
ResearchOnline@JCU

This file is part of the following work:

Abdulhassan Alshomali, Mohammad Azeez (2018) Open source software GitHub

ecosystem: a SEM approach. PhD Thesis, James Cook University.

Access to this file is available from:

https://doi.org/10.25903/5c3eb27776753

Copyright © 2018 Mohammad Azeez Abdulhassan Alshomali

The author has certified to JCU that they have made a reasonable effort to gain

permission and acknowledge the owners of any third party copyright material

included in this document. If you believe that this is not the case, please email

researchonline@jcu.edu.au

mailto:researchonline@jcu.edu.au?subject=ResearchOnline%20Thesis%20Incident%20

OPEN SOURCE SOFTWARE GITHUB ECOSYSTEM:
A SEM APPROACH

Thesis submitted by

MOHAMMAD AZEEZ ABDULHASSAN ALSHOMALI

B.A., Al-Mustansiryia University, College of Education, Iraq

M.A., Al-Mustansiryia University, College of Science, Iraq

for the degree of Doctor of Philosophy

in the College of Business, Law & Governance

James Cook University

November 2018

ii

 Statement of Access

I, the undersigned, author of this work, understand that James Cook University will

make this thesis available for use within the University Library and, via the Digital

Theses Network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the

Copyright Act and;

I do not wish to place any further restriction on access to this work.

 Signature Date

iii

 Statement of Sources

 Declaration

I declare that this thesis is my own work and has not been submitted in any form for

another degree or diploma at any university or other institution of tertiary education.

Information derived from the published or unpublished work of others has been

acknowledged in the text and a list of references given.

 Signature Date

iv

 Electronic Copy

I, the undersigned, the author of this work, declare that the electronic copy of this

thesis provided to the James Cook University Library, is an accurate copy of the print

thesis submitted, within the limits of the technology available.

 Signature Date

v

 Statement on Contribution of Others

The following contributions of others to the intellectual, physical and written work of

this research higher degree thesis are gratefully acknowledged

Stipend support: Al-Mustansiryia University, Collage of Science, Iraq

Honoraria: James Cook University, College of Business, Law &
 Governance

 James Cook University Graduate Research School
 (GRS)

Supervisor: Dr. Jason Holdsworth

Professor John Hamilton

Dr. Singwhat Lee

Statistical support: Professor John Hamilton

 Dr. Singwhat Lee

Editorial Assistance: Dr. Jason Holdsworth

 Professor John Hamilton

Dr. Singwhat Lee

vi

ACKNOWLEDGEMENTS

First and foremost, praises and thanks to ALLAH (God), the almighty, merciful and

passionate, for His blessings throughout my research work to complete the research

successfully.

I owe my deep sense of gratitude to my primary advisor Dr. Jason Holdsworth for his

help, advice, and support. I offer my sincerest gratitude to my secondary advisors

Professor John Hamilton, and Dr SingWhat Tee, for their advice, support, enthusiasm

and faith in me. I attribute the level of my PhD thesis to their encouragement and

effort.

Nobody has been more important to me in the pursuit of this repo than the members

of my family. I would like to thank my brothers; whose love and guidance are with

me in whatever I pursue. Most importantly, I wish to thank my loving and supportive

wife and my three wonderful children, Arwa, Ali and Mustafa, who provide unending

inspiration.

Special thanks to Rafid Al-Hallaf, Mohamed Nazir, Karim Haj Hashemi and Dr.

Mustafa Al-Hassani for their help and support since the first day I arrived in Australia.

I extended my thanks to my fellow PhD students, academics, and administrative staff

at Cairns Campus of James Cook University for their variable support.

vii

ABSTRACT

Open source software (OSS) is a collaborative effort. Getting affordable high-quality

software with less probability of errors or fails is not far away. Thousands of open-

source projects (termed repos) are alternatives to proprietary software development.

More than two-thirds of companies are contributing to open source. Open source

technologies like OpenStack, Docker and KVM are being used to build the next

generation of digital infrastructure. An iconic example of OSS is ‘GitHub’ - a

successful social site. GitHub is a hosting platform that host repositories (repos) based

on the Git version control system.

GitHub is a knowledge-based workspace. It has several features that facilitate user

communication and work integration. Through this thesis I employ data extracted from

GitHub, and seek to better understand the OSS ecosystem, and to what extent each of

its deployed elements affects the successful development of the OSS ecosystem. In

addition, I investigate a repo’s growth over different time periods to test the changing

behavior of the repo. From our observations developers do not follow one

development methodology when developing, and growing their project, and such

developers tend to cherry-pick from differing available software methodologies.

GitHub API remains the main OSS location engaged to extract the metadata for this

thesis’s research. This extraction process is time-consuming - due to restrictive access

limitations (even with authentication). I apply Structure Equation Modelling (termed

SEM) to investigate the relative path relationships between the GitHub- deployed OSS

viii

elements, and I determine the path strength contributions of each element to determine

the OSS repo’s activity level.

SEM is a multivariate statistical analysis technique used to analyze structural

relationships. This technique is the combination of factor analysis and multiple

regression analysis. It is used to analyze the structural relationship between measured

variables and/or latent constructs.

This thesis bridges the research gap around longitude OSS studies. It engages large

sample-size OSS repo metadata sets, data-quality control, and multiple programming

language comparisons. Querying GitHub is not direct (nor simple) yet querying for all

valid repos remains important - as sometimes illegal, or unrepresentative outlier repos

(which may even be quite popular) do arise, and these then need to be removed from

each initial OSS’s language-specific metadata set.

Eight top GitHub programming languages, (selected as the most forked repos) are

separately engaged in this thesis’s research. This thesis observes these eight metadata

sets of GitHub repos. Over time, it measures the different repo contributions of the

deployed elements of each metadata set.

The number of stars-provided to the repo delivers a weaker contribution to its software

development processes. Sometimes forks work against the repo’s progress by

generating very minor negative total effects into its commit (activity) level, and by

sometimes diluting the focus of the repo’s software development strategies. Here, a

ix

fork may generate new ideas, create a new repo, and then draw some original repo

developers off into this new software development direction, thus retarding the

original repo’s commit (activity) level progression.

Multiple intermittent and minor version releases exert lesser GitHub JavaScript repo

commit (or activity) changes because they often involve only slight OSS

improvements, and because they only require minimal commit/commits contributions.

More commit(s) also bring more changes to documentation, and again the GitHub

OSS repo’s commit (activity) level rises.

There are both direct and indirect drivers of the repo’s OSS activity. Pulls and commits

are the strongest drivers. This suggests creating higher levels of pull requests is likely

a preferred prime target consideration for the repo creator’s core team of developers.

This study offers a big data direction for future work. It allows for the deployment of

more sophisticated statistical comparison techniques. It offers further indications

around the internal and broad relationships that likely exist between GitHub’s OSS

big data. Its data extraction ideas suggest a link through to business/consumer

consumption, and possibly how these may be connected using improved repo search

algorithms that release individual business value components.

x

TABLE OF CONTENTS

Statement of Access ii
Statement of Sources iii
Electronic Copy iv

Statement on Contribution of Others v

ACKNOWLEDGEMENTS vi
ABSTRACT vii
LIST OF TABLES xiii
LIST OF FIGURES xiv

LIST OF APPENDICES xv

LIST OF ABBREVIATIONS AND ACRONYMS xvi
CHAPTER

1 INTRODUCTION 1

1.1 Introduction 1

1.2 OSS Ecosystem 4

1.3 GitHub 8

1.4 GitHub ecosystem 12

1.5 Research Gap, Questions and Objectives 14

1.6 Thesis Layout 16

2 LITERATURE REVIEW 17

2.1 Introduction 17

2.2 Understanding the GitHub Ecosystem 19

2.3 Previous research studies 23

2.3.1 OSS development methods 23

2.3.2 GitHub Repo Measures 25

2.3.3 Thesis links to the literature 29

2.3.4 Mining GitHub and Challenges 29

3 RESEARCH METHODOLOGY 33

3.1 Introduction 33

3.2 Thesis Dataset 33

3.3 MATLAB program - developed for Querying GitHub 35

3.4 Study Design 36

3.5 Phase one- case study one 37

3.5.1 Phase one- GitHub data collection and process 38

xi

3.5.1.1 Phase one- Rate of Change 42

3.5.1.2 Phase one- Comparative analysis 42

3.5.1.3 Statistical tools 43

3.6 Phase Two -Case study two 44

3.6.1 Case study two-Data collection 44

3.6.2 Case study two - Structural Equation Model 49

3.7 Phase two-Validation 53

4 RESULTS 54

4.1 Introduction 54

4.2 Phase one 54

4.2.1 Pilot study – Rate of Change (ROC) 56

4.2.2 Pilot study – ANOVA 57

4.2.3 Pilot study – Tukey-Kramer 58

4.3 Phase Two 59

4.3.1 Path Analysis Model 59

4.3.2 Models Validation 70

5 DISCUSSIONS 71

5.1 Phase one- Pilot study 71

5.2 Phase two - Structural path analysis study 71

5.2.1 SEM structural paths 71

5.2.2 SEM structural path comparison 80

5.3 Standardized total effects model’s comparison 85

5.4 GitHub programming languages summary 87

5.5 Summary 89

6 CONCLUSIONS 91

6.1 Current Implication of Research 91

6.1.1 Theoretical Implications 91

6.1.2 Practical Implications 92

6.2 Future Implications and opportunities for Research 94

6.2.1 Measurement aspect 94

6.2.2 Theoretical aspect 95

6.2.3 Management Aspect 95

6.3 The Research Outcomes of this Thesis 96

6.4 Practical conclusion 99

REFERENCES 102

xii

APPENDICES 116

LIST OF PUBLICATIONS 120

xiii

LIST OF TABLES

Table Page

Table 2-1 Summary of previous studies regarding this thesis. 29

Table 3-1: The top ten GitHub repos for JavaScript, Java, and Python 41
Table 3-2: GitHub repository data attributes and associated meanings. 46

Table 3-3: The data sample of case study two: Top 20 Repos of Python language 48
Table 4-1: JavaScript data set collected over six timeframes*. 55

Table 4-2: Java Commit data set collected over six timeframes*. 55
Table 4-3: Python Commit data set collected over six timeframes*. 56

Table 4-4: JavaScript normalized data. 56
Table 4-5: Java normalized data. 56

Table 4-6: Python normalized data. 57
Table 4-7: Result of applying ANOVA to JavaScript normalized data. 58

Table 4-8: Result of applying ANOVA to Python normalized data. 58
Table 4-9: Result of applying ANOVA to Java Language normalized data. 58

Table 4-10: Tukey-Kramer results for three GitHub languages. 59
Table 4-11: GitHub dataset – the top 1600 repos for the top eight languages. 61

Table 4-12: Bootstrap validation values for eight programming language models 70
Table 5-1: The appearance of GitHub elements SEMs path for eight programming
languages. 82
Table 5-2: Standard total effects for Commits (across all eight OSS programming
languages). 85

xiv

LIST OF FIGURES

Figure Page

Figure 1-1:Natural versus software ecosystem suggested by Mens, et al. (2014). 5
Figure 1-2: Categorisation of OSS resources. 7

Figure 1-3: GitHub software development ecosystem framework. 12
Figure 2-1: Various aspects of a GitHub repo 19

Figure 2-2: Classification of Repository developers. 21
Figure 3-1: The two-phase methodology. 37

Figure 3-2: Phase 1 case study one processes. 38
Figure 3-3: General Steps in Data Collection Process. 44

Figure 3-4: Variables name and types used in structural model. 51
Figure 4-1: JavaScript programming language Path Model. 62

Figure 4-2: Python Programming Language Path Model. 63
Figure 4-3: Java Programming Language Path Model. 64

Figure 4-4: C++ Programming Language Path Model. 65
Figure 4-5: C# Programming Language Path Model. 66

Figure 4-6: CSS Programming Language Path Model. 67
Figure 4-7: PHP Programming Language Path Model. 68

Figure 4-8: Ruby Language Path Model. 69
Figure 5-1: A generic Path Model for GitHub. 89

xv

LIST OF APPENDICES

Page

Appendix A: Standardized Total Effects 116

xvi

 LIST OF ABBREVIATIONS AND ACRONYMS

AGFI Adjusted Goodness of Fit Index
AMOS AMOS is statistical software
AMOS Analysis of a Moment Structures (software)
ANOVA Analysis of Variance
API Application Program Interface
API Application program interface
ASD Agile Software Development
AVE Average Variance Extracted
C# C Sharp (programing language)
C++ C Object-Oriented (programing language)
CCQM Component Quality Model
CFA Confirmatory Factor Analysis
CFI Comparative Fit Index
CMC Computer-Mediated Communications
COTS Commercial of the Shelf
CSS Cascading Style Sheets (programing language)
CSV Comma Separate Value
DF Degree of Freedom
EFA Exploratory Factor Analysis
GFI Goodness of Fit Index
IFI Incremental Fit Index
JAVA General-purpose computer programming language
JavaScript Programing Language
JS Java Script programing language
MATLAB Matrix Laboratory (Programing Language)
NATO The North Atlantic Treaty Organization
NFI Normative Fit Index
OSS Open Source Software
OSSD Open Source Software Development
OSSECO Open Source Software Ecosystem
PHP Hypertext Preprocessor (programing language)
POSSD Phase Role Skill Responsibility
Repo Repository
REST REST- Representational State Transfer, (internet protocol)
RMSEA Root Mean Square Error of Approximation
ROC Rate of Change
Ruby Programing language
SECO Software Eco System
SECO Software Eco-System
SEM Structural Equation Modelling
SPSS Statistical Package for the Social Science (software)
SVN Subversion
TK Tukey Kramer (statistical test)
TLI Tucker-Lewis Index
VCS Version Control System

 CHAPTER 1

1 INTRODUCTION

1.1 Introduction

Software is a collection of executable programming code, connected libraries, and

support documentation (Cosentino & Cabot, 2017; Haigh, 2011). The process of

developing a software product includes initial development of software, maintenance

and updates, until the desired software product is developed, which also satisfies the

expected requirements. Software and hardware developments affect the way we live.

Today, world depends heavily on software. Software development methodologies

attracts researchers to research in that field. The first conference to widely discuss this

issue was the NATO conference in 1968 (Randell, 1996). The conference investigated

software modelling approaches, and sequential methodology emerged as a key early

software development methodology (Papadopoulos, 2015).

Sequential methodology divided software development into consecutive stage

requirements, analysis study, design, implementation and maintenance (Atoum &

Bong, 2015). Such traditional software development methodologies have been

deployed to overcome software problems, and to deliver satisfying end-user solutions.

Here, the software should suitably meet the end-user requirements and be deemed to

be sufficiently correct, robust, flexible, reusable and efficient (Atoum & Bong, 2015).

Traditional software development does possess advantages, but the resultant systems

do not become available to end-users until the development process is complete

2

(Tachizawa & Pozo, 2012). This approach has embedded time-related risks, which can

lead to budget over-runs. Another risk lies in the lack of flexibility typically required

particularly when end-users change their requirements during, or after the sequential

software development stages (Papadopoulos, 2015).

In 2001 The Agile Software Development (ASD) methodology was introduced to

overcome the drawbacks of traditional methods. ASD is easy to understand and

implement. It requires the customer to be involved during all stages of software

development. It offers flexibility in requirement changing (Amir et al., 2013).

Although ASD is considered a good solution for building software that satisfies

customers (Dingsøyr et al., 2012), it still can exceed its estimated timeline and budget

- particularly where there is a lack of reusability, extensive testing and documentation

sometimes fails. This encourages researchers to search for new and better software

models (Shah et al., 2012).

Software is ubiquitous, cellular devices, shopping and selling, banking and finance,

construction and logistics and most governmental or learning institutes each utilize

specific purpose-built software (Qassimi & Rusu, 2015). Today some traditional

software fails (Papadopoulos, 2015) because it has not transformed to ASD formats,

or because it could no longer deliver the solution required.

The speed and scope of software development remains important because of its

increasing need within new applications such as: eBusiness, social media,

manufacturing, transport, and finance (Brunetti & Heuser, 2014). Thus, software

3

researchers typically develop or modify existing models to build quality software

within an affordable budget, and within a chosen timeframe.

Open source software (OSS) represents a different methodology of software that is

built and distributed through the Internet (Lin & Serebrenik, 2017). OSS refers to

software that is developed, tested, or improved through public collaboration. It is

distributed with the idea that it must be shared with others, ensuring an open future

collaboration. OSS repos are typically built, maintained and tested by a teamed

network of global and geographically-distributed open-source community volunteer

programmers (Bose & Thakur, 2013; Olson & Rosacker, 2012).

OSS offers an array of co-operative global testing environments where code is

dynamically tested, de-bugged and fixed cooperatively between developers (Chou &

He, 2011; Sarka & Ipsen, 2017). NOKIA, IBM and Microsoft enlist OSSD within their

product develop cycles (Diaz et al., 2009). Although a firms’ involvement advances

the ranking of OSS repos, it could lower project quality, because firms put corporate

constraints to OSSD practices (Hertel & Herrmann, 2003). But research into OSSD

cycles remains scant (Jones, 2014).

OSS offers a variety of benefits to the developers and business. In addition to cost

reduction commercial companies benefit from contributing to OSS by building their

innovation capability, as well as selling emergent complementary services (Andersen-

Gott et al., 2012). Learning is the main motivation towards contributing in OSS

developments. Altruism, ideology learning, popularity, self-efficacy, and enjoyment

4

motivates many programmers, users, and businesses towards continuance

contributions into repos (Lakhani & Von, 2003; Capra, et al., 2011; Choi & Yi, 2015).

OSS is not used alone when designing entire software repos because it is by nature

chaotic (Siau & Tian, 2013).

Although software (prosperity or open) is well constructed, occasionally program

failures can cost lives and/or money (Boin & Fishbacher-Smith, 2011; Coelho &

Valente, 2017). The important gap in OSS research is how to sidestep software

failures.

As can be seen from the above, software has developed over the last few years very

rapidly from traditional development methodology through to Agile methodology.

Once OSS launched no general methodology existed. Instead there exists many

software related publications that discuss development methodology for OSS and for

OSSD ecosystem platforms such as GitHub (Kalliamvakou et al., 2016). GitHub

represents the largest OSS development industry (Bose & Thakur, 2013). To better

understand the current trends (and advancements) in OSS, the OSS ecosystem is

investigated in next section.

1.2 OSS Ecosystem

The concept of ecosystem transferred from biology to the social world explaining the

evolutionary nature of interrelations among different individuals, their innovative

activities, and their environment (Papaioannou et al., 2009). As there is a natural

ecosystem, so to there is an Industrial ecosystem of business application types. There

5

is also a software ecosystem of programmable language application types. This

software ecosystem is now termed ‘SECO’ (Manikas & Hansen, 2013).

SECO is a field of increasing importance in research and industry. There is no standard

analytical model for it (Manikas & Hansen, 2013). Mens et al. (2014) define and

compare software ecosystems against natural (biological) ecosystems. They also draw

a representation of software against natural ecosystems - as illustrated in Figure 1-1.

Figure 1-1: Natural versus software ecosystem suggested by Mens, et al. (2014).

Natural ecosystems are sustainable, according to Mens et al. (2014). Sustainability is

also a desired characteristic for SECO. Figure 1-1 can be viewed as a comparison

between the two ecosystems. Living species within a natural system can be compared

to repos in a software ecosystem, whilst Habitat in a natural ecosystem is comparable

to resources in a software environment (hardware and software resources). The

ecosystem could be interpreted differently by considering projects as part of the

environment, and as contributors - equivalent to living species in natural ecosystem.

6

Mens et al. (2014) suggests Figure 1-1 can represent both a SECO, and an OSS

ecosystem (OSSECO).

SECO can be readily deployed as a tool to analyze OSS ecosystems - as it may have

strategic, and/or technical, and/or economic advantages. In other words, SECO can

help in understanding the different resources across which an OSS may be operating

(Franco-Bedoya et al., 2017).

The OSS resources needed can be considered within an OSS ecosystem context as

traditional and/or non-traditional (Manikas & Hansen, 2013; Song et al., 2014; Wang

et al., 2016; Franco-Bedoya, et al., 2017). Traditional resources directly deal-with (and

influence) the OSS, while non-traditional resources indirectly affect the OSS. Figure

1-2 illustrates the subsets of both forms of these resources.

7

O
SS

 R
es

ou
rc

e

Traditional

Collaboration tools

Mailling list

Social networking

Management system
Version Control system

Documentation Tools Wikis, read me files, and other

Non traditional

Adopter feedback

OSS surveys

Business Resources

Sales reports, Desision making notes

Market share reports

Manufacture
resources Hardware and networking technologies

Figure 1-2: Categorisation of OSS resources.

8

As suggested in Figure 1-2, business resources such as: sales reports, decision-making

notes, expert interviews, can directly affect the OSS ecosystem, and vice versa. For

example, Amazon has turned almost every successful open source repo into a

commercially available, and well-managed service. This has encouraged many

developers to join OSS communities like GitHub.

There are many definitions for an OSS ecosystem, and each represents different points

of view. Song, et al. (2016) define an OSS ecosystem through technical connectivity

between repos, and/or coding, and/or graphical perspectives. According to Song, et

al., (2016), interactions and associations collected from varieties of data (and sources),

create a new OSS ecosystem. Song, et al. (216) states that, online posts are the

foundation element when analyzing an evolution across an OSS development.

“A software ecosystem comprises a set of business, project, and activities that function

as a single unit, instead of each participating activity acting individually.” This

definition is offered in Kilamo et al. (2012). Franco-Bedoya et al. (2017), define a

software ecosystem as “one placed in a heterogeneous environment, whose border is

a set of niche players, and the keystone player is an OSS community around a set of

related repos, and within an open-source (common) platform” (Franco-Bedoya et al.,

2017).

1.3 GitHub

GitHub is now the world’s largest code host collection of OSS development repos

(Gousios et al., 2014). GitHub is an online version-control system used by online open

9

source software developers (OSSDs) ranging from: professionals to students, from

major software companies to small Indie (independent) developers. GitHub provides

an environment for developers to share their work, as well as offering its environment

for others to use, adapt, and get help when seeking to advance or improve their work

(Lanubile et al., 2010).

GitHub repos are diverse in: format, repo-size, development-cycle-stage, releases-

count, change-frequency, and changeability. GitHub houses over 20M users and 57M

repos (Sharma et al., 2017). It draws worldwide crowd-sourced coding contributors -

each with unique individual levels of expertise, into an environment that allows the

adding of valuable inclusions into its large number of ongoing software development

repos (Tsay et al.,2014b).

GitHub simplifies social coding by providing a web interface to each repo, and the

administration tools needed for repo collaboration. GitHub Members can follow each

other, obtain updates for repos, rate each other's work and communicate (publicly or

privately). Important terms used in GitHub include: pull-request, fork, and merge. A

developer creates a repo. Its content is organized into branches, a “master” branch

represents the “production code”. Other branches are used for repo contributors to

experiment with new features, and for the restructuring of existing features.

The repo evolves over time - from the addition and deletion of content, primarily

source code, resource files and documentation. Its changes are tracked via commits -

a set of additions and deletions to the content. A developer can “clone” a repo. The

10

developer gets a complete copy of the content - which they can use for their own

purposes. Also, they can ‘fork’ a repo to get a complete copy of the content placed

into a new repo - that they own, A fork (or sometimes called branch), is a repo that

has been copied from one member's account to another member's account. Forks, and

branches, allow a developer to make modifications without affecting the original code.

This might represent: (1) a fracture in the ecosystem, or (2) a way for contributors

from the original repo to work more independently / safely away from the original

content - GitHub uses the Git SVN tool - the tool’s workflow is complex and error-

prone (SVN is abbreviation of ‘Subversion’, Subversion is an open-source version

control system that is typically used to manage the collections of files that make up

software repos.), or (3) a way for a non-contributor of the original repo to make

suggestions and to prove whether their ideas are useful. These non-contributors might

even wish to become part of the original repo team.

A pull request (a commit that is “merged” into the repo only after approval by the

contributors) is the mechanism of suggesting changes/improvements for content. If

the developer (who forked a repo) would like to share the modifications he made, then

he can send a pull request back to the owner of the original repo. If, after reviewing

them, the original owner wishes to pull these modifications into the repo, he can accept

and merge these modifications with the original repo. The originating repo

development occurs via commits, and branching. by the repo originator, and

contributors - who have been added after their fork-and-pull-request process are both

accepted into the repo (Lanubile et al., 2010).

11

GitHub provides social networking tools for developers to communicate, discuss and

reason about pull request. It provides many statistics to track all this information (via

GitHub API). GitHub enables the creation of large complex interconnected

ecosystems of developers. It remains easy for a developer to diagram the possible

relationships between the repo, and how it collaborates with other developers) (Arora

et al., 2017).

GitHub repos offers a trackable, integrated, time-spanned, workflow of user-delivered,

repo contributions. But, the datamining tools used in GitHub remain slightly different

from those used in other OSS developments (Kalliamvakou et al., 2016). GitHub repos

have a faster growth rate when compared to other rival OSS communities.

The growth and success of GitHub OSS development communities can be viewed as

a social activity across contributing developers. This creates a ‘herd behavior,’ and

with growth, repo leadership becomes increasingly important (Hu et al., 2016).

GitHub attracts software developers, testers, star coders, coders, social media

watchers, and other small solutions pull providers. GitHub repos are easily deployed,

follow clear guidelines, engage suitable languages, and are readily utilized to improve

the existing OSS development version (Chatziasimidis & Stamelos, 2015).

Coding additions / deletions occur through a series of commits by repo collaborators

that update a software codebase. Collaborating and external developers providing pull-

request merged commits, are first reviewed and tested by other repos collaborators

before their repo code is merged into the main repo codebase. These collaborators are

12

usually a core team of developers for this repo. Thus, the repo’s creator and its core

team of collaborators, can be thought of as the ongoing guardians of repo quality (Yu

et al., 2014a). The activeness of a repo’s creator in handling pull-requests also

influences the extent of pull-request activities by the overall ecosystem (Aggarwal et

al., 2014).

1.4 GitHub ecosystem

Motivated by Men’s et al. (2014) ecosystem, Figure 1-3 illustrate the GitHub

ecosystem. This ecosystem supports Men’s representation. Basically, there are three

elements for GitHub ecosystem, the first one represents GitHub repo with all required

Hardware, Software, humans and repos. As illustrated in Figure 1-3, human elements

play a major role across: GitHub core developers, across active developers (who may

also be a member of the core developer team), across passive developers (who may be

followers, watchers or anybody who has no direct influence on the repos but still show

an interest), and finally across users who fork and may use the system without

participation.

Figure 1-3: GitHub software development ecosystem framework.

Users

Environments: all other discipline that could affected by or effect on Repo

Resource

Core
Developer

s Repos

Active
Developers

Passive
Developer

s

Business

Industry

13

The second GitHub ecosystem element is the businesses and the industry that may

exert some direct, or indirect effect(s) on the GitHub repo. Google (Android) and

Facebook are two examples of businesses that have affected a GitHub repo

advancement in hardware manufacturing (industry) - encouraging developers to build

software that use the capabilities of the new hardware version - such as in the

‘Smartphones’ industry.

The third GitHub ecosystem elements is the environment. This represents any other

factors that affect GitHub – such as: cultural awareness, confidentiality, language

support facilities among developers (communication language and translation).

GitHub repos are diverse in: format, repo-size, development-cycle-stage, releases-

count, change-frequency, change-degree, forks, watchers, and contributor-skills

(Aggarwal et al., 2014). Such potentially diverse repo variations can also complicate

repo comparisons.

When comparing relationships within and around GitHub repos Aggarwal et al. (2014)

and Cosentino, et al. (2017) further divide different repos. Their specific categories

include: (1) popularity delivering higher/consistent documentation or (2) library repos

needing less documentation. Over time, documentation quality improves - especially

in larger repos, and as responders (reporters or assignees) become more experienced

(Cosentino, et al., 2017; Xavier et al., 2014). Thus, comparative longitudinal GitHub

studies remain complex.

14

From time-to-time GitHub’s repo ecosystem may suffer developer and knowledge

losses which can retard the repo’s software development. For example, a specific

developer may choose to externally clone the repo’s master branch, and then create a

unique (and/or alternate) software development pathway outside the original repo’s

ecosystem. This loss of developer capabilities likely negatively impacts the repo’s

development, and it may move other developers away from the original repo, and into

following this unique alternative development pathway.

1.5 Research Gap, Questions and Objectives

There are many challenges facing OSS: lack of long-term study, OSS team diversity

and the absence of general view of the constructs affecting repos activity (Squire,

2017) are some of these challenges, a review of more OSS challenges presented in

Chapter 2. There is little clear identification (and/or standardization) for open SECO.

Most studies relating to OSS indicate the lack of longitude studies (West & Gallagher,

2006; Cosentino & Cabot, 2016; Kalliamvakou et al., 2016), and the maintenance of

community interest in repos helps in repos evolving and surviving (Cosentino &

Cabot, 2016). Previous research seldom measured the influence of OSS features on

survival and success. Research in SECO is still in its infancy, and research efforts

remain on a slowly increasing trajectory.

Most researchers emphasize the need for more effort in this area of research. Studying

OSS repos and the analyzing of the elements affecting those repos today represents a

significant step towards better understanding SECO and particularly OSSECO, and

15

this is the focus of this research. GitHub represents a large OSS community. It

provides a big data source-bank for studying and understanding SECO.

In this research I utilize the GitHub ecosystem and use SEM (structural equation

modelling) to find the elements that affect the repo’s survival. This thesis engages

1600 GitHub repos across eight widely-used, but different programming languages. It

then observes repo changes over time and determines the elements that influence a

repo’s success. This empirical research represents a multi-case study towards

modeling the GitHub OSS ecosystem. It attempts to relate, and build, the contributing

elements into a systematic model - that influences the survival and successes of the

OSS ecosystem.

This thesis answers the following research questions:

RQ1: What elements are present in the GitHub OSS ecosystem?

RQ2: Do programming languages show different models in the GitHub OSS

ecosystem?

RQ3: What relationships exist between each element when affecting the commits in

the GitHub OSS ecosystem?

RQ4: How does each element influence the GitHub OSS ecosystem?

The objective of this thesis is to capture the big picture around OSS, which is the

OSSECO, and to then understand the GitHub ecosystem. This involves understanding

the elements that may increase or decrease software activity, and it encourages more

user participation. This thesis studies the behavior of repos over times. It determines

16

good practice for GitHub repo survival. Finally, it determines the criteria used to

achieve added performance when stakeholders (especially OSSDs) engage with

GitHub (Munaiah et al., 2017).

1.6 Thesis Layout

In addition to this Chapter, which introduces open source software (OSS), the

ecosystem and the general framework for GitHub ecosystem, Chapter two presents the

literature review - generally classifying research efforts in GitHub as: OSS

developments, GitHub measurements, and GitHub challenges and trends.

Chapter three displays two studies using two phases: a pilot study, followed by a series

of SEM models each representing one of the eight most popular GitHub languages.

To understand GitHub trends, the pilot study deploys 30 repos – ten for each of the

three top programming languages used in GitHub (JavaScript, Java and Python). SEM

structural path modelling deploys 200 cases for each of eight programming languages

(JavaScript, Java, Python, C#, C++, CSS, PHP and Ruby) - thus studying 1600 GitHub

repos. The methodology used in both case studies specifies in this Chapter.

Chapter four displays the pilot study and SEM case study results obtained during this

two phases study. This Chapter also analyses to what extent each element (or construct

modelled under SEM) affects the GitHub ecosystem.

Chapter five provides a discussion of the results obtained in Chapter four. Insights,

implications and limitations of these Chapter four SEM models are considered.

Chapter six then provide the study’s conclusions and ideas for future related studies.

17

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

As discussed in Chapter 1, GitHub is an online version control system used by

developers around the world (Gousios & Spinellis, 2012). It currently supports

approximately 26 million developers and hosts over 57 million repositories (Sharma

et al., 2017). The number of GitHub repositories is growing rapidly compared to other

online version control systems (Yu et al., 2014b). GitHub developers include

professional developers from the largest (to smallest) software companies,

independent developers working on open source software repos, and novice

developers working on student repos.

The common terminology for a repository on GitHub is a repo. A GitHub repo is an

organized collection of content such as source code, multimedia resources and

supporting documentation. A commit represents a set of changes (additions and

deletions) to the content of a repo. A ‘series of commits’ captures how a repo evolves

over time. Hence, a repo is the embodiment of a software ecosystem.

The developer who creates a repo is known as the repo creator. Other developers,

known as contributors, are given access to the repo content by the creator. The creator

and contributors directly impact the evolution of the repo by adding commits. For

example, a contributor might add a commit that solves a problem within the technical

capabilities of that contributor (Zhu et al., 2014).

18

When a repo is created its content is organised into branches. The master branch is

a folder within the repo that contains the production content. Other developmental

branches are used by the repo creator and contributors as a place to experiment with

new content or refactor existing content.

A non-contributing developer who is external to a repo might fork it, giving them a

complete copy of the repo content and then place it into a new repo that is

independently owned by that developer. Forking is a way for original repo contributors

to work independently and safely, away from the original content. However, a forked

repo also has the potential to draw popularity and interest away from the original repo.

Occasionally, this forking can affect the growth of ongoing contributions into the

original repo.

When the content of a developmental branch is deemed ready it gets merged back into

the master branch of the repo by the creator of a contributor. Similarly, when the work

done on a forked repo is believed ready by its developers, a pull (a pull request) gets

created that represents a potential commit that is mergeable back into the original repo.

Before accepting a merge, its review process takes place, allowing the original repo

creator and contributors to rationalize the proposed changes. Hence, the pull is either

accepted or rejected. If accepted, the merge allows the external developer to become

a contributor of the original repo.

If a developer (contributor or not) perceives a problem with repo content, they create

an issue. This enables a process whereby the repo creator and contributors rationalise

19

the issue and mitigate it if necessary. It should be noted that some submissions are not

real issues (Bissyandé et al., 2013a). Notice developers sometimes mistakenly create

issues that only help requests or act as advice seeking requests.

When a developer clones a repo, this gives them a complete copy of the repo content

without necessarily being an active part of that repo. Unfortunately, GitHub statistics

do not track information about cloning. Figure 2-1 summarizes the various aspects of

a GitHub repo.

Figure 2-1: Various aspects of a GitHub repo
(From: https://livablesoftware.com/development-process-in-github-basic-

infographic/)

2.2 Understanding the GitHub Ecosystem

GitHub itself can be thought of as a massive software ecosystem. GitHub enables and

fosters developer collaboration around the world through the creation of repos. For

20

example, a single developer might choose to create their own repos at the same time

as contributing to repos created by other developers. This is important, as it provides

developers with an ability to gain technical experience through collaboration, and an

ability to build meaningful professional and social relationships in a community of

like-minded developers (Casalnuovo et al., 2015).

Overall, the GitHub ecosystem supports developer collaboration by providing social

media that provide a range of information about repos (both descriptive and statistical)

and the relationships between repos. Developers use this information to discover

community-wide popular repos, as well as personally interesting repos. Moreover, this

information also encourages developers to get involved in repo issue discussions

and/or pull request reviews (Arora et al., 2017).

GitHub provides a freely available repository search engine tool that includes a web

REST API. Many third-party web apps utilize the REST API to discover repositories

on GitHub (Bello-Orgaz et al., 2016). The API generates data in terms of the

information (elements) about repos (Onoue et al., 2013).

GitHub repos vary by the amount and kind of collaborative activity. Such variation

depends primarily on the number of commits (Yu et al., 2014b). In addition, pull-

requests (both successful and unsuccessful) indicate how a repo evolves over time.

Successful pull-requests are merged into the repo - thus adding to the activity level of

that repo (Xavier et al., 2014). Figure 2-2 classifies and groups repo developers into

different types.

21

Figure 2-2: Classification of Repository developers.

Rockstars are an important repo contributor whose popularity brings into the repo

additional skilled developers. These additional developers often follow the rockstar’s

lead, and typically generate pull-request activity within the repo (Lee et al., 2013). The

presence of Rockstar likely results in an increased repo popularity, generally along

with enhanced repo outcomes (Ma et al., 2016). Developers who generate high-quality

commits may become recognized as a Rockstar.

The fork-repository-clone developers are another indication of the repo’s popularity.

The more forks a repo has, the more likely the repository is recommended, and the

higher is the chance to increase the activity of potential new code contributions into

the repo (Zhu et al., 2014). Forks sometimes generate strong changes in direction, new

22

features, better implementation approaches, or even a different version of the existing

repo, whilst still keeping their vision around the original repo (Ma et al., 2016).

Reviewers/testers discuss, assess, and recommend each contributor’s merging (or

rejection) into the repo. When reviewers are specifically assigned, the review or testing

process becomes shorter and more effective (Yu et al., 2014a).

A watcher/star-provider receives notifications of any event (commits, pull-requests,

and issues) arising within the repo and on GitHub’s social media (Ma et al., 2016;

Sheoran et al., 2014). It is also common to see popular repos where coding activities

are seen to be successful as being ‘starred’ extensively, and experiencing higher

commit frequencies (Cosentino et al., 2017). Watchers tend to contribute to popularity

with their external activities on social media, and other digital community forums.

External social-followers track the actions of other coding developers of good

reputation (Luo et al., 2015). Marlow et al. (2013) note GitHub’s external social-

follower, and reviewer/tester, and watcher/star groups each contribute transparency

into a repo (Luo et al., 2015). They also bring additional social considerations, and

their social actions can contribute towards the repo’s popularity. Potential new

contributors can be drawn into a GitHub repo by:

• Adding to current promotional activities;
• Adding to social media, and/or Twitter, and/or Wiki awareness campaigns;
• Following others;
• Adding a piece of personal coding; and
• Sourcing aspects that support a personal area of interest.

23

2.3 Previous research studies

This Section explores researchers’ efforts across three logically-interconnected areas

of SECO and particularly OSSECO interest - OSS development methods used by the

developer, GitHub components, and mining GitHub (and challenges).

2.3.1 OSS development methods

OSS is not used alone when designing entire software repos because it is by nature

disorganised, and this presents risks. Siau & Tian. (2013) developed a theoretical

OSSD model which transformed OSSD from a disorganised approach into a semi-

organised relational approach. They maintained the OSSD dynamics and developed a

Phase Role Skill Responsibility model. This approach deployed Grounded Theory. It

is not yet implemented practically only theoretical, and it is still not risk-free.

Similarly, Al-Tarawneh et al. (2013) investigate the existing commercial on the shelf

(COTS) software and consider its benefits and drawbacks.

They then establish a Component Quality Model for selecting and evaluating existing

COTS software. This research was extended by Gandomani et al. (2013). They

presented a systematic literature review on the relationship between ASD and OSS.

They find a relationship between ASD and OSS exists. However, this relationship

remains unconfirmed beyond simple case study experiences. They show the Agile

Development methodology (ASD) method and OSSD were related and to date the

integration of these two remains unconfirmed - because no successful case studies

have emerged, and only a few successful occurrences have emerged (Misra & Singh,

2015; Arora, 2016; Nurdiani et al., 2016).

24

Understanding the influence of agility in OSS was investigated by Da Silva et al.

(2016). The study is ongoing, and the researchers want to measure to what degree ASD

applies in OSS releases. The community of developers is the key element of OSS, and

its members are crucially motivated to maintain and increase the size of their

community (Bahamdain, 2015).

Syeed et al., (2014) link OSS development successes to the volume of GitHub repo

community users being deployed. On the other hand, agile team trends suggest the

number of developers is optimally 5-9 developers (Williams, 2012). Although more

community user numbers deliver more coding changes, Ye and Kishida (2003) found

learning to be a key motivational driver in attracting additional software developers.

Van (2016) states there is no standardization for life-cycle shape for collaboration

networks in OSS ecosystems. Also, he finds that external factors (such as public

holidays) and internal factors (such as software vision) additionally influence

collaboration.

Studying GitHub repos, and assessing best OSS practice is increasing understanding

around OSS development within GitHub repo communities (Kalliamvakou et al.,

2016). This includes learning from past permutations. The success of a project in

GitHub helps OSS developers to understand factors that could make the distribution

projects success (Hebig et al. 2016; Cosentino et al. 2017).

25

The literature review above (Kalliamvakou et al., 2016, Williams, 2012,Misra &

Singh, 2015; Arora, 2016; Nurdiani et al., 2016, Hebig et al. 2016; Cosentino et al.

2017) suggests OSS is an important approach to software development. OSS provides

a low-cost and effective solution for software development. As the OSS development

community increases, problems such as poor documentation likely decrease. Hence,

by putting documentation regulation inside its developer community domain, it is

possible to iteratively advance a repo.

An OSS community’s information flows can engender motivational strategies

between participant members. GitHub seems to be the best solution for OSSD methods

- as it facilitates the collaborative effort by providing tools and platforms for social

connection and project development. I expect from the literature that GitHub

developers cherry-pick development methods that incorporates ASD and traditional

methods.

2.3.2 GitHub Repo Measures

There are measurable elements that directly or indirectly may influence the success of

GitHub repos. These components play a central role (according to literature) in repo

popularity. Some literature defines repo popularity based on GitHub measurable

elements such as stars, forks, watchers, and contributors. Others try to understand

GitHub repo classifications using topic modelling. This Section presents relevant

literature.

26

Social media provides an ecosystem for OSSD. Developers use social introductions,

as well as other interactions on different platforms (such as Twitter and Facebook) to

engage with each other and with GitHub (Wu et al., 2014). For long-term

contributions, the presence of past social bonds between developers may not be

enough, thus, additional measures may be needed to encourage developer preservation

(Casey, 2015). According to Blinco et al. (2016), increased numbers of project

contributors will increase project popularity (such as stars and watchers).

Follower and social commentary approaches engage more potential contributors into

their chosen GitHub repo. Popular contributors other than rockstars influence their

followers, and so bring an additional leadership dynamic into the repo. Project leaders

and core developers have a major impact on a repo. There are factors that affect a

developers’ chance to become repo leaders and/or core developers such as project

environment and subjective willingness (Cheng et al., 2017).

Active GitHub developers submit repo commits, which improve software quality (Li

et al., 2017). Another feature that GitHub offers is that of a reviewer/tester. They are

high-quality assurance assets that provide developmental evaluation – usually under

some minimum response timeframe (Li et al., 2017).

Yu et al. (2014b) suggest GitHub should engage a reviewer recommendation system,

so appropriate reviewers/testers can be best-linked to each relevant incoming pull-

request. Yu et al. (2014b) adds that social networks combined with information

retrieval can deliver this system. The clarity of the source code, and its precision in

27

the documentation, encourage greater commit activity into the repo, and small

documentation improvements can deliver great benefits (Henderson, 2009).

GitHub popular repos typically engage forking, they also show clearer, more

consistent documentation advice (Aggarwal et al., 2014), and useful documentation

can draw in other coding contributors (Hata et al., 2015). Such documentation may

also be supported by testing mechanisms (Weber & Luo, 2014), Wikis (Hata et al.,

2015), Twitter (Singer et al. 2014), social media and websites (Jiang et al., 2017).

When deciding whether to contribute to a GitHub repo, OSS developers often

investigate a repo’s popularity. This provides OSS developers with a calibration

measure around the repo’s success. The popularity of a repo is done by interpreting

GitHub statistics in different ways (Xavier et al., 2014). Popularity is gauged by

(Aggarwal et al., 2014; Xavier et al., 2014; Borges et al., 2015; Borges et al., 2016;

Ma et al., 2016) against number of stars, forks, pull-requests and watchers.

In addition, popularity also relates to a repo’s activity level (Cosentino et al., 2017).

Other GitHub studies gauge various aspects of repo activity levels (Capra et al., 2011;

Mileva, 2012; Bissyandé et al., 2013b; Weber & Luo, 2014; Zhu et al., 2014; Borges

et al., 2016b). Each approach first adopts some form of clustering, possibly including

programming language, duration, size, and social connections. This clustering allows

each resultant dataset to be studied within a chosen modeling and/or coding and/or

mathematical approach.

28

GitHub offers a range of components that assist in judging an OSS repo’s activity

levels (Härdle & Borke, 2017). Key GitHub programming languages are either web-

focused (JavaScript, Ruby, PHP, CSS) or system-oriented (C, C++, Python).

JavaScript, Java, and Python are currently the top three GitHub programming

languages (Cosentino et al., 2017). From the above review, this thesis therefore selects

the following aspects of GitHub repos on which to focus:

Repo-type: GitHub repos range from major corporate software developments such as

Adobe bracket, or Facebook that incorporate forks when overcoming issues and/or

when speeding new release versions, through to small core creator / developer repos.

Repo-lifetime: Large GitHub repos tend to remain active, forked, retain interest and

be long-term ongoing operations (Cosentino et al., 2017). This thesis concentrates on

mature repos where they were in GitHub for more than one year and they still gain

more popular.

Repo-measures: GitHub measures commits, committers, software-releases,

popularity-of-repo, number-of-stars-provided, forks, watchers, followers, testers, and

reviewers (Xavier et al., 2014) (Härdle & Borke, 2017). In our dataset, the most forked

and stars are the main criteria for the studied repos (see Chapter 3).

Repo-language: Key common GitHub software languages (discussed above) draw

like-skilled developers and are more likely to retain repo communities in excess of 40

developers (Cosentino et al., 2017). Repo languages and variations are considered

carefully in the selected dataset of this thesis (see Chapter 3).

29

Previous studies do not provide a holistic view of the constructs affecting a repo’s

activity level within GitHub repo ecosystems. Although the number of issues is also a

repo success indicator some active repos do not engage GitHub’s issue tracker

(Cosentino & Cabot, 2015).

2.3.3 Thesis links to the literature

Table 2-1 summarizes the literature and shows the relationships between various

GitHub measurable elements.

Table 2-1 Summary of previous studies regarding this thesis.
References GitHub Elements Strength of

relationship
Investigate
in this
thesis

Hu et al., 2016; Borges et al. 2016a Stars & Fork Strong ✓
Borges et al. 2016a Stars & Commits Moderate ✓
Borges, et al., 2016b Star & Contributors Moderate ✓
Borges et al., 2016b Release & Stars Strong ✓
Kalliamvakou et al., 2016 Pull & Contributors Strong ✓
Jiang et al. 2017; Vasilescu et al.,
2015

Fork & Contributions Strong ✓

Kalliamvakou et al., 2014 Commits & Pulls Strong ✓
Peterson, 2013 Watchers & Fork Strong ✓
Sheoran et al., 2014 Watchers & Commits Negligible ✓

Forks, stars and contributors appear to be drives of existing literature, commits, pulls

and watchers are relevant research foci. This thesis focuses on all of them and attempts

to more deeply understand the relationships between them.

2.3.4 Mining GitHub and Challenges

GitHub is known as the ‘absolutely dominant’ data source for OSS data mining

research (Cosentino et al., 2017). GitHub combines traditional capabilities including

free hosting and version control with social features (Squire, 2014). Moreover, GitHub

30

supports rapid software development, and has collaborative repo features including

bug-tracking, feature-requests, task-management and Wikis (Marlow et al., 2013;

Zakiah & Fauzan, 2016). The interpretation of repository statistics is the subject of

ongoing research (Borges et al., 2016; Cosentino & Cabot, 2016). The ability to

understand GitHub repository statistics would allow developers easier access to

repositories appropriate for consumption and allow developers to find repositories to

which they would make suitable contributors. Kalliamvakou et al. (2016) suggest data

sourced through mining GitHub is useful in evaluating aspects of software engineering

provided those researchers datamining GitHub remain aware of what information they

are pursuing.

Many studies have datamined GitHub to find user profiles, interpret customer

behaviour and find repository preferences, such as programming language, popularity

and usage (Ye & Kishida, 2003; Williams, 2012; Marlow et al., 2013; Gousios et al.,

2014; Wu et al., 2014; Kalliamvakou et al., 2014; Blincoe et al., 2016). Cosentino et

al. (2016) suggest that extracting knowledge by mining GitHub can be optimized for

committers and/or repo collaborators.

Methods of collecting useful data and the size of available data are key concerns when

mining GitHub (Kalliamvakou et al., 2016). Matragkas et al. (2014) use GHTorrent

dataset to performed cluster analysis. This analysis showed that repo growth did not

change the number of active repo contributors and/or the core team of repo developers.

Moreover, the researchers found that passive users were the majority of members of

large repos (Blincoe et al., 2016).

31

Although there are benefits to mining GitHub, many shortcomings remain

(Gandomani et al., 2013). Studies to date lack: (1) longitudinal research, (2) predefined

sampling techniques (for data extraction and analysis), (3) assessment using large data

sets, (4) long data collection times needed to extract, collate, and deploy large data

sets (Blincoe et al., 2016; Borges et al., 2016; Xavier et al., 2014), (5) software

engineering team diversity and (6) software productivity consistency (Squire, 2017).

Hence, long-term studies with clear datamining techniques that capture large datasets

remain a knowledge gap in GitHub repo studies (Borges et al., 2016).

To improve pull request acceptance, Yu et al. (2016) applied a classifier evaluation

matrix utilizing precision, recall and an F-measures. There are many aspects about

GitHub repo research that represent threats to analysis and validity (Ray et al., 2014;

Borges et al., 2016). Cosentino et al. (2017) suggest that a systematic study is needed,

and study replication is lacking. Moreover, researchers indicate that GitHub API

restrictions are a considerable challenge when trying to extract useful data about

GitHub repos (Hebig et al., 2016).

Topic modeling is used to classify GitHub repos, which in turn is used to make

recommendation system. Topic modeling also facilitates understanding about

developer communities within GitHub and trends in GitHub software development

(Bavota et al., 2014; Soll & Vosgerau, 2017). Orii (2012) applied a combination of

topic modelling and collaborative filtering on GitHub repos, claiming that his method

produces highly interpretable structures, but did not outperform existing methods.

Markovtsev & Kant, (2017) applied topic modelling using repo name, however the

32

problem faced was the occurrence of duplicate repositories. There is a lack of studies

about GitHub ecosystem (Xavier et al., 2014; Blincoe et al., 2016; Borges et al., 2016;

Ma et al., 2017).

In conclusion, GitHub appears to be “the engine” of open source software

development. GitHub’s growing community of developers contribute from anywhere

around the world at any time. To understand GitHub, researchers must be prepared to

more deeply explore its nature. I believe that GitHub is an ideal place to explore OSS

Ecosystem.

This research focuses on delivering a systematic model highlighting how the elements

of the GitHub ecosystem relate together. It does not intend to test theory involving set

elements within the GitHub ecosystem, and so does not require proof or mathematical

modelling beyond SEM.

33

CHAPTER 3

3 RESEARCH METHODOLOGY

3.1 Introduction

This Chapter describes the methodology, study design, sample data used, procedure

and criteria used for data collection along with the mathematical tools used. Finally,

the detail of the methods and techniques used for data analysis are covered.

3.2 Thesis Dataset

Data about GitHub repos are collected by using GitHub search tools. GitHub Querying

is applied to collect an initial dataset. GitHub is currently the ‘absolute dominant’ data

source for open source software (OSS) data mining research (Kalliamvakou et al.,

2014; Hata et al., 2015; Dias et al., 2016; Cosentino et al., 2017).

GitHub’s search engine allows searching of its repos against ‘stars’ or ‘forks’ counts

(Jarczyk et al., 2014; Robinson & Deng, 2015; Borges et al., 2016b). The thesis

considers the forks number as the main criteria to query GitHub for two reasons.

Firstly, for a repo the presence of forks, means that this repo is active, and the open

source software being developed is likely still under development. In contrast, the

presence of stars just means that individuals express a likeness for the repo, and

they’ve rated the repo with stars (Baudry & Monperrus, 2012; Weber & Luo, 2014).

Hence, the presence of forks offers a much stronger measure of the repo being active

than does the presence of stars. Also, a repo user who forks the repo, likely has a high

probability of generating a pull request which in-turn may affect (or increase) the

34

repo’s net contributors number (Kalliamvakou et al., 2016). Secondly, most repos

which acquire a high number of forks, also likely have a high number of stars (Borges

et al., 2016a). Hence, this pilot study focusses on both GitHub search criteria.

Top three GitHub programming languages are JavaScript, Python and Java

(Christopher et al., 2015; Cosentino et al., 2017a; Hu et al., 2016; Ray et al., 2015).

These programming languages are used in both phases.

An API GitHub query collects eight datasets for case study two. It consists of the top

eight programming languages JavaScript, Python, Java, C#, CSS, C++, Ruby and PHP

(Badashian & Stroulia, 2016; Borges et al.,2016a; Kumar & Dahiya, 2017; Härdle &

Borke, 2017; Noone & Mooney, 2017). Data set used in phase 1 are time series data

representing 30 repos collected over six different time frames, two weeks between

each time frame.

Each dataset in case study two captures eight GitHub key element which are: Stars,

Forks, Watchers, Contributors, Releases, Issues (open or closed), Pulls (open or

closed) and Commits. 1600 GitHub repos are downloaded, and prepared for analysis,

each programming language data set consisting of its top 200 repos.

GitHub contains over 10 million repos (Kalliamvakou et al., 2014). Hence, querying

the GitHub repos is an important step in understanding the data contained in various

programming languages. Further, confirming the quality of an extracted sample of

data also plays important role in the successful understanding of the data itself and in

35

the studies that draw on the data itself (Gousios & Spinellis, 2017). Borges et al.

suggest extracting good sample data requires some degree of human interactions and

the following of procedural guideline (Borges et al., 2016b; Cheng et al.,2018). In

GitHub the majority of its repos are either inactive, or are personal (Kalliamvakou et

al., 2014). In this thesis the analysis of GitHub’s repos follows two main querying

considerations: (1) the programming language and (2) the forks count.

The forks is an important measure of repo activity (Biazzini & Baudry, 2014; Chen et

al., 2014 ; Jiang et al., 2017). The limitation conditions (or filters) applied for the

repo’s extraction applied to case study one is:

• Repos with more than one year old

• Illegal repos considered invalid and excluded from the dataset, this could be

confirmed by visiting repos webpage.

These two limitation conditions applied to all this thesis’s case studies. They ensured

the consistency of the sample datasets, and upon look-up check all are dataset believed

to represent good quality repos.

3.3 MATLAB program - developed for Querying GitHub

MATLAB program has been developed to extract GitHub sample data. MATLAB is

reliable when dealing with URLs(Carpenter et al., 2017). The GitHub tool box located

within MATLAB makes GitHub more flexible when transfer data between the two

environments (GitHub and MATLAB). MATLAB also provides many evaluations

and comparison instructions tools that rapidly offer assessments across large dataset

(Higham & Higham, 2016; Pianosi et al., 2015). Thus, MATLAB helps in evaluating

36

the condition of repos. For example, MATLAB can compare the number of commits

- considering the number of committers to a repo and eliminate questionable ones. In

another word MATLAB tests if the GitHub repo’s unique contribution condition for a

commit is satisfied before extracting the commit element from the repo. Then

MATLAB program extracts the commits from each repo, and directly adds the results

into excel applications.

This process is used for all dataset collections and collations. The input into the

MATLAB program is a useful CSV file. It is pair-labelled as ‘Repo-Owner’, ‘Repo-

Name’. This information is used to check and invoke repo attributes.

3.4 Study Design

This thesis addresses the research questions (pp. 10 Chapter one), and the supporting

hypotheses regarding the GitHub ecosystem and its relationship with its key elements.

These key elements exert an influence on an individual GitHub repo’s success.

Stepwise phases across these studies are illustrated in Figure 3-1. The methodology

involves two overarching phases:

Phase one extracts GitHub data for a pilot study (3x10 GitHub repos). It is a short-

term time series study looking at rate-of-change of the collected time series data and

the competitive analysis statistical significance within and between top GitHub

language differences.

37

Figure 3-1: The two-phase methodology.

Phase two extract GitHub data for a large-scale modelling study involving 1600 of the

most popular GitHub repos. In this thesis structural contribution models are delivered.

Each model is bootstrap validated (200 times). An excellent bootstrapped model fit is

validated when the Bollen-Stine p-value exceeds 0.05 (Hair et al.,1998).

3.5 Phase one- case study one

Phase 1 present case study one which is a pilot study, this phase consists of collecting

snapshot data from GitHub to explore the existence of a difference in programming

languages used in GitHub, Figure 3-2 shows main processes run across phase 1.

38

Figure 3-2: Phase 1 case study one processes.

3.5.1 Phase one- GitHub data collection and process

Querying GitHub using a ‘general search’ tool is the first step in data processing. The

first filter is a programming language. Inside the programming language repos, only

‘forked’ repos are selected. The MATLAB program (now termed MATLAB) is used

to access the repo’s commit information. In case of study one (pilot study), three

programming languages are used to search for language correlations. Each language

Statistical Process

ANOVA & Tukey Kramer

ROC

Rate of change for Commits

Data preprocessing

Tabulated and clean data

Commits Collected

Six iterations

GitHub Querying

Three popular languages

39

data captures only captures its own repos, and only uses the ten repos with the largest

number of forks. These repos are collected firstly in ‘pair-labelled’ groupings – with

the format: repo (owner, name) MATLAB uses to generate CSV files. Following a

two weeks lag-time, the prior process is again repeated for same repos.

Case study one (the pilot Study), commits are considered, as according to the literature

(Kalliamvakou et al., 2014) the activity in GitHub is mostly reflected by the level of

commits. Commit is one of GitHub key elements. Metadata extractions for this pilot

study occurred six times, two weeks apart, over a three months period. These evenly-

spaced time intervals provided snapshots of the repositories elements measures per

language.

Metadata for case study one is illustrated in Table 3-1. Which shows the repo

name/owner as paired title and type- of- repos- representing the category of it used for.

Each language specific data collection is allocated to a dedicated computer, and each

involves the ten most popular repos per language.

Also, each selected repo must have been active for over three years – as this indicates

the repo likely represents a substantive OSS program being developed (Vasilescu et

al., 2016). Data extraction is performed using a custom tool1 based on Version 3 of the

GitHub API2. Data collection is then organized using the GitHub API group terms

1 https://GitHub.com/ozyjay/GitHubQuery
2 https://api.GitHub.com

40

(Chatziasimidis & Stamelos, 2015). This data is then tabulated, data cleaned, and

checked for outliers (e.g. GitHub questionable repos3) which are removed.

This two week repetitive approach follows agile software development methodology

(Gunal, 2012), and rapidly assesses the repositories development. This approach

allows for changes or updates to each repo’s information. Accordingly, repos that

follow agile development methodology do show different activity levels at each

collection point on the time-scale.

The resultant datasets total 180 (60 sets of data for each language) tabulated for

comparative analysis. Initial findings indicated differences in repo activity levels

between each language. Case study one investigates whether observed differences in

GitHub repo occurred over time across these three programming languages.

3 https://GitHub.com/shadowsocks/shadowsocks

41

Table 3-1: The top ten GitHub repos for JavaScript, Java, and Python

 JavaScript Java Python
 Repo Name Repo Type Repo Name Repo Type Repo Name Repo Type

1 twbs/bootstrap Developer
support spring-projects/spring-boot Code workaround django/django Developer support

2 angular/angular.js Application
software spring-projects/spring-framework Developer support scikit-learn/scikit-learn Coding style guide

2 udacity/frontend-
nanodegree-resume

Coding style
guide alibaba/dubbo Developer support tensorflow/models Coding style guide

4 d3/d3 Software library elastic/elasticsearch Developer support pallets/flask Developer support

5 facebook/react Software library iluwatar/Java-design-patterns Coding style guide ansible/ansible Code workaround

6 jquery/jquery Software library zxing/zxing Software library udacity/fullstack-nanodegree-vm Coding style guide

7 mrdoob/three.js Software library nostra13/Android-Universal-Image-
Loader Software library vinta/awesome-Python Developer support

8 freeCodeCamp/
freeCodeCamp

Coding style
guide aporter/coursera-android Software library fchollet/keras Software library

9 facebook/react-
native

Coding style
guide jfeinstein10/SlidingMenu Software library odoo/odoo Application

software

10 tastejs/todomvc Developer
support square/okhttp Application

software
josephmisiti/awesome-machine-
learning Software package

42

Repo collection procedure was re-executed every two weeks for each programming

language, and for the same repos. Thirty repo commits are collected in timeframe 1,

another 30 commits for the next timeframe till timeframe 6. Total number of repos

where 180 repos (3 languages x 10 repos x 6 samples). Collecting six consecutive

timeframes allows for a suitable trend analysis to be established. Moreover, agile

software development practices suggest that a major coding milestone typically takes

at least 6 iterations to produce a stable release of the software where each iteration

typically takes two weeks.

3.5.1.1 Phase one- Rate of Change

Analysis of the data collected in case study one applies Rate of Change (ROC) as a

normalization process (Campos & Scherson, 2000) as shown in Figure 3-2. This

process makes the data easier to deal with. Let ROC be defined as a normalized value

that measures how a quantity changes over a fixed time interval.

𝑅𝑂𝐶 = 100 [(
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑛 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑎𝑔𝑜
) − 1]

3.5.1.2 Phase one- Comparative analysis

Next ANOVA (analysis of variance) is applied to investigate where significant

differences arise (Anderson, 2001). Finally, the Tukey-Kramer method is used to find

any differences between the three GitHub programming languages (Cho, 2014).

43

3.5.1.3 Statistical tools

To compare the three most popular GitHub programming languages a standard one-

way ANOVA (analysis of variances) and Tukey-Kramer (post hoc) is deployed to

confirm the validity of sample data used in the pilot study (King, 1986), and to

discover if any significant differences between programming languages arise over

time (Hair, et al. 1998).

One-way analysis of variance (ANOVA) tests the equality of three or more means at

one time by using variances (Melosan, 2014). ANOVA determines whether any such

variation is the result of some factor, or is simply the result of randomness, and

ANOVA assumes:

• each comparison population is normally distributed;

• the observations are independent of one another; and

• each of the comparison populations displays an equivalent variance.

The Tukey-Kramer method (TK) is widely deployed in multiple comparison

procedures (Benjamini & Braun, 2002) (Driscoll, 1996). TK considers possible

pairwise differences of means at the same time and identifies pairs of means showing

significant differences. In this thesis TK locates the differences within each

programming languages (the difference between repos of the same programming

languages- “difference within”) and the differences among different programming

languages “difference between” TK assumes:

• observations being tested are independent within and among the language

groups;

• language groups associated with each mean are normally distributed; and

44

• homogeneity of variance.

Results using these tools are discussed in Chapter four.

3.6 Phase Two -Case study two

Top good GitHub repos are collected, with each repo having more than two

contributors (Borges et al., 2016b; Kalliamvakou et al., 2014). According to

Kalliamvakou et. al. (2014) good repos also show a balance between pull request and

commits. Figure 3-3 illustrates the data extraction steps used in case study two.

Case study two deploys eight top programming languages : JavaScript, Python, Java,

C#, CSS, C++, Ruby and PHP (Onoue et al., 2013; Borges et al., 2016a; Badashian

& Stroulia, 2016; Kumar & Dahiya, 2017; Härdle & Borke, 2017 ; Noone & Mooney,

2017). It uses larger data about 1600 repos (200 repos for each language).

Figure 3-3: General Steps in Data Collection Process.

3.6.1 Case study two-Data collection

The first step in data collection is to query the GitHub repos – applying GitHub repo

condition (filter). The limitation conditions (or filters) applied for the repo extraction

applied to case study two are:

45

• Repos with an unbalanced number of commits and committers are excluded

from the sample(Barnett et al., 2016; Goyal et al., 2018);

• Repos engaged each possessed more than two contributors to be considered

valid; and

• Education repos are excluded from the sample (such repos have much forks

number but commits number not changing).

In this thesis each repo captures the ten GitHub key elements: Stars, Forks, Watchers,

Contributors, Releases, Issues (open & close), Pulls(Open & close) and Commits

(Kalliamvakou et al., 2016). These ten variables represent the key open source

software development contributing groups that collaboratively help build a GitHub

repo over time. Table 3-1 shows and defines these ten GitHub key elements.

46

Table 3-2: GitHub repository data attributes and associated meanings.

Element
Name Type/Classification Meaning

Stars Repo interest Developers who like the repo
Watchers Repo interest Developers who get a notification when the

repo content changes
Forks Repo interest Isolated versions of a repo where changes are

made to the original content or its intent
Commits Repo work Content changes resulting from new features,

refactoring, and incremental development
Contributors Repo work Developers who asked to directly contribute

to a repo
Releases Repo work Milestones in the lifetime of a repo
Issues open Change request Identified problems with repo content
Issues
closed

Change request Issues fixed by commits or merges after a
review process

Pulls open Change request Suggested commits from forked versions of
the repo or within the repo from
developmental branches

Pulls closed Change request Pulls merged into the repo after a review
process

Both stars and forks ratings are used for rank GitHub Repos, and both display a strong

correlation (Vasilescu et al., 2015; Hu et al., 2016; Borges et al., 2016). Watchers are

a good measure of how good repo is, and they too have a similar rating influence to

stars (Badashian & Stroulia, 2016; Borges et al., 2016b).

The forks is a first step in making contributions (Jiang et al., 2017). The forks of a

repo mean making a local copy of that repo, developer may or may not choose to make

update after looking at their own local copy. If developer make an update, then a pull

request may be sent to either fix a bug or add a new feature or make a modification.

Issues help in assigning, managing resources and eliminating software failures (Liao,

Dayu, et al., 2018). A pull request is important to measure, and allows opportunities

47

for engagement - allowing more developers into the repos’ community (Kalliamvakou

et al., 2016). Whenever a pull request is sent to the repo community’s, it marked as

open pull request.

The repo-project-creator/developer (or core development team) reviews any open pull

request. They either accept the pull request which results in adding a new contributor,

or they reject the pull request. Usually pull requests of a non-technical nature are often

rejected. In either case (accepting or refusing) the pull request is closed(Padhye et al.,

2014; Kalliamvakou et al., 2014) (Tsay et al., 2014). Releases also have an influence

on repos, Borges et al found that the number of starts increases rapidly upon issuing a

new releases (Borges et al., 2016a). Table 3-3 provides a snapshot of sample data

resulted from querying and collecting GitHub repos for case study two. The Table

below shows all ten key elements for each repo display significant activity levels (and

suitable for statistical analysis).

48

Table 3-3: The data sample of case study two: Top 20 Repos of Python language

REPOS(Owner-Name/Repo-Name)

W
atch

Star

Forks

C
om

m
its

R
eleases

C
ontribu

tors

Issue
open

issue
closed

Pull
O

pen

Pull
C

losed

tensorflow/models 2108 31221 17290 1982 3 327 506 1721 197 1195
scikit-learn/scikit-learn 2062 26763 13468 22663 86 1040 994 3865 598 5395
ansible/ansible 1866 29100 10571 36383 201 3341 3463 13355 1411 19530
pallets/flask 1979 34082 10483 3202 21 458 23 1378 2 1257
keras-team/keras 1595 27258 9950 4423 40 644 1187 5743 30 2754
udacity/fullstack-nanodegree-vm 26 198 9271 53 0 6 13 11 12 51
vinta/awesome-Python 4088 47336 9139 1220 0 283 44 57 277 659
odoo/odoo 1311 9109 7809 115419 81 760 1162 6870 816 13257
josephmisiti/awesome-machine-learning 2816 31425 7693 1029 0 304 6 39 0 441
scrapy/scrapy 1666 26311 6590 6614 81 281 375 1147 197 1457
XX-net/XX-Net 1736 21625 6449 1824 247 60 7143 2363 2 419
rg3/youtube-dl 1411 35140 6443 16016 976 599 1878 11243 280 2468
requests/requests 1245 31266 5757 5416 131 497 95 2472 16 1736
pandas-dev/pandas 812 13551 5501 16911 89 1115 2328 9669 159 8284
apache/incubator-mxnet 1133 13432 4951 6780 42 495 752 4849 63 4499
wangshub/wechat_jump_game 557 13594 4869 324 2 65 26 949 0 253
tornadoweb/tornado 1047 15390 4485 3701 50 280 130 1116 57 1013
saltstack/salt 598 8692 4058 92042 163 2026 3567 14310 112 28663

49

Table 3-3 presents a selection of the 1600 repos investigated in case study two – 200

from each of the eight-top programming languages are collated, dataset organized and

data-cleaned. Any questionable repo such as shadowsocks/shadowsocks is then

removed before analysis. Each cleaned dataset is used to separately explore how the

elements within an individual programming language may relationally fit into a

language-specific structural path model.

Comparison of the eight path models then indicates whether path model differences exist

between each of the three programming languages.

3.6.2 Case study two - Structural Equation Model

Case study two draws upon three theories (information integration, planned behaviour,

and social translucence) to help frame this thesis’s structural path model approach.

These theories help establish a framework through which to capture the ten GitHub key

elements.

The structural path model approach identifies the significant paths and relative path

strengths between elements (termed constructs in path modelling). However, such data

collection assumes measures are made without random measurement error. As this

feature can disguise multicollinearity effects (Joseph F Hair et al., 1998; Grapentine,

2000), it is controlled by only engaging: (1) one GitHub software language at a time, (2)

top (highly active) GitHub-specific repos, (3) currently active GitHub repos, and (4)

GitHub repos with a continual repository longevity exceeding more than one years.

50

The GitHub programming language structural path model also offers a total effects

Table which can elucidate an understanding of the total effects each elements element

has across the programming language path model, and through to the outcome

dependent variable of commits-per-language.

Eight structural path models each initially representing 200 repos for the eight-top

programming languages (JavaScript, Python, Java, C#, CSS, C++, Ruby and PHP) are

developed using AMOS 25.0. These eight path models, complete with their elements

individual total effects Table, offer repo-project-creator/developer (or core development

team) new understanding concerning how each GitHub contributor engages with some

active GitHub repos.

The structural path model approach then allows a repo-project-creator/developer (or

core development team) to pursue additional ways to possibly: (1) draw further OSS

developers into this repo, (2) induce higher repo element activity levels, and (3) shorten

the time between repo releases versions.

In the structural path model pulls open and pulls closed are considered as one ‘pulls’

activity - since every closed pull was formerly an open pull allowed by the repo. Issues

open, and issues closed are also similarly combined as the repo’s ‘issues’. Thus, pulls

are the summation of pulls open and pulls closed, and issues is the summation of issues

open and issue closed.

51

The GitHub ten key elements represent different variables used in the structural model.

The three types of variables are: independent, intermediate and dependent variables,

each programming language will have processed using path analysis three out of ten

GitHub elements represent independent variables these are forks, watchers and stars.

Fork, stars and watchers are strongly correlated to each other (Peterson, 2013; Badashian

& Stroulia, 2016; Borges et al., 2016b; Hu et al., 2016) each of these variables used to

rank GitHub repos and have the same influence on GitHub repos rank. While commits

represent dependent variables others are intermediate variables Figure 3-4 depicted

these different variables name and types.

Figure 3-4: Variables name and types used in structural model.

Pulls, releases contributors and issues each one of these variables may affect by each

other these four GitHub key elements represents intermediate variables (Padhye et al.,

2014; Tsay et al., 2014; Xavier, 2015; Kalliamvakou et al., 2016). Pull request, releases

forks all these variables will lead to increase commits, thus commits is the dependent

variables (Kalliamvakou et al., 2014).

52

The AMOS 25.0 software offers model fit validations. Key fit excellence measures

include: are: Chi-square (2), degrees of freedom (DF), p-value (or Bollen-Stine p-

value), Root Mean Square Error of Approximation (RMSEA) and various model fit

measures.

Chi-square remains a key measure. It less sensitive to sample size, when measured as

2/DF, and ranging within 1 to 3, and showing a p-value above 0.05, it indicates the

structural model is a very good model fit (Byrne, 1994; Hair et al. 1998, Ullman, 2006,

Kline, 2015).

RMSEA estimates the average absolute difference between the path model’s covariance

estimates and its observed covariances. Values below 0.05 indicate an excellent fit, but

RMSEA values below 0.08 also indicate very good to near excellent fit (Steiger, 1990,

Browne & Cudeck, 1992; Hu & Bentler, 1998).

Many ‘goodness of fit’ measures exist. Comparative Fit Index (CFI) should be above

0.95, Tucker-Lewis Index (TLI) should be above 0.95, and Normative Fit Index (NFI)

should be above 0.95 (Hu & Bentler, 1998). The Goodness-of-Fit Index (GFI) measures

the fit between hypothesized model and should be above 0.90 (Byrne, 1994;

Baumgartner & Homburg, 1996), and Absolute-Goodness-of-Fit Index adjusts the GFI

with a degree of freedom inclusion, and should be above 0.90 (Hu & Bentler, 1998).

53

3.7 Phase two-Validation

For path model validation each programming language’s path model is bootstrapped

200 times. Structural path model validations are undertaken via bootstrapping 200 times

to capture and average item variations. Here a Bollen-Stine p-value of above 0.05 is

desired. Chapter four will explore the obtained results from both Phases.

54

CHAPTER 4

4 RESULTS

4.1 Introduction

This Chapter presents the results of the exploratory GitHub pilot study. This Chapter

deploys Excel, SPSS and AMOS programs to analyses each of the GitHub language

data sets. Phase one engages GitHub’s 30 most contributed repos – 10 from each of its

three top programming languages (JavaScript, Python and Java). It tests the existence

of significant differences among/within these GitHub programming languages. Phase

two then builds the structural equation model (SEM) for each of the top eight

programming languages. The significant SEM construct pathways that contribute

towards delivering the GitHub language commits are shown. These indicate each

language’s repo activity levels. SEM model goodness-of-fit assessments are also

provided.

4.2 Phase one

The pilot study engages 30 of the top GitHub repos - sorted by “most Forks.” The ten

most active repos for each programming language are utilized. These top programming

languages are JavaScript, Python and Java (Cosentino et al., 2017; Härdle & Borke,

2017; Noone & Mooney, 2017).

Although GitHub has many key elements used by researchers, ‘commits’ is the

measurement item that reflects GitHub’s activity level and its productivity (Cortés-Coy

et al., 2014; Kalliamvakou et al., 2014; Goyal et al., 2018).

55

Tables 4-1, 4-2 and 4-3 show this pilot study sequentially collected ‘commits’ across

six time periods (Commit1 to Commit6) for each of three GitHub languages JavaScript,

Java and Python. In all bar three cases, each GitHub repo’s activity level grows and

remain significant. In four cases there is no increase or decrease over the six time periods

studied. This may be due to an OSS repo being in an on-hold phase with no activity

growth needed or operating stably and requiring no change.

Table 4-1: JavaScript data set collected over six timeframes*.

Repo Commit1 Commit2 Commit3 Commit4 Commit5 Commit6
1 16976 17096 17221 17268 17311 17380
2 8597 8610 8621 8625 8648 8655
3 84 84 84 84 84 84
4 4104 4104 4104 4104 4106 4110
5 9158 9269 9325 9398 9529 9547
6 6268 6270 6270 6271 6275 6276
7 20530 20654 20930 21066 21403 21573
8 10691 10706 10749 10756 10816 10876
9 11939 12065 12139 12219 12357 12439
10 2828 2829 2829 2832 2832 2832

Table 4-2: Java Commit data set collected over six timeframes*.

Repo Commit1 Commit2 Commit3 Commit4 Commit5 Commit6
1 13665 13833 14064 14226 14540 14640
2 15461 15533 15615 15694 15773 15798
3 1921 1940 1967 1971 2000 2054
4 28879 28941 29034 29144 29360 29694
5 1854 1870 1879 1890 1931 1945
6 3375 3380 3399 3404 3407 3410
7 1025 1025 1025 1025 1025 1025
8 71 71 71 71 71 71
9 336 336 336 336 336 336
10 3060 3061 3061 3070 3073 3079

56

Table 4-3: Python Commit data set collected over six timeframes*.

Repo Commit1 Commit2 Commit3 Commit4 Commit5 Commit6
1 25009 25064 25111 25152 25221 25262
2 22265 22315 22348 22385 22452 22479
3 1298 1318 1388 1458 1531 1569
4 3085 3094 3099 3101 3114 3126
5 33338 33587 33840 34088 34516 34732
6 47 47 47 48 48 48
7 1152 1154 1159 1161 1171 1173
8 3921 3972 4025 4089 4152 4174
9 113132 113471 113651 113866 114183 114242
10 914 928 946 962 981 989

* Note: the detailed description of the six timeframes is explained in Section 3.5.1.

4.2.1 Pilot study – Rate of Change (ROC)

Each Table 4-1,4-2 and 4-3 data set is normalized as a ROC to gauge the percentage

increase or decrease in commits over a given period of time (Heirich, 1964). Tables 4-

4,4-5 and 4-6 illustrate the normalizing (ROC) of JavaScript, Java and Python

respectively. This ROC clarifies that for each time interval the ROC remains positive –

indicating a growth in activity levels is occurring across the top ten GitHub repos for

each language.

Table 4-4: JavaScript normalized data.

Commit/Repo 1 2 3 4 5 6 7 8 9 10 Average
Commit1 0.71 0.15 0.00 0.00 1.21 0.03 0.60 0.14 1.06 0.04 0.39
Commit2 0.73 0.13 0.00 0.00 0.60 0.00 1.34 0.40 0.61 0.00 0.38
Commit3 0.27 0.05 0.00 0.00 0.78 0.02 0.65 0.07 0.66 0.11 0.26
Commit4 0.25 0.27 0.00 0.05 1.39 0.06 1.60 0.56 1.13 0.00 0.53
Commit5 0.40 0.08 0.00 0.10 0.19 0.02 0.79 0.55 0.66 0.00 0.28

57

Table 4-5: Java normalized data.

Commit/Repo 1 2 3 4 5 6 7 8 9 10 Average
Commit1 1.23 0.47 0.99 0.21 0.86 0.15 0.00 0.00 0.00 0.03 0.39
Commit2 1.67 0.53 1.39 0.32 0.48 0.56 0.00 0.00 0.00 0.00 0.50
Commit3 1.15 0.51 0.20 0.38 0.59 0.15 0.00 0.00 0.00 0.29 0.33
Commit4 2.21 0.50 1.47 0.74 2.17 0.09 0.00 0.00 0.00 0.10 0.73
Commit5 0.69 0.16 2.70 1.14 0.73 0.09 0.00 0.00 0.00 0.20 0.57

Table 4-6: Python normalized data.

4.2.2 Pilot study – ANOVA

To test the hypothesis of the existence of a difference in each programming language

and to assure the validity of the data, ANOVA test was applied for each programming

language (ROC Tables 4-4, 4-5 and 4-6). The results of applying ANOVA test

illustrated in tables 4-7, 4-8 and 4-9 for JavaScript, Python and Java programming

languages respectively.

To test the hypothesis that each programming language displays differences, and to

assure the validity of the data, the ANOVA test is applied for each programming

language (ROC Tables 4-4, 4-5 and 4-6). These results, illustrated in Tables 4-7, 4-8

and 4-9 for JavaScript, Python and Java programming languages respectively suggest

significant difference exists across groups in Table 4-7, Table 4-5, Table 4-6.

Commit /Repo 1 2 3 4 5 6 7 8 9 10 Average

Commit1 0.22 0.22 1.54 0.29 0.75 0.00 0.17 1.30 0.30 1.53 0.63
Commit2 0.19 0.15 5.31 0.16 0.75 0.00 0.43 1.33 0.16 1.94 1.04
Commit3 0.16 0.17 5.04 0.06 0.73 2.13 0.17 1.59 0.19 1.69 1.19
Commit4 0.27 0.30 5.01 0.42 1.26 0.00 0.86 1.54 0.28 1.98 1.19
Commit5 0.16 0.12 2.48 0.39 0.63 0.00 0.17 0.53 0.05 0.82 0.53

58

Table 4-7: Result of applying ANOVA to JavaScript normalized data.

Table 4-8: Result of applying ANOVA to Python normalized data.

Table 4-9: Result of applying ANOVA to Java Language normalized data.

ANOVA DV= Commits
Source of Variation SS df MS F P-value F crit
Between Groups 13.58 9 1.51 8.17 0.0000 2.12
Within Groups 7.39 40 0.18
Total 20.98 49
 Level of significance 0.05

4.2.3 Pilot study – Tukey-Kramer

To investigate differences between the three programming languages, this study

deployed the Tukey-Kramer method. Table 4-10 summarizes the Tukey-Kramer results

for the JavaScript, Python and Java programming language. Results indicate Python is

different to JavaScript and Java, and Java is sometimes different to JavaScript. Table 4-

10 summaries result of applying Tukey-Kramer between three programming languages

difference.

ANOVA DV= Commits
Source of Variation SS df MS F P-value F crit
Between Groups 6.86 9 0.76 12.47 0.00 2.12
Within Groups 2.44 40 0.06

Total 9.30 49

 Level of significance 0.05

ANOVA DV= Commits
Source of Variation SS df MS F P-value F crit
Between Groups 59.37 9 6.6 14.58 0.0000 2.12
Within Groups 18.1 40 0.45
Total 77.47 49

 Level of significance 0.05

59

Table 4-10: Tukey-Kramer results for three GitHub languages.

Comparison Sample
Mean

Sample
Size

Absolute
Difference

Std.
Error of

difference

Critical
Range Results

JavaScript vs Java 0.03 10 0.1 0.13 0.47 Means are not different

JavaScript vs
Python 0.12 10 1.56 0.13 0.47 Means are different

Java vs Python 1.59 10 1.47 0.13 0.47 Means are different

4.3 Phase Two

The structural path model approach is regression based. It is applicable where models

are not too complex (Grapentine, 2000). Within GitHub Repo ecosystem, structural path

analysis and SEM modelling capture the key GitHub measurement constructs: Forks,

Watch, Stars, Issues (open & closed), Releases, Pulls (open & closed), Contributors and

Commits. For each language, the Standardized Total Effects of each of GitHub

measurement construct then indicates each construct’s net effects onto the GitHub

language’s repos activity level (as measured by its commits).

The top 1600 GitHub repos for JavaScript, Python, Java, , C#, C++,CSS, PHP, and Ruby

programming languages are assessed across various pathways of repo contribution. Data

captured from these popular differ in: format, repo-size, development-cycle-stage,

change-frequency, change-degree, Forks, Watch, and contributor-skills, and the data,

has remained difficult to interpret.

4.3.1 Path Analysis Model

This GitHub structural path model study utilizes 1600 repos - 200 repos for each of the

eight most-used (top) programming languages. These languages - JavaScript, Python,

60

Java, C#, C++,CSS, PHP, and Ruby (Jain & Gupta, 2017; Kumar & Dahiya, 2017) are

collected if they are popular and have been in operation for more than one year. Each

reop captures the key GitHub measurement constructs: Forks, Watch, Stars, Issues (open

& closed), Releases, Pulls (open & closed), Contributors and Commits). The total

dataset size-contributions of the key GitHub measurement constructs for the 1600 repos

investigated is illustrated in Table 4-11. All languages show each of the key GitHub

measurement constructs provide consistently high OSSD repo contributions.

Considering JavaScript its 200 repos dataset has five outliers – which are discarded as

they fail to satisfy the limitation condition (stated in Chapter three Section 3.2.3.4).

For the Python language again 5 outliers are removed, and an excellent fit SEM model

result. Figure 4-2 represents Python language structural path model. Figure 4-3

represents the Java programming language. Here, 30 repos are outliers failing to satisfy

the limitation condition (filters in Chapter 3). Hence, the modelled Java dataset uses

170 repos. Figures 4-4, 4-5, 4-6, 4-7 and 4-8 respectively represent the structural path

models for the GitHub repos for C#, C++, CSS, PHP and Ruby programming languages.

61

Table 4-11: GitHub dataset – the top 1600 repos for the top eight languages.

GitHub Elements
Programming Language

JavaScript Python Java C# C++ CSS PHP Ruby

Watches 165153 100346 119342 61243 93013 50,071 55612 43034

Stars 3553983 1551498 1495595 467021 1077757 954,704 740185 957489

Forks 809328 426286 527948 150931 365894 298,475 233805 293345

Releases 15324 10897 9230 10596 10295 2,806 13256 25021

Contributors 46707 44978 14563 14859 23826 12,325 32611 59756

Issue Open 52235 62522 33213 44004 57886 9,085 34774 18065

issue Closed 382345 233734 152421 182004 212136 50,930 269520 185834

Issues 434580 296256 185634 226008 270022 60,015 304294 203899

Pull Open 10792 11191 4122 4130 6489 2,133 5682 18199

Pull Closed 230585 295534 126353 151627 234728 41,036 240669 312968

Pulls 241377 306725 130475 155757 241217 43,169 246351 331167

Commits 708605 1178386 941579 659663 1395130 155,084 1106250 1777399

62

Figure 4-1: JavaScript programming language Path Model.

63

 Figure 4-2: Python Programming Language Path Model.

64

Figure 4-3: Java Programming Language Path Model.

65

 Figure 4-4: C++ Programming Language Path Model.

66

Figure 4-5: C# Programming Language Path Model.

67

Figure 4-6: CSS Programming Language Path Model.

68

Figure 4-7: PHP Programming Language Path Model.

69

Figure 4-8: Ruby Language Path Model.

70

All GitHub language models display structural model differences in path strengths and

overall pathways solutions. Values for the Standardized Total Effects of each of the

key GitHub measurement constructs for all the above programming languages

illustrated in appendix A. Analysis of the two phases of this study (pilot study and path

model) is provided in Chapter Five.

4.3.2 Models Validation

For each programming language, small dataset (200 repos) were collected, this dataset

cannot split into confirmation (usually 60% of dataset) and validation (40% of

dataset) groups, so each model have been validated using a bootstrapping of 200

times and check validity using the Bollen-Stine p value (Cunningham, 2008; Hair,

1998). Table 4-12 shows validation results of the eight models.

Table 4-12: Bootstrap validation values for eight programming language models

 Model Bollen-Stine P

JavaScript .527
Python .547
Java .333
C# .428
C++ .607
CSS .139
PHP .652
Ruby .194

71

CHAPTER 5

5 DISCUSSIONS

This Chapter discusses the research insights and its implications concerning both

phases of the thesis repo work described in Chapter 4.

5.1 Phase one- Pilot study

The Pilot study was concerned with the top 10 (most Forked) GitHub repos for the top

three OSS GitHub programming languages and observe the development of these

repos for a period of 90 days with bi-weekly trend analysis blocks. The results of the

Pilot study indicate that there likely is an ongoing culture of OSS development within

those active GitHub repos.

This suggests other active GitHub repos might also exhibit substantial OSS

development activities. Moreover, the analysis indicates different development

methodologies and OSS programming languages are likely chosen by developers to

tackle different OSS repo types. Hence, to pursue an overarching way to generate

greater GitHub repo activity levels, this study selected the most utilized GitHub OSS

programming languages, and then structural path models are constructed from the top

200 repos of each OSS language against GitHub elements.

5.2 Phase two - Structural path analysis study

5.2.1 SEM structural paths

The SEM structural path model of each of eight GitHub OSS languages, initially

consisting of 200 repos per language, and so the total number of repos sampled was

72

1600. One unique high-quality model is delivered for each language with all relevant

fit indices being excellent and further supported by a 200 times bootstrap validation

(Dabbish et al., 2012; Hair et al., 1998).

A strong path represents one that significantly occurs in 5 to 8 of the GitHub OSS

languages, it however does not represent the beta-weight strength of that path. A

positive path occurs in 1 to 4 of the GitHub OSS languages. A negative path indicates

a negative influence on the dependent path outcome construct.

The green arrows of Figures 4-1 to 4-8 represent the strongest significant causal

pathways, and the red arrows show the significant negative pathways.

Looking at the JavaScript (JS) model, the green arrows illustrated in Figure 4-1

represent the strongest significant casual positive pathways. These positive pathways

are: (1) Forks-to-Pulls-to-commits, (2) watchers-to-issues-to-commits, and (3) Stars-

to-releases-to-commits. Hence, all three independent input constructs (Stars, watchers,

and Forks) are important in generating the dependent construct (commits). Moreover,

specific insight is as follows:

• Positive pathway (1) is logical – a Pulls request is a mechanism by which

changes, and improvements are brought back into the original repo.

• Positive pathway (2) is logical – this indicates that watchers, regardless if they

are contributors or not, are highlighting problems and requesting bug fixes

because of using the repo after being notified about changes to it.

• Positive pathway (3) is interesting – it implies that increased popularity of JS

repo ecosystems by the GitHub open source JS community has a direct impact

on the number of releases for those repos.

73

The two red arrows represent medium significant negative pathways in the JavaScript

model illustrated in Figure 4-1. The existence of these negative pathways in the

JavaScript model indicates that: 1) more watchers alone do not favorably generate

more contributors, and 2) increasing the Forks alone does not generate more releases.

These pathways are backed up in the literature (Kalliamvakou et al., 2014; Padhye et

al., 2014) indicating that not all watchers made a Pulls request and 40% of all Pulls

requests do not merge.

Recently, JavaScript has seen considerable growth and language improvements(Jibaja

et al., 2015). Common sense dictates that this must have a direct impact on the top

JavaScript ecosystems considered in this thesis. Moreover, releases made by the top

JavaScript repos are clearly a useful way to indicate active refactoring based on

JavaScript growth and language improvements.

In Python programing language path model Figure 4-2, issues play a central role in

the green pathways to commits. The strongest positive pathways are: (1) Forks-to-

issues-to-Pulls-to-commits, and (2) forks-to-issues-to-releases-to-commits. The

positive Python pathways are interpreted as follows:

• Positive pathways (1) increasing Forks mean more user interest in taking a

copy of the repo, the probability of issues discovering high as more people read

and use the repos, and this is expected since Python is a teaching

language(Fangohr, 2004) as well as it is a first prototyping language,

accordingly such repos will generate issues more than other non-teaching

repos. Logically users will send a Pulls request which directly increasing the

74

commits.

• Positive pathways (2) In same way increase Forks result indirectly to issuing

new releases which implies an increase in commits.

• Positive pathways (3) Increase reop popularity (starts) will have same effect as

increasing forks, more stars mean more issues will appears and more people

will send a pull request the repos owner.

The two red arrows represent medium significant negative pathways in Python

structural model Figure 4-2, the existence of these pathways indicate (1) Increasing

watchers negatively impact on issues, as stated before, watching repo never mean that

user keen to fix issues or reporting one, they only want to keep watching what

happened in repos. (2) Contributors are not the driving force for releases, as seen from

the negative path from contributors towards releases, this is logical as the number of

contributors does not directly affect releases.

The strongest significant causal positive pathways for Java programing language

model Figure 4-3 represented in green arrows are: (1) watchers-to-commits, (2) Stars-

to-issues-to-commits, (3) Stars-to-issues-to-Pulls-commits. Stars and watchers as

independent constructs are important in generating the dependent construct (commits).

Java programming languages used in mobile software applications, resulted in the

positive pathways for Java interpreted as follows:

• Positive pathway (1) the watchers directly influence commits, when the

user watchers any repos he gets a notification about what happened inside

the repo. Researchers (Badashian & Stroulia, 2016; Borges et al., 2016b)

used watchers as a measure of how good repo, they indicated that it has a

75

similar influence as Stars. Receiving repo notification encourage the user

to commits (i.e. a bug fix).

• Positive pathway (2) implies that increased repo popularity impacting

issues, more people interest in repos logically lead to more bugs and issues

discovers, which in return leads to generating more commits.

• Positive Pathway (3) is logical too as repo gets more popular, issues

increased, thus Pulls (open and close) will increase too, that generate more

commits.

Medium significant negative pathways in Java structural model Figure 4-3 ,

represented in red arrows, The negative path in Java are: (1) forks-to-releases and

(2)stars-to-commits, These two negative paths indicates that: (1) Forks does not

generate new releases, usually, more Forks mean more people interest in repos , and

potentially they contribute or increasing issue but in Java programming Language

which is used to make the library and other functional applications , users reuse the

code without contributing or issuing any bugs (Badashian & Stroulia, 2016). (2)

Increasing the Stars alone does not generate more commits. Stars and commits are

weakly related according to (Borges et al., 2016b) so it makes sense that increasing

Stars have small influences in commits.

Green arrows in C# path model Figure 4-4 represents the strongest positive pathways,

these positive pathways are: (1) Forks-to-issues-to-Pulls-to-commits, (2) Forks-to-

contributors-to-commits and (3) Stars-to-contributors-to-commits. Hence, two

76

independent constructs (Forks and Stars) are important in generating the dependent

construct (commits). Possible insight into the positive pathways are:

• Positive pathway (1) a Fork is a copy “clone” of the repo, the probability of

issues discovering will be high as more people read and use the repos, logically

users send a Pulls request which directly increasing the commits.

• Positive pathway (2) In same way increase Forks result indirectly in issuing

new releases which will lead to an increase in commits.

The red arrow represents medium significant negative pathways in the C# model. The

existence of the negative path in the C# model indicates that: (1) more watchers alone

do not favorably generate more contributors because there are many users of the repos

that are clearly not contributors.

C++ green positive pathways (Figure 4-5) are: (1) Forks-to-Pulls-to-commits, (2)

Stars-to-Issues-to-Pulls-to-commits, and (3) Stars-to-issues-to-commits. The two

independent constructs Forks and Stars are important in generating the dependent

construct (commits). C++ is used for low level computer graphics, libraries,

framework, kernel drivers and operating system(Schmidt et al., 2013). Analyzing C++

positive pathways shows that:

• Positive pathway (1) increasing Forks effect Pulls, increased opportunities for

community engagement, and decreased time to incorporate contributions.

• Positive pathway (2) Stars play role in increasing the issue which logically

causes an increase in commits.

77

The two red arrows represent medium significant negative pathways in the C++

structural model illustrated in Figure 4-5. The existence of these negative pathways in

the C++ model indicates that: (1) Watchers only keep the user updated about what

happens in repos, that does not mean the watcher potentially will be future contributors

in C++ languages. (2) increasing the Forks alone does not generate more commits.

For CSS programming language green positive pathways Figure 4-6 are: (1) Forks-to-

Pulls-to-commits, (2) Forks-to-Pulls-to-contributors-to-commits, (3) watchers-to-

issues-to-Pulls-to-commits. Forks and Watches are two independent constructs most

important in generating the dependent construct (commits). CSS is a web domain

languages (Ribeiro & da Silva, 2012). CSS path models have similar strong paths as

Java scripts were:

• Positive pathway (1) increasing Forks will increase Pulls, which in turn

increase opportunities for community engagement, commits will be increased

in turn which makes sense as accepted Pulls request will incorporate more

contributions, in web languages, developers tend to fork software in order to

participate and fix bugs which in turn generated more Pulls request that

merged.

• Positive pathway (2) is a logical pathway where increasing Forks will lead to

increase in Pulls request which in turn maximize the opportunity for

community engagement (Kalliamvakou et al., 2016) thus more commit will

occur.

• Positive pathway (3) implies that increased watchers will indirectly lead to

increasing commits via increase issues and Pulls, the role of watchers here is

78

not only to reuse the software, but they actively participate in bug fixing, or

bugs discovering, so mainly they are active users who want to participate in

repos not just watching what going on across the repo.

The four red arrows represent medium significant negative pathways in the CSS

structural model illustrated in Figure 4-6. The existence of these negative pathways in

the CSS model indicates that: (1) Forks alone do not favorably generate more commits,

(2) Stars alone does not generate more Pulls. And (3) Issues negatively impact on

contributors and commits.

Green positive pathways in PHP programing language Figure 4-7 are: (1) Forks-to-

contributors-to-releases-to-commits, (2) Stars-to-contributors-to-releases-to-commits,

and (3) Stars-to-releases-to-commits. Thus, Forks and Stars are important in

generating the dependent construct (commits). Moreover, possible insights are:

• Positive pathway (1): increase in Forks will result in increased community

engagement, which in turn increase releases thus commits will increase too,

this is a logical pathway.

• Positive pathway (2): More popular repos naturally lead to more contributors

and will be these will encourage more releases which in turn increase commits,

generally speaking, new releases, will cause acceleration in Stars repos get

(Borges et al. 2016a)

• Positive pathway (3): Stars will absolutely affect releases, each new release

will encourage more commits.

79

The two red arrows (medium significant negative pathways) in Figure 4-7 for PHP

structural paths models indicate that: (1) more watchers alone do not favourably

generate more contributors, and (2) increasing the Forks alone does not generate more

commits or more releases. Also, PHP shares similar positive and negative paths as

JavaScript and shares similar negative paths as CSS language as both consider a web-

page design programming language (Nixon, 2014).

Ruby green positive pathways (Figure 4-8) are: (1) Forks-to-Pulls-to-contributors-to-

commits, (2) Stars-to-issues-to-Pulls-to-contributors-to-commits and (3) Stars-to-

issues-to-releases-to-commits. All three independent constructs are important in

generating the dependent construct (commits). Possible insights are:

• Positive pathway (1): Forks affect community engagement and results in more

contributors to repos (Vasilescu et al., 2015; Jiang et al., 2017), Thus resulted

in increasing commits.

• Positive pathway (2): More popular repos are more contributors will be these

will encourage more releases which in turn increase commits, generally

speaking new releases will cause acceleration in Stars repos get (Borges et al.,

2016b)

• Positive pathway (3): Stars affect releases, each new release will encourage

more commits.

The two red arrows represent medium negative pathways for Ruby structural path

model (Figure 4-8). These negative pathways indicate that: (1) Watchers alone do not

positively generate more issues, and (2) increasing the Stars alone does not generate

more commits. Ruby tends to have a similar path to C++, C# and Python.

80

5.2.2 SEM structural path comparison

The eight SEM path models are compared. The frequency of each significant path is

displayed in Table 5-1. For example, issue-to-Pulls path considers strong path because

its frequency is eight. That means this path exists in all eight language models.

Whereas, the path from watchers-to-commits has a frequency of two, thus it is

considered a weak path because it exists in two language path models which are Java

and Ruby.

Hence. Table 5-1 adopts three classification levels depend on path frequency: weak

(1-3), moderate (4-5) and strong (6-8) to better understand the causal pathways across

all eight structural path models. This allows all eight SEM structural path models to

be grouped by relative importance. The “path type” column in Table 5-1 indicates if

the path are positive and/or negative for each programing language models. The “path

model” column shows for which programing language models does the path exist. The

red colour indicates when a negative path exists.

From Table 5-1, the issues-to-Pulls path appears in all eight programing language

models, thus it considers a strong path. Issue used as tracker in GitHub, Issues used to

report bugs, enhancements and tasks (Gousios, 2013) More issues in repos implies

more collaboration from developers, GitHub is a collaborative development (Lima et

al., 2014) thus increasing issue will results in more developer offer bug fixing, adding

new features or , this done via sending Pulls request (Kalliamvakou et al., 2014;

Padhye et al., 2014; Tsay et al., 2014; Kalliamvakou et al., 2016).

81

Another strong path could be seen in Table 5-1 is Pulls-to-contributors, it appears in

all model, this path is logical, as a Pulls request considered a way for getting more

people to engage in community and contribute to code (Kalliamvakou et al., 2016).

Also, releases-to-commits is a strong path occurs in all models, not too many searchers

search in that path, the existence or a relation between releases and commits is logical,

adding a new release to repo results in more commits about that releases.

In GitHub bug reporting, user feedback or even suggestion of new feature in software

or improving documentation these all considered as feedback for repos owners, these

feedback expressed as new issues (Liao et al., 2018), when issue increased repos

contributors will issuing a new releases the new releases overcome or solve the issues

mentioned in user feedback, so path from Issues-to-releases, is logical and strongly

occur in seven programming path models.

Pulls-to-commits path occur in seven programming languages(this path not found in

Ruby language only), according to (Kalliamvakou et al., 2014; Tsay et al., 2014a)

Pulls and commits should be balanced, increasing Pulls will potentially increase

contributors.

The moderate and strong paths in Table 5-1 are then combined into one general

GitHub ecosystem path model Figure 5-1 (in Section 5.4). This visualizes the

commonalities across programming languages and allows OSS developers to gauge

82

how (what place), where (what construct elements), and when (what stage) they

generate further repo activities.

Table 5-1: The appearance of GitHub elements SEMs path for eight programming
languages.

G
itH

ub
Sub- Path

Frequency

Path
Strength

Path T
ype

Path Models

Issues-Pulls 8 Strong Positive JavaScript, Python, Java,
C#, C++, PHP, Ruby, CSS

Pulls-Contributors 8 Strong Positive JavaScript, Python, Java,
 C#, C++, PHP, Ruby, CSS

Releases-Commits 8 Strong Positive JavaScript, Python, Java,
 C#, C++, PHP, Ruby, CSS

Issues-Releases 7 Strong Positive JavaScript, Python, Java,
 C++, PHP, Ruby, CSS

Pulls-Commits 7 Strong Positive JavaScript, Python, Java,
 C#, C++, PHP, CSS

Forks-Pulls 5 moderate Positive JavaScript, C++, PHP, Ruby,
 CSS

Stars-issues 5 moderate Positive Python, Java, C#, C++, Ruby
Stars-Contributors 5 moderate Positive JavaScript, C#, C++, PHP,

Ruby
Issues-Commits 5 moderate Positive JavaScript, Java, C++, PHP,

Ruby
Contributors-Commits 5 moderate Positive Java, C#, C++, Ruby, CSS
Watchers-Issues 4 moderate Positive/Negative JavaScript, Python, Ruby, CSS
Issues-Contributors 4 moderate Positive/Negative Python, Java, Ruby, CSS
Contributors-Releases 4 moderate Positive/Negative JavaScript, Python, Java, PHP
Forks-Contributors 4 moderate Positive Python, C#, C++, PHP
Forks-Issues 3 Weak Positive Python, C#, PHP
Pulls-Releases 3 Weak Positive/Negative C#, C++, CSS
Watchers-Commit 2 Weak Positive Java, Ruby
Stars-Releases 2 Weak Positive JavaScript, PHP
Stars-Commits 2 Weak Negative Java, Ruby
Stars-Pulls 2 Weak Negative C++, CSS
Forks-commits 3 Weak Negative C++, PHP, CSS
Forks-Releases 3 Weak Negative JavaScript, Java, PHP
Watchers-Contributors 4 moderate Negative JavaScript, C#, C++, PHP

Three of the programming Languages (JavaScript, Python and PHP) share the same

application domain, web-based application. These three programming languages have

83

similar pathways with minor’s differences (Borges et al., 2016b). Those paths are as

follows:

• Pathways from forks towards commits via Pulls and contributors, appears in

all three language models. The users of a forked repo make suggestions back

to the original repo via Pulls requests. A Pulls request use for bug fixing,

adding new features, and/or other types of modification. Pulls requests increase

opportunities for more contributors to be engaging in repo community

(Kalliamvakou et al., 2016). Accepting a Pulls request results in adding a new

contributor. Rejecting it causes a Pulls request to be closed (Kalliamvakou et

al., 2014; Padhye et al., 2014; Tsay et al., 2014a). Web page application

requires cooperation from inside and outside developer team. End user usually

play role in the development of these application. User feedback and

recommendation for better performance seriously considered and encouraged

by the development team. That is a logical part of the development process for

such applications.

As a web application (e.g. Facebook, and other social media apps) the

popularity of such repos plays a central role in advancing those software

ecosystems towards the generation of more issues and releases. Popularity is

measurable by the number of Stars and Forks (Borges et al., 2016b).

• The path from watchers-to-issues appears in JavaScript and CSS, indicating

that watchers are highlighting problems and requesting bug fixes be added

when engaging such repos after being notified about most recent changes. At

same time, watchers do not appear to be involved in any contribution, so they

remain as passive users of the repo.

• The negative path from Forks to releases to commits appears in JavaScript and

PHP, while there is no path between Forks and releases in the CSS language.

Releases do not increase according to Fork. PHP and CSS programming

languages both have a negative path from Forks to commits. Forks indicate the

user is interested in the repo, and Forks is a measure of repo reuse (Badashian

& Stroulia, 2016).

84

The other five programming languages (Java, Python, C#, C++ and Ruby) used for

various other application including mobile software applications, different library

software. They tend to display similar path models. In such an application domains

user usually forks their own local copy to reuse software (Badashian & Stroulia, 2016).

User Forks and modify their own local copy. Usually, user will be discovered issues

and report them to repo developing team. Common Pathways are:

• Four programming Languages (Python, C#, C++ and Ruby) have directed or

indirect path from forks via pulls to commits.

• Pathways from stars-to-issues-to-pulls-to-contributors-or directly to-commits,

this is logical as stars indicates user interest in such repos (Vasilescu et al.,

2015). Stars-to issues path appears in all five models. Popular repos get more

attentions and user will actively participating in finding bugs and fix it, more

user interest mean more issues will discovered and more Pulls which will lead

to increase in contributors.

• Path (3) appears in JavaScript and PHP this is interesting as it implies that

increased popularity of the repo ecosystems by the GitHub open source

community also increases community engagements, which in turn, help in

issuing more releases for the repo, thus increase commits.

• The negative path from watches to issues, or to contributors, is expected as the

application domain in this case can affect. Users want to reuse proper copy of

the repos so they keep watching what will happen to software and how it is

being developed (passive watchers) so they could forks their own copy when

they think the code is ready.

85

5.3 Standardized total effects model’s comparison

The standardized total effects of each language structural model are presented in

Appendix A as Tables A-1 to A-8. These allow the comparison of each construct onto

its commits level of activity into the specific OSS programming language’s repos.

Table 5-2: Standard total effects for Commits (across all eight OSS programming
languages).

The standardized total effects of each construct on its commits level of activity into

the OSS programming repo are shown in table 5-2. All eight language data sets exceed

150-160 cases (Hair et al., 1998; Muthén & Muthén, 2002).

This suggests OSS repo creators should continually promote new issues and new pulls

as a motivation to draw in OSS developers and users and to request that they also

communicate any significant issues they find to the repos community of contributors.

Program
m

in
g Language

D
ata Set

W
atchers

Stars

Forks

Issues

Pulls

Contributors

Releases

JavaScript 195 0.32 0.06 0.03 0.74 0.5 0.04 0.16

Python 195 -0.19 0.15 0.23 0.54 0.79 -0.03 0.15

Java 170 0.31 -0.10 -0.02 0.72 0.41 0.30 0.15

C++ 195 -0.07 0.16 0.19 0.55 0.70 0.20 0.21

C# 199 -0.07 0.20 0.17 0.49 0.69 0.19 0.30

CSS 199 0.21 -0.27 0.17 0.58 0.70 0.31 0.11

PHP 197 -0.01 0.04 0.38 0.84 0.63 0.03 0.14

Ruby 165 0.07 0.15 0.04 0.78 0.30 0.49 0.22

86

The major GitHub OSS constructs contributing to generating commits are Pulls and

issues as highlighted in Table 5-2. This is a motivation for OSS developers and users

communicating arises when significant issues appear.

In Table 5-2, a five classification levels are defined: negative impact is represented by

orange cells, very small effect is shown as (<0.1) grey cells, small effect (0.1 - 0.3) are

a blue coloured cells, moderate (0.3-0.5) are shown as yellow cells, and green cells

represent the largest effects (>0.5).

Open issues encourage repo communications. These can lead to increased action

towards solving the issue by encouraging developers to investigate the issue. Hence

there is a logical connection between Pulls, issues and commits. The literature supports

that established issues can generate considered pulls requests, and this is a measure for

increasing user engagement and for drawing in more OSS developers (Kalliamvakou

et al., 2014; Padhye et al., 2014; Tsay et al., 2014).

The Ruby programming language also shows issues exerting a big influence on

commits. In the Python, C#, C++ and PHP models, watchers negatively impact

commits overall. This indicates that developers in those ecosystems are watching the

repo for changes and subsequently hold back progress in some way. Watchers are

more involved in repo issues than code changes (Sheoran et al., 2014).

87

In all models, the number of Stars provided to the repo generates a very small

contribution towards commits, as more Stars alone do not generate further additional

OSS repo commits.

Stars and Forks can sometimes indicate a reluctance to contribute positively (see Table

5-2). Forks can generate new ideas, create a new code, and then draw some of the

original repo developers into a new software sub-ecosystem. Thus, retarding the

original repo’s activity level. Thus, Forks are needed, but they can also be detrimental.

Multiple intermittent and minor version releases exert less GitHub repo commits

levels because they often involve slight improvements, and only require minimal

activity level contributions and then the OSS developers interest in the repo codes.

Also, numerous revision releases do not necessarily draw in contributions from

additional quality OSS developers.

5.4 GitHub programming languages summary

GitHub’s JavaScript, Python, Java, C++, C#, CSS, PHP and Ruby path models provide

an understanding of the different significant developer contribution pathways towards

raising the repo’s commits. The significant pathways offer the repo’s creator decision-

making capabilities that can be used to trigger faster repo software development

through to its next completion point.

The repo’s commits level is a performance benchmark that is now available to the

GitHub repo creator. This approach can benchmark against the competition. This

88

approach is also behavioural, and where the developer ecosystem’s responses lift the

repo’s OSS developer consumption and satisfaction. Its values deliverance processes

are also enhanced. Thus, a consumptive-values approach provides a future pathway

towards tapping big data sources and to also delivering real business(Hamilton & Tee,

2015).

Commits are key direct drivers of the repo’s productivity and activity. Other

contributors are further indirect drivers. Since Pulls and issues are the strongest drivers

of the repo’s productivity and activity, this suggests creating high levels of issues and

Pulls requests should be a prime target consideration for repo creator’s core team of

developers.

Reviewing all path analysis models for the eight programming languages in Chapter

4 indicates the existence of a connectivity pattern among model elements. Figure 5-

1 represents the proposed GitHub ecosystem generalized path model showing

positive and negative connectivity. The connectivity’s are now classified as follows:

(6-8) represent a strong connectivity illustrated as the green paths, these connections

appear most (6-to-8) of the path models, (4-to-5) represents moderate as blue paths,

and (-4) red negative path.

Considering only strong and medium connectivity’s the general ecosystem path

model for GitHub programming languages is proposed as Figure 5-1. This general

ecosystem path model likely applies to other GitHub programming languages not

included in this thesis.

89

Figure 5-1: A generic Path Model for GitHub.

5.5 Summary

GitHub is an OSS development site, housing many repos. Each repo normally chooses

to adopt one of many languages. The eight most important (by Forks) GitHub

languages are JavaScript, Python, Java, C#, C++, CSS, PHP, and Ruby. This study’s

eight model SEM path model investigation deduces the generalized structure of a top

GitHub ecosystem. It also deduces that a likely way to grow a repo’s activity level is

to raise all possible issues that emerge and do so in a sequential manner that likely

encourages OSS developers to continuously generate and complete additional Pulls

requests.

There are three strongest pathways leading to commits. One pathway links Stars and

issues to pulls then commits, for other pathway combines Forks to Pulls, then to

contributors, then commits. The last of these strong pathways is from Stars to issues

then to releases to commits. These green pathways (Figure 5-1) represent the strongest

paths of influence capable to increase the GitHub repo commits.

Dependent Variables Intermediate Variables Independent Variables

Contributors

Issues
Releas

es

Pulls Commits

Forks

Watcher
s

Stars

90

This process speeds-up overall repo development and possibly lowers the overall

completion time and cost of development. Stars, watchers, and Forks are independent

variables used as the input constructs for all SEM models as these constructs starts the

repos OSS development. Issues, pulls, releases and contributors are intermediate

constructs that help build the OSS repo solution. Commits is the measure of the driving

for OSS repo solution. Large numbers of commits represents likely repo success and

sustainability (Xavier et al., 2015). This study explored the possible paths and

pathways that can affect commits which in turn can affect the ecosystem.

From the eight SEM models, Pulls and issues are the game players affecting GitHub

repo ecosystem, whilst releases and contributors have small effects. Watchers have a

negative impact on repo activity.

91

 CHAPTER 6

6 CONCLUSIONS

This Chapter provides a discussion of different GitHub case studies provided in

Chapter 4 and 5. The pilot study suggested trends may exist in GitHub repos, Chapter

four path modelled eight programming languages confirming the existence of a

GitHub ecosystem.

6.1 Current Implication of Research

This GitHub study follows responder behavioural patterns, Information Integration

Theory, and the Theory of Social Translucence. This framework allows behavioural

activities to be gauged collectively and measured against each repo’s overall activity

level. This allows a new way to compare repos and to understand repos once the

masking features such as: size, programming-language, degree-of-complexity and

longevity are removed.

6.1.1 Theoretical Implications

This GitHub study follows responder behavioral patterns, in particular - Information

Integration Theory, and the Theory of Social Translucence. This framework allows

behavioral activities to be gauged collectively and measured against each repo’s

overall activity level. This allows a new way to compare repos and to understand repos

once the masking features such as: size, programming-language, degree-of-

complexity and longevity are removed.

92

Extensions to this study can map each repo responder’s/collaborator’s identity,

contributions, and ongoing activities through to GitHub repo followers, watchers and

stars-provided into their social interaction domains including Facebook, websites,

Twitter, and Wikis (Aggarwal et al., 2014). Here, interpretations of value by

understanding social network site consumer engagements (Hamilton & Tee, 2013)

can be incorporated to extend the behavioral understanding of GitHub’s social and

external responders.

This study reviews the ecosystem of software development which can then supplement

processes involved in software engineering and development. It also extends to the

concept of real-time social interactions - such as the understanding behaviors of

humans and their representative avatars in real world gaming.

6.1.2 Practical Implications

Accessing GitHub repos to extract data is a time-consuming process, for each repo I

count the number of committers, commit and extract the 10 GitHub elements used in

this thesis. Retrieving data from GitHub is limited to 30 access/hour for non-GitHub

member and 6000 access per hour to members with access right, this process impacts

the time required for dataset collection.

The activity level of JavaScript, Python, Java, C++, C#, CSS, PHP and Ruby repos

responders is measured using repo-collated measures. These behavioural measures

first include pull-requests and Issues which results in subsequent commit changes.

Pull-requests impact on repo contributions and on repo version releases, and positively

93

influence on commits. Commit changes are generally clarified through comments with

linkages into repo documentation.

A lead focus for the repo creator and the core team of collaborators is to generate

additional commits. Here, commits can be encouraged by cross-promotional strategies

including: (1) encouraging pull-requesters to respond and to generate multiple

commits, (2) promoting the starring of the ongoing value of the repo’s development

on Facebook, Twitter, and web media, and also converting social media watchers into

pull requesters, and (3) engaging developer forums, Wikis, conferences and across

other social connectivity avenues directly targeted towards encouraging more pull

requests and follow-up commits.

Social media sites can also add transaction-related repo information via inclusions of

community ‘fan-pages.’ Fan-pages help to build stronger communities, provided they

show usefulness, economic value, and are suitably branded. Here promotions and/or

other consumer benefits can be incentivized(Hamilton & Tee, 2013).

In addition, to further highlight and draw developer traffic, fan-pages news can be

linked to HackerNews and GitHub Explore(Borges et al., 2016). Ultimately the key

internal approach is to generate very-rapidly reviewing and incorporating decisions

across all commits.

A second behavioural approach is to recognize committers by crediting their

contributions against their personal email. This is achievable by recognizing, ranking,

94

and promoting each contribution as enhancing: performance and/or quality and/or

service and/or economic value and/or emotional perception (Hamilton & Tee, 2015).

These value recognition triggers are rewards to the respondent committer, and they

likely positively affect the committer’s satisfaction and ongoing loyalty(Alshomali et

al., 2017). This recognition approach behaviourally encourages the committer to

pursue further opportunities of benefit to a GitHub project. It also enhances their

personal profile, and it promotes more repo activity.

6.2 Future Implications and opportunities for Research

6.2.1 Measurement aspect

To further validate the repo ecosystem of GitHub JavaScript, Java, Python, C#, C++,

PHP and Ruby structural path model additional studies are suggested (1) random

sampling across the full suite of these languages, and (2) re-testing against each key

GitHub programming language. (3) Large closely type-lined and similar software

programs design area, top activities cases with a programming language.

The refinement of the pull request counts is another measurement consideration. Pull-

requests occur because of internal commits for review as well as via forked releases

of the original repo. Some forks-pulls-requests loop back into the originating repo.

Hence, it may be useful to categories pulls-requests, and also to consider

longitudinally if forks-pulls do actually occur later during repo development. This

research is underway.

95

There remains a need to create and deploy APIs that monitor repo activity levels over

time. This can expose where open source software development offers maximum

improvement for the GitHub repo under consideration.

6.2.2 Theoretical aspect

GitHub OSSD studies can be theory-based, and/or behaviorally-based, and/or

translucently-based, and/or values-based. They can also be linked via social networks

and web media through into other consumer marketing and retailing approaches -

typically focusing on consumer motivation, consumption and gratification

aspects(Hamilton & Tee, 2015). In additional, the approach taken by this thesis could

be operationalised as a process model to further understand software development

processes, by either a design science research methodology or by an action research

approach.

6.2.3 Management Aspect

The repo activity level model is applicable for GitHub JavaScript repo creators (and

other seven programming languages studied in this thesis). It can be astutely managed

to generate high repo level activities. It can be interpreted through Table A-1 total

effects in Appendix A and Figure 4-1 in Chapter four, path strengths towards better

targeting, and harnessing of a repo’s reach, and engagement, across relevant software

development communities.

Learning how to extract pertinent information from responder review comments is

often useful to a repo originator seeking to improve ongoing repo deliverables.

96

Approaches to understanding big data vary, but Bello-Orgaz et al. (2016) describe big

data social capture approaches are of use when considering GitHub’s watchers.

Repos can be more closely managed by developing text capture routines to extract

responder key words from GitHub documentation. For example, value(s)-related

words epitomising behaviors can include motivation (intentions to act) towards

engaging/actioning, consumptive actions being undertaken, and gratification

reflections of actions delivered. This data can then be real-time analysed, thus keeping

GitHub repo originators behaviorally attuned to individuals and to their core

collaborators.

6.3 The Research Outcomes of this Thesis

The thesis observed GitHub repos to measure change factor in each repo, repos under

study was chosen to depend on parameters that included: Eight programming

languages, most forks repos, and repos with high Forks counters.

The path model approach is regression based it identifies the most important and least

important constructs. However, it assumes data collection measures are made without

random measurement error. This feature can disguise multicollinearity effects

(Kalliamvakou, et al., 2016; Kline, 2015). In this thesis, I control for these

multicollinearity effects by our research design.

The number of stars-provided to the repo make a lesser contribution. The forks work

against the repo’s progress by generating very minor negative total effects into the

97

repo’s activity level. They sometimes dilute the focus of the repo’s software

development strategies. Here, a fork may generate new ideas, create a new repo, and

then draw some original repo developers off into this new software development

direction, thus retarding the original repo’s activity level. Multiple intermittent and

minor version releases exert less GitHub JavaScript repo activity levels because they

often involve slight improvements, and only require minimal activity level

contributions. More commits also bring more changes to documentation, and as a

GitHub repo’s activity level rises, additional documentation emerges as a continual

repo requirement.

Commits are key direct drivers of the repo’s activity level; other contributors are

indirect drivers of the repo’s activity level. Pulls and commits are the strongest drivers

of the repo’s activity level. This suggests creating high levels of pull requests should

be a prime target consideration for repo creator’s core team of developers. This study

offers a big data direction for future work. It allows for the deployment of more

sophisticated statistical comparison techniques. It offers further indications around the

internal and broad relationships that likely exist between GitHub’s big data and models

linking through to business/consumer consumption, and how these may be connected

using improved repo search algorithms to releases business value. Hence, the research

questions of this thesis are answered as follows:

RQ1: What elements are present in the GitHub OSS ecosystem?

Answer: The GitHub ecosystem consists of at least eight key elements (star, fork,

watch, issues, contributors, releases, pulls and commits) as shown in the Figure 3-4

conceptual model.

98

RQ2: Do programming languages show different path models in the GitHub

ecosystem?

Answer: Different programming language platforms the GitHub OSS ecosystem

display different paths in their respective ecosystem - as evidenced in the SEM path

models of Figures 4-1 to 4-8.

RQ3: What relationships exist between each element when affecting the commits in

the GitHub ecosystem?

Answer: Tables 5-1 and 5-2 summarize the complete relationships between the

elements of each GitHub OSS programming language in the the GitHub OSS

ecosystem. It is noted there are multiple relationship pathways that contribute towards

the commits. These complex relationships show differences in their contributions

towards commits amongst the top eight GitHub OSS programming languages

examined in this research.

RQ4: How does each element influence the GitHub ecosystem?

Answer: Table 5-1 and Figure 5-1 together explain the generic path model for the

GitHub OSS ecosystem. Table 5-1 shows the relationship can be strong, moderate or

weak, as well as either positive or negative. Figure 5-1 shows which elements

generally produce a strong, positive, or negative path influence towards commits.

This allows GitHub developers to focus on the elements that are key drivers capable

of inducing and accelerating OSS development activities. For example, key initial

elements affecting the general ecosystem for GitHub are: forks, issues, and pulls,

whilst releases and contributors have smaller secondary effects, and watchers

99

generally have a negative impact because they are generally passive and typically

remain outside the GitHub ecosystem community.

6.4 Practical conclusion

From the work done in this thesis, the following practical conclusion is drawn: As far

as my reading to research in GitHub key elements this is the first study that takes in

consideration eight GitHub elements (actually it is ten if calculating issues as (issue

open and close, and Pulls same as pulls open and close), The main finding was that

forks is the most important key elements that could help in making repos more popular

and more active. This thesis statistically proved the weight each element affects the

commits, were fork is the most influencing one followed issues and pulls. The more

external developers fork a repo, the more commits which in turn increase the

opportunities to:

• Increase number of repo developers;

• Fixing more bugs and error in repos; and

• Progressively update documentation.

Accordingly, a recommendation for a successful repo, is to consider forks count

carefully when build your repos to seduce more user to forks it, by carefully selecting

a programming language, make documentation clear and your code should be easy to

understand.

Each programing language has different path model, but the path with a fork, pulls or

issues commonly found in most of them. In this thesis, I used to test and evaluation

datasets both have been written in very well-known and popular programming

100

languages as well as have most forks counters. Most forks repos collected in datasets

also have most stars which in turn prove that forks effects users and encourage them

as a result to participate in repos and start it.

Not all repos collected for case studies in this thesis were valid, applying a condition

on repos helped in eliminating outliers (Goyal et al., 2018) . Repos with unbalance

commits forks ration should be eliminated as this repos may affect the final results,

such repos are questionable and when tracing the eliminated repos back, it was obvious

that it is outliers, for example shadowsocks / shadowsocks repo in Python language

has very high rank as most forked repos as well as has very high stars count and

considered one of most popular Python reops for theses stars and forks count but the

unbalance contributors commits make it in questionable, these repos appear to be

banned and it is illegal (hacker) application.

Extensions to this study can map each repo responder’s / collaborator’s identity,

contributions, and ongoing activities through to GitHub repo followers, watchers and

stars-provided into their social interaction domains including Facebook, websites,

Twitter, and Wikis(Aggarwal et al., 2014). Here, interpretations of value by

understanding social network site consumer engagements(Hamilton & Tee, 2013) can

be incorporated to extend the behavioural understanding of GitHub’s social and

external responders.

101

Main challenges when extracting data from GitHub is time-consuming. To reduce data

collection time, I recommend using AUTH offered by GitHub which extend the

amount of retrieved data each time.

102

REFERENCES

Aggarwal, K., Hindle, A., & Stroulia, E. (2014). Co-evolution of project
documentation and popularity within GitHub. Paper presented at the
Proceedings of the 11th Working Conference on Mining Software
Repositories. (PP. 360-363). ACM. Hyderabad, India.

Alshomali, M. A., Hamilton, J. R., Holdsworth, J., & Tee, S. (2017). GitHub: Factors
Influencing Project Activity Levels. In: Proceedings of the 17th International
Conference on Electronic Business, pp. 116-124. From: ICEB 2017: 17th
International Conference on Electronic Business, 4-8 December 2017, Dubai,
United Arab Emirates.

Amir, M., Khan, K., Khan, A., & Khan, M. (2013). An Appraisal of Agile Software
Development Process. International Journal of Advanced Science &
Technology, 58(56), 20. Sydney, Australia. Doi:10.1.1.398.1625.

Andersen-Gott, M., Ghinea, G., & Bygstad, B. (2012). Why do commercial companies
contribute to open source software? International Journal of Information
Management, 32(2), 106-117.London, United Kingdom.
Doi:10.1016/j.ijinfomgt.2011.10.003

Anderson, M. J. (2001). A new method for non‐parametric multivariate analysis of
variance. Austral ecology, 26(1), 32-46. Sydney, Australia.
Doi:10.1111/j.1442-9993.2001.01070.pp.x

Arora, R., Goel, S., & Mittal, R. K. (2017). Supporting collaborative software
development over GitHub. Software: Practice and Experience, 47(10), 1393-
1416. Retrieved from: https://onlinelibrary.wiley.com. Doi: 10.1002/spe.2468.

Atoum, I., & Bong, C. H. (2015). Measuring Software Quality in Use: State-of-the-
Art and Research Challenges. Software Quality Professional, 17(2), 4.
Retrieved from: http://asq.org/pub/sqp/past/vol20_issue1/index.html

Badashian, A. S., & Stroulia, E. (2016). Measuring user influence in GitHub: the
million follower fallacy. Paper presented at the Proceedings of the 3rd
International Workshop on CrowdSourcing in Software Engineering. Beijing,
China.

Bahamdain, S. S. (2015). Open Source Software (OSS) Quality Assurance: A Survey
Paper. Procedia Computer Science, 56, 459-464.
Doi:10.1016/j.procs.2015.07.236.

Barnett, J. G., Gathuru, C. K., Soldano, L. S., & McIntosh, S. (2016). The relationship
between commit message detail and defect proneness in Java projects on
GitHub. Paper presented at the Proceedings of the 38th International
Conference on Software Engineering. ACM .New York, USA.

103

Baudry, B., & Monperrus, M. (2012). Towards ecology inspired software engineering.
arXiv preprint arXiv:1205.1102. Retrieved from:
https://arxiv.org/abs/1205.1102

Baumgartner, H., & Homburg, C. (1996). Applications of structural equation
modeling in marketing and consumer research: A review. International journal
of Research in Marketing, 13(2), 139-161. Retrieved from:
https://www.sciencedirect.com/journal

Bavota, G., Gethers, M., Oliveto, R., Poshyvanyk, D., & Lucia, A. d. (2014).
Improving software modularization via automated analysis of latent topics and
dependencies. ACM Transactions on Software Engineering and Methodology
(TOSEM), 23(1), 1-33. Doi:10.1145/2559935

Bello-Orgaz, G., Jung, J. J., & Camacho, D. (2016). Social big data: Recent
achievements and new challenges. Information Fusion, 28, 45-59. Doi:
10.1016/j.inffus.2015.08.005

Benjamini, Y., & Braun, H. (2002). John Tukey's contributions to multiple
comparisons. ETS Research Report Series, 2002(2). Doi: 10.1002/j.2333-
8504.2002.tb01891.x

Biazzini, M., & Baudry, B. (2014). May the fork be with you: novel metrics to analyze
collaboration on GitHub. Paper presented at the 36th International Conference
on Software Engineering. Hyderabad, India.

Bissyandé, T. F., Lo, D., Jiang, L., Réveillere, L., Klein, J., & Le Traon, Y. (2013a).
Got issues? who cares about it? a large-scale investigation of issue trackers
from GitHub. Paper presented at the IEEE 24th International Symposium on
on Software Reliability Engineering (ISSRE). Retrieved from:
https://ieeexplore.ieee.org.

Bissyandé, T. F., Thung, F., Lo, D., Jiang, L., & Réveillere, L. (2013b). Popularity,
interoperability, and impact of programming languages in 100,000 open source
projects. Paper presented at the Computer Software and Applications
Conference (COMPSAC), 2013 IEEE 37th Annual.

Blincoe, K., Sheoran, J., Goggins, S., Petakovic, E., & Damian, D. (2016).
Understanding the popular users: Following, affiliation influence and
leadership on GitHub. Information and Software Technology, 70, 30-39.

Boin, A., & Fishbacher-Smith, D. (2011). The importance of failure theories in
assessing crisis management: The Columbia space shuttle disaster revisited.
Policy and Society, 30(2), 77-87. Doi:10.1016/j.polsoc.2011.03.003

Borges, H., Hora, A., & Valente, M. T. (2016a). Predicting the popularity of GitHub
repositories. In Proceedings of the The 12th International Conference on
Predictive Models and Data Analytics in Software Engineering (p. 9). ACM.

104

Borges, H., Hora, A., & Valente, M. T. (2016b). Understanding the factors that impact
the popularity of GitHub repositories. Paper presented at the Software
Maintenance and Evolution (ICSME). Raleigh, North Carolina, United States.

Borges, H., Valente, M. T., Hora, A., & Coelho, J. (2015). On the popularity of GitHub
applications: A preliminary note. arXiv preprint arXiv:1507.00604.

Bose, L., & Thakur, S. (2013). Introducing Agile into a Non-Agile Project Analysis
Of Agile Methodology With Its Issues And Challenges. International Journal
of Advanced Research in Computer Science, 4(2), 305-311.

Brunetti, G., Feld, T., & Heuser, L. (2014). Future Business Software Current Trends
in Business Software Development (Vol. 1;2014;). S.l.: Springer International
Publishing.

Campos, L. M., & Scherson, I. D. (2000). Rate of change load balancing in distributed
and parallel systems. Parallel Computing, 26(9), 1213-1230.

Capra, E., Francalanci, C., Merlo, F., & Rossi-Lamastra, C. (2011). Firms’
involvement in Open Source projects: A trade-off between software structural
quality and popularity. Journal of Systems and Software, 84(1), 144-161.
Doi:10.1016/j.jss.2010.09.004

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., .
. . Riddell, A. (2017). Stan: A probabilistic programming language. Journal of
statistical software, 76(1).

Casalnuovo, C., Vasilescu, B., Devanbu, P., & Filkov, V. (2015, August). Developer
onboarding in GitHub: the role of prior social links and language experience.
In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering (pp. 817-828). ACM.

Chatziasimidis, F., & Stamelos, I. (2015). Data collection and analysis of GitHub
repositories and users. Paper presented at the 6th International Conference on
Information, Intelligence, Systems and Applications (IISA). Corfu, Greece.
Doi: 10.1109/IISA.2015.7388026.

Chen, F., Li, L., Jiang, J., & Zhang, L. (2014). Predicting the number of forks for open
source software project. Paper presented at Proceedings of the 2014 3rd
International Workshop on Evidential Assessment of Software Technologies.
Pages 40-47 Nanjing, China. Doi:10.1145/2627508.2627515.

Cheng, C., Li, B., Li, Z.-Y., Zhao, Y.-Q., & Liao, F.-L. (2017). Developer Role
Evolution in Open Source Software Ecosystem: An Explanatory Study on
GNOME. Journal of Computer Science and Technology, 32(2), 396-414.
Doi:10.1007/s11390-017-1728-9

Cheng, C., Li, Z., Li, B., & Liang, P. (2018). Automatic Detection of Public
Development Projects in Large Open Source Ecosystems: An Exploratory
Study on GitHub. arXiv preprint arXiv:1803.03175.

105

Cho, T. (2014). Improved techniques for automatic chord recognition from music
audio signals. New York University. New York, USA. ISBN: 978-1-3037-
6422-6.

Choi, N., & Yi, K. (2015). Raising the general public’s awareness and adoption of
open source software through social Q&A interactions. Online Information
Review, 39(1), 119-139. Doi:10.1108/oir-06-2014-0139

Chou, S.-W., & He, M.Y. (2011). The factors that affect the performance of open
source software development - the perspective of social capital and expertise
integration. Information Systems Journal, 21(2), 195-219.
Doi:10.1111/j.1365-2575.2009.00347.x

Christopher V, M. L.V., Asquez, G. B., & Massimiliano Di Penta, D. G. A. D. P.
(2015). license Usage and Changes: A Large-Scale Study of Java Projects on
GitHub. Paper presented at: Proceedings of the 38th International Conference
on software engineering companion. Austin, USA.
Doi:10.1145/2889160.2889259. Paderborn, Germany.

Coelho, J., & Valente, M. T. (2017). Why modern open source projects fail. Paper
presented at: Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering. 186-196. Doi:10.1145/3106237.3106246.

Cortés-Coy, L. F., Linares-Vásquez, M., Aponte, J., & Poshyvanyk, D. (2014). On
automatically generating commit messages via summarization of source code
changes. Paper presented at: 14th International Working Conference on Source
Code Analysis and Manipulation (SCAM), IEEE, 2014. Doi:
10.1109/SCAM.2014.14

Cosentino, V., Luis, J., & Cabot, J. (2016). Findings from GitHub: methods, datasets
and limitations. In Proceedings of the 13th International Conference on Mining
Software Repositories (pp. 137-141). ACM. Doi:10.1145/2901739.2901776

Cosentino, V., Izquierdo, J. L. C., & Cabot, J. (2017). A Systematic Mapping Study
of Software Development with GitHub. IEEE Access, 5, 7173-7192. Doi:
10.1109/ACCESS.2017.2682323

Cunningham, E. (2008). A practical guide to structural equation modelling using
Amos. Deakin University, Melbourne, Australia. Retrieved from:
https://blogs.deakin.edu.au

Da Silva, A. C. B. G., de Figueiredo Carneiro, G., de Paula, A. C. M., Monteiro, M.
P., & e Abreu, F. B. (2016). Agility and Quality Attributes in Open Source
Software Projects Release Practices. Paper presented at the 10th International
Conference on the Quality of Information and Communications Technology
(QUATIC) (2016). Lisbon, Portugal.

Dabbish, L., Stuart, C., Tsay, J., & Herbsleb, J. (2012). Social coding in GitHub:
transparency and collaboration in an open software repository. Paper presented

106

at the Proceedings of the ACM 2012 conference on Computer Supported
Cooperative Work. Doi:10.1145/2145204.2145396

Dias, L. F., Steinmacher, I., Pinto, G., da Costa, D. A., & Gerosa, M. (2016). How
does the shift to GitHub impact project collaboration? Paper presented at 2016
IEEE International Conference on Software Maintenance and Evolution
(ICSME), (pp. 473-477). Doi: 10.1109/ICSME.2016.78

Diaz, A., Merino, P., & Rivas, F. J. (2010). Mobile application profiling for connected
mobile devices. IEEE Pervasive Computing, 9(1), 54-61.
Doi:10.1109/MPRV.2009.63.

Dingsøyr, T., Nerur, S., Balijepally, V., & Moe, N. B. (2012). A decade of agile
methodologies: Towards explaining agile software development. The Journal
of Systems and Software, 85(6), 1213-1221. Doi:10.1016/j.jss.2012.02.033

Driscoll, W. C. (1996). Robustness of the ANOVA and Tukey-Kramer statistical tests.
Computers & industrial engineering, 31(1-2), 265-268. Retrieved from
https://doi.org/10.1016/0360-8352(96)00127-1

Fangohr, H. (2004). A comparison of C, MATLAB, and Python as teaching languages
in engineering. In International Conference on Computational Science (pp.
1210-1217). Springer, Berlin, Heidelberg. Retrieved from
https://doi.org/10.1007/978-3-540-25944-2_157.

Franco-Bedoya, O., Ameller, D., Costal, D., & Franch, X. (2017). Open source
software ecosystems: A Systematic mapping. Information and Software
Technology, 91, 160-185. Elsevier B.V. Retrieved from
https://doi.org/10.1016/j.infsof.2017.07.007

Gandomani, T. J., Zulzalil, H., Ghani, A. A. A., & Sultan, A. B. M. (2012)., A
systematic literature review on relationship between agile SD and open source
SD, International review on computers and software (IRECOS), Vol. 7, Issue
4, pp. 1602-1607. Retrieved from: https://arxiv.org/abs/1302.2748

Gousios, G. (2013). The GHTorent dataset and tool suite. MSR '13 Proceedings of the
10th working conference on mining software repositories (pp. 233-236). IEEE
Press San Francisco, CA, USA.

Gousios, G., & Spinellis, D. (2012). GHTorrent: GitHub's data from a firehose. In
2012 9th IEEE Working Conference on Mining Software Repositories (MSR),
(pp. 12-21). Doi: 10.1109/MSR.2012.6224294

Gousios, G., & Spinellis, D. (2017). Mining software engineering data from GitHub.
In Software Engineering Companion (ICSE-C), IEEE/ACM 39th International
Conference (pp. 501-502). IEEE. Doi: 10.1109/ICSE-C.2017.164

Gousios, G., Vasilescu, B., Serebrenik, A., & Zaidman, A. (2014). Lean GHTorrent:
GitHub data on demand. In Proceedings of the 11th working conference on
mining software repositories (pp. 384-387). ACM.
Doi:10.1145/2597073.2597126

107

Goyal, R., Ferreira, G., Kästner, C., & Herbsleb, J. (2018). Identifying unusual
commits on GitHub. Journal of Software: Evolution and Process, 30(1), e1893.
Doi:10.1002/smr.1893

Grapentine, T. (2000). Path analysis vs. structural equation modeling. Marketing
research, 12(3), 12. Chicago, USA. Retrieved from: https://search-proquest-
com.elibrary.

Gunal, V. (2012). Agile Software Development Approaches and Their History.
Enterprise Software Engineering. Retrieved from: https://sewiki.iai.uni-
bonn.de

Haigh, T. (2011). The history of information technology. Annual Review of
Information Science and Technology, 45(1), 431-487. Retrieved from
https://doi.org/10.1002/aris.2011.1440450116

Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (1998).
Multivariate data analysis (Vol. 5): Prentice hall Upper Saddle River, NJ.

Hamilton, John R., and Tee, Singwhat (2013) Understanding social network site
consumer engagements. In: Proceedings of the 24th Australasian Conference
on Information Systems. From: 24th Australasian Conference on Information
Systems, 4-6 December 2013, Melbourne, VIC, Australia.

Hamilton, J. R., & Tee, S. (2015). Expectations-to-value: connecting customers with
business offerings. International Journal of Internet Marketing and
Advertising, 9(2), 121-140. Retrieved from: https://doi.org/10.1504/IJIMA.
2015.070716

Härdle, W. K., & Borke, L. (2017). GitHub API based QuantNet Mining infrastructure
in R. Retrieved from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=
2927901

Hata, H., Todo, T., Onoue et al. (2015). Characteristics of sustainable OSS projects:
A theoretical and empirical study. In Proceedings of the Eighth International
Workshop on Cooperative and Human Aspects of Software Engineering (pp.
15-21). IEEE Press. Florence, Italy.

 Hebig, R., Quang, T. H., Chaudron, M. R., Robles, G., & Fernandez, M. A. (2016).
The quest for open source projects that use UML: mining GitHub. In
Proceedings of the ACM/IEEE 19th International Conference on Model
Driven Engineering Languages and Systems (pp. 173-183). ACM. Saint-malo,
France. doi:10.1145/2976767.2976778

Heirich, M. (1964). The use of time in the study of social change. American
Sociological Review. Vol. 29, No. 3, pp. 386-397. doi: 10.2307/2091482

Henderson, S. (2009). How do people manage their documents? An empirical
investigation into personal document management practices among knowledge
workers, Thesis (PhD)--University of Auckland, 2009. Auckland. Retrieved
from: http://hdl.handle.net/2292/5230

108

Hertel, G., Niedner, S., & Herrmann, S. (2003). Motivation of software developers in
Open Source projects: An Internet-based survey of contributors to the Linux
kernel. Research Policy, 32(7), 1159-1177. Doi:10.1016/s0048-
7333(03)00047-7

Higham, D. J., & Higham, N. J. (2016). MATLAB guide (Vol. 150): SIAM: Society
for Industrial and Applied Mathematics; 2 Edition. ISBN-13: 978-0898715781

Hu, Y., Zhang, J., Bai, X., Yu, S., & Yang, Z. (2016). Influence analysis of GitHub
repositories. Springerplus, 5(1), 1-19. Doi:10.1186/s40064-016-2897-7

Jain, A., & Gupta, M. (2017). Evolution and Adoption of programming languages.
Evolution, 5(1). nternational Journal of Modern Computer Science (IJMCS).
Retrieved from: http://www.ijmcs.info/current_issue/IJMCS170233.pdf

Jarczyk, O., Gruszka, B., Jaroszewicz, S., Bukowski, L., & Wierzbicki, A. (2014).
GitHub projects. quality analysis of open-source software. In International
Conference on Social Informatics (pp. 80-94). Lecture Notes in Computer
Science, vol 8851. Springer, Cham. Doi: 10.1007/978-3-319-13734-6_6

Jiang, J., Lo, D., He, J., Xia, X., Kochhar, P. S., & Zhang, L. (2017). Why and how
developers fork what from whom in GitHub. Empirical Software Engineering,
22(1), 547-578. Doi:10.1007/s10664-016-9436-6

Jibaja, I., Jensen, P., Hu, N., Haghighat, M. R., McCutchan, J., Gohman, D. &
McKinley, K. S. (2015, October). Vector Parallelism in JavaScript: Language
and compiler support for SIMD. In 2015 International Conference on Parallel
Architecture and Compilation (PACT) (pp. 407-418). IEEE. San Francisco,
CA, USA.

Jones, C. (2014). Software Industry Goals for the Years 2014 through 2018. Journal
of Cost Analysis and Parametrics, 7(1), 41-47.
Doi:10.1080/1941658X.2014.890493

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D. M., & Damian, D.
(2016). An in-depth study of the promises and perils of mining GitHub.
Empirical Software Engineering, 21(5), 2035-2071. Springer US. Retrieved
from: https://doi.org/10.1007/s10664-015-9393-5.

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D. M., & Damian, D.
(2014). The promises and perils of mining GitHub. Paper presented at the
Proceedings of the 11th working conference on mining software repositories.
Doi:10.1145/2597073.2597074.

Kilamo, T., Hammouda, I., Mikkonen, T., & Aaltonen, T. (2012). From proprietary to
open source - Growing an open source ecosystem. Journal of Systems and
Software, 85(7), 1467-1478. Doi:10.1016/j.jss.2011.06.071.

King, G. (1986). How not to lie with statistics: Avoiding common mistakes in
quantitative political science. American Journal of Political Science, Vol. 30,

109

No. 3 (Aug., 1986), pp. 666-687. Midwest Political Science Association. Doi:
10.2307/2111095.

Kline, R. B. (2015). Principles and practice of structural equation modeling: Fourth
Edition. Guilford publications. Paperback, 534 Pages, Published 2015 by The
Guilford Press, New York. US. ISBN-13: 978-1-4625-2334-4.

Kumar, K., & Dahiya, S. (2017). Programming Languages: A Survey. Change,
International Journal on Recent and Innovation Trends in Computing and
Communicati 5(5). IJRITCC. Haryana, India. Retrieved from:
http://www.ijritcc.org.

Lakhani, K. R., & Von Hippel, E. (2003). How open source software works: “free”
user-to-user assistance. Research Policy, 32(6), 923-943. Doi:10.1016/s0048-
7333(02)00095-1

Lanubile, F., Ebert, C., Prikladnicki, R., & Vizcaíno, A. (2010). Collaboration tools
for global software engineering. IEEE Software, 27(2). Doi:10.1109/MS.
2010. 39

Lee, M. J., Ferwerda, B., Choi, J., Hahn, J., Moon, J. Y., & Kim, J. (2013). GitHub
developers use rockstars to overcome overflow of news. In CHI'13 Extended
Abstracts on Human Factors in Computing Systems (pp. 133-138). ACM.
Paris, France. Doi:10.1145/2468356.2468381

Li, L., Goethals, F., Baesens, B., & Snoeck, M. (2017). Predicting software revision
outcomes on GitHub using structural holes theory. Computer Networks,
Volume 114, pp 114-124. Retrieved from: https://doi.org/
10.1016/j.comnet.2016.08.024

Liao, Z., He, D., Chen, Z., Fan, X., Zhang, Y., & Liu, S. (2018). Exploring the
Characteristics of Issue-Related Behaviors in GitHub Using Visualization
Techniques. IEEE Access, 6, 24003-24015. Doi:
10.1109/ACCESS.2018.2810295

Lima, A., Rossi, L., & Musolesi, M. (2014). Coding Together at Scale: GitHub as a
Collaborative Social Network. Proceedings of the Eighth International AAAI
Conference on Weblogs and Social Media (ICWSM 2014). Retrieved from:
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/download/811
2/8130

Luo, Z., Mao, X., & Li, A. (2015, August). An exploratory research of GitHub based
on graph model. In Frontier of Computer Science and Technology (FCST),
2015 Ninth International Conference on (pp. 96-103). IEEE. Doi:
10.1109/FCST.2015.45

Ma, W., Chen, L., Zhou, Y., & Xu, B. (2016, September). What Are the Dominant
Projects in the GitHub Python Ecosystem? In Trustworthy Systems and their
Applications (TSA), 2016 Third International Conference on (pp. 87-95).
IEEE. Doi: 10.1109/TSA.2016.23

110

Manikas, K., & Hansen, K. M. (2013). Software ecosystems – A systematic literature
review. Journal of Systems and Software, 86(5), 1294-1306.
Doi:10.1016/j.jss.2012.12.026

Markovtsev, V., & Kant, E. (2017). Topic modeling of public repositories at scale
using names in source code. arXiv preprint arXiv:1704.00135. Retrieved from:
https://arxiv.org/abs/1704.00135

Marlow, J., Dabbish, L., & Herbsleb, J. (2013, February). Impression formation in
online peer production: activity traces and personal profiles in GitHub. In
Proceedings of the 2013 conference on Computer supported cooperative work
(pp. 117-128). ACM. San Antonio, Texas, USA.
Doi:10.1145/2441776.2441792.

Matragkas, N., Williams, J. R., Kolovos, D. S., & Paige, R. F. (2014, May). Analysing
the 'biodiversity' of open source ecosystems: the GitHub case. In Proceedings
of the 11th Working Conference on Mining Software Repositories (pp. 356-
359). ACM. Hyderabad, India. Doi:10.1145/2597073.2597119.

Melosan, I. (2014). The application of analysis of variance (ANOVA) to different
experimental results of c45 medium-carbon steel., vol. 66, iss. 2, (2014): 30-
35. Bucharast, Romania.

Mens, T., Claes, M., Grosjean, P., & Serebrenik, A. (2014). Studying evolving
software ecosystems based on ecological models. In Evolving Software
Systems (pp. 297-326). Springer, Berlin, Heidelberg.

Mileva, Y. M. (2012). Mining the evolution of software component usage. PhD
Dissertation, Saarland University, 1-104. Retrieved from:
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/26438

Munaiah, N., Kroh, S., Cabrey, C., & Nagappan, M. (2017). Curating GitHub for
engineered software projects. Empirical Software Engineering, 22(6), 3219-
3253. Doi:10.1007/s10664-017-9512-6

Muthén, L. K., & Muthén, B. O. (2002). How to Use a Monte Carlo Study to Decide
on Sample Size and Determine Power. Structural Equation Modeling: A
Multidisciplinary Journal, 9(4), 599-620.
Doi:10.1207/S15328007SEM0904_8

Nixon, R. (2014). Learning PHP, MySQL, JavaScript, CSS & HTML5: A Step-by-
Step Guide to Creating Dynamic Websites: O'Reilly Media, Inc. CA. USA

Noone, M., & Mooney, A. (2017). Visual and Textual Programming Languages: A
Systematic Review of the Literature. Journal of Computers in Education. arXiv
preprint arXiv:1710.01547. Doi:10.1007/s40692-018-0101-5

Nurdiani, I., Börstler, J., & Fricker, S. A. (2016). The impacts of agile and lean
practices on project constraints: A tertiary study. Journal of Systems and
Software, 119, 162-183. Retrieved from: https://doi.org/10.1016/j.jss.
2016.06.043

111

Olson, D. L., & Rosacker, K. (2012). Crowdsourcing and open source software
participation. Service Business, 7(4), 499-511. Doi:10.1007/s11628-012-
0176-4

Onoue, S., Hata, H., & Matsumoto, K.-I. (2013). A study of the characteristics of
developers' activities in GitHub. 20th Asia-Pacific Software Engineering
Conference (APSEC). Doi: 10.1109/APSEC.2013.104.

Orii, N. (2012). Collaborative Topic Modeling for Recommending GitHub
Repositories. School of Computer Science, Carnegie Mellon University,
Pittsburgh, USA. Retrieved from: http://www.cs.cmu.edu/~norii/pub/ GitHub-
ctr.pdf

Padhye, R., Mani, S., & Sinha, V. S. (2014, May). A study of external community
contribution to open-source projects on GitHub. In Proceedings of the 11th
Working Conference on Mining Software Repositories (pp. 332-335). ACM.
Hyderabad, India. Doi:10.1145/2597073.2597113

Papadopoulos, G. (2015). Moving from Traditional to Agile Software Development
Methodologies Also on Large, Distributed Projects. Procedia - Social and
Behavioral Sciences, 175, 455-463. Doi:10.1016/j.sbspro.2015.01.1223

Papaioannou, T., Wield, D., & Chataway, J. (2009). Knowledge ecologies and
ecosystems. Environmental and planning c: government and policy, 27(2),
319-339. Doi:10.1068/c0832

Peterson (2013). The GitHub open source development process. Retrived from:
http://kevinp.me/GitHub-process-research/GitHub-process-research.pdf

Pianosi, F., Sarrazin, F., & Wagener, T. (2015). A MATLAB toolbox for global
sensitivity analysis. Environmental Modelling & Software, 70, 80-85.
Retrieved from: https://doi.org/10.1016/j.envsoft.2015.04.009

Qassimi, N. A., & Rusu, L. (2015). IT Governance in a Public Organization in a
Developing Country: A Case Study of a Governmental Organization.
Conference on Enterprise Information Systems 2015 (CENTERIS 2015). Vol.
64, p. 450-456. Elsevier. Retrieved from:
https://www.sciencedirect.com/science/article/pii/S1877050915026769

Randell, B. (1996). The 1968/69 NATO software engineering reports. History of
Software Engineering, 37. A conference sponsored by the NATO Science
Committee. Garmisch, Germany. Retrieved from:
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/NATOReports/

Ray, B., Posnett, D., Filkov, V., & Devanbu, P. (2014). A large-scale study of
programming languages and code quality in GitHub. In Proceedings of the
22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering (pp. 155-165). ACM. Hong Kong, China.
Doi:10.1145/2635868.2635922

112

Ribeiro, A., & da Silva, A. R. (2012, September). Survey on cross-platforms and
languages for mobile apps. In Quality of Information and Communications
Technology (QUATIC), 2012 Eighth International Conference on the (pp.
255-260). IEEE. Lisbon, Portugal. Doi: 10.1109/QUATIC.2012.56

Robinson, W. N., & Deng, T. (2015). Data mining behavioral transitions in open
source repositories. In System Sciences (HICSS), 2015 48th Hawaii
International Conference on (pp. 5280-5289). IEEE. Kauai, HI, USA. Doi:
10.1109/HICSS.2015.622.

Sarka, P., & Ipsen, C. (2017). Knowledge sharing via social media in software
development: a systematic literature review. Knowledge Management
Research & Practice, 15(4), 594-609. Retrieved from:
https://www.tandfonline.com/doi/abs/10.1057/s41275-017-0075-5.

Schmidt, D. C., Stal, M., Rohnert, H., & Buschmann, F. (2013). Pattern-Oriented
Software Architecture, Patterns for Concurrent and Networked Objects (Vol.
2): John Wiley & Sons. University of California, Irvine, USA. ISBN: 978-1-
118-72517-7.

Shah, H., Allard, R. D., Enberg, R., Krishnan, G., Williams, P., & Nadkarni, P. M.
(2012). Requirements for guidelines systems: Implementation challenges and
lessons from existing software-engineering efforts. BMC Medical Informatics
and Decision Making, 12(1), 16-16. Doi:10.1186/1472-6947-12-16

Sharma, A., Thung, F., Kochhar, P. S., Sulistya, A., & Lo, D. (2017, June). Cataloging
GitHub repositories. In Proceedings of the 21st International Conference on
Evaluation and Assessment in Software Engineering (pp. 314-319). ACM.
Karlskrona, Sweden. doi:10.1145/3084226.3084287

Sheoran, J., Blincoe, K., Kalliamvakou, E., Damian, D., & Ell, J. (2014, May).
Understanding watchers on GitHub. In Proceedings of the 11th Working
Conference on Mining Software Repositories (pp. 336-339). ACM.
Hyderabad, India. Doi:10.1145/2597073.2597114

Siau, K., & Tian, Y. (2013). Open Source Software Development Process Model: A
Grounded Theory Approach. Journal of Global Information Management
(JGIM), 21(4), 103-120. Doi: 10.4018/jgim.2013100106

Singer, L., Figueira Filho, F., & Storey, M. A. (2014, May). Software engineering at
the speed of light: how developers stay current using twitter. In Proceedings of
the 36th International Conference on Software Engineering (pp. 211-221).
ACM. Hyderabad, India. Doi: 10.1145/2568225.2568305

Soll, M., & Vosgerau, M. (2017, September). ClassifyHub: An Algorithm to Classify
GitHub Repositories. In Joint German/Austrian Conference on Artificial
Intelligence (Künstliche Intelligenz) (pp. 373-379). Springer, Cham. Retrieved
from: https://doi.org/10.1007/978-3-319-67190-1_34

113

Song, C., Wang, T., Yin, G., Zhang, X., & Yang, C. (2016). A Novel Open Source
Software Ecosystem: From a Graphic Point of View and Its Application. 2016,
71-74. Doi:10.18293/seke2016-123. Retrieved from
http://ksiresearchorg.ipage.com/seke/seke16paper/seke16paper_123.pdf

Squire, M. (2014, January). Forge++: The changing landscape of FLOSS
development. In System Sciences (HICSS), 2014 47th Hawaii International
Conference on (pp. 3266-3275). IEEE. Waikoloa, HI, USA. Doi:
10.1109/HICSS.2014.405

Squire, M. (2017, May). Considering the Use of Walled Gardens for FLOSS Project
Communication. In IFIP International Conference on Open Source Systems
(pp. 3-13). Springer, Cham. Retrieved from:
https://link.springer.com/Chapter/10.1007/978-3-319-57735-7_1.

Syeed, M. M., Hansen, K. M., Hammouda, I., & Manikas, K. (2014, August). Socio-
technical congruence in the ruby ecosystem. In Proceedings of The
International Symposium on Open Collaboration (p. 2). ACM. Berlin,
Germany. Doi: 10.1145/2641580.2641586

Tachizawa, T., & Pozo, H. (2012). Management model for the development of
Software applied to business sustainability in the context of global climate
changes. Journal of Information Systems & Technology Management, 9(1),
39. Sao Paulo, Brazil doi:10.4301/S1807-17752012000100003

Tsay, J., Dabbish, L., & Herbsleb, J. (2014a). Influence of social and technical factors
for evaluating contribution in GitHub. In Proceedings of the 36th international
conference on Software engineering (pp. 356-366). ACM. Hyderabad, India.
Doi: 10.1145/2568225.2568315.

Tsay, J., Dabbish, L., & Herbsleb, J. (2014b). Let's talk about it: evaluating
contributions through discussion in GitHub. In Proceedings of the 22nd ACM
SIGSOFT international symposium on foundations of software engineering
(pp. 144-154). ACM. Hong Kong, China. Doi:10.1145/2635868.2635882

Van der Maas, J. C. (2016). Evolution of Collaboration in Open. Master's thesis.
Department of Information and Computer Science, Utrecht University.
Utrecht, Netherlands. Retrieved from:
https://www.uu.nl/en/education/archive-masters-thesis

Vasilescu, B., Blincoe, K., Xuan, Q., Casalnuovo, C., Damian, D., Devanbu, P., &
Filkov, V. (2016, May). The sky is not the limit: multitasking across GitHub
projects. In Software Engineering (ICSE), 2016 IEEE/ACM 38th International
Conference on (pp. 994-1005). IEEE. Austin, TX, USA. Doi:
10.1145/2884781.2884875

Vasilescu, B., Yu, Y., Wang, H., Devanbu, P., & Filkov, V. (2015, August). Quality
and productivity outcomes relating to continuous integration in GitHub. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software

114

Engineering (pp. 805-816). ACM. Bergamo, Italy.
Doi:10.1145/2786805.2786850

Weber, S., & Luo, J. (2014, December). What makes an open source code popular on
git hub? In Data Mining Workshop (ICDMW), 2014 IEEE International
Conference on (pp. 851-855). IEEE. Shenzhen, China. Doi:
10.1109/ICDMW.2014.55

West, J., & Gallagher, S. (2006). Challenges of open innovation: the paradox of firm
investment in open‐source software. R&D Management, 36(3), 319-331.
Wiley Digital archive. https://doi.org/10.1111/j.1467-9310.2006.00436.x

Williams, L. (2012). What agile teams think of agile principles. Communications of
the ACM, 55(4), 71-76. New York, NY, USA. Doi:10.1145/2133806.2133823

Wu, Y., Kropczynski, J., Shih, P. C., & Carroll, J. M. (2014, February). Exploring the
ecosystem of software developers on GitHub and other platforms. In
Proceedings of the companion publication of the 17th ACM conference on
Computer supported cooperative work & social computing (pp. 265-268).
ACM. Baltimore, Maryland, USA. Doi:10.1145/2556420.2556483

Xavier, J., Macedo, A., & de Almeida Maia, M. (2014). Understanding the popularity
of reporters and assignees in the GitHub. In SEKE (pp. 484-489). Retrieved
from: https://scholar.google.com/citations?user=8Haa9vQAAAAJ&hl=it

Ye, Y., & Kishida, K. (2003). Toward an understanding of the motivation Open Source
Software developers. Paper presented at the Proceedings of the 25th
international conference on software engineering. Portland, USA.
Doi:10.1109/ICSE.2003.1201182

Yu, Y., Wang, H., Yin, G., & Ling, C. X. (2014a). Reviewer recommender of pull-
requests in GitHub. In Software Maintenance and Evolution (ICSME), 2014
IEEE International Conference on (pp. 609-612). IEEE. Victoria, BC, Canada.
Doi: 10.1109/ICSME.2014.107

Yu, Y., Wang, H., Yin, G., & Wang, T. (2016). Reviewer recommendation for pull-
requests in GitHub: What can we learn from code review and bug assignment?
Information and Software Technology, 74, 204-218. Retrieved from:
https://doi.org/10.1016/j.infsof.2016.01.004

Yu, Y., Yin, G., Wang, H., & Wang, T. (2014b). Exploring the patterns of social
behavior in GitHub. In Proceedings of the 1st international workshop on
crowd-based software development methods and technologies (pp. 31-36).
ACM. Hong Kong, China. Doi:10.1145/2666539.2666571

Zakiah, A., & Fauzan, M. N. (2016, April). Collaborative Learning Model of Software
Engineering using GitHub for informatics student. In Cyber and IT Service
Management, International Conference on (pp. 1-5). IEEE. Bandung,
Indonesia. Doi: 10.1109/CITSM.2016.7577521

115

Zhu, J., Zhou, M., & Mockus, A. (2014). The relationship between folder use and the
number of forks: A case study on GitHub repositories. ESEM, Torino, Italy.
Retrieved from: http://mockiene.com/papers/folder-short.pdf

116

APPENDICES

 Appendix A: Standardized Total Effects

Table A-1: Standardized Total Effects for 195 JavaScript language repos

JavaScript
195 Repos

Watches Stars Forks Issues Pulls Contributors Releases

Issues 0.45 - - - - - -
Pulls 0.31 - 0.14 0.69 - - -
Contributors 0.01 0.40 0.11 0.52 0.76 - -

Releases 0.20 0.41 -0.24 0.55 0.19 0.25 -
Commits 0.32 0.06 0.03 0.74 0.50 0.04 0.16

Table A-2: Standardized Total Effects for 195 Python language repos

Python
195 Repos Watches Stars Forks Issues Pulls Contributors Releases

Issues -0.35 0.28 0.44 - - - -
Pulls -0.19 0.15 0.24 0.55 - - -
Contributors -0.19 0.15 0.43 0.54 0.56 - -
Releases -0.22 0.18 0.24 0.62 -0.10 -0.17 -
Commits -0.19 0.15 0.23 0.54 0.80 -0.03 0.15

117

Table A-3: Standard total Effects for 170 Java Language Repos

Table A-4: Standardized Total Effects for C# language repos

JAVA
170 Repos Watches Stars Forks Issues Pulls Contributors Releases

Issues - 0.37 - - - - -
Releases - 0.26 -0.16 0.69 0.16 0.24 -
Pulls - 0.17 - 0.45 - - -
Contributors - 0.2 - 0.54 0.68 - -
Commits 0.31 -0.1 -0.02 0.72 0.41 0.3 0.15

199 repos for
C# language Watches Stars Forks Issues Pulls Contributors Releases

Issues - 0.28 0.23 - - - -
Pulls - 0.20 0.17 0.71 - - -
Contributors -0.40 0.47 0.42 0.45 0.63 - -
Release - 0.06 0.05 0.20 0.28 - -
Commits -0.07 0.20 0.17 0.49 0.69 0.19 0.30

118

Table A-5: Standardized Total Effects for C++ language repos

196 Repos for
C++ language Watches Stars Forks Issues Pulls Contributors Releases

Issues - 0.37 - - - - -
Pulls - 0.03 0.41 0.52 - - -
contributor -0.33 0.38 0.57 0.31 0.60 - -
release - 0.07 0.1 0.29 0.25 - -
commits -0.07 0.16 0.19 0.55 0.70 0.20 0.21

Table A-6: Standardized Total Effects for CSS language repos

199 Repos for CSS
language Watches Stars Forks Issues Pulls Contributors Releases

Issues 0.36 - - - - - -
Pulls 0.15 -0.38 0.4 0.43 - - -
Contributors 0.08 -0.37 0.39 0.23 0.97 - -
Release 0.2 0.07 -0.07 0.56 -0.17 - -
Commits 0.21 -0.27 0.17 0.58 0.7 0.31 0.11

Table A-7: Standardized Total Effects for PHP language repos

197 Repos for PHP
language Watches Stars Forks Issues Pulls Contributors Releases

Issues - - 0.49 - - - -
Pulls - - 0.47 0.7 - - -
contributors -0.39 0.27 0.76 0.48 0.7 - -
Release -0.07 0.28 0.04 0.62 0.13 0.19 -
Commits -0.01 0.04 0.38 0.84 0.63 0.03 0.14

119

Table A-8: Standardized Total Effects for Ruby language repos

165 Repos for
Ruby Watches Stars Forks Issues Pulls Contributors Releases

Issues -0.2 0.69 - - - - -
Pulls -0.11 0.39 0.13 0.56 - - -
Releases -0.1 0.35 - 0.51 - - -
Contributors -0.11 0.51 0.08 0.53 0.61 - -
Commits 0.07 0.15 0.04 0.78 0.3 0.49 0.22

120

LIST OF PUBLICATIONS

Alshomali, Mohammad Azeez, Holdsworth, Jason, and Hamilton, John (2016)
Identifying ways of supporting software development in the open source
community. In: Proceedings of the 20th International Conference on ISO &
TQM. From: 20 ICIT: 20th International Conference on ISO & TQM, 26-28
September 2016, Al Buraimi, Oman.

Alshomali, Mohammad Azeez, Holdsworth, Jason, and Hamilton, John R. (2017) A
preliminary exploration of the GitHub ecosystem: how to find important
repositories. In: Proceedings of ISCA 2017, pp. 346-352. From: ISCA 2017:
1st Iraqi Scholars Conference in Australasia, 5-6 December 2017, Melbourne,
VIC, Australia.

Hamilton, John R., Holdsworth, Jason, Tee, SingWhat, and Alshomali, Mohammad
Azeez (2017) Analysing big data projects using GitHub and JavaScript
repositories. In: Proceedings of the 17th International Conference on
Electronic Business, pp. 47-52. From: ICEB 2017: 17th International
Conference on Electronic Business, 4-8 December 2017, Dubai, United Arab
Emirates.

Alshomali, Mohammad Azeez, Hamilton, John R., Holdsworth, Jason, and Tee,
SingWhat (2017) GitHub: factors influencing project activity levels. In:
Proceedings of the 17th International Conference on Electronic Business, pp.
116-124. From: ICEB 2017: 17th International Conference on Electronic
Business, 4-8 December 2017, Dubai, United Arab Emirates.

	Front Pages
	Title Page
	Statement of Access
	Statement of Sources
	Electronic Copy
	Statement on Contribution of Others
	Acknowledgements
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Appendices
	List of Abbreviations and Acronyms

	Chapter 1. Introduction
	Chapter 2. Literature Review
	Chapter 3. Research Methodology
	Chapter 4. Results
	Chapter 5. Discussions
	Chapter 6. Conclusions
	References
	Appendices
	Appendix A: Standardized Total Effects

	List of Publications

