron is a two-

dimensional model, which consists of two coupled Ordinary

Differential Equations (ODEs) as:

dv
dt

= 0.04v2 +5v+140−u+ I (1)

du
dt

= a(bv−u) (2)

and a reset condition as:

i f v > 30mv then
{

v → vr
u → ur = u+d. (3)

Here, Eqs. 1 and 2 describe membrane potential v, recovery

variable u and applied current I. Other dimensionless param-

eters are

• a: Time scale of the recovery variable;

• b: Sensitivity of the u to v;

• c: After-spike reset value of v;

• d: After-spike reset value of u;

With adjustment of these variables, Izhikevich model is

capable of replicating several firing patterns exhibited by

biological neurons such as tonic spiking, adaptation, initial or

regular bursting, transient spiking, and irregular spiking [54].

2) CORDIC Izhikevich: CORDIC is an iterative algorithm

originally developed in [55] and thereafter generalized for

calculation of hyperbolic and exponential functions, multipli-

cations, divisions and square roots. CORDIC only requires

simple shift and addition operations, which can be cheaply

implemented on hardware hence making it an appropriate

choice for fast and low-cost hardware implementations.

The algorithm for CORDIC calculation of square term in

Eq. 1 is shown in Fig. 1. The FOR loop in line 4 calculates

Fig. 1. The CORDIC code for calculation of square function.

the square(x) to the n bit precision. The x register keeps track

of rotation direction in each iteration where z accumulates

the result. In this approach, calculating to k+n bit precision

SUBMITTED TO IEEE TCAS I 3

is equal to rounding of multiplication to k + n bit without

calculating unnecessary bits. Choosing n is a trade-off between

computation complexity and precision where k depends on the

domain of the square function. Since the membrane potential

of the neuron ranges between -100 and 30, k is set to 6 so

that its two’s power (26 = 64) is greater than 100/2 = 50 and

therefore the algorithm can keep up splitting the v to reach

the value of v2. To further evaluate the effect of n on the

neuron behavior, we define four models with n=6, n=8, n=10

and n=12, naming them IzhCOR6, IzhCOR8, IzhCOR10, and

IzhCOR12, respectively. This will help to compare simulation

and implementation results in terms of deviation from the

original model and hardware cost. The indicated code is most

useful for a fixed point hardware but it can be modified to

make it applicable to floating point hardware as well.
3) Simulation Results: Fig. 2 compares computer simula-

tion of multiplication and CORDIC-based square functions.

As this figure shows, two graphs are very close and only by

zooming in small range the difference is visible (Error analysis

is further presented in the next Section).

Fig. 2. Computer simulation of multiplication and CORDIC-based square
function. Here, black and red lines show multiplication, and CORDIC square
functions, respectively. The difference between two lines is only visible by
zooming in a small range.

Fig. 3 shows the computer simulation of Izhikevich and

modified CORDIC model for different neuronal behaviors.

For an identical applied current, responses are very similar

and there is no distinctive difference. However, these results

only indicate resemblance of models for one specified value

of applied current. Therefore, the resemblance of models for a

wide range and different random values of stimulation currents

are investigated as follows.
First, ODEs in both modified and original models was set

equal to zero as

dv
dt

= 0 and
du
dt

= 0, (4)

to depict nullclines in the phase planes of the systems. The

result is displayed in Fig. 4, where the first row (a and c)

shows nullclines for low values of stimulation where there

are two fixed points. The second row (b and d), on the other

hand, shows the responses of the models for higher stimu-

lation current where those fixed points merge and annihilate

simultaneously in both CORDIC and Izhikevich model phase

plane.

Second, Fig. 5 compares the raster diagram of 1000 ran-

domly coupled instances of original Izhzikevich (a) and the

proposed CORDIC neuron models. Here, each dot represents

a specific neuron spiking at a specific time. Despite the dif-

ferences in the details of the two models used, in general they

are very much alike. Both Figures 4 and 5 demonstrate that

the proposed CORDIC implementation of Izhikevich neuron

can show qualitatively similar behavior to the original model.

Further quantitative error analysis is presented in the following

subsection.

4) Models Numerical Analysis: To investigate the accuracy

of the proposed model in generating Izhikevich behavior, two

types of time domain errors were examined as follows.

ERRT: Modification in the neuron model may cause difference

in spike timing and lag in the spike train of the modified model

compared to the original one. For quantitative measuring of

this error, first, two spike trains were synced and then time to

next spike for original and CORDIC models was considered

for the calculation of a timing error (named ERRT) as shown

in Fig. 6. Here,

ERRT =

∣∣∣∣Δtc −Δto
Δto

∣∣∣∣×100,

Δt = ts2 − ts1,

(5)

where Δtc, and Δto are time intervals between the second

(ts2) and first spike (ts1), for CORDIC and original model,

respectively.

NRMSD: The Normalized Root Mean Square Deviation

(NRMSD) [56] error is also used to measure the similarity of

spike shapes in CORDIC and the original model. Low values

for this error indicate more resemblance of output spikes. This

error is defined as

RMSD =

√√√√ n
∑

i=1
(vc(n)− vo(n))2

n
, (6)

and normalized as

NRMSD =
RMSD

vmax − vmin
, (7)

where Vc and Vo are the wave forms of the CORDIC and

Izhikevich model, respectively. Here, Vmax and Vmin are the

maximum and minimum values of Vo in its domain. For

instance, for the curve in Fig. 2 at the range of [-100 100],

NRMSD was calculated as 5.2177×10−5, confirming a very

small error between CORDIC squaring and squaring using

normal multiplication operation. To measure the similarity of

output spikes, first two spikes were synced as shown in Fig. 6

and thereafter NRMSD was evaluated for the half of time

interval between these two spikes. Table I presents values

of ERRT and NRMSD for computer simulation of modified

CORDIC models. As expected, a higher value of n will result

in smaller error values, where the IZHCOR12 has a negligible

deviation from the Izhikevich neuron.

SUBMITTED TO IEEE TCAS I 4

Tonic Spiking-Original Model Tonic Spiking-Proposed Model Tonic Bursting-Original Model Tonic Bursting-Proposed Model

Mixed Mode-Original Model Mixed-Proposed Model Class II Excitability-Original Model Class II Excitability-Proposed Model

Fig. 3. Computer simulation of the original and the proposed modified CORDIC models for different neuronal behaviors. The black and green lines show
membrane potential and recovery variable respectively. The applied current is illustrated by the blue line.

Original Model CORDIC

a c

b d

Fig. 4. Nullclines of original and CORDIC model. In the first row, similar
to the original model, CORDIC model has two interaction points for low
injected current; the second row shows the state of models for higher injected
current where those intersection points merged and annihilated.

TABLE I
ERRT AND NRMSD FOR TONIC SPIKING AND REGULAR BURSTING.

Model Error Type Ton. Spiking Reg. Bursting

Computer simulation IZHCOR6 Errt %0.2549 %0.0000
NRMSD %0.0034 %0.0705

IZHCOR8 Errt %0.2049 %0.0000
NRMSD %0.0006 %0.0136

IZHCOR10 Errt %0.1025 %0.0000
NRMSD %0.0001 %0.0082

IZHCOR12 Errt %0.0000 %0.0000
NRMSD %0.0000 %0.0063

FPGA implementation IZHCOR6 Errt %0.0191 %0.0000
NRMSD %0.3951 %2.0631

B. Network Topology and Learning Method

1) Network Topology: In this study, a two-layer spiking

neural network as shown in Fig. 7 was formed. The first layer

consisting of 20 neurons acts as an input layer while the second

one with a single neuron is the output. A uniform random spike

train input, with the mean firing rate of 7 Hz, was applied to

each input neuron, which made them fire (defined as the state

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

Time

U
n

it
#

(a)

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

Time

U
n

it
#

(b)

Fig. 5. The spike raster for a population of 1000 tonic bursting neurons which
are coupled randomly. The utilized neuron models are (a) original Izhikevich
and (b) proposed CORDIC.

Fig. 6. ERRT: The difference of time interval between two spikes in the
original and CORDIC model obtained from computer simulations [50].

SUBMITTED TO IEEE TCAS I 5

Input Layer

Output Neuron

w(
i,1

)

Uniform random spike train

Fig. 7. The topology of the utilized spiking neural network.

where membrane potential become greater than 30mv). For the

output neuron, the input current is considered to be the sum

of the currents received from the input layer spiking neurons

as

Io =
20

∑
i=1

w(i,1) f (i) (8)

where w(i,1), which was initially set to 96 (by trial and error),

is the synaptic weight connecting the input layer i to the output

neuron. The value of f (i) is 1 if the corresponding neuron fires

and is 0 otherwise.
2) STDP Learning: In STDP, analogous to biology, the

synaptic weight changes when a pre-synaptic neuron fires in a

short time before or after the post-synaptic neuron, strengthen-

ing or weakening the neuron connection accordingly. Such a

change is determined as an exponential of the time difference

between two events and is formulated as{
wi(Δt) = A+ e−Δt/τ+ i f Δt > 0

wi(Δt) =−A− eΔt/τ− i f Δt ≤ 0,
(9)

where Δt = tpost − tpre is the time span between pre- and

post-synaptic spikes. Here, τ+ and τ− are STDP learning

windows, which determine any time differences greater than

them is considered to have a small effect on the synaptic

weights and could be disregarded. These windows were set

to τ+ = τ− = 20ms in our experiments. In addition, A+ and

A− are gain parameters set to 2 and 4 respectively considering

the fact that in biology too, synapses tend to be more depressed

than potentiated. Overall, these five parameters determine the

magnitude of weight change.

Furthermore, as in biological synapses, the weight should

be confined between wmin < w < wmax. The STDP mechanism

of weakening and strengthening of synapses will eventually

lead to a bi-modal distribution of weights, which is a result

of competitive Hebbian learning [57]. This rule applies to the

utilized network in Fig. 7 as well. STDP learning in this two-

layer network leads to a bi-modal weight distribution as shown

in Fig. 8. This figure depicts the evolving of network weights

over the simulation time to distribute into two extreme weight

values of 0 and 200.
3) CORDIC STDP: The main challenges in implementing

STDP are its exponential terms and the memory required to

store and retrieve spike timing. Here we implemented the ex-

ponential function required for STDP, using a modified version

of the CORDIC algorithm presented in [50]. The algorithm for

calculating the exponential of x (ex) is shown in Fig. 9. Here,

variables x and expx are used to store input and output values,

respectively. As part of the algorithm, the pre-calculated values

of e(
1
2),e(

1
4), · · · ,e(1

n) are stored in an array, as shown in line

Fig. 8. Weight distribution after STDP learning in the network of (a) original,
(b) CORDIC, and (c) 2x-based approximation model. All the 20 synaptic
weights are initially set to 96 as shown in the first row. The second row
displays weight distribution and their frequency after half of the simulation
time. Finally, the third row depicts the weight distribution at the end of
simulation, where the weights have mostly evolved to be either zero or the
maximum possible value of Wmax = 192.

1 //assign initial values
2 z=fraction(x);poweroftwo=0.5;
3 expx=1;
4 //pre-calculated a elements
5 a=[exp((1/2)*(1:n))]
6 //Determine the weights
7 //and calculate products
8 for i from 0 to n do
9 {
10 if (poweroftwo < z)
11 {
12 z=z-poweroftwo;
13 expx = expx * a(i);
14 }
15 poweroftwo=poweroftwo/2;
16 }

Fig. 9. The pseudo code of CORDIC exponential.

5. The FOR loop in line 8 calculates the exponential function

for the fraction part of x with e−n precision. In this work, n
is set to 8, but higher values of n could be selected in the

case of the need for higher precision exponential function.

However, this will in turn slightly increases implementation

cost. Our proposed algorithm is simpler than that of [50],

because the range of x, for which we need to calculate the

exponential function, is between -1 and 0. Fig. 10 demonstrates

the very good approximation in implementing the exponential

function achieved using our proposed CORDIC algorithm. In

this figure, the blue curve shows the computer simulation of

exponential function, while the red curve is the exponential

approximation using CORDIC. The NRMSD error calculated

for these curve was 2.38 × 10−3, which further verify the

high accuracy of the proposed CORDIC algorithm. To further

verify the effectiveness of the proposed CORDIC algorithm

in replicating the STDP model, the simple 2x function was

used as another method to approximate exponential function,

because the value of x is always negative and in the range

of -1 and 0. Such a term could be cheaply implemented on

hardware using shift registers.

To test the accuracy of the approximated STDP models

compared to the original model, two networks with the

topology shown in Fig. 7 were formed. The first network

SUBMITTED TO IEEE TCAS I 6

� � � � � �

Fig. 10. Software simulation of: exponential function (blue line) and the one
calculated by CORDIC algorithm (red line) for n=8 indicating the resemblance
of both functions.

consisted of original Izhikevich neurons and original STDP

rule, while the second one used CORDIC STDP to connect

CORDIC (IZHCOR8) neurons. Next, the same random current

was applied to the input layer of both networks. Fig. 8(a)

and (b) show the evolution of weight for the original and

CORDIC networks, respectively. Due to the high precision

of the CORDIC algorithm, the resulted weight distributions

are very similar to the network implementing original STDP

and Izhikevich models. Furthermore, Fig. 8(c) is the weight

distribution achieved using the 2x function instead of the

exponential functions. As seen, the weight distribution is

different from the original and CORDIC models but a similar

bi-modal distribution could be observed.

III. FPGA IMPLEMENTATION

A. Architecture

1) Izhikevich neuron: This section presents FPGA im-

plementation of the proposed CORDIC Izhikevich neuron.

Since the primary objective of this paper is to reduce the

implementation cost and improve hardware speed, fixed-point

arithmetic was used in our implementations. For solving the

Izhikevich Ordinary Differential Equations (ODEs) shown in

Eq. 1, and 2, they were discretized and simple Euler method

was used that resulted in the following Equations.

v[n+1] = (0.04 CORDIC_Mul(v[n])+5v[n]...

+140−u[n]+ I[n])dt + v[n],
(10)

u[n+1] = a(bv[n]−u[n])dt +u[u]. (11)

By choosing small step sizes and with the help of the reset

equation, which keeps v bounded to help the stability of Euler

method, this method produced stable outputs. In addition,

multiplications by constant numbers were approximated to the

closest possible values with the sum of a series of power of two

numbers (∑k
−l 2n), thereby reducing multiplications to simple

shifts and adds. Obviously, a higher value of k+ l increases

the multiplication precision but it also requires more shift

registers and adders leading to a higher hardware resource

requirement. The Control Data Flow Graph (CDFG) [58] of

the Izhikevich CORDIC model is shown in Fig. 11. In this

Fig. 11. Control data flow graph for FPGA implementation of CORDIC
Izhikevich neuron. First, block (a) calculates the square function as per the
pseudo code in Fig. 1 . The counter which is showed at the top of this
block, counts from -6 to 5, enabling this block for 12 iterations. In each
iteration, 2(−i) is added or subtracted from x register based on the sign of x.
Eventually, this register’s value tends to zero as iterations continues. The same
scenario applies to the z register. The value of 2(−i) ∗ v[n] will be added or
subtracted from the z register depending on the sign of z. After 12 iterations,
the multiplication result is ready and the (b) block is enabled. This block
solves the Euler method in the eq. 10 and 11. At the last stage of this block,
v is compared with the threshold value of 30. If v is grater than this threshold,
the multiplexers reset the v and u according to eq. 3. The plain lines show
the flow of data and the dashed lines indicate the jumps and decision signals.

figure, operation blocks and registers are represented with

circles and rectangles, respectively. In this graph, block A

calculates the square function while block B solves the Euler

method presented in Eq. 10 and 11. Arithmetic shift operations

are shown by “»” and “x«” means shift by “x” position while

adding the results, which implements ∑k
−l 2n.

For the model to work properly, optimum word length for

the architecture should be determined. This can be specified

when considering the minimum number of integer bits to

correctly represent the range of variables, and the number of

fraction bits for the minimum required precision. In addition,

extra bits are required to prevent from over and under flow

in the shift&add operations. Considering all the requirements,

and to avoid overflow and precision loss, 14 and 16 bits were

dedicated for the fraction and integer parts, respectively.

2) Network and STDP rule: Similar to the neuron, the Euler

method was used to solve the discretized version of Eq. 9 to

implement STDP. The CDFG for calculating the exponential

term in this equation is presented in Fig. 12. Comparing to

the flow graph used for calculating exponentials in [50], this

one is simpler because here x is in the range of -1 and 0, and

therefore no shift by e is needed. Nonetheless, this design also

only uses shift & add operations, so it is hardware friendly.

The flow graph for implementation of the spiking network

with STDP learning is shown in Fig. 13. The post-synaptic

input current is the sum of the synaptic weights of all the pre-

synaptic neurons that fire. As shown in the block (a) of the

figure, a 41-bit shift register is used to record the spike timing

of pre- and post-synaptic neurons. Every time a neuron fires

or is silent, the register shifts to left and the least significant

bit updates with 1 (spike) or 0 (silence), accordingly. Here,

sampling time is controlled by a counter to act as enable signal

for the shift register.

Online STDP learning rule is implemented in block (b) of

Fig. 13. Here, the middle bit (Reg[20]) of the 41-bit shift

register that records pre-synaptic spike times, enables STDP

SUBMITTED TO IEEE TCAS I 7

Fig. 12. Control data flow graph for digital implementation of the exponential
function for the range of -1 < x < 0 according the pseudo code shown in the
Fig 9. Since the value of the input x is always smaller than one, the word
length of this architecture was considered as total number of fraction bits. The
calculations complete in 6 iterations as the counter at the top of the figure
counts from 1 to 6. In each iteration, float register is compared with the 2−i.
If it is greater, the register is subtracted from 2−i. Moreover, expx register,
which it’s initial value is 1, is multiplied by constant a(i) with performing
shift and add operations. Upon completion of iterations, the counter enables
the out signal.

Fig. 13. Control data flow graph for digital implementation of STDP
algorithm. Block (a) is the hardware presented for the network in Fig. 7
and recording spike times. Block (b) implements STDP to calculate weight
changes and update weights. In this block, either of Exp_CORDIC or 2x̂
blocks could be used for approximating the STDP exponential term.

mechanism. This is to account for, and enable STDP, in

response to future (Reg[19:0]) and past (Reg[40:21]) spike

events. If a pre-synaptic neuron spikes, the time of that spike is

compared to the time of post-synaptic spikes and the difference

will be divided by τ (using shift operations) and passed to the

exponential CORDIC calculator unit. Next, based on the sign

of the time difference, the new weight will be determined and

compared to the boundaries. The same approach could be used

for calculating STDP but using the 2x model. That way, the

exp_cordic unit (in Fig. 13(b)), should be replaced with a 2x

calculator.

TABLE II
RESOURCES USED TO IMPLEMENT DIFFERENT PROPOSED CORDIC

BASED IZHIKEVICH MODELS.

Model Slice Registers Slice LUT’s Max Speed (MHz)

IZHCOR6 229 410 183.4
IZHCOR8 232 413 182.7
IZHCOR10 234 418 181.4
IZHCOR12 236 421 180.1

Fig. 14. The method of transferring on-FPGA spiking neuron outputs to PC
for analysis.

B. FPGA Implementation

Data flow graphs in Fig. 11 to 13 were described with

VHDL hardware description language using Finite State

Machines (FSMs). Further, the developed codes were first

simulated using Modelsim for validation. Afterwards, the

codes were synthesized by XILINX ISE XST synthesizer

and implemented on the 45nm technology XILINX Spartan-6

XC6SLX75 FPGA.

Since the utilized FPGA only supports Universal Asyn-

chronous Receiver Transmitter (UART) port, a Prolific

2303HX chip and its driver were used to create virtual UART

port in PC, through Universal Serial Bus (USB) port, to

transfer the data from FPGA to PC for analysis. Furthermore,

a UART transmitter and receiver module was added to the

neuron VHDL code and implemented on FPGA as shown

in Fig. 14. A counter was used to divide FPGA operation

frequency to the chosen baud rate of the UART port (9600

bps). Data stream was structured as one start bit, eight data

bits, one stop bit, and no parity. An additional counter was

used to break the thirty-bit data in register V[n] into four bytes

and send to UART port. Further, software was developed to

receive and recover data from virtual UART port on Linux PC.

Fig. 15 demonstrates the FPGA implementation and simulation

results for two cases of tonic spiking and regular bursting

of IZHCOR6. As it can be seen from the figure the FPGA

implementation results well resemble the computer simulation

results of the original Izhikevich model. To have a better

comparison between the simulation and the FPGA outputs,

NRMSD and ERRT were calculated as shown in Table I. These

errors further confirm that the digital implemented CORDIC

neuron has a similar behavior to the original model.

To implement the spiking neural network with STDP learn-

ing and demonstrate its bi-modal behavior on FPGA, first, a

Linear-Feedback Shift Register (LFSR) unit was designed to

generate semi-random input spikes for the first layer neurons in

the network shown in Fig. 7. The implemented LFSR is shown

in Fig. 16. It is worth noting that, for other applications, the

LFSR that generates random currents could be replaced with

the spiking output of event-based sensors such as a silicon

SUBMITTED TO IEEE TCAS I 8

TABLE III
COMPARISON BETWEEN PROPOSED METHOD AND PREVIOUSLY PUBLISHED WORKS

Refrence Slice Registers Slice LUT’s Max Speed (MHz) DSPs NRMSD% Errt% Device

Soleimani et al [46]. 493 617 241.9 0 - 1.54 Virtex-II Pro XC2VP30
Gomar et al. [59] 388 1279 190 0 4.02 - Virtex-II Pro XC2VP30
Hayati et al. [60] 476 856 135 0 3.7 - Virtex-II Pro XC2VP30
Grassia et al. [61] 646 1048 105 22 - - Virtex-5 XC5VLX50

Heidarpur et al. [50] 829 1221 134.3 0 0.04 0.39 Spartan-6 XC6SLX9
Shimada et al. [62] 357 1776 Asynchronous - - - Zync-7000 XC7Z020

This work (IZHCOR6 -Area optimization goal) 229 410 183.4 0 0.003 0.26 Spartan-6 XC6SLX75
This work (IZHCOR6 -Speed optimization goal) 280 469 212.8 0 0.003 0.26 Spartan-6 XC6SLX75

0 0.5 1 1.5 2 2.5

x 10
4

−80

−60

−40

−20

0

20

40

(A)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
−80

−60

−40

−20

0

20

40

(B)

Fig. 15. FPGA Implementation of CORDIC Izhikevich (red) and computer
simulation of Izhikevich model (black). The FPGA Data was transferred to
PC via UART-USB port. (A) Tonic Spiking and (B) Regular Bursting. Please
note that the implementation data is scaled and an offset was added to it for
closer behavior to the simulation.

Fig. 16. Linear Feedback Shift Register (LFSR) technique was used to
generate semi-random input currents to feed the SNN input neurons.

0 50 100 150 200
0

1

2

3

4

5

6

7

8

Weight

F
re

q
u
e
n
c
y

Fig. 17. Bi-modal weight distribution reached after execution of the online
on-FPGA STDP learning on a network of Izhikevich neurons.

TABLE IV
TOTAL NUMBER AND HIGHEST SPEED OF CORDIC-BASED AND ORIGINAL

(IMPLEMENTED USING DSP 36-BIT MULTIPLIERS) IZHIKEVICH NEURONS

THAT CAN BE IMPLEMENTED ON VARIOUS FPGA DEVICES.

Device CORDIC DSP Multiplier
Number Speed Number Speed

Spartan-6 XC6LX75 110 183 MHz 22 44 MHz
Virtex-5 XC5VSX240T 365 220 MHz 176 102 MHz
Virtex-6 XC6VLX550T 835 332 MHz 144 111 MHz
Virtex-7 XC7VX980T 1490 370 MHz 600 130 MHz

retina or cochlea. Fig. 17 demonstrates the bi-modal behavior

reached after stimulating the implemented SNN on FPGA,

with randomly generated input spikes generated using the on-

FPGA LFSRs.

C. Results and Discussion

Table II shows the amount of resources used to implement

different CORDIC models of the Izhikevich neuron and the

maximum speed reached using each of these models. As can

TABLE V
UTILIZED RESOURCES TO IMPLEMENT THE CORDIC (IZHCOR6) AND

ORIGINAL IZHIKEVICH NEURON

Resource CORDIC Original
Slice LUTs 410 370
Slice Registers 229 211
DSPs 0 6

TABLE VI
CORDIC AND ORIGINAL NEURON MODEL ON-FPGA POWER (REPORTED

BY XILINX XPOWER ANALYZER FOR THE SAME FREQUENCY)

CORDIC neuron Original Model
On-FPGA power 71 mW 73 mW

SUBMITTED TO IEEE TCAS I 9

TABLE VII
TOTAL FPGA UTILIZATION FOR IMPLEMENTATION OF CORDIC AND 2x ONLINE STDP ON A NETWORK OF CORDIC (IZHCOR8) IZHIKEVICH

NEURONS WITH TOPOLOGY OF FIG. 7. THESE RESULTS INCLUDES SEMI-RANDOM INPUT GENERATOR MECHANISM AS WELL.

Slice Registers Utilization Perc. Slice LUT’s Utilization Perc. Max Speed (MHz)
CORDIC STDP 7,088 7% 10,376 22% 84.1

2x STDP 7,047 7% 10,234 21% 84.5

be seen in this table, the resource usages of the four different

implementations are close but for each higher precision model,

extra time is needed to produce the new value of v. This delay

can be calculated as:

T =
1

f requency
∗n (12)

Where T is the total time required to calculate the CORDIC

square function and n is the number of the iterations. Con-

sidering the IZHCOR6 model (Area optimization goal) and

frequency of device as 184 Mhz, total delay to calculate

the result will be 6 ∗ 5.5ns = 33ns. DSP multiplier on the

other side, operate at lower frequency of 44 Mhz but it need

one clock to complete the results. DSP’s total time can be

calculated as 1∗22.7ns = 22.7ns. Still, the total delay is less

than CORCID method. However, the architecture presented

in this paper is not only consisted of the neurons. But also

include the hardware to store the the spike times and the STDP

algorithm to calculate and update the synaptic weights. The

DSP multiplier reduces the frequency of the FPGA, resulting

in other units to perform much slower. This in turn, increases

total delay and reduces the throughput of the system.

In addition, in Table III, the device utilization, speed,

NRMSD, and ERRT are compared with some previously

published works where a single neuron model is implemented

on FPGA. Since the FPGA devices and synthesizer used are

different in these works, this table results should be considered

relatively. However, it can be seen that the proposed Izhikevich

device consumes fewer resources while having higher speed

compared to previous works.

Furthermore, Table IV shows the number of CORDIC

and original Izhikevich neurons that could be implemented

on some FPGAs devices and compares the speed of both

methods. The resources utilized for implementation of the

CORDIC and DSP based neuron is presented in the Table V.

In implementation of CORDIC model, the number of neurons

is limited by available LUTs in FPGA. Total number of LUTs

in Spartan-6 XC6LX75 is 46648. Therefore, the number of

neurons was calculated as:

N =
Available LUT s
Utilized LUT s

=
46648

410
≈ 110 (13)

In the case of DSP based implementation, the number of

neurons is limited by available DSPs. In Spartan-6 XC6LX75,

there are 132 DSP slices available. Thus, dividing 132 to the

number of utilized DSP slices which is 6, gives maximum

number of neurons.

N =
Available DSPs
Utilized DSPs

=
132

6
= 22 (14)

To implement the original model on FPGAs, 36-bit DSP

multipliers were used and the results were truncated to 36

bits. However, multiplication in constants were still performed

with shift and add operations, the same way as performed in

the proposed CORDIC device. Despite this simplification in

the original model, the proposed CORDIC method allowed

a higher number of faster neurons to be implemented on all

FPGAs.
Power consumption and density is another important con-

cern when designing hardware. It is also, one of major issues

that need to be resolved for massive large scale implementa-

tion of neuromorphic systems considering that building such

systems has been one of the main motivations of this work.

To measure the on-FPGA power, first we generated a value

change dump file and then the XILINX XPower Analyzer was

used to determine the circuits power. For the fair comparison,

it is presumed that both circuits work at the same frequency

(40 MHz). As it is shown in this table VI, the CORDIC neuron

consumes slightly less power than the original neuron model

implementation.
To evaluate the cost of the total SNN with STDP learning

and random input spike generation, the network with the

topology of Fig. 7 consisting of CORDIC Izhikevich neurons

(Fig. 11), semi-random input generators (Fig. 16), and STDP

learning synapses (Fig. 13 and Fig. 12), was implemented on

FPGA. This is the same network that was used to successfully

generate the bi-modal weight distribution due to competitive

Hebbian Learning of STDP synapses. Table VII reports the

total resources and speed of the implemented network. As

the table indicates, this STDP learning spiking network only

consumes around 29% of available FPGA resources and could

therefore be scaled almost 3.5 times on a fairly cheap device

like Spartan XA6SLX75.
In addition, the second row in Table VII presents implemen-

tation result for 2x method, which uses lower resources and

has higher speed in comparison with the previous methods.

However, as discussed earlier, the accuracy of this model is

lower than the proposed CORDIC model.
Overall, the above results confirm the reliable functionality

of the proposed CORDIC-based SNN with STDP Learning.

These results also show that the proposed design can lead

to more efficient and faster FPGA-based SNNs compared

to the literature. It can therefore contribute to the design

and implementation of low-cost and high-speed large-scale

digital neuromorphic systems exploring unsupervised STDP

learning. It is important to note that FPGA devices utilize more

resources for hardware implementation than that of ASICs.

Implementing such hardware on silicon will have considerably

less cost and have better performance.

IV. CONCLUSION

In this paper, a novel hardware was presented based on

the CORDIC method for on-FPGA online STDP learning.

SUBMITTED TO IEEE TCAS I 10

This hardware proved to be accurate while requiring less

FPGA resources and having higher speed compared to the

original models and state-of-the-art designs. The CORDIC

method was utilized because of the simplicity of its structure,

since it only uses add and shift operations which could be

cheaply implemented on hardware. In order to implement

the proposed learning system, first, the CORDIC method

was used to implement Izhikevich neurons and its accuracy

was analyzed. Second, the STDP algorithm was adopted for

online learning and modified using the CORDIC algorithm

to improve hardware efficiency. Furthermore, error analysis

was performed on computer simulation data to ensure the

accuracy of the implemented CORDIC models. Consequently,

hardware was designed, described in VHDL, and simulated

for both neuron and learning mechanism. Finally, the models

were implemented on FPGA to form a spiking neural net-

work composed of Izhikevich neurons and STDP synapses

to demonstrate competitive Hebbian learning. The proposed

CORDIC-based FPGA spiking network with STDP learning

is a step toward simpler and more efficient hardware design

for SNN with unsupervized STDP learning implemented on

FPGAs and digital platforms.

REFERENCES

[1] K. Boahen, “A neuromorph’s prospectus,” Computing in Science and
Engg., vol. 19, no. 2, pp. 14–28, Mar. 2017. [Online]. Available:
https://doi.org/10.1109/MCSE.2017.33

[2] L. A. Pastur-Romay, F. Cedron, A. Pazos, and A. B. Porto-Pazos, “Deep
artificial neural networks and neuromorphic chips for big data analysis:
Pharmaceutical and bioinformatics applications,” International Journal
of Molecular Sciences, vol. 17, no. 8, 2016.

[3] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chan-
drasekaran, J. M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla,
and K. Boahen, “Neurogrid: A mixed-analog-digital multichip system
for large-scale neural simulations,” Proceedings of the IEEE, vol. 102,
no. 5, pp. 699–716, May 2014.

[4] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and D. S.
Modha, “A digital neurosynaptic core using embedded crossbar memory
with 45pj per spike in 45nm,” in 2011 IEEE Custom Integrated Circuits
Conference (CICC), Sept 2011, pp. 1–4.

[5] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The spinnaker
project,” Proceedings of the IEEE, vol. 102, no. 5, pp. 652–665, May
2014.

[6] J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier, and S. Millner,
“A wafer-scale neuromorphic hardware system for large-scale neural
modeling,” in Proceedings of 2010 IEEE International Symposium on
Circuits and Systems, May 2010, pp. 1947–1950.

[7] R. Wang, C. S. Thakur, G. Cohen, T. J. Hamilton, J. Tapson, and
A. van Schaik, “Neuromorphic hardware architecture using the neural
engineering framework for pattern recognition,” IEEE Transactions on
Biomedical Circuits and Systems, vol. 11, no. 3, pp. 574–584, June 2017.

[8] C. S. Thakur, J. Molin, G. Cauwenberghs, G. Indiveri, K. Kumar,
N. Qiao, J. Schemmel, R. Wang, E. Chicca, J. O. Hasler et al., “Large-
scale neuromorphic spiking array processors: A quest to mimic the
brain,” arXiv preprint arXiv:1805.08932, 2018.

[9] B. Sen-Bhattacharya, S. James, O. Rhodes, I. Sugiarto, A. Rowley,
A. B. Stokes, K. Gurney, and S. B. Furber, “Building a spiking neural
network model of the basal ganglia on spinnaker,” IEEE Transactions
on Cognitive and Developmental Systems, pp. 1–1, 2018.

[10] J. P. Dominguez-Morales, A. Rios-Navarro, D. Gutierrez-Galan,
R. Tapiador-Morales, A. Jimenez-Fernandez, E. Cerezuela-Escudero,
M. Dominguez-Morales, and A. Linares-Barranco, “Multilayer spiking
neural network for audio samples classification using spinnaker,” in 2017
IEEE International Symposium on Circuits and Systems (ISCAS), May
2017, pp. 1–1.

[11] D. Khodagholy, J. N. Gelinas, T. Thesen, W. Doyle, O. Devinsky, G. G.
Malliaras, and G. Buzsáki, “Neurogrid: recording action potentials from
the surface of the brain,” Nature neuroscience, vol. 18, no. 2, p. 310,
2015.

[12] S. Scholze, H. Eisenreich, S. Höppner, G. Ellguth, S. Henker, M. Ander,
S. Hänzsche, J. Partzsch, C. Mayr, and R. Schüffny, “A 32 gbit/s com-
munication soc for a waferscale neuromorphic system,” INTEGRATION,
the VLSI journal, vol. 45, no. 1, pp. 61–75, 2012.

[13] M. Chu, B. Kim, S. Park, H. Hwang, M. Jeon, B. H. Lee, and B. G.
Lee, “Neuromorphic hardware system for visual pattern recognition with
memristor array and cmos neuron,” IEEE Transactions on Industrial
Electronics, vol. 62, no. 4, pp. 2410–2419, April 2015.

[14] S. Davies, “Learning in the spiking neural networks,” Ph.D. dissertation,
Univ. of Manchester, Manchester, 2012.

[15] M. R. Azghadi, N. Iannella, S. F. Al-Sarawi, G. Indiveri, and D. Abbott,
“Spike-based synaptic plasticity in silicon: design, implementation,
application, and challenges,” Proceedings of the IEEE, vol. 102, no. 5,
pp. 717–737, 2014.

[16] A. L. Hodgkin and A. F. Huxley, “A quantitative description of mem-
brane current and its application to conduction and excitation in nerve,”
The Journal of physiology, vol. 117, no. 4, p. 500, 1952.

[17] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions
on neural networks, vol. 14, no. 6, pp. 1569–1572, 2003.

[18] R. Brette and W. Gerstner, “Adaptive exponential integrate-and-fire
model as an effective description of neuronal activity,” Journal of
neurophysiology, vol. 94, no. 5, pp. 3637–3642, 2005.

[19] R. FitzHugh, “Impulses and Physiological States in Theoretical Models
of Nerve Membrane,” Biophysical Journal, vol. 1, pp. 445–466, jul 1961.

[20] C. Morris and H. Lecar, “Voltage oscillations in the barnacle giant
muscle fiber,” Biophysical Journal, vol. 35, no. 1, pp. 193–213, 1981.

[21] H. R. WILSON, “Simplified dynamics of human and mammalian
neocortical neurons,” Journal of Theoretical Biology, vol. 200, no. 4,
pp. 375–388, 1999.

[22] R. M. Rose and J. L. Hindmarsh, “The assembly of ionic currents in
a thalamic neuron i. the three-dimensional model,” Proceedings of the
Royal Society B: Biological Sciences, vol. 237, no. 1288, pp. 267–288,
1989.

[23] W. Gerstner and W. M. Kistler, Spiking neuron models: Single neurons,
populations, plasticity. Cambridge university press, 2002.

[24] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal
dynamics: From single neurons to networks and models of cognition.
Cambridge University Press, 2014.

[25] P. U. Diehl, G. Zarrella, A. Cassidy, B. U. Pedroni, and E. Neftci, “Con-
version of artificial recurrent neural networks to spiking neural networks
for low-power neuromorphic hardware,” in 2016 IEEE International
Conference on Rebooting Computing (ICRC), Oct 2016, pp. 1–8.

[26] D. Martí, M. Rigotti, M. Seok, and S. Fusi, “Energy-efficient neuromor-
phic classifiers,” Neural computation, vol. 28, no. 10, pp. 2011–2044,
2016.

[27] R. Kreiser, T. Moraitis, Y. Sandamirskaya, and G. Indiveri, “On-chip
unsupervised learning in winner-take-all networks of spiking neurons,”
in 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS),
Oct 2017, pp. 1–4.

[28] H. Y. Hsieh, P. Y. Li, C. H. Yang, and K. T. Tang, “A high learning
capability probabilistic spiking neural network chip,” in 2018 Interna-
tional Symposium on VLSI Design, Automation and Test (VLSI-DAT),
April 2018, pp. 1–4.

[29] J. s. Kim and S. Jung, “Implementation of the rbf neural chip with
the on-line learning back-propagation algorithm,” in 2008 IEEE Inter-
national Joint Conference on Neural Networks (IEEE World Congress
on Computational Intelligence), June 2008, pp. 377–383.

[30] E. Stromatias and J. S. Marsland, “Supervised learning in spiking neural
networks with limited precision: Snn/lp,” in 2015 International Joint
Conference on Neural Networks (IJCNN), July 2015, pp. 1–7.

[31] A. M. Sheri, A. Rafique, W. Pedrycz, and M. Jeon,
“Contrastive divergence for memristor-based restricted boltzmann
machine,” Engineering Applications of Artificial Intelligence,
vol. 37, pp. 336 – 342, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0952197614002334

[32] F. Grassia, L. Buhry, T. Levi, J. Tomas, A. Destexhe, and S. Saighi,
“Tunable neuromimetic integrated system for emulating cortical neuron
models,” Frontiers in NEUROSCIENCE, vol. 5, p. 134, 2011.

[33] A. Morrison, M. Diesmann, and W. Gerstner, “Phenomenological models
of synaptic plasticity based on spike timing,” Biological cybernetics,
vol. 98, no. 6, pp. 459–478, 2008.

[34] E. Covi, S. Brivio, M. Fanciulli, and S. Spiga, “Synaptic potentiation and
depression in al: Hfo2-based memristor,” Microelectronic Engineering,
vol. 147, pp. 41–44, 2015.

[35] M. R. Azghadi, S. Moradi, D. B. Fasnacht, M. S. Ozdas, and G. Indiveri,
“Programmable spike-timing-dependent plasticity learning circuits in

SUBMITTED TO IEEE TCAS I 11

neuromorphic vlsi architectures,” ACM Journal on Emerging Technolo-
gies in Computing Systems (JETC), vol. 12, no. 2, p. 17, 2015.

[36] C. Mayr, J. Partzsch, M. Noack, S. Hanzsche, S. Scholze, S. Hopp-
ner, G. Ellguth, and R. Schuffny, “A biological-realtime neuromorphic
system in 28 nm cmos using low-leakage switched capacitor circuits,”
IEEE transactions on biomedical circuits and systems, vol. 10, no. 1,
pp. 243–254, 2016.

[37] R. M. Wang, T. J. Hamilton, J. Tapson, and A. van Schaik, “A mixed-
signal implementation of a polychronous spiking neural network with
delay adaptation,” Frontiers in neuroscience, vol. 8, p. 51, 2014.

[38] S. Yang, J. Wang, B. Deng, C. Liu, H. Li, C. Fietkiewicz, and K. A.
Loparo, “Real-time neuromorphic system for large-scale conductance-
based spiking neural networks,” IEEE Transactions on Cybernetics, pp.
1–14, 2018.

[39] K. Isobe and H. Torikai, “A novel hardware-efficient asynchronous
cellular automaton model of spike-timing-dependent synaptic plasticity,”
IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63,
no. 6, pp. 603–607, June 2016.

[40] M. R. Azghadi, S. Al-Sarawi, D. Abbott, and N. Iannella, “A neuromor-
phic VLSI design for spike timing and rate based synaptic plasticity,”
Neural Networks, vol. 45, pp. 70–82, 2013.

[41] M. R. Azghadi, S. Al-Sarawi, N. Iannella, and D. Abbott, “Tunable low
energy, compact and high performance neuromorphic circuit for spike-
based synaptic plasticity,” PLoS ONE, vol. 9, no. 2, p. art. no. e88326,
2014.

[42] C. Lammie, T. Hamilton, and M. R. Azghadi, “Unsupervised character
recognition with a simplified fpga neuromorphic system,” in 2018 IEEE
International Symposium on Circuits and Systems (ISCAS), 2018.

[43] L. P. Maguire, T. M. McGinnity, B. Glackin, A. Ghani, A. Belatreche,
and J. Harkin, “Challenges for large-scale implementations of spiking
neural networks on fpgas,” Neurocomputing, vol. 71, no. 1, pp. 13–29,
2007.

[44] T. Matsubara, H. Torikai, and T. Hishiki, “A generalized rotate-and-
fire digital spiking neuron model and its on-fpga learning,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 58, no. 10,
pp. 677–681, Oct 2011.

[45] N. Shimada and H. Torikai, “A novel asynchronous cellular automaton
multicompartment neuron model,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 62, no. 8, pp. 776–780, 2015.

[46] H. Soleimani and E. M. Drakakis, “An efficient and reconfigurable
synchronous neuron model,” IEEE Transactions on Circuits and Systems
II: Express Briefs, vol. PP, no. 99, pp. 1–1, 2017.

[47] H. Soleimani, A. Ahmadi, and M. Bavandpour, “Biologically inspired
spiking neurons: Piecewise linear models and digital implementation,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59,
no. 12, pp. 2991–3004, Dec 2012.

[48] M. Heidarpur, A. Ahmadi, and N. Kandalaft, “A digital implementation
of 2d hindmarsh–rose neuron,” Nonlinear Dynamics, vol. 89, no. 3, pp.
2259–2272, Aug 2017.

[49] A. Elnabawy, H. Abdelmohsen, M. Moustafa, M. Elbediwy, A. Helmy,
and H. Mostafa, “A low power cordic-based hardware implementation of
izhikevich neuron model,” in 2018 16th IEEE International New Circuits
and Systems Conference (NEWCAS). IEEE, 2018, pp. 130–133.

[50] M. Heidarpour, A. Ahmadi, and R. Rashidzadeh, “A cordic based digital
hardware for adaptive exponential integrate and fire neuron,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 11,
pp. 1986–1996, Nov 2016.

[51] S. Gomar and M. Ahmadi, “Digital realization of pstdp and tstdp
learning,” in 2018 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2018, pp. 1–5.

[52] B. Belhadj, J. Tomas, O. Malot, G. N’Kaoua, Y. Bornat, and S. Renaud,
“Fpga-based architecture for real-time synaptic plasticity computation,”
in 2008 15th IEEE International Conference on Electronics, Circuits
and Systems, Aug 2008, pp. 93–96.

[53] C. Lammie, T. J. Hamilton, A. van Schaik, and M. R. Azghadi, “Efficient
fpga implementations of pair and triplet-based stdp for neuromorphic
architectures,” IEEE Transactions on Circuits and Systems I: Regular
Papers, pp. 1–13, 2018.

[54] E. M. Izhikevich, “Which model to use for cortical spiking neurons?”
IEEE transactions on neural networks, vol. 15, no. 5, pp. 1063–1070,
2004.

[55] J. E. Volder, “The cordic trigonometric computing technique,” Electronic
Computers, IRE Transactions on, vol. EC-8, no. 3, pp. 330–334, Sept
1959.

[56] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast
accuracy,” International Journal of Forecasting, vol. 22, no. 4, pp. 679–
688, 2006.

[57] C. Borgers, Spike Timing-Dependent Plasticity (STDP). Cham: Springer
International Publishing, 2017, pp. 349–359.

[58] S. P. Mohanty, Low-power high-level synthesis for nanoscale CMOS
circuits. Springer, 2008.

[59] S. Gomar and A. Ahmadi, “Digital multiplierless implementation of
biological adaptive-exponential neuron model,” Circuits and Systems I:
Regular Papers, IEEE Transactions on, vol. 61, no. 4, pp. 1206–1219,
April 2014.

[60] M. Hayati, M. Nouri, S. Haghiri, and D. Abbott, “Digital multiplierless
realization of two coupled biological morris-lecar neuron model,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 7,
pp. 1805–1814, July 2015.

[61] F. Grassia, T. Levi, T. Kohno, and S. Saïghi, “Silicon neuron: digital
hardware implementation of the quartic model,” Artif Life Robotics,
vol. 19, no. 3, pp. 215–219, 2014.

[62] N. Shimada and H. Torikai, “A novel asynchronous cellular automaton
multicompartment neuron model,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 62, no. 8, pp. 776–780, Aug 2015.

Moslem Heidarpur received the B.Sc. degree in
electrical engineering and M.Sc. degree in electronic
engineering from the Department of Electrical Engi-
neering, Razi University, Kermanshah, Iran, in 2012
and 2014. He is now Ph.D. student in the University
of Windsor, Canada. His research interests include
analog and digital electronic circuit design and opti-
mization, bio-inspired computing, neuromorphic and
integrated circuit design.

Arash Ahmadi (M’04–SM’16) received the B.Sc.
and M.Sc. degrees in electronics engineering
from Sharif University of Technology and Tarbiat
Modares University, Tehran, Iran, in 1993 and 1997,
respectively, and the Ph.D. degree in electronics
from the University of Southampton, U.K., in 2008.
He was with Razi University, Kermanshah, Iran, as
a Faculty Member. From 2008 to 2010, he was a
Fellow Researcher with the University of Southamp-
ton. He is currently an Associate Professor in the
Electrical Engineering Department, Razi University

and visiting scholar at University of Windsor, Canada. His current research
interest includes neuromorphic, hardware implementation of signal processing
systems, high-level synthesis, bio-inspired computing and memristors.

SUBMITTED TO IEEE TCAS I 12

Majid Ahmadi (S’75–M’77–SM’84–F’02–LF’14)
received the B.Sc. degree in electrical engineering
from the Sharif University of Technology, Tehran,
Iran, in 1971, and the Ph.D. degree in electrical
engineering from the Imperial College of Science,
Technology and Medicine, London, U.K., in 1977.
He has been with the Department of Electrical
and Computer Engineering, University of Windsor,
Windsor, ON, Canada, since 1980 and he is cur-
rently a Distinguished University Professor and an
Associate Dean of Engineering for Research and

Graduate Studies. He has co-authored the book Digital Filtering in One-D
and Two-Dimensions; Design and Applications (New York, Plennum, 1989)
and has authored over 500 articles in these areas. His current research interests
include digital signal processing, machine vision, pattern recognition, neural
network architectures, applications, and VLSI implementation, computer
arithmetic, and MEMS.
Dr. Ahmadi is a fellow of IET. He was a recipient of an Honorable Mention
Award from the Editorial Board of the Journal of Pattern Recognition in
1992, and the best paper award from the 2011 IEEE International Elec-
tro/Information Technology Conference. He received the Distinctive Con-
tributed Paper Award from the Multiple-Valued Logic Conference Technical
Committee and the IEEE Computer Society in 2000, the Distinguished
University Professorship in 2003, the Faculty of Engineering Deans Special
Recognition Award in 2007, and the University of Windsor Award for
Excellence in Scholarship, Research, and Creative Activity in 2008. He was
the IEEE-CAS representative on the Neural Network Council and the Chair
of the IEEE Circuits and Systems Neural Systems Applications Technical
Committee in 2000. He has served on the Editorial Board of the Journal
of Circuits, Systems, and Computers as an Associate Editor and a Regional
Editor from 1992 to 2012, an Associate Editor for the Journal of Pattern
Recognition since 1992.

Mostafa Rahimi Azghadi (S’07–M’14) completed
his PhD in Electrical & Electronic Engineering at
The University of Adelaide, Australia, earning the
Doctoral Research Medal, and the Adelaide Uni-
versity Alumni Medal in 2014. From 2012-2014,
he was with the Neuromorphic Cognitive System
group, Institute of Neuroinformatics, University and
Swiss Federal Institute of Technology (ETH) Zurich,
Switzerland.
He is currently a lecturer at the College of Sci-
ence and Engineering, James Cook University,

Townsville, Australia, where he researches neuromorphic engineering and
brain-inspired architectures, and FPGA-acceleration of machine learning al-
gorithms. Dr. Rahimi was a recipient of several national and international
awards and scholarships such as Queensland Young Tall Poppy Science Award
in 2017 and South Australia Science Excellence Awards in 2015. He serves
as an associate editor of Frontiers in Neuromorphic Engineering and IEEE
Access.

