The emergence emergency: a mudskipper's response to temperatures

Nay, Tiffany J., Gervais, Connor R., Hoey, Andrew S., Johansen, Jacob L., Steffensen, John F., and Rummer, Jodie L. (2018) The emergence emergency: a mudskipper's response to temperatures. Journal of Thermal Biology, 78. pp. 65-72.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website: https://doi.org/10.1016/j.jtherbio.2018....
 
1


Abstract

Temperature has a profound effect on all life and a particularly influential effect on ectotherms, such as fishes. Amphibious fishes have a variety of strategies, both physiological and/or behavioural, to cope with a broad range of thermal conditions. This study examined the relationship between prolonged (5 weeks) exposure to a range of temperatures (22, 25, 28, or 32 degrees C) on oxygen uptake rate and movement behaviours (i.e., thermoregulation and emergence) in a common amphibious fish, the barred mudskipper (Periophthalmus argentilneatuis). At the highest temperature examined (32 degrees C, approximately 5 degrees C above their summer average temperatures), barred mudskippers exhibited 33.7-97.7% greater oxygen uptake rates at rest ((M) over dotO(2Rest)), emerged at a higher temperature (CTe; i.e., a modified critical thermal maxima (CTMax) methodology) of 41.3 +/- 0.3 degrees C relative to those maintained at 28, 25, or 22 degrees C. The 32 degrees C-maintained fish also ceased movement activity at the highest holding temperature suggesting that prolonged submergence at elevated temperatures is physiologically and energetically stressful to the individual. Using exhaustive exercise protocols with and without air exposure to simulate a predatory chase, the time to recovery was examined for all individuals. When submerged, mudskippers required 2.5x longer recovery time to return to resting oxygen uptake from exhaustive exercise than those fully emerged in air. Oxygen uptake data revealed that air exposure did not accrue oxygen debt, thereby allowing faster return to resting oxygen consumption rates. If the option to emerge was not available, mudskippers preferentially sought more benign water temperatures (26.7 +/- 2.1 degrees C), resembling those experienced by these fish during the Austral autumn, regardless of prolonged exposure higher or lower temperatures. These results add to our understanding of the strategies that amphibious fishes may use to mitigate extra costs associated with living in warm waters, and could be the key to understanding how such species will cope with increasing temperatures in the future.

Item ID: 56876
Item Type: Article (Research - C1)
ISSN: 1879-0992
Keywords: Temperature preference, Behaviour, Movement, Oxygen consumption, Metabolism, Emergence
Copyright Information: © 2018 Elsevier Ltd. All rights reserved.
Funders: Australian Research Council (ARC), ARC Centre of Excellence for Coral Reef Studies (CECRS)
Projects and Grants: ARC Super Science Fellowship, ARC Early Career Discovery Award
Date Deposited: 16 Jan 2019 07:37
FoR Codes: 06 BIOLOGICAL SCIENCES > 0608 Zoology > 060801 Animal Behaviour @ 100%
Downloads: Total: 1
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page