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Spatio-temporal patterns in the postglacial flooding of the Great 

Barrier Reef shelf, Australia. 

Gustavo Hinestrosa 
Jody M. Webster 
Robin J. Beaman 

Abstract 

The shelf of the Great Barrier Reef (GBR) was progressively marine flooded from the last 

glaciation maximum (LGM) (ca 20 ka BP) until the last sea-level highstand (ca 6 ka BP), 

affecting the depositional evolution of the GBR margin and associated deposits. However, the 

physiographic variables related to this process have not been fully characterized, especially in 

relation to the sedimentary processes at the shelf margin. For this study, we used a 

bathymetric model of the entire shelf and a shelf margin sub-set, divided into 33 latitudinal 

zones. Postglacial marine flooding was simulated and flooded area (km2), flooding magnitude 

(km2 per sea-level increment), flooding rate (km2 . ky-1) and coastline length (km) were 

estimated for each zone, from 130 m to 0 m below present sea level, representing the period 

from 20 ka to 6 ka BP. Our results show that the postglacial marine flooding did not occur 

uniformly and that some sub-regions (e.g. the southern-central GBR) had early and rapid 

flooding. Coastal complexity increased in the mid-postglacial, reaching maximum values at 

around 9 ka BP. This reflects a coastal landscape evolving from a linear, laterally connected 

coast to a complex coast dominated by estuaries and lagoons, partly returning to its initial 

linearity during highstand. Flooding trends and geological evidence make two depositional 

relationships apparent. Firstly, the timing and magnitude of the off-shelf sediment flux 

appears linked to the presence and orientation of a shelf-edge rim, and to the extension and 

morphology of the evolving drainage network. Secondly, the periods of shelf-edge reef 
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development and demise seem to respond to the remobilisation, trapping or redirection of 

fine sediments. We propose a sedimentation model for the shelf margin and the slope driven 

by the interplay of sea-level rise and shelf physiography, and we highlight two fundamental 

processes: (1) the cross-shelf sediment transport related to coastline retreat under rising sea 

levels, and (2) the effectiveness of transient embayments in redirecting or trapping 

sediments. The quantifications provided in this study have implications in the estimation of 

Pleistocene carbonate budgets and the atmospheric carbon cycle, as well as for past human 

migrations. 

 

Graphical Abstract: 
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1. Introduction 

The wide (50 to 200 km) continental shelf of northeastern Australia has been repeatedly sub-

aerially exposed and flooded during the late Quaternary (Hopley et al., 2007). These sea-level 

cycles have significantly influenced the depositional architecture of the world’s largest extant 

mixed siliciclastic-carbonate passive margin, and the location of the Great Barrier Reef 

(Maxwell and Swinchatt, 1970; Mount, 1984; Davies and McKenzie, 1993). The overarching 

process influencing reef and sediment deposition was the postglacial sea-level rise; 

particularly the rate and amplitude of this transgression and the way it was affected by shelf 

physiography.  

At least eight episodes of shallow-water reef accretion have occurred on the Great Barrier 

Reef (GBR) shelf in the last 600 ky (Webster and Davies, 2003; Humblet and Webster, 2017). 

During the Last Glacial Maximum (LGM, Clark et al., 2009) and the subsequent postglacial 

period (last 30 ky), conditions were conducive to the production of shallow-water carbonates 

on the shelf (Hopley et al., 2007) and the shelf margin (Beaman et al., 2008; Webster et al., 

2011; Hinestrosa et al., 2016). Shallow shelf bathymetry, suitable substrate availability, and 

optimal climatic and oceanographic conditions for reef development were necessarily 

widespread along the GBR shelf (Davies, 1988; Davies and Peerdeman, 1998; Petherick et al., 

2013; Reeves et al., 2013). The influence of terrigenous sediments has also been a key 

depositional control on reef development on this shelf (Larcombe and Woolfe, 1999; Fielding 

et al., 2003; Page and Dickens, 2005; Ryan et al., 2007; Bostock et al., 2009; Hinestrosa et al., 

2016).  

The relationship between sea level and shelf physiography has been proposed, to a lesser or 

greater extent, as the main control on the deposition of coastal (Harris et al., 1990; Woolfe et 

al., 1998b; Lambeck and Woolfe, 2000), mid-shelf (Harris et al., 1990; Woolfe and Larcombe, 
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1998; Woolfe et al., 1998a), shelf margin (Hinestrosa et al., 2016), and slope deposits (Page 

and Dickens, 2005; Francis et al., 2007; Puga-Bernabéu et al., 2014). The postglacial flooding 

of the GBR shelf has been studied mainly from a sedimentologic, stratigraphic and bio-

geological point of view (see Hopley et al., 2007 and references therein) than from a strictly 

physiographic one (e.g. coastal complexity evolution, flooding trends, etc.). However, the early 

atlas by Maxwell (1968) or the geomorphic descriptions of the shelf margin in Harris and 

Davies (1989) are important contributions. Many authors have also produced palaeo-

geographic maps of shelf flooding in support of geological interpretations (e.g. Page and 

Dickens, 2005; Hopley et al., 2007). Harris et al. (1990) went beyond the purely 

sedimentological/stratigraphic characterisation to establish links between the depositional 

history, sea-level fluctuations and the palaeo-coastal morphology. In particular, they 

highlighted the postglacial  transition from a linear to an estuarine coast.  

These early pioneering attempts were undertaken in the absence of more recent high-

resolution digital elevation models (DEMs) of the sea floor, and recently acquired geological 

(e.g. dredges, shelf margin cores radiometric dates, including from the drowned reefs) and 

geophysical data (e.g. bathymetry, backscatter, seismic surveys) (Bostock et al., 2009; 

Beaman, 2010; Abbey et al., 2011; Hinestrosa et al., 2016; Webster et al., 2018 ). 

Other works have quantified the morphology of the Australian shelf (Porter-Smith and 

McKinlay, 2012) and of the deeper marine areas (Porter-Smith et al., 2012). Harrison et al. 

(1983) investigated the Australian hypsography at a continental-scale, but was not specific to 

the northeastern Australia margin. Work by Brooke et al. (2017) demonstrated the value of 

palaeo-sea-level reconstructions in framing the different palaeo-shoreline features occurring 

on the Australian shelf during the Late Quaternary (0-128 ka). However, none of these 

contributions was specific to the spatio-temporal flooding patterns on the GBR shelf and its 

margin. 

Because of their deeper bathymetry, the shelf-edge reefs of the GBR are particularly useful to 
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investigate the LGM and subsequent deglaciation (Woodroffe and Webster, 2014). The shelf-

edge reefs have been surveyed with multibeam bathymetry and dense networks of seismic 

profiles in several locations (Beaman et al., 2008; Abbey et al., 2011; Hinestrosa et al., 2016), 

and were drilled in three areas by the Integrated Ocean Drilling Project, Expedition 325 (IODP 

Exp. 325, (Webster et al., 2011). The cores from that expedition revealed coralgal deposits 

ranging in age from 30 ka BP (MIS-3) to ca 10 ka BP (MIS-1) (Gischler et al., 2013; Felis et al., 

2014; Webster et al., 2018). Seismic, stratigraphic and bathymetric analysis suggest a strong 

influence of the local substrate and of the shelf physiography in connection with the sea-level 

fluctuations (Hinestrosa et al., 2014; Hinestrosa et al., 2016). However, even with these new 

constraints on age, architecture and development, the fundamental causes of the variations in 

reef accretion and demise along the shelf margin have not been fully characterised.  

The new datasets available for this margin includes the most comprehensive bathymetric 

model for the GBR shelf (Beaman, 2010), permitting a detailed reconstruction of the 

postglacial shelf flooding. Quantification of the postglacial flooding can provide the 

physiographic and geomorphic framework needed for understanding the spatio-temporal 

evolution of the GBR shelf deposits and coastal system, and the main depositional 

mechanisms operating on mixed siliciclastic-carbonate margins. Moreover, it provides 

additional spatial and volumetric constraints to the marine geochemical cycles related to 

shallow water carbonate production (Patterson and Walter, 1994; Andersson and Mackenzie, 

2004; Rees et al., 2007; Heap et al., 2009), with implications to the wider postglacial carbon 

cycle (Ridgwell et al., 2003; Ciais et al., 2013). The shelf-flooding patterns also constrain the 

ancient migration paths and exposed landscape used by indigenous Australians (Mulvaney, 

1975; Beaton, 1985; Williams et al., 2018). 

We provide a new reconstruction of the spatio-temporal patterns of shelf flooding and 

coastline morphology for the entire GBR shelf over the past 20 ka. The specific objectives of 

this study are to quantify: [1] the marine flooded area during the postglacial flooding; [2] the 
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pace (in terms of shelf marine cover and flooding rate) at which the flooding occurred; [3] the 

coastline evolution; and [4] to identify and discuss the main spatio-temporal trends in the 

context of shelf-edge reef development and slope deposition.  

2. Regional setting 

The GBR shelf is located on the passive margin of northeastern Australia (Figure 1) a region of 

low tectonic activity (Hopley et al., 2007) and low subsidence rates (DiCaprio et al., 2010). The 

continental platform of the GBR stretches over 2300 km from the Torres Strait and Cape York 

in the north to the Capricorn-Bunker Group of reefs, over 15° of latitude. Its width varies from 

less than 50 km in the north to more than 250 km in the central GBR, where the Capricorn 

Channel splits the shelf with a wide, southward drainage network, subparallel to the shelf. It 

narrows again south of the Capricorn Channel, to about 80 km in the vicinity of the Capricorn-

Bunker Group of reefs. Some 3000 reefs have developed along this shelf, affecting sediment 

distribution and composition (Harris et al., 1990; Heap et al., 1999; Heap et al., 2002) and 

shelf circulation (Wolanski et al., 1988; Wolanski, 1994; King and Wolanski, 1996; Luick et al., 

2007). On the inner-shelf, terrigenous sediment wedges have been deposited during 

highstands (Larcombe and Carter, 1998), sourced mainly from coastal rivers. These 

terrigenous deposits transition into inter-reefal carbonate sediments and reef structures on 

the mid- and outer-shelf (Scoffin and Tudhope, 1985; Harris et al., 1990).  

The mid- and outer-shelf are dominated by carbonate mud and sand, and the shallow reefs 

are interrupted by inter-reef channels connecting to the upper continental slope. In the north, 

these channels connect to the heads of the numerous canyons incising the continental slope 

(Puga-Bernabéu et al., 2013). Some of these channels are remainders of lowstand fluvial 

deposition and are filled with terrigenous sediments (Johnson et al., 1982; Fielding et al., 

2003; Ryan et al., 2007). At the shelf margin, extensive drowned lowstand and early 

transgressive reefs have developed (Beaman et al., 2008; Abbey et al., 2011; Hinestrosa et al., 
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2014; Hinestrosa et al., 2016). At the foot of these shelf-edge reefs, on the upper-slope, are 

mixed siliciclastic-carbonate deposits (Page and Dickens, 2005; Bostock et al., 2009; Harper et 

al., 2015) thinning towards the adjacent deep basin. 

The GBR shelf is influenced by the circulation of the South Equatorial Current and its 

northward and southward branches along the GBR shelf: the Hiri Current and East Australia 

Current. The latter impinges obliquely on the northern-central GBR (Ridgway and Dunn, 

2003) affecting intra-shelf circulation (Andrews and Clegg, 1989; Brinkman et al., 2002). The 

GBR is also affected by mesotidal currents (Wolanski, 1994; Hopley, 2006), which enhance 

intra-shelf circulation and affect morphology (Harris et al., 2005; Hopley, 2006). Cyclone-

driven surface currents and waves transport sediment predominantly northward (Lambeck 

and Woolfe, 2000; Larcombe and Carter, 2004; Harris and Heap, 2009). 

3. Dataset and methods 

3.1. Marine-flooded areas 

The ‘gbr100’ bathymetric model used in this study is 0.001° (ca 100 m) resolution grid 

covering the GBR shelf from Fraser Island in the south to Cape York in the north (Figure 1; 

Beaman, 2010). This bathymetric grid was sliced into 33 latitudinal zones, at 50 km intervals. 

Flooding was simulated, for each of the latitudinal zones, with predefined sea-level inundation 

values ranging from 130 to 0 m, at 5 m step intervals. These values are consistent with 

published relative sea-level curves (e.g. Lambeck and Chappell, 2001; Lambeck et al., 2014) . 

For each sea-level increment within each latitudinal zone, the polygons representing the 

marine-flooded areas were extracted and their surface area calculated in km2. These area 

values were transformed into relative values, with the present-day, highstand area 

representing 100%. The increase in marine-flooded area with each sea-level increment was 

also calculated, and we refer to this value as the ‘flooding magnitude’ in km2. Therefore, the 
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flooding magnitude represents the total area flooded in the arbitrary period between two past 

sea-level marks. The average flooded area per unit of time was also estimated and we refer to 

it as ‘flooding rate’ in km2 per thousand years (km2 . ky-1). 

The coastline length was used as a proxy measure of coastal complexity. Higher coastal 

complexity means more distance along the coastline compared to a less complex, linear coast 

for the same sector of the shelf. The extra distance is due to the occurrence of estuaries, 

islands, reefs and other coastal features. The coastline length for each sea-level increment was 

extracted from the flooding polygons for each of the latitudinal zones and these values were 

normalized to the LGM value (length at the 130 m mark), and also normalized to the length of 

the latitudinal zones (50 km). Alternative methods are available to assess coastal complexity, 

namely fractal analysis (Mandelbrot, 1967) and the angle measure technique (Andrle, 1994; 

Bartley et al., 2001). However, considering the fixed width of the latitudinal zones, the 

coastline length as presented here constituted a simple but robust proxy. The reader should 

be aware of the so-called coastline paradox, for which the coastline length is dependent on the 

scale of measurement, as pointed out by Mandelbrot (1967). Hence, the seemingly high values 

of coastline length seen in this study are consistent with the high resolution of the bathymetry 

model used.  

Throughout the descriptions and interpretations, we use the term ‘shelf margin’ to refer to the 

areas contiguous to the shelf break or shelf edge. We also defined a shelf margin bathymetric 

sub-set, which contains the bathymetric values from the shallowest outer-shelf reefs, to the 

130 m isobath, where the shelf margin adjoins the upper slope. To refer to geomorphic 

features in this area, we employ the term ‘shelf-edge’ as an adjective, e.g. shelf-edge reefs. This 

also allows us to keep our nomenclature consistent with past studies on these shelf-edge reefs 

(Beaman et al., 2008; Abbey et al., 2011; Hinestrosa et al., 2014; Webster et al., 2018).  

The marine-flooding variables (relative flooding, flooding magnitude, flooding rate and 

coastline length) were also estimated for the shelf margin sub-set of the bathymetric model 
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(Figure 2-A). This shelf margin bathymetric sub-set was also divided into the similar 33 

latitudinal zones for the calculation of flooding and coastal complexity parameters along the 

entire length of the GBR . 

3.2. General assumptions and uncertainty 

We have assumed that the present-day bathymetry of the GBR shelf approximates the LGM 

substrate depths. In reality, for reef locations and infilled river channels (drowned estuaries), 

the original substrate was substantially lower (up to ca 30 m) due to the post-glacial 

sediments and reef accumulation (Larcombe and Carter, 1998; Heap et al., 2002; Webster and 

Davies, 2003; Montaggioni, 2005; Hopley et al., 2007; Dechnik et al., 2015; Salas-Saavedra et 

al., 2018). These areas of thick reef cover represent a significant portion of the total shelf 

surface (Harris et al., 2012). However, most areas of the shelf have postglacial sediment 

thicknesses of only a couple of meters or less (Searle and Harvey, 1982; Johnson and Searle, 

1984; Harris et al., 1990). 

We used a geological time scale (in ka BP) based on the relative sea-level curve from Lambeck 

et al. (2014)  (Figure 3-A). This sea level to geological age conversion is a reasonable 

approximation given the regional scope of our study and the millennial-scale temporal 

resolution of our interpretations. However, to highlight the relative sea-level uncertainties 

(and, consequently, the uncertainty in geological time conversion) we have displayed the 

minimum and maximum sea level interpreted from GBR samples (Yokoyama et al., 2018; 

figure 3-A).  

We also note the potential hydro-isostatic effects, which – due to the larger temporal and 

spatial scales involved – have not been included in our calculations. However, it has been 

estimated that hydro-isostasy or water loading caused tilting of the shelf across the GBR of 

between +3 m along the present-day coast and −2 m on the upper continental slope (Chappell 

et al., 1982; Lambeck and Nakada, 1990; Yokoyama et al., 2006). 
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We also acknowledge possible age bias in the core samples of the slope of the GBR shelf. In 

borehole ODP 820 (Dunbar et al., 2000), more recent pollen radiometric ages have confirmed 

a radiometric age bias (Moss et al., 2017), possibly introduced by the diagenesis of 

foraminifera tests. Most of the bias in those samples remain within our range of uncertainty 

(ca 1 ky), but a more significant deviation can be identified for ages older than ca 15 ka BP. 

Future work could help quantify the uncertainty and correct the ages in these cores. 

In the color maps, results near the opening of the Capricorn Channel (ca 22.5° S) are biased. 

This is due to the orientation of the shelf in the channel compared to the rest of the GBR. In 

this case, the marine flooding charts shown in Figure 3 are more useful for the assessment of 

the flooding and coastal patterns of the Capricorn Channel, as this sub-region represents the 

merging of seven latitudinal zones. 

4. Results 

Multiple latitudinal zones are grouped into curves (Figure 3), showing trends for the whole 

GBR and for the five sub-regions: the northern GBR, the northern-central GBR, the southern-

central GBR, the Capricorn Channel and the southern GBR (Figure 1). These graphs show the 

flooding patterns through geological time, which facilitates the comparison with the timing of 

depositional events in the region (Figure 3-I). Results are also presented as color maps 

(Figure 5 and Figure 6). 

 

4.1. Major spatio-temporal flooding patterns 

Several patterns are distinguished in the curves (Figure 3) and color maps (Figure 5 and 

Figure 6)  The GBR shelf has been progressively flooded since the LGM, with half of the shelf 

area already submerged when sea level approached 40 m below the present level (ca 10 ka 

BP). The different GBR sub-regions, however, exhibit considerable variations in the timing, 
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magnitude and rate of flooding. The southern-central GBR, including the Capricorn Channel as 

a whole, shows an earlier flooding than the northern and southern sub-regions. 

The flooding magnitude and rate curves for the GBR shelf as a whole have a strong imprint of 

the trends of the northern, southern and southern-central sub-regions. Two periods of rapid 

addition of flooded area are seen at 65 m (ca 12–13 ka BP) and 25 m (ca 9 ka BP), with 

moderate and large values of added flooded area, respectively (Figure 3-C, -D). However, the 

curves for the individual sub-regions reveal contrasting patterns: the southern-central GBR 

saw an earlier increase in the flooding magnitude and rate when sea level reached the 70–80 

m mark (ca 13 to 14 ka BP), sustaining these high values until the highstand. In contrast, the 

narrower shelf at the northern and southern GBR did not see an increased flooding magnitude 

and rate until sea level surpassed the 40 m mark (after 11 ka BP). 

At the shelf margin, due to the deeper bathymetry, local flooding occurred earlier, with 50% 

of the areas at the shelf margin flooded when sea level reached 80–90 m (ca 14 ka BP). The 

northern-central GBR and southern-central GBR sub-regions show patterns analogous to that 

of the GBR shelf margin as a whole. The northern and southern GBR shelf margin sub-regions 

flooded later, and exhibit flooding magnitude maxima that are mainly out of phase with both 

the whole and the central GBR shelf margin flooding curves (Figure 3-B, -C, -D vs. Figure 3-F, -

G, -H). 

In general, the coastline length increased steadily since the LGM along the entire GBR (Figure 

3-E), reaching a maximum of ca 45,000 km during the mid-postglacial, after 10 ka (ca 40 m) 

and then decreased to a lower value of ca 15,000 km as the sea level approached highstand at 

6 ka. Interestingly, the coastline length maximum and the flooding magnitude and rate 

maxima occured roughly at similar times. The southern-central GBR reached the maximal 

coastline length earlier than the rest of the GBR.  

The color maps in Figure 5 highlight the latitudinal variations already suggested by the curves 

of the sub-regions in Figure 3. Between 23° S and 18° S, the flooding patterns exhibit strong 
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variations in flooded area and coastal complexity. These graphs highlight the higher and 

earlier contribution in flooded area from the southern-central GBR when compared to the 

northern-central and the southern GBR. 

The color maps for the shelf margin bathymetric sub-set (Figure 5) reveal similar patterns to 

those observed for the entire shelf, with early flooding affecting the southern-central GBR, and 

a corresponding early increase in coastline length. However, the flooding curves (Figure 3-B, -

F) show that the shelf margin flooded earlier in relative terms compared to the whole shelf, as 

a consequence of the deeper bathymetry. 

5. Discussion 

5.1. Oceanographic vs. Physiographic factors 

Dramatic environmental changes have affected the Queensland shelf since the LGM (Petherick 

et al., 2013; Reeves et al., 2013), conditioning the colonization, growth and development of the 

early postglacial shelf-edge reefs and modern GBR (Davies, 1988, 1992; Webster and Davies, 

2003; Hinestrosa et al., 2016; Webster et al., 2018). At the shelf margin, postglacial latitudinal 

contrasts in sea-surface temperature and in oceanic circulation have been observed (Bostock 

et al., 2006; Felis et al., 2014), suggesting that significant spatial and temporal changes in the 

environment of the shelf margin were sufficient to affect reef accretion. 

In addition to the environmental changes related to atmospheric and oceanic systems, the 

changes brought in by the postglacial shelf inundation had a profound effect on the accretion 

of the shelf-edge reefs and deposition of other sediments. The prominent differences in 

physiography (e.g. shelf width, shelf orientation, drainage patterns, slope, shelf topography) 

observed along the shelf margin, across latitudinal zones, have been suggested as a primary 

driver for reef development on the shelf margin of the GBR (Page and Dickens, 2005; 

Hinestrosa et al., 2016). The quantification of the flooding variables shown herein allows us to 
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explore the influence of physiography at higher resolution, and provides a broader framework 

for the postglacial geomorphic reconstructions along the length of the GBR. This provides 

further implications for depositional environments to seaward (slope and basin) and 

landward of the shelf-edge (Holocene reefs and shallow-water clastic deposits).  

5.2. Coastal complexity 

The evolution of coastal complexity exhibits a boundary at around 18° S between the 

southern-central GBR and northern-central GBR (Figure 6). In the Capricorn Channel and in 

the southern-central GBR, coastal complexity increases early (above 80 m, after ca 14 ka BP) 

and rapidly (e.g. for the southern-central GBR, ca 10,000 km of added coastline in 3 ky). This 

is due to the presence of shelf-parallel, elongated structures on the shelf margin of the GBR 

(Hopley, 2006; Hinestrosa et al., 2014). Landward of the shelf-edge, sub-aerially exposed 

fossil reefs, also shelf-parallel, contribute toward an early increase in coastal complexity. The 

resulting palaeo-coastal morphology in these flooded areas (Figure 2) suggest the existence of 

an extensive palaeo-lagoonal environment (Hinestrosa et al., 2016). 

In contrast, the increase in coastal complexity in the coastline of the northern, northern-

central GBR and southern GBR occurs later (above 60 m, after ca 11.5 ka BP; Figure 3-E). This 

is a consequence of a different landscape: a gentler shelf gradient, reduced extension of the 

deeper shelf-edge reefs, and shallower shelf incisions by inter-reef channels. These incisions 

are interpreted as palaeo-estuaries, and are particularly visible in the northern-central GBR 

(Figure 2-B). Estuarine mangrove muds with ages matching the mid-postglacial have been 

recovered at equivalent locations (e.g. Harris et al., 1990; Grindrod et al., 1999) confirming the 

reconstructed palaeo-geography. The later coastline length maximum for the northern GBR, 

near the Torres Strait, responds to the abundance of relatively shallow, elongated banks, sub-

perpendicular to the shelf. 

In summary, the southern-central GBR experienced an early and rapid onset of lagoonal 
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conditions, whereas the northern-central and northern GBR saw a progressive evolution to an 

estuarine coastline. The effects of these changes on the depositional evolution of the shelf 

margin have been described using seismic evidence (Hinestrosa et al., 2016). These 

interpretations suggest an early onset of detrimental conditions for reef accretion within the 

inner, back-reef lagoonal waters of the GBR between 18° S and 22° S, whilst the seaward, 

ocean-exposed areas saw thriving fringing-reef development. By maintaining a lower coastal 

complexity for longer, the edge of the northern-central GBR did not see such a marked 

detrimental effect of lagoonal waters on back-reef coralgal growth. This incised configuration 

with less convoluted east-west drainage patterns would also promote the enhancement of off-

shelf transport in later stages of the marine transgression. 

5.3. Flooding of the shelf and slope deposits 

Several locations have been cored on the continental slope, from the southern limits of the 

GBR province (offshore of Fraser Island) to the northern-central GBR slope (Peerdeman et al., 

1993; Dunbar et al., 2000; Troedson and Davies, 2001; Page and Dickens, 2005). These cores 

confirm that off-shelf sedimentation in the slope/basin of the central GBR responds to a 

'unconventional' siliciclastic and carbonate transgressive shedding model (Dunbar et al., 

2000). In such a model, siliciclastic accumulation maximum and minimum rates are not 

necessarily observed during falling sea level and transgression, respectively (Figure 4-B). In 

contrast, the cores from the slope south of the Capricorn Channel (Bostock et al., 2009) 

display a 'conventional' slope depositional model (Mitchum et al., 1976; Vail et al., 1977), 

where the maximum off-shelf sediment flux occurs during falling sea level. In the central GBR, 

the mass accumulation curves do not always show a close synchrony between sites. 

Nevertheless, it is possible to correlate the major slope trends with key features of our shelf 

flooding reconstruction (See supplementary table). 

Marine flooding occurred earlier and more rapidly in the southern-central GBR than in the 

rest of the shelf (50% of marine flooding and flooding magnitude and rate maxima after 60 m, 
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ca 11 ka BP; Figure 3-B, -C). Similar to the coastal complexity trends, the northern, northern-

central, and southern GBR sub-regions do not show a significant increase in flooded area until 

at least a millennia later. The shelf morphology played an important role: in the southern-

central GBR, the lower topography and the low surface gradient favored rapid landward 

retreat of the coastline. By contrast, in other areas the shallower and narrower platform and 

the relatively steeper shelf gradient resulted in a delayed and smaller maximum flooded area. 

The flooding reconstructions can help explain the major depositional differences observed 

between the continental slope of the Capricorn Channel and the upper-slope of the central 

GBR. The lack of reefs on the southern Capricorn Channel sub-region, its physiography, and 

the southward drainage system are consistent with higher sedimentation rates during falling 

sea level ('conventional' model) observed in slope deposits (core GC12, Figure 4-B; Bostock et 

al., 2009). The shelf margin and slope of the Capricorn Channel sees a stronger fluvio-deltaic 

influence (Fielding et al., 2003; Ryan et al., 2007) with some degree of shelf incision (Miall, 

1991; Van Heijst and Postma, 2001). Furthermore, there are no carbonate structures to 

disrupt and redirect the sediment flux (Puga-Bernabéu et al., 2011) or to retain the sediments 

on the shelf (Woolfe et al., 1998a). Moreover, abundant accommodation space south of the 

Capricorn Channel must have allowed the formation of sedimentary structures typical of the 

conventional sequence stratigraphy models, such as progradational lowstand wedges (Van 

Wagoner et al., 1988). 

In contrast, in the upper slope of the southern-central GBR sub-region, the predominant 

drainage along the shelf, the abundant shelf-edge reef structures, and the extensive palaeo-

lagoons must have favored lowstand redirection of sediment southward, and also significant 

storage in the mid- and outer-shelf (Figure 2-C) (Johnson et al., 1982; Woolfe et al., 1998a). 

Consequently, this slope was sediment starved, favoring the deposition of a lowstand 

condensed section during times of slow flooding and low coastal complexity, as also observed 

in the northern-central GBR (ODP 820, PC16 in Figure 4-B; Dunbar et al., 2000). 
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During highstand, maximum marine relative flooding and a lower coastal complexity (Figure 

3-B, 3-E) enhanced the sedimentological landward-to-seaward differentiation on the shelf 

(Belperio, 1983; Harris et al., 1990). This was enabled by the lateral interconnection of 

embayments, the reactivation of along-shelf coastal transport (Lambeck and Woolfe, 2000; 

Larcombe and Carter, 2004; Harris and Heap, 2009) and riverine input (Furnas, 2003). On the 

continental slope, this was expressed as a drop in mass accumulation rates, at least in the 

central GBR (Bostock et al., 2009). 

5.4. Shelf-edge reef development in the central GBR 

The shelf margin of the southern central GBR sub-region provided early (80 m, before 14.5 ka 

BP) habitat availability for reef development compared to the southern sub-region, which had 

to wait for at least further 10 m rise in sea level. Responding to the deep terraced morphology 

with relatively wide and flat extensions, the shelf margin flooded rapidly when sea level rose 

from 90 to 70 m. These same areas for reef accretion would become available (after 10 ka BP) 

for the development of mesophotic communities (Bridge et al., 2011; Abbey et al., 2013). The 

question remains on how this early and rapid,   but localized flooding might have affected the 

future local and regional ecology (Cornell and Karlson, 2000; Bongaerts et al., 2010).  

In general, the temporal patterns of the flooding rates for the whole shelf and for the shelf 

margin bathymetric subset differ significantly. The fastest flooding rate at the shelf margin 

occurred, in general, before the maximal coastal complexity was reached. This is interpreted 

as due to the rapid flooding of the flat, deeper and distal shelf margin terraces. This rapid 

flooding of the shelf margin was occurring when sea level was still lower than the mid- and 

inner-GBR shelf, where abundant incisions, exposed reefs and embayments would contribute 

to the increase in coastline length only later.  

Importantly, this meant that at least half of the benthic habitat on the shelf margin was 

available for reef growth long before the full extension of the southern lagoons (50 m, 12–13 
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ka BP) and the northern estuaries (40 m, ca 10 ka BP) – and before their possible detrimental 

effect on water quality was maximal. This likely facilitated the accretion of thick fringing shelf-

edge reefs at Hydrographers Passage (Hinestrosa et al., 2014) and of thinner, but thriving 

reefs at Noggin Passage (Hinestrosa et al., 2016). 

Published work (Gischler et al., 2013; Felis et al., 2014; Harper et al., 2015; Hinestrosa et al., 

2016; Webster et al., 2018) has already shed light on the evolution of the shelf-edge reefs. 

Seismic and core data show two to three main reef structures with different stages of 

development and demise (Hinestrosa et al., 2016; Webster et al., 2018). 

5.4.1. Growth of shelf-edge reef structures 

Core analyses and radiometric ages (Webster et al., 2018; Yokoyama et al., 2018) show the 

occurrence of three postglacial shelf-edge reef packages, consistent with the shallow and sub-

bottom morphologies on the same study zones of the central GBR (Hinestrosa et al., 2016). 

Necessarily, environmental variables were optimal for reef growth at each successive shelf-

edge reef growth episode. Three windows are particularly relevant to highlight the 

relationship between physiography, shelf flooding and reef accretion: 17– 14 ka BP, 16–14 ka 

BP, and after 11 ka BP (Hinestrosa et al., 2016; Webster et al., 2018). 

The first window (110–80 m, 17–14 ka BP) was a time of low sedimentation in the slope of 

the central GBR. Marine waters covered less than 10% of the shelf (a short distance between 

shelf-edge to the palaeo-coast) and 5–30% of shelf margin. At both scales – for the whole shelf 

and the shelf margin zones– flooding occurred slowly and the coastline was mainly linear. 

Nonetheless, the lower gradient and larger terraces (Abbey et al., 2011; Hinestrosa et al., 

2014) of the shelf margin of the southern-central GBR sub-region favored coastal retreat and 

slightly higher flooding rates compared to other areas with steeper gradients. This must have 

promoted the formation of the thick fringing-reef packages observed in the seismic profiles at 

Hydrographers Passage (Hinestrosa et al., 2016; reefs 3a, 3b in Webster et al., 2018). These 
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terraces facilitated the creation of back-reef lagoons (Hinestrosa et al., 2014) between the 

growing reef and the sub-aerially exposed barriers, enhancing the redirection and trapping of 

sediments. This, in turn, improved water quality at the reef front, better exposed to oceanic 

waters. 

The second window (80–50 m, 14–11 ka BP) responds to a continued and sustained increase 

in sea level (Figure 3-A), which favored the rapid substrate flooding (Figure 3-G) and 

consequent colonisation of the more proximal, shallower sections of the shelf margin terraces. 

Both sea-level rise and swift substrate creation contributed to rapid and sustained reef 

accretion during this stage (Hopley and Kinsey, 1988; Montaggioni, 2005; Webster et al., 

2018). This window preceded the maximum extension of estuaries and lagoons in the GBR, 

and, possibly, reefs were less affected by an hypothetical drop in water quality. However, a 

diminished accretion potential at around 14 ka BP (Webster et al., 2018) could indicate an 

early estuarine/lagoonal detrimental influence. 

The most recent window (after 11 ka BP) saw the continuing development of the shallower 

shelf-edge reef package, under a low, but increasing offshore sediment accumulation, with a 

high coastal complexity and sea level shallower than 50 m. The coast was retreating westerly 

and waters covered between 20 and 40% of the shelf of the central GBR. These shelf-edge 

reefs were growing on antecedent topographic highs (Davies et al., 1989; Montaggioni, 2005; 

Davies, 2011; Hinestrosa et al., 2016) with restricted lateral substrate, favoring the 

development of a barrier reef system instead of fringing reefs. The high coastal complexity 

enhanced the trapping of coarse sediments to landward (Meade, 1982; Eyre, 1998; Larcombe 

and Woolfe, 1999). The remobilization of fine sediments was hindered, but not suppressed by 

the deepening of the lagoons and estuaries, making turbidity more dependent on coastal input 

(Wolanski, 1992). Sediments must have necessarily bypassed the shelf margin, either by 

redirecting through south-bound drainage features (Capricorn Channel, southern-central 

GBR) or through estuarine shelf features and inter-reef passages (northern-central GBR; 
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Hinestrosa et al., 2016). 

5.4.2. Demise of shelf-edge reef structures 

The early postglacial (90–80 m, ca 14 ka BP) saw the demise of the distal shelf-edge reef 

structures in the southern-central GBR still accreting by this age (Hinestrosa et al., 2016; Reef 

3b in Webster et al., 2018). In the seismic profiles of the northern-central GBR, the early shelf-

edge reefs are not clearly distinguishable from the more recent, proximal reefs. During this 

period, low mass accumulation rates were observed in the slope of the central GBR (Figure 4-

B), with less than 10% of the shelf and 5–30% of the shelf margin flooded. The flooding rate 

was low –either using the shelf margin dataset or considering the whole shelf– and the 

coastline remained linear. At this point, the shelf-edge reefs consisted of fringing reefs 

attached to the sub-aerially exposed shelf. Increased precipitation (Moss and Kershaw, 2000) 

and increased fluvial activity (Croke et al., 2011) could have all contributed to detrimental 

coastal water quality, easily propagated along an uninterrupted linear shoreline. Changes in 

sea-surface water temperature might have been a factor too (Lawrence and Herbert, 2005; 

Tachikawa et al., 2009; Felis et al., 2014), but these are not fully characterised in the GBR. 

Core-top chronologies and the seismic interpretations of these distal, deeper shelf-edge reefs 

are consistent with this scenario (Hinestrosa et al., 2016; Webster et al., 2018).  

As the coastline continued its landward retreat (80–60 m, 14–12 ka BP), shallower and more 

proximal reefs developed to landward. The older, more distal reefs, however, declined 

(Hinestrosa et al., 2016). This seems paradoxical, considering that the coastline had retreated 

significantly, potentially diminishing its detrimental influence on the reefs. However, it is 

plausible that the increased resuspension of fine sediments previously accumulated on the 

shelf (Johnson et al., 1982; Woolfe et al., 1998a) favored a seaward increase in turbidity and 

nutrient content (Chongprasith, 1992; Wolanski, 1994; Furnas, 2003; Alongi and McKinnon, 

2005). As proposed by Neumann and Macintyre (1985), the landward lagoons and palaeo-

estuaries ’shot their reefs in the back’. This is consistent with undated relict foraminifera tests 
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found in Hydrographers Passage that are typical of turbid waters (Uthicke and Nobes, 2008; 

Renema et al., 2013). The coastline, increasingly complex, evolved in synchrony with these 

changes: incipient estuaries with enlarging mangrove forests (Grindrod et al., 1999; Moss et 

al., 2005) and coastal lagoons were playing an important role as sediment sinks (Meade, 1982; 

Wolanski, 1992; Eyre, 1998; Woolfe et al., 1998b) mainly for coarse sediments. Under an 

increasing flooding rate, the seaward transport of finer sediments was not necessarily 

deterred. Northward transport, however, was hindered by newly formed coastal embayments 

(Lambeck and Woolfe, 2000). The slope did not see high mass accumulation rates between 

14–12 ka BP, but the sediment flux was on an increasing trend. Signs of this trend is the end of 

deposition of the condensed section before this time window (boreholes ODP 820 and PC16; 

Dunbar et al., 2000) and the increase of the mangrove pollen abundance (ODP 820; Moss and 

Kershaw, 2000). This trend is also supported by the higher values of gamma rays recorded in 

the IODP Exp. 325 boreholes (Figure 4-C), which despite uncertainties in depth-to-age 

conversions suggest terrigenous influence on the postglacial reefs at this time (M0031A, 

M0036A; Webster et al., 2011; Webster et al., 2018).  

The shelf-edge reefs could not keep up with the changes occurring during the mid-postglacial 

(40–20 m, 10–9 ka BP), which preceded the turn-on of the Holocene reefs of the modern GBR 

to landward (Webster et al., 2018). During this mid-postglacial period, at least 50% of the 

shelf was flooded and the coastline was now far from the shelf-edge. The embayments were 

either effective traps (deepened lagoons or estuaries with mangrove forests) or estuarine 

conduits for off-shelf transport, as inferred from the coastal complexity and drainage patterns. 

Moreover, with the deepening of coastal waters, resuspension of the bottom sediments 

became more dependent on high-energy events, and the riverine plumes had to be much 

larger to affect shelf margin waters (Wolanski and Spagnol, 2000; Devlin et al., 2001).  

Taken together, the shelf configuration at this time appears favorable for distal reef 

development. However, the cores from the upper-slope (Bostock et al., 2009) show a rapid 
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increase in fine sediment deposition on the upper-slope at this time (10.5–9 ka BP) and the 

core tops from the shelf margin confirm limited or nil reef accretion after this time window 

(Webster et al., 2011; Webster et al., 2018). The interplay of the physiography and 

hydrodynamics of the shelf might provide one solution to this paradox. As sea level rose to a 

critical point, less energy was available in the now deeper waters. However, the low energy 

was contrasted by strong tides. In a rimmed setting with abundant restricted areas, tides can 

provide the energy needed for sediment resuspension (Kleypas, 1996), cross-shelf sediment 

transport and channel scouring. Harris et al. (2005) showed the important role of tides in the 

erosion and transport in the northern GBR. In their models, the strongest tidal currents 

occurred over the deepest, outer-shelf segments of the valleys at a sea level of 40–50 m. A 

tidal forward numerical model on the central GBR could test this hypothesis. 

5.4.3. Shelf-edge mesophotic reefs 

A hiatus in the growth of mesophotic reef has been observed in the southern-central GBR 

between 10 and 8 ka BP (30–10 m, Figure 3-I, Abbey et al., 2013). It occurred during a time of 

high mass accumulation rates in the slope of the central GBR when marine flooding reached 

70–90% of the shelf and 85–95% of the shelf margin areas.  

Rapid flooding rates and coastal complexity close to its maximum were prevailing when the 

mesophotic hiatus initiated, followed ca 1 ky later by the final drowning of the shelf-edge 

reefs (Reef 4, 10–9 ka BP, Webster et al., 2018). The palaeo-mesophotic reefs studied by 

Abbey et al. (2013) developed on top of the shallow-water reefs, and survived the early 

disturbances that caused the demise of the shallow-water shelf-edge reefs. However, shortly 

after, mesophotic growth was interrupted for ca 2 ky. The continued deepening of the shelf, 

the flooding of the shallow banks and the subsequent tidal enhancement might have further 

decreased the water quality. 

Reactivation of the mesophotic reefs occurred after ca 8 ka BP together with the shallower 
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Holocene reefs. Possibly, the decrease of tidally-driven cross-shelf sediment transport (Harris 

et al., 2005) favored better water quality at the shelf margin as marine transgression 

progressed, with ca 90% of the shelf flooded at a sea level of 30–10 m. The lateral 

reconnection of coastal embayments increased, as inferred from the decrease in coastal 

complexity (Figure 6) and a return to a relatively linear coast. The northward, fair-weather 

longshore (Lambeck and Woolfe, 2000) and storm-weather longshelf (Larcombe and Carter, 

2004; Harris and Heap, 2009) currents were now flowing on a shelf with a more linear coast, 

enabling a more uninterrupted, connective northward flow. The longshore and longshelf 

currents hindered cross-shelf transport, at least at the shelf edge of the southern-central GBR, 

and ultimately produced the coast-to-basin sedimentological differentiation observed today 

(Belperio, 1983; Harris et al., 1990). 

5.5. Implications for human migration 

The flooding of some 250,000 km2 of continental shelf at the GBR between 20 ka and 6 ka BP 

disrupted the livelihoods of past indigenous Australian communities (Mulvaney, 1975; 

Beaton, 1985; Ulm, 2011) and some authors argue that this likely forced a major migration 

away from the retreating coast (Williams et al., 2018). However, the extent of the disruption 

to livelihoods remains elusive, also because of uncertainties on population distribution on this 

shelf (Mulvaney et al., 1999; Ulm, 2011). Moreover, human evidence from that period is 

scarce, restricted mainly to linguistics (Nunn and Reid, 2016) and few archaeological sites 

with limited pre-Holocene evidence and far from the shelf-edge (Ulm, 2011).  

However, the physical framework shown herein is consistent with this idea. Firstly, it is very 

likely that the transition from a terrestrial to a coastal/marine environment was experienced 

within one or two generations of these past populations, at least in some locations. According 

to our calculations, in the low-gradient southern-central GBR, up to 1,500 km2 were flooded 

every century from 13 to 11 ka BP. Moreover, differences in the flooding rate and magnitude 

from sub-region to sub-region (Figure 5) could have also affected the geographical patterns of 
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past migrations, which might have forced migrations westward, northward and southward 

away from the rapidly flooding southern-central GBR. 

6. Conclusions 

This study shows the marine flooding patterns of the GBR shelf since the LGM have influenced 

the development of lagoons and estuaries on the inner- to mid-shelf, the development of the 

shelf-edge reefs, and the timing and intensity of the slope sedimentation. Specifically, we draw 

the following main conclusions: 

[1] The postglacial marine flooding of the GBR shelf did not occur uniformly in time or space. 

Strong spatio-temporal variations in shelf flooding patterns have been quantified across the 

different regions of the GBR at the shelf- and shelf margin scales. The southern-central GBR 

sub-region stands out for its early and rapid flooding. At different times, extensive areas of the 

shelf (>1000 km2) were covered by marine waters in sub-millennial or even sub-centennial 

periods. 

[2] The differences in the flooding patterns in the GBR shelf are related to variations in coastal 

complexity. After an initial period of linear, low complexity coastlines during the lowstand sea 

level, the palaeo-coastline evolved into estuary-dominated (northern, northern-central, 

southern GBR sub-regions) and lagoon-dominated (southern-central GBR sub-region) during 

the mid-postglacial. Coastal complexity decreased again during the sea-level highstand.  

[3] The strong contrasts in shelf flooding and sediment deposition along the GBR shelf have 

been driven by the interplay of sea-level rise and shelf physiography. Our observations, 

together with the existing geological evidence, are consistent with shelf margin and slope 

deposition that is sensitive to: (1) the enhancement or decline of cross-shelf sediment flux 

related to coastline retreat, and (2) the effectiveness of transient embayments in redirecting 

or trapping sediments.  
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[4] The timing of the off-shelf sediment flux (lowstand vs. transgressive vs. highstand) can be 

linked to the presence and orientation of a shelf-edge rim, and to the extension and 

morphology of the local/regional drainage network at different stages, as demonstrated by 

the differences between the featureless Capricorn Channel and the rimmed central GBR sub-

regions. 

[5] The broad periods of reef development and demise inferred from the data available may 

be explained by the remobilisation, trapping or redirection of fine sediments on the shelf, 

which in turn responded to the evolving postglacial coastal morphology and flooding of the 

GBR shelf.  
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8. Project data 

Data provided with this paper: 

- Spreadsheet with values for marine relative flooded area, flooding magnitude, flooding 

rate and coastline length, for each sea-level increment and latitudinal zone 

(GBR_flooding_summary_latitudinal_zones.xlsx)  

- Files with values for marine relative flooded area, flooding magnitude, flooding rate 

and coastline length grouped by sub-region (COASTLINE_length_subRegions.csv, 

COASTLINE_length_change_subRegions.csv, SHELF_relative_flooding_subRegions.csv, 

SHELF_flooding_magnitude_rate_subRegions.csv, SHELF-

MARGIN_relative_flooding_subRegions.csv, SHELF-

MARGIN_flooding_magnitude_rate_subRegions.csv). 

Spreadsheet with age control for shelf-edge boreholes shown in Figure 2 and some plots 

(Age_control_cores_GR.xlsx). Data extracted from Felis et al. (2014) and Webster et al. (2011) 

and used to link the boreholes and Gamma ray logs to the flooding curves. 

Supplementary Information 
 
Supplement 2. Video in .mov format showing a flythrough over the Great Barrier Reef, 
displaying the bathymetric dataset used in this study. Same video can be seen at this web 
address: https://youtu.be/BOvrNXGJhTA  

The file of this video is released under the Creative Commons Attribution 4.0 International 

Licence, © www.deepreef.org 
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Figure 1. Location map highlighting: the bathymetry of the GBR shelf (Beaman, 2010); the GBR sub-regions considered in this 
study (black boxes: northern, northern-central, southern-central, southern GBR and Capricorn Channel); the boundaries between 
each of the 33 latitudinal zones (white horizontal lines), the drainage network (brown lines) and the dominant drainage 
orientation for each region (green arrows). 
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Figure 2. (A) Central GBR shelf displaying the bathymetry and two of the shelf margin study sites of the IODP Exp. 325, (B) 
Noggin Passage and (C) Hydrographers Passage, and the location of the IODP Exp. 325 drilling transects NOG-01B, HYD-01C, 
HYD-02A and some of the key boreholes in Webster et al., 2011. Notice the distance between the outer GBR shallow reefs and the 
shelf edge in each of the areas. The shallow reef areas derived from the submerged banks defined in Harris et al. (2012).  
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Figure 3. Marine flooding charts for the LGM and postglacial period: (A) sea-level curve and sea-level rate based on Lambeck et 
al. (2014), the dated palaeo-depth interpretations from Yokoyama et al. (2018) have been added as a reference; (B) relative 
marine flooding for the entire GBR shelf and sub-regions; (C) flooding rate for the entire GBR and sub-regions; (D) flooding 
magnitude for the entire GBR shelf and sub-regions; (E) coastline length for the entire GBR shelf and sub-regions; (F) relative 
marine flooding for the shelf margin bathymetry sub-set and sub-regions; (G) flooding rate for the shelf margin bathymetry sub-
set and sub-regions; (H) flooding magnitude for the shelf margin bathymetry sub-set and sub-regions; (I) depositional events in 
the shelf-edge reefs of the central GBR, modified from Abbey et al. (2013) and Webster et al. (2018): reef accretion periods (blue 
lines), reef demise events (red lines), mesophotic hiatus (shaded area). 
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Figure 4. Core and borehole data and interpretations from the postglacial period: (A) sea-level curve and sea-level rate based on 
Lambeck et al. (2014), the dated palaeo-depth interpretations from Yokoyama et al. (2018) have been added as a reference; (B) 
mass accumulation rates in five locations of the continental slope, modified from Bostock et al. (2009) and Dunbar et al. (2000), 
in the light of recent pollen radiocarbon ages (Moss et al., 2017), the mass accumulation rates for hole ODP 820 –and possibly 
other slope cores– deserve revisiting particularly beyond 15 ka BP; (C) Gamma ray downhole logs in four locations of the IODP 
Exp. 325 (Webster et al., 2011) with intervals of improved chronological control highlighted, for borehole location see Figure 2; 
(D) depositional events in the shelf-edge reefs of the central GBR, modified from Abbey et al. (2013) and Webster et al. (2018): 
reef accretion periods (blue lines), reef demise events (red lines), mesophotic hiatus (shaded area).  
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Figure 5. Color maps based on past sea level, latitudinal location and flooding values. The color maps represent matrices 

containing the values of marine-flooded area, flooding magnitude and coastline length for each pair of past sea-level increment 

and latitudinal zones: (A) cumulative marine flooded area in the entire GBR shelf; (B) flooding magnitude in the entire GBR shelf; 

(C) cumulative marine flooded area in the shelf margin bathymetric sub-set; (D) flooding magnitude in the shelf margin 

bathymetric sub-set. Notice the locations of Noggin Passage (northern-central GBR) and Hydrographers Passage (southern-

central GBR). Notice also the grouping of the GBR into sub-regions (in pink) for which flooding curves were produced (Figure 3).  
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Figure 6. Color maps based on past sea level, latitudinal location and coastline length. The color maps represent matrices 
containing the values of marine-flooded area, flooding magnitude and coastline length for each pair of past sea-level increment 
and latitudinal zones: (A) coastline length evolution for the entire GBR shelf; (B) coastline length normalized to the 50 km width 
of each latitudinal zone; (C) coastline length normalized to LGM values; (D) coastline length variation for each successive sea-
level increase, notice the period of major increase during the mid postglacial, which precedes a strong, late postglacial reduction 
in coastline length. The locations of Noggin Passage (northern-central GBR) and Hydrographers Passage (southern-central GBR) 
are highlighted. The grouping of the GBR into the zones (in pink) is the same as in figure 4, for which flooding curves were 
produced (Figure 3). 
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Highlights 
 

- Postglacial marine flooding was not uniform across the Great Barrier Reef shelf 
- Northern- and southern-shelf flooded later, at shallower sea levels 
- Southern-central shelf flooded earlier and at a higher rate than most areas 
- Coastline evolved from linear in the early postglacial, to estuarine and lagoonal 
- Timing and magnitude of slope sediment flux linked to margin and drainage 

morphology 
- Shelf-edge reef evolution linked to remobilisation or trapping of fine sediments  

 




