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Efficient FPGA Implementations of Pair and
Triplet-based STDP for Neuromorphic Architectures
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Abstract—Synaptic plasticity is envisioned to bring about
learning and memory in the brain. Various plasticity rules
have been proposed, among which Spike-Timing Dependent
Plasticity (STDP) has gained the highest interest across various
neural disciplines, including neuromorphic engineering. Here, we
propose highly efficient digital implementations of pair-based
STDP (PSTDP) and Triplet-based STDP (TSTDP) on Field
Programmable Gate Arrays (FPGA) that do not require ded-
icated floating-point multipliers, hence need minimal hardware
resources. The implementations are verified by using them to
replicate a set of complex experimental data, including those from
pair, triplet, quadruplet, frequency-dependent pairing, as well
as Bienenstock-Cooper-Munro (BCM) experiments. We demon-
strate that the proposed TSTDP design has a higher operating
frequency that leads to 2.46 times faster weight adaptation
(learning), and achieves 11.55 folds improvement in resource
usage, compared to a recent implementation of a calcium-based
plasticity rule capable of exhibiting similar learning performance.
In addition, we show that the proposed PSTDP and TSTDP
designs respectively consume 2.38 and 1.78 times less resources
than the most efficient PSTDP implementation in the literature.
As a direct result of the efficiency and powerful synaptic
capabilities of the proposed learning modules, they could be
integrated in large-scale digital neuromorphic architectures to
enable high-performance STDP learning.

Index Terms—STDP, Neuromorphic Engineering, Hebbian
Learning, FPGA, Synaptic Plasticity.

I. INTRODUCTION

RESEARCH into the hardware realization of Spiking Neural
Networks (SNNs) is becoming increasingly popular to

inspire the development of efficient brain-inspired computing
platforms [1]–[5]. Existing digital implementations of SNNs
utilize various well developed digital models of neurons such
as the Izhikevich model [6], [7], which are able to emulate
biophysical neural behaviour accurately while consuming min-
imal physical resources. However, these implementations tend
to be limited in resemblance to real biological systems as they
use simplified variants of Hebbian learning such as pair-based
STDP (PSTDP) [8], [9].

It has been demonstrated that PSTDP, which takes into
account the timing of a pair of pre- and post-synaptic action
potentials to induce plasticity, fails to reproduce the outcome
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Fig. 1: STDP alters the weight of a synapse connecting a
pre- to a post-synaptic neuron. [A] A pre-synaptic neuron is
connected and sends a spike train to an excitatory synapse,
which also receives a post-synaptic spike train and alters its
efficacy depending on the spike timing of the pre and post
neurons. [B] STDP modelling considers Pre- and post-synaptic
spikes leaving potential traces, r1, r2, o1, and o2. These
traces and their time constants govern changes in synaptic
weight according to PSTDP and TSTDP functions shown in
Equations 3-4 and 7-8, respectively.

of a number of essential plasticity experiments [10]. Further-
more, PSTDP is unable to induce pattern selectivity driven
by third order correlations among input spike trains [11]. To
address these shortcomings, the PSTDP rule was extended to
account for interactions among triplets of spikes, giving rise
to Triplet-based STDP (TSTDP). When implementing digital
SNNs, the PSTDP learning approach may inhibit the learning
performance of these networks. Therefore, the implementation
and use of more powerful plasticity techniques such as TSTDP
or calcium-based plasticity algorithms [12] will be beneficial.

TSTDP possesses the capability to replicate a group of
biological experiments performed in both hippocampal cul-
tures [13] and the visual cortex [14] regions of the brain [10].
These experiments involve higher order interactions between
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pre- and post-synaptic spikes and have been demonstrated
to be linked to the brain’s ability to induce pattern selectiv-
ity driven by third order correlations [11]. In addition, the
TSTDP rule, which is a timing-based learning algorithm, is
shown to elicit plasticity behaviours similar to the rate-based
Bienenstock-Cooper-Munro (BCM) learning rule [11], [15],
[16] as an emerging feature. This further enhances the synaptic
capabilities of the triplet rule and makes it appealing for use
in SNNs.

TSTDP learning has so far been realized in software using
conventional computers [10], and in hardware using techniques
such as Very Large Scale Integration (VLSI), floating gate, and
memristive technologies [17]–[21]. Software implementations
are useful to replicate the outcome of various plasticity experi-
ments in large-scale neural architectures, however, they require
to run on supercomputers with huge size, weight, and power
consumption. On the other hand, modular digital implemen-
tations could be used to replicate plasticity experiments in
hardware accelerated large-scale neuromorphic architectures
with significantly less power requirement and smaller size
amenable to portable devices and systems.

While analog, mixed-signal, memristive and floating gate
implementations of synaptic plasticity algorithms may occupy
less silicon area, result in lower power consumption, and are
designed to have very high performance [17]–[22] they are
inflexible and cannot be reprogrammed to implement different
learning algorithms. On the other hand, digital FPGA designs
provide high flexibility and reprogrammability, which make
them suitable for exploring various learning algorithms and
network architectures. These ideal characteristics are conve-
niently facilitated by recent advances in high level design
description languages and synthesis tools. Moreover, compared
to other technologies, digital designs are robust against man-
ufacturing and environmental variances, and do not require
calibration post fabrication. Furthermore, digital designs, such
as the work presented here, can be carefully optimized toward
implementing a variety of learning algorithms to be compara-
ble to ASIC and analog designs in terms of power, area, and
performance.

Only one recent study has claimed the implementation of
TSTDP using digital hardware adopting Piece Wise Linear
(PWL) approximation techniques [23]. However, this imple-
mentation does not demonstrate the replication of any exper-
imental data involving triplet or quadruplet sets of spikes, as
presented in [10].

This paper introduces the first digital realization of TSTDP
without dedicated floating-point multipliers, which are known
to consume large area and require a long operation time when
implemented on FPGAs. Replacing such dedicated floating-
point multipliers with low resolution unsigned shift-and-add
multipliers significantly reduces the proposed design resource
consumption and makes it highly efficient.

The paper also demonstrates the capability of the proposed
TSTDP implementation in successfully replicating many bi-
ological experiments involving high-order spike interactions,
similar to the computational TSTDP learning algorithm pro-
posed in [10]. Furthermore, the paper shows that the perfor-
mance, speed, and resource usage of the developed synaptic

module is significantly improved compared to digital state-of-
the-art synaptic plasticity [12], [23]–[25].

Not only does the proposed digital circuit show strong
synaptic plasticity (learning) capabilities for reproducing com-
plex experimental data [10], it surpasses its counterparts in
terms of hardware usage and speed. These features make the
implemented design useful for the development of large-scale
neuromorphic architectures with extended synaptic plasticity
capabilities.

This paper is structured as follows. The PSTDP and TSTDP
learning algorithms are presented in Section II. The proposed
software and digital hardware implementations are described
in Sections III and IV. Section V presents the synaptic plastic-
ity experimental results. Section VI compares the proposed
hardware to previous works and discusses its significance.
Finally, Section VII provides concluding remarks.

II. STDP LEARNING RULES

STDP is a Hebbian learning rule, which induces synaptic
plasticity as a result of the exact time difference between the
spikes of pre- and post-synaptic neurons, as shown in Fig. 1.
As a result of STDP, Long Term Potentiation (LTP) or Long
Term Depression (LTD) of synapses can happen, which are
believed to account for learning and memory. There exist
several variants of STDP rule in the literature including Pair-
based and Triplet-based STDP [26].

A. Pair-based STDP

Pair-based STDP expresses the change in synaptic weight,
∆w, within a given synapse by updating and considering the
state of a pair of parameters, r1 and o1. These parameters
update iteratively at each computation step using a set of
differential equations shown as Equations 1 and 2.

dr1(t)
dt

=− r1(t)
τ+

, if t = tpre, then r1→ 1 (1)

do1(t)
dt

=−o1(t)
τ−

, if t = tpost , then o1→ 1. (2)

Here, r1 and o1 determine exponentially decaying potentiation
and depression potentials starting at the time of a pre-synaptic
or a post-synaptic event, respectively. The synaptic weight is
then updated at the time of each pre- or post-synaptic spike
based on Equations 3 and 4.

w(t)→ w(t)−A−2 o1(t), if t = tpre, (3)

w(t)→ w(t)+A+
2 r1(t), if t = tpost . (4)

Here, A−2 and A+
2 represent the maximum weight change

amplitude, while τ+ and τ− denote time constants for the
decay of potentiation (r1) or depression (o1) potentials, re-
spectively [10]. The change in synaptic weight as a result of
the PSTDP algorithm and the effect of r1 and o1 is shown in
Fig. 1, in blue.
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B. Triplet-based STDP

Triplet-based STDP (TSTDP) is an extension of PSTDP,
proposed by Pfister and Gerstner [10]. The total TSTDP
weight change, dw

dt , within a synapse over a time period dt, is
modeled using the two PSTDP parameters r1 and o1, as well
as two additional parameters r2 and o2. These parameters are
updated iteratively at each time step using a set of differential
equations as shown in Equations 5 and 6.

dr2(t)
dt

=− r2(t)
τx

, if t = tpre, then r2→ 1 (5)

do2(t)
dt

=−o2(t)
τy

, if t = tpost , then o2→ 1. (6)

Here, r2 and o2 are additional decaying potentials in response
to the arrival of a pre- or post-synaptic event, respectively. Fur-
thermore, parameters τx and τy are time constants associated
with the decaying potential created after a pre- or post-synaptic
spike [10]. By introducing these new potentials, Equations 3
and 4 are expanded to Equations 7 and 8.

w(t)→ w(t)−o1(t)[A−2 +A−3 r2(t− ε)] if t = tpre (7)

w(t)→ w(t)+ r1(t)[A+
2 +A+

3 o2(t− ε)] if t = tpost . (8)

Here, A−3 and A+
3 are weight change amplitude constants

(similar to A−2 and A+
2 ), while ε is a small positive constant

to ensure the weight change occurs before the update of the
triplet synaptic potentials, i.e. r2 and o2.

As shown in [10], the TSTDP algorithm significantly im-
proves the capability of a synaptic device to closely replicate
weight changes measured in several experiments including
those involving triplet, quadruplet, and frequency-dependent
pairs of spikes. However, [10] demonstrates that due to the
simplistic accumulative nature of the PSTDP rule, it is not
able to capture the nonlinearity observed in the mentioned
experiments. In addition, it is shown that in contrast to PSTDP,
TSTDP brings about sensitivity to high-order spatiotemporal
correlations among natural stimuli as measured in the brain.
This in turn gives rise to speed and direction selectivity, as
demonstrated in TSTDP computational modeling presented in
[11]. Due to these significant features of TSTDP, here we in-
vestigate and propose an efficient implementation of this high-
performance and biologically plausible learning algorithm.

III. SOFTWARE STDP IMPLEMENTATION

Prior to realizing our digital STDP implementations, all pre-
sented architectures were functionally verified using software
emulations. In addition, software was used to perform bound-
ary parameter optimization, and to investigate the accuracy
degradation using N-Bit fixed point multipliers.

A. STDP Boundary Parameter Optimization

The STDP boundary parameters were optimized by min-
imizing the Normalized Mean Square Error (NMSE) using
scipy.optimize.fmin() from the SciPy Python library. This is
described in Algorithm (1).

Please note that in order to minimize the NMSE using 2N

discretization, all remaining full resolution parameters were

Algorithm 1 Optimization Algorithm to Determine the Synap-
tic Parameters for FPGA
Input: Initial Parameter Values, P = {1, 1, 1, ...}

Experimental Data and Emulation Classes/Methods
Output: Optimized Discretized 2N Parameters

Optimized NMSE
1: Optimize all Parameters and Minimize NMSE

LOOP Process
2: for Parameter in P do
3: Discretize Parameter
4: Update the Discretized Parameter in P
5: Optimize all Parameters and Minimize NMSE
6: end for
7: return Optimized Discretized 2N Parameters, P

re-optimized after discretizing each singular parameter. Hence,
the optimized log2(Parameter Value) values do not explicitly
correlate with their full resolution counterparts. As such, we
only report and compare the NMSE values for the software
emulations adopting both full resolution multipliers and four-
bit fixed point multipliers using full resolution parameters to
our FPGA implementations.

B. Accuracy Degradation using N-Bit Fixed Point Multipliers
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Fig. 2: Product resolution and NMSE achieved for the hip-
pocampal data using the emulated Full TSTDP circuit, while
using N-bit proposed multipliers with N ranging from 1 to 8.

Software emulations showed that increasing the number
of bits in shift-and-add fixed point multipliers above four
does not significantly improve the multiplication accuracy. Fig.
2 depicts that the product resolution of an 8-bit multiplier
increases only by a marginal amount (0.0293) compared to
a 4-bit multiplier. In our software emulations, the use of
the 8-bit multiplier resulted in only a slight improvement in
the hippocampal data NMSE, i.e. from 2.530286657 achieved
using the four-bit multiplier to 2.5281715. Therefore, for all
FPGA implementations, a four-bit multiplier was used, which
proved efficient and accurate when replicating experimental
data.
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IV. DIGITAL STDP IMPLEMENTATION

The digital implementation of the STDP algorithms require
implementing Equations 1–2 and 5–6 to update the synaptic
potentials r1, r2, o1, and o2, at each time step and at the time of
each pre- or post-synaptic spike event. The proposed module
should be also able to accurately update the weight at each
spike arrival as shown in Equations 3 and 4 for PSTDP and
7 and 8 for TSTDP. Evidently, implementing these equations
in hardware involves accounting for several multiplications,
which is known to be a hardware-hungry operation. Therefore,
a straight implementation of TSTDP or even PSTDP, would
result in a bulky and slow digital hardware, which is not useful
for integration in large-scale neuromorphic architectures that
are needed for engineering applications. Therefore, reducing
the complexity and increasing the performance of the STDP
synapse is critical.

In order to maximize the computational efficiency and
achieve a minimal hardware cost, here we incorporated several
approximation techniques to realize the STDP algorithms.
First, we used fixed point arithmetic and number representa-
tion. The domain of the required numbers in the proposed im-
plementation was determined, through software emulation, to
be −1.9999 ≤ valuesToRepresent ≤ 1.9999, requiring signed
representation. In the adopted fixed-point system, 16 bits were
assigned to ’fraction bits’, which resulted in a resolution of
2−16 = 0.00001525878, while two bits were used for the
sign and integer component. The large resolution was used
to account for required minute changes in the values of
exponential learning potentials, e.g. o2[n+ 1] and r1[n+ 1].
Note that, the range and accuracy of the number representation
was first examined in software emulations performed in Python
to optimize the synaptic potentials of the STDP rules to reach
minimal errors comparable to those reported in the STDP
computational modeling presented in [10].

Next, the developed synapse was designed to eliminate all
multiplications required in Equations 3–4 and 7–8. As the
first elimination step, all the multiplications associated with
the synaptic parameters, A+

2 , A−2 , A+
3 , A−3 , τ+, τ−, τx and τy

were approximated by powers of 2, i.e. 2N , where N ∈ Z.
This allowed each multiplication, involving one of the eight
aforementioned synaptic parameters, to be computed within a
single clock cycle using a simple bit-shift operation.

To eliminate the remaining multiplications in the
TSTDP model, i.e. multiplications in A−3 o1(t)r2(t − ε)
and A+

3 r1(t)o2(t − ε), conventional techniques such as bit-
shifting and Piece-wise Linear (PWL) approximations were
deemed unsuitable as these multiplications are multi-variable
in nature. Therefore, a different approximation approach was
required to efficiently implement the required multiplications
without a need for dedicated floating-point multipliers.

Since the synaptic potential values i.e. r1, r2, o1, and o2 are
confined between 0 and 1, a special unsigned approximative
multiplier could be devised for them. Here, an optimized four-
bit unsigned shift-and-add multiplier was constructed in hard-
ware to approximate high resolution unsigned multiplications
for the values between 0 and 1 and to a degree of accuracy
of 2−8 = 0.00390625.

Multipliplierless
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o .r in Eq. 7
1 2
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r .o in Eq. 8
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Fig. 3: Digital architecture and the flow diagram of the
proposed STDP synaptic module. The top panel depicts a
block diagram of the synaptic module. The bottom panel
demonstrates digital implementation of each block shown in
the top panel. This includes: [A] Realization of the decaying
synaptic potential differential equations, i.e. Equations 3, 4, 7
and 8. [B] The proposed hardware for determining the change
in synaptic weight when a pre-synaptic, or [C] a post-synaptic
spike occurs. As shown here, with the dashed horizontal and
vertical lines in the bottom panels, the whole weight update
procedure is carried out in 6 clock cycles.

The proposed fixed-point multiplier is described using Al-
gorithm 2. In order to realize the unsigned multiplication
required. In the developed approach, the four most-significant
fraction bits of the first operand, e.g. o1(t) or r1(t) are
’multiplied’ with the four most-significant fraction bits of
the second operand, e.g. r2(t) or o2(t). The 8-bit result is
then assigned to the 8 most-significant fraction bits of the
resulting value, which its 2 integer bits and the 8 least-
significant fraction bits are zeroed. Software emulations of
the proposed approximative multiplication demonstrate that
increasing the number of bits from four does not significantly
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Algorithm 2 Algorithm of the Four Bit Unsigned Multiplier.

Input: a = First 4-Bit Operand
b = Second 4-Bit Operand

Output: result
Initialisation: tmp = zeros(4, 8)
LOOP Process

1: for n = 0 to 3 do
2: if (a(0) == 0) then
3: tmp(n, :) = 0
4: else
5: tmp(n, :) = {0000, b} � n
6: end if
7: end for
8: result = tmp(0, :) + tmp(1, :) + tmp(2, :) + tmp(3, :)
9: return result

improve the multiplication accuracy for o1[n + 1]r2[n] and
r1[n+ 1]o2[n]. The multiplication accuracy and its impact on
the synaptic plasticity performance is discussed in more details
in Section VI.

Using the above mentioned techniques, the proposed design
is able to update the current synaptic weight W [n], to the new
value, W [n+1], without the need for any dedicated floating-
point multipliers and mainly by means of specifically designed
hardware-friendly shift-add multipliers. The full hardware
structure and the flow diagram of the implemented design
is presented in Fig. 3. It is demonstrated that the synaptic
weight update takes place in a mere six clock cycles, as shown
by dotted vertical/horizontal lines in the bottom panels of
Fig. 3, making the proposed design fast and very hardware
efficient. However, as each synapse is updated during every
clock cycle, independent of the pre-synaptic and post-synaptic
activity, the power efficiency of our design is not optimal. In
future works, additional circuitry could be used to detect pre-
or post-synaptic spike events, in addition to native parallelism
and pipelining techniques, where several synapses can run in
parallel. This is possible by interfacing one singular STDP
module with all synapses in a given neuron by storing the
synapse address of the pre-synaptic spike and then sending it
out with the increment or decrement update signals [27]. By
using techniques discussed in [27] up to two synapses per post-
synaptic event can be updated. By adding counters that flush
all the addresses in the First in First Out (FIFOs) registers, this
can be extended to update an arbitrary number of synapses for
each post-synaptic event.

As demonstrated in Fig. 3, at the first clock cycle, all the
four decaying synaptic potentials are updated using only shift
and subtraction operations. At the second and third clock
cycles, the developed four-bit multiplier circuits produce the
8-bit results, required in the fourth step, where the bulk of
Equations 7 and 8 are calculated in parallel. Depending on
having a pre- or post-synaptic event, at clock cycle five, no
weight change (’0’), or the value calculated in the previous
clock cycles is selected to be added to, or subtracted from the
current weight value w[n] in the sixth clock cycle to update
the weight.

The proposed design was described in Verilog HDL and

VERILOG CODE TO DRIVE UART AT 115200 BAUD

VERILOG CODE TO DRIVE STDP IMPLEMENTATION

PYTHON CODE TO DECODE & STORE RX UART PACKETS

C CODE TO DRIVE PRESYNAPTIC

AND POSTSYNAPTIC SPIKES

C CODE TO RELAY UART 

OVER 15200 BAUD

Fig. 4: Architecture of the hardware implementation. Here the
DE1-SOC development board is interfaced with a host com-
puter using an ATMEGA 2560 micro-controller over UART.
Pre- and post-synaptic spikes are generated using C code on
the Hardware Processor System (HPS) as per our previous
work [28]. A photo of the used hardware is included in [29].

synthesized using Xilinx ISE Design Suite to compare re-
source usage and frequency to previous works, which have
all used Xilinx FPGAs. The high-level architecture1 used to
physically realize our implemented hardware is demonstrated
in Figure (4).

V. IMPLEMENTATION RESULTS

In order to validate the proposed STDP hardware and verify
its synaptic plasticity capabilities, all the STDP experiments
used in [10], which proposes the TSTDP model, were per-
formed on the developed hardware synapse. These include
replicating experimental data measured in hippocampal cul-
tures and the visual cortex regions of the rat brain from [10],
[13], [14], [30]. Furthermore, to measure the resemblance of
the synaptic plasticity of the proposed hardware compared to
the biological plasticity data, the NMSE as shown in Eq. 9
was calculated [10]. Here, the replicated weight change has
the same range as in biological experiments.

NMSE =
1
P

P

∑
i=1

(
∆W exp

i −∆W cir
i

σi
)2, (9)

where, similar to [10], P denotes the number of available data
points in the targeted brain regions, i.e, 13 for hippocampal
cultures [13] and 10 for the visual cortex [31], ∆W exp

i and
σi represent the weight change values measured in the bio-
logical experiments and their respective standard error mean,
and ∆W cir

i is the actual synaptic weight change calculated by
the developed digital synaptic circuit.

Furthermore, it is shown in [10] that the full TSTDP model
presented in Equations 7 and 8 could be minimized without
affecting the accuracy of the triplet model in replicating experi-
mental data. This minimization includes removing the synaptic

1All HDL code and corresponding documentation is openly accessible at
https://github.com/coreylammie/TCAS-STDP.
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TABLE I: Optimized synaptic parameters for the hippocampal culture experiments performed on FPGA. Here, N ∈ Z. All
parameter values are expressed using log2(Parameter Value) and standard decimal notation.

Parameter PSTDP Minimal TSTDP Full TSTDP
log2(Parameter Value) Parameter Value log2(Parameter Value) Parameter Value log2(Parameter Value) Parameter Value

A+
2 -8 0.00390625 -8 0.00390625 -8 0.00390625

A−2 -9 0.00195313 -9 0.00195313 -9 0.00195313
A+

3 NA NA -9 0.00195313 -8 0.00390625
A−3 NA NA NA NA -10 0.00097656
τ+ 6 64.0000000 6 64.0000000 6 64.0000000
τ− 8 256.000000 8 256.000000 8 256.000000
τx NA NA NA NA 10 1024.00000
τy NA NA 5 32.0000000 5 32.0000000
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Fig. 5: Digital architecture and the flow diagram of the
proposed minimal synaptic modules. [A] Realization of the de-
caying synaptic potentials differential equations, i.e. Equations
3, 4, 7 and 8. [B] The proposed hardware for determining the
change in synaptic weight when a pre-synaptic spike occurs.
[C.H] The proposed hardware for determining the change
in synaptic weight when a post-synaptic spike occurs for
the hippocampal module. [C.V] The proposed hardware for
determining the change in synaptic weight when a given post-
synaptic spike occurs for the visual cortex module.

potentials that proved negligible during the weight change
updates, i.e, those with no or minute effect in decreasing
the NMSE. Following the same approach, here we implement
the minimal TSTDP models in hardware to replicate various
experiments as performed in [10]. In the following subsections,
these experiments, as well as the developed circuits, are
explained and the generated results and the achieved NMSEs
are reported.

A. Hippocampal Culture Experiments

Hippocampal culture experiments include measuring synap-
tic plasticity using conventional spike pairing, triplet, and
quadruplet interactions [10], [13]. As previously demonstrated,

all the data from these experiments could be closely repro-
duced using the TSTDP model and one set of optimized
synaptic parameters, i.e. A−2 , A+

2 , A−3 , A+
3 , τ−, τ+, τx, and

τy, that results in reaching a minimal NMSE of 2.9, as
reported in [10]. Note that, this NMSE could be lowered to
near zero, if the parameters are optimized to generate the
data from only one experiment, e.g. triplet. However, when
optimizing the parameters to replicate the results of several
distinct experiments, the minimum NMSE of the model is 2.9.

Following the same approach as in [10], the 8 synaptic
parameters should be also optimized for the proposed TSTDP
circuit shown in Fig. 3, to reach a minimal NMSE. Table I
shows all these optimized synaptic parameters that result in
reaching an NMSE of 2.53, which is lower than the NMSE
achieved using the TSTDP computational model, where τ+

and τ− were bound to 16.8 ms and 33.7 ms respectively.
It was also shown in [10] that, the full TSTDP model could

be minimized by removing the triplet depression contribution,
i.e. by neglecting r2. In this case, there is no need for
the optimization of τx and the same minimal NMSE = 2.9
is achieved using the computational model. Therefore, the
TSTDP model for hippocampal culture experiments could be
minimized to Equations 10 and 11, hence, only 6 synaptic
parameters, i.e. A−2 , A+

2 , A+
3 , τ−, τ+, and τy, need to be

optimized to reach the best NMSE.

w(t)→ w(t)−o1(t)A−2 if t = tpre (10)

w(t)→ w(t)+ r1(t)[A+
2 +A+

3 o2(t− ε)] if t = tpost . (11)

According to these minimal TSTDP equations, the circuit
shown in Fig. 3 was simplified by removing the digital com-
ponents that did not contribute to the synaptic weight update.
Fig. 5 demonstrates the minimal TSTDP circuit needed for
hippocampal culture experiments. As shown, the triplet depres-
sion synaptic potential r2, as well as its required multiplication
circuitry are removed to reach a very efficient implementation
of TSTDP circuit. In order to reach the best NMSE using
this minimal hardware, 6 synaptic parameters needed to be
optimized. Our experiments show that after optimizing the
parameters as shown in Table I, an NMSE of 2.67 is reached,
which is close to the full TSTDP circuit case.

In addition, the PSTDP rule, shown in Equations (3) and (4),
was also implemented by removing the triplet synaptic con-
tribution parameters from the architecture shown in Fig. 3.
In order to reach a minimal NMSE for this rule, 4 parameters
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Fig. 6: Pairing STDP experiments replicated by both the
PSTDP and TSTDP circuits. Here, the two data points in-
cluding the error bars are extracted from [13] and are used for
calculating the NMSE as in [10]. The overall trend achieved
using the circuits also resembles the STDP behaviour observed
in the inset, which shows the Normalized EPSP Slope (corre-
lated with synaptic weight change), extracted from [30].

needed to be optimized. As shown in [10] and confirmed in our
experiments, even after optimizing the 4 PSTDP parameters
for the hippocampal data set, the NMSE was still very large
(9.16) and was not comparable to the TSTDP circuits. The
four PSTDP optimized parameters are also shown in Table I.
Note that, for all the circuits, the optimized values are confined
to powers of two, so that a low-cost and high-performance
synaptic device is reached.

Using the optimized values for the full and minimal triplet
as well as the PSTDP circuits, we then performed all hip-
pocampal culture experiments to mimic 13 experimental data
points from [13], which are used for the TSTDP modeling
in [10]. Following the approach used in [10], these data
points include 2 pair-based, 8 triplet, and 3 quadruplet values,
all shown in black in the following figures. For all these
data points, error bars indicate the standard deviation in the
biological experiments. Due to the strong similarity in the
results from the minimal and full TSTDP circuits, in the
following figures we only show the results for the minimal
circuit. For the sake of performance comparison, all the figures
demonstrate the synaptic weight changes generated using the
optimized PSTDP circuit, as well.

1) Pair STDP Experiments: As the first step, the synaptic
weight changes as a function of the time differences between
a pair of pre- and post-synaptic spikes were obtained. The
resulting weight changes that nicely resemble the well-known
asymmetric STDP window are demonstrated in Fig. 6. As
shown, both the PSTDP and TSTDP circuits generate similar
weight changes for various ∆t = tpost − tpre values. This is in
good agreement with the overall exponential trend of weight
changes observed in the STDP biological experiments first

reported in [30].
2) Triplet STDP Experiments: Next, two triplet experiments

performed in hippocampal cultures [13], were replicated using
both the TSTDP and PSTDP circuits. These experiments
involve i) stimulating the circuit under test by a pre-post-pre
spike triplet, where ∆t1 = tpost−tpre1 and ∆t2 = tpost−tpre2 and
ii) a post-pre-post spike sequence, where ∆t1 = tpost1−tpre and
∆t2 = tpost2− tpre.

Fig. 7 demonstrates the synaptic weight changes produced
under the triplet protocols. As shown, the PSTDP circuit
generates the same synaptic weight changes in both cases of
post-pre-post (Fig. 7(a)) and pre-post-pre (Fig. 7(b)). This is
due to the inability of the PSTDP to distinguish the difference
between the two cases arising from the fact that PSTDP simply
sums up the pre-post and post-pre weight changes to calculate
the weight change in result of a spike triplet, while, obviously
this is not the case in biology. However, when using the
proposed TSTDP circuit, it successfully distinguishes the two
different triplet combinations, showing higher potentiation for
the post-pre-post case, while causing inhibition in the pre-post-
pre triplet (see Fig. 7). This is in good agreement with the
biological data and provides a close fit to the TSTDP model
presented in [10].

3) Quadruplet STDP Experiments: Further experiments
involving quadruplets of spikes [10], [13] were also performed
using both the PSTDP and TSTDP circuits and the result is
shown in Fig. 8. In the quadruplet experiments, a post-pre
pair with ∆t =−5 ms arrives T > 0 ms before a pre-post pair
with ∆t = 5 ms, or a pre-post pair with ∆t = 5 ms arrives
T < 0 ms before a post-pre pair with ∆t = −5 ms. Here,
T = (tpre2 + tpost2)/2− (tpre1 + tpost1)/2. It was observed that
while the PSTDP circuit does not closely fit the three targeted
data points, the proposed TSTDP design provides a better fit
to the data and better follows the weight change trend.

Considering the three experiments performed so far and the
observed plasticity behaviours of the two circuits under test, it
is obvious that the TSTDP circuit replicates the experimental
data, especially the triplet experiments, significantly better
than PSTDP. Furthermore, our circuit results are in total
agreement with those reported in [10], which are calculated
using the TSTDP computational model.

Table II summarizes the minimal NMSEs achieved using
the three sets of different circuits under test, all when their
synaptic parameters are optimized to have the best fit to the 13
experimental data points of hippocampal culture experiments
shown in Figures 6 to 8. In Table II and all the following tables,
Software Full Resolution represents software implementa-
tions using floating-point multiplications, while Software 4-FP
shows full-resolution software implementations using four-bit
fixed point multipliers. In addition, Digital Full Resolution, is
the FPGA design using floating-point multipliers, while digital
optimized shows the proposed optimized design on FPGA.
This is in very good agreement with the findings of the TSTDP
model paper [10]. Here, it can be observed that our digital
implementations perform similarly to their software counter-
parts. In the worst case scenario, a performance degradation of
7.41% is observed between our digital implementation and our
full-resolution software implementations using full resolution
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Fig. 7: Synaptic weight changes in result of [A] post-pre-post and [B] pre-post-pre spike combinations. As demonstrated, the
PSTDP circuit fails to distinguish between two different triplet spike combinations and generates the same weight updates for
both cases. The TSTDP circuit, on the other hand, successfully distinguishes between two different triplet spike combinations.

TABLE II: Minimal NMSEs achieved for hippocampal data.

Model NMSE
Digital Full
Resolution

Digital
Optimized

Software Full
Resolution

Software
4-FP

PSTDP 8.63338609 9.16524002 8.48601482 8.61875652
Minimal TSTDP 2.55450684 2.67254576 2.54163893 2.55450684
Full TSTDP 2.52634531 2.53028666 2.45102116 2.48701814

floating point multipliers.

B. Visual Cortex Experiments

The synaptic modeling study in [10] demonstrated that,
in addition to the hippocampal culture, the visual cortex
experimental data can also be closely mimicked using the
TSTDP rule, however, it needs a new set of optimized synaptic
parameters. It has also shown that a minimized version of the
TSTDP rule could replicate the visual cortex data with no sig-
nificant degradation in the synaptic ability of the model. This
minimized TSTDP rule eliminates the pairing potentiation and
triplet depression contributions of the full model (Equations 7
and 8). The minimal rule, is therefore shown as Equations 12
and 13. Hence, only 5 synaptic parameters, i.e. A−2 , A+

3 , τ−,
τ+, and τy, need to be optimized to reach the best NMSE.

w(t)→ w(t)−o1(t)A−2 if t = tpre (12)

w(t)→ w(t)+ r1(t)[A+
3 o2(t− ε)] if t = tpost . (13)

Equations 12 and 13 lead to a minimal TSTDP circuit, as
shown in Fig. 5. Similar to the hippocampal minimal circuit,
this one does not need the triplet depression contribution,
therefore r2 and its related multiplications were removed.
In addition, it does not require the pair-based potentiation,
therefore, some extra addition and multiplications were also
removed as shown in block [C.V] of Fig. 5.
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Fig. 8: Synaptic weight changes in result of quadruplet ex-
periments generated using the proposed TSTDP circuit, as
well as the PSTDP circuit. Here, the three biological data
points including their error bars are extracted from [10] and
the remaining biological data points are extracted from [13].

The visual cortex experimental data as presented in [10],
[14] include 10 data points, which have been extracted by
sweeping the frequency (ρ) of pairs of pre-post or post-
pre spikes and measuring their respective weight changes.
As observed in biological experiments, when increasing the
frequency of pre-post pairs of spikes with a fixed ∆t = 10 ms,
the synaptic weight shows constant potentiation until it sat-
urates at a frequency around 40 Hz. On the other hand
though, increasing the frequency of post-pre pairs with a fixed
∆t = −10 ms, first results in a depression, but it changes to
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TABLE III: Optimized synaptic parameters for the visual cortex experiments performed on FPGA. Here, N ∈ Z. All parameter
values are expressed using log2(Parameter Value) and standard decimal notation.

Parameter PSTDP Minimal TSTDP Full TSTDP
log2(Parameter Value) Parameter Value log2(Parameter Value) Parameter Value log2(Parameter Value) Parameter Value

A+
2 -33 1.1632e-10 NA NA -33 1.1632e-10

A−2 -8 0.00390625 -9 0.00195312 -8 0.00390625
A+

3 NA NA -8 0.00390625 -9 0.00195312
A−3 NA NA NA NA -9 0.00195312
τ+ 6 64.0000000 6 64.0000000 6 64.0000000
τ− 8 256.000000 8 256.000000 8 256.000000
τx NA NA NA NA 10 1024.00000
τy NA NA 5 32.0000000 5 32.0000000

TABLE IV: Minimal NMSEs achieved for visual cortex data.

Model NMSE
Digital Full
Resolution

Digital
Optimized

Software Full
Resolution

Software
4-FP

PSTDP 5.913764482 6.12773109 5.6821826 5.8428476
Minimal TSTDP 0.197023795 0.21998375 0.1916552 0.1956726
Full TSTDP 0.175826965 0.19583439 0.1710069 0.1728316

potentiation after reaching a certain threshold of around 25 Hz.
After that it increases with a fast pace, as shown in Fig. 9.

This figure depicts that the PSTDP circuit completely fails
to follow the weight changes as they happen in biology, while
the proposed TSTDP circuit, which benefits from the intrinsic
characteristics of the TSTDP algorithm, closely fits the curve
and nicely follows the trend of experimental weight changes.

The optimized synaptic parameters used to replicate the
data shown in Fig. 9 are listed in Table III. Using these
parameters, the proposed TSTDP circuit very closely mimics
the data and achieves a minimal NMSE of 0.19 as shown
in Table IV. In addition, our digital implementations perform
similarly to their software counterparts. In the worst case
scenario, a performance degradation of 12.88% is observed
between our digital implementation and our full-resolution
software implementations using full resolution floating point
multipliers.

In addition, an NMSE of 0.22 was also recorded for the
minimal TSTDP circuit, which generates the output shown in
Fig. 9. Also, an NMSE of 6.13 was reached for the PSTDP
circuit, which completely fails to follow the experimental data
as demonstrated in Fig. 9. These values are in good agreement
with the NMSEs achieved using the TSTDP and PSTDP
computational models [10].

C. Rate-based BCM Experiments

In addition to replicating the hippocampal cultures and
visual cortex experimental data, our proposed spike timing-
based synapse is shown to be able to mimic rate-based synaptic
plasticity experiments such as those performed in [16]. These
experiments are reminiscent of the rate-based Bienenstock-
Cooper-Munro (BCM) learning rule [11], [15], [16]. The
BCM rule includes a threshold frequency at which synaptic
depression changes to potentiation. This threshold is shown
to slide (increase/decrease) for various pre- and post-synaptic
spiking rates, ρx and ρy, respectively [10].

ρ [Hz]

PSTDP Circuit
TSTDP Circuit

Biological Experiments

Fig. 9: Synaptic weight changes in result of visual cortex
experiment generated using the proposed TSTDP circuit, as
well as the PSTDP circuit. Here, solid lines represent weight
changes for pre-post pairs with ∆t = 10, whereas dashed lines
are for post-pre pairs with ∆t =−10.

Here, we replicate the sliding threshold behaviour of the
BCM learning rule, using the proposed minimal TSTDP circuit
that was used for the visual cortex experiments. We also
use the same optimized parameters for those experiments,
therefore, there is no need for further modification or pa-
rameter tuning in the TSTDP hardware. The resulting BCM
learning behaviour obtained using the minimal TSTDP rule
of Equations 12 and 13 is shown in Fig. 10. For these
experiments, the hardware synapse receives Poissonian spike
trains with mean frequency of ρx from the pre-synaptic, and
ρy from the post-synaptic side. For the performed experiment,
ρy is swept between 0 and 50 Hz, while the pre-synaptic rate,
ρx, is kept fixed. It is shown that for higher pre-synaptic spike
rates, the BCM threshold slides toward higher frequencies,
confirming the TSTDP model results shown in [10], while
resembling the experimental data presented in [16].

D. Power Analysis

Power consumption is a major factor for brain inspired
computing and hence we have characterised the power con-
sumption of our proposed circuits in Table (VI). Table (VI)
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TABLE V: Performance and device utilization comparison for the implemented synapse module. Here NA means not available
in the source paper. Abbreviations used in the table correspond to the circuit used for each plasticity rule. These include: Minimal
TSTDP Hippocampal (TMH), Minimal TSTDP Visual Cortex (TMVC), Calcium Based (CAB), Serial PSTDP (Serial), and
Cell-based PSTDP (Cell-based) [32]. All reported hardware utilization numbers for our current works have been obtained
from re-synthesizing our original HDL designs using the Xilinx ISE Design Suite in order to provide a direct comparison to
previous works. Here, the maximum synthesizable frequency is determined by 1/(Requirement-Slack), where requirement and
slack values are taken from Xilinx Max Delay Path report.

Implementation Plasticity Rule Flop Flops Slice Registers LUTs Targeted FPGA Device Max Synthesizable
Freq [MHz]

Visual Cortex
NMSE

Hippocampal Cultures
NMSE

Our current digital implementations using the optimized architecture with four-bit fixed point multipliers

Digital Optimized PSTDP 16 12 8 Xilinx Spartan-6 XC6SLX9 816 6.127731093 9.165240019
Digital Optimized Full TSTDP 34 27 18 Xilinx Spartan-6 XC6SLX9 816 0.195834388 2.530286657
Digital Optimized TMH 20 16 15 Xilinx Spartan-6 XC6SLX9 816 NA 2.672545759
Digital Optimized TMVC 20 17 12 Xilinx Spartan-6 XC6SLX9 816 0.219983745 NA

Our current digital implementations synthesized using full resolution [FR] dedicated multipliers

Digital Full Resolution PSTDP 671 642 859 Xilinx Spartan-6 XC6SLX9 362 5.913764482 8.63338609
Digital Full Resolution Full TSTDP 1498 1370 1943 Xilinx Spartan-6 XC6SLX9 362 0.175826965 2.52634531
Digital Full Resolution TMH 882 811 1629 Xilinx Spartan-6 XC6SLX9 362 NA 2.55450684
Digital Full Resolution TMVC 882 826 1593 Xilinx Spartan-6 XC6SLX9 362 0.197023795 NA

Previous Works

[25] PSTDP 39 NA 18 Xilinx Spartan-3 XC3S1500 NA NA NA
[12] CAB 292 NA 309 Xilinx Spartan-6 XC6SLX45T 332 NA NA
[23] PSTDP NA 46 36 Xilinx Spartan-6 XC6SLX9 138 NA 0.7
[23] TMH NA 54 41 Xilinx Spartan-6 XC6SLX9 192 0.18 0.18
[23] TMVC NA 47 26 Xilinx Spartan-6 XC6SLX9 192 0.18 0.18
[32] Serial NA NA 47 Xilinx Spartan-3 XC3S1500 NA NA NA
[32] Cell-based NA NA 339 Xilinx Spartan-3 XC3S1500 NA NA NA
[24] PSTDP 398 NA 1430 Xilinx Virtex-6 XC6VLX240T 200 NA NA
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Fig. 10: The proposed minimal TSTDP circuit for visual cortex
experiments successfully demonstrates a BCM-like behaviour
including a sliding threshold frequency, at which depression
changes to potentiation. Here, ρx and ρy, denote the mean
frequency of pre- and post-synaptic spike trains with Poisson
statistics, respectively [10]. The inset shows the percentage
change in synaptic weight with respect to stimulation fre-
quency extracted from [16], which demonstrates a BCM-like
behaviour including the sliding threshold.

reports the total on-chip FPGA power calculated using the
Xilinx Power Estimator (XPE) after HDL synthesis. In order
to measure the power consumption of one synaptic module, we
added a second instance of the module to be able to calculate

Model Total On-Chip Power [W] Synaptic Module Power [W]
Digital Full
Resolution

Digital
Optimized

Digital Full
Resolution

Digital
Optimized

PSTDP 0.185 0.11 0.128 0.085
Full TSTDP 0.407 0.244 0.222 0.132
TMH 0.305 0.179 0.143 0.098
TMVC 0.308 0.182 0.145 0.099

TABLE VI: Total On-Chip Power Consumption (W), and
Synaptic Module Power (W) for all digitally implemented
synapse modules.

the estimated power used only by the synapse and not other
on-chip components.

It was observed that the power consumption has an almost
linear relationship with the total instanced synapse modules.
As such, we introduce a new parameter, Synaptic Module
Power, which indicates the additional power draw of instanc-
ing a new synapse module.

Table (VI) shows our digitally optimized designs incorpo-
rating four-bit fixed point multipliers reduce the total on-chip
power required by 40%. We are not able to make a comparison
to previous relevant FPGA works because none of them have
reported their power consumption. However, when comparing
to other hardware technologies such as ASIC, analog, and
memristive solutions, our FPGA design consumes significantly
higher power. Nonetheless, the main reason for adopting
FPGAs instead of ASIC or other implementation technologies,
is greater design flexibility and much shorter development
period. Given the power savings that we have reported in
Table VI, the presented circuits would be ideal as building
blocks for large-scale neuromorphic processors or hardware-
accelerated brain simulators and optimization strategies such
as pipelining and time multiplexing could easily be employed
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to reduce further the power overhead of the system.

VI. DISCUSSION AND COMPARISON TO PREVIOUS WORK

This paper proposed an efficient digital implementation
of the triplet STDP rule [10], and we demonstrated that
our developed hardware is capable of replicating a series of
biological experiments [13], [14], [16]. The proposed synaptic
hardware was carefully optimized to utilize minimal FPGA
resources and to gain the highest speed possible. The resource
usage and speed proved to be significantly improved compared
to previous implementations of both PSTDP and TSTDP in
digital hardware as shown in Table V. This was achieved
by devising specific circuits to realize lower resolution bi-
nary multiplications using shift and add operations to replace
hardware-hungry complex floating-point multipliers. Also, to
further improve the hardware resource usage of the proposed
synapse, all the multiplications by fixed values required in the
circuit were performed by rounding these values to powers of
two, and therefore being able to replace them using hardware-
friendly shift operations.

Table V demonstrates that the PSTDP design that emerges
from within the proposed TSTDP circuit, outperforms the best
previous FPGA PSTDP design [25] by 2.38 times in hardware
resource usage, while it significantly surpasses a recent PSTDP
design based on a Piece Wise Linear approximation (PWL)
approach [23] by 4.10 times less hardware usage and 5.91
times faster operation. Also, Table V shows that the proposed
PSTDP circuit consumes much less resources compared to the
two of the smaller designs presented in [32], by almost 6 and
42 times.

In addition, a minimal version of the presented TSTDP mod-
ule is more efficient than the best previous PSTDP design [25]
by 1.78 times in FPGA hardware usage. It is worth noting
that, this is a significant improvement because, even though
our synaptic hardware implements a more complex learning
rule with improved capability in reproducing biological data,
it consumes fewer resources and operates faster. Compared
to [12] that proposes a digital PWL implementation of the
calcium-based plasticity rule of [33], the proposed hardware
achieves a significant improvement of 2.46 times in maximum
FPGA update frequency and 11.55 times in FPGA resources.

The calcium-based rule that is able to replicate high order
plasticity experiments such as those performed by the TSTDP
rule, needs 11 parameters to be approximated to replicate
an asymmetric STDP learning curve [12] such as Fig. 6.
In addition, it can show a BCM-like behaviour as shown in
Fig. 10, however, this feature has not been investigated in [12].
Furthermore, non of the previous studies have shown other
features such as the frequency-dependent pairing experiment
shown in [33] and in Fig. 9.

Beside these, our developed digital synapse outperforms
a recent implementation of STDP algorithms, which utilized
PWL techniques to design an efficient synaptic circuit [23].
Our proposed synapse operates 5.91 times faster than the
PSTDP and 4.25 times faster than the TSTDP circuits pre-
sented in [23]. In addition, the resource usage of our minimal
TSTDP synapse has improved by over 3.06 times compared

to the minimal hippocampal, and 2.51 times compared to the
minimal visual cortex TSTDP implementation of [23]. Note
that [23] does not show any of the experimental data that we
have reproduced in this paper.

Another work that proposed a generic synaptic plasticity
circuit that can realize multiple STDP rules in both digital
and analog circuitries is presented in [24]. Table V shows that
the proposed design significantly improves the resource usage
compared to this general design. Although [24] consumes
more resources, it has been used in a time-multiplexing man-
ner, to realize 1800 synapses. This time multiplexing strategy,
which is to be investigated in our future research, could poten-
tially result in similar performance. Furthermore, the TSTDP
digital circuit implemented here is specifically implemented to
realize TSTDP and PSTDP rules, while the design presented
in [24] can be configured for multiple synaptic plasticity rules
including Spike Timing Dependent Delay Plasticity (STDDP),
without changing its structure.

In designs such as [34], many cores are replicated in hard-
ware which are fixed, but can be programmed to implement
learning algorithms. Our design, on the other hand, has the
learning algorithm specifically implemented, which could be
used in large-scale neuromorphic systems by having several
instances of the hardware and then time-multiplexing them
to extend the network size, leveraging the parallel processing
feature of FPGAs.

All these comparisons show that the proposed devices in this
paper are the most efficient digital implementations of STDP
learning algorithms to date. Furthermore, this paper presents
the first digital synaptic device that is shown to account for
doublet, triplet, quadruplet, and frequency-dependent pairing
experiments, as measured in a biological brain. It was also
shown that not only does the proposed timing-based synaptic
hardware replicates the outcomes of time-dependent plasticity
experiments in two different regions of the brain, a rate-
based learning behaviour [15], [16] can also emerge from
the developed hardware. These distinct features render the
proposed design a powerful synaptic component that can
bring complex learning and plasticity abilities to neuromorphic
architectures, while having a high FPGA update frequency and
consuming minimal resources. This is an essential requirement
for developing large-scale neuromorphic digital architectures,
where speed, minimal resource usage, and powerful synaptic
abilities are of paramount importance.

VII. CONCLUSION

We designed and implemented two variants of the STDP
learning algorithm on a FPGA without the use of any dedicated
floating point multiplier blocks. The proposed TSTDP hard-
ware and a few minimal variants of it were used to replicate
experimental data from hippocampal cultures and visual cortex
regions of the brain with minimal errors. We demonstrated that
conventional designs employing the pair-based STDP learning
algorithm are unable to accurately reproduce experimental data
involving higher order interactions, hence, result in very large
errors compared to our proposed design which utilized the
higher order TSTDP rule. Moreover, the implemented timing-
based circuit was demonstrated to accurately replicate the
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outcome of a well known rate-based plasticity experiment as
an emerging feature. In summary, our key contributions are:
• We present the first digital synaptic device that is shown

to account for doublet, triplet, quadruplet, and frequency-
dependent pairing experiments.

• We have innovatively used 4-bit unsigned multipliers in
place of dedicated floating-point multipliers to reduce
FPGA resource usage and increase synaptic circuit op-
eration frequency.

• We demonstrate that, in comparison with the state-of-the-
art digital synaptic plasticity circuits, our new designs
proved to be the best, improving the hardware usage as
well as the frequency of synaptic plasticity FPGA circuits
by several orders of magnitude.

These contributions make our synaptic module a valuable
design for large-scale neuromorphic architectures that are
currently being sought for various applications to make smarter
machines, and future designs using digital ASIC technology
via HDL synthesis.
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