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Abstract 25 

Urchins are ubiquitous components of coral reefs ecosystems, with significant roles in 26 

bioerosion and herbivory. By controlling urchin densities, triggerfishes have been identified as 27 

keystone predators. However, the functional linkages between urchins and triggerfishes, in terms of 28 

distributional patterns and concomitant effects on ecosystem processes, are not well understood, 29 

especially in relatively unexploited systems. To address this we censused urchins and triggerfishes on 30 

two cross-shelf surveys on the Great Barrier Reef (GBR) at the same times and locations. We also 31 

evaluated the role of urchins in bioerosion. Although urchin abundance and triggerfish biomass varied 32 

by 80% and nearly 900% across sites, respectively, this variability was driven primarily by shelf 33 

position with no evidence of top-down control on urchins by triggerfishes. Low urchin abundances 34 

meant urchins only played a minor role in bioerosion. We highlight the potential variability in 35 

functional links, and contributions to ecosystem processes, among regions.   36 

Keywords: 37 

Bioerosion, Ecosystem Processes, Echinoderm, Fish, Great Barrier Reef, Marine Ecology, Predation, 38 

Triggerfish, Trophic Cascade  39 

 40 

1. Introduction 41 

The persistence of ecosystems in particular states is underpinned by the ecosystem processes 42 

operating therein (Done et al., 1996). The ecosystem processes are, in turn, dependent on the 43 

organisms present (Steneck, 2013; Walker et al., 1981). Some organisms can contribute 44 

disproportionately to particular processes due to a high abundance, limited functional redundancy or a 45 

high degree of ecological specialization (Bellwood et al., 2003; McWilliam et al., 2018; Mouillot et 46 

al., 2014). The latter aspect is particularly clear in keystone species; those species whose effect on an 47 

ecosystem is disproportionately large relative to their abundance (Paine, 1969; Power et al., 1996). 48 

However, while organisms can be keystone species in certain locations this may not apply in all 49 

systems in which they are present. While similar ecosystems often share a similar suit of processes, 50 
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there can be substantial variability in the species, or organisms which contribute to these processes 51 

across biogeographic realms (Hemingson and Bellwood, 2018; McWilliam et al., 2018; Mouillot et 52 

al., 2014). Understanding the importance of particular organisms in ecosystem processes among 53 

biogeographic realms is essential if we are to understand how different ecosystems will respond to 54 

disturbances.     55 

Amongst the world’s most threatened ecosystems, coral reefs have provided key examples of 56 

ecosystem collapse following disturbance events. We have come to realise that coral reefs can exist in 57 

a number of different states, depending on their resilience (Bellwood et al., 2004; Graham et al., 58 

2013), with the collapse of many Caribbean reefs to macroalgal-dominated states being a particularly 59 

well documented example (Hughes, 1994; Jackson et al., 2014). The transition of these systems is 60 

generally believed to involve a disruption of the ecosystem processes that are essential for 61 

maintaining their resilience; often due to the direct loss of the organisms responsible for delivering 62 

these processes (Bellwood et al., 2004; Hughes et al., 2007). While many coral reefs globally have 63 

been degraded, at least in part, due to the overfishing of key functional groups (Berkes et al., 2006; 64 

Jackson et al., 2001), the largest reef system in the world, the Great Barrier Reef (GBR) is generally 65 

considered to be relatively intact with well managed fisheries (Casey et al., 2017; Cheal et al., 2013; 66 

McCook et al., 2010). It therefore offers an exceptional system in which to examine ecosystem 67 

processes and explore the extent and nature of key functional groups. Such groups include sea urchins 68 

and their key predators, the triggerfishes.  69 

Sea urchins have been a key structuring force in shallow water marine ecosystems since the 70 

lower Jurassic, when major functional transformations allowed them to bite deeply into calcium 71 

carbonate substrata (Steneck, 2013; Steneck et al., 2017). Indeed, sea urchins were the first deep-72 

grazing marine herbivores, with this ability only surpassed by parrotfishes during the Miocene 73 

(Cowman et al., 2009; Steneck et al., 2017). On modern day coral reefs, urchins are often the main 74 

agents of herbivory and bioerosion. This is particularly marked where overfishing is believed to have 75 

released them from top-down predation pressure (Bak, 1994; Carreiro-Silva and McClanahan, 2001; 76 

Hay, 1984; but see Cramer et al., 2018; Jackson, 1997). In these systems, urchins can be a major 77 
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determinant of benthic state and reef development. In a negative way, urchins have the capacity to 78 

destroy reefs when bioerosion rates exceed reef accretion rates as urchins can directly erode into the 79 

reef matrix, undercut corals, and hinder coral recruit survival (Bellwood et al., 2004; Glynn and 80 

Manzello, 2015; Leary et al., 2013; Qiu et al., 2014). On Eastern Tropical Pacific reefs, for example,  81 

high urchin abundances have caused significant bioerosion of the reef framework (Glynn, 1988). 82 

However, where herbivorous fishes have been removed by fishing, urchins can provide a functional 83 

replacement with rates of herbivory high enough to resist transitions to algal-dominated states 84 

(Hughes, 1994; Steneck, 2013). For example, in the Caribbean the widespread mortality of Diadema 85 

antillarum revealed the importance of urchins in preventing a transition towards reefs dominated by 86 

macroalgae, particularly in areas prone to overfishing of herbivorous fishes (Hughes, 1994; Jackson et 87 

al., 2014; Lessios, 2016). Evidently sea urchins can play a major role in marine systems around the 88 

globe. 89 

Much of our understanding, however, of the ecosystem function of urchins comes from 90 

disturbed systems which have been heavily overfished, including East Africa (Carreiro-Silva and 91 

McClanahan, 2001; McClanahan et al., 1994), French Polynesia (Bak, 1990; Done et al., 1991; 92 

Peyrot-Clausade et al., 2000), and parts of Asia (Dumont et al., 2013; Goh and Lim, 2015). It has been 93 

hypothesised that overfishing released urchins from predation, in turn increasing their relative 94 

contribution to ecosystem processes such as grazing and bioerosion (McClanahan and Shafir, 1990; 95 

Steneck, 2013). Of all sea urchin predators, the triggerfishes (Balistidae) are considered to be the 96 

primary predators; a keystone predator. Triggerfishes are particularly well equipped with powerful 97 

mouth structures to prey on hard-shelled benthic invertebrates (Turingan and Wainwright, 1993). 98 

They prey on a wide range of urchins and other echinoderms (Hiatt and Strasburg, 1960; Mcclanahan, 99 

2000; Randall et al., 1996; Young and Bellwood, 2012), including the mechanically and chemically 100 

defended crown of thorns starfish (CoTS) (Cowan et al., 2017). Indeed, predation experiments 101 

suggested that in East Africa Balistapus undulatus can be responsible for up to 100% of urchin 102 

predation (Mcclanahan, 2000). On the GBR a similar experiment demonstrated that Balistoides 103 

viridescens and B. undulatus together accounted for over 90% of predation with little to no 104 
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contribution from other nominal echinoderm predators such as large labrids and lethrinids (Young and 105 

Bellwood, 2012). However, the paradigm on coral reefs, that urchins are controlled from the top-106 

down by their fish predators, has largely been based on evidence from heavily exploited, degraded, 107 

systems comparing areas exposed to, and protected from, fishing.  108 

Examining the interrelationship between sea urchins and their key triggerfish predators in a 109 

relatively unfished system, the GBR, could provide novel insights into this potentially important 110 

functional link. This is because fishing pressure frequently co-varies with other anthropogenic 111 

stressors as well as other biotic and abiotic factors (Graham et al., 2013; Hughes et al., 2017a), which 112 

could modify the links between urchins and triggerfishes. Yet, the importance of other factors in 113 

mediating urchin abundances and distribution patterns might be overlooked if fishing pressure is the 114 

sole focus. Indeed, Casey et al., (2017), revealed that when other factors are controlled for, fishing of 115 

predators did not lead to trophic cascades, suggesting that top-down forces in complex coral reef 116 

systems are weak. The GBR can be considered a relatively unfished system, especially in terms of 117 

triggerfishes, because the majority of fishing activity is focused on a few, economically important 118 

non-triggerfish species extracted via a targeted line fishery (McCook et al., 2010). Therefore, 119 

variation in triggerfish abundance among sites on the GBR is likely to vary because of other 120 

ecological and biological factors rather than fishing pressure.  121 

Across the GBR distinct gradients in faunal assemblages exist, with a general increase in 122 

abundance and diversity further from shore (Cheal et al., 2012; Emslie et al., 2017; Wismer et al., 123 

2009). These ecological gradients follow distinct gradients in abiotic conditions such as 124 

hydrodynamic exposure gradients (Bellwood and Wainwright, 2001; Crossman et al., 2001; Fulton et 125 

al., 2013) and terrestrial influences on sediment loads and water quality (Fabricius et al., 2014; 126 

Tebbett et al., 2017). How sea urchin and triggerfish distributions conform to these previous patterns 127 

is unclear. The aim of this study, therefore, was to examine the pattern of urchin and triggerfish 128 

distributions across the GBR. Presumably, if a functional linkage exists between urchins and their 129 

triggerfish predators, through top-down predation pressure, one would expect their distributions to be 130 

negatively correlated. However, this relationship may not hold if other biotic or abiotic factors 131 
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underpin distribution patterns. Furthermore, this study will look beyond potential links in distribution 132 

patterns by considering the role that sea urchins play in a key ecosystem process, bioerosion, by 133 

comparing and contrasting bioerosion patterns with other key bioeroders.    134 

2. Materials and methods 135 

2.1 Study sites 136 

Two GBR regions were surveyed in 2004/5: the northern region at approximately 14˚ 40′ S 137 

and the central region at approximately 18˚ 47′ S (Fig. 1). In each region two reefs were surveyed in 138 

each of the three cross shelf locations (inner-, mid- and outer-shelf). In the northern region two islands 139 

in the Turtle group (inner-shelf), MacGillivray Reef and Lizard Island (mid-shelf), and Hicks Reef 140 

and Day Reef (outer-shelf) were surveyed. In the central region Pandora Reef and Havannah Island 141 

(inner-shelf), Wheeler Reef and Davies Reef (mid-shelf), and Dip and Bowl Reef (outer-shelf) were 142 

surveyed. A full site description outlining the nature and state of each site, including dominant benthic 143 

cover, is given in Wismer et al., (2009). At each reef, three to four habitats were surveyed. The back 144 

reef, flat, crest and slope habitats were surveyed on each of the mid- and outer-shelf reefs. However, 145 

as there are no clearly defined crests on inner-shelf reefs the entire seaward slope was surveyed as the 146 

crest/slope. Definitions of each habitat can be found in Bellwood and Wainwright, (2001).  147 
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 148 

Fig. 1 a The Great Barrier Reef (GBR), Australia showing the two regions surveyed. The cross-shelf 149 

census sites in the b northern and c central regions of the GBR. d an Echinostrephus sp. urchin and e 150 

the picasso triggerfish, Rhinecanthus aculeatus both photographed at Lizard Island in the northern 151 

GBR.  152 

 153 

2.2 Urchin abundance 154 

To quantify sea urchin abundance 12 replicate 10 × 2 m transects were surveyed in each 155 

habitat on each reef (n = 528). Transects were haphazardly placed, and laid parallel to the reef crest. 156 
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Each transect was systematically searched for urchins paying particular attention to examine 157 

overhangs and crevices. Urchin abundance and test size (to the nearest 5 mm) was recorded. Urchins 158 

were identified to genus and species where possible. 159 

2.3 Contribution of urchins to bioerosion 160 

Bioerosion by urchins was calculated using three equations following Perry et al., (2015) that 161 

relate sea urchin test size (diameter in mm) to erosion rate (kg urchin-1 year-1). Diadema sp. and E. 162 

mathaei had their own equations while a general equation was applied to other bioeroding urchins. 163 

Bioerosion rates were calculated for each individual urchin, summed within each transect and then 164 

divided by transect area (20 m2) to yield sea urchin bioerosion in kg m-2 year-1.  165 

To explore the differences in bioerosion rates among key bioeroding groups (urchins, 166 

parrotfishes and micro/macro boring organisms), we directly compared bioerosion rates among 167 

groups in kg m-2 year-1 across the GBR. Rates of parrotfish bioerosion were sourced from a study 168 

conducted in 1998/9 on the northern GBR which quantified erosion rates by 24 parrotfish species 169 

(Hoey and Bellwood, 2008). Bioerosion rates of micro- and macro-boring organisms were sourced 170 

from a study of bioerosion in 1996-99 across the northern GBR based on Porites plates deployed in 171 

back reef or similar habitats (Tribollet and Golubic, 2005); these data are converted to bioerosion m-2 172 

year-1. As both studies were from the northern GBR (Lizard Island region), only bioerosion rates by 173 

urchins from the northern region were used in the among-group comparisons. Therefore, parrotfish 174 

and micro/macro boring bioerosion rates were from the same, or nearby study sites, as for urchins.   175 

2.4 Triggerfish abundance and biomass 176 

Triggerfish communities were quantified at the same time and in the same areas as the urchin 177 

surveys. Fish were counted on 10-minute timed belt transects equating to approximately 117 m 178 

(methods and calibrations following Bellwood and Wainwright, (2001). This census method would 179 

have effectively quantified triggerfish densities because triggerfishes are generally site attached (Chen 180 

et al., 2001) and have previously been quantified successfully on smaller transects than those used 181 

herein (Bean et al., 2002). All fish were identified to species and placed into total length (TL) size 182 
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classes (for fishes >10 cm size classes with 5 cm intervals were used,  while for fishes <10 cm size 183 

classes with 2.5 cm intervals were used), and biomass calculated using Bayesian length-weight 184 

regression parameters (Froese and Pauly, 2018) (see ESM Table S1 for species recorded).      185 

2.5 Analysis 186 

The total abundance of triggerfishes across the GBR was examined using a generalised linear 187 

mixed effects model (GLMM) with a negative binomial distribution to account for the non-normally 188 

distributed and overdispersed nature of the count data. Total triggerfish biomass was examined using 189 

a lognormal mixed effects model. In both cases a full model containing the fixed effects of region 190 

(central vs. northern), shelf position (inner, mid and outer) and reef habitat (slope, crest, flat, back) 191 

was initially fitted, with individual reef as a random factor. The Akaike Information Criterion (AIC) 192 

was employed to find the most parsimonious model (ESM Table S2). Model fits were assessed based 193 

on residual plots, all of which were satisfactory.  194 

We also examined the relationship between mean sea urchin abundance (ind. 100 m-2) and 195 

mean triggerfish biomass (g 100 m-2). Urchin abundance data was used because this is the most 196 

commonly reported metric when quantifying urchins (e.g. Table 1), and diameter-weight relationships 197 

for urchins from the GBR are not readily available. By contrast, triggerfish biomass estimates were 198 

utilised because this is a more functionally relevant metric of potential triggerfish predation compared 199 

to abundance data, which overemphasises the importance of the more abundant, smaller triggerfish 200 

size classes, that are less likely to be key urchin predators (e.g. Young and Bellwood, 2012). 201 

Triggerfish biomass was considered as a predictor variable in two ways: a) the biomass of all 202 

triggerfish species known to feed on sea urchins (all urchin predators), and b) only large keystone 203 

triggerfish predators (see ESM Table S1 for full details). Mean triggerfish biomass and urchin 204 

abundances were compared within each habitat at each reef (n = 44). Initially we visualised the 205 

relationship between urchin abundance and triggerfish biomass, then considering each potential factor 206 

(region, shelf, habitat, reef). These factors were considered because there can be substantial variability 207 

in abiotic and biotic processes that influence urchin distributions, such as predation rates, terrestrial 208 
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influences, and productivity among; regions (latitudinal differences; (Sheppard-Brennand et al., 209 

2017)), shelf positions (Fabricius et al., 2014), habitats (Bellwood et al., 2018) and individual reefs 210 

(Browne et al., 2013). Following visual examination, triggerfish biomass (continuous) and shelf 211 

position (categorical) were treated as fixed effects in subsequent models comparing the two taxa. Both 212 

Gamma distributed generalised linear models (GLM) and lognormal linear models were examined, 213 

however, for both urchin predators and keystone triggerfish biomass, the lognormal model was 214 

deemed to produce the superior fit based on residual plots. When examining residual plots non-linear 215 

relationships were also considered. Statistical modelling was performed in the software R (R Core 216 

Team, 2017) using the lme4 (Bates et al., 2015), nlme (Pinheiro et al., 2017), glmmTMB (Brooks et 217 

al., 2017) and the AICcmodavg (Mazerolle, 2017) packages. Due to the nature of the urchin data no 218 

formal analysis was conducted on urchin abundance or bioerosion (see below).  219 

 220 

3. Results 221 

3.1 Sea urchins 222 

Of the 528 transects, 88.3% had no sea urchins visible with average abundances ranging from 223 

0 – 0.5 m-2 (Fig. 2). A total of 462 sea urchins were recorded across all transects and of these 93.1% 224 

were on the two mid-shelf reefs in the northern GBR, with the diminutive Echinostrephus sp. 225 

accounting for 98.1% of total urchin abundance on these reefs (Fig. 2a, b). There were only 10 urchins 226 

recorded across all transects in the central region (Fig. 2b).  227 
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 228 

Fig. 2 The abundance of sea urchins across the Great Barrier Reef in a the northern and b the central 229 

regions (note the difference in scales on the y-axis). B = back reef, F = Flat, S/C = combined slope 230 

crest habitat, S = Slope, C= Crest 231 

 232 

3.2 Bioerosion patterns 233 

The low urchin abundances in turn meant that urchin bioerosion rates were very low across 234 

the GBR (0 – 0.01 kg m-2 year-1; Fig. 3a). Even where urchin bioerosion rates were highest (on 235 

northern mid-shelf back reef habitats [Fig. 3a]) they only accounted for 0.2% of total external 236 

bioerosion (0.01 kg m-2 year-1 urchin erosion compared to 5.5 kg m-2 year-1 by parrotfishes) (Figs 3a, 237 

b). In all locations, parrotfishes accounted for over 99% of external bioerosion with total values 238 
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increasing in an offshore direction; urchin bioerosion peaked on mid-shelf reefs. In terms of total 239 

bioerosion (parrotfishes, urchins and borers) parrotfishes accounted for 61 - 93%. Urchins accounted 240 

for just 0 - 0.2% (0 – 0.01 kg m-2 year-1). Both microborers and macroborers also contributed far more 241 

to bioerosion than sea urchins (0.13 - 0.4 kg m-2 year-1, [4 – 30%] and 0.1 – 0.3 kg m-2 year-1, [2 – 9%] 242 

respectively) (Fig. 3).  243 

 244 

 245 



13 
 

 246 

Fig. 3 Bioerosion rates by a urchins, b parrotfishes and c boring organism across the northern Great 247 

Barrier Reef. B = back reef, F = Flat, S/C = combined slope crest habitat, S = Slope, C= Crest. Data 248 

on parrotfish erosion from Hoey and Bellwood (2008); borer erosion from Tribollet and Golubic 249 

(2005) available from back reef habitats only. Note the difference in scales: parrotfish bioerosion is 250 

orders of magnitude higher than the invertebrates.  251 

 252 
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3.3 Triggerfishes 253 

In general the abundance and biomass of triggerfishes increased across the shelf and was far 254 

higher in the northern region compared to the central region (Fig. 4). Based on the GLMM the AIC 255 

suggested that the interaction between region and shelf position played an influential role in the 256 

abundance patterns of triggerfishes (ESM Table S2), however, this was not significant in the final 257 

model (ESM Table S3). The biomass of triggerfishes was significantly higher on outer-shelf reefs 258 

compared to inner-shelf reefs (LME; p < 0.001; ESM Table S3), and in the northern region compared 259 

to the central region (LME; p < 0.001; ESM Table S3). The only significant differences in triggerfish 260 

biomass among habitats occurred between back reef and slope habitats (LME; p < 0.01; ESM Table 261 

S3).  262 

 263 

 264 
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 265 

Fig. 4 The a abundance and b biomass of all triggerfishes observed across the Great Barrier Reef. B = 266 

back reef, F = Flat, S/C = combined slope crest habitat, S = Slope, C= Crest. 267 

 268 

3.4 Interrelationship between urchins and triggerfishes 269 

On first inspection, there is a distinct relationship between urchin abundance and the biomass 270 

of both all triggerfishes and keystone triggerfishes, with high variability of urchins at low triggerfish 271 

biomass, and limited urchins where triggerfishes occurred (Fig. 5). Indeed, urchin abundances varied 272 

by up to 80%, and triggerfish biomass varied by nearly 900% (Fig. 5). However, there was a marked 273 

spatial component to this relationship. If the role of shelf position is considered, all urchin variability 274 

is largely constrained to the mid-shelf, while triggerfish biomass primarily varies on the outer-shelf 275 

(Fig. 5). As such, the factor shelf position is significant in both the models (ESM Table S4), while 276 
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triggerfish biomass was not significantly related to urchin abundances in either model (ESM Table 277 

S4). Nor was there a non-linear relationship. We therefore found no evidence of any significant 278 

correlation between urchin abundances and the biomass of triggerfishes, the key urchin predators on 279 

the GBR.  280 

 281 

Fig. 5 The relationship between urchin abundance and the biomass of a all triggerfishes considered 282 

urchin predators, and b triggerfishes considered keystone urchin predators across the Great Barrier 283 

Reef (n = 44). Note at ‘face value’ the apparent exponentially declining relationship between urchin 284 

abundance and triggerfish biomass. However, this variability is chiefly driven by differences in urchin 285 

abundance and triggerfish biomass related to shelf location.  286 

 287 

4. Discussion 288 

This study examined the interrelationship and ecosystem function of sea urchins and their 289 

triggerfish predators across the GBR. Both are often considered to be keystone organisms. Although 290 
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an area of more than >10 500 m2 was surveyed for urchins, very few were detected, supporting 291 

findings from previous smaller scale studies on the GBR which found mean abundances ranged from 292 

0 – 1.06 individuals m-2 (Browne et al., 2013; Done et al., 1991; Mallela, 2018; Sammarco, 1985; 293 

Young and Bellwood, 2011). However, these low densities on the GBR contrast markedly with the far 294 

higher urchin densities reported from most major coral reef regions globally (Table 1). These 295 

differences across biogeographic scales may support the common paradigm that urchins are naturally 296 

not major contributors to reef ecosystem processes when predatory fish communities remain intact 297 

(McClanahan and Muthiga, 2016; Sheppard-Brennand et al., 2017; Steneck, 2013). Yet, on the GBR 298 

we also recorded a nearly 900% variation in the biomass of the triggerfishes considered to be 299 

keystone urchin predators (Fig. 5). Despite this background variability there was no evidence for 300 

urchins being released from predation pressure, with a distinct spatial mismatch between triggerfish 301 

and urchin densities. This cautions against the assumption of functional linkages outside the systems 302 

in which they were established.   303 

 304 

Location Urchin Density (ind. m
-2

) Bioerosion (kg 

m
-2

 year
-1

) 

Study 

Panama Diadema 

mexicanum & 

Toxopneustes 

roseus 

0.1 - 150 0.0073 – 10.4 Glynn, 1988 

La Rèunion (West 

Indian Ocean) 

Total 3.8 – 73.6 0.4 – 8.3 Peyrot-Clausade 

et al., 2000 

Puerto Rico Echinometra 

viridis 

0.8 - 62 0.11 - 4.14 Griffin et al., 

2003 

Belize Total 0.8 - 40 0.2 – 2.7 Brown-Saracino 
et al., 2007 

Galapagos Islands  Eucidaris 

thouarsii 

1.1 – 32.7 0.8 – 23.65 Glynn, 1988 

Zanzibar Total 0 – 20.28 0 – 6.91 Bronstein and 
Loya, 2014 

United Arab 

Emirates 

Echinometra 

mathaei 

0 - 14 - Bauman et al., 

2016 

New Caledonia  Total 0 - 13 - Dumas et al., 

2007 

Moorea Total 7.12 – 10.10 0.6 – 7.5 Peyrot-Clausade 

et al., 2000 

Mexico (East 

Pacific) 

Diadema 

mexicanum 

1 - 6.8 0.17 - 3.28 Herrera-Escalante 

et al., 2005 
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Kenya Total 0.06 – 6.2 0.05 – 1.18 Carreiro-Silva and 

McClanahan, 
2001 

Tanzania Total 0.08 – 5.02 - McClanahan et 

al., 1999 

Hong Kong Diadema setosum 0.5 – 4.4 0.12 – 0.66 Dumont et al., 
2013 

Singapore Diadema setosum 0 - 4 - Goh and Lim, 

2015 

Western Australia 

(Ningaloo Reef) 

Echinometra 

mathaei 

0.001 – 2.2 - Johansson et al., 

2013 

Great Barrier 

Reef 

Total 0 – 0.5 0 – 0.01 Present study 

 305 

Table 1. Mean urchin densities and bioerosion rates on natural coral reef substrata reported from reefs 306 

around the world. 307 

 308 

The strongest evidence for a relationship between triggerfishes and urchins was established 309 

on the coral reefs along the East coast of Africa (Mcclanahan, 2000; McClanahan et al., 1999; 310 

McClanahan and Muthiga, 2016; McClanahan and Shafir, 1990). These studies related variation in 311 

triggerfish biomass/density and predation pressure, inside and outside marine reserves, to urchin 312 

densities (McClanahan et al., 1999; McClanahan and Muthiga, 2016; McClanahan and Shafir, 1990). 313 

They also linked a decline in urchins to the recovery of B. undulatus inside marine reserves 314 

(Mcclanahan, 2000). Interestingly, triggerfish densities on the GBR mirrored those in East Africa. 315 

Where the abundance of triggerfishes was highest on the GBR (northern mid- and outer-shelf reefs), 316 

triggerfish densities (0.09 - 1.04, 100 m-2) were comparable to areas protected from fishing in Kenya 317 

(0.33 – 0.92, 100 m-2) (McClanahan and Shafir, 1990) and Tanzania (0.16 - 1.02, 100 m-2) 318 

(McClanahan et al., 1999). While, triggerfish densities on GBR northern inner-shelf reefs (0.06 – 319 

0.28, 100 m-2) and across the entire central region (0 – 0.28, 100 m-2) were comparable to fished areas 320 

in Kenya (0.04 – 0.12, 100 m-2) (McClanahan and Shafir, 1990) and Tanzania (0 – 0.06, 100 m-2) 321 

(McClanahan et al., 1999). Yet, despite this similarity, we did not detect any significant correlation 322 

between triggerfishes and urchins.  323 
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Ningaloo Reef, in Western Australia, provides another example of a coral reef system in 324 

which the relationship between urchins and triggerfishes has been examined. Here, moderate-high 325 

densities of the sea urchin E. mathaei exist, despite intact communities of nominal urchin predators, 326 

with no evidence that predation-controls urchin populations (Johansson et al., 2013). Johansson et al., 327 

(2013) hypothesised that because the predator assemblage was composed chiefly of large labrids (the 328 

large triggerfishes considered to be keystone urchin predators were conspicuously absent or rare) this 329 

may have allowed for the higher densities of E. mathaei. Interestingly, a similar situation existed in 330 

our GBR dataset, with few triggerfishes recorded from the central region despite surveying 331 

approximately 5 hectares of reef. Unlike on Ningaloo Reef, however, these reefs also had the lowest 332 

abundances of sea urchins with only 10 specimens recorded on surveys. Clearly, the urchin – 333 

triggerfish paradigm does not hold in all locations. 334 

If the evidence from East Africa, Ningaloo Reef and the GBR are taken together, they suggest 335 

that the functional linkage between urchins and their predators, especially triggerfishes is far more 336 

complex than often assumed. The lack of clear relationships between urchins and predators in systems 337 

that are considered to be relatively undisturbed, such as the GBR, could highlight the role of both 338 

bottom-up and top-down processes in mediating urchin populations. The abundance of echinoderms 339 

in general, are heavily influenced by bottom-up factors such as food supply, larval supply, water flow 340 

and settlement cues (Metaxas, 2013; Uthicke et al., 2009). Variations in densities within the 341 

echinoderms is exemplified best by the CoTS, and indeed, the role of both bottom-up and top-down 342 

factors in underpinning these outbreaks is still actively debated, with outbreaks potentially being a 343 

result of influences from both directions (Pratchett et al., 2017). The limited number of urchins on 344 

inner-shelf reefs may point to bottom-up control. These reefs lack the diversity and abundance of 345 

nominal echinoid predators (Emslie et al., 2017; Williams and Hatcher, 1983), including triggerfishes 346 

(Fig. 4). They are also considered to be more disturbed than reefs further offshore (Fabricius et al., 347 

2014; Goatley et al., 2016) and exhibit high sediment loads both in the water column (Browne et al., 348 

2013; Fabricius et al., 2014) and within algal turfs (Goatley et al., 2016; Tebbett et al., 2017). 349 

Previously, urchin abundances have been negatively correlated with higher loads of fine sediments 350 
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(Dumas et al., 2007; Sangil and Guzman, 2016) and it has been suggested that long sediment-laden 351 

algal turfs hinder urchin recruitment (Lessios, 2016). Perhaps high sediment loads, rather than 352 

predation, are the main driver of urchin settlement dynamics on inner-shelf reefs. 353 

The lack of a relationship between triggerfishes and urchins could also be a result of other 354 

nominal urchin predators (primarily labrids and lethrinids) playing important roles in urchin predation 355 

on the GBR. The available evidence suggests this is unlikely, with the triggerfishes B. viridescens and 356 

B. undulatus contributing disproportionately to urchin predation compared to both labrids and 357 

lethrinids (Young and Bellwood, 2012). Furthermore, Fricke, (1971) showed that larger triggerfishes 358 

were far more efficient urchin predators, that could consume concealed urchins, while labrids and 359 

lethrinids were restricted to feeding on solitary exposed urchins. Nevertheless, there is the potential 360 

that a high density of labrids or lethrinids could maintain low urchin abundances even in the absence 361 

of triggerfish predators. It should be noted that macro- and/or micro- invertebrates can play important 362 

roles as predators of urchins (Ling and Johnson, 2012), urchin recruits (Bonaviri et al., 2012), as well 363 

as other echinoderm recruits (Cowan et al., 2016), and could have the potential to mediate urchin 364 

densities on GBR reefs.  365 

The diurnal survey techniques used may also have resulted in urchins being undercounted 366 

resulting in no clear relationship between triggerfishes and urchins. Two studies on the GBR have 367 

found that urchins are predominantly nocturnal, presumably to avoid high predation rates during the 368 

day (Sammarco, 1985; Young and Bellwood, 2011). Indeed, the urchin counts in the present study 369 

were dominated by Echinostrephus sp. which are readily visible during the day in their burrows. 370 

However, while urchin abundances may be conservative estimates, the maximum mean nocturnal 371 

urchin density recorded by the two previous studies was just 1.06 m-2, which is still far lower than 372 

other coral reef regions (Table 1). Due to the largescale nature of the surveys in the present study it 373 

would make nocturnal counts logistically challenging and as most sea urchin counts are performed 374 

during the day, our diurnal counts are directly comparable with previous studies. Furthermore, 375 

localised high-densities of diurnally-active Diadema sp. have been observed on the GBR such as in 376 

the lagoon at Brampton Island (20˚48′2.3292″S, 149˚16′46.9518″ E) (pers. obs. SBT, DRB; Fig. S1) 377 
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and on the back reefs of Magnetic Island (19˚9′38.2962″S, 146˚51′28.152″ E) (pers. obs. SBT, DRB). 378 

As such, if urchins were present and free from predation they would be easily detected during diurnal 379 

surveys. Why densities of urchins in general are so low is currently unclear, but it is likely to result 380 

from a complex interaction between bottom-up and top-down factors.  381 

By directly controlling urchin densities, top-down control is often believed to indirectly affect 382 

ecosystem processes, particularly in terms of the relevant contribution of urchins to bioerosion. 383 

However, clearly this is only possible if urchins are controlled by top-down predation and if they 384 

increase to substantial numbers. On the GBR we found no evidence for top-down control, with 385 

generally low urchin densities. Concomitantly, urchin bioerosion rates were very low (0 – 0.01 kg m-2 386 

year-1; Fig. 3a) and were only a fraction of the bioerosion rates that have been reported elsewhere 387 

(Table 1), which reach up to 23.65 kg m-2 year-1 (Glynn, 1988). Our results support those of Browne et 388 

al., (2013) who estimated urchin bioerosion rates on two nearshore reefs in the central GBR to be < 389 

0.1 kg m-2 year-1. On the GBR bioerosion is predominantly by parrotfishes (Fig. 3). This comparison 390 

was made across back reefs, where parrotfish bioerosion rates are lowest (Hoey and Bellwood, 2008), 391 

yet parrotfishes still accounted for 61 - 93% of total bioerosion compared to 0 – 0.2% for urchins.  392 

Unfortunately, the large parrotfishes which contribute disproportionately to bioerosion are 393 

often heavily exploited and rapidly overfished (Bellwood et al., 2012), and in such systems 394 

herbivorous fishes can be replaced by urchins (Graham et al., 2017). As such, the relative 395 

contributions to bioerosion reported herein are likely to reflect more natural levels from relatively 396 

unfished systems (but see Johansson et al., 2010). While both sea urchins and parrotfishes are 397 

considered external bioeroders on coral reefs they contribute to bioerosion in markedly different 398 

ways. Bioeroding parrotfishes are believed to feed on the surface of the reef targeting endolithic 399 

cyanobacteria within the reef matrix (Clements et al., 2017). By contrast, urchins access more 400 

concealed microhabitats and can burrow directly into the reef matrix undercutting and dislodging 401 

massive corals (Bellwood et al., 2004; Done et al., 1991; Glynn and Manzello, 2015; Perry and 402 

Harborne, 2016) and rendering coral colonies more vulnerable to hydrodynamic disturbances (Perry 403 

and Harborne, 2016). When present in high numbers, the more destructive bioerosion delivered by 404 
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urchins may therefore hinder reef development, and place the long-term survival of reefs in jeopardy 405 

(Bellwood et al., 2004). 406 

In this study we have highlighted that functional linkages may not operate across similar 407 

systems, and that the contributions that organisms make to ecosystem processes can also differ 408 

markedly. Essentially, on the GBR, we found no evidence that triggerfishes control urchin 409 

distributions, triggerfish and urchin distributions appear to be unrelated. Furthermore, urchins are not 410 

important players in ecosystem processes such as bioerosion. Notably this study was performed on the 411 

GBR prior to recent upheavals which included back-back mass coral bleaching events (Hughes et al., 412 

2017b). As such, it may provide a valuable insight into the functioning of this system prior to these 413 

disturbances. However, coral reefs are now changing fast, with new, transitional, reef configurations 414 

emerging unlike anything we have experienced previously (Hughes et al., 2017a). Assessing the 415 

applicability of commonly held paradigms to these new, transitional, coral reef systems will be a rich 416 

area of investigation for future research that will be vital to understand and preserve the functioning of 417 

these ecosystems.  418 
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