Integral cross sections for electron-magnesium scattering over a broad energy range (0-5000 eV)

McEachran, R.P., Blanco, F., Garcia, G., Stokes, P.W., White, R.D., and Brunger, M.J. (2018) Integral cross sections for electron-magnesium scattering over a broad energy range (0-5000 eV). Journal of Physical and Chemical Reference Data, 47 (4). 043104.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website:


We report the results from the application of our optical potential and relativistic optical potential (ROP) methods to electron-magnesium scattering. The energy range of this study was 0-5000 eV, with the results for the integral elastic cross sections, summed discrete electronic-state excitation integral cross sections, momentum transfer cross sections, and total ionisation cross sections being reported. Where possible, we compare the present results to the available experimental data and to the earlier results from close coupling and R-matrix type computations. Typically, a quite fair level of accord is found between our ROP calculations and the earlier theoretical and experimental cross sections. Additionally, from the assembled database, we provide for the modeling community some recommended cross section sets for use in their simulations, in which magnesium is a constituent. Electron transport coefficients are subsequently calculated for reduced electric fields ranging from 0.1 to 1000 Td using a multi-term solution of Boltzmann's equation. Substantial differences in the transport coefficients between the ROP calculations and the recommended cross sections are observed over the range of fields considered, clearly illustrating the importance of the veracity of the database in the simulations.

Item ID: 56871
Item Type: Article (Research - C1)
ISSN: 1529-7845
Keywords: electron scattering cross sections, electron transport, magnesium, recommended cross sections
Copyright Information: © 2018 Author(s).
Funders: Spanish Ministerio de Ciencia e Innovacion (SMCI), Australian Research Council (ARC)
Projects and Grants: SMCI Project No. FIS2016-80440, ARC DP160102787, ARC DP180101655
Date Deposited: 16 Jan 2019 07:33
FoR Codes: 51 PHYSICAL SCIENCES > 5106 Nuclear and plasma physics > 510602 Plasma physics; fusion plasmas; electrical discharges @ 100%
Downloads: Total: 1
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page