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Abstract 

Determining the source of sediments and associated nutrients from terrestrial to aquatic 

environments is critical for managing the detrimental impacts of soil erosion and loss of nutrients 

from terrestrial into aquatic environment. However, tracing the source of particulate nutrients from 

different land uses has not been adequately carried out due to methodological difficulties in 

separating sources, particularly in the Great Barrier Reef (GBR) catchment. The objective of this 

study was to develop a method to differentiate the sources of particulate nutrients from soils 

collected from different land uses (combination of beef and dairy grazing, sugarcane, forest and 

banana) using both geochemical and isotopic signatures. In order to select a discriminative group of 

signatures, all soil samples collected from each of the land use areas were fractionated to <63 µm 

size fraction and were analysed for both isotopic (δ13C, δ15N) and acid extractable geochemical 

properties (e.g. Zn, Pt and S). Considering the fact that the outcome of tracing models often depend 

on the type and robustness of the methods used, here we have employed a stable isotope mixing 

model (SIAR) to evaluate if the suite of selected elements could be used to estimate the relative 

contribution of different sources for a series of five virtually created sediment mixtures. For the five 

groups of virtual sediments, the SIAR model provided close estimates to the contribution values of 

sediment sources with the Mean Absolute Error (MAE) varying from 0.30 - 2.88%. Results from 

this study show for the first time that the combined use of isotopic and geochemical signatures 

enable the SIAR model to provide an accurate estimation of source apportionment where a variety 

of land uses needs to be investigated and shows promise as a valuable new sediment and particulate 

nutrient tracing tool.  

 

Keywords: Sediment; Fingerprinting; Mixing models; Nitrogen; Stable isotopic abundance 
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1. Introduction 

Various issues of poor water quality in the Great Barrier Reef (GBR) lagoon have been identified as 

being due to increasing delivery of terrestrial sediments and associated particulate nutrients over the 

last century (Brodie et al., 2012). Particulate nitrogen (N) is considered the particulate nutrient of 

most concern and comprises the largest proportion of the total N load delivered to the GBR (Hunter 

and Walton, 2008, Joo et al., 2012, Brodie et al., 2017). In order to develop sound strategies to 

manage particulate nutrients discharge and its subsequent environmental impacts on the GBR 

lagoon, it is necessary to identify the main sources of sediments and associated nutrients delivered 

from the GBR catchment. The sediment fingerprinting technique utilises a combination of field 

sampling, biogeochemical analyses in laboratory and statistical modelling to allocate the 

contribution of each source for sediments and nutrients delivered to the rivers. In this technique, a 

number of biogeochemical properties are measured in both soil samples of potential sources within 

the upstream catchment and sediment mixtures collected at the river outlets (Haddadchi et al., 

2013). A stepwise discriminant statistical analysis is used to select a suite of elements which 

distinguished between the sources, and then a mixing model is employed to determine the specific 

contributions from the discrete sources (Collins et al., 2017). However, the accuracy of these 

mixing models have rarely been tested (Haddadchi et al., 2014b). The accuracy and robustness of 

mixing model outputs highly depends on the discriminative power of selected tracers and the type 

of model used in fingerprinting techniques (Haddadchi et al., 2013, Collins et al., 1997).  

All the potential signatures for fingerprinting techniques need to be accurately measurable and 

have a discriminative power in separating different sources. They also need to behave 

conservatively with respects to time and distance along the transport pathway from source to sink 

(Haddadchi et al., 2013). A variety of tracers such as colour (Grimshaw and Lewin, 1980), clay 

mineralogy (Bainbridge et al., 2016) and mineral magnetic characteristics (Motha et al., 2003, 

Hatfield and Maher, 2009), organic matter content (Walling and Amos, 1999) and radionuclide 

characteristics (Estrany et al., 2010, Wilkinson et al., 2015) have been used in recent studies. Few 
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studies have also used compound- specific stable isotopes and biomarkers, especially aliphatic 

(saturated straight-chained) compounds such as nalkanes and n-carboxylic acids (fatty acids) for 

attribution of sediment and organic matter sources to specific land uses, such as forest, arable and 

pasture(Glendell et al., 2018, Alewell et al., 2016, Reiffarth et al., 2016, Blake et al., 2012). 

Sediment geochemistry has been widely used to quantitatively trace the source of sediments and 

nutrients on the catchment scale (Collins et al., 1997, Collins et al., 2010a, Collins et al., 2012, 

Walling et al., 2008, Davis and Fox, 2009, Furuichi et al., 2016). In this approach, different 

inorganic signatures such as major, trace and rare earth elements as well as stable and radioactive 

inorganic isotopes are employed to identify the spatial sources of sediments discharged to the rivers 

(Davis and Fox, 2009, Collins et al., 2010b, Haddadchi et al., 2014a). Moreover, the composition of 

stable isotopes of organic matter (δ13C and δ15N) and elemental content of soil (e.g., carbon (C) and 

N) are also considered as a powerful combination of signatures in tracing the origin of sediments 

and associated nutrients (Coplen and Kendall, 2000). In that regard, they can specifically reflect 

different vegetation types across different land uses in the upstream catchment and hence have the 

ability to trace the source of particulate organic matter (Coplen and Kendall, 2000, Papanicolaou et 

al., 2003).  

While there has been a rapid growth in studies undertaking sediment source fingerprinting in a 

range of environments and applications, there are still aspects of the approach that warrant further 

improvement in order to increase its robustness and acceptability particularly in cases where a 

number of different land uses in a large scale catchment need to be investigated and none of the 

above mentioned fingerprints can properly differentiate between sources (Owens et al., 2016, 

Guzmán et al., 2013) 

The objective of this study was to develop a novel approach for combined use of isotopic (δ13C and 

δ15N) and geochemical signatures to differentiate the sources of particulate nutrients from different 

land uses (e.g., grazing including beef and dairy, sugarcane, forest and banana) using soil samples 

from the Johnstone River catchment, Queensland as an example. Firstly, a discriminative combined 
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group of fingerprints were selected using Kruskal–Wallis H-test and stepwise Discriminant 

Functional Analysis (DFA), and then Principal Component Analysis (PCA) was used to evaluate 

whether the selected fingerprints are able to distinguish between sediments and associated 

particulate organic matter originated from the four primary land uses. These sources were identified 

as the most likely to contribute to sediment and nutrient export during flow events in this area as 

they collectively comprise > 95% of the catchment area. Secondly, an analytical approach was used 

to test the accuracy and robustness of the novel methodology and widely used Stable Isotope 

Analysis in R (SIAR) mixing model by applying virtual mixtures of the four potential sources. 

 

2. Background and theoretical consideration 

To trace the sources of particulate organic matter in food webs in aquatic environments, a 

combination of stable isotopes such as δ13C and δ15N have been widely used (Bunn et al., 2003, 

Finlay, 2001, Hein et al., 2003). Similarly, they also have been used to determine the contribution of 

different sources of particulate organic matter (Garzon-Garcia et al., 2017, Cooper et al., 2015, 

McCorkle et al., 2016) and sediments (Garzon-Garcia et al., 2017, Mukundan et al., 2010, Laceby 

et al., 2015) in streams. The δ13C’s ability to discriminate between sources is based on the fact that 

different photosynthetic pathways result in distinct δ13C fractionations. The majority of tree species 

follow the Calvin-Benson cycle (C3) photosynthetic pathway with a mean δ13C of −28‰ (Boutton, 

1991, Fry, 2006). Some cropping plants and dominant grass species in warmer climates, on the 

other hand, mainly follow the Hatch-Slack cycle (C4) pathway with a mean δ13C of −13‰ 

(Coleman, 2012, Werth and Kuzyakov, 2010). Therefore, δ13C can be considered as a signature to 

discriminate between the sources of organic matter derived from C3 and C4 plants in tropical and 

subtropical environments. Generally, δ15N fractionation is much more complex than δ13C due to 

multiple N sources and different potential internal transformations which can affect N isotopic 

ratios in derived organic matter from different plant materials. The atmospheric N (N2) is the major 

form of N in the biosphere with δ15N of 0‰ (Peterson and Fry, 1987). The majority of N in the rest 
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of the biosphere also has δ15N values between −10‰ and +10‰ (Evans, 2007, Finlay and Kendall, 

2007). Several studies have used isotopic signatures to differentiate between subsoil and topsoil as 

the potential sources of sediments and particulate nutrients to the rivers (Garzon-Garcia et al., 2017, 

Laceby et al., 2016, Mukundan et al., 2010). However, these signatures are not able to differentiate 

the land uses covered with the vegetation that follows the same photosynthetic pathways. 

The potential of geochemical signatures in separating sources is based on the theory that rock 

types can influence the geochemical properties of soils during the process of soil formation and 

development (Klages and Hsieh, 1975, Olley et al., 2001). Therefore, soils lying over different 

geological structures usually reflect a distinct group of geochemical fingerprints which is highly 

dependent on their source lithology (Douglas et al., 2009, Motha et al., 2002). As a result, the origin 

of discharged and transported sediments in a water way can be traced back using these distinct 

geochemical fingerprints, if they retain the distinguishable signatures (major, trace or rare earth 

elements) of their original rock parents (Hughes et al., 2009). Despite the popularity of geochemical 

fingerprinting, this technique is usually used to differentiate sources with different geological 

properties, and not able to distinguish between different land uses on the same geological structures. 

Therefore, it is necessary to have a combination of several diagnostic soil and sediment properties 

through which we can have a more discriminative approach in identifying the origin of sediments 

and associated nutrients, specifically when a great number of sources needs to be investigated 

(Collins and Walling, 2002), and if the objective of the study is to determine contributions from 

different land uses. 

Figure 1 summarizes the basis for combining stable isotopes and geochemical properties of 

different land uses in cases when potential sources of sediments and associated nutrients cannot be 

completely separated on the basis of their geochemical or isotopic fingerprints alone. Then the same 

group of fingerprints can be measured in the mixture sediments originated from different land uses. 

In the end, a mixing model needs to be used to quantitatively determine the contribution of different 

sources to the mixture sediments. 
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Using artificial mixtures with known contributions of sources has gained increasing popularity 

for testing the accuracy of the methods used to separate sources and mixing models prior to using 

them for field application (Haddadchi et al., 2014b). It provides an opportunity to test the robustness 

of widely used mixing models in estimating the relative contribution of sources in a mixture of 

sediments. This approach is also able to evaluate the strength of the final combination of 

fingerprinting properties in discriminating sources in cases where a wide range of sources needs to 

be investigated. Lees (1997) conducted one of the earliest studies on artificial mixtures to identify 

any non-linear additivity associated with the use of the frequently used mineral magnetic tracing 

properties in sediments. Following that, Small et al. (2004) used five artificial mixtures to explore 

the uncertainties related to source sampling in a Bayesian modelling approach.  Recent studies have 

used synthetic mixtures based on Monte Carlo routines as an alternative to avoid laboratory work 

associated with generating and analysing specific properties of artificial source mixtures (Sherriff et 

al., 2015). Moreover, virtual sample mixtures have also recently been used to minimize 

uncertainties related to preparation and analysis of artificial mixtures (Palazón et al., 2015). In this 

study an analytical approach is used to evaluate the power of combined geochemical and isotopic 

signatures in differentiating sources and also to test the accuracy and robustness of the widely used 

Stable Isotope Analysis in R (SIAR) mixing model to determine the contribution of different 

sources to the virtually created mixtures. 

 

3. Methods 

3.1 Study region 

The study was conducted in the Johnstone River catchment which is located in the wet tropical area 

of north-east Queensland and covers an area of 2624 km2 (Innisfail; 17◦31′S, 146◦02′E). Two 

branches of this river, including south and north Johnstone, merge into a single stream at the 

Innisfail Township. The Johnstone River drains three main geographic sections of the catchment 

including upper, middle and lower sections. The upper section is composed of a mixture of different 
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land-uses such as rainforest, cattle grazing pastures (including dairy and beef), horticulture, 

sugarcane farms and a minority urban input from the township in Malanda. The middle part is 

mainly covered by rainforest which is the dominant land use in the Johnstone catchment with 52.0% 

of the whole catchment area (Lewis and Brodie, 2011). The lower part is dominated by banana 

cropping (4.3% of total area) and sugarcane fields with a concentration of population in the 

townships of Innisfail and South Johnstone. While 15.4% of the whole catchment is covered by 

grazing pastures, sugarcane (14.0%) is the main intensive cropping land use in this area. Previous 

studies in the Johnstone Basin highlighted that increased erosion had occurred particularly after the 

1970s (up to 3 fold increase in suspended sediment export) and coinciding with the expansion of the 

sugarcane industry(Kroon et al., 2010). Although this extra erosion caused more sedimentation in 

the main stream, analysis of sediments in the Johnstone River channel has shown that a mean 

suspended sediment load of 318,000 tonnes per year was exported out of the catchment into the 

Great Barrier Reef lagoon (Kroon et al., 2010, Lewis and Brodie, 2011). In this study sampling sites 

were selected to represent the dominant land uses of this catchment including: sugarcane, grazing 

(combination of beef and dairy), banana and forest (Figure 2). Land uses on the Johnstone 

catchment are located on different soil types and geological structures. The dominant part of upper 

catchment is comprised of basalt, while other geological units such as granite and alluvial sediments 

also can occur in different parts of the catchment.  Red ferrosol, which is derived from basaltic 

rocks, comprises the main part of the upper catchment, while other soil types such as red dermosols 

(metamorphic rocks) and red kandosols (granite) are also considered to be the main soil type for 

steep to moderate slopes on the upper Johnstone catchment. Brown dermosols and redoxic 

hydrosols were observed to occur on the floodplain of this catchment. Agricultural farms are 

dominantly located on the basalt and alluvium soil units within the Johnstone catchment (Bain and 

Draper, 1997, Isbell, 2016, Hunter and Walton, 2008). 

 

3.2 Soil sampling 
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In this study, soil samples were collected from possible land use sources that may potentially 

contribute sediments and particulate nutrients into the river during rainfall events and transport 

them downstream. Four potential sources were identified and sampled in July 2016 including 

grazing (beef and dairy have been combined), sugarcane, forest and banana. These sources were 

selected after an extensive literature review (Lewis and Brodie, 2011, Hunter et al., 2001, Wallace 

et al., 2015) and field investigations. Considering the unequal distribution of land-uses along the 

Johnstone River, the whole river catchment was divided into two geographical sections including 

the upper and lower Johnstone in order to select sampling sites. Grazing of beef cattle occurred 

throughout the catchment, while dairy farming was restricted to the upper, more elevated areas, 

while sugarcane (except a few small farms in upper catchment) and bananas were grown only in the 

lower catchment (Hunter et al., 2001). To ensure the representativeness of sources within the study 

catchment, 20 sampling points were selected after an intensive literature review, taking the 

geological structures, soil erosion rate and also the accessibility of sampling sites into account, with 

a great help from local managers and researchers (Hunter and Walton, 2008)(Figure 2). Grazing and 

forest soil samples were exclusively collected from the upper catchment, while banana soil samples 

were collected from lower catchment. Sugarcane soil samples were collected from both sections 

including two samples from the lower and three samples from the upper Johnstone catchment. 

Sampling locations for different sources were selected using maps prepared by ArcGIS (10.0) 

(Desktop, 2011). Soil samples were collected from surface soil (0-10 cm) with an auger after 

vegetation was removed to ground level. Each source was sampled at five locations (Figure 2). At 

each location, a composite sample of five points was taken. All samples were taken using a stainless 

steel trowel which was regularly cleaned to avoid inter-sample contamination. All soil samples were 

packed in plastic bags and transported on ice to the laboratory for analysis. In total, 20 soil samples 

from different sources were analysed with preparation methods described below. 

 

3.3 Sample preparation 
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To ensure that collected samples represent the potential sources, physically visible organic matter 

(not bound to soil particles) were removed before passing soils through 4 mm sieve. Samples were 

air-dried and sieved (< 2 mm) to remove large roots, litter fragments and gravel. Then a subsample 

(20–30 g) was taken, gently disaggregated using a pestle and mortar and dry sieved through a 63 

µm mesh to ensure sample consistency. 

 

3.4 Virtual sediments 

In this study the sediment mixtures were created virtually to avoid laboratory errors during the 

process of mixing and chemical analysis. Five source samples were selected from each of four land 

use sources of Johnstone catchment. For each group of mixtures (A, B, C, D and E), five individual 

mixtures were created and each individual virtual sample was derived as a simple proportional 

mixture using the tracer property data for the source categories (Palazón et al., 2015). Figure 3 

shows diagrammatically the processes involved in preparing virtual sediments. Five groups of 

virtual mixtures of known source contributions were created: For group A, the same proportion of 

randomly selected soils from each land use were mixed to make five virtual sediment samples (S1 to 

S5). The four sources, grazing, sugarcane, forest and banana, each made a contribution of 25% to 

the five virtual sediments. Each of the sources had five subsamples. To create a virtual mixture, one 

randomly selected sample from each of the sources was mixed in the same proportion. For example, 

the same proportions of grazing soil from sample number grazing-2, sugarcane soil from sample 

number sugarcane-4, forest soil from sample number forest-3 and banana farm soil from sample 

number banana-5 were mixed together to make the S1 virtual sediment. This mixing procedure was 

repeated five times to create the sample mixtures S1 to S5. The same process was used in creating 

the four other groups of virtual mixtures (B, C, D and E) with different contribution from the 

potential sources as described in the Figure3. 

 

3.5 C and N stable isotope and elemental analysis  
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In accordance with the procedure for measuring the stable isotope ratio of N (δ15N), all soil samples 

were pelletized in tin capsules. For δ13C, first inorganic carbonates were removed by shaking the 

small aliquot (2–5 g of each sample) with 2 ml of 10% hydrochloric acid (HCl) and allowing the 

suspension to stand overnight. More HCl was added to the samples until no further effervescence 

occurred. The sample was finely ground in a mortar and pestle after being dried at 60°C for 48 h. 

Then the samples were pelletized in silver capsules and weighed for analysis with a Sercon Hydra 

20-22 Europa EA-GSL isotope-ratio mass spectrometer. Stable isotope ratios are reported in 

standard delta (δ) notation per mil (‰) as: δX = [(Rsample/Rstandard)-1]×1000 where X is 13C or 15N 

and R=13C/12C or 15N/14N, respectively. Standard reference materials were PDB limestone for C and 

air was the standard for N (Garzon-Garcia et al., 2017). In this study, in order to find the 

geochemical signatures, a total of 21 chemical elements (Na, K, Mg, Ca, Mn, Zn, Al, Cu, Sn, Ni,, 

Co, Cr, Pt, Pb, As, Hg, Fe, Ag, S, P and Au) were analysed in soils, using ICP-OES; Perkin Elmer; 

Optima 8300, after direct digestion with nitric and perchloric acid (Miller, 1998, Haddadchi et al., 

2014b). 

 

3.6 Statistical analysis and modelling 

The most discriminative group of geochemical elements ( acid extractable Zn, Pt and S) were 

selected after a stepwise discriminant statistical analysis, and the discriminative power of isotopic 

signatures (δ13C, δ15N) were assessed using paired t-tests for the comparisons of data with equal 

means and variance (Garzon-Garcia et al., 2017, Collins and Walling, 2002). The principal 

component analysis (PCA) was used to separate the different land uses using geochemical or 

isotopic signatures alone or combined signatures. Then, for the first time a combination of isotopic 

and selected geochemical properties were modelled with SIAR V4 (Parnell et al., 2010) to evaluate 

this approach in differentiating the dominant land uses of the Johnstone River catchment by 

predicting the contribution of each land use to the virtual mixture of sources. SIAR was initially 

developed to infer the consumers’ diet by isotopic analysis of sources. However, it has recently 
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been widely used in sediment fingerprinting with omission of concentration dependency and the 

enrichment factor (set to 0) within the SIAR model (Dutton et al., 2013, Koiter et al., 2013). SIAR 

uses Bayesian mixing models and model fitting with Markov Chain Monte Carlo (MCMC) 

simulations of plausible values consistent with the data (n = 30,000) (Parnell et al., 2010). The 

uncertainty of this approach and the accuracy of the SIAR model were tested based on Mean 

Absolute Error (MAE) for different groups of virtual sediment mixtures: 

                    
         
   

 
                                (1) 

Where, Xj is actual percentage of sources in virtual mixtures, Yj is the estimated contribution of 

each source (j) and m is the number of sources (m = 4). 

 

4. Results 

4.1 Source discrimination 

4.1.1 Stable isotopic properties 

The discriminative power of isotopic signatures were tested prior to modelling. In combination, 

δ13C and δ15N discriminate between all the different sources (Table 1). The δ13C discriminates 

between all sources (p<0.001), except grazing and sugarcane as both of them follow the Hatch-

Slack cycle (C4) photosynthetic pathway. In contrast, δ15N was just able to discriminate between 

grazing and sugarcane (p<0.05). Principal components analysis (PCA) was also used to analyse the 

potential of δ13C and δ15N, as isotopic properties, in discriminating between sources (Figure 4-A). 

The PCA plot highlights the distinctive source discrimination achieved for separating C4 plants 

(grazing and sugarcane) and C3 plants (forest and banana). However, it is obvious that isotopic 

signatures have not been able to completely separate sugarcane and grazing from each other. The 

score and loading plots were also used to examine which signature had the largest effect on variance 

of the data. The first principal component largely represents the difference between C4 plants 

(grazing and sugarcane) from C3 plants (forest and banana). Discrimination between these two 

vegetation types was dependent on the differences in δ13C among these four land use sources (Table 
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1). The second component tends to capture the difference between grazing and sugarcane sources, 

and largely corresponds with discrimination by δ15N, which has formed part of the fingerprint for 

this catchment. However, this component (δ15N) had a poor discrimination of grazing and sugarcane 

sources for this catchment (Figure 4-A). Therefore, these two isotopic signatures (δ13C and δ15N) in 

combination provide a good discrimination amongst all the sources, however they are not able to 

completely separate C4 plants (grazing and sugarcane) from each other and accordingly more 

fingerprint properties are required before sediment properties can be modelled in the SIAR (Tables 

S1 and S2). 

 

4.1.2 Geochemical properties 

Statistical analysis of geochemical signatures first involved using the nonparametric Kruskal–Wallis 

H test to identify those fingerprints that are able to significantly discriminate between different land 

uses (Collins and Walling, 2002). In this step, thirteen elements (P-values higher than 0.05) failed to 

exhibit significant differences between different sources (Table 2). Then, stepwise Discriminant 

Function Analysis (DFA) was used to identify an optimum group of geochemical fingerprints with 

the highest discriminatory power comprising the minimum number of geochemical signatures. The 

DFA indicated the most discriminative group of fingerprints based on the entry or removal of 

unique signatures from the analysis of sources. The selection of this discriminative group is based 

on the minimization of the variability within sources relative to the variability between sources and 

minimising Wilks' lambda (Collins and Walling, 2002). Results of the DFA are used to examine the 

proportion of samples that were accurately classified into the correct source groups. In this study Pt, 

S and Zn were able to assign 80% of the samples to their known sources (Table 3). 

The PCA plot, demonstrates the first two principal components of geochemical properties in 

differentiating between the four studied sources (Figure 4-B). The first two components account for 

94.8% of the total variance in the source fingerprinting data throughout the Johnstone River 

catchment. Moreover, the PCA score plot highlights that the first principal component largely 
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represents the difference between banana and forest sources as well as it is responsible for 

discriminating between grazing and sugarcane land uses. Overall, discrimination between these four 

sources was mainly represented by Pt and Zn with a total variance of 62.4% in the first component. 

In contrast, the second component was not able to completely separate forest and grazing sources. 

This component largely corresponds with discrimination by S and Pt with a total variance of 32.3% 

(Figure 4-B and Tables S1 and S2).  

 

4.1.3 Combined stable isotope and geochemical signatures 

PCA results presented in the Figure 4-C shows that a combination of both geochemical and isotopic 

signatures are able to differentiate between all potential land use sources of sediments in the 

Johnstone River catchment. The PCA has revealed two principal components with a cumulative 

variance of 77.3 %. PC1 was responsible for 46.7 % variance and is best represented by Pt, Zn and 

δ15N. These properties can be used to separate grazing and sugarcane as well as to discriminate 

between banana and forest land uses. PC2 is best represented by δ13C and S, accounting for 30.6% 

of total variance. These specific properties also had a notable role in differentiating between land 

uses covered with tree species (banana and forest) and other land uses on this catchment (Figure 4-

C and Tables S1 and S2 ). 

 

4.2 Accuracy of the combined isotopic and geochemical approach and SIAR modelling 

The first group of virtual sediments (Figure 5-A), which were created from five randomly selected 

samples from each source with equal proportion of contribution, the SIAR model estimates were 

24.5% for grazing, 25.5% for sugarcane, 25.1% for forest and 24.9% for banana sources with the 

MAE = 0.3%. In the 5 virtually made sediments with 40% proportion of grazing and sugarcane and 

10% of forest and banana (Figure 5-B), the mixing model had an estimate of 38.9%, 40.6% 10% 

and 10.5% for grazing, sugarcane, forest and banana sources, respectively. These estimates are 

1.1% lower than the actual contribution of grazing and 0.6% and 0.5% higher than the actual 
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contribution from sugarcane and banana sources, respectively. The estimated contribution from 

forest soil is equal to its actual contribution in virtual sediments. The MAE for the second group of 

sediments was 0.55%.  In group C including S11 to S15 virtual mixtures with 10% from grazing and 

sugarcane and 40% from forest and banana, the SIAR mixing model had an estimate of different 

source contribution to the virtual sediments (grazing = 9.8%; sugarcane = 11.5% forest= 40.5% and 

banana=38.2%) with the MAE=1% (Figure 5-C). The estimated contribution for each source in 

group D (S16 to S20; grazing=10%; sugarcane = 40% forest = 10% and banana=40%) was 10.8% for 

grazing; 40.3% for sugarcane, 11.4% for forest and 37.5% for banana with the MAE=1.25% (Figure 

5-D).  . In the last category, group E, created mixture of sediments with 40% proportion of grazing 

and forest and 10% of sugarcane and banana (Figure 5-E), the mixing model has an estimate of 

36%, 13.2%, 38.4% and 12.4% for grazing, sugarcane, forest and banana land uses, respectively. 

This model underestimated the actual contribution of grazing and forest, while the estimated 

contribution of sugarcane and banana were 3.2% and 2.4% higher than the actual contribution of 

these sources, respectively. In this group of sediments the MAE of estimates was 2.8%. Details of 

modelling outputs are provided in the supplementary documents (Figures S1 to S5). 

The accuracy of the combined isotopic and geochemical approach and SIAR modelling allowed us 

to use this approach in tracing the sources of sediments to the Johnstone River. The preliminary 

results showed that forest with 83.4% was the largest contributor to the river bed sediments in the 

upper Johnstone catchment. Grazing with 9.4% and sugarcane with 7.2% were the second and the 

third contributors to this part of river, respectively, while bandanna farms had no contribution in 

sediments delivered to the upper Johnstone River (Table S3). 

 

5. Discussion 

Results from this study have highlighted the possibility of using combined isotopic and 

geochemical properties for tracing sediments and nutrients sources from catchments containing 

different land uses. 
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While it was possible to distinguish between land uses with different photosynthetic pathway (C4 vs 

C3 plants) by isotopic signatures, it was not possible to differentiate between land uses covered by 

vegetation with the same photosynthetic pathway. However, the combined use of isotopic and 

geochemical signatures allowed us to distinguish between the main sediment sources on the 

Johnstone catchment, which has not been previously possible with the use of other fingerprints. 

Results from this study can be used for the source catchments modelling framework in estimating 

pollutant loads and determining the quantitative contribution of different sources. It can be a useful 

tool for the GBR authorities to fulfil their catchment management targets in reducing non-point 

source pollution and minimising the risk to the reef from a decline in the quality of water entering 

the reef from adjacent catchments. 

 

5.1 Isotopic and geochemical signatures in different land uses 

In this study, δ13C, δ15N and acid extractable Zn, Pt and S were successfully used as complementary 

signatures in discriminating potential sources of sediments and nutrients from different land uses 

(grazing, sugarcane, forest and banana) in the Johnstone River catchment. Results have shown that 

Zn, Pt and δ15N are the key elements that clearly discriminates between the land uses covered by the 

plants with the same photosynthetic system (Figure 4-C). It is assumed that a combination of both 

geological properties and management systems on each land use has led to such discriminative 

power for these key elements. For example, a substantial amount of different metals (e.g., Cu, Cd, 

Zn, Pb and Mn) are being transferred into soils by farmers through application of chemical 

fertilisers (Wong, 1985) and pesticides which may be present as impurities (Omwoma et al., 2010). 

For instance, phosphorus fertilisers are considered as the main source of metals and metalloids (e.g. 

Cd, Mo, Cu, Sr, Th, Ni, and Zn) in soils due to the presence of such active compounds in the 

phosphate rocks which are the original materials used for producing phosphate fertilisers (McBride 

and Spiers, 2001, Lottermoser, 2009, Carnelo et al., 1997, Nziguheba and Smolders, 2008). The 

enrichment of trace metals such as Zn in sugarcane and banana land uses (Table 4) in north 
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Queensland could be due to the high rate of fertiliser application on these intense agricultural farms 

over time (Lottermoser, 2009, Omwoma et al., 2010, Lin et al., 2010). 

The abundance of δ15N reflects the effect of management practices of each land use on the N 

cycle processes. For instance, the long term application of different types of fertilisers is considered 

as an effective factor in altering δ15N patterns in different land uses (Robinson, 2001, Choi et al., 

2003, Antil et al., 2005, Bol et al., 2005). Moreover, this pattern reveals more details about the 

quantitative importance of the main N transformation processes and N losses from different land 

uses. Indeed, the processes, through which the different forms of N (e.g. NH3, N2, NO, N2O, NO3 ) 

are lost to the environment, eventually leading to the enrichment of δ15N in the residual pool 

(including NH4
+, NO3

- and organic N) that remain in the soil (Robinson, 2001, Högberg, 1997). 

Although δ15N has been widely used in different studies as a discriminative factor in isotope 

modelling approaches, it has always been complicated to interpret the abundance of δ15N in 

different land uses (Zhou et al., 2013). It is due to the fact that the discriminative power of this 

signature highly depends on the type and the amount of N input or in other words, the N input-

output balance in different land uses (Högberg and Johannisson, 1993).  Researchers have recently 

examined the effect of long-term application of different fertilisers on the δ15N abundance of soil 

and plant materials (Choi et al., 2003, Nakano et al., 2003, Bateman et al., 2005). It has been 

reported that soil and plant tissues in the farms with application of composts and other organic 

fertilisers are more enriched in δ15N compared to those in the farms treated with urea and inorganic 

fertilisers such as ammonium nitrate (Choi et al., 2003, Nakano et al., 2003, Bateman et al., 2005). 

Platinum plays a key role in differentiating between land uses in this study (Table 4 and Figure 

4-C). Concentration of Pt group elements in soils mainly depend on geology and parent materials, 

while other biogeochemical factors can also affect the concentration of Pt in soils (Mudd, 2012). 

Microbial communities play a key role on transformation, concentration and movement of Pt on the 

soil surface in different environments (Reith et al., 2016). In fact, studies have shown that the soil 

microbial community composition and biodiversity is highly affected by management practices 
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applied on different land uses due to the fact that microorganisms have a complex interaction with 

the environment that they reside, and they play a critical role in most of the soil ecological 

processes (Tian et al., 2017). 

Table 4 also shows that land uses covered with trees (banana and forest) are more enriched in S 

compared to other land uses. Figure 4-C demonstrates that S (and δ13C) are responsible for 

separating banana and forest land uses from sugarcane and grazing. It could be attributed to the 

critical role of S in nutrition of tree species (Johnson, 1984). In fact, S is required in larger quantity 

for trees, as they need it for the synthesis of amino acids. It is reported that there is a strong 

correlation between S and N in tree tissue, and more than 80% of S in tree tissues is used for 

producing amino acids such as cysteine, and methionine (Johnson, 1984). In fact, trees can capture 

and pump up nutrients by enlarging the soil volume exploited by their roots. It is a basic tool for 

trees to have access and incorporate nutrients from the horizons beyond the rooting depth of crops 

and accumulate them on soil surface particularly when they have a high demand for nutrients 

(Buresh et al., 1996). 

 

 

5.2 Source discrimination and uncertainties in mixing model 

A limitation of fingerprinting research is the difficulty in developing a robust and widely applicable 

source tracing technique by selecting independent properties, that are able to properly differentiate 

between sources, followed by a mixing model (Collins and Walling, 2002). Therefore, the use of 

artificial mixtures of known contribution of sources has gained increasing popularity in recent years 

and represents an important component for the development of the fingerprinting techniques 

(Haddadchi et al., 2014b, Palazón et al., 2015). Previous studies have shown that with the 

uncertainties within the process of selecting the proper fingerprints and modelling output, it is 

recommended to test the accuracy and robustness of methods in differentiating among sources and 

employing mixing models prior to applying them to field samples (Brosinsky et al., 2014, 
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Haddadchi et al., 2014b). A study on artificial laboratory mixtures where source contributions were 

known revealed high levels of uncertainty in discriminating sources thus suggesting a better 

selection of fingerprinting properties to achieve a better and more robust estimation of source 

contributions by mixing models. (Brosinsky et al., 2014). Moreover, Haddadchi et al. (2014b) 

reported high uncertainties in predicting the contribution of different sources to the artificially-made 

sediments using different mixing models. In their study the modified Hughes and Collins models 

were evaluated as the most robust and the weakest source contribution predictor with the MAE= 

5.4% and 28.3%, respectively (Haddadchi et al., 2014b). 

In this study the mixing model results are consistent with the PCA results in terms of source 

discrimination. It indicates that the SIAR model is able to give reliable outputs based on the new 

approach in discriminating among different land uses. The relative changes in the accuracy of the 

SIAR model in estimating the contribution of sources to the different group of virtual mixtures 

highlight the importance for selecting the most discriminative group of fingerprints in cases when 

different land uses need to be investigated (Figure 5). The most accurate estimation by the model 

was given to the group of mixtures with the same contribution from each source (MAE= 0.3%) 

(Figure 5-A). While the SIAR had the lowest accuracy in predicting the contribution of sources to 

the group E of virtual mixtures (40% contribution from Grazing and forest with 10% contribution 

from sugarcane and banana) with MAE= 2.8% due to the high contribution of grazing and forest 

land uses to this mixture (Figure 5-E). Because, on the one hand there is a similarity between 

isotopic signatures of grazing and sugarcane land uses (Table 1), and on the other hand geochemical 

fingerprints were not able to clearly separate forest and grazing sources from each other (Figure 4-

B).  

 

6. Conclusions 

This study for the first time demonstrated that a combination of both geochemical (acid extractable 

Zn, S and Pt) and isotopic signatures (δ13C, δ15N) are able to differentiate the sources of sediments 
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and particulate nutrients among grazing, sugarcane, forest and banana land uses from the samples 

collected from the Johnstone River catchment.  Zn, Pt and δ15N are the key fingerprints contributing 

to the discrimination between the vegetation with the same photosynthetic systems. Results have 

also highlighted that S and δ13C are responsible for separating banana and forest from sugarcane 

and grazing land uses. The δ13C is considered as a discriminative signature in separating C4 plants 

(grazing and sugarcane) from C3 plants (forest and banana) and S provides another key signature in 

separating tree species (banana and forest) from sugarcane and grazing. This study has also 

demonstrated that SIAR mixing model is able to provide accurate source attributions (MAE= 0.3%-

2.8%) for virtual mixtures of sources with known contributions of each source applying the selected 

group of fingerprinting properties. For future researches, it is also necessary to make sure that the 

selected group of signatures, in a sediment tracing study, behave conservatively along transport 

pathways throughout the catchment and potentially in the interfaces of freshwater-marine 

environment to ensure the robustness of the selected signatures in tracing the source of sediments 

and nutrients to the marine environment.  
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Table 1 

Paired T-Tests results for δ13C and δ15N signatures of the sources (grazing, sugarcane, forest and 
banana). 

Source  n SD Grazing  Sugarcane Forest Banana 

 δ13C (‰)       

Grazing -15.74 5 0.46     

Sugarcane -15.35 5 0.65 -    

Forest -27.42 5 0.40 *** ***   

Banana -23.61 5 0.94 *** *** ***  

 δ15N (‰)       

Grazing 6.66 5 0.97     

Sugarcane 5.17 5 0.84 *    

Forest 6.26 5 1.48 - -   

Banana 5.48 5 1.33 - - -  

(−) not significant, (*) significant at p < 0.05, (**) significant at p < 0.01, (***) significant at p < 

0.001 
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Table 2 

Kruskal–Wallis H-test for identifying significant differences 

between sources. 

Tracer H-value (Chi-square) P-value 

Na 9.58 0.022* 

K 13.88 0.003* 

Mg 15.55 0.001* 

Ca 13.75 0.003* 

Mn 15.44 0.001* 

Zn 16.23 0.001* 

Al 6.74 0.081 

Cu 5.03 0.170 

Sn 4.78 0.190 

Ni 3.06 0.383 

Co 4.66 0.198 

Cr 0.33 0.954 

Pt 12.77 0.005* 

Pb 3.95 0.267 

As 13.27 0.004* 

Hg 5.25 0.154 

Fe 1.22 0.747 

Ag 3.73 0.292 

S 16.97 0.001* 

P 7.45 0.059 

Au 1.59 0.662 

Pd 1.35 0.717 

*Statistically significant at P < 0.05. 
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Table 3 

Stepwise Discriminant Function Analysis (DFA) for selecting the most discriminant group of 
elements. 

Step Tracer Wilk's 
lambda 

% of sources classified 
correctly 

Cumulative % of sources 
classified correctly 

1 Pt 0.278 50 50 
2 S 0.121 60 75 
3 Zn 0.065 60 80 
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Table 4 
Paired T-Tests results for geochemical signatures of sources (grazing, sugarcane, forest and 
banana).  
Source  n SD Grazing Sugarcane Forest Banana 
 Zn (mg.kg-1)       
Grazing 95.34 5 32.77     
Sugarcane 143.86 5 15.09 *    
Forest 72.58 5 14.60 - ***   
Banana 183.60 5 46.14 ** - ***  
 Pt (mg.kg-1)       
Grazing 7.88 5 2.32     
Sugarcane 1.20 5 1.06 ***    
Forest 8.02 5 3.27 - **   
Banana 2.04 5 1.48 *** - **  
 S (mg.kg-1)       
Grazing 309.04 5 65.61     
Sugarcane 240.28 5 22.39 -    
Forest 415.40 5 103.06 - **   
Banana 405.60 5 54.29 * *** -  
(−) not significant, (*) significant at p < 0.05, (**) significant at p < 0.01, (***) significant at p < 
0.001 
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Highlight 

 Tracing the source of sediments and nutrients is critical for aquatic ecosystems 

 A method developed to differentiate the source of sediments from different land uses 

 Both isotopic (δ13C, δ15N) and geochemical fingerprints (e.g. Zn, Pt and S) were used 

 Combined fingerprint and the SIAR model can predict the source of nutrients  
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