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ABSTRACT 

 

Acute rheumatic fever and rheumatic heart disease (ARF/RHD) have long been described as 

autoimmune sequelae of Streptococcus pyogenes or group A streptococcal (GAS) infection 

characterised by inflammatory changes to heart, joint, brain, blood vessel and skin tissue. In 

ARF/RHD both antibody and T-cell responses against immunodominant GAS virulence 

factors including M-proteins, cross-react with host tissue proteins. The M-protein antibodies 

activate heart endothelial cells by upregulation of adhesion molecules such as VCAM-1 and 

ICAM-1 to trigger an inflammatory response. Repeat exposure to GAS perpetuates the 

autoimmune process leading to permanent cardiac damage. However, in some ARF/RHD 

endemic regions, throat carriage of GAS is low but carriage of the related Streptococcus 

dysgalactiae subspecies equisimilis (SDSE), also known as β-haemolytic groups C and G 

streptococci (GCS/GGS) is high. As SDSE also express M-protein, it has been postulated that 

streptococci other than GAS may have the potential to initiate or exacerbate ARF/RHD. 

Further investigation of this hypothesis was limited due to the unavailability of an appropriate 

experimental model for this uniquely human disease. Using an animal model initially 

developed to investigate S. pyogenes associated ARF/RHD, we have now discovered that 

GGS does indeed cause both myocarditis and valvulitis, hallmarks of ARF/RHD.  

 

We injected Lewis rats with whole-killed GGS or GGS M-protein Stg480 with or without 

whole-killed GAS and GAS rM5 protein to induce carditis. Carditis development was 

determined by electrocardiographic and echocardiographic examination of rats, and 

histological examination after heart retrieval. Antibody and T-cell reactivity to M-proteins 

and antibody cross-reactivity to host cardiac myosin and collagen I has been demonstrated. 

Remarkably the histological, immunological and functional changes in the hearts of rats 

exposed to GGS are identical to those exposed to GAS.  Furthermore, antibody cross-

reactivity to cardiac myosin was comparable in both GGS and GAS exposed animals 

providing additional evidence that GGS can induce and/or exacerbate ARF/RHD. The results 

provide further evidence that the heterologous GAS and GGS antigen combinations are 

equally as effective as homologous antigens at inducing heart pathology, heart conduction 

and valve abnormalities and potentially autoreactive immune responses.  

 

The role of GAS and GGS M-protein specific antibodies and T-cells in upregulation of 

VCAM-1 and ICAM-1 has been investigated in vitro using cultured rat aortic endothelial 
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cells, and in vivo in tissue sections taken from Lewis rats immunised with GAS and GGS M-

proteins. Upregulation of VCAM-1 and ICAM-1 was observed in an endothelial cell line 

stimulated with antibodies and/or T-cells, and in heart sections of rats injected with GAS and 

GGS M-proteins. Using a Transwell cell culture system, we observed that T-cells from M-

protein immunised animals migrated through the endothelial monolayer. Furthermore, we 

observed the development of carditis in Lewis rats following injection of serum and/or 

splenocytes from rats previously immunised with GAS rM5 protein. 

 

Our findings suggest that group G Streptococcus (GGS) and its M-protein has the potential to 

induce autoimmune mediated carditis in the Lewis rat model of RHD. The data provides 

further direct evidence that M-protein specific lymphocytes and antibodies facilitate 

migration of inflammatory cells to the heart and likely contribute to heart pathology in this 

animal model as well in human RHD. 
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CHAPTER 1 

GENERAL INTRODUCTION 

 
1.1 BACKGROUND 

Rheumatic heart disease (RHD) is the most common acquired cause of cardiac damage in 

humans worldwide during the first 25 years of life (Horstkotte, et al. 1991; Marcus, et al. 

1994; Murray and Lopez 1996; Carapetis, et al. 2016). The most commonly affected age 

group is 5-15 years old (Steer, et al. 2002; Umapathy and Saxena 2018). After single or 

repeated attacks of acute rheumatic fever, about 30-45% of patients develop RHD as a 

complication (Carapetis, et al. 2005a; Katzenellenbogen, et al. 2017). Acute rheumatic fever 

(ARF) is an autoimmune disease possibly caused by inflammatory responses triggered by the 

immune system to the group A Streptococcus (GAS) that cross-reacts with host tissues 

(Guilherme, et al. 2006; Carapetis, et al. 2016). In ARF/RHD, the patients develop a 

widespread inflammation in the joints, skin, brain and incurable mitral fibrosis in the heart 

(Carapetis and Currie 1998; Penm 2008; Parnaby and Carapetis 2010; Umapathy and Saxena 

2018).  

 
In 2015, approximately 297,300-337,300 people died of RHD and there were 33.4 million 

people living with it worldwide (Watkins, et al. 2017). The overall prevalence of RHD was 

estimated as the highest in sub-Saharan Africa, South Asia and Oceania where 10-15 per 

1000 people have had RHD (Karthikeyan and Mayosi 2009; Beaton, et al. 2014; GBDS 

2015). An earlier report of 2005 published that approximately 471,000 new cases of ARF are 

diagnosed each year (Carapetis, et al. 2005b). The incidence rate exceeds 50 per 100,000 

people in developing countries although currently decreasing in the developed world 

(Carapetis, et al. 2005b; Parnaby and Carapetis 2010; Seckeler, et al. 2010; Lawrence, et al. 

2013; Carapetis, et al. 2016). However, the communities in some high-income countries that 

live in poverty, have high rates of ARF/RHD, including the Indigenous populations of 

Australia and New Zealand (Lawrence, et al. 2013). Globally, the observed prevalence of 

RHD is highest in Aboriginal and Torres Strait Islander (ATSI) people in the Kimberley 

(1.02%) and Far North Queensland (1.14%) of Northern Australia, contributed by GAS 

infections (Carapetis, et al. 1996; AIHW 2004; Rothstein, et al. 2007; Seckeler and Hoke 

2011; Remond, et al. 2013). 
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Streptococcus pyogenes or group A Streptococcus (GAS) is an opportunistic pathogen of the 

human pharynx and skin which is associated with a wide spectrum of diseases ranging from 

uncomplicated pharyngitis to severe invasive and debilitating diseases such as ARF/RHD and 

glomerulonephritis (Lancefield 1933; Cunningham 2000; Sims, et al. 2016). The cell surface 

antigens and toxins produced by GAS play a significant role in the induction of these 

diseases. The M-proteins of certain strains of GAS are the most extensively studied factors 

that are associated with ARF/RHD (Cunningham 2012; Williamson, et al. 2015; Carapetis, et 

al. 2016; Williamson, et al. 2016; Brahmadathan 2017; Guilherme, et al. 2017). M-proteins 

are fibrous coiled-coil dimer of α-helices extending from the surface of GAS that share 

structural homology with α-helical coiled-coil human proteins like cardiac myosin, 

tropomyosin, keratin, vimentin, laminin, collagen etc. (Vashishtha and Fischetti 1993; 

Pruksakorn, et al. 1994; Cunningham 2000; Lymbury, et al. 2003; Guilherme, et al. 2006; 

Guilherme and Kalil 2010). In addition to GAS, M or M-like proteins have also been reported 

in the related streptococci of group B (GBS), C (GCS), E (GES), and G (GGS) (Maxted 

1949; Maxted and Potter 1967; Daynes and Armstrong 1973; Woolcock 1974; McNeilly and 

McMillan 2014). However, the association of non-group-A streptococci in the development 

of ARF/RHD remains underexplored. 

 

Autoimmune molecular mimicry mechanisms initiated between streptococcal M-proteins and 

host tissue proteins are believed to be responsible for the development of ARF/RHD 

(Guilherme, et al. 2006; Jaseja, et al. 2010). Molecular mimicry between GAS and host 

cardiac antigens is the key event in the development of carditis (Kaplan 1963; Zabriskie 

1967; Galvin, et al. 2000; Kirvan, et al. 2003). Antibody cross-reactivity between GAS M-

protein and cardiac myosin has been reported (Kaplan, et al. 1964; Krisher and Cunningham 

1985; Cunningham 2000; Galvin, et al. 2000; Dinkla, et al. 2003b; Cunningham 2014). Using 

purified anti-myosin antibodies from patients with ARF, cross-reactive epitopes were found 

on cardiac myosin and the M5 and M6-proteins of GAS (Cunningham, et al. 1989). Anti-

collagen I antibodies also reported in patients’ sera though the cross-reactivity with GAS 

antigens has not been confirmed (Martins, et al. 2008). In fact, GAS antigen specific T-cells 

could also recognise endothelial basement membrane laminin due to homology between 

cardiac myosin and laminin (Galvin, et al. 2000; Mertens, et al. 2000). It is believed that the 

cross-reactive antibodies bind to the cardiac endothelial surface and activate endothelium. 

The activated endothelia express and upregulate vascular cell adhesion molecule (VCAM)-1 

and intercellular adhesion molecule (ICAM)-1 that bind with GAS antigen specific activated 
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T-cells. The binding between adhesion molecules and T-cells facilitates transmigration of T-

cells into the valves and myocardium (Galvin, et al. 2000; Roberts, et al. 2001; Guilherme, et 

al. 2013b). However, the precise mechanisms by which cross-reactive antibodies to cardiac 

myosin result in cardiac lesions is not entirely clear (Fae, et al. 2005).  

 

The inflammatory process of ARF/RHD has structural and functional effects on the heart. 

The characteristic histological features of ARF/RHD include mitral valvulitis and 

granulomatous myocarditis called Aschoff bodies with infiltration of T-cells, macrophages, 

fibroblasts and neutrophils (Roberts, et al. 2001; Pahlman, et al. 2006). There are reports of 

predominantly CD4+ T-cell infiltration than CD8+ T-cells during the development of carditis 

(Ganguly, et al. 1982; Lue, et al. 1983; Bhatia, et al. 1989; Morris, et al. 1993b; Narin, et al. 

1995; Guilherme, et al. 2001a; Roberts, et al. 2001; Ellis, et al. 2005; Toor and Vohra 2012). 

Among the CD4+ T-cells, Roberts, et al. (2001) identified more Th1 T-cells than Th2 cells. 

The T-cells are major functional phenotypes responsible for formation of Aschoff bodies 

beneath the endocardium which is considered as hallmark histological finding of rheumatic 

heart (Chopra, et al. 1988; Fraser, et al. 1995). Chronic inflammation of mitral valve and 

myocardium leads to mitral stenosis and regurgitation and myocardial conduction 

abnormalities (Cunningham 2012; Carapetis, et al. 2016). Electrocardiographic (ECG) 

detection of prolonged P-R intervals in an ECG trace is commonly used as a Jones minor 

criterion for the detection of myocardial conduction abnormality (Gewitz, et al. 2015). 

Furthermore, echocardiographic (echo) demonstration of suspected patients enabled early 

diagnosis, and monitor disease progression (Carapetis, et al. 2016). Common echo findings 

are mitral valvular thickness, presence of nodules and regurgitation (Jain and Mankad 2013; 

Wunderlich, et al. 2013). 

 

Various animal models have been used to investigate the rheumatogenic potential of GAS M-

proteins (Norlin 1959; Dale and Beachey 1986; Sargent, et al. 1987; Haidan, et al. 2000; 

Burova, et al. 2004; Burova, et al. 2005; Gorton, et al. 2009; Guilherme, et al. 2011b; Gorton, 

et al. 2016). Guinea pigs injected with heat killed or lysed GAS or GAS M-protein induced 

myocarditis and valvulitis with increased T-cell and B-cell, macrophage and fibroblast 

infiltration in the myocardium and mitral valve (Gross, et al. 1929; Yang, et al. 1977). New 

Zealand White rabbits injected with GAS M1, M5 or M22 expressing strains induced 

degeneration of myocardium with verrucous endocarditis and infiltration of macrophage, 

lymphocytes, and granulocytes (Norlin 1959; Dale and Beachey 1986; Sargent, et al. 1987; 
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Burova, et al. 2004; Burova, et al. 2005). BALB/c and Swiss mice injected with GAS M3-

strain or cell wall fragments produced cross-reacted antibodies to basement membrane 

collagen (Ohanian, et al. 1969; Dinkla, et al. 2003b). However, Lewis rat autoimmune 

valvulitis (RAV) model has been used successfully to study pathogenesis of ARF/RHD 

(Galvin, et al. 2002; Rush, et al. 2014; Gorton, et al. 2016). Repeated injections of Lewis rats 

with whole killed GAS or purified M-proteins (M5, MT4, MT6, MT7) developed mitral 

valvulitis and myocarditis with infiltration of mononuclear cells, neutrophils, and fibroblasts. 

There was increased opsonic serum IgG titres against GAS M-proteins and cardiac myosin 

with high concentrations of antigen specific T-cell derived cytokines such as; IL-2, IL-6, IL-

10, IL-12, IFN-γ and TNF-α (Quinn, et al. 2001; Lymbury, et al. 2003; Li, et al. 2004; 

Gorton, et al. 2006; Gorton, et al. 2009; Huang, et al. 2009; Gorton, et al. 2010; Xie, et al. 

2010; Kirvan, et al. 2014; Gorton, et al. 2016). The cytokines regulate the heart damage in 

ARF/RHD. 

 

Having the highest documented rates of ARF/RHD in the Indigenous population of Northern 

Australia the pharyngeal carriage rates of GAS was reported low; only 4% throat swabs were 

positive to GAS (Carapetis and Currie 1997; McDonald, et al. 2004). Classic rheumatic M-

serotypes were absent in these populations (Hartas, et al. 1995). Similar patterns of throat 

carriage have been reported in Ethiopia, Jamaica and Southern India that have high burden of 

ARF/RHD (Steer, et al. 2002; Brahmadathan, et al. 2005). However, Indigenous people of 

the Northern Territory of Australia often suffer from GAS skin sores rather than throat 

infections (McDonald, et al. 2004). Furthermore, high carriage rates of group C (GCS) and G 

(GGS) streptococci have been documented in the Indigenous communities of Australia and 

New Zealand (Haidan, et al. 2000; O'Sullivan, et al. 2017). Such findings have led to the 

hypothesis that ARF/RHD may arise from GAS pyoderma or from pharyngitis due to non-

GAS strains that have inherited certain GAS virulence factors important for initiating 

ARF/RHD (McDonald, et al. 2004). 

 

Group C (GCS) and G (GGS) streptococci are closely related to GAS. The GCS and GGS are 

grouped together because some species of streptococci hold both Lancefield group C and G 

carbohydrates for example; Streptococcus dysgalactiae subspecies equisimilis, SDSE 

(McMillan, et al. 2010). In addition, they share the same tissue niche in humans and cause a 

similar spectrum of diseases such as pharyngitis, impetigo, cellulitis, bacteraemia and 

necrotising fasciitis. Significantly, GCS/GGS and GAS have similar virulence factors and are 
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known to exchange genetic material (Bisno, et al. 1987; Bisno, et al. 1996; Sriprakash and 

Hartas 1996; Williams 2003; Towers, et al. 2004; Davies, et al. 2005; McNeilly and 

McMillan 2014). Some GCS and GGS are known to possess M-proteins with high sequence 

and structural homology to the M-types of ARF-associated GAS (Jones and Fischetti 1987; 

Collins, et al. 1992; Bisno, et al. 1996). Furthermore, GCS and GGS were recovered from 

children after recurrent severe pharyngitis who subsequently developed ARF (Davies, et al. 

2005; Chandnani, et al. 2015). Development of ARF following GAS pyoderma and GGS 

pharyngitis also reported recently in an Indigenous Maori boy in New Zealand (O'Sullivan, et 

al. 2017). Antibodies against GGS strains have also been shown to react with human heart 

myosin (Haidan, et al. 2000). Similar to GAS, GGS possesses M-proteins that bind human 

collagen IV and are required for the establishment of infection (Dinkla, et al. 2003b; Dinkla, 

et al. 2007). Collectively, these observations strongly suggest that GGS possesses many of 

the GAS characteristics which are linked to the pathogenesis of ARF/RHD.  

 

Animal model studies have not yet determined a role for GCS in inducing ARF/RHD 

(Cromartie, et al. 1977; Yang, et al. 1977).  Yang, et al. (1977) demonstrated that GCS 

possesses non-rheumatogenic antigens that did not induce antibodies and T-cells cross-

reactive to cardiac myosin. Cromartie, et al. (1977) did not find any significant changes in the 

heart sections of Sprague-Dawley rat injected with GCS. However, the association of GGS in 

the development of ARF/RHD has also not been demonstrated previously (Collins, et al. 

1992; Haidan, et al. 2000; Davies, et al. 2005; McDonald, et al. 2006; Dinkla, et al. 2007). 

Therefore, further studies are warranted to explore the rheumatogenic potential of GGS in the 

pathogenesis of ARF/RHD (WHO 1988; Taranta and Markowitz 1989; Bisno 1996; 

Carapetis, et al. 1999).  

 

1.2 SIGNIFICANCE OF THE STUDY 

Several key questions regarding the involvement of GGS in the pathogenesis of ARF/RHD 

need to be answered. Does GGS and/or its M-protein have the potential to cause autoimmune 

mediated carditis? Do GGS M-proteins exacerbate GAS-triggered carditis? Do GAS M-

proteins exacerbate GGS M-protein triggered carditis? Do GGS M-protein specific antibodies 

and splenocytes activate vascular endothelia and facilitate T-cell transmigration to the heart 

tissues? Do the pathological changes in the heart detectable by electro-physical and 

echocardiographic examination? In addition, to demonstrate the role of antibodies and T-cells 

whether the GAS M-protein specific antibodies and splenocytes could passively transfer the 
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disease into the syngeneic naïve animals was also be explored in this study. The Lewis rat 

autoimmune valvulitis (RAV) model of ARF/RHD is a suitable animal model to investigate 

the questions as it is known to develop carditis in earlier animal studies (Quinn, et al. 2001; 

Galvin, et al. 2002; Gorton, et al. 2009; Rush, et al. 2014; Gorton, et al. 2016).  

 

The specific Aims of this project were: 

1. To determine the reactivity of sera from GGS and/or GAS injected rats with whole-

killed or M-proteins of GAS and GGS, and cross-reactivity with cardiac myosin and 

collagen I (outlined in Chapter 5 and 7). 

2. To measure memory T-cell proliferative response and the phenotype of proliferating 

T-cells from rats using ex vivo re-stimulation with GGS Stg480 and GAS rM5 and by 

measuring cytokines respectively (outlined in Chapter 5 and 7). 

3. To demonstrate the effect of whole-killed and M-protein of GGS and/or GAS on heart 

tissue using histology (outlined in Chapter 6 and 7). 

4. To determine GAS rM5 protein specific serum and splenocytes induced heart 

pathology following passive transfer (outlined in Chapter 8). 

5. To examine cardiac dysfunction and pathology by performing electrocardiography 

and echocardiography (outlined in Chapter 6, 7 and 8). 

6. To demonstrate expression of VCAM-1 and ICAM-1 in vitro in cultured endothelial 

cells following exposure to GAS and GGS M-protein specific serum and/or 

splenocytes and in vivo in heart tissues from rats injected with GAS and GGS M-

proteins (outlined in Chapter 9). 

7. To determine T-cell transmigration across endothelial cell monolayers using a 

Transwell culture system (outlined in Chapter 9). 

 

A final chapter (Chapter 10) will discuss the general findings of this study, including its 

successful outcomes and its limitations. Future directions which may supplement the 

body of this work and provide further insights into the mechanisms that initiate 

development of ARF/RHD are also put forward. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 INTRODUCTION 

Acute rheumatic fever (ARF) and rheumatic heart disease (RHD) are autoimmune diseases 

following Streptococcus pyogenes or group A Streptococcus (GAS) infection of throat or skin 

(Beattie 1907; Carapetis, et al. 2016; Umapathy and Saxena 2018). Following GAS 

infections, immune responses in particular the T-cells and antibodies generated against 

antigens of GAS cross-react with host antigens of skin, joints, muscle, central nervous 

system, and heart (Carapetis, et al. 2016). Repeated exposure to GAS ends with life 

threatening long term sequela such as chronic, untreatable rheumatic heart disease or 

glomerulonephritis. ARF/RHD are the most common acquired cause of cardiac damage 

during early stage of life (Cunningham 2014). In 2015, RHD alone caused 297,300-337,300 

deaths with an approximate prevalence of 33.4 million worldwide (Watkins, et al. 2017). 

Although ARF/RHD are prevalent mostly in low and middle-income countries, the highest 

prevalence rates are reported in Indigenous communities of Australia and New Zealand may 

be due to similar socio-economic status (Carapetis, et al. 1996; AIHW 2004; Rothstein, et al. 

2007; Seckeler and Hoke 2011; Lawrence, et al. 2013; Remond, et al. 2013). Irrespective of 

the highest documented rates of ARF/RHD in these pacific communities, throat carriage rates 

of GAS were reported to be low, with absence of rheumatogenic M-types (Hartas, et al. 1995; 

Carapetis and Currie 1997; Haidan, et al. 2000). Such findings have led to the hypothesis that 

ARF may arise from GAS skin infections or from pharyngitis due to non-GAS strains that 

inherited certain GAS antigens that are important for triggering ARF/RHD (McDonald, et al. 

2004).  

 

Epidemiological studies from Australian and Indian communities have provided the rationale 

for the involvement of non-GAS in the development of ARF/RHD (Carapetis and Currie 

1997; Haidan, et al. 2000; Steer, et al. 2002; McDonald, et al. 2004; Brahmadathan, et al. 

2005; McDonald, et al. 2006). High carriage rates of Streptococcus dysgalactiae subspecies 

equisimilis or group G Streptococcus (GGS) that have both Lancefield’s group C and G 

carbohydrates has been documented in the resource poor setting areas of developing countries 

and Indigenous communities of Australia and New Zealand (Haidan, et al. 2000). Both GGS 

and GAS are related species and share similar characteristics such as colonisation, disease 

spectrums and virulence factors for example M-proteins (Bisno, et al. 1987; Jones and 
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Fischetti 1987; Collins, et al. 1992; Bisno 1996; Bisno, et al. 1996; Sriprakash and Hartas 

1996; Carapetis, et al. 1999; Haidan, et al. 2000; Williams 2003; Davies, et al. 2005). 

However, an association between GGS and ARF/RHD has never been established (Collins, et 

al. 1992; Haidan, et al. 2000; Davies, et al. 2005; McDonald, et al. 2006; Dinkla, et al. 2007). 

Hence, further studies are necessary to explore the rheumatogenic potential of group G 

Streptococcus in the development of ARF/RHD (WHO 1988; Taranta and Markowitz 1989; 

Bisno 1996; Carapetis, et al. 1999). 

 

2.2 AETIOLOGICAL AGENT(S) OF ARF/RHD 

Over the last century, Streptococcus pyogenes or group A Streptococcus (GAS) is reported as 

the only triggering cause of ARF/RHD (Beattie 1907; Carapetis, et al. 2016). The host 

immune responses induced by untreated GAS infections of throat and/or less reported skin, 

mistakenly cross-react with self-proteins located in skin, joints, nervous system, muscles, and 

heart tissues causing acute rheumatic fever (ARF) (Carapetis and Currie 1998; Stewart, et al. 

2007; Kerdemelidis, et al. 2010; Parnaby and Carapetis 2010). Repeated or sometimes a 

single attack of ARF may result in irreparable chronic carditis (RHD) (Carapetis, et al. 2016). 

 

2.2.1 Group A Streptococcus (GAS) 

Streptococci are spherical, Gram-positive bacteria that grow in chains or pairs. Based on their 

haemolytic properties, streptococci are classified into α-, β- and γ-haemolytic groups. The β-

haemolytic streptococci are further classified into 20 serotypes by Lancefield based on the 

specific carbohydrates present on the cell wall (Lancefield 1933). Among the 20 described 

serotypes groups A-V (excluding I and J), groups A-D, and F-H have variable degrees of 

clinical significance in human including ARF/RHD. However, the β-haemolytic group A 

Streptococcus or GAS is the only documented aetiological agent that triggers ARF/RHD 

(Beattie 1907; Carapetis, et al. 2016).  

 

Group A Streptococcus is part of the normal flora of pharynx and skin along with other non-

GAS streptococci such as group C Streptococcus (GCS) and group G Streptococcus (GGS) 

that have many characteristics similar to GAS. Although the prevalence of ARF/RHD is 

reported to be the highest in the Indigenous communities of Australia and New Zealand, 

pharyngeal carriage rates of GAS are reported to be lower than GCS and GGS (Hartas, et al. 

1995; Carapetis and Currie 1997; Haidan, et al. 2000; McDonald, et al. 2004; O'Sullivan, et 

al. 2017). Developing countries like Ethiopia, Jamaica and Southern India also have similar 
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patterns of throat carriage of streptococci (Steer, et al. 2002; Brahmadathan, et al. 2005). 

Therefore, the epidemiological findings questioned the role of GAS skin infections or non-

GAS throat infections in triggering ARF/RHD (McDonald, et al. 2004). 

 

2.2.1.1 Spectrum of diseases caused by GAS 

The scale of infection caused by GAS is ranges from uncomplicated pharyngitis to severe 

invasive and debilitating diseases such as rheumatic fever and glomerulonephritis 

(Cunningham 2000). Pharyngitis or sore throat is the most common manifestation of GAS 

infection (Ferretti, et al. 2016). Approximately 30% of sore throats in children are diagnosed 

as being associated with GAS (Ebell, et al. 2000; Shaikh, et al. 2010). The highest incidence 

of GAS pharyngitis occurs in children of school age (Danchin, et al. 2007). Pharyngitis is 

often associated with skin rash on the trunk and extremities known as scarlet fever. GAS 

pharyngitis may lead to complications that include peritonsillar cellulitis, peritonsillar 

abscess, retropharyngeal abscess, suppurative cervical lymphadenitis, mastoiditis, acute 

sinusitis, and otitis media (Dajani, et al. 1995). This organism also attacks the superficial 

keratin layer of the skin causing impetigo that leads to glomerulonephritis. Infection of the 

superficial epidermis causes mild to severe erysipelas. Erysipelas may extend to the 

subcutaneous tissue causing cellulitis, or the fascia causing life-threatening necrotising 

fasciitis, or even deeper into muscle causing myositis and myonecrosis (Ferretti, et al. 2016). 

It also causes streptococcal toxic shock syndrome. GAS also contribute to the occurrence of 

perianal cellulitis and vulvo-vaginitis in children (Mogielnicki, et al. 2000; Petersen, et al. 

2003). Untreated or poorly treated GAS infections may lead to complications like 

glomerulonephritis and chronic RHD. 

 

Group A streptococcal infection of skin or pharynx may extend to chronic, debilitating 

glomerulonephritis within 10-14 days of infection. However, groups C and G streptococci 

may also have a role in this disease sequelae (Ferretti, et al. 2016). Nephritogenic strains of 

streptococci induce formation of immune complexes that are found in the circulation and 

deposited in the glomeruli. Alternately, the antigen and antibody deposit separately in the 

glomerular basement membrane and form immune complexes, causing in situ immune 

complex disease (Poon-King, et al. 1993; Nordstrand, et al. 2000; Yoshizawa, et al. 2004; 

Batsford, et al. 2005; Oda, et al. 2010). 
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However, acute rheumatic fever (ARF) is the most common sequelae that occurs several 

weeks to several months after GAS pharyngitis (Stollerman 1997; Stollerman 2011). Acute 

rheumatic fever is a global disease which includes major manifestations of the heart, brain, 

joints, and skin (Steer, et al. 2002; McDonald, et al. 2004; Carapetis, et al. 2016). In 

susceptible individuals, infection with GAS generate antibodies and T-cells which also 

recognise host antigens located in the heart, brain, joints, and skin (Galvin, et al. 2000; Ellis, 

et al. 2005; Fae, et al. 2006; Kirvan, et al. 2006; Ben-Pazi, et al. 2013; Cunningham 2014). 

As a result, the patients suffer from migratory polyarthritis due to the formation and 

deposition of immune complexes. Polyarthritis is the most common manifestation of ARF. 

The cross-reactive antibodies may bind to the basal ganglia and neuronal cells causing 

Sydenham chorea (Taranta and Stollerman 1956).  The antibodies may also bind to the 

keratin of skin that lead to erythema marginatum and subcutaneous nodules. However, the 

autoreactive antibodies and T-cells bind with many antigens of the heart resulting in 

inflammation of both heart valves and the myocardium. The myocardium may heal after 

inflammation, however there may be permanent damage to the valves, which leads to chronic 

carditis known as rheumatic heart disease (RHD) (Carapetis, et al. 2016). 

 

2.2.1.2 Virulence factors of GAS 

Group A streptococcal surface antigens and toxins have significant roles in the establishment 

of infection into a host. Important virulence factors of GAS include M-proteins and 

lipoteichoic acid that help in attachment; a hyaluronic acid capsule that inhibits phagocytosis. 

Other extracellular products, such as pyrogenic toxin, which causes the rash of scarlet fever; 

and streptokinase, streptodornase, and streptolysins. However, M-proteins are the most 

extensively studied virulence factors for ARF/RHD (Markowitz and Gerber 1987; Johnson, et 

al. 1992; Shikhman, et al. 1994; Stollerman 1997; Cunningham 2000; Shulman, et al. 2006). 

 

M-protein 

Streptococcal M-proteins are the best-defined virulence factors and are also vaccine 

candidate antigens (Suyama, et al. 2006; Yang 2007). M-proteins extend from the surface of 

the streptococci and share sequence homology with human heart proteins (Cunningham 2014; 

Carapetis, et al. 2016). 
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Structure of M-protein 

Streptococcal M-proteins have fibrous coiled-coil dimer of α-helices structures (Swanson, et 

al. 1969; Phillips, et al. 1981). M-proteins share a common framework having a conserved 

signal peptide (Phillips, et al. 1981; Haanes-Fritz, et al. 1988). M-proteins have a hyper 

variable N-terminus, a less variable central domain and a highly conserved C-terminus 

(Figure 2.1&2.2). The N-terminus is directed outward from the bacteria and is antigenically 

highly variable with more than 80 different defined serotypes (Fischetti 1989). The C-

terminal region binds to the peptidoglycan of the cell wall (Fischetti, et al. 1985). The degree 

of sequence homology between serotypes increases as the sequence approaches the C-

terminus (Fischetti 1989). Nearly the whole protein forms a coiled coil, the only exception is 

being the first 10-20 amino acids at the N-terminus and cell wall associated residues at the C-

terminus (Fischetti 1989). Like most coiled coil proteins, M-proteins contain repeated 

sequences of heptad periodicity. These repeat regions within the M-proteins are grouped into 

four domains such as A, B, C and D (Hallas and Widdowson 1983; Fischetti 1989; Proft, et 

al. 1999; Stevens and Kaplan 2000). The three common patterns correlate with the host 

colonisation site. Pattern A-C strains were reported in throat colonisation. The D and E 

strains recovered mostly from pyoderma and both pharyngitis and pyoderma, 

correspondingly (Shulman, et al. 2004; Bessen and Lizano 2010). 

 

 
Figure 2.1 The most-reported M-proteins of group A Streptococcus. Each M-protein is 
represented with hyper-variable N-terminus (outer end), conserved C-region (attached to the 
cell wall), and less-variable B-region (between N- and C-termini). The patterns A-E have 
been isolated from different colonisation sites. The image is adapted from Smeesters, et al. 
(2010). 
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The N-terminus is the best studied fragment regarding the structure and immunochemistry, 

and little is known about the C-terminal half of the molecule from any M-serotype (Beachey, 

et al. 1977). M-proteins from different streptococcal strains may vary in molecular weight 

and antigenicity (Fischetti, et al. 1985). The M6-protein represents characteristics of a typical 

rheumatogenic M-protein (Figure 2.2). The non-helical part of the hypervariable region of the 

M6-protein possesses 11 amino acids. The A repeat region consists of five repeats of 14 

amino acids each and the B, C and D repeats of four, two and four repeats of 25, 35 and 

seven residues each correspondingly (Hollingshead, et al. 1986; Fischetti 1989). Sequence 

conservation increases from the A repeats to D repeats. The wall-spanning domain of M6 

contains 48 residues (Fischetti, et al. 1988). 

 
Figure 2.2 Structure of group A streptococcal M6-protein. The molecule is anchored in the 
cell wall via the C-terminus and exists as a coiled coil structure. The M6-protein consists of 
A, B, C and D repeats with capacity to bind several human plasma proteins. The A, B and D 
repeats may not be present in all M-proteins. The image is adapted from Smeesters, et al. 
(2010). 
   

Functions of M-protein 

The structure and sequence of the M-proteins are probably the key contributors for the 

induction of host cross-reactive responses. The M-proteins can inhibit phagocytosis in the 

absence of opsonising antibodies in non-immune human host (Lancefield 1962). The N-

terminal part is responsible for antigenic variations and efficient serotyping and nucleotide 
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based emm-typing schemes (Fischetti 1989; Facklam, et al. 1999; Cunningham 2000). It also 

elicits protective antibodies in a type specific manner and is therefore considered as a GAS 

vaccine candidate (McNeil, et al. 2005). Similarly, the C-terminal region has binding 

capability to many host molecules (Fischetti 1989; Cunningham 2000; Smeesters, et al. 

2008). It also offers an opportunity to develop a broad coverage vaccine (Batzloff, et al. 

2003). The C-repeat region consists of 35-42 amino acid repeat units that display high 

sequence homology with cardiac myosin. SV1 is a GAS vaccine candidate that is constructed 

from the C-repeat region. Injection of SV1 in Lewis rats did not induce carditis and T-cell 

response to cardiac myosin, but induced antibodies that recognise majority of GAS M-types 

demonstrating SV1 as a potentially safe vaccine candidate (McNeilly, et al. 2016). In 

contrast, the central region has received less attention, although it has been reported to have 

rheumatogenic epitopes in some emm-types. Cross-reactive epitopes against myocardium, 

synovia and brain are located between the B and C repeat regions. Based on whether M-

proteins react with a monoclonal antibody that targets epitopes in the C repeat region of the 

M6 molecule, streptococci are often classified into Class I or II. The majority of Class I 

strains are implicated in ARF/RHD. Due to circulation of homologous anti-M-protein 

antibodies, reinfections with the same serological M-type are relatively less common. 

Limited clinical evidence exists supporting the involvement of these anti-M-protein 

antibodies in disease pathogenesis. However, antibodies purified from the sera of patients 

with ARF/RHD have been shown to react with both M-proteins and host cardiac myosin 

(Cunningham, et al. 1988; Cunningham, et al. 1989). 

 

Molecular mimicry 

Molecular mimicry is the sharing of antigenic epitopes by the microbes and the host tissues. 

In ARF/RHD, streptococcal M-proteins share structural homology with α-helical coiled-coil 

proteins of host heart such as cardiac myosin, laminin, vimentin, collagen, tropomyosin, 

keratin, etc. to which they cross-react (Zabriskie and Freimer 1966; Dale and Beachey 1985b; 

Dale and Beachey 1986; Oldstone 1987; Sargent, et al. 1987; Cunningham, et al. 1988; 

Damian 1989; Fischetti 1989; Veasy and Hill 1997; Cunningham 2000; Cunningham 2004; 

Carapetis, et al. 2005a; Fae, et al. 2005; Guilherme, et al. 2006; Guilherme and Kalil 2008; 

Guilherme and Kalil 2010; Jaseja, et al. 2010). Among the host tissue proteins, cardiac 

myosin seems to be the major target of cross-reactivity. 
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Previous studies demonstrated that the cross-reactive antibodies to streptococcal membrane 

antigens were present in sera of patients with ARF/RHD (Zabriskie 1967; Zabriskie, et al. 

1970). Several studies reported anti-M protein antibodies in the sera of patients with 

ARF/RHD that have cross-reacted with cardiac myosin and vimentin, suggesting these 

proteins were the target autoantigens recognised in the heart (Dale and Beachey 1985a; 

Krisher and Cunningham 1985; Cunningham, et al. 1986; Cunningham and Swerlick 1986; 

Baird, et al. 1991). Krisher and Cunningham (1985) also reported high molecular weight 

proteins in the human heart tissue extracts that have reacted with GAS specific antibody and 

monoclonal antibody (mAb) to ventricular myosin. Adsorption of the anti-GAS antibody with 

GAS reduced reactivity of the antibody for both GAS and cardiac myosin at the same time. 

Using anti-myosin antibodies in sera from patients with ARF, purified by affinity 

chromatography Cunningham, et al. (1989) observed that the cross-reactive epitopes were on 

cardiac myosin and the N-acetylglucosamine (GlcNAc) epitope of the N-terminus of the M5 

or M6-proteins of GAS. In the same study, the authors also observed that the murine mAb 

reactions with M5-peptides were inhibited by overlapping M-protein peptides SM5(164-

197)C and SM5(184-197)C. The authors summarised that majority of the mouse and human 

myosin cross-reactive antibodies could react with an epitope within the C terminus of GAS 

M5-peptide. Advanced studies demonstrated that the potential rheumatogenic epitopes of 

cardiac myosin are located in the S2 region (Figure 2.3). Ellis, et al. (2010) reported that 

regardless of the infecting GAS M serotype, the cardiac myosin epitopes target the S2 region 

of cardiac myosin and are similar among RHD populations worldwide. Garcia, et al. (2016) 

studied immunodominant epitopes of cardiac myosin to monitor the epitope response pattern 

in acute and convalescent rheumatic fever. Using ELISA, the authors analysed the serum 

cross-reactive antibodies in the patients with ARF/RHD and observed the disease-specific 

epitopes were identified as S2-1, 4 and 8. 
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Figure 2.3 Structure of human cardiac myosin. The coiled-coil structure has high sequence 
homology with GAS M-proteins. Heavy meromyosin (HMM) and light meromyosin (LMM) 
can be obtained by proteolytic cleavage. Further cleavage at the neck of HMM separates the 
single-headed S1 fragments from the S2 fragment. The S2 fragment is the most studied 
region and reported to contain epitopes cross-reactive with M-proteins. Image is adapted 
from Hutagalung, et al. (2002). 
 

Furthermore, Ellis, et al. (2005) reported that the T-cells isolated from patients with RHD 

could potentially recognise GAS M-protein and cardiac myosin, representing one of the most 

well-defined examples of T-cell mimicry in human autoimmune disease. 

 

In addition to cardiac myosin, antibodies against different types of collagen fibres have been 

reported in serum of patients with ARF/RHD (Martins, et al. 2008; Chaudhary, et al. 2018). 

Group A Streptococcus uses collagen binding protein (Cpa) and collagen-like protein (Scl) in 

its pathogenicity. Collagen-like protein has similarities with human collagen and therefore 

may contribute to induce autoimmunity. In host, collagen fibres form the core structure of 

mitral valves and chordae tendineae intermixed with elastic fibres (McCarthy, et al. 2010). 

Collagen in myocardium form the blood vessel wall and strata between myocardial fibres to 

provide strength to resist mechanical stress (Iyer, et al. 2007). Streptococcal proteins similar 

to collagen have been reported, although no immunological cross-reactivity has been 

observed (Lukomski, et al. 2000; Lukomski, et al. 2001). Anti-collagen I antibodies have 

been reported in sera of patients with ARF/RHD, although the cross-reactivity with GAS has 

not been proven (Martins, et al. 2008). Antibodies against collagen may be induced following 

immune responses against certain streptococcal serotypes (Dinkla, et al. 2003a; Tandon, et al. 

2013). Otherwise, they might also be due to the release of collagen from injured valves 

(Tandon, et al. 2013). Banerjee, et al. (2014) reported significantly higher levels of C 

terminal propeptide of type I procollagen and N terminal propeptide of type III procollagen in 
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the plasma of patients with ARF/RHD with mitral stenosis and regurgitation. In a separate 

study, immunohistochemical and confocal microscopy analysis of mitral valves from patients 

with ARF/RHD revealed that there was disrupted patterns of abundant expression of vimentin 

and collagen VI (Martins, et al. 2017). Demonstration of antibodies against vimentin, 

collagen and GAS antigens might add more information about molecular mimicry with GAS 

and host heart collagen. Chaudhary, et al. (2018) demonstrated high level of antibody titres 

against collagen binding protein (Cpa) and collagen-like protein (Scl) of GAS in the sera 

from patients with pharyngitis and ARF compared to healthy controls. The isolates also 

showed high binding affinity toward host collagen I and IV, which further indicates a 

potential host pathogen interaction. 

 

Laminin is an extracellular matrix protein of heart valves and cross-reactive antibodies 

against laminin induced by GAS carbohydrate epitope GlcNAc have been reported (AHA 

1992; Cunningham 2000). It has been considered that an antibody binding to laminin is the 

key to the development of valve damage in RHD (Cunningham 2012). Galvin, et al. (2000) 

reported that the mAb from serum of patients with ARF/RHD reacted with valvular 

endothelium and laminin. The authors concluded that anti-GAS/anti-myosin antibodies may 

produce valvular endothelial injury to expose laminin to the immune system. However, in a 

separate study, Wahid, et al. (2005) demonstrated that antibodies in the sera from patients 

with pharyngitis and ARF had significantly higher binding affinity to a recombinant laminin-

binding protein of GAS (rGAS-Lmb) compared to serum antibody from healthy controls. The 

higher antibody response to rGAS-Lmb suggests that high expression of this protein is 

necessary for colonisation, establishment of infection as well as valve damage.  

 

Furthermore, an immunoproteomic approach with endothelial cell-surface membrane proteins 

demonstrated anti-vimentin antibodies in sera from half of the patients with RHD (n=140) 

that have cross-reacted with streptococcal proteins (Delunardo, et al. 2013). The study also 

demonstrated that the cross-reactive antibodies were able to activate cardiac endothelium by 

inducing expression of vascular cell adhesion molecule-1 and release of proinflammatory 

cytokines to amplify the inflammatory response in RHD. In a previous study, (Fae, et al. 

2008) it was reported that the T-cells from chronic RHD patients proliferated in the presence 

of vimentin using a lymphocyte proliferation assay. 
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Several animal model studies also reported that the antibodies specific for GAS antigens 

reacted with cardiac myosin (Afanasyeva, et al. 2001; Quinn, et al. 2001; Gorton, et al. 2006; 

Gorton, et al. 2009; Kirvan, et al. 2014; Gorton, et al. 2016). Cunningham, et al. (1997) 

identified T-cell cross-reactive epitopes of M5-protein in mice after injection with human 

cardiac myosin. Later, Quinn, et al. (2001) demonstrated that the GAS rM6-protein induce T-

cells in Lewis rats that have proliferated in the presence of purified cardiac myosin. In 

separate studies, Gorton and colleagues reported that the antibodies and T-cells generated in 

Lewis rats after injection with a peptide from B-repeat region of rM5-protein (M5-B.6) have 

responded to cardiac myosin (Gorton, et al. 2009; Gorton, et al. 2016). A proteomic analysis 

of acute RHD with the iTRAQ labelling based 2D LC-ESI-MS/MS quantitative technology 

revealed that there was increased expression of myosin and collagen I and V in the mitral 

valves of Lewis rats injected with GAS that might act as potential biomarker for ARHD (Li, 

et al. 2015). The cross-reactive antibodies bind to the valvular endothelial surface leading to 

inflammation, cellular infiltration, and valve scarring (Galvin, et al. 2000; Roberts, et al. 

2001; Guilherme and Kalil 2010). 

 

Association of M proteins with ARF/RHD 

To date, more than 200 M-types (emm types) of GAS have been reported. Among them, 

serotypes 1, 2, 3, 5, 6, 14, 18, 19 and 24 have been reported to be associated with outbreaks 

of ARF/RHD (Markowitz and Gerber 1987; Johnson, et al. 1992; Stollerman 1997; 

Guilherme, et al. 2001b; Shulman, et al. 2006). In addition, M serotypes different from those 

in the United States have been associated with ARF/RHD in Trinidad and Hawaii (Potter, et 

al. 1982; Read, et al. 1986; Erdem, et al. 2007). The epidemiological studies suggest that the 

prevalence and incidence of ARF/RHD does not necessarily correlate with the distribution of 

rheumatogenic M-types of GAS. 

 
Other key virulence factors 

Streptococcal infection is established by sequential events of adhesion, colonisation and 

invasion of tissues. Previous damage to tissue may facilitate skin attachment and 

colonisation. A minimum of 11 adhesins that facilitate adhesion to epithelial cells have been 

described for GAS including M-proteins, lipoteichoic acid (LTA), protein F/Sfb, fibronectin 

binding protein, glyceraldehyde-3-phosphate dehydrogenase, galactose-binding protein, 

vitronectin-binding protein, collagen-binding protein, serum opacity factor, and hyaluronate 

capsule (Ellen and Gibbons 1972; Ellen and Gibbons 1974; Ofek, et al. 1975; Simpson, et al. 
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1980; Simpson and Beachey 1983; Valentin-Weigand, et al. 1988; Caparon, et al. 1991; 

Courtney, et al. 1992a; Courtney, et al. 1992b; Hanski and Caparon 1992; Pancholi and 

Fischetti 1992; Courtney, et al. 1994a; Courtney, et al. 1994b; Dale, et al. 1994; Okada, et al. 

1994; Wang and Stinson 1994a; Wessels and Bronze 1994; Kreikemeyer, et al. 1995; Visai, 

et al. 1995; Winram and Lottenberg 1996). Streptococci may adhere to endothelial cell or 

keratinocytes and induce localised inflammatory responses (Courtney, et al. 1997; Wang, et 

al. 1997). The epithelial cell and keratinocyte proteins help in adherence to GAS include; 

fibronectin, fibrinogen, collagen, vitronectin, fucosylated glycoprotein, several membrane 

proteins, and hyaluronate binding receptor (Sanford, et al. 1982; Simpson and Beachey 1983; 

Valentin-Weigand, et al. 1988; Courtney, et al. 1992a; Wang and Stinson 1994b; Okada, et 

al. 1995; Visai, et al. 1995; Schrager, et al. 1998). Table 2.1 summarises the streptococcal 

adhesins that bind with host receptors. 

 

Table 2.1 GAS antigens that bind with respective host cell receptors during establishment of 
infection 
 

GAS antigens Host cell receptors 
Lipoteichoic acid (LTA) Epithelial cell, fibronectin receptor 

(Courtney, et al. 2002; Neuhaus and 
Baddiley 2003; Grundling and Schneewind 
2007; Courtney, et al. 2009; Percy and 
Grundling 2014) 

Protein F/SfbI Epithelial cell, fibronectin, CD46 receptor 
on keratinocytes (Talay, et al. 2000; 
Rodriguez-Ortega, et al. 2006) 

Fibronectin-binding protein (FBP54) Fibronectin, fibrinogen (Bessen and Kalia 
2002; Kreikemeyer, et al. 2004; 
Rodriguez-Ortega, et al. 2006; Falugi, et 
al. 2008; Yamaguchi, et al. 2013) 

Serum opacity factor (SOF) Fibronectin (Oehmcke, et al. 2004; 
Rodriguez-Ortega, et al. 2006) 

Hyaluronic acid capsule Keratinocyte, CD44 (hyaluronate receptor) 
(Stollerman and Dale 2008; Flores, et al. 
2012) 

Glyceraldehyde-3-phosphate dehydrogenase Pharyngeal epithelium, fibronectin, 
cytoskeletal proteins, plasminogen-plasmin 

Vitronectin-binding protein Fibronectin 
70-kDa galactose-binding protein Galactose 
Collagen-binding protein Collagen (Bessen and Kalia 2002; 

Humtsoe, et al. 2005; Rodriguez-Ortega, et 
al. 2006; Caswell, et al. 2007; Caswell, et 
al. 2008; Falugi, et al. 2008; Chen, et al. 
2010) 
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2.2.2 Non-group A Streptococcus 

Although ARF/RHD is well reported as an autoimmune sequelae of GAS pharyngitis, there 

are many reports of low GAS carriage rates throughout the world. Several epidemiological 

studies reported low pharyngeal carriage rate of GAS in school-age children of temperate 

counties; only 15-30% positive to GAS (Anthony, et al. 1976; Quinn, et al. 1978; Nicolle, et 

al. 1990; Danchin, et al. 2004; Martin, et al. 2004). The picture is more varied in tropical and 

subtropical regions; only 4-17% (Rajkumar and Krishnamurthy 2001; Bassili, et al. 2002). 

On the contrary, recovery rates in pharynx of Streptococcus dysgalactiae subspecies 

equisimilis (SDSE) or group G Streptococcus (GGS) that have Lancefield’s C and G 

carbohydrates on the cell wall, were high-up-to 20% of cases in some of the Indigenous 

communities of Australia (Haidan, et al. 2000). Investigations in these communities of 

Northern Australia revealed that high rates of ARF/RHD was not driven by symptomatic 

GAS pharyngitis (Kaplan 1993; McDonald, et al. 2006). The median point prevalence for 

pharyngeal carriage in this population was only 3.7% for GAS (McDonald, et al. 2006). By 

contrast, the group G (GGS) and C (GCS) β-haemolytic streptococcal carriage rates recorded 

were 5.1% and 0.7%, respectively (McDonald, et al. 2006). Similar findings have been 

reported in several Indian studies (Gupta, et al. 1992; Gonzalez-Lama, et al. 2000; Haidan, et 

al. 2000; Lloyd, et al. 2006). The isolation rate of GGS is as high as 70% from asymptomatic 

carriers in many tropical countries (WHO 1988; Taranta and Markowitz 1989; Kaplan 1996; 

Pruksakorn, et al. 2000). A recent study in Southern India reported 32.1% prevalence of 

GAS, 49.1% GGS and 9.8% GCS (Gowda, et al. 2012). The role of GGS/GCS in 

streptococcal disease burden is under-recognised by clinicians and microbiologists. However, 

recent epidemiological data reported that β-haemolytic streptococci belonging to Lancefield 

group C and G are an emerging threat to human health (Nitsche-Schmitz, et al. 2007). 

Therefore, pre-exposure to GGS/SDSE may also be an important but overlooked aetiological 

factor in the pathogenesis of ARF/RHD.  

 

2.2.2.1 Group G Streptococcus (GGS) 

The β-haemolytic Streptococcus dysgalactiae subspecies equisimilis (SDSE) or group G 

Streptococcus (GGS) possesses group C or G antigens and rarely A antigen (Vandamme, et 

al. 1996). It is a normal inhabitant of the lower respiratory tract, skin, gastrointestinal tract, 

and female genital tract with a capacity to cause opportunistic infections in individuals with 

underlying medical conditions (Vartian, et al. 1985; Baracco and Risno 2004; Cohen-

Poradosu, et al. 2004; Liao, et al. 2008). Although GGS was first isolated from human 
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puerperal sepsis in 1935, its role in disease has often been ignored (Lancefield and Hare 

1935; Barnham 1983; Lindbaek, et al. 2005). 

 

2.2.2.2 Spectrum of diseases caused by group GGS 

Although GGS is part of the normal flora, it may cause both non-invasive and invasive 

diseases in human. In fact, 3-4% of cases of streptococcal bacteraemia resulted from GGS 

infections (Watsky, et al. 1985). Other diseases associated with GGS include pharyngitis, 

erysipelas, neonatal sepsis, arthritis, cellulitis, suppurative thrombophlebitis, osteomyelitis, 

empyema, peritonitis, endometritis, ARF, endocarditis and acute post-infectious 

glomerulonephritis (Bouza, et al. 1978; Dyson and Read 1981; Stryker, et al. 1982; 

Auckenthaler, et al. 1983; Lam and Bayer 1983; Nakata, et al. 1983; Finch and Aveline 1984; 

Vartian, et al. 1985; Watsky, et al. 1985; Craven, et al. 1986; Venezio, et al. 1986; 

Carstensen, et al. 1988; Brahmadothan and Koshi 1989; Brandt and Spellerberg 2009; 

Kittang, et al. 2010; Harrington and Clarridge 2013; Kakuya, et al. 2017; Lother, et al. 2017). 

A recent study reported that children in Japan suffered from GGS pharyngitis following food-

poisoning (Yamaguchi, et al. 2018).  

 

Case reports have indicated that GGS also could also cause other life-threatening complicated 

infections (Venezio, et al. 1986; Mohan, et al. 1989; Burkert and Watanakunakorn 1991; 

Liao, et al. 2008; Nei, et al. 2012). Bacteraemia with pharyngitis with or without endocarditis 

have been the most commonly reported presentations of GGS infections (Rantz, et al. 1946; 

Barnham 1980; Lam and Bayer 1983; Nakata, et al. 1983; Dickie, et al. 1984). GGS has also 

been recovered from blood of patients suffering from subungual haematoma, systolic murmur 

and aortic valve abscess and vegetations (Venezio, et al. 1986). A similar case was found 

with viridans streptococcal endocarditis (Venezio, et al. 1986). There is also a report of 

recovery of GGS in a patient suffering from fever, asymptomatic murmur of mitral valve 

prolapse and vegetations (Venezio, et al. 1986). Vegetations are treated as one of the major 

complications of GGS bacteraemia, occur most often in endocarditis patients and lead to 

congestive heart failure necessitating valve replacement. A recent study in New Zealand 

reported ARF in an adolescent following GAS pyoderma and GGS pharyngitis indicating the 

potential for ARF/RHD following both GAS skin infection and/or GGS pharyngitis 

(O'Sullivan, et al. 2017). 
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2.2.2.3 Virulence factors of GGS 

Group G Streptococcus possesses heterogeneous surface associated virulence factors 

(Craven, et al. 1986; Bisno, et al. 1987). The important virulence factors enhance bacterial 

attachment to the host, escape from phagocytosis and ultimate establishment of infection 

(Kalia and Bessen 2004). The major structures and products of GGS are toxins, proteases and 

regulatory factors and M-proteins (Davies, et al. 2007a). 

 

M-proteins 

There are ample studies to prove that GGS possesses M-proteins on its cell wall. M-proteins 

or M-like proteins are also possessed by group B, C, and E streptococci (Maxted 1949; 

Maxted and Potter 1967; Daynes and Armstrong 1973; Woolcock 1974). Maxted and Potter 

(1967) reported the presence of the M12-protein in three GGS strains isolated from the throat 

and skin sores of Trinidadian children. Swanson, et al. (1969) reported seven strains of GGS 

that exhibited an abundance of surface fimbriae similar to those present in M-proteins of 

GAS. Beachey, et al. (1974) reported that the antibodies to pepsin-extracted peptides ranging 

from 31-45 kDa (the range of peptides of GAS M-proteins) were type-specifically opsonic 

for GGS strains. Electron microscopic examination observed surface fimbriae on GGS 

resembling M-proteins. In addition, resistance to phagocytosis with luxuriant growth in fresh 

human blood, type-specific opsonisation by hyperimmune rabbit sera and 

immunoprecipitation in agar gel studies confirmed the presence of M-proteins (Lawal, et al. 

1982). Moreover, a strain of GGS has been shown to contain DNA which hybridised with a 

probe encoding the M6-protein of GAS (Scott, et al. 1985). DNA sequencing of the protein 

genes from GGS clinical isolate revealed structural similarity with M-proteins of both GGS 

and GAS (Johansson, et al. 2004; Steer, et al. 2009b; Sunaoshi, et al. 2010; Tseng, et al. 

2010; Leitner, et al. 2015). 

 

Function 

Despite GGS colonising the throat, causing clinically significant pharyngitis and its 

production of M-proteins, little is known about the distribution or clinical significance of 

these proteins (Bisno, et al. 1987). The GGS M-proteins also have never been reported to 

directly cause ARF/RHD (Collins, et al. 1992). However, several studies reported that GGS 

strains grow well in human blood and resist phagocytosis, contributed by M-protein (Bisno, 

et al. 1987; Jones and Fischetti 1987; Simpson, et al. 1987; Martin, et al. 1990; Collins, et al. 

1992; Bisno, et al. 1994; Schnitzler, et al. 1995). 
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Association with ARF/RHD 

Several studies have shown that GGS may have the potential to elicit autoimmune responses 

that may trigger ARF/RHD (Bisno, et al. 1996; Sriprakash and Hartas 1996; Haidan, et al. 

2000; Davies, et al. 2005). As described previously M-proteins have a significant role in host 

cell attachment or escape from immune responses. Five GGS isolates from throat swabs of 

asymptomatic Indigenous children expressed high levels of M6-type protein: M6 protein has 

previously been shown to have rheumatogenic potential (Haidan, et al. 2000). In this study, 

antibodies against the GGS M-types were raised in mice by standard immunisation 

procedures. The antibodies against GGS throat isolates reacted against human heart myosin, 

however, the antibodies to five skin isolates showed very low reactivity (Haidan, et al. 2000).  

 

Other key GGS virulence factors 

In addition to M-proteins, Group G Streptococcus produces distinct streptokinase, 

streptococcal C5a peptidase, hyaluronidase, fibronectin binding protein, collagen binding 

protein and laminin binding proteins, all of which have potential roles in the establishment of 

infection. Streptolysin S (sagA), streptolysin O (slo) and haemolysin (hlyIII, helA1) represent 

toxins or proteases, and CovR and CovS control gene expression (Geyer and Schmidt 2000; 

Humar, et al. 2002; Hashikawa, et al. 2004). Human GGS strains possess a C5a-peptidase 

that resists phagocytosis by inhibiting chemotaxis and neutrophil migration (Ikebe, et al. 

2004). However, compared to GAS, GGS were reported to express low levels of these C5a-

peptidases and hence are less able to resist phagocytosis (Cleary, et al. 1991). Streptokinase 

dissolves human fibrin, facilitating invasion of GGS (Ikebe, et al. 2004). Similar to GAS, 

fibronectin-binding proteins (GfbA/SfbI) of GGS act as an invasin to invade human 

respiratory epithelial cells (Haidan, et al. 2000; Palmieri, et al. 2007).  

 

2.2.2.4 Comparison to GAS, similarities and differences 

Although GGS is not considered major human pathogen, it has many characteristics similar 

to GAS (Chhatwal and Talay 2000). GGS and GAS share the same tissue niche, many 

virulence factors including M-proteins and cause a similar spectrum of disease (Bisno, et al. 

1996; Haidan, et al. 2000; Davies, et al. 2005; Dinkla, et al. 2007). M-proteins of GAS and 

GGS isolated from human infections have similar biological, immunochemical, and structural 

features (Bisno, et al. 1987; Jones and Fischetti 1987; Simpson, et al. 1987; Martin, et al. 

1990; Collins, et al. 1992; Bisno, et al. 1994). The biological and immunochemical identity 
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between M-proteins of GAS and GGS has been studied extensively (Jones and Fischetti 

1987). Colonisation and overlapping clinical presentation are two major forms of evidence 

for evolutionary interspecies relatedness between GAS and GGS. The rRNA sequence based 

phylogenetic analysis and other molecular clocks also support the close relatedness between 

these bacteria (Vandamme, et al. 1996; Poyart, et al. 1998; Facklam 2002; Tapp, et al. 2003). 

As described previously, several studies have shown that GGS possesses genes for M-

proteins, C5a peptidase, streptokinase, streptococcal pyrogenic exotoxins and fibronectin 

binding proteins, all of which are essential virulence determinants in GAS (Maxted and Potter 

1967; Malke, et al. 1985; Walter, et al. 1989; Cleary, et al. 1991; Sachse, et al. 2002; Igwe, et 

al. 2003; Kalia and Bessen 2003; Towers, et al. 2004). The mosaic structure of some of these 

GAS and GGS genes strongly suggests lateral genetic transfer has occurred between the two 

streptococci (Davies, et al. 2005). In addition, it has been suggested that bacteriophages 

might have contributed to the transfer of genes encoding proteins with rheumatogenic 

properties from GAS to GGS (Haidan, et al. 2000; Davies, et al. 2007b). 

 

Based on hybridisation profiles, Collins, et al. (1992) reported that GGS M-protein has 

structural features analogous to class I M-proteins of GAS. The authors also published that 

there are minimum of four different emm alleles associated with GGS. Comparison of GGS 

emmL (emm 656) gene sequence with GAS emm 12 and 57 revealed that there was 85% 

homology between them (Robbins, et al. 1987; Manjula, et al. 1991; Podbielski, et al. 1991; 

Podbielski, et al. 1993; Podbielski, et al. 1994; Whatmore and Kehoe 1994). In addition, the 

GGS strain 480 emmL gene sequence showed 85% homology with the GAS emm 57 

sequence (Schnitzler, et al. 1995). 

 

In one study, crude mutanolysin (an N-acetyl-muramidase) extracts from GGS strains showed 

marked similarity to GAS M-proteins based on protein size and immunoblot reactivity with 

the GAS M6 mAb 10F5 (Hamada, et al. 1978). The GGS mutanolysin extracts had a multiple 

banding pattern characteristic of and very similar to those of the proteins in the GAS extract 

(Figure 2.4). The GGS extracts also possessed diffuse upper bands similar to the M-protein 

extract of GAS (Fischetti, et al. 1985) which represent M-proteins bound to cell wall 

fragments containing the GAS specific carbohydrate (Fischetti, et al. 1985).  This suggests a 

mechanism of attachment of the GGS M-protein to the cell wall similar to that of the GAS 

M-protein (Fischetti, et al. 1985; Hollingshead, et al. 1986). A pepsin-derived fragment from 
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GGS strain D886 stimulates opsonic antibodies demonstrating GGS M-proteins as primary 

virulence factor as in GAS (Jones and Fischetti 1987). 

 

 
Figure 2.4 GGS possess M-protein similar to GAS M-protein. SDS-PAGE and Western blot 
analysis of crude GAS and GGS mutanolysin showed protein bands in GGS extracts that are 
similar to those in GAS extracts. Lane a, GAS strain D471; lanes b-e, GGS strains D862, 
D884, D959, and D851, respectively (Jones and Fischetti 1987). 
 

Immunological cross-reactivity of monoclonal antibodies with GAS serotype M6-protein and 

hybridisation data suggested that the GGS M-proteins are structurally similar to GAS M-

proteins (Scott, et al. 1985; Jones and Fischetti 1987). Gene sequences for the M-proteins 

from several GGS isolates revealed significant similarity with GAS M-proteins at the C 

terminus and only limited similarity at the N terminus (Collins, et al. 1992; Schnitzler, et al. 

1995). Expression of M12 antigen of GAS by GGS suggests that gene transfer between GGS 

and GAS can make GGS more virulent for humans (Simpson, et al. 1992). Sequence data in 

fact demonstrated similarity between some emmGs and emm12 or emm57 from GAS 

(Schnitzler, et al. 1995). Group G streptococcal isolates-6 (emmGGS6) from the Northern 

Territory of Australia showed 99% identity to emmLG935 and emm of STDONALD, a GAS 

isolate (Schnitzler, et al. 1995). These data are consistent with ongoing cross-species gene 

transfer between GGS and GAS. Although GAS and GGS have many characteristics 

common to each other, GGS and its M-proteins are still less characterised and studied in 

terms of their roles in causing disease and in particular their involvement in the aetiology of 

ARF/RHD. 
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2.3 RISK FACTORS OF ARF/RHD 

The prevalence and incidence of ARF/RHD around the world is dependent on the 

environment, the socio-economic standard and genetic factors. The relative contribution of 

each of these individual risks is difficult to elucidate given that many of them overlap and 

most are associated with poverty and economic disadvantage (Steer, et al. 2002; Diao, et al. 

2011; Rothenbuhler, et al. 2014). 

 

2.3.1 Environmental risk factors 

F. J. Poynton, a paediatrician at the Hospital for Sick Children in London, said that risk 

factors associated with ARF/RHD included ‘climatic and local surroundings, sanitations and 

conditions of housing’ and declared that ‘it is to prevention, then that we look for some 

advance from this grievous state of affairs’ (Campbell 1944). Overcrowding due to 

industrialisation is an important factor of poor hygiene leading to streptococcal pharyngitis or 

skin infection. In  many  developing  regions,  rapid  industrialisation  has brought a 

population shift from rural to urban areas leading to crowded urban slums (Markowitz 1991). 

In Kinshasa town in the Democratic Republic of Congo, the risk of RHD was found to be far 

higher (risk ratio: 4.1) in semi-urban areas (22.2 per 1000) compared to urban areas (4 per 

1000) (Longo-Mbenza, et al. 1998). In these semi-urban areas, 81.1% of subjects lived in 

houses with more than eight people. The rise in the standard of living in Denmark has seen 

the incidence of ARF fall astonishingly between 1862 and 1962 (Kaplan 1985; Kumar 1995). 

Crowded living conditions with close interpersonal contacts contribute to the persistence and 

spread of virulent streptococcal strains. During the 1950s, a study conducted on US Air Force 

Base barracks revealed that acquisition of streptococcal infections increased when beds were 

moved closer together (Wannamaker 1954). In a study on ARF patients in Baltimore, it was 

demonstrated that overcrowding was the predominant cause of the higher incidence rate 

among non-white peoples (Gordis, et al. 1969).  However, the situation is less clear in 

developing countries due to the lack of appropriate studies. In contrast, Adanja, et al. (1988)  

found that crowding was not associated with ARF/RHD in Serbia. In a study in Northern 

India, the prevalence of RHD was recorded to be 3.8 per 1000 in rural areas and 1.3 per 1000 

in urban areas (Berry 1972). The apparently reduced association between overcrowding and 

ARF/RHD in Serbia and Northern India suggest that there is a threshold above which extra 

crowding has little effect. Effects of seasonal variation closely mimic the incidence of 

streptococcal infections. High incidence in early autumn, late winter and early spring are 
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particularly pronounced in temperate climates but are not significant in the tropics (WHO 

2004). 

 

2.3.2 Social risk factors 

Over the past 150 years, socioeconomic and environmental factors have been playing an 

indirect but important role in the prevalence and incidence of ARF/RHD in both developed 

and developing countries (Carapetis, et al. 2016). Discussing the importance of socio-

economic status in the prevalence of ARF/RHD, Glover (1930) suggested that ‘no disease has 

a clearer social incidence than acute rheumatism which falls perhaps 30 times as frequently 

upon the poorer children of the industrial town, as upon the children of the well-to-do’.  

 

Poverty, malnutrition, overcrowding and poor housing are recorded as the most significant 

determinants of ARF/RHD by enabling rapid spread of streptococci throughout a population 

(Kaplan 1980; WHO 1988; Taranta and Markowitz 1989; Narula, et al. 1999; Stevens and 

Kaplan 2000; WHO 2004). Evidence suggests that malnutrition in early childhood plays a 

significant role in  susceptibility to ARF/RHD (Coburn 1961). In a study in Serbia, children 

patients with a bodyweight of 10% below average had a 42% increased risk of ARF/RHD 

(Adanja, et al. 1988). Subjects with lower albumin levels showed a significantly higher risk 

when compared with normal subjects (Zaman, et al. 1998). Protein-calorie malnutrition 

causes lymphopenia, thymic atrophy and altered cell-mediated and antibody responses that 

may predispose to ARF (Fraker, et al. 2000).  

 

Moreover, inadequate health-systems may lead to misdiagnosis, inadequate or late diagnosis 

and treatment of streptococcal pharyngitis and ARF/RHD. Shortage of resources for 

providing quality health care, inadequate expertise of healthcare providers and low-level 

awareness of the disease in the community are major constraints in RHD endemic regions 

(WHO 1987; WHO 1988; Taranta and Markowitz 1989; Bisno 1996; Kaplan 1996; WHO 

2004). Some authors suggest that the difference in prevalence between developed and 

developing countries is due to the difference in access to medical services (Kumar 1995). The 

incidence of ARF/RHD decreased in USA by one-third between 1960 and 1970 after the 

introduction of ‘Comprehensive Care Programs’ (Gordis 1973). In Costa Rica, the incidence 

rate fell with a National Health Strategy of primary benzathine penicillin prophylaxis by the 

1970s (Arguedas and Mohs 1992). Remarkably, 78% and 74% reduction in the incidence 

occurred as a result of a 10-year educational programme directed at healthcare workers and 
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the public in Martinique and Guadeloupe, respectively (Bach, et al. 1996). Primary 

prophylaxis programmes effectively increase public concern about ARF/RHD and access to 

medical services as well as the treatment for pharyngitis. High rates of ARF/RHD in 

Indigenous people of New Zealand and Australia are likely to be related to poor hygiene, 

inadequate clean water and sewerage system and inaccessible health services rather than 

genetic susceptibility (Carapetis and Currie 1998; Carapetis, et al. 2000; Couzos and 

Carapetis 2003; Penm 2008; Parnaby and Carapetis 2010; White, et al. 2010). 

 

2.3.3 Host genetic factors 

The genetic pattern of susceptibility to ARF/RHD has been sought for more than a century. 

Many studies have been conducted that aim to define the pattern of inheritance responsible 

for susceptibility. Recent studies have tried to uncover specific markers for susceptibility to 

ARF/RHD (Kaplan 1980; WHO 1988; Taranta and Markowitz 1989; Guilherme, et al. 1991; 

Ramasawmy, et al. 2007; Guilherme, et al. 2011b). Pedigree studies suggested that the 

immune reactions are genetically controlled with high responsiveness to the streptococcal cell 

wall antigens being expressed through a single recessive gene and low responsiveness 

through a single dominant gene. However, single nucleotide polymorphisms in a number of 

genes affect patients with RHD (Guilherme, et al. 2011b). 

 

Genes controlling the low level response to the streptococcal antigen is closely linked to the 

Class II human leukocyte antigen (HLA; corresponding to MHC class II) (Sasazuki, et al. 

1980). The molecular mechanism by which HLA class II molecules confer susceptibility to 

autoimmune disease is not clear. The role of the molecules is to present antigens to the T-cell 

receptor (TCR), leading to the recruitment of large numbers of CD4+ T-cells that specifically 

recognise antigenic peptides from extracellular pathogens and the activation of adaptive 

immune responses. Therefore, the associated alleles probably encode molecules that facilitate 

the presentation of some streptococcal peptides to T-cells that later trigger autoimmune 

reactions mediated by molecular mimicry (Guilherme, et al. 2011b).  

 

The HLA molecules are encoded by the HLA genes (-A, -B, -C, -DR, -DQ and -DP) which 

are located on the short arm of human chromosome 6. Early studies pointed out the 

association of ARF/RHD with several HLA class II alleles, for example, DR4 was present 

more frequently in Caucasian ARF patients, DR2 in African-American populations, DR1 and 

DRw6 in ARF patients from South Africa, and HLA-DR3 in Indian patients who also had a 
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low frequency of DR2 (Ayoub, et al. 1986; Roberts, et al. 2001). In addition, DQW2 was 

reported more frequently in Asian ARF patients. Moreover, the HLA-DR7 allele found in 

Brazilian, Turkish, Egyptian and Latvian patients could be considered with ARF/RHD. HLA-

DQB or -DQA alleles may be related to the development of multiple valvular lesions in RHD 

patients in Egypt and in Latvia (Guedez, et al. 1999; Visentainer, et al. 2000; Stanevicha, et 

al. 2007).  

 

2.4 IMMUNE RESPONSES AND PATHOGENESIS OF ARF/RHD 

The pathogenesis of ARF/RHD is complex. Although significant progress has been made in 

understanding the autoimmune processes, the precise mechanism has not been understood 

completely (Cunningham 2004; Guilherme, et al. 2006). Antibodies, T-cells generated and 

upregulation of major histocompatibiltiy antigens during and immediately after streptococcal 

infection are being investigated as potential factors in the pathogenesis of the disease. In fact, 

molecular mimicry between M-proteins of rheumatogenic strains of streptococci and human 

cardiac proteins is the most studied and identified event in the pathogenesis of rheumatic 

carditis (Stevens and Kaplan 2000; Guilherme and Kalil 2010). Evidence from many clinical 

and experimental animal studies suggest that auto-reactive antibodies and T-cells initiate 

ARF/RHD by triggering endothelial inflammation in the heart (Kaplan, et al. 1964; Kaplan 

and Svec 1964; Beachey, et al. 1988; Bronze, et al. 1988; Cunningham, et al. 1989; Lehmann, 

et al. 1992; Quinn, et al. 1995; Cunningham, et al. 1997; Galvin, et al. 2000; Guilherme, et al. 

2000; Brandt, et al. 2001; Galvin, et al. 2002; Guilherme and Kalil 2002; Cunningham 2003; 

Ellis, et al. 2005; Fae, et al. 2006; Guilherme, et al. 2006). 

 

2.4.1 Human studies 

The auto-reactive antibodies and T-cells can recognise streptococcal and host antigens due to 

structural similarities, or similar amino acid sequences (Guilherme, et al. 2011a).  

 

2.4.1.1 Antibody responses 

The past few decades of study have shown the presence of cross-reactivity between human 

proteins and streptococcal antigens recognised by antibodies (Carapetis, et al. 2016). After 

pharyngeal or skin infection, the immune system responds to GAS by antibody production 

and T-cell priming and differentiation (Kaplan, et al. 1964; Roberts, et al. 2001; Gorton, et al. 

2009; Cunningham 2014; Gorton, et al. 2016). The antibodies are believed to be directed 

against the M-proteins of certain strains of the streptococci that cross-react with glycoprotein 
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antigens in heart, joints, skin and brain leading to pathology of the organs (Svartman, et al. 

1975; Husby, et al. 1976; Cromartie, et al. 1977; Fenderson, et al. 1989; Fischetti 1989; 

Froude, et al. 1989; Gulizia, et al. 1991; Khanna, et al. 1997).  

 

In chronic RHD, GAS M-proteins are the antigens most frequently reported to trigger 

autoimmune reactions against cardiac myosin that lead to the development of carditis 

(Cunningham, et al. 1989; Cunningham, et al. 1997; Quinn, et al. 2001). Previous studies 

from the 1960s demonstrated antibody deposition in human heart tissues from patients with 

ARF/RHD (Kaplan, et al. 1964). The findings of this study were later supported using mouse 

and human mAbs against GAS that reacted with both myocardial and valvular tissues 

(Krisher and Cunningham 1985; Cunningham 2000; Cunningham 2014). Antibody cross-

reactivity between GAS M-proteins and cardiac myosin suggests that cardiac myosin is the 

target autoantigens recognised in the heart (Dale and Beachey 1985a; Krisher and 

Cunningham 1985; Cunningham, et al. 1986; Cunningham and Swerlick 1986; Baird, et al. 

1991). Moreover, using anti-myosin antibodies purified by affinity chromatography from 

ARF patients’ sera, cross-reactive epitopes were found on cardiac myosin and the M5 or M6 

proteins of GAS (Cunningham, et al. 1989). Demonstration of antibodies against cardiac 

myosin S2 peptides is reported in many recent studies to monitor disease progression or heart 

damage (Galvin, et al. 2002; Ellis, et al. 2010; Gorton, et al. 2011; Garcia, et al. 2016). 

Antibodies in sera from patients with ARF/RHD also reacted with collagen I molecule 

(Dinkla, et al. 2003a; Tandon, et al. 2013). Antibodies against collagen I are reported in 

patients with ARF/RHD although no immunological cross-reactivity has been observed 

(Martins, et al. 2008). It is possible that the cross-reactive antibodies bind to the valvular 

endothelial surface and upregulate vascular cell adhesion molecules including VCAM-1 that 

leads to inflammation and leucocyte infiltration into the valves and myocardium (Galvin, et 

al. 2000; Roberts, et al. 2001). 

 

2.4.1.2 T-cell responses in ARF/RHD 

In ARF/RHD, there is strong evidence of the recognition of heart proteins by autoreactive T-

cells via molecular mimicry (Cunningham 2003; Fae, et al. 2006; Guilherme, et al. 2006; 

Carapetis, et al. 2016). T-cell clones isolated from patient with ARF/RHD could recognise 

both streptococcal and host proteins suggesting epitope mimicry (Ellis, et al. 2005). In a 

separate study, heart infiltrating T-cell clones from ARF/RHD patients demonstrated 

simultaneous recognition of streptococcal M5-protein and heart tissue proteins including 



30 
 

peptides from the light meromyosin (LMM) and S2 regions of human cardiac myosin (Fae, et 

al. 2006). It was observed that 16 LMM peptides were exclusively recognised by T-cell 

clones from the mitral valve whereas only eight peptides were recognised by clones derived 

from the myocardium (Fae, et al. 2006). The recognition of human LMM regions and M5-

protein sequences by both myocardium and valve-derived intra-lesional T-cell clones suggest 

that mimicry contributes to the development of RHD. During development of carditis, the 

autoreactive T-cells probably enter the rheumatic valves through the activated valve surface 

endothelium (Roberts, et al. 2001). Therefore, it was hypothesised that myosin is not a 

predominant autoantigen in the valves, rather the myosin cross-reactivity with valvular 

proteins might occur first through mimicry, and then by an epitope-spreading mechanism to 

the valvular tissues (Lehmann, et al. 1992; Guilherme, et al. 1995; Ellis, et al. 2005). The 

autoreactive T-cells infiltrate the valve and the myocardium, and form Aschoff nodules 

(Raizada, et al. 1983; Dale and Beachey 1987; Guilherme, et al. 1995; Guilherme, et al. 

2001b; Carapetis, et al. 2016). 

 

Peripheral blood MNCs from children with ARF/RHD have been shown to produce more 

TNF-α than healthy controls (Miller, et al. 1989). TNF-α has a proinflammatory effect that 

induces and exacerbates the inflammatory responses in ARF/RHD patients (Miller, et al. 

1989; Morris, et al. 1993a; Narin, et al. 1995; Yegin, et al. 1997; Settin, et al. 2007). 

Significant number of TNF-α-producing cells in the throat and valves was also reported in 

patients with ARF/RHD (Guilherme, et al. 2004). Polymorphisms in other cytokine-encoding 

genes have also been investigated and seem to be involved with the disease. These include 

TGF-β1, IL-1Ra and IL-10 (Chou, et al. 2004; Settin, et al. 2007; Azevedo, et al. 2010; 

Kamal, et al. 2010). ARF/RHD patients from Egypt and Brazil with severe carditis showed 

low levels of IL-1Ra expression suggesting the absence of control of the inflammatory 

process (Settin, et al. 2007; Azevedo, et al. 2010). Human IL-10, which regulates the 

functions of many different immune cells is overrepresented in Egyptian ARF/RHD patients 

(Sabat, et al. 2010). IL-10 is associated with the development of multiple valvular lesions 

(Settin, et al. 2007). Polymorphism in the cytotoxic T-cell lymphocyte antigen-4 (CTLA-4), 

which is a negative regulator of T-cell proliferation, has also been shown in Turkish 

ARF/RHD patients (Duzgun, et al. 2009).   

 

In addition to this, high TNF-α, IFN-γ and low IL-4 levels have been found in the rheumatic 

valve suggesting an imbalance between Th1 and Th2 cytokines and probably contributing to 
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the progressive and permanent valve damage (Guilherme, et al. 2011a). Heart-infiltrating T-

cells isolated from the heart valves of ARF/RHD patients have previously been shown to be 

predominantly IFN-γ-producing. The high number of IL-4 producing T-cells in the 

myocardium might be the reason why myocarditis heals with the progression of valvulitis 

(Guilherme, et al. 2004; Fae, et al. 2006; Guilherme and Kalil 2007; Guilherme, et al. 2011a). 

 

Th-17 cells and IL-17A were discovered only relatively recently but have become a very 

important immune mediator in extracellular bacterial infections and appear to play a 

pathological role in numerous autoimmune diseases where fibrosis is a thematic endpoint 

(Bettelli, et al. 2006; Bilik, et al. 2016). A role for Th-17 cells and IL-17A has been reported 

previously in the context of murine GAS infections (Wang, et al. 2010; Dileepan, et al. 2016). 

In another study, high concentrations of IL-17 in the serum of Lewis rats injected with GAS 

M-protein and a high expression of IL-17 in the mitral valves of rats and human patients with 

ARF/RHD were observed (Wen, et al. 2015). Elevated levels of IL-17A have also been 

reported in ARF/RHD sera compared to healthy controls (Bilik, et al. 2016). IL-17 is 

important in recruiting neutrophils and macrophages to the site of infection, and is a 

relatively new finding in the development of autoimmune carditis (Ivanov, et al. 2006; 

Annunziato, et al. 2007).  

 

2.4.1.3 Mechanism of migration of immune cells into heart tissues 

Interaction between valvular endothelial cells and circulating leukocytes is the key initial 

event in the targeting of sites of inflammation. Adhesion between leukocytes and endothelial 

cells or with extracellular matrix components mediates by cell adhesion molecules (CAMs) 

expressed on the vascular endothelium and on immune and inflammatory cells. They also 

help in the transmigration of leukocytes across the vascular endothelium. The intercellular 

adhesion molecule-1 (ICAM-1), vascular endothelial cell adhesion molecule-1 (VCAM-1) 

and endothelial selectin (E-selectin) are expressed on the vascular endothelium and serve as 

ligands for counter receptors on circulating inflammatory cells (Ley, et al. 2007). The 

expression of VCAM-1 acts as the hallmark of inflammation and heralds for cellular 

infiltration. VCAM-1 interacts with very late antigen (VLA)-4 expressed on T-cells leading 

to an influx of activated CD4+ and CD8+ cells (Figure 2.5). The extracellular or soluble 

portions of CAMs are detectable at low levels in the serum of healthy individuals but at 

significantly higher levels in ARF/RHD patients (Gearing and Newman 1993). 
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It has been shown previously that anti-M-protein or anti-cardiac myosin antibodies lead to an 

up-regulation of VCAM-1 and other adhesion molecules on endothelial cells (Roberts, et al. 

2001; Carapetis, et al. 2016). A break in the endothelial continuity of a heart valve would 

expose sub-endothelial structures (vimentin, laminin and valvular interstitial cells) and lead to 

a “chain reaction” of valvular destruction. Once valve leaflets are inflamed through the 

valvular surface endothelium, new vascularisation occurs. This newly formed 

microvasculature allows T-cells to infiltrate and perpetuate the cycle of valvular damage. 

Aschoff bodies or granulomatous lesions may form beneath the endocardium containing 

macrophages and T-cells (Roberts, et al. 2001). The presence of T-cell infiltration, even in 

old mineralised lesions is indicative of persistent and progressive disease in the valves. 

Valvular interstitial cells and other valvular constituents under the influence of inflammatory 

cytokines perpetuate aberrant repair (WHO 2004). As a result, the valve becomes 

progressively scarred, causing regurgitation and congestive heart failure (Kemeny, et al. 

1989).  

 

 
Figure 2.5 Activation of endothelial cell and migration of inflammatory cells into heart 
tissue. Cross-reactive antibodies to streptococci and heart proteins activate endothelial cells 
by inducing expression of VCAM-1 and ICAM-1. Activated VCAM-1 reacts with VLA-4 of 
cross-reactive T-cells. Expression of ICAM-1 facilitates migration of autoreactive T-cells. 
Macrophages and fibroblast cells migrate into the heart tissue and form Aschoff nodules and 
cause mitral valve fibrosis. The image is modified from Guilherme, et al. (1995), Galvin, et 
al. (2000), Roberts, et al. (2001) and Guilherme, et al. (2004). 
 

Several studies have demonstrated elevated concentrations of adhesion molecules in the 

serum of ARF/RHD patients with residual valvular lesions. Yaman, et al. (2003) found that 

serum levels of ICAM-1 were increased in patients at the onset of ARF, reaching a peak in 

the active phase and declining during remission to the inactive phase of the disease (Yaman, 
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et al. 2003). The authors considered ICAM-1 as an important factor contributing to the 

pathogenesis of ARF. They also commented that improvement of ARF management might 

best be determined by monitoring serum ICAM-1 levels, even when clinical and other 

laboratory test results have returned to normal. The authors also demonstrated high serum 

levels of VCAM-1 and ICAM-1 in patients with rheumatic mitral stenosis. However, Chen, et 

al. (2004) verified that the plasma level of soluble VCAM-1 fell significantly in patients with 

mitral stenosis after percutaneous transluminal mitral valvuloplasty. Hafez, et al. (2013) 

assayed the serum levels of ICAM-1, VCAM-1 and E-selectin from 50 children with 

ARF/RHD. The level of these molecules was significantly higher in patients than in healthy 

children. In addition, the serum levels of these molecules were significantly higher in patients 

with severe carditis than in patients with mild to moderate carditis. Remarkably, high levels 

of molecules were also recorded among those with heart failure than those without heart 

failure. The authors also reported that the pre-treatment serum levels of ICAM-1 and VCAM-

1 were markedly higher in the patients with residual valve lesions than normal valve patients. 

 

2.4.1.4 Characteristic histological features of rheumatic heart 

The characteristic histological features of ARF/RHD include extensive inflammation of 

myocardium and valves with infiltration of T-cells, macrophages, fibroblasts, neutrophils and 

deposition of collagen fibres (Fae, et al. 2004; Pahlman, et al. 2006). Guilherme, et al. (1995) 

detected a high proportion of CD4+ T-cells in valvular lesions, and this was further 

confirmed by studies carried out on heart valves from patients by Roberts, et al. (2001). 

Fraser, et al. (1995) observed aggregated macrophages in the mitral valves during the early 

stages of inflammation, followed by lymphocytic infiltration and neovascularisation in 15 

patients with ARF/RHD. Further studies on rheumatic hearts detected infiltration of T-cells 

and B-cells due to delayed type hypersensitivity inflammation and autoimmune progression 

(Kay 1997; Abbas and Lichtman 2003; Sampaio, et al. 2007). Immunohistochemical 

determination performed on fragments of mitral valve and papillary muscle of RHD patients 

showed predominantly CD4+ cells. Intralesional T-cell lines generated from these tissues 

revealed predominantly CD3+TCRαβ+CD4+ T cells (Fae, et al. 2004). It has been proposed 

that neovascularisation arises with infiltration of fibroblasts, Anitschkow cells and 

neutrophils (Guilherme, et al. 2001b; Kirvan, et al. 2003; Sampaio, et al. 2007; Guilherme 

and Kalil 2010). 
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In addition, Aschoff bodies (Figure 2.6) are granulomatous structures commonly present 

beneath the endocardium and contain Anitschkow cells, Aschoff cells and T-cells (Roberts, et 

al. 2001; Carapetis, et al. 2016). The myocardial Aschoff bodies are believed to be formed 

following injury of the interstitial non-myogenic collagen fibres (Murphy 1952). Formation 

of exudative, granulomatous or fibrotic Aschoff bodies leads to dysfunction of the 

myocardium and mitral valves (Cunningham 2012; Carapetis, et al. 2016). Further 

inflammation leads to fibrinous vegetation (verrucae) of the leaflets and subsequent scarring, 

which might ultimately lead to valvular stenosis (Veasy and Tani 2005; Carapetis, et al. 

2016). Although the myocardium may heal following inflammation, there can be permanent 

damage to the mitral valves. 

 
Figure 2.6 A typical Aschoff nodule in myocardium of patient with ARF/RHD. 
Granulomatous structure has fibrinoid deposition, lymphocytic infiltration, and 
characteristically abnormal macrophages surrounding necrotic centres. Some of these 
macrophages are with condensed chromatic and called Anitschkow cells or "caterpillar cells" 
(a). Others may fuse to form multinucleated giant cells (b). Image adapted from Virmani and 
Roberts (1977) and Love and Restrepo (1988). 
 

Fibrosis of heart tissues is the hallmark of structural remodelling, resulting from the chronic 

inflammatory rheumatic process in ARF/RHD. Fibrosis results from extensive deposition of 

collagen typically induced by mechanical overload or tissue damage (Towbin 2007). Lis, et 

al. (1987) reported that in ARF/RHD there is an approximately three-fold increase in the total 

amount of collagen fibre in heart valves. Excessive collagen deposition leads to thickening of 

the mitral valve leaflets and fusion of commissures and chordae tendinea and ultimately to 

mitral stenosis (Banerjee, et al. 2014). Mitral stenosis induces mitral regurgitation, with 

increase in compensatory dilatation of ventricle. Progressive ventricular dilatation causes 
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increase in wall stress with tissue damage and contractile dysfunction and eventually heart 

failure (Marciniak, et al. 2007; Gaasch and Meyer 2008; Carapetis, et al. 2016). 

 

2.4.1.5 Characteristic functional changes of rheumatic heart 

The inflammatory responses in ARF/RHD have functional effects on various parts of the 

heart valves that can lead to cardiac dysfunction and ultimately heart failure. Excessive 

deposition of inflammatory cells and collagen induce thickening of the mitral leaflets. The 

thickening of mitral valves leads to limited leaflet movement and excessive leaflet tip motion, 

lack of coaptation, compensatory dilatation of the left atrium and ventricle, and mitral 

regurgitation (Carapetis, et al. 2016). The dilation of valve annuli and elongation of chordae 

tendinea also result in inadequate coaptation of the valve leaflets and resulting valvular 

regurgitation (Veasy and Tani 2005). Further inflammation leads to fibrinous vegetations 

along the edges of the leaflets and scarring, which might ultimately lead to valvular stenosis, 

in which the valve becomes narrowed, stationary and is unable to fully open (Carapetis, et al. 

2016). Moreover, mitral stenosis is the most frequent occurrence in patients with ARF/RHD 

(Hollenberg 2017). However, subclinical systolic dysfunction exists due to desynchrony of 

myofibrils contraction, even while the left ventricular functions are normal with conventional 

echocardiography (Guven, et al. 2014). Inflammation of the myocardium leads to a delay in 

the electrical impulse conduction from the sinoatrial node (SA node) to the ventricle. This 

functional change can be determined by using electrocardiogram (ECG). Prolongation of P-R 

interval in a typical ECG trace represents the contractile dysfunction from the atrium to the 

ventricle (Gewitz, et al. 2015). 

 

2.4.2 Studies in animal models 

Humans are the unique hosts for GAS infections and ARF/RHD. Animal models showing 

typical signs, pathogenesis and pathology specific to particular human disease are necessary 

for a deeper understanding of the mechanisms underlying diseases such as ARF/RHD. 

Several studies have been performed in mice, rats, rabbits, non-human primates, pigs, sheep, 

goats, cattle and even in dogs and cats to find a suitable animal model to examine the 

autoimmune process in ARF/RHD (Gross, et al. 1929; Baker, et al. 1935; Yang, et al. 1977; 

Burova, et al. 2004; Burova, et al. 2005; Gorton, et al. 2009; Huang, et al. 2009; Xie, et al. 

2010; Kirvan, et al. 2014; Gorton, et al. 2016). Among them, different strains of rat, mouse 

and guinea pig showed changes that mimic ARF/RHD. Upon injection of antigens derived 

from GAS, or cardiac myosin, these animals developed myocarditis and/or valvulitis similar 
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to patients with ARF/RHD. They also showed antibody and T-cell responses that cross-react 

with host cardiac proteins. The rodent and small animal models used previously to model 

autoimmune mediated carditis and the antibody and T-cell responses to streptococcal and 

host antigens, histological changes in the mitral valve and myocardium in the animals are 

summarised in the Table 2.2 and 2.3. 

 

Table 2.2 Immunopathological changes in rodents investigated as model for experimental 
autoimmune carditis 
 
Antigen and 

route of 
injection 

Histological 
changes in the 

host 

Antibody 
response 

T-cell 
response 

Host cross-
reactivity References 

Lewis rat (Rattus norvegicus) 
Whole GAS 
(f.p.) 

Myocarditis 
Monocyte, 
fibroblast, Aschoff-
like cell 
Valvulitis 
Lymphocyte, 
monocyte, 
macrophages, 
fibroblast, giant 
cell 

Anti-
myocardial 
IgG, anti-
streptolysin 
O (ASO)  

Valvular 
protein, 
myocardial 
protein 

(Cavelti 
1947; 
Huang, et 
al. 2009; 
Xie, et al. 
2010) 

Cell wall 
fragments of 
GAS (s.c., 
i.p.) 

Myocarditis, 
valvulitis 
T-cell, monocyte, 
other MNCs, 
PMNCs, 
Anitschkow cell 

Anti-GAS 
IgG 

CD3+, 
CD4+, 
CD8+,  
IFN-γ, 
TNF-α 

Myosin, 
LMM 

(Cromartie, 
et al. 1977; 
Lymbury, et 
al. 2003; 
Gorton, et 
al. 2009; 
Kirvan, et 
al. 2014) 

Recombinant 
proteins or 
peptides of 
GAS (s.c., 
f.p.) 

Myocarditis, 
valvulitis 
T-cell, other 
MNCs, PMNCs, 
Anitschkow cell 

Anti-myosin 
IgG 

CD3+, 
CD4+, 
CD8+, 
CD68+, 
TCR-ab+ 

Myosin, 
valvular 
protein 

(Quinn, et 
al. 2001; 
Gorton, et 
al. 2006; 
Gorton, et 
al. 2010; 
Gorton, et 
al. 2016) 

Cardiac 
protein (s.c., 
f.p.) 

Myocarditis  
Lymphocyte, 
PMNCs, giant cell, 
fibroblast, MNCs, 
macrophages, 
dendritic cells, 
fibrin, collagen 

Anti-myosin 
IgG 

CD4+, 
CD8+, 
CD11c+, 
CD45+, NK 
cell, ED-1+, 
Th17,  
IL-1α,  

Myosin, 
laminin, 
LMM 

(Friedman, 
et al. 1970; 
Kodama, et 
al. 1990; 
Okura, et al. 
1998; 
Tsujimura, 
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Valvulitis 
MNCs, 
Anitschkow cell, 
increased 
peripheral WBC 

IL-1β,  
IL-1ra,  
IL-2,  
IL-6, IL-10, 
IL-12,  
IFN-γ, 
IP-10,  
IP-1α,  
TNF-α, 
CINC-1, 
CINC-3, 
MMP-1 

et al. 2000; 
Galvin, et 
al. 2002; Li, 
et al. 2004; 
Gorton, et 
al. 2006; 
Tanaka, et 
al. 2011; 
Nakagawa, 
et al. 2012) 

Mice (Mus musculus) 
Cell wall 
fragments of 
GAS (i.p.) 

Myocarditis 
MNCs, 
Anitschkow 
myocyte 
Valvulitis 
MNCs, PMNCs 
Epicarditis, sub-
epicarditis 

Collagen IV, 
reactive IgG, 
IgG1, IgG2a 

CD44+, 
CD62L- 

Basement 
membrane 
collagen 

(Ohanian, et 
al. 1969; 
Dinkla, et 
al. 2003b; 
Guilherme, 
et al. 2013a) 

Cardiac 
protein (s.c., 
i.p., i.v., f.p.) 

Myocarditis, 
pericarditis, 
endocarditis 
MNCs, PMNCs, 
plasma cell, 
lymphocyte, 
Anitschkow 
myocyte, giant cell, 
eosinophil 

IgG1, IgE, 
anti-myosin 
Ig, anti-
myelommal 
Ig, anti-
sarcolemmal 
IgG, normal 
level of IgM 

CD4+, 
CD8+, 
B220+ B-
cell, IL-4 

Cardiac 
myosin, 
sarcolemma 

(Gray 1949; 
Izumi, et al. 
1987; Neu, 
et al. 1987; 
Kodama, et 
al. 1990; 
Smith and 
Allen 1991; 
Afanasyeva, 
et al. 2001) 

No antigen. 
Mice lacking 
genes for 
FcγRI, 
FcγRIII & 
FcγRIV 

Mitral valvulitis 
T-cell, 
macrophages 

IgG1, IgG2b, 
IgG2c 

CD11c, 
CD16, 
CD32, 
CD64, DC, 
F4/80 

 

(Hobday, et 
al. 2014) 

Guinea pig (Cavia porcellus) 
Whole GAS 
(s.c., f.p., 
i.m., i.v.) 

Myocarditis, 
valvulitis 
B-cell, T-cell, 
macrophages, 
MNCs, fibroblast 

IgG CD8+ Cardiac 
myofibre, 
sarcolemma 

(Gross, et 
al. 1929; 
Yang, et al. 
1977) 

Cell wall 
fragments of 
GAS (s.c., 
f.p., i.m.) 

Myocarditis, 
valvulitis 
B-cell, T-cell, 
macrophages, 
fibroblast 

IgG CD8+ Cardiac 
myofibre, 
sarcolemma 

(Yang, et al. 
1977) 

Cardiac 
protein (s.c., 

Myocarditis 
Lymphocyte, 

Anti-myosin-
β IgG 

CD3  (Hosenpud, 
et al. 1985; 
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f.p., i.v.) PMNCs, fibroblast Kodama, et 
al. 1990; 
Radhakrish
nan 1996) 

f.p.: foot pad, i.v.: intra-venous, i.m.: intra-muscular, s.c.: sub-cutaneous, i.p.: intra-
peritoneal, MNC: mono-nuclear cell, PMNC: poly-morpho-nuclear cell, WBC: white blood 
corpuscles, Ig: immunoglobulin, CD: cluster differential, IFN: interferon, TNF: tumour 
necrosis factor, TCR: T-cell receptor, NK: natural killer, Th: helper T-cell, IL: interleukin, 
CINC: cytokine-induced neutrophil chemoattractant, MMP: matrix metallo-proteinases, ED-
1+: rat macrophage specific marker, LMM: light meromyosin. 
 

Table 2.3 Immunopathological changes in small animals investigated as model for 
experimental autoimmune carditis 
 
Antigen and 

route of 
injection 

Histological 
changes in the 

host 

Antibody 
response 

T-cell 
response 

Host cross-
reactivity References 

Rabbit 
Whole GAS 
(s.c., f.p., 
i.m., i.v., i.d., 
i.p.) 

Myocarditis, 
valvulitis 
Lymphocyte, 
MNCs, giant cell, 
leukocyte, Aschoff 
bodies, fibroblast, 
fibrin, collagen 

  

Skeletal 
muscle 

(Gross, et 
al. 1929; 
Moon and 
Stewart 
1931; 
Baker, et 
al. 1935; 
Norlin 
1959; 
Yang, et al. 
1977) 

Cell wall 
fragments of 
GAS (s.c., 
f.p., i.m., 
i.v., i.d.) 

Myofibrosis with 
degeneration of 
sarcoplasm, 
myofibril, 
endothelia and 
basement 
membrane 
Lymphocyte, 
macrophages, 
granulocyte 

Anti-myosin 
IgG, anti-
sarcolemmal 
Ig 

T-cell, IL-6, 
C3 

Sarcolemmal 
membrane 
protein, 
myosin, 
aortic 
glycoprotein, 
skeletal 
muscle 

(Yang, et 
al. 1977; 
Goldstein, 
et al. 1983; 
Dale and 
Beachey 
1985b; 
Dale and 
Beachey 
1986; 
Jones and 
Fischetti 
1987; 
Sargent, et 
al. 1987; 
Burova, et 
al. 2004; 
Burova, et 
al. 2005) 

Cardiac Myocarditis Anti-rabbit   (Kaplan 
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protein (s.c., 
f.p., i.v.) 

MNCs, PMNCs, 
eosinophil 

cardiac IgG and Craig 
1963) 

Dog 
Whole GAS 
(i.p. 
followed by 
i.v.) 

Controversial 
myocardial and 
valvular lesions 
similar to RHD 

   

(Gross, et 
al. 1929; 
Moon and 
Stewart 
1931) 

Cat, sheep, calf, pig 
Whole GAS 
(i.p. 
followed by 
i.v.) 

Myocarditis and 
valvulitis 
Lymphocyte, 
MNCs, PMNCs 

   

(Gross, et 
al. 1929) 

i.v.: intra-venous, i.m.: intra-muscular, s.c.: sub-cutaneous, i.d.: intra-dermal, i.p.: intra-
peritoneal, f.p.: foot pad, MNC: mono-nuclear cell, PMNC: poly-morpho-nuclear cell, Ig: 
immunoglobulin, IL: interleukin. 
  

Other than the above described animal models, two studies using non-human primate (rhesus 

monkey, Macaca mulatta) model showed typical RHD lesions. following pharyngeal spray of 

GAS organisms, Vanace (1960) demonstrated pericarditis, myocarditis and valvulitis with 

infiltration of lymphocytes, histiocytes, Anitshkow cells and plasma cells. Later, Anand, et al. 

(1983) reported similar histological changes with endocardial and subendocardial infiltration 

of MNCs after subcutaneous injection of GAS membrane antigen. 

 

Most of the animal models studied only showed evidence of myocarditis and valvulitis 

lesions that poorly represent the ARF/RHD (Unny and Middlebrooks 1983). However, in the 

past decade, the Lewis rat autoimmune valvulitis (RAV) model has been used and shown to 

induce experimental myocarditis and valvulitis, contributing towards understanding the 

pathogenesis of ARF/RHD (Kodama, et al. 1990; Wegmann, et al. 1994; Li, et al. 2004; 

Guilherme, et al. 2011b; Rush, et al. 2014; Gorton, et al. 2016). In response to different 

streptococcal antigens, Lewis rats developed typical histological lesions with activation and 

infiltration of inflammatory cells and antibody responses similar to human RHD patients 

(Table 2.2 and 2.4). In a study of Lewis rats, myocarditis lesions developed in 80% of rats 

with focal inflammatory cell infiltration near small vessels. Valvulitis were induced in 40% 

of Lewis rats following immunisation with formalin killed GAS (Huang, et al. 2009). In 

addition, immunostaining of cellular infiltrates in valvular and myocardial tissue revealed that 

heart damage observed in streptococcal M-protein-immunised rats is mediated by CD4+ cells 

and macrophages, in agreement with human studies (Guilherme, et al. 2001b). Following 

immunisation with rM6, Quinn, et al. (2001) reported the induction of valvulitis and focal 
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myocarditis in Lewis rats which were histologically similar to human RHD lesions. In 

support of these studies, lesions and cellular infiltration predominantly of CD4+ cells, CD68+ 

macrophages and Anitschkow cells (caterpillar cells) were observed in mitral and aortic 

valves as well as the tricuspid valve of rats immunised with rM5 (Quinn, et al. 2001; Gorton, 

et al. 2009). A functional study of rheumatic rat hearts also showed ultrasonographic findings 

similar to human RHD patients (Zachary, et al. 2002). 

 

Table 2.4 Comparative pathological features between patients with RHD and the RAV model 
 

RHD (Human) RAV model 
Gross anatomical changes 

Hypertrophy or stenosis of mitral valve 
(Becker and Murphy 1969; Marijon, et al. 
2007) 

Cardiac hypotrophy (Cavelti 1947) 

Functional changes 
ECG 
Diffuse T-wave inversions, saddle shaped ST 
segment elevations, prolonged QT or PR 
interval (Taran and Szilagyi 1951; Thomas 
1953; Feldman and McNamara 2000) 
 
Echocardiography  
Left atrial and ventricular cardiomegaly, 
vegetation and thickened leaflet (Hubbard, et 
al. 1987). Mitral, aortic valve regurgitation, 
restricted leaflet mobility, valvular 
thickening (Brand, et al. 1992; Narula and 
Kaplan 2001; Marijon, et al. 2007; Goel, et 
al. 2013; Jain and Mankad 2013; Shivaram, 
et al. 2013) 

ECG 
Prolongation of PR interval (Gorton, et al. 
2016). 
 
 
 
Echocardiography  
Left atrial and ventricular cardiomegaly 
(Zachary, et al. 2002) 
 
 

Histological changes 
Cellular infiltrate 
CD4+, CD8+, macrophages, dendritic cells, 
MNCs, PMNCs (Kaplan and Frederick 1961; 
Becker and Murphy 1969; Marboe, et al. 
1985; Amoils, et al. 1986; Chow, et al. 1989; 
Kemeny, et al. 1989; Fraser, et al. 1997; 
Roberts, et al. 2001; Shioji, et al. 2001; Fae, 
et al. 2005; Fairweather, et al. 2006; 
Guilherme, et al. 2011a) 
  
 
 
 
Inflammatory pathology 
Granulomatous myocarditis, myocardial 

Cellular infiltrate 
CD3+, CD4+, CD8+, CD11c+, Th17, 
CD45+, CD68+, αβTCR+, macrophages, 
dendritic cells, MNCs, PMNCs, WBC, NK 
cell, neutrophil, giant cell, fibroblast, ED-
1+, histiocyte (Cavelti 1947; Friedman, et al. 
1970; Kodama, et al. 1990; Okura, et al. 
1998; Galvin, et al. 2000; Quinn, et al. 2001; 
Lymbury, et al. 2003; Gorton, et al. 2006; 
Gorton, et al. 2009; Gorton, et al. 2010; 
Tanaka, et al. 2011; Nakagawa, et al. 2012; 
Kirvan, et al. 2014; Gorton, et al. 2016) 
 
Inflammatory pathology 
Granulomatous, fibrinous and necrotic 
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necrosis and fibrosis, valvulitis, valvular 
fibrosis with neovascularisation, perivascular 
deposition of connective tissue, Anitschkow 
cell, Aschoff bodies, interstitial degeneration 
and oedema (Kaplan and Frederick 1961; 
Kemeny, et al. 1989; Narula, et al. 1993; 
Fraser, et al. 1995; Galvin, et al. 2000; 
Roberts, et al. 2001) 

mitral, tricuspid and aortic valvulitis, 
myocardial necrosis, Anitschkow cell, 
Aschoff bodies, interstitial and perivascular 
deposition of collagen and connective tissue 
(Cavelti 1947; Okura, et al. 1998; Galvin, et 
al. 2000; Tsujimura, et al. 2000; Quinn, et 
al. 2001; Lymbury, et al. 2003; Li, et al. 
2004; Gorton, et al. 2009; Nakagawa, et al. 
2012; Gorton, et al. 2016)  

Immunological changes 
Antibody responses 
Antistreptolysin-O, anti-streptococcal Ig, 
anti-myosin Ig (Becker and Murphy 1969; 
Galvin, et al. 2000) 
 
 
 
 
Cytokine production 
IL-1, IL-2, IL-4, IL-6, IL-8, IFN-γ, TNF-α, 
(Fraser, et al. 1997; Fae, et al. 2005; Zhang, 
et al. 2009; Guilherme, et al. 2011a) 
  
 
 
Upregulation of receptors 
TLR-2, TLR-7, TLR-8, VCAM-1 (Springer 
1994; Roberts, et al. 2001; Zhang, et al. 
2009) 

Antibody responses 
Anti-GAS IgG, anti-myocardial IgG, anti-
myosin IgG (Kodama, et al. 1990; 
Tsujimura, et al. 2000; Quinn, et al. 2001; 
Li, et al. 2004; Gorton, et al. 2006; Gorton, 
et al. 2009; Huang, et al. 2009; Gorton, et al. 
2010; Nakagawa, et al. 2012) 
 
Cytokine production 
IL-2, IL-6, IL-10, IL-12, IL-17, IL-1β, IL-
1ra, IFN-γ, TNF-α, CINC-1, CINC-3, IP-10, 
LIX, MIP-1α (Okura, et al. 1998; Quinn, et 
al. 2001; Li, et al. 2004; Tanaka, et al. 2011; 
Nakagawa, et al. 2012; Kirvan, et al. 2014) 
 
Upregulation of receptors 
VCAM-1, ICAM-1, MMP, tissue inhibitor 
of MMP-1 (Nakagawa, et al. 2012; Gorton, 
et al. 2016)  

MMP: matrix metalloproteinases, IP: IFN-γ-induced protein, CINC: cytokine induced 
neutrophil chemoattractant, MIP: macrophage inflammatory protein, ICAM: intercellular 
adhesion molecule, LIX: a neutrophil chemoattractant, MNC: mono-nuclear cell, PMNC: 
polymorphonuclear cell, WBC: white blood corpuscles, Ig: immunoglobulin, CD: cluster 
differential, IFN: interferon, TNF: tumour necrosis factor, TCR: T-cell receptor, NK: natural 
killer, Th: helper T-cell, IL: interleukin, ED-1+: rat macrophage specific marker. 
 

2.5 DIAGNOSIS OF RHD 

Clinically ARF/RHD are frequently diagnosed based on clinical signs and symptoms with a 

previous history of throat or skin infection by GAS (Carapetis, et al. 2016; Gottlieb, et al. 

2018). Jones criteria were first introduced in 1944 for diagnosis of ARF/RHD (Jones 1944). 

After that, several modifications have been made for effective diagnosis with latest update at 

2015 (Gewitz, et al. 2015). The diagnostic criteria are divided into major and minor 

categories within the Jones criteria. A patient is confirmed ARF/RHD if either two major or 

one major and at least one minor manifestation are evident. Evidence of previous GAS 

infection is usually confirmed by using streptococcal serology. Recently, Licciardi, et al. 
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(2018) introduced high-risk (HR) criteria which increased 20% patients with diagnosis of 

ARF. 

 

2.5.1 General criteria 

Fever and arthritis are the most common clinical symptoms and are seen in >90% and 75% of 

patients respectively (Carapetis, et al. 2016). Both fever and arthritis are difficult to 

differentiate from other diseases. Arthritis of ARF/RHD is very responsive to non-steroidal 

anti-inflammatory drugs. In addition, painless sub-cutaneous round nodules of 0.5-2 cm in 

diameter are also seen in patients with ARF/RHD although less common than fever and 

arthritis (Carapetis and Currie 2001; Steer, et al. 2009a). Moreover, bright pink-blanching 

macules or papules known as erythema marginatum are usually observed around the trunk 

and in the proximal limbs. In some cases, the patients with ARF develop involuntary 

movements of skeletal muscles known as Sydenham chorea. Sydenham chorea is a self-

limiting symptom which usually diminishes over time with some exceptions where patients 

may suffer even beyond two years (Cardoso, et al. 1999). 

 

However, carditis is observed in >50% of patients with ARF and is characterised by 

inflammation, stenosis and regurgitation of the mitral valve and less frequently of the aortic 

valve, and myocarditis (Veasy, et al. 1987; Veasy, et al. 1994; Vijayalakshmi, et al. 2008). 

Unusual manifestations that are not part of the Jones criteria include reactive arthritis, 

indolent carditis or the involvement of all four heart valves (Taranta and Stollerman 1956; 

Guvenc and Cimen 2017; Nishibukuro, et al. 2018). Carditis development in patients can be 

assessed using different imaging techniques such as electrocardiography (ECG) and 

echocardiography (Echo). 

 

2.5.2 Imaging techniques 

The immunopathology of a heart with rheumatic carditis can be demonstrated by different 

imaging tools. Chest X-ray was used in the mid twentieth century for the diagnosis of cardiac 

pathology in ARF/RHD (Holt 1946; Streda, et al. 1971). Chest X-rays may show left atrial 

enlargement and redistribution of pulmonary vascular flow to the upper lungs fields, 

pericardial calcification, pulmonary oedema, pulmonary ossification: due to mitral valve 

disease, cardiomegaly, left atrial enlargement from mitral valve disease, diffuse alveolar 

haemorrhage can result from severe mitral stenosis (Woolley and Stark 1999). In lateral 
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projections, calcification of the mitral valve apparatus may be visible. If the patient has 

developed heart failure, pulmonary congestion will be visible on the chest X-rays. 

 

Later, electrocardiographic (ECG) assessment of cardiac dysfunction was introduced. A 

typical ECG trace consists of waveform components which indicate electrical events during 

one heartbeat. These waveforms are labelled as P, Q, R, S, T and U. P wave is the first short 

upward movement of an ECG trace (Figure 2.7). It indicates that the atria are contracting, 

pumping blood into the ventricles. The QRS complex, normally begins with a downward 

deflection, Q; a larger upwards deflection, a peak R; and then a downwards S wave. The QRS 

complex represents ventricular depolarisation and contraction. The P-R interval indicates the 

transit time for the electrical signal to travel from the sinoatrial (SA) node to the ventricles. In 

human, prolongation of the P-R interval is observed in 30-35% patients with ARF/RHD 

(Homer and Shulman 1991; Cunningham 2012). In Jones criteria, prolonged P-R interval is 

included as a minor manifestation (Gewitz, et al. 2015). ECG data based on peak P and R 

values have also been published in an earlier study where prolonged P-R interval was 

reported in Lewis rats following injection with GAS rM5-protein (Gorton, et al. 2016).  

 

The QTc interval has also been recognised as a useful sign of active carditis. The abnormal 

prolongation of the QT interval in patients is shown to be a function of the severity of the 

carditis and not of the cardiac rate. Severe clinical carditis lengthens the electrical systole 

relative to diastole. This disturbance in the sequence of electrical events in the cardiac cycle 

is considered to be a characteristic of carditis. This event might be used as a valuable 

diagnostic criterion for recognising carditis in rheumatic patients (Taran and Szilagyi 1947; 

Abrahams 1949). QT, QTc and P-wave dispersions are significantly greater and permanent in 

both the acute and chronic RHD patients. Severity of mitral regurgitation (MR) and left atrial 

enlargement are found to be positively correlated with P-wave dispersion (Alp, et al. 2014). 

T-wave changes are rare expect as a sequel to pericarditis (Thomas 1953). 
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Figure 2.7 ECG in Lewis rat. ECG trace consists of waveform labelled P, Q, R, S, T. Normal 
P-R interval in healthy control rat (A). (B) Prolongation of P-R interval in GAS rM5 
immunised rats. 
 

Echocardiography (Echo) is the primary imaging modality in rheumatic mitral stenosis. It is 

essential for diagnosis, serial follow up, therapeutic procedural guidance and prognostication. 

In large scale population screening, echocardiography is a useful tool for early identification 

of RHD and prevention of chronic sequelae. Echocardiography has considerably enhanced 

the clinical assessment and management of patients with ARF/RHD compared to simple 

auscultation (Gewitz, et al. 2015). Echo is now considered essential for large scale population 

screening, early detection of ARF/RHD, for serial follow up and for therapeutic procedural 

guidance (Abernethy, et al. 1994; Minich, et al. 1997; Figueroa, et al. 2001; Narula and 

Kaplan 2001; Vijayalakshmi, et al. 2008). Echocardiographic findings that feature in 

ARF/RHD include changes to mitral valvular morphology, especially valvular thickening and 

slow or impaired valvular leaflet movement (Jain and Mankad 2013; Wunderlich, et al. 

2013). Thickening of the mitral valve with limited movement and excessive leaflet tip 

motion, thickening and fusion of chordae, lack of coaptation, compensatory dilatation of left 

atrium and ventricle and mitral regurgitation are salient findings of patients with rheumatic 

heart (Figure 2.8) (Carapetis, et al. 2016). A two-dimensional (2D) echo is commonly used to 

detect these findings (Chauvaud, et al. 2001; Carabello 2005; Jain and Mankad 2013; 

Wunderlich, et al. 2013).  
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Figure 2.8 Apical four-chamber views in black and white Doppler showing gross thickening 
of the mitral valve in patients with RHD (A-B) (Hubbard, et al. 1987; Carapetis, et al. 2016). 
Left atria are severely dilated. LA: left atrium, LV: left ventricle, RA: right atrium, RV: right 
ventricle, mv: mitral valve. 
 

In addition, Doppler echocardiography is more sensitive in detecting valvular lesions that are 

missed in clinical examination (Carabello 2005). In patients with RHD, mitral regurgitation 

(MR) (Figure 2.9) is the commonest murmur followed by aortic regurgitation (AR). 

Overriding or prolapse of the anterior (less commonly of the posterior) mitral valve leaflet 

due to elongation of chordae is the main echocardiographic feature of pure MR in young 

people (Marcus, et al. 1989; Camara, et al. 2004; Kamblock, et al. 2005). Chordal rupture can 

lead to flail leaflet in more severe cases (Marcus, et al. 1989). Dilation of the posterior mitral 

annulus is also a common finding (Marcus, et al. 1989; Kamblock, et al. 2005). Apparent 

masses may be detected as echo-dense structures, frequently mobile and described according 

to their situation, shape, size and how they interfere with the motion of the mitral valve. In 

addition, irregular outlines and oscillatory motion of valvular leaflets demonstrated different 

kinds of vegetations (Hubbard, et al. 1987). 
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Figure 2.9 Mitral regurgitation in patient with RHD assessed using Doppler echo (Srinivas, 
et al. 2013). LV: left ventricle, LA: left atrium 
 

In adult patients, valvular and/or chordal thickening and tethering of either or both leaflets 

can be present even in mild disease and is the predominant mechanism of MR (Chauvaud, et 

al. 2001). Patients with MR and mitral stenosis (MS) show characteristic ‘elbow’ appearance 

of the anterior mitral leaflet due to the restricted leaflet motion. The Doppler echo is very 

significant in detecting regurgitation lesions, especially MR and in the setting of 

multivalvular involvement (Marijon, et al. 2007; Shivaram, et al. 2013). The lengthening of 

QT dispersion on the echo Doppler cardiogram reflects cardiac involvement in ARF and be a 

new important parameter in diagnosis and therapeutic decision making for RHD (Remigio de 

Aguiar, et al. 2010). 

 

The effective prevention and control of ARF/RHD requires a more complete understanding 

of the aetiology and pathogenesis of this significant disease. The current epidemiological 

studies on the prevalence and incidence of ARF/RHD and streptococcal carriage in the host 

has questioned the role of non-group A streptococci, especially group G Streptococcus (GGS) 

in the aetiology of these conditions. Therefore, there is an urgent need to investigate the 

involvement of GGS in the pathogenesis of ARF/RHD. Furthermore, the common epitopes 

shared by GAS, GGS and host heart proteins also may be relevant to the early diagnosis of 

ARF/RHD and should be considered in the design of effective vaccine candidates to eradicate 

this disease. 
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CHAPTER 3 

GENERAL MATERIALS AND METHODS 

 

The general materials and methods used in this project are described in this Chapter. The 

materials and methods which are specific to a particular chapter are described in the relevant 

chapter. The details for buffers are described in Appendix 1 and suppliers/distributors are 

included in Appendix 2. 

 

3.1 MATERIALS 

3.1.1 General chemicals and consumables 

Chemicals of the highest grade available were purchased from Sigma (Australia) unless 

otherwise stated. Media for bacterial culture were purchased from Sigma and Acumedia 

(Australia). Plastic ware including microfuge tubes, centrifuge tubes, and petri dishes were 

purchased from Sarstedt (Australia). Non-sterile 96 well flat-bottom micro plates for ELISA 

and sterile flat-bottom plates and flasks for cell culture were purchased from Thermo 

Scientific (Australia). 

 

3.1.1.1 Reagents for protein expression 

Antibiotics used for bacterial culture, ampicillin (#A9518) and kanamycin (#K1377), HIS-

select nickel affinity gel (#H0537) for M-protein purification and acrylamide (#A9926) for 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) were purchased 

from Sigma (Australia). Isopropyl β-D-1-thiogalactopyranoside (IPTG, #R0392) and Tris-

HEPES SDS-PAGE sample buffer (#28398) and 20× running buffer (#28368) was from 

Thermo Scientific (Australia). Disposable polypropylene (10ml) desalting/buffer exchange 

columns (#34964) for protein purification was from Qiagen (Australia). Chromatography 

columns were purchased from Amersham Bioscience (Australia). BCA protein assay kit 

(#A53225) was from Pierce Biotechnology (USA). Lysozyme (#1243004), protease inhibitors 

(#P-1543) and ammonium persulfate (APS, #161-0700) were from Roche, Bio-rad 

(Australia). Centrifugal filter units (Ultracel-10k, #UFC801008) were purchased from 

Millipore Corporation (Australia). 
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3.1.1.2 Antigens 

Calcium activated myosin from porcine heart (buffered aqueous solution, 12.9 mg/ml, 

#M0531) and Collagen I from human placenta (5 mg vial, Bornsteein and Traub type I, 

#C7774) was purchased from Sigma (Australia). 

 

3.1.1.3 Adjuvants 

Complete and incomplete Freund’s adjuvant (CFA, #F5881 and IFA, #F5506) were 

purchased from Sigma (Australia). Lyophilised Bordetella pertussis toxin (#PHZ1174) was 

purchased from Gibco (USA). 

 

3.1.1.4 Reagents for lymphocyte culture and proliferation assays 

RPMI medium 1640 (#R7388), HEPES buffer (1M, #15630-080), L-glutamine (200mM, 

#21051-024) and penicillin/streptomycin solution (10,000 units/ml of penicillin and 10,000 

µg/ml of streptomycin, #15140-122) were purchased from Life Technologies (Australia). 

Autologous rat serum was sourced from Lewis rats at the Small Animal Facility at James 

Cook University. Pooled rat sera were heat-treated for complement inactivation by heating at 

56°C for 30 min in a water bath. Samples of heat-inactivated rat sera was spread on sheep 

blood agar (SBA) plates and incubated at 37°C for 48 h to confirm sterility. Ficoll-Paque Plus 

(#17-1440-03) density gradient solution was purchased from GE Healthcare (Australia).  

 

3.1.1.5 Reagents for ELISA 

Flat bottomed 96 well Maxisorp plates (#44-2404-21) were purchased from Nunc (Denmark). 

To prepare carbonate-bicarbonate coating buffer, Na2CO3 (#463) was purchased from 

Thermo Fisher Scientific (Australia), NaHCO3 (#S5761) was from Sigma (Australia) and 

NaN3 (#SA189) was from Chem-Supply Pty Ltd (Australia). To prepare wash buffer, 

Na2HPO4 (#ALF011592.36) and NaCl (#CM0982B) were purchased from Thermo Fisher 

Scientific (Australia), KCl (#10198) and KH2PO4 (#10203) were from AnalaR (Australia) 

and Tween20 (#P1379) was from Sigma (Australia). Bovine serum albumin (#A2153) for 

blocking was purchased from Sigma (Australia). Goat anti-rat peroxidase conjugated IgG 

(#112-005-003) was purchased from Jackson Immunoresearch (USA).  2,2'-azino-bis (ABTS, 

#50-66-06) peroxidase substrate was purchased from KPL (USA).  
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3.1.1.6 Reagents for histology 

Rat heart tissues were preserved in 10% neutral buffered formalin (#AFAA.25ML, 

Australian Biostain), and stained using Haematoxylin and Eosin (H&E) and Masson’s 

trichrome stain prepared in house.  

 

3.1.1.7 Reagents for immunohistochemistry 

Mouse anti-rat CD106/VCAM-1 (#MCA4633GA) was purchased from Biorad (USA). Mouse 

anti-rat CD54/ICAM-1 (#202403) was from BioLegend (USA). Peroxidase labelled Horse 

anti-mouse IgG (H+L, #PI-2000), avidin-biotin Complex (ABC, #PK-6100), 3, 3'-

diaminobenzidine (DAB, #SK-4100) were purchased from Vector Laboratories (USA).  

 

3.1.2 Animals 

Lewis rats (LEW/SsN; Albino: a,h,c: RT1) bred by sibling mating in the Small Animal House 

at James Cook University (Townsville, Australia) were used throughout and randomly 

allocated to groups. A sample size of ≥4 per group was considered adequate to achieve a 

power of >70% based on our previous findings in this rat model (Gorton, et al. 2009; Gorton, 

et al. 2016). The Lewis rat was chosen as a model as it is highly susceptible to develop 

autoimmune carditis (Lymbury, et al. 2003; Gorton, et al. 2009; Rush, et al. 2014; Gorton, et 

al. 2016). Female rats were selected for experiments as the higher prevalence and incidence 

rates of ARF/RHD and more severe forms of RHD have been reported in females (AIHW 

2004). Rats of 8-14 weeks and 150-250 gm body weight were used for all experiments. Rats 

were maintained in standard rat cages with wire lids and wood shavings as bedding in 12 h 

light/dark cycles. Pelleted protein-rich commercial diet has minimum crude protein 18%, 

maximum crude fibre 5%, minimum fat 3%, maximum salt 0.5% and calcium 1.5% was 

purchased from Goldmix Stockfeeds (Australia) and tap water were provided ad libitum. 

Bedding was changed weekly. Experimental rats were checked daily, and a log was 

maintained to monitor animal well-being.  

 

Animal ethics 

All experiments were carried out in accordance to the institutional guidelines according to the 

requirements of the James Cook University Animal Ethics Committee (Approval number 

#A2083) and in accordance with the National Health and Medical Research Council’s 

(NHMRC) Australian Code of Practice for the Care and Use of Animals for Scientific 

Purposes. 
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3.1.3 Bacterial strains and culture 

3.1.3.1 Streptococci 

Cultures of Streptococcus pyogenes (group A Streptococcus, GAS) M type 5 strain (stock: 

M5 GAS, M5T5.2A, 01.02.2008) and Streptococcus dysgalactiae subsp. equisimilis (group G 

Streptococcus, GGS; stock: GGS NS3396, 07.07.2011) were provided by Pathology 

Queensland at The Townsville Hospital, Townsville and Queensland Institute of Medical 

Research (QIMR), Brisbane respectively. To culture GAS and GGS for injection and as 

coating antigen for ELISA, frozen stocks (-80°C in glycerol) were plated on sheep blood agar 

(SBA) using a sterile loop and incubated overnight at 37°C with 5% CO2. Gram staining was 

done on the following day to confirm Gram positive cocci. A single colony of GAS or GGS 

was inoculated into a 1 L of Todd Hewitt yeast broth and incubated overnight at 37°C with 

5% CO2. To determine the total colony forming units (CFU) in 1 L, the broth culture was 

serially diluted from 1:10 to 1:1012 and plated in triplicate on SBA and incubated as before. 

The concentration of the bacteria was adjusted after counting the colonies from serial 

dilutions plates to 1×1011 CFU/ml, allowing 1×1010 CFU in 100 µl for injections. The broth 

culture was centrifuged at 4000 ×g for 10 min. The bacterial pellet was washed three times 

with PBS, resuspended in 10 ml PBS and added 1% (of total volume) neutral buffered 

formalin, incubated at 4°C for 48 h to kill the bacteria. To confirm bacteria had been killed, 

50 µl of each GAS and GGS was spread on SBA plates and incubated for another 48 h at 

37°C with 5% CO2. 

 

3.1.3.2 Escherichia coli 

An E. coli strain BL21 (Qiagen, Australia) harbouring a plasmid (pREP4) with the cloned 

M5 gene (E. coli BL21/pREP4/pQE-30.m5) (Gorton, et al. 2009) was used for the production 

of GAS rM5 protein. Frozen stocks were prepared in Luria-Bertani (LB) broth at 37°C 

supplemented with, ampicillin (100 µg/ml) and kanamycin (25 µg/ml) and stored in 15% 

(v/v) glycerol at -80°C for further use. 

 

An E. coli strain (E. coli pJ404) containing a cloned M-protein gene (emm-type Stg480) from 

Streptococcus dysgalactiae subsp. equisimilis clinical isolate NS3396 was kindly provided by 

David McMillan from University of the Sunshine Coast, Queensland, Australia.  LB medium 

containing ampicillin (100 µg/ml) was used to culture bacteria for M-protein expression and 

purification. 
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3.2 METHODS 

3.2.1 Protein preparation  

3.2.1.1 GAS and GGS recombinant M-protein expression 

Recombinant M-proteins from GAS and GGS were prepared as previously described 

(Robinson, et al. 1991; Gorton, et al. 2009) using the procedure described in 

QIAexpressionistTM Handbook (Qiagen). Briefly, each E. coli expression strain containing 

recombinant plasmid (E. coli BL21-rM5 for GAS rM5 protein and BL21/pJ404_Stg480 for 

GGS Stg480 protein) was streaked onto on appropriate agar (LB/ampicillin/kanamycin for 

GAS rM5 and LB/ampicillin for GGS Stg480) and incubated overnight at 37°C.  

 

The following day, a single colony was inoculated into 20 ml LB medium with 100 µg/ml 

ampicillin and 25 µg/ml kanamycin (for GAS) or 100 µg/ml ampicillin alone for GGS and 

incubated overnight at 37°C in an orbital shaker with 200 ×rpm. After approximately 24 h, 

bacteria were pelleted, the pellet was washed in PBS and resuspended in 20 ml fresh LB prior 

to 1:50 dilution into 1 L of fresh LB with appropriate antibiotics. Cultures were grown at 

37°C with shaking until an OD600nm of between 0.4 and 0.6 was reached. A 1 ml aliquot was 

then removed, pelleted and stored at -20°C as the un-induced control (UC) for SDS-PAGE 

analysis.  Expression of the 6×histidine-tagged GAS rM5 or GGS Stg480 protein was 

induced by the addition of isopropyl β-D-thiogalactopyranoside (IPTG) to a final 

concentration of 1 mM and growth allowed to continue for a further 4 h at the same 

temperature with shaking. A post-induction sample (induced control, IC) was removed for 

SDS-PAGE analysis as above. 

 

An alternative method was used to induce expression of M-protein. A single colony of E. coli 

BL21-rM5 or BL21/pJ404_Stg480 was spread onto appropriate agar plate filling the available 

agar and incubated overnight at 37°C. The following day, the plate was divided into four 

quadrants and each quadrant of E. coli was scrapped into 500 ml terrific broth with 

appropriate antibiotics and incubated at 37°C with shaking at 200 rpm until OD600nm of 

between 0.4 and 0.6. An un-induced control (UC) sample for SDS-PAGE was reserved. IPTG 

was then added and the temperature of the incubator was dropped to 16°C with shaking at 

100 ×rpm for a further 48 h. An induced control (IC) sample was taken before the bacteria 

were pelleted by centrifugation at 4000 ×g for 20 min at 4°C. The cell pellet was weighed 

and kept frozen at -20°C until extraction. 
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3.2.1.2 Preparation of protein lysates 

Frozen cell pellets were thawed on ice for 15-20 min and resuspended in Lysis Buffer 

(Appendix 1) at 2-5 ml lysis buffer per gram wet weight. A protease inhibitor cocktail was 

added using 1 tablet per 25 ml cell suspension. Lysozyme at 1 mg/ml was added and the 

suspension was incubated on ice for a further 30 min. The suspension was then sonicated 

(Biosonic III, Thermo Fisher Scientific) at 300W for 20 sec bursts with 20 sec intervals 3 

times or passed through French press twice at 1000 psi.  For SDS-PAGE, 10 µl of lysate 

sample was taken apart. RNase A at 10 µg/ml and DNase1 at 1 µg/ml was added to the 

remaining lysate to reduce viscosity by nucleic acid degradation. Following 15 min 

incubation on ice, the lysate was centrifuged at 10000 ×g for 30 min at 4°C to pellet the cell 

debris. A 10 µl of supernatant sample (clear lysate, CL) was removed for SDS-PAGE 

analysis and stored at -20°C. The remaining supernatant was filtered (0.45 µm) and mixed 

with a Ni-NTA resin slurry (Qiagen, Australia) in a 4:1 ratio, then mixed gently in a rotating 

wheel for 60 min at 4°C. The mixture was loaded into Ni-NTA Superflow Columns (Qiagen, 

Australia) and the flow-through was collected by gravity flow. A 10 µl of flow-through 

sample (flow through, FT) was removed for SDS-PAGE analysis and stored at -20°C. The 

mixture was then washed 3 times with 4 times the resin bed volume of wash buffer and 10 µl 

of each wash was collected (W1-W4) for SDS-PAGE analysis. Finally, a volume of elution 

buffer equivalent to a quarter of the resin bed volume was added.  It was repeated 8 times and 

each one was collected. A 10 µl of each elution (E1-E8) was removed for SDS-PAGE 

analysis. 

 

3.2.1.3 SDS-PAGE analysis 

The samples removed at different steps of recombinant M-protein expression and extraction 

(UC, IC, lysate, CL, FT, W1-W4, E1-E8) were analysed by SDS-PAGE using a Mini-Protein 

III system (BioRad, Australia). The samples were mixed with an equal volume of SDS-

PAGE sample buffer (#84788, Thermo Fisher Scientific) followed by heating at 100°C for 5 

min. A 10 µl of each heated sample was loaded onto 0.75 mm 12% acrylamide gels 

(Appendix 1) following the inner and outer chambers being filled with 1× Tris-HEPES-SDS 

running buffer. In some experiments, protein was resolved on 1.0 mm 12% LongLifeTM Tris-

HEPES precast gels (Gradipore, Australia). Electrophoresis was performed at 120-150V for 

~45 min or until the dye front reached the end of the gel. A 10 µl of PageMark TriColour 

protein ladder (#786-419, G-Biosciences, USA) and a known GAS rM5 protein sample were 

loaded into Well 1 and 2 respectively for comparison (Figure 3.1). Gels were stained with 
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Coomassie Blue stain (#SG-010, NuSep, Australia) overnight and destained with a 6% acetic 

acid solution. The expected size of recombinant M-proteins of GAS and GGS is 47 kilodalton 

(kDa) and samples that showed bands of this size were considered positive. In most cases, 

elution fractions 3 to 7 (E3-E7) contained proteins of the expected size (Figure 3.1). Positive 

elution fractions were pooled and further processed for rM protein purification and 

concentration. 

 

 
Figure 3.1 Expression profile of GAS rM5 protein. The ladder (L) has proteins of various 
molecular size, from 6.4-204 kDa including a protein having similar size of GAS rM5, 47 
kDa. The known purified rM5 sample (rM5) was used as positive control. The post lysis (PS), 
clear lysate (CL), flow through (FT) and wash 1 (W1) had rM5 protein with a lot of 
contaminated proteins and excluded for further purification. The wash 4 (W4) and elution 1-2 
(E1-2) did not contain any rM5. However, the elution samples 3-7 (E3-7) had the maximum 
GAS rM5 protein with minimum contaminated proteins and were used for purification. 
 

3.2.1.4 Purification and concentration of M-protein 

Imidazole was removed from positive samples by buffer exchange using 1× PBS (pH 7.4) in 

a chromatography column (Section 3.1.1.1). The flow-through rM protein in PBS was 

collected for further purification and concentration using a centrifugal filter unit (Section 

3.1.1.1). Ultrafiltration removes the smaller fractions (<14 kDa) of proteins. Ultrafiltration 

was performed at 4000 ×g for 20 min at 4°C. This was repeated 2-3 times followed by 

freezing at -80°C until protein estimation by bicinchoninic acid (BCA) assay.  

 

Alternatively, each positive eluted protein fraction was mixed with an equal volume of 

saturated ammonium sulphate and incubate for 1 h at 4°C on rocker or rotator. The protein 

was precipitated by centrifugation at 18000 ×g for 20 min at 4°C. The supernatants were 
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discarded and the pellets were pooled by resuspension in 1× PBS (pH 7.4). The entire process 

was performed twice and the final pellets were washed with 1 ml PBS at 18000 ×g for 5 min 

at 4°C and frozen at -80°C for BCA analysis.  

 

3.2.1.5 BCA protein assay for determining M-protein concentration 

The rM protein concentration was measured using a BCA Protein Assay kit (#A53225, 

Pierce Biotechnology). Bovine serum albumin (BSA) standards and protein samples were 

prepared according to the instructions provided by the manufacturer. The working reagent 

was prepared by mixing Part A containing bicinchoninic acid and Part B containing 4% 

cupric sulphate at a ratio of 50:1. The samples were diluted 2-fold from 1:4 to 1:64. A 25 µl 

aliquot of each standard (range 0-2000 µg/ml) or sample was mixed with 200 µl of working 

reagent were added (in triplicate) into the wells of a 96 well microtitre plate. The microtitre 

plate was incubated at 37°C for 30 min, cooled to room temperature and absorbance was 

measured at 562 nm using EZ Read 2000 spectrophotometer (Biochrom). A BSA standard 

third degree polynomial curve was generated using GraphPad Prism 7 software (Figure 3.2).  

The concentration of rM protein in each sample was determined from the standard curve and 

the dilution factor was incorporated to calculate the final concentration. 
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Figure 3.2 A standard curve of BCA protein assay. Standard curve was used to calculate the 
total amount of GAS rM5 and GGS Stg480 proteins in the total volume of samples. 
 

3.2.2 Animal experiment procedures 

3.2.2.1 Anaesthesia 

Experimental rats were anaesthetised during subcutaneous (hock) injections and whilst 

performing electrocardiography (ECG) and echocardiography (echo). Animals were not 
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anaesthetised for intraperitoneal injections or blood collection. General anaesthesia was 

performed using gaseous anaesthetic machine (#VETT3 695, AD Instrument, Power 

Laboratories) with isoflurane (#26675-46-7, LASER Animal Health). Anaesthesia was 

induced using a dog nose cone (source) with 5% isoflurane and 1-2 L/min O2. Proper 

induction of anaesthesia was monitored by no eye blinking, no response to noise when 

tapping the nose cone or following toe pinch. After induction, the isoflurane level was 

adjusted to 2% for maintenance of anaesthesia. After injections or completion of ECG or 

echo, the animals were removed into a recovery cage and observed throughout recovery. 

 

3.2.2.2 Animal Sacrifice 

Experimental rats were killed humanely at the end of each experiment for the purposes of 

tissue collection and analysis. The rats were killed by CO2 asphyxiation according to 

institutional procedures. The Animal Care and Ethics Committee guidelines were maintained 

during killing procedures.  

 

3.2.2.3 Sample collection 

Collection of blood  

Blood collection from tail vein 

Blood was collected from the lateral tail vein of all animals prior to any injections (baseline 

serum). The rats were warmed by keeping them in an incubator at 40-42°C for 20 min prior 

to blood collection. Rat restraints were used to restrain the rats during blood collection. Rat 

tails were disinfected with cyclohexidine. About 0.5 to 1 ml of blood was collected from each 

rat into 1.5 ml microcentrifuge tubes by puncturing the tail vein with 22G ¾ inch gauge 

needle. Serum was separated from clotted blood (30 min at room temperature) following 

centrifugation at 2000 ×g for 10 min.  

 

Blood collection from caudal vena cava 

At the endpoint of each experiment, blood was collected from the caudal vena cava for 

separation of sera. After spraying 70% ethanol on rats, the abdomen and thorax were 

dissected and opened. Blood from caudal vena cava was collected directly using 22G ¾inch 

needle. Alternatively, the vena cava was bled into the thoracic cavity and blood was collected 

into serum clot activator tubes (#454067, Vacuette) using a sterile transfer pipette. The blood 

samples were left at least 30 min at room temperature followed by separation of sera by 
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centrifugation at 2000 ×g for 10 min.  Each serum was aliquoted into 3 separate sterile 

microcentrifuge tubes, and stored at -80°C temperature until required. 

 

Heart retrieval 

For histological staining (H&E and Masson’s trichrome) and immunohistochemistry, hearts 

were retrieved from rats keeping the aortic arch intact. The hearts were gently flushed with 

1× PBS (pH 7.4) mixed with 1 mM CaCl2 through the aorta to remove excess blood from the 

blood vessels and heart chambers. The hearts were preserved overnight in 10% neutral 

buffered formalin (NBF) for further processing for histological staining and 

immunohistochemistry examination. 

 

Collection of spleen 

After opening the left abdomen, the stomach was lifted to expose the spleen. The excess fat 

was removed from the spleen and the excised spleen put into ice cold transport medium 

(RPMI with streptomycin/penicillin) using sterile forceps. The spleen samples were kept on 

ice prior to separation of mononuclear cells (MNCs) for in vitro assays. 

 

Separation of mononuclear cells from spleen  

Spleen cell suspensions were prepared by maceration of the spleen through a fine mesh metal 

screen into RPMI medium supplemented with 100 IU/ml penicillin and 100 µg/ml 

streptomycin. After debris was allowed to settle for about 20 min, the MNCs were isolated by 

the density gradient method. The cell suspension was layered onto Ficoll-Paque Plus and 

centrifuged at 500 ×g for 20 min at room temperature. The buffy coat at the interface of the 

Ficoll-Paque Plus and RPMI medium was collected and the cells washed by centrifugation at 

500 ×g for 10 min 3 times in fresh RPMI medium before counting. 

 

Enumeration of mononuclear cells  

Splenic MNCs were counted after addition of trypan blue to count viable cells. The trypan 

blue viability test is based on the principle that live cells possess an intact cell membrane that 

excludes trypan blue, whereas dead cells take up the dye. Cell suspensions were mixed with 

an equal volume of trypan blue (0.4% in PBS) and examined using bright microscopy in an 

improved Neubauer haemocytometer. Viable cells had a clear cytoplasm and were observed 

as transparent, non-viable PBMCs were stained blue and excluded from counts. 

Contaminating erythrocytes were excluded based on their appearance.  Cells were counted 
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from all 25 central squares if the cells count was low otherwise cells from only 5 squares (4 

corners and 1 central) were counted (Figure 3.3, green squares) and multiplied by 5. The total 

number of cells per ml was calculated as cell count × dilution factor (2 for trypan blue) × 104 

(volume of the haemocytometer). For culture, the cells were re-suspended into RPMI to a 

concentration of 5×106 cells/ml. 

 

 
Figure 3.3 Cell counting using a Neubauer haemocytometer. The cells of the green squares in 
the 4 corners and 1 central were enumerated and multiplied by 5 to calculate total number of 
cells in 25 small squares.  
 

3.2.3 Animal methods  

3.2.3.1 Preparation of antigens for injection 

Each rat was injected with 500 µg of GAS rM5 or GGS Stg480 or 1×1010 CFU of whole 

killed GAS M5 (WK-GAS) or whole killed GGS NS3396 (WK-GGS) in 100 µl of sterile 1× 

phosphate buffer saline (PBS, pH 7.4). An equal volume (100 µl) of Complete Freund’s 

Adjuvant (CFA) or Incomplete Freund’s Adjuvant (IFA) was added to the antigen solution 

and mixed using a vortex until a water-in-oil emulsion formed that did not diffuse when a 

drop was placed on the surface of water.  The control group rats were injected with sterile 

100 µl 1× PBS (pH 7.4), mixed with equal volume of CFA/IFA as above. 

 

3.2.3.2 Injection protocols 

The injection schedule using during experiments is outlined in Table 3.1. The injections were 

administered using a 1 ml syringe (#TER00223, Terumo) fitted with a 25G ¾ inch needle. 

Prime and booster injections were administered subcutaneously (s.c.) under general 
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anaesthesia (Section 3.2.2.1). Bordetella pertussis toxin was administered via intraperitoneal 

(i.p.) injection. 

 

Table 3.1 Standard injection regime 
 

Treatment Antigen, adjuvant and dose 
(in 200 µl PBS) 

Route of 

administration  

Priming 

injection 

• GAS rM5 or GGS Stg480 500 µg in CFA ‘or’ 

• WK-GAS or WK-GGS 1×1010 CFU in CFA 
s.c. at hock 

B. pertussis toxin 0.3 µg per rat i.p. 

Boost injections 
• GAS rM5 or GGS Stg480 500 µg in IFA ‘or’ 

• WK-GAS or WK-GGS 1×1010 CFU in IFA 
s.c. at flank 

PBS: phosphate buffer saline, GAS: group A Streptococcus, GGS: group G Streptococcus, 
CFA: complete Freund’s adjuvants, IFA: incomplete Freund’s adjuvant, CFU: colony 
forming units, s.c: sub-cutaneous, i.p: intra-peritoneal. 
 

The priming injections were given s.c. in the hock region (Gorton, et al. 2010). Before 

administering antigens, the ankle area of skin was sprayed with 70% ethanol and the antigen-

adjuvant emulsion was injected s.c. bevel upwards into the lateral side of the foot directly 

above the heel and into the groove between the fibularis longus and soleus muscles. Once the 

emulsion was injected, the rats were monitored in an isolation cage until fully recovered. The 

booster injections were administered s.c. in the flank region. 

  

3.2.4 Immunological assays  

3.2.4.1 Lymphocyte proliferation assays 

Lymphocyte proliferation assays were used to assess the ability of memory lymphocytes to 

proliferate in response to various non-specific (mitogen) and specific (recall antigen) stimuli. 

The specificity and reactivity of lymphocytes from immunised rats were determined by 

measuring proliferative responses to antigen in a [3H] thymidine incorporation assay (Gorton, 

et al. 2009). Optimum concentration of each stimulating antigen was determined by several 

initial experiments. Typically, MNCs extracted from individual rat spleens (Section 3.2.2.3) 

were cultured in triplicate wells in U96-well culture plates (#163320, Nunc, Denmark) in the 

presence of antigen stimulants followed by incubation in a humidified atmosphere for 72-120 

h at 37°C in 5% CO2. MNCs were added to each well at a concentration of 105 cells/well in 

RPMI-1640 medium, supplemented with 2.5% heat-inactivated rat serum, 100 IU/ml 
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penicillin, 100 μg/ml streptomycin, 2 mM L-glutamine and 10 mM HEPES buffer. Test cells 

were stimulated with 10 μg/ml of GAS rM5 or GGS Stg480. Cells stimulated with 1 μg/ml of 

concanavalin A (ConA, #C2272, Sigma) were used as the positive control. Baseline readings 

were obtained from unstimulated cells in culture medium only. After 72-120 h of culture, 

cells were pulsed for 20 h with 0.25 μCi 3H-thymidine (#NET027E005MC, GEHealthcare, 

Australia) before harvesting onto filter mats (#6005409, Perkin Elmer, USA) using Wallac 

MicroBeta® Trilux scintillation counter (Perkin Elmer, USA).  When dry, scintillation fluid 

was applied to the filter mats and counts per minute (cpm) were measured in a Wallac 

MicroBeta® Trilux schintillation counter. The proliferative response was evaluated using the 

stimulation index (SI), calculated as a ratio of mean cpm in stimulated cells and cpm in 

unstimulated cells (cpm of test wells/cpm of control wells). A stimulation index of ≥3 was 

considered significant.  

 

3.2.4.2 Enzyme linked immunosorbent assay 

Immunoglobulin G (IgG) reactivity in sera from rats was determined by enzyme linked 

immunosorbent assay (ELISA). The coating concentrations of different antigens and starting 

dilutions of rat sera were titrated with several initial experiments (Section 4.3). Briefly, F96-

well plates (Nunc, Denmark) were coated overnight at 4°C with 500 µg/ml of WK-GAS or 

WK-GGS, 1 µg/ml of GAS rM5 or GGS Stg480, 10 µg/ml cardiac myosin or collagen I. The 

wells were washed four times with Wash Buffer (1× PBS at pH 7.4, 0.05% Tween 20) and 

blocked with 200 µl of Blocking Buffer (Wash Buffer, 1% bovine serum albumin) overnight 

at 37°C. After washing, the plates were kept inverted and blotted on paper to remove residual 

blocking solution. Individual rat sera were applied in duplicate using two-fold dilutions 

across the plate.  A 1:100 starting serum dilution was used for PBS injected rats. A 1:400 

starting dilution was used for serum from animals injected with whole killed bacteria and rM 

proteins. For cardiac myosin and collagen I ELISAs, sera from rats injected with WK-GAS, 

WK-GGS, GAS rM5, GGS Stg480 and PBS was diluted at 1:100 and applied in duplicate. 

Plates were incubated for 2 h at 37°C. After washing, goat anti-rat IgG (H+L) conjugated 

with horseradish-peroxidase was added at 1:5000 dilution for 1 h at 37°C. After washing, 2-

2’–azino-di(3-ethylbenzthiazoline)-6-sulphonate (ABTS) was added for 30 min before the 

optical density (OD) was measured at dual wavelengths 414 nm (ABTS absorption 

maximum) with 492 nm (reference) Controls included a positive serum sample from rats 

injected with WK-GAS, GAS rM5, cardiac myosin and collagen I, pooled baseline rat serum 

(diluted 1:100) as the negative control and enzyme conjugated secondary antibody alone. 
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Titres were calculated as the highest dilution of serum that gave an absorbance of more than 

three standard deviations above the mean absorbance of negative control wells on each plate. 

For cardiac myosin and collagen I ELISAs, the OD values between sera from rats injected 

with WK-GAS, WK-GGS, GAS rM5, GGS Stg480 and PBS were compared to test the 

difference. 

 

3.2.5 Histology 

3.2.5.1 Preparation of heart tissue 

Hearts fixed overnight in 10% neutral buffer formalin (NBF) were bisected along the base of 

aorta (Figure 3.4) for processing and preparation of paraffin-embedded sections. The 

preserved heart samples were processed by a 6-h cycle using a Shandon Citadel 2000 Tissue 

Processor (Shandon Southern Products Ltd, United Kingdom). Heart sections were cut at 5 

µm on a microtome, placed on glass slides and dried at 60°C until staining.  

 

 
Figure 3.4 Standard procedure of cutting rat heart for histological examination. The heart 
samples were hold tight using a forceps and cut into 2 equal pieces using a surgical blade 
directed lateral to the aorta and along the left atrium and ventricle. 
 

3.2.5.2 Haematoxylin and eosin staining of heart sections 

Formalin fixed paraffin embedded sections were stained with haematoxylin and eosin (H&E) 

following standard protocols (Appendix 3). Stained tissue sections containing mitral valves 

(usually 2 sections per rat) were examined microscopically using an Olympus BH2 

microscope fitted with a QImaging camera for evidence of mitral valvulitis and myocarditis, 

including inflammatory cell infiltration, fibrosis and necrosis, and scored as described in 

Table 3.2. Histological examination was also performed by a second experienced observer 

blinded to the sample identity. The mitral valvulitis and myocarditis scores from each rat 

were summed to achieve a “carditis” score. 
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Table 3.2 Mitral valvulitis and myocarditis severity scores (H&E staining) 
 

Score Mitral valve Myocardium 

0 
No inflammatory cells associated with 

valves 

Diffuse, individual cells throughout 

tissue 

1 <5 isolated cells in/on valves 1-2 small foci 

2 >5 cells on valve surface only       >2 small foci 

3 Focal lesion in valve Large focal lesion 

4 >1 lesion Aschoff-type lesion 

 

Examples of scores are shown later in Chapter 6, Figure 6.1. 

 

3.2.5.3 Masson’s trichrome staining of heart sections 

Masson’s trichrome staining was performed following standard procedures (Appendix 3) to 

observe deposition of collagen fibres in the mitral valve and myocardium. In this technique, 

the haematoxylin was used to stain cell nuclei black or blue, the acid fuchsin was used to 

stain muscle cells red, whereas the methyl blue was used to stain the collagen fibres blue. The 

heart sections were examined using a light microscope (BX43 Olympus). Percentage of 

collagen deposition (stained blue colour) in the mitral valve and myocardium was determined 

on the digital images using the CellSens image analysis software® (Olympus). A minimum of 

5 photographed areas of mitral valve and myocardium were used to analyse data. 

 

3.2.6 Imaging techniques 

3.2.6.1 Electrocardiography 

Electrocardiography (ECG) was performed on all experimental rats prior to antigen injections 

and before experimental end points. The ECG machine used was from AD Instruments 

(Power Laboratories). This instrument has a data acquisition and analysis system with 16 bit 

resolution (hardware and software supported), and is capable of recording at speeds of up to 

200,000 samples per sec (400 kHz aggregate). ECG was performed under isoflurane induced 

maintenance anaesthesia (Section 3.2.2.1) with 1-1.5 L/min of oxygen. The 3 standard limb 

leads were constructed from electrodes of 26 gauge, water-proof, stainless steel needles 

(LL911; Lead-Lok, USA). The negative electrode had a red wire to differentiate from the 

ground electrode which was green and the positive electrode which was yellow. The leads 

were placed subcutaneously for 1 cm at the right and left forepaws and the medial left thigh 
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region keeping the rats in supine position (Figure 3.5). The blue electrode (negative) was 

placed carefully in the left wrist, green one (ground) in the right wrist and yellow electrode 

(positive) in the left ankle. The electrical potentials were recorded for 30 sec with LabChart 6 

software provided by AD Instruments (Power Laboratories). Time at peak points of P and R 

waves were noted and P-R interval was calculated. ECG traces were analysed and the 

average of 15 P-R intervals (5 each from the beginning, middle and end) was calculated for 

each rat. Group data was then expressed as mean ± standard errors of mean (SEM).  

 

 
Figure 3.5 Performance of ECG in a rat. All ECG procedure was performed in rats with 
general anaesthesia. The standard limb lids were inserted s.c. into the fore limbs and left hind 
limb when the rat was in supine position. ECG traces were recorded for at least 30 sec. The 
ECG trace in the right shows normal P-R interval (38 millisec) of a rat before starting 
immunisations, a: ground electrode, b: negative electrode, c: positive electrode. 
 

3.2.6.2 Echocardiography 

Echocardiography (echo) was performed by an experienced researcher/clinician blinded to 

the sample identity (Dr Scott Simpson, The Townsville Hospital). Dr Simpson has extensive 

experience in preterm, neonatal and paediatric human echocardiography. A day prior to 

echocardiography assessment, the chest fur of each rat was shaved under maintenance 

anaesthesia (2% isoflurane). The machine used for echocardiography was a Philips CX50 

portable ultrasound (Bothwell, USA) with a L15-7iO; 15Hz phased linear array probe with 

128 elements, designed for mid to high frequency superficial imaging at high resolution with 

lens footprint: elevation 10 mm, scan plane 32 mm and transducer length 89 mm. The echo 

probe was directed towards the heart from left side and ultrasound frequency was adjusted 

until clearly visible the mitral valve and mitral valve movements (Figure 3.6). The images of 

the mitral valves and a short video of movement were recorded. Areas of abnormal or 

pathological heart valve appearance were identified as echo-dense structures and described 
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according to the number, density, size and whether these structures appeared to interfere with 

the motion of the mitral valves. Each rat was scored based on the mitral valvular pathology 

on echocardiography examination as described in Table 3.3. The thickness and nodular scores 

of each rat were summed and expressed as mean ± standard errors of mean (SEM). 

 

Table 3.3 Echocardiographic scores  
 

Score Valvular thickness Nodules on the leaflets 

0 No inflammatory thickening No nodules 

1 Moderately thick 1-2 foci/nodule(s) 

2 Distinctly thick >2 foci/nodules 

 

   
Figure 3.6 Performance of echocardiography in a rat. General anaesthesia of rat was 
maintained using 2% isoflurane. The rat was held in supine position. Echo probe was directed 
to heart of rat is a position so that the left atrium and ventricle and mitral valves can be 
examined. The mitral valves were detected as white leaflets directed towards the left 
ventricle. a: Lewis rat, b: echo probe, c: monitor of echo machine. 
 

3.2.7 Statistical analysis 

Confirmation of normal distribution of data sets was established using D'Agostino & Pearson 

normality test in GraphPad Prism 7 statistical software. The data sets from experimental and 

control groups that passed D'Agostino & Pearson normality test was compared and tested 

using one-way analysis of variance (ANOVA) with Tukey’s multiple comparisons test or t-

test. Non-parametric Kruskal-Wallis tests and Mann-Whitney tests were performed to 
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compare data that weren’t normally distributed. The results are reported as mean ± standard 

error (SEM). A p value of ≤0.05 was considered significant.  
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CHAPTER 4 

OPTIMISATION AND VALIDATION OF EXPERIMENTAL METHODOLOGIES 

 

In this chapter, the optimisation of various laboratory techniques is described. Existing 

techniques and assays used previously in the Lewis rat autoimmune carditis model (e.g. 

electrocardiography (ECG), ELISA, lymphocyte proliferation assays) have been re-evaluated 

to ensure competency, assay precision and validity. New techniques, not previously used in 

this model (e.g. echocardiography) required establishment, evaluation and optimisation prior 

to their use as experimental outcome measurements are described. 

 

In this chapter the following experimental methodologies were optimised: 

1. Electrocardiography (ECG) was evaluated by analysing ECG data generated by two 

independent investigators. Used in Chapters 6-8. 

2. Echocardiography (echo) techniques were established and validated by an 

experienced paediatrician/researcher blinded to the animal treatment group. Used in 

Chapters 6 and 8. 

3. ELISAs were optimised by chequerboard titration of all reagents to optimise antigen 

coating concentrations, blocking conditions and serum dilutions. Used in Chapters 5, 

7 and 8. 

4. Lymphocyte proliferation assay conditions were optimised to determine optimal 

antigen stimulation conditions and culture period. Used in Chapters 5, 7 and 8. 

5. Rat aortic endothelial cell (RAOEC) culture conditions were established and 

standardised. RAOEC were used in Chapter 9. 

 

4.1 OPTIMISATION OF ELECTROCARDIOGRAPHY (ECG) 

The P and R points of measurement on electrocardiograms are of interest in this thesis as 

prolongation of the P-R interval reflects electrical conduction abnormalities of the 

myocardium (Gewitz, et al. 2015) and is one of the minor manifestations of Jones Criteria for 

the diagnosis of ARF/RHD (Saxena 2000; Carapetis, et al. 2016). Prolongation of the P-R 

interval on ECG is present in 30-35% of ARF patients  (Homer and Shulman 1991) and was 

used to measure cardiac dysfunction in immunised Lewis rats in a previous study (Gorton, et 

al. 2016). In humans a typical P-R interval is measured as the period that extends from the 

beginning of the P wave (the onset of atrial depolarisation) until the beginning of the QRS 

complex (the onset of ventricular depolarisation). However, the rapid heart rate of the rat 
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makes it difficult to select P and R points. Instead, objective and reproducible measurements 

can be achieved using the peaks of the P wave and R wave (Farraj, et al. 2011). Nevertheless, 

the consistency of P and R peak value extraction from each ECG signal recorded by the ECG 

software needed to be verified. This was done by repeating the measurements by both the 

same operator (intra-observer variation) and/or a second operator (inter-observer variation) 

skilled in ECG. 

 

4.1.1 Materials and methods 

All rat experiments were approved and conducted under James Cook University Animal 

Ethics approval A2083. For optimisation of ECG, female Lewis rats of 12-14 weeks age 

injected with whole killed GAS M5 (WK-GAS, n=1) or whole killed GGS NS3396 (WK-

GGS, n=1) or PBS (n=4) were used. The lower number of animals (n=1) used was due to 

unavailability of animal stock (Gorton, et al. 2016). The schedule for priming and booster 

injections and adjuvant preparation is described in Section 5.2.3 and Table 5.1 (Whole-killed 

long term). The rats were assessed with ECG as described in Section 3.2.6.1 at day 230 prior 

to cull. To verify the consistency of data analysis, the peak P and R point values were 

independently extracted twice from the ECG trace using LabChart 8 Reader software (to 

determine intra-observer variation). The initial and the second P-R interval values were 

analysed by non-linear regression using GraphPad Prism 7.  

 

For further verification of consistency of data analysis, a second operator experienced in rat 

ECG was asked to extract the data from the same ECG traces (to determine inter-observer 

variation). The initial and the second operator data were analysed by non-linear regression 

using GraphPad Prism 7. 

 

4.1.2 Results 

The two values of intra-observational and inter-observer variation analysis are plotted on the 

X-axis and Y-axis (Figure 4.1). It was observed that the XY values were approximately linear 

and the R2 values approached 1. This indicates the consistency of the P and R values 

irrespective of different times of measurement and different operators. 
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Figure 4.1 Intra- (A) and inter- (B) observer variation analysis of ECG. The P-R intervals 
shown here are from PBS injected rats (n=4; 1.1-1.2, 1.4-1.5), GAS M5 injected rat (n=1; 
2.2) and GGS NS3396 injected rat (n=1; 3.1). A: R2 = 0.9999, B: R2 = 0.9998. 
 

4.1.3 Discussion and interpretation 

In ECG, the peak P and R values were chosen to make the data extraction procedure simple 

and consistent. Hence, while this measurement is slightly different from the commonly 

accepted measurement in humans, this modification has been used previously for other rodent 

ECG studies (Gorton, et al. 2009; Gorton, et al. 2016) and is the accepted methodology for 

rodents.  

 

The normal range for the P-R interval in rat ECG varies according to the rat strain and the 

type and level of anaesthesia used (Konopelski and Ufnal 2016). Very few studies have 

recorded ECGs from conscious rodents due to the difficulty in preventing movement during 

the ECG trace recordings. In a study on healthy Sprague-Dawley rats of body weight 174-292 

gm, the P-R interval was recorded as 48-70±47 millisec under ether anaesthesia (Normann, et 

al. 1961). In another study, healthy 4-12 month old Long-Evans rats had an average P-R 

interval of 50 millisec under light ether anaesthesia (Sambhi and White 1960). In a separate 

study on Albino rats of either sex (n=15, 200-300 gm), P-R intervals were between 43±01 

and 45±02 millisec (Kumar, et al. 2009). P-R interval in rats has been shown to differ with 

medications and in different disease conditions such as hypertension (Bestetti, et al. 1987; 

Detweiler 1997; Berne and Levy 2001; Konopelski and Ufnal 2016). 

 

In the current study, we observed prolonged P-R interval in rats injected with WK-GAS and 

WK-GGS (>40 millisec) compared to PBS injected control rats (<40 millisec). As reference 

range values are not available for rats, we took care to record ECGs from rats by the same 

operator, using the same level and method of anaesthesia. Comparing our values to those 



68 
 

published by others would be more difficult to interpret, as other studies might have 

employed different conditions and used different strains of rats. However, the consistency of 

P-R interval values in two different observations by the same operator and between different 

operators suggests that the method described in this Chapter and throughout this thesis is 

reliable and an appropriate measurement of cardiac function/dysfunction.   

 

4.2 OPTIMISATION OF ECHOCARDIOGRAPHY (ECHO) 

Echocardiography is commonly used for clinical diagnosis of ARF/RHD, serial follow up of 

patients and provides therapeutic procedural guidance and prognostic information (Gewitz, et 

al. 2015). It is also useful in large scale population screening for early detection of ARF/RHD 

(Abernethy, et al. 1994; Minich, et al. 1997; Figueroa, et al. 2001; Narula and Kaplan 2001; 

Vijayalakshmi, et al. 2008). Salient echocardiographic features include mitral valvular 

morphology, especially valvular thickening and impaired valvular leaflet movement (Figure 

4.2) (Jain and Mankad 2013; Wunderlich, et al. 2013; Carapetis, et al. 2016). To our 

knowledge echo of rat hearts has not been previously used to detect heart valve pathology. 

Therefore, the rat echo procedure required setup and optimisation prior to use of this 

technique in the assessment of rat valve pathology. 

 

 
Figure 4.2 Echocardiogram from a child with mitral valvular pathology (parasternal long-
axis view). A: the mitral valve is thickened with excessive leaflet tip motion and lack of 
coaptation; B: the mitral valve is thickened with limited motion and the left atrium is severely 
dilated. Arrows (→) indicate mitral valve leaflets. LA: left atrium, LV: left ventricle. The 
images are extracted from Carapetis, et al. (2016).  
 

4.2.1 Materials and Methods 

The Lewis rats injected with whole-killed GAS (n=7) and the control rats (n=7) injected with 

PBS were used. The immunisation procedure described in Section 5.2.3 (Whole-killed long 

term) was followed to optimise the echo process. The echo was performed on rats at day 230 
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of post priming injection under isoflurane anaesthesia (Section 3.2.6.2). Echo setup and 

training was performed by a clinician/researcher (Dr Scott Simpson, The Townsville 

Hospital) with extensive experience in paediatric heart sonography for the detection of 

ARF/RHD. The rats were scored from ‘0’ to ‘2’ based on degree of leaflet thickness and 

presence of nodules (Section 3.2.6.2, Table 3.3). 

 

4.2.2 Results 

During echo, blinded measurements of mitral valve morphologies were recorded i.e. the 

operator was blinded to the identity/injection group of individual rats. The mitral valves of 

PBS injected control rats were uniform with no abnormal thickening or focal lesions (Figure 

4.3, A). However, the mitral valves of rats injected with WK-GAS were dense white and 

thick structures with circular, white nodules (Figure 4.3, B-E). The findings from rats injected 

with WK-GAS were similar to the echo findings of children during screening for ARF/RHD 

(Figure 4.2). 

 
Figure 4.3 Examination of mitral valves of rats using echocardiography. (A) Score 0, normal 
mitral valve leaflets with no inflammatory thickening or nodules, (B) Score 1, moderately 
thick mitral valve, (C) Score 2, distinctly thick leaflets, (D) Score 1, 1 focus/nodule, (E) 
Score 2, >2 foci/nodules. Arrows (→) indicate mitral valve leaflets, LA: left atrium, LV: left 
ventricle, RA: right atrium, RV: right ventricle. 
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4.2.3 Discussion and interpretation 

In the revised Jones Clinical Criteria (2015) for the diagnosis of ARF/RHD, the 

echocardiographic assessment was added as a mandatory tool, even in the absence of 

classical auscultatory findings (Gewitz, et al. 2015). Echocardiographic screening is now 

common practice for the early diagnosis of ARF/RHD (Carapetis, et al. 2016). To our 

knowledge, this is the first echocardiographic assessment of rats for the detection of valvular 

pathology. As there are no baseline values available for rats, we took care for the same 

operator to assess all rats, using the same level and means of anaesthesia and keeping the 

animal identity blinded to the operator. Hence, it was applied in both control and 

experimental rats and therefore presents a valid and reliable measurement of mitral valvular 

pathology in rats demonstrating symptoms characteristic of ARF/RHD. The scoring system 

of echo findings is particularly important for data analysis. 

 

4.3 OPTIMISATION OF SERUM ANTIBODY ELISA 

Indirect ELISAs were performed to detect reactivity in sera from rats injected with WK-GAS, 

WK-GGS, GAS rM5 and GGS Stg480 against streptococcal (WK-GAS, WK-GGS, GAS 

rM5 and GGS Stg480) and host tissue antigens (cardiac myosin and collagen I). Optimisation 

of antigen (WK-GAS, WK-GGS, GAS rM5 and GGS Stg480) coating concentrations was 

required prior to assessment of antibody titres. The coating concentration of cardiac myosin 

and collagen I used was as described in an earlier study (Gorton, et al. 2009). The time 

required for effective blocking on non-specific antibody binding also required optimisation. 

Determination of appropriate serum starting dilutions was also required.  

 

4.3.1 Materials and methods 

The pooled sera samples used to optimise the coating concentration of WK-GAS, WK-GGS, 

GAS rM5 and GGS Stg480 antigens for ELISA were from experiments where rats were 

injected with WK-GAS, WK-GGS and GAS rM5 and GGS Stg480 (Section 5.2.3, whole-

killed and M-protein short term experiments). The same sera samples also used to titrate the 

starting concentration of serum. 

 

The ELISA procedure described in Section 3.2.4.2 was used with modifications as described 

below. WK-GAS and WK-GGS, prepared as described in Section 3.1.3.1 were added to wells 

of microtitre plates at 2 mg/ml and diluted 2-fold across the plate. To ensure optimum 

blocking was achieved, plates were incubated for 3 h or kept overnight at 37°C. Sera from 
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rats injected with WK-GAS and WK-GGS were applied in duplicate at 1:100 dilution 

followed by goat anti-rat secondary antibody and chromogen/substrate. To optimise the 

coating concentration of GAS rM5 and GGS Stg480, microtitre plates were coated with 2 

µg/ml of GAS rM5 or GGS Stg480 and diluted 2-fold across the plate before adding sera (at 

1:100 dilution) from rats injected with WK-GAS, WK-GGS, GAS rM5 and GGS Stg480. 

Sera from PBS injected control rats were used as negative controls.   

 

To optimise the serum starting dilution, microtitre plates were coated with 1 µg/ml of GAS 

rM5 or GGS Stg480 (the concentration used from the optimisation of coating concentration). 

After overnight blocking, the serum samples were diluted 2-fold down the plate with an 

initial starting dilution 1:100. 

 

4.3.2 Results 

Optimisation of coating concentration of WK-GAS, WK-GGS, GAS rM5 and GGS Stg480 

was determined by the lowest concentration or highest dilution of the antigen giving the 

highest comparable OD values between sera (at 1:100 dilution) from rats injected with WK-

GAS, WK-GGS, GAS rM5 and GGS Stg480 and PBS. Here, the absorbance values of pooled 

serum from rats injected with PBS and WK-GAS or WK-GGS against WK-GAS and WK-

GGS were observed to be very similar when the microtitre plates incubated for 3 h (Figure 

4.4, A&B, left panels). However, overnight blocking of microplates made a visible difference 

in absorbance values between sera from rats injected with PBS and WK-GAS or WK-GGS 

against both WK-GAS and WK-GGS (Figure 4.4, A&B, right panels). Hence, overnight 

blocking was found superior to 3 h blocking. Nevertheless, the greatest difference in 

absorbance values was observed when the WK-GAS and WK-GGS samples were diluted at 

0.5 mg/ml (indicated by red arrows).  
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Figure 4.4 Optimisation of coating concentration of WK-GAS and WK-GGS. Absorbance 
values of sera antibodies from rats injected with PBS (n=6), WK-GAS (n=7) and WK-GGS 
(n=7) against WK-GAS (A) and WK-GGS (B). Left panel: 3 h incubation for blocking, right 
panel: overnight blocking. Red arrows indicate the lowest concentration of WK-GAS and 
WK-GGS with the highest difference in OD values. 
 

While titrating the coating concentration of GAS rM5 and GGS Stg480, the OD values of 

pooled sera from rats injected with WK-GAS, WK-GGS, GAS rM5 and GGS Stg480 was 

found to be higher in comparison to OD values of pooled sera from PBS injected control rats, 

irrespective of the coating concentration of antigens (Figure 4.5). However, the highest 

difference in OD values was observed (indicated by red arrows) when the microplate was 

coated with 1 µg/ml of GAS rM5 (Figure 4.5, A-D) and GGS Stg480 (Figure 4.5, E-H). 
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Figure 4.5 Optimisation of coating concentration of GAS rM5 and GGS Stg480. Absorbance 
values of pooled sera from rats injected with WK-GAS (A, n=7), WK-GGS (B, n=7), GAS 
rM5 (C, n=6) and GGS Stg480 (D, n=6) against GAS rM5. The absorbance values of 
respected sera antibodies against GGS Stg480 (E-H). Red arrows indicate the lowest 
concentration of GAS rM5 and GGS Stg480 with the highest difference in OD values. 
 

To determine the serum IgG titre against GAS and GGS antigens within a single plate, it was 

important to optimise the starting concentration of sera. The OD values of pooled sera from 

rats injected with WK-GAS, WK-GGS, GAS rM5 and GGS Stg480 against GAS rM5 

(Figure 4.6, A-D) and GGS Stg480 (Figure 4.6, E-H) were found to be higher compared to 

pooled sera from PBS injected control rats. However, consistently higher difference in OD 

values was observed in all sera diluted from 1:100 to 1:800 (indicated by markers ‘ ’). 
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Figure 4.6 Optimisation of serum starting concentration for detection of IgG reactivity 
against GAS rM5 and GGS Stg480. Absorbance values of antibodies in pooled sera (2-fold 
diluted from 1:100 to 1:12800) from rats injected with WK-GAS (A, n=7), WK-GGS (B, 
n=7), GAS rM5 (C, n=6) and GGS Stg480 (D, n=6) against GAS rM5. The absorbance 
values of respected sera antibodies against GGS Stg480 (E-H). Markers ( ) indicate the 
lowest dilutions of sera that have given higher OD values in all sera from rats injected with 
WK-GAS, WK-GGS, GAS rM5 and GGS Stg480 compared to sera from PBS injected 
control rats (n=6). 
 

4.3.3 Discussion and interpretation 

Coating concentrations of WK-GAS and WK-GGS were determined by the lowest 

concentration or highest dilution of the antigen that has given highest comparable OD values 

between pooled sera from rats injected with WK-GAS or WK-GGS and PBS. The highest 

comparable OD values between the sera from rats injected with WK-GAS or WK-GGS and 

PBS was observed when the microtitre plate was coated with WK-GAS or WK-GGS at 0.5 

mg/ml concentration and incubated overnight for blocking. Therefore, in all experiments 

described in this thesis the IgG reactivity of sera from GAS and GGS injected (either whole 

killed bacteria or rM proteins) rats was determined to be optimal using 0.5 mg/ml of WK-

GAS and WK-GGS as the antigen coating concentration with overnight background blocking 

of plates. 

 

Similarly, during optimisation of coating concentration of GAS rM5 and GGS Stg480, higher 

OD values was observed in sera from rats injected with WK-GAS, WK-GGS, GAS rM5, 
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GGS Stg480 compared to PBS injected control sera. However, the difference in OD values 

was found to be higher when the microplate was coated with GAS rM5 and GGS Stg480 at 2 

µg/ml and 1 µg/ml and decreased thereafter. Therefore, 1 µg/ml concentration of GAS rM5 

and GGS Stg480 was used in all experiments.  

 

Greater differences between the OD values of sera from PBS injected rats and sera from rats 

injected with whole killed or rM proteins of GAS or GGS were observed in the lower 

dilutions of sera (from 1:100 to 1:800). Therefore, during original experiments rat sera was 

diluted from 1:400/800 with 2-fold dilutions across the plate to get to able to determine the 

endpoint titres of samples within a single plate. 

 

4.4 OPTIMISATION OF LYMPHOCYTE PROLIFERATION ASSAY 

Lymphocyte proliferation assays (LPA) were used to detect antigen-specific memory 

lymphocyte proliferative response following stimulation with GAS and GGS antigens. 

However, prior to using these assays, different batches of normal, heat-inactivated rat sera 

and different concentrations of heat-inactivated commercial foetal bovine sera were evaluated 

for their ability to support rat lymphocyte proliferation. The culture time for maximal 

proliferation was determined simultaneously. 

 

4.4.1 Materials and methods 

Two male Lewis rats (8 weeks) were used in this experiment. The rats were culled and 

mononuclear cells was separated from splenocyte suspension as described in Section 3.2.2.2 

and Section 3.2.2.3. The sera samples used in this study are described in the Table 4.1. The 

proliferation of lymphocytes was measured by [3H]thymidine incorporation as described in 

Section 3.2.4.1. The T-cell mitogen Concanavalin A (ConA) was used as the stimulant to 

assess the influence of each batch/type of sera on T lymphocyte proliferation.  

 

Table 4.1 Sources and description of sera tested 
 

Serum ID Comments 

S1 Serum stored for 2 years, heat inactivated, sterile 

S2 Fresh rat serum, heat inactivated 

S3 Foetal bovine serum (FBS) 20% 

S4 FBS 10% 
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4.4.2 Results 

The stimulation index for freshly collected rat serum (S2) and 20% FBS (S3) supplemented 

cells was higher than stored serum (S1) or 10% FBS (S4) supplemented cells (Figure 4.7). In 

addition, it was observed that the longer incubation of cell culture (from 72 h to 120 h) 

reduced the cell proliferation. 
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Figure 4.7 Proliferative responses of splenocytes using different sera supplementations and 
incubation periods. ‘S1-S4’ indicates serum samples 1-4 as described in Table 4.1. 
 

4.4.3 Discussion and interpretation 

Concanavalin A (ConA) is a plant-derived T-cell mitogen, and is extensively used for in vitro 

stimulation and proliferation assays (Dwyer and Johnson 1981). Here, the maximum 

lymphocyte proliferative response was observed after 72 h incubation followed by a decline 

when further incubated to 120 h. The result indicates that splenocytes should be cultured at 

least for 72 h.  This time point is also suitable for antigen-specific T-cell proliferation as 

proliferating cells are at much lower frequency when stimulated with specific antigen. 

Therefore, during antigen specific cell proliferation assay, the lymphocytes should be 

cultured minimum for 72 h. In addition, splenocytes cultured with freshly prepared heat 

inactivated rat serum and 20% FBS showed a higher stimulation index irrespective of 

incubation period compared to the stocks of heat inactivated rat serum that have been stored 

and 10% FBS. These results indicate that long term storage of rat sera for use as a growth 

supplement is inappropriate. Therefore, freshly prepared heat inactivated rat serum is the 

optimal serum supplement to use during lymphocyte culture. 
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4.5 OPTIMISATION OF RAT ENDOTHELIAL CELL CULTURE 

Rat aortic endothelial cells (RAOECs) were used in Chapter 9 in in vitro cell culture 

experiments to investigate the role of serum antibodies compared to T-cells in driving heart 

valve inflammation. The experiments described below aimed to optimise RAOEC culture 

conditions and determine the optimal concentration of rat test serum to be added to activate 

RAOEC. Cell activation was determined by measuring the expression of two endothelial cell 

adhesion molecules; vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion 

molecule (ICAM)-1 using flow cytometry.  

 

4.5.1 Materials and methods 

Rat aortic endothelial cells (RAOEC) at passage six were grown in multiwell cell culture 

plates (12 well) as described in Section 9.2.6. When cells were sub-confluent (~80%), the 

growth medium was changed to Hank’s balanced salt solution (HBSS) for 24 h to achieve 

cell quiescence prior to performing activation assays.  

 

RAOEC were stimulated for 2 h and 6 h with 2% or 5% heat-inactivated sera taken from rats 

injected with GAS rM5, GGS Stg480 and PBS (Section 5.2.3, M-protein short term). 

Controls included unstimulated RAOEC (negative control) or RAOEC stimulated with 10 

ng/ml TNF-α (positive control). All samples were tested with five replicates. After 2 h and 6 

h of stimulation, RAOEC were washed in staining buffer (Appendix 1), harvested and stained 

for 30 min on ice in the dark with mouse monoclonal IgG1 anti-rat CD31-FITC (clone TLD-

3A12, #MA516952, Invitrogen) and FITC-conjugated mouse IgG1a, κ isotype control, (clone 

MOPC-21, #400107, BioLegend) to identify endothelial cells. Biotin-conjugated mouse anti-

rat CD54 (clone 1A29, #202403, BioLegend) followed by streptavidin APC (#17-4317-82, 

eBioscience) and APC-conjugated mouse IgG1, κ isotype control (clone OX33, #17-0462-80, 

eBioscinece) were used to detect ICAM-1. PE-conjugated mouse anti-rat CD106 (clone 

MR106, #200403) and PE-mouse IgG1, κ isotype control (clone MOPC-21, #400111, 

BioLegend) were used to detect VCAM-1 expression. After washing in staining buffer, cells 

were resuspended in BD FACS Flow and immediately acquired for flow cytometry. Data was 

acquired using a BD FACSCanto II flow cytometer using FACs DIVA 8.0.1 software. Cell 

debris, characterised by low forward and side scatter, were excluded from analysis and cells 

stained with isotype control antibodies were used to set VCAM-1 and ICAM-1 positive gates. 

For each sample, 100,000 total events were recorded. 
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The data distribution of percentage and MFI of VCAM-1/ICAM-1 and percentage of CD3+ 

cells was checked using GraphPad Prism 7 statistical software. All the data from 

experimental and control groups passed D'Agostino & Pearson omnibus normality test and 

therefore were compared and tested using unpaired t test. The results are reported as mean ± 

standard error (SEM), p≤0.05 was considered significant. 

 

4.5.2 Results 

Expression of adhesion molecules (VCAM-1 and ICAM-1) was determined following 

appropriate gating of endothelial cells in forward and side scatters (Figure 4.8, A). The 

unstimulated cells showed very little expression of VCAM-1 and ICAM-1 (Figure 4.8, 

B&G). However, the positive control cells stimulated with TNF-α showed significant 

expression of adhesion molecules (Figure 4.8, C&H). The representative histogram plots of 

endothelial cells stimulated with serum from rats injected with PBS, GAS rM5 and GGS 

Stg480 are shown in the Figure 4.8, D-F&I-K. 

 

 
Figure 4.8 VCAM-1 and ICAM-1 expression on the surface of rat aortic endothelial cell. (A) 
Dot plot showing the gating strategy used to determine VCAM-1/ICAM-1 positive 
endothelial cells. Quiescent cells were stimulated for 2 h or 6 h with pooled sera (2% or 5%) 
from rats injected with PBS, GAS rM5 and GGS Stg480. Unstimulated endothelial cells 
(negative control) showed low VCAM-1 (B) and ICAM-1 (G) expression. However, TNF-α 
stimulation (positive control) increased expression of VCAM-1 (C) and ICAM (H). Heat 
inactivated (HI) pooled serum from rats injected with GAS rM5 and GGS Stg480 induced 
VCAM-1 (E&F) and ICAM-1 (J&K) expression in a larger percentage of endothelial cells 
compared to serum from PBS injected control rats (D&I).  
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VCAM-1 and ICAM-1 expression was observed to be higher in cells stimulated with 5% 

serum from rats injected with GAS rM5, GGS Stg480 or PBS compared to 2% serum (Figure 

4.9) though some of the differences were not significant. Moreover, cells incubated with 5% 

serum for 6 h had greater expression of VCAM-1 and ICAM-1 compared to cells with a 2 h 

incubation (Figure 4.10). Unstimulated endothelial cells had low expression of VCAM-

1/ICAM-1 whereas, TNF-α was shown to strongly upregulate VCAM-1 and ICAM-1 

expression as a positive control. 

 

 
Figure 4.9 Optimisation of rat sera concentration used for VCAM-1 and ICAM-1 expression. 
VCAM-1 (A&B) and ICAM-1 (C&D) expression is more in endothelial cells stimulated with 
5% non-immune (PBS) or immune (rM5 and Stg480) sera compared to 2% sera. The level of 
VCAM-1 and ICAM-1 expression is lowest in the unstimulated cells (A-D, Unstim). 
However, the highest expression of adhesion molecules is observed in the cells stimulated 
with TNF-α (A-D). Error bars represent standard errors of the means (SEM). Statistical 
difference tested by t test; *p<0.05, **p<0.01, ***p<0.001, ns: not significant. 
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Figure 4.10 Optimisation of incubation period of endothelial cell culture to induce 
expression of VCAM-1 and ICAM-1. VCAM-1 (A&B) and ICAM-1 (C&D) expression is 
higher in RAOE cells cultured for 6 h compared to 2 h with 5% non-immune (PBS) or 
immune (rM5 and Stg480) sera. The level of VCAM-1 and ICAM-1 expression is lowest in 
the unstimulated cells (A-D, Unstim). However, the highest expression of adhesion molecules 
was in the cells stimulated with TNF-α irrespective of a 2 h or 6 h incubation period (A-D). 
Error bars represent standard errors of the means (SEM). Statistical difference tested by t test; 
*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ns: not significant. 
 

4.5.3 Discussion and interpretation 

Studies have demonstrated the VCAM-1 expression on valve endothelium is a probable 

pathway of T-cell infiltration into the mitral valves in patients with ARF/RHD (Roberts, et al. 

2001). Expression of VCAM-1 by rat aortic endothelial cells (RAOEC) following in vitro 

culture also demonstrated after stimulation with serum from rats injected with GAS rM5 

(Gorton, et al. 2016). However, different concentrations of serum and different incubation 

periods for adhesion molecule expression was used in different studies (Krankel, et al. 2011; 

Gorton, et al. 2016). In the current study, 5% and 2% serum concentrations were used based 

on earlier studies to optimise the concentration of rat sera to obtain optimum expression of 

VCAM-1 and ICAM-1. Tumour necrosis factor (TNF)-α was used as a positive control 

stimulant as it stimulates leukocyte adhesion to the endothelium by upregulating VCAM-1 
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and ICAM-1 (Pober, et al. 1987; Carlos, et al. 1990). The results of this study showed that 

5% rat sera could induce VCAM-1 and ICAM-1 better than 2% sera, regardless of whether it 

was immune and non-immune sera. The 5% sera may contain enough antibodies or other 

soluble serum components to contribute to a higher expression of VCAM-1 and ICAM-1. 

 

In addition, the incubation period of RAOEC culture after stimulation was also optimised by 

culturing the RAOEC for 2 h and 6 h after addition of stimulants. The results of this study 

showed that VCAM-1 and ICAM-1 were better expressed in the cells incubated for 6 h. This 

may be due to the slow rate of VCAM-1 and ICAM-1 expression by endothelial cells, 

resulting in a higher expression after 6 h of incubation. Therefore, VCAM-1 and ICAM-1 

expression was optimal when endothelial cells were stimulated with 5% serum for 6 h. 
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CHAPTER 5 

ANTIBODY AND T-CELL RESPONSES TO GROUP G STREPTOCOCCUS IN A 

LEWIS RAT AUTOIMMUNE VALVULITIS MODEL 

 

5.1 INTRODUCTION 

In acute rheumatic fever (ARF) and rheumatic heart disease (RHD), the antibody and T-cell 

responses generated following Streptococcus pyogenes (group A Streptococcus, GAS) 

infection are thought to cross-react with host tissues (Guilherme, et al. 2006). During GAS 

infections, antigen presenting cells present antigens to T-cells. T-cell (predominantly CD4+) 

activation enhances the activities of B-cells and macrophages to clear the infection. GAS-

antigen specific B-cells differentiate into IgM and IgG secreting plasma cells. In individuals 

susceptible to ARF/RHD, the host immune response to GAS triggers autoimmune reactions 

to host tissues mediated by both GAS-specific antibodies and T-cells through a process called 

molecular mimicry by four different mechanisms; (i) identical amino acid sequences, (ii) 

homologous but non-identical sequences, (iii) common or similar amino acid sequences of 

different molecules (proteins, carbohydrates), and (iv) structural similarities (Guilherme, et 

al. 2011a; Carapetis, et al. 2016). Molecular mimicry between GAS and host cardiac antigens 

is supported by evidence from previous studies (Kaplan 1963; Zabriskie 1967; Galvin, et al. 

2000; Kirvan, et al. 2003).   

 

The GAS M-protein shares structural homology with α-helical coiled-coil host proteins such 

as cardiac myosin, tropomyosin, keratin, vimentin, valvular laminin and collagen 

(Cunningham 2000; Guilherme, et al. 2006; Guilherme and Kalil 2010; Carapetis, et al. 2016; 

Martins, et al. 2017). In patients with ARF/RHD, antibody cross-reactivity between GAS M-

protein and cardiac myosin has been well documented (Galvin, et al. 2000; Dinkla, et al. 

2003b). Early studies from the 1960s demonstrated antibody deposition in human valve and 

myocardial tissues from patients who had died of ARF/RHD (Kaplan, et al. 1964). The 

findings of this study were later confirmed using mouse (Krisher and Cunningham 1985; 

Cunningham 2000) and human monoclonal antibodies (Cunningham 2014) against GAS that 

reacted with both myocardial and valvular tissues. Antibody cross-reactivity between GAS 

M-proteins and cardiac myosin suggests that M-proteins were the target autoantigens 

recognised in the heart (Dale and Beachey 1985a; Krisher and Cunningham 1985; 

Cunningham, et al. 1986; Cunningham and Swerlick 1986; Baird, et al. 1991). Using anti-

myosin antibodies purified by affinity chromatography from ARF patients’ sera, cross-
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reactive epitopes were found on cardiac myosin and the M5/M6 proteins of GAS 

(Cunningham, et al. 1989). Studies in animal models reported that the New Zealand White 

rabbits injected with GAS M1, M5 or M22 expressing strains showed increased levels of IgG 

antibody reactivity against cardiac myosin (Norlin 1959; Dale and Beachey 1986; Sargent, et 

al. 1987; Burova, et al. 2004; Burova, et al. 2005). Antibodies against collagen I also reported 

in patients with ARF/RHD though the cross-reactivity with GAS antigens hasn’t been proven 

(Martins, et al. 2008). It is hypothesised that the antibodies bind with heart endothelium, and 

activate endothelial cells (Carapetis, et al. 2016). Activated endothelium facilitate infiltration 

of antigen specific immune cells into the heart tissues. 

 

In ARF/RHD inflammation and autoimmune responses lead to infiltration of T-cells and B-

cells into heart tissues (Kay 1997; Abbas and Lichtman 2003; Sampaio, et al. 2007). 

Immuno-histochemical examination of sections of mitral valve of ARF/RHD patients showed 

predominantly CD4+ T-cells (Fae, et al. 2004). Animal model studies have revealed a role for 

antibodies and T-cells in the development of ARF/RHD (Gorton, et al. 2009; Rush, et al. 

2014). Guinea pigs injected with different GAS antigens, including heat killed whole 

bacteria, lysed cells, trypsinised cell wall extracts, M-proteins or protoplast membranes, 

exhibited myocarditis and valvulitis with increased T-cell, B-cell, macrophage and fibroblast 

infiltration in the myocardium and mitral valve (Gross, et al. 1929; Yang, et al. 1977). 

Moreover, Lewis rats injected with GAS M5 protein and peptides showed infiltration of T-

cell and macrophages in heart tissues with histological changes similar to the changes seen in 

the hearts of patients with ARF/RHD (Gorton, et al. 2009; Gorton, et al. 2016). However, 

understanding the type of T-cells and cytokines produced by T-cells are important to explore 

deep into the how T-cells are trafficked into the heart tissues. 

 

Despite the highest worldwide prevalence rates of ARF/RHD being in the Indigenous 

communities of Australia and New Zealand, very low pharyngeal carriage rates of GAS (only 

4% throat swabs positive) are reported in these communities (Carapetis and Currie 1997; 

McDonald, et al. 2004). Similar patterns of throat carriage have been reported in other 

resource poor developing countries with a high burden of ARF/RHD (Steer, et al. 2002; 

Brahmadathan, et al. 2005). In Indigenous communities of Australia however, GAS is often 

associated with skin sores rather than throat infections (McDonald, et al. 2004). These 

findings have led to the hypothesis that ARF/RHD may arise from GAS pyoderma or from 
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pharyngitis due to non-GAS strains that have inherited particular GAS virulence factors 

important for the initiation of ARF/RHD (McDonald, et al. 2004).  

 

Group G Streptococcus (Streptococcus dysgalactiae subspecies equisimilis, SDSE or GGS) 

possesses many features similar to GAS. It shares the same tissue niche as GAS. GGS causes 

a similar spectrum of disease and has similar virulence factors to GAS (Bisno, et al. 1987; 

Williams 2003). GGS and GAS are also known to exchange genetic material (Bisno, et al. 

1996; Sriprakash and Hartas 1996; Davies, et al. 2005). Some GGS isolates possess M-

proteins such as Stg485, Stg480, Stg6 with high sequence and structural homology to the M-

types of ARF-associated GAS strains (Jones and Fischetti 1987; Collins, et al. 1992; Bisno, et 

al. 1996; Jensen and Kilian 2012). Indeed GGS, but not GAS, has been recovered from an 

Indigenous Australian child after recurrent severe pharyngitis which was followed by ARF 

(Davies, et al. 2005). Moreover, antibodies against GGS strains have been shown to react 

with human heart myosin (Haidan, et al. 2000). However, GGS antigen specific antibody 

recognition of GAS could interpolate a hypothesis that GGS possess identical immunogenic 

antigens of GAS. Interestingly, collagen binding motifs that are similar to GAS M-proteins 

were also seen in some GGS M-proteins (Dinkla, et al. 2007). Collectively, these 

observations strongly suggest GGS possesses many of the same characteristics as GAS that 

are linked to the pathogenesis of ARF/RHD.  

 

However, the association of GGS with ARF/RHD has not been proven as it is not considered 

a major human pathogen (Collins, et al. 1992; Haidan, et al. 2000; Davies, et al. 2005; 

McDonald, et al. 2006; Dinkla, et al. 2007). Therefore, further studies are warranted into the 

rheumatogenic potential and role of GGS in the pathogenesis of ARF/RHD (WHO 1988; 

Taranta and Markowitz 1989; Bisno 1996; Carapetis, et al. 1999). In this chapter, the 

antibody and T-cell responses to whole-killed GGS NS3396 and GGS M-protein (Stg480) in 

a Lewis rat autoimmune valvulitis (RAV) model are described. 

 

5.1.1 Aims 

The overall Aim of this study is to investigate streptococcal and host tissue antigen specific 

antibody and T-cell responses in rats injected with whole-killed GGS NS3396 and GGS 

Stg480. 
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The specific Aims are: 

1. To determine the immunogenicity of GGS M-protein and whole-killed GGS bacteria 

and determine the reactivity of sera from GGS injected rats with GAS M-protein and 

whole-killed GAS. 

2. To determine cross-reactivity of sera from GGS injected rats with the host proteins 

cardiac myosin and Collagen I. 

3. To measure memory T-cell proliferative response from rats using ex vivo re-

stimulation with GGS Stg480 and GAS rM5. 

4. To characterise the phenotype of proliferating T-cells by measuring cytokines. 

 

5.2 MATERIALS AND METHODS 

5.2.1 Experimental animals 

The Lewis rat was chosen as a model as it is highly susceptible to develop autoimmune 

carditis (Li, et al. 2004). Female Lewis rats used for immunisation experiments were obtained 

from Small Animal Breeding Facility at James Cook University, Townsville, Australia and 

details of these animals are described in Section 3.1.2. 

 

5.2.2 Antigens and adjuvants 

Formalin treated whole-killed GGS NS3396 (WK-GGS) and whole-killed GAS M5 (WK-

GAS) were prepared as described in Section 3.1.3.1 and the concentration was adjusted to 

1011 CFU/ml to inject 1010 CFU/rat in 100 µl of PBS. Recombinant M-protein of GGS 

(Stg480) and GAS (rM5) used in this study were prepared as described in Section 3.2.1. 

Sterile phosphate buffer saline (PBS, pH 7.4) was used to inject control rats. Complete and 

incomplete Freund’s adjuvants and commercial Bordetella pertussis toxin were injected into 

rats as described in Section 3.1.1.3 and Section 3.2.3.2. Calcium activated porcine cardiac 

myosin and human collagen I (Section 3.1.1.2) were used in ELISA to demonstrate cross-

reactive IgG antibodies in sera from rats injected with GGS and GAS antigens as described in 

Section 3.2.4.2. 

 

5.2.3 Experimental design 

In all immunisation experiments, rats (n=5-8 per group) were injected with GGS and GAS 

antigens under general anaesthesia (Section 3.2.2.1). A sample size of ≥4 was considered 

adequate to achieve a power of >70% based on our previous findings (Gorton, et al. 2009; 

Gorton, et al. 2016). The injection protocol described in Section 3.2.3.2 was followed. In all 
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whole-killed bacteria immunisation experiments, rats were injected with either 1010 CFU 

WK-GGS or WK-GAS with CFA (1:1) subcutaneously (s.c.) in the hock as described 

previously (Gorton, et al. 2010). In all experiments using purified M-proteins, rats were 

injected with 0.5 mg/100 µl of GGS Stg480 or GAS rM5 emulsified in CFA s.c. in the hock. 

Control rats were injected with PBS in CFA. The dose rates of bacteria and protein have been 

designed based on previous studies (Quinn, et al. 2001; Lymbury, et al. 2003; Gorton, et al. 

2009; Huang, et al. 2009). At day 1 and day 3 after the priming injection, each rat was 

injected intraperitoneally (i.p.) with 0.3 µg B. pertussis toxin in 200 µl PBS. The schedule for 

booster injections is shown in Table 5.1. Boost antigen preparations contained 1010 CFU of 

WK-GGS or WK-GAS or 0.5 mg/100 µl of GGS Stg480 or GAS rM5 in IFA instead of CFA.  

 

In some experiments, animals were culled after 35/60 days (short term) whereas in other 

experiments animals were culled after 225/240 days (long term). For short term experiments, 

rats were boosted at days 7, 14 and 21 following the priming injection.  The experimental 

endpoint for short term experiments was 35-60 days. For long term experiments, additional 

boost injections were given at days 120, 150 or 210 prior to the experimental endpoint on day 

225-240.  

 

Table 5.1 Injection schedule 
 
Experimental 

design 

Group 

size (n=) 
Prime Boosts 

Experiment 

endpoint 

Whole-killed 

short term 

7 

7 

6 

WK-GAS 

WK-GGS 

PBS 

Day 7, 14, 21 

Day 7, 14, 21 

Day 7, 14, 21 

60 days 

Whole-killed 

long term 

7 

8 

7 

WK-GAS 

WK-GGS 

PBS 

Day 7, 14, 21, 120, 210 

Day 7, 14, 21, 120, 210  

Day 7, 14, 21, 120, 210 

240 days 

M-protein 

short term 

6 

6 

6 

GAS rM5 

GGS Stg480 

PBS 

GAS rM5 on day 7, 14, 21 

GGS Stg480 on day 7, 14, 21 

PBS on day 7, 14, 21 

35 days 

M-protein 

long term 

5 

5 

5 

GAS rM5  

GGS Stg480 

PBS 

GAS rM5 on day 7, 14, 21, 150 

GGS Stg480 on day 7, 14, 21, 150 

PBS on day 7, 14, 21, 150 

225 days 
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WK: whole killed, GAS: group A Streptococcus, GGS: group G Streptococcus, PBS: 
phosphate buffer saline. 
 

M-protein-injected short term and long term experiments were repeated twice each with n=5 

group sizes. The schedule for antigen-adjuvant injections was similar with the exception of 

the long term experiment endpoint where the experimental endpoint was at day 180 rather 

than day 225 as shown in Table 5.1. 

 

5.2.4 Culling of rats and collection of blood and spleens 

The rats were culled according to the procedure described in Section 3.2.2.2 and blood and 

spleen samples were collected and processed as described in Section 3.2.2.3. 

 

5.2.5 Serum antibody detection by ELISA 

The reactivity of IgG in individual rat sera was evaluated against surface antigens of WK-

GGS and WK-GAS and purified M-proteins of GGS Stg480 and GAS rM5 using an indirect 

ELISA. The cross-reactivity of serum IgG with porcine cardiac myosin and human collagen I 

was also evaluated. The antigen coating concentration for WK-GGS and WK-GAS ELISAs 

was 500 µg/ml, whereas 1 µg/ml was used for GGS Stg480 and GAS rM5 ELISAs (Section 

4.3). The coating concentration of porcine cardiac myosin and human collagen I was 10 

µg/ml as described previously by Gorton, et al. (2009). Antigens were coated onto Nunc 

Maxisorp F96 plates in carbonate bicarbonate coating buffer, pH 9.6 (Appendix 1). The 

ELISA procedure was as described in Section 3.2.4.2. 

 

5.2.6 Lymphocyte proliferation assay 

The ability of memory lymphocytes to proliferate in response to GGS Stg480 and GAS rM5 

was measured by a [3H]thymidine incorporation lymphocyte proliferation assay. 

Mononuclear cells from splenocyte suspensions were separated according to the procedure 

described in Section 3.2.2.3 and the proliferation assay method described in Section 3.2.4.1 

was followed. Purified GGS Stg480 and GAS rM5 were used at concentrations of 10 µg/ml 

to stimulate antigen-specific lymphocyte proliferation. Plates were harvested after 96 h at 

37°C in 5% CO2 [3H]thymidine added for the last 20 h of culture. 
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5.2.7 Analysis of antigen-specific cytokine production 

To characterise the phenotype of proliferating T-cells, splenocytes were cultured for 72 h as 

described above (Section 5.2.6). Cell culture supernatants were collected by centrifugation at 

500 ×g for 10 min at room temp and stored at -80°C prior to analysis. Quantitative 

measurements of IFN-γ (#ab46107), IL-17A (#ab119536) and IL-4 (#ab46073) were done 

using Abcam ELISA kits. Cytokine concentrations in culture supernatants were determined 

from standard curves using non-linear fit methods (i.e. second order polynomial, quadratic). 

  

5.2.8 Statistical analysis 

The data distribution of endpoint titres, OD values, stimulation indices and cytokine 

concentrations was checked using GraphPad Prism 7 statistical software. The data from 

experimental and control groups that passed D'Agostino & Pearson omnibus normality test 

were compared and tested using one-way analysis of variance (ANOVA) with Tukey’s post 

hoc multiple comparisons test. Non-parametric Kruskal-Wallis test or Mann-Whitney test 

(two tailed) were performed to compare median values that weren’t normally distributed. The 

specific statistical test used for each data set is presented in the figure legends. The results are 

reported as mean ± standard error (SEM), p≤0.05 was considered significant. 

 

5.3 RESULTS 

The results of whole-killed GGS and whole-killed GAS injected short term and long term 

experiments and M-protein injected short term and long term experiments are presented in 

this Chapter. The results of repeat experiments are provided in Appendix 5. The details of 

statistical analysis also provided in the Appendix 5. 

 

5.3.1 Antibodies produced following GGS antigen injection also recognise GAS antigens 

In this study, we analysed rat sera to detect IgG responses to surface antigens of whole-killed 

GAS M5 (WK-GAS) and whole-killed GGS (NS3396). In both short and long term 

experiments, significantly higher IgG response to WK-GAS was observed in the sera from 

rats injected with WK-GGS compared to PBS injected control rats (Figure 5.1 A). Anti-WK-

GAS antibodies also reacted significantly with WK-GGS compared to IgG reactivity from 

control rats (Figure 5.1 C). Sera from rats injected with GGS Stg480 or GAS rM5 also had a 

similar spectrum of reactivity (Figure 5.1 B&D).  
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Figure 5.1 Antibody responses to whole-killed GAS and GGS in whole-killed and M-protein 
injected rats. Serum IgG from rats injected short term and long term with WK-GGS (n=7-8) 
reacted with surface antigens of WK-GAS (A). Similarly, serum IgG from rats injected with 
WK-GAS (n=7) reacted with WK-GGS (C). Anti-GGS Stg480 antibodies also reacted 
against WK-GAS (B) and anti-GAS rM5 antibodies reacted against WK-GGS (D). In all 
experiments, serum from PBS injected rats (n=6-7) was used as control. Error bars represent 
standard errors of the mean (SEM). Statistical difference by one-way ANOVA with Tukey’s 
post hoc multiple comparison; *p<0.05, **p<0.001, ***p<0.0001. 
 

Here, we have demonstrated serum IgG responses against GAS rM5 in rats injected with 

WK-GGS or GGS Stg480. Moreover, serum IgG response from rats injected with WK-GAS 

or GAS rM5 also demonstrated reactivity against GGS Stg480. Significantly higher IgG 

responses against GAS rM5 were observed in rats injected short term or long term with WK-

GGS (Figure 5.2 A) and GGS Stg480 (Figure 5.2 B) compared to IgG response from rats 

injected with PBS. Similar IgG reactivity was observed against GGS Stg480 in the sera from 

rats injected with WK-GAS (Figure 5.2 C) and GAS rM5 (Figure 5.2 D). The PBS injected 

control rats showed a very low serum IgG response to GAS rM5 and GGS Stg480. 
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Figure 5.2 Antibodies generated following exposure to GGS and GAS reacted with GGS and 
GAS M-proteins. IgG antibody in the sera from rats injected with WK-GGS (n=7-8) reacted 
with GAS rM5 (A). Similarly, serum IgG from rats injected with WK-GAS (n=7) reacted 
with GGS Stg480 (C). IgG response to GAS rM5 (B) and GGS Stg480 (D) was also found 
significantly higher in rats injected with GGS Stg480 and GAS rM5 compared to PBS 
injected control rats (n=6-7). Error bars represent standard errors of the mean (SEM). 
Statistical difference by one-way ANOVA with Tukey’s post hoc multiple comparison; 
*p<0.0001.  
 

5.3.2 Antibodies produced following GGS antigen injection recognise host proteins 

In this study, we have demonstrated cardiac myosin and collagen I specific serum IgG 

responses in rats injected with WK-GGS, WK-GAS, GGS Stg480 and GAS rM5. A 

significantly higher IgG response to cardiac myosin was observed in sera from rats injected 

with WK-GGS or WK-GAS (Figure 5.3 A) and GAS or GGS M-proteins (Figure 5.3 B) 

compared to PBS injected control rats. IgG reactivity to human collagen I in the sera of rats 

injected short term with WK-GAS and short term or long term with GGS Stg480 or GAS 

rM5 was higher compared to sera from PBS injected control rats (Figure 5.3 C&D). The IgG 

response to collagen I in sera from rats injected short term or long term with WK-GGS and 
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long term with WK-GAS was higher than the IgG response in sera from PBS injected control 

rats although the difference was not significant (Figure 5.3 C). 

 

 
Figure 5.3 Antibodies generated following exposure to GGS and GAS cross-reacted with 
cardiac myosin and collagen I. Antisera (at 1:100 dilution) raised in rats following injection 
with WK-GGS (n=7-8) and WK-GAS (n=7) (A), GGS Stg480 (n=5-6) and GAS rM5 (n=5-6) 
(C) reacted against cardiac myosin. (B&D) Reactivity to collagen I was also observed in the 
rats though the sera from WK-GGS injected short term and long term rats and WK-GAS 
injected long term rats were not found significant. In all experiments PBS injected control 
rats (n=5-7) were included. Error bars represent standard errors of the mean (SEM). 
Statistical difference by Mann-Whitney test; *p<0.05, **p<0.01, ***p<0.001, ns: not 
significant. 
 

5.3.3 T-cells generated following exposure to GGS antigens recognise streptococcal 

antigens 

In this study, we have demonstrated the splenic T-cell proliferative response to GAS rM5 and 

GGS Stg480 in rats injected long term with WK-GGS and WK-GAS and short term and long 

term with M-proteins of GGS and GAS. A significantly higher T-cell proliferative response 
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to GAS rM5 was observed in rats injected with WK-GGS (Figure 5.4 A) or GGS Stg480 

(Figure 5.4 B) compared to PBS injected control rats. The anti-GAS (both whole-killed and 

rM5) T-cells also proliferated in response to GGS Stg480 (Figure 5.4 C&D). The T-cells 

from PBS injected control rats showed very low proliferative response to GAS rM5 and GGS 

Stg480. 

 

 
Figure 5.4 Splenic T-cells from GGS and GAS injected rats proliferate in response to GGS 
and GAS M-proteins. The T-cells from rats injected long term with WK-GGS (n=8) (A) and 
short term and long term with GGS Stg480 (n=5-6) (B) proliferated in response to GAS rM5. 
The T-cells from rats injected with WK-GAS (n=7) and GAS rM5 (n=5-6) also proliferated 
in response to GGS Stg480 (C&D). The T-cell proliferative response to GAS rM5 and GGS 
Stg480 was minimal in control rats injected with PBS (n=5-7). Error bars represent standard 
errors of the mean (SEM). Statistical difference by one-way ANOVA with Tukey’s post hoc 
multiple comparison; *p<0.05, **p<0.01, ***p<0.0001. 
 

5.3.4 GGS and GAS specific Th17/Th1/Th2 cells are produced in response to GAS and 

GGS antigen injection 

In this study, we analysed IFN-γ, IL-17A and IL-4 production by splenic T-cells upon ex vivo 

re-stimulation with GAS rM5 and GGS Stg480. Significantly higher levels of IFN-γ were 
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produced by T-cells from rats injected long term with WK-GGS (Figure 5.5 A) and short 

term and long term with GGS Stg480 (Figure 5.5 B) in response to GAS rM5 compared to 

PBS injected control rats. Similarly, T-cells from rats injected with WK-GAS and GAS rM5 

produced significantly higher amounts of IFN-γ in response to GGS Stg480 compared to 

controls (Figure 5.5 C&D). Similar to IFN-γ, significantly high levels of IL-17A and IL-4 

production were observed in rats injected with WK-GAS, WK-GGS, GAS rM5 and GGS 

Stg480 in response to GAS rM5 and GGS Stg480 (Figure 5.6 and Figure 5.7) compared to 

controls.  

 

 
Figure 5.5 GGS and GAS specific memory T-cells produce high amounts of IFN-γ upon ex 
vivo re-stimulation with GGS and GAS antigens. After 72 h culture, splenic T-cells from rats 
long term injected with WK-GGS (n=8) and WK-GAS (n=7) produced high amounts of IFN-
γ in response to GAS rM5 (A) and GGS Stg480 (C) re-stimulation. High levels of IFN-γ were 
also produced by T-cells from the rats injected short and long term with GGS Stg480 (n=5-6) 
and GAS rM5 (n=5-6) following stimulation with GAS rM5 (B) and GGS Stg480 (D). In all 
experiments, rats injected with PBS were used as controls (n=5-7). Error bars represent 
standard errors of the mean (SEM). Statistical difference by one-way ANOVA with Tukey’s 
post hoc multiple comparison; *p<0.005, **p<0.0001. 
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Figure 5.6 GGS and GAS specific memory T-cells produce high amounts of IL-17A. Splenic 
T-cells from rats injected long term with WK-GGS (n=8) and WK-GAS (n=7) produced high 
amounts of IL-17A cytokine in response to GAS rM5 (A) and GGS Stg480 (C). High levels 
of IL-17A were also produced by T-cells from rats injected short and long term with GGS 
Stg480 (n=5-6) and GAS rM5 (n=5-6) following stimulation with GAS rM5 (B) and GGS 
Stg480 (D). In all experiments, rats injected with PBS (n=5-7) were used as controls. Error 
bars represent standard errors of the mean (SEM). Statistical difference tested by one-way 
ANOVA with Tukey’s post hoc multiple comparison; *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001. 
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Figure 5.7 GGS and GAS specific memory T-cells produce IL-4. Splenic T-cells from rats 
injected long term with WK-GGS (n=8) and WK-GAS (n=7) produced IL-4 in response to 
GAS rM5 (A) and GGS Stg480 (C). Significantly higher amounts of IL-4 were also produced 
by T-cells from rats injected short and long term with GGS Stg480 (n=5-6) and GAS rM5 
(n=5-6) following stimulation with GAS rM5 (B) and GGS Stg480 (D). In all experiments, 
rats injected with PBS (n=5-7) were used as controls. Error bars represent standard errors of 
the mean (SEM). Statistical difference tested by one-way ANOVA with Tukey’s post hoc 
multiple comparison; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
 

5.4 DISCUSSION 

The Lewis rat autoimmune valvulitis (RAV) model is an appropriate animal model to study 

acute rheumatic fever and rheumatic heart disease. In several previous studies of ARF/RHD, 

the RAV model has been used successfully to induce and demonstrate carditis and observe 

autoimmune responses (Quinn, et al. 2001; Galvin, et al. 2002; Lymbury, et al. 2003; Gorton, 

et al. 2009; Gorton, et al. 2010; Gorton, et al. 2016). Moreover, this Lewis rat model is the 

first in which valvular changes akin to human heart pathology have been demonstrated and 

impaired heart function demonstrated. Whilst the RAV model has been useful in 

characterising key aspects involved in the autoimmune processes in RF/RHD pathogenesis, 

the limitations in the use of this model include: (1) species differences in rat versus human 

predisposition and character of the immune response; (2) the use of inbred strains; the use of 
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outbred or alternate MHC types has not been investigated and; (3) the restriction to one sex. 

Further studies are required to determine its suitability to comprehensively model this 

complex human disease. 

 

In ARF/RHD, after pharyngeal or skin infection, the immune system responds to group A 

Streptococcus by antibody production (IgM followed by IgG) and T-cell priming and 

differentiation (Kaplan, et al. 1964; Roberts, et al. 2001; Gorton, et al. 2009; Cunningham 

2014; Gorton, et al. 2016). The group A streptococcal M-protein is the major virulence 

determinant and an immunodominant GAS antigen and is most frequently reported to trigger 

autoimmune reactions against heart proteins that lead to the development of carditis 

(Cunningham, et al. 1989; Cunningham, et al. 1997; Quinn, et al. 2001). Anti-GAS M-protein 

antibodies have been reported in many clinical and experimental animal studies as potential 

auto-antibodies (Beachey, et al. 1988; Bronze, et al. 1988; Cunningham, et al. 1989; Quinn, 

et al. 1995; Brandt, et al. 2001). GGS M-proteins share significant sequence and structural 

features with the M-proteins of well-established rheumatogenic group A streptococcal 

serotypes like GAS M5. However, immunological similarities between GAS and GGS might 

be explained by antibody mediated cross-recognition. In the current study, antibodies induced 

in rats following exposure to WK-GGS and GGS Stg480, reacted with surface antigens of 

WK-GAS and the GAS rM5 protein (Figure 5.1 and Figure 5.2). Conversely, the anti-WK-

GAS and anti-GAS rM5 antibodies also reacted with surface antigens of WK-GGS and GGS 

Stg480 protein (Figure 5.1 and Figure 5.2). Antibody reactivity in the sera of PBS injected 

control rats was minimal. We did not include a negative background control which is a 

limitation of the current study. We have demonstrated and published previously that the 

protein preparation methods used here removed contaminating proteins (Section 3.2.1.4 and 

Figure 3.1) and E. coli endotoxin (Gorton, et al. 2016). The results indicate that GGS induces 

antibodies that cross react with GAS and the converse; GAS induces antibodies that cross 

react with GGS. Anti-GAS and anti-GGS antibodies have been reported in patients with 

ARF/RHD (Kaplan, et al. 1964; Kaplan and Svec 1964; Galvin, et al. 2000; Sikder, et al. 

2018). Cross-recognition of GGS by anti-GAS antibodies and vice versa indicates structural 

similarity between GAS and GGS antigens and shared potential for rheumatogenicity. 

 

The GAS M-protein shares structural homology with several α-helical coiled-coil host 

proteins including cardiac myosin and collagen I. (Cunningham 2000; Guilherme, et al. 2006; 

Guilherme and Kalil 2010; Carapetis, et al. 2016; Martins, et al. 2017). In ARF/RHD, 



97 
 

antibody cross-reactivity between GAS M-proteins and cardiac myosin has been well 

documented (Galvin, et al. 2000; Ellis, et al. 2005). In several studies using Lewis rats, anti-

GAS M-proteins antibodies have been reported to cross-react with cardiac myosin (Quinn, et 

al. 2001; Lymbury, et al. 2003; Gorton, et al. 2009; Gorton, et al. 2016). Previously in murine 

experiments it was observed that antibodies raised against cardiac myosin had greater 

reactivity to GGS than GAS M-proteins (Haidan, et al. 2000). Importantly in the current 

study, serum from rats injected with WK-GGS or GGS Stg480 reacted with cardiac myosin. 

This provides further evidence that GGS is capable of initiating an autoimmune process 

similar to GAS-induced ARF/RHD. Dale and Beachey (1985a) observed the cross-reactive 

antibodies to GAS M5 protein bound to the heavy chains region of myosin (Dale and 

Beachey 1985a). Cunningham, et al. (1997) reported that the N-terminus, B-repeat region and 

C-terminus of GAS M5 protein have high amino acid similarities with conserved regions of 

cardiac myosin (Cunningham, et al. 1997). However, to predict the epitopes of GGS M-

protein and cardiac myosin involved in the antibody cross-reactivity, the amino acid 

sequencing is necessary. 

 

In the current study, serum IgG from rats injected with WK-GGS and GGS Stg480 also 

showed reactivity to human collagen I (Figure 5.3). The results were similar to the IgG 

reactivity from rats injected with WK-GAS and GAS rM5. Collagen is an important 

structural protein of the heart valve and GAS surface protein similar to human collagen have 

been reported (Lukomski, et al. 2000; Lukomski, et al. 2001). Antibodies in rat sera reacting 

with collagen may be simply able to bind to B-cell epitopes within the collagen I molecule 

(Dinkla, et al. 2003a; Tandon, et al. 2013) or alternatively, collagen-specific antibodies may 

have been induced due to the release of collagen from damaged valves during the 

inflammation associated with carditis and a breakdown of immune tolerance (Tandon, et al. 

2013). BALB/c and Swiss mice vaccinated with the M3 strain or cell wall fragments of GAS 

produced IgG that cross-reacted with endocardial basement membrane collagen (Ohanian, et 

al. 1969; Dinkla, et al. 2003b; Guilherme, et al. 2013a). Antibodies against collagen I have 

been reported in patients with ARF/RHD although no immunological cross-reactivity has 

been observed (Martins, et al. 2008). This absence of cross-reactivity raises the possibility of 

an alternative pathogenic pathway in ARF that produces an antibody-mediated response to 

collagen in the valve that does not rely on molecular mimicry. Currently, only cardiac myosin 

and M-protein (but not collagen) have been shown to induce valvulitis when injected into 

experimental animals (Quinn, et al. 2001; Galvin, et al. 2002). It is possible that the cross-
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reactive antibodies bind to the valvular endothelial surface and upregulate vascular cell 

adhesion molecules including VCAM-1 that leads to inflammation and leukocyte infiltration 

into the valves and myocardium (Galvin, et al. 2000; Roberts, et al. 2001). 

 

In ARF/RHD, there is strong evidence of the recognition of heart proteins by autoreactive T-

cells via molecular mimicry (Cunningham 2003; Fae, et al. 2006; Guilherme, et al. 2006; 

Carapetis, et al. 2016). The autoreactive T-cells infiltrate the valve and the myocardium, and 

form Aschoff nodules (Raizada, et al. 1983; Dale and Beachey 1987; Guilherme, et al. 1995; 

Guilherme, et al. 2001b; Carapetis, et al. 2016). In the current study, splenic T-cells from rats 

injected with WK-GGS and GGS Stg480 proliferated in response to GAS rM5. Conversely, 

anti-GAS T-cells also proliferated in response to GGS Stg480. Several animal studies have 

reported that the anti-GAS T-cells proliferate in response to GAS M-proteins and peptides 

(Lymbury, et al. 2003; Ellis, et al. 2005; Fae, et al. 2005; Guilherme, et al. 2007; Gorton, et 

al. 2009; Gorton, et al. 2016). However, the phenotype of T-cell involved in the ARF/RHD is 

a matter of dispute. There are controversial reports of increase of CD4+ and CD8+ T-cells 

during the course of development of carditis. Increase of CD8+ T-cells has been reported in 

few studies (Ganguly, et al. 1982; Lue, et al. 1983) whereas, many studies reported a 

comparative increase of CD4+ T-cells (Bhatia, et al. 1989; Morris, et al. 1993b; Narin, et al. 

1995; Guilherme, et al. 2001a; Roberts, et al. 2001; Ellis, et al. 2005; Toor and Vohra 2012). 

Among the CD4+ T-cells, Roberts, et al. (2001) identified more Th1 T-cells than Th2 cells 

(Roberts, et al. 2001). T-cells activated by streptococcal M-protein derived peptides and co-

stimulators secrete cytokines to stimulate activation and proliferation of antigen-specific T-

cell and B-cells (Abbas 2008). 

 

Our model of ARF/RHD valvulitis has provided new evidence for an IL-17A/IFN-γ signature 

in this disease and suggests that this may be an important pathway in RHD. In addition, high 

levels of M-protein specific IFN-γ and IL-17A in this study suggested that a Th1/Th17 

dominated immune response may drive heart pathology. Heart-infiltrating T-cells isolated 

from the heart valves of ARF/RHD patients have previously been shown to be predominantly 

IFN-γ-producing. IL-4 producing T-cells however, were demonstrated in the myocardium 

(Guilherme, et al. 2004; Fae, et al. 2006; Guilherme and Kalil 2007; Guilherme, et al. 2011a) 

but IL-4 was not a dominant cytokine in the rat model although seen at low concentrations. 
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Our data suggests that both GAS and GGS and their M-proteins induce high levels of IL-

17A. Th-17 cells and IL-17A were discovered only relatively recently (Bettelli, et al. 2006) 

but have become a very important immune mediators in extracellular bacterial infections and 

appear to play a pathological role in numerous autoimmune diseases where fibrosis is a 

thematic endpoint (Bilik, et al. 2016). A role for Th-17 cells and IL-17A has been reported 

previously in the context of murine GAS infections (Wang, et al. 2010; Dileepan, et al. 2016). 

In another study, high concentrations of IL-17 in the serum of Lewis rats and high expression 

of IL-17 in the mitral valves of rats and human patients were observed (Wen, et al. 2015). 

Elevated level of IL-17A has also been reported in ARF/RHD sera compared to healthy 

controls (Bilik, et al. 2016). IL-17 is important in recruiting neutrophils and macrophages to 

the site of infection (Ivanov, et al. 2006; Annunziato, et al. 2007) and is a relatively new 

finding in the development of autoimmune carditis. Although there is some previous indirect 

evidence for involvement of IL-17A and Th17 cells in the pathogenesis of ARF/RHD, no 

previous animal studies have reported a role for these cytokine and cellular mediators. Our 

findings suggest that the altered balance between Th1/Th2/Th17 cytokines may drive 

pathology in ARF/RHD. 

 

Our findings suggest that group G Streptococcus (GGS) and its M-protein has the potential to 

generate autoreactive antibodies and T-cells to group A Streptococcus. Most importantly, the 

GGS induced autoantibodies to host cardiac myosin and collagen I. Current hypotheses 

relating to the development of ARF/RHD suggest that multiple separate GAS infections are 

required for development of ARF/RHD (Cunningham 2014; Carapetis, et al. 2016). There is 

no evidence however that strains causing these repeat infections need to be of the same M-

type. Our results suggest that GGS may also contribute in this model of disease. This is 

particularly relevant in those regions of the world where ARF/RHD is endemic, and GAS is 

rarely recovered from the throat.  
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CHAPTER 6 

REPEAT EXPOSURE TO GROUP G STREPTOCOCCUS INDUCES CARDITIS IN 

LEWIS RAT AUTOIMMUNE VALVULITIS MODEL 

 

6.1 INTRODUCTION 

Experiments described in Chapter 5 of this thesis showed that antibody and T-cell responses 

were induced in Lewis rats following injection with whole-killed group G Streptococcus 

NS3396 (GGS) and GGS M-protein (Stg480). The inflammatory process of acute rheumatic 

fever (ARF) has structural and functional effects on the heart that can lead to acute 

inflammatory damage and ultimately to chronic rheumatic heart disease (RHD). 

Inflammation of myocardium and particularly the mitral valves are common findings in 

ARF/RHD (Roberts, et al. 2001). Inflammation and fibrotic changes may cause dilation of 

the mitral annulus (junction between the left atrium and left ventricle and insertion site for 

valve leaflets) and elongation of chordae tendinae, and papillary muscle resulting in mitral 

valve incompetence, mitral regurgitation and ultimately heart failure (Carapetis, et al. 2016). 

It is postulated that GAS M-protein-specific T-cells and B-cells are autoreactive against host 

antigens due to homology between streptococcal M-proteins and host tissue proteins 

(Guilherme, et al. 2011a). The auto-reactive antibodies and T-cells upregulate cell adhesion 

molecules on the valvular endothelium (Lehmann, et al. 1992; Roberts, et al. 2001) leading to 

inflammation, cellular infiltration and valve fibrosis and scarring (Quinn, et al. 1995; 

Guilherme, et al. 2000; Galvin, et al. 2002; Guilherme and Kalil 2002; Cunningham 2003; 

Ellis, et al. 2005; Fae, et al. 2006).  

  

The characteristic histological features of ARF/RHD include extensive inflammation of 

myocardium and valves with infiltration of T-cells, macrophages and neutrophils, fibroblasts 

accumulation and deposition of collagen fibres (Pahlman, et al. 2006). In addition, Aschoff 

bodies are granulomatous structures commonly present beneath the endocardium and contain 

Anitschkow cells, Aschoff cells and T-cells (Roberts, et al. 2001; Carapetis, et al. 2016). The 

myocardial Aschoff bodies are believed to be formed following injury of the interstitial non-

myogenic collagen fibres (Murphy 1952). Formation of exudative, granulomatous or fibrotic 

Aschoff bodies leads to dysfunction of myocardium and mitral valves (Cunningham 2012). 

Further inflammation leads to fibrinous vegetation (verrucae) of the leaflets and subsequent 

scarring, which might ultimately lead to valvular stenosis (Veasy and Tani 2005). The 
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myocardium may heal over time, there can be permanent damage to the mitral valves 

(Carapetis, et al. 2016). 

 

In ARF/RHD, the inflammation-driven pathological changes in the heart can be demonstrated 

using various imaging techniques (Cunningham 2012). Abnormalities in the conduction of 

electrical impulses through the heart are recorded with an electrocardiogram (ECG). 

Prolongation of the P-R interval in ECG  is used to demonstrate these heart  conduction 

anomalies (Cunningham 2012). Prolonged P-R interval denotes the delay in the electrical 

impulse conduction from sinoatrial node (SA node), to the ventricle and is also a minor Jones 

Clinical Criterion for the diagnosis of ARF/RHD (Gewitz, et al. 2015). Moreover, 

echocardiography (Echo) has considerably enhanced the clinical assessment and management 

of patients with ARF/RHD compared to simple auscultation (Gewitz, et al. 2015). Echo is 

now considered essential for large scale population screening, early detection of ARF/RHD, 

for serial follow up and for therapeutic procedural guidance (Abernethy, et al. 1994; Minich, 

et al. 1997; Figueroa, et al. 2001; Narula and Kaplan 2001; Vijayalakshmi, et al. 2008). 

Echocardiographic findings that feature in ARF/RHD include changes to mitral valvular 

morphology, especially valvular thickening and slow or impaired valvular leaflet movement 

(Jain and Mankad 2013; Wunderlich, et al. 2013). 

 

The relationship between group A Streptococcus and damage to the mitral valve and 

myocardium has been established by many clinical and animal model studies (Galvin, et al. 

2000; Quinn, et al. 2001; Lymbury, et al. 2003; Gorton, et al. 2009; Kirvan, et al. 2014; 

Bright, et al. 2016; Carapetis, et al. 2016; Gorton, et al. 2016). In this study, we report that the 

histological and functional changes observed in the heart of rats exposed to whole-killed 

GGS NS3396 and GGS M-protein Stg480 are indistinguishable to those exposed to whole-

killed GAS M5 and GAS M-protein rM5.  

 

6.1.1 Aims 

The overall Aim of the research presented in this chapter was to examine the effect of group 

G Streptococcus on the development of cardiac pathology in the Lewis rat model.  

 

The specific Aims are: 

1. To demonstrate the effect of whole-killed GGS NS3396 and GGS M-protein Stg480 

on heart tissue using histology. 
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2. To examine cardiac dysfunction and pathology by performing electrocardiography 

and echocardiography. 

 

6.2 MATERIALS AND METHODS 

Experimental design, animals, antigens and adjuvants and short and long term antigen 

injection schedules were as described in Chapter 5 (Section 5.2). Rats were culled according 

to the procedures described in Section 3.2.2.2 and heart samples collected as described in 

Section 3.2.2.3. Rat heart histological staining using haematoxylin and eosin (H&E) stain and 

Masson’s trichrome stain was performed as described in Section 3.2.5. Histological scoring 

for carditis was performed as described in Table 6.1.  

 

Table 6.1 Mitral valvulitis and myocarditis severity scores (H&E staining) 
 

Score Mitral valve Myocardium 

0 
No inflammatory cells associated with 

valves 

Diffuse, individual cells throughout 

tissue 

1 <5 isolated cells in/on valves 1-2 small foci 

2 >5 cells on valve surface only       >2 small foci 

3 Focal lesion in valve Large focal lesion 

4 >1 lesion Aschoff-type lesion 

 

Assessment of cardiac dysfunction and pathology by ECG and echo was as described in 

Section 3.2.6. 

 

6.2.1 Statistical analysis 

The normality of pooled histology, ECG and echo data was evaluated using GraphPad Prism 

7 statistical software. All data from experimental and control groups passed D'Agostino & 

Pearson omnibus normality tests and were therefore compared and tested using one-way 

analysis of variance (ANOVA) with Tukey’s post hoc multiple comparisons test. The results 

are reported as mean ± standard error (SEM), p≤0.05 was considered significant. 

 

6.3 RESULTS 

The results of histological examination and functional assessment of heart of rats injected 

with whole-killed and M-proteins of GAS and GGS are described in this chapter. 
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6.3.1 GGS NS3396 and GAS M5 and their respective M-proteins (GGS Stg480 and GAS 

rM5) cause carditis 

Previously studies demonstrated that both GAS rM5 protein and GAS strains induced 

inflammatory and other RHD-like symptoms in a rat model of valvulitis (Gorton, et al. 2009; 

Huang, et al. 2009; Xie, et al. 2010; Gorton, et al. 2016). To determine whether GGS NS3396 

could invoke similar pathology, rats were injected with whole-killed GGS NS3396 (WK-

GGS) or GGS M-protein (Stg480), and compared to whole-killed GAS M5 (WK-GAS) and 

GAS rM5-protein. Representative H&E stained heart section images are shown below 

(Figure 6.1) with individual images from all rats shown in Appendix 6. In all experiments, 

heart sections from all rats injected with WK-GGS, WK-GAS and M-protein of GGS and 

GAS, showed marked infiltration of mononuclear cells (MNCs) into myocardial and valvular 

tissues (Figure 6.1 and Appendix 6 Supplementary Figure 6.4B&6.4C, 6.4E&6.4F, 

6.5B&6.5C, 6.5E&6.5F, 6.6B&6.6C, 6.6E&6.6F, 6.8B&6.8C and 6.8E&6.8F). Variable 

degrees of verrucae and oedema were also observed into mitral valve leaflets. Inflammatory 

changes were observed in rats at both 60 and 240 days post primary injection with whole-

killed bacteria (Figure 6.1 A and Appendix 6 Supplementary Figure 6.4B&6.4C, 6.4E&6.4F, 

6.5B&6.5C and 6.5E&6.5F). Inflammatory changes were also observed in rats at both 35 and 

225 days post primary injection with GAS rM5 and GGS Stg480 (Figure 6.1 B and Appendix 

6 Supplementary Figure 6.6B&6.6C, 6.6E&6.6F, 6.8B&6.8C and 6.8E&6.8F). In contrast, 

the mitral valve and myocardium tissues of PBS injected control rats showed little or no 

evidence of inflammation (Figure 6.1 C&D and Appendix 6 Supplementary Figure 

6.4A&6.4D, 6.5A&6.5D, 6.6A&6.6D and 6.8A&6.8D). All rats injected with whole-killed 

bacteria or M-protein had variable degrees of MNC infiltration in the mitral valves (Figure 

6.1 E&G) and myocardium (Figure 6.1 F&H). Higher magnification (1000×) of 

inflammatory foci within the mitral valve and myocardium revealed the presence of scarcely 

distributed polymorphonuclear cells (Figure 6.1 I&J z). Cells similar in appearance to 

“Aschoff cells” (Figure 6.1 I&J x) and “Anitschkow cells” (Figure 6.1 I&J y) were also 

observed. Moreover, an interstitial focal myocarditis with granulomatous structures 

resembling “Aschoff nodule like” structures (Figure 6.1 J) were observed in rats injected with 

whole-killed bacteria or M-proteins of GGS and GAS. The combined mitral valvulitis and 

myocarditis (carditis) severity scores were significantly higher in rats injected with whole-

killed bacteria (Figure 6.1 A) and GAS and GGS M-proteins (Figure 6.1 B). 
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Figure 6.1 Histological changes in cardiac tissues are identical following exposure to either 
GGS or GAS. Carditis scores were determined in Lewis rats injected with WK-GGS (n=7-8) 
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and WK-GAS (n=7) (A) and M-proteins of GGS (n=5-6) and GAS (n=5-6) (B) compared to 
control rats (PBS injected, n=5-7). There was no evidence of inflammation in the mitral 
valves (C) and myocardium (D) observed in control rats. Inflammatory focal lesions (arrows, 
E&G), verrucae (arrows, G) and oedematous mitral valves in rats injected with whole-killed 
and M-protein of GGS and GAS. Rats injected with whole-killed bacteria or M-proteins had 
interstitial focal myocarditis with granulomatous structures evident (arrows, F&H). Scale bars 
as indicated, C&D: score 0, E&F: score 2, G-J: score 4, x: Aschoff like cells, y: Anitschow 
like cells, z: polymorphonuclear cell.  Error bars represent standard errors of the mean 
(SEM). Statistical difference by 1-way ANOVA with Tukey’s post hoc multiple comparison 
test; *p<0.0001. 
 

The M-protein injected short and long term experiments were repeated in full and showed 

similar inflammatory pathology; the results from experimental repeats are shown in 

Appendix 6, Supplementary Figure 6.1, 6.7 and 6.9. 

 

6.3.2 GGS and GAS promote deposition of collagen fibres in heart tissues 

Mitral valvular fibrosis leading to valvular stenosis and regurgitation is a key feature in the 

pathogenesis of ARF/RHD (Lis, et al. 1987). In the current study Masson’s trichrome 

staining was performed to demonstrate collagen fibre deposition in rat myocardium and 

mitral valve tissues. The distribution of collagen within the mitral leaflets of control rats 

injected with PBS was confined to discrete areas (Figure 6.2 C and Appendix 6 

Supplementary Figure 6.10A, 6.11A, 6.12A and 6.14A). Small amounts of collagen were also 

observed surrounding blood vessels throughout the myocardial tissues of control rats (Figure 

6.2 F and Appendix 6 Supplementary Figure 6.10D, 6.11D, 6.12D and 6.14D). In contrast, 

extensive deposition of collagen and thickening of mitral leaflets was observed in rats 

injected with WK-GAS (Figure 6.2 D and Appendix 6 Supplementary Figure 6.10B&6.11B) 

and WK-GGS (Figure 6.2 E and Appendix 6 Supplementary Figure 6.10C&6.11C). 

Moreover, the myocardium of whole-killed bacteria injected rats showed widespread 

collagen deposition in the areas of inflammation (Figure 6.2 G&H and Appendix 6 

Supplementary Figure 6.10E&6.10F and 6.11E&6.11F). Similar lesions were observed in the 

mitral valves and myocardium of rats injected with GGS Stg480 and GAS rM5 (Appendix 6 

Supplementary Figure 6.12B&6.12C, 6.12E&6.12F, 6.14B&6.14C and 6.14E&6.14F). The 

combined percentage of collagen deposition in mitral valve and myocardium was found to be 

significantly higher in rats injected with whole-killed bacteria (Figure 6.2 A) or M-proteins 

(Figure 6.2 B) of GAS and GGS. 
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Figure 6.2 Group G and A streptococci induce collagen deposition in the mitral valve and 
myocardium. Extensive collagen deposition (blue) was demonstrated in Lewis rats injected 
with WK-GGS (n=7-8) and WK-GAS (n=7) (A) and M-proteins of GGS (n=5-6) and GAS 
(n=5-6) (B) compared to PBS injected control rats (n=5-7). There was uniform distribution of 
collagen fibre in the mitral valve of control rats (C). Extensive deposition of collagen was 
observed in the mitral valves of rats injected with WK-GAS (D) and WK-GGS (E). In 
myocardium of control rats, scanty amounts of collagen were observed surrounding the blood 
vessels (F). Widespread deposition of collagen was observed in the myocardium of rats 
injected with WK-GAS (G) and WK-GGS (H). Collagen fibre is stained blue (indicated by 
arrows) in Masson's trichrome staining. Scale bars as indicated, asterisks (*) indicate 
inflammatory foci. Error bars represent standard errors of the mean (SEM). Statistical 
difference by 1-way ANOVA with Tukey’s post hoc multiple comparison test; *p<0.05, 
p**<0.001, ***p<0.0001. 
 

The M-protein injected short and long term experiments were repeated and similarly showed 

extensive deposition of collagen fibres in the mitral valves and myocardium; the results from 

experimental repeats are shown in Appendix 6 Supplementary Figure 6.2, 6.13 and 6.15. 
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6.3.3 Electrocardiographic changes are identical following exposure to GAS and GGS 

antigens 

Prolongation of the P-R interval on ECG reflects conduction abnormalities of the 

myocardium (Gewitz, et al. 2015). In the current study, P-R intervals were prolonged in rats 

injected with WK-GAS and WK-GGS at 60 days and 240 days after priming injections, as 

compared to PBS injected control rats (Figure 6.3 A). The rats injected with GAS rM5 and 

GGS Stg480 also revealed similar results at 35 days and 225 days after antigen priming 

(Figure 6.3 B). The ECG changes of GAS rM5 and GGS Stg480 injected rats were 

reproduced in repeat experiments (Appendix 6 Supplementary Figure 6.3). 

 

 
Figure 6.3 Electrocardiographic changes demonstrate functional impairment following 
exposure to GAS and GGS. Prolongation of P-R interval in rats injected with WK-GAS (n=7) 
and WK-GGS (n=7-8) was observed 60 days (A, short term exp.) and 240 days (A, long term 
exp.) after priming injections compared to the PBS injected control rats (n=6-7). Similar 
findings were recorded in M-protein of GAS (n=5-6) and GGS injected rats (n=5-6) at 35 
days (B, short term exp.) and 225 days (B, long term exp.) after priming, when compared to 
controls (n=5-6). Error bars represent standard errors of the mean (SEM). Statistical 
difference by 1-way ANOVA with Tukey’s post hoc multiple comparison test; *p<0.01, 
**p<0.001, ***p<0.0001. 
 

6.3.4 Group G Streptococcus induces echocardiographic changes similar to GAS 

Echocardiographic assessment helps in the clinical diagnosis and monitoring of patients with 

ARF/RHD (Carapetis, et al. 2016). In the current study, impairment of cardiac function was 

further demonstrated by echocardiography (echo). Echo scores were generated based on 

mitral valvular thickening and the presence of nodules on the valve leaflets. Using echo, we 

found uniform valvular structures in the control rats injected with PBS (Figure 6.4 B and 

Appendix 6 Supplementary Figure 6.16A&6.17A). In contrast, valvular thickening and 
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nodules were observed in rats injected with WK-GAS, WK-GGS, GAS rM5 and GGS Stg480 

(Figure 6.4 C-F and Appendix 6 Supplementary Figure 6.16B&6.16C and 6.17B&6.17C). 

The higher echo scores were observed in rats injected with WK-GAS, WK-GGS, GAS rM5 

and GGS Stg480 compared to PBS injected control rats (Figure 6.4 A).  

 

 
Figure 6.4 Echocardiographic changes demonstrate mitral valve pathology following 
exposure to GAS and GGS. Echocardiographic scores were determined based on mitral 
valvular thickening and the presence of valve nodules. The mitral valves of PBS treated 
animals (n=5-7) had a uniform valvular structure (B, score 0). Pathological changes were 
observed with nodules on the mitral valves indicated by arrows in panel C (score 1) and D 
(score 2). Fibrotic thickening of the valve leaflet was observed as white opaque areas as 
indicated by arrows in panel E (score 1) and F (score 2). (A) Higher scores on echo were 
observed in the rats injected with WK-GAS (n=7), WK-GGS (n=8), GAS rM5 (n=5) and 
GGS Stg480 (n=5) compared to PBS treated controls (n=5-7). Arrows indicate mitral leaflets, 
MV: mitral valves, LA: left atrium, RA: right atrium, LV: left ventricle, RV: right ventricle. 
Error bars represent standard errors of the mean (SEM). Statistical difference by 1-way 
ANOVA with Tukey’s post hoc multiple comparison test; *p<0.0001. 
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6.4 DISCUSSION 

Classically, throat infection by GAS has been considered a prerequisite for the development 

of ARF/RHD. However, in ARF/RHD endemic areas, pharyngeal carriage of GAS in these 

populations is relatively low and GGS can be recovered from this niche more frequently 

(Haidan, et al. 2000; McDonald, et al. 2006; O'Sullivan, et al. 2017). Based on these 

epidemiological observations it has been postulated that GAS throat infection may not 

necessarily be the only trigger for the disease sequelae (McDonald, et al. 2004; McDonald, et 

al. 2006). Here for the first time we provide in vivo evidence that the injection of rats with 

either a GGS M-protein or a strain of GGS circumstantially associated with ARF/RHD 

(Towers, et al. 2004; Davies, et al. 2005), induce valvulitis and cardiac inflammation similar 

to GAS and GAS M-protein.  The current study only focussed on the pathological changes 

that occur in the heart tissues. The study design did not include demonstration of changes in 

other organs e.g. kidney, joints etc as occurs in ARF. The changes observed in this model 

(prolonged P-R intervals, cardiac inflammation and presence of Aschoff nodules) when 

Stg480 or GGS were used as the injecting antigen are all consistent with features of 

ARF/RHD in humans. 

 

Inflammation of the heart with mitral valvular fibrosis is a hallmark of patients with 

ARF/RHD (Roberts, et al. 2001). Inflammation of the mitral valve and myocardium occurs in 

>50% of patients (Veasy, et al. 1987; Veasy, et al. 1994; Roberts, et al. 2001; Vijayalakshmi, 

et al. 2008). In this study, rats injected with Stg480, a M-protein only found in specific GGS 

isolates, or those injected with whole-killed GGS NS3396 showed evidence of mitral 

valvulitis and myocarditis. These findings were consistent with those following injection of 

GAS or recombinant M5 protein. GAS isolates of M-type 5 are classic “rheumatogenic” type 

strains, are associated with ARF/RHD and have been previously shown to induce 

autoimmune valvulitis in this rat model (Quinn, et al. 2001; Lymbury, et al. 2003; Gorton, et 

al. 2009; Huang, et al. 2009; Xie, et al. 2010; Kirvan, et al. 2014). Infiltrating cells in both the 

mitral valve and myocardium were predominantly mononuclear cells. However, macrophages 

similar to the ‘Aschoff giant cell’ and polymorphonuclear cells were also observed in focal 

areas of inflammation. In support of these observations, Gorton, et al. (2009) suggested that 

CD4+ T-cells and CD68 macrophages infiltrating the mitral valves and myocardium mediate 

valvular and myocardial tissue damage in GAS rM5-protein injected rats. Quinn, et al. (2001) 

reported the induction of valvulitis and focal myocarditis in Lewis rats following injection 

with GAS rM6 protein which were histologically identical to human RHD lesions. 
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Guilherme, et al. (1995) detected a high proportion of CD4+ T-cells in valvular lesions, and 

this was further confirmed by studies carried out on heart valves from patients by Roberts, et 

al. (2001). Fraser, et al. (1995) observed aggregated macrophages in the mitral valves during 

the early stages of inflammation, followed by lymphocytic infiltration and neovascularisation 

in 15 patients. However, the effect of non-specific stressor(s) related to the dose of 

protein/bacteria injection in cardiac pathology and dysfunction were not evaluated in this 

study. 

 

In patients with ARF/RHD, Aschoff nodules composed of Anitschkow cells and Aschoff 

cells have been described in cardiac tissue (Fraser, et al. 1995). In this study, all rats treated 

with either M-protein or whole-killed bacteria developed myocarditis with granulomatous 

structures with an “Aschoff nodule like” appearance. Cells similar to “Anitschkow cells” and 

“Aschoff cells” were also observed in both myocardial and valvular tissues. Similar lesions 

were observed by Quinn, et al. (2001) in GAS rM6 treated rats and Lymbury, et al. (2003) in 

rats injected with pooled conserved region peptides of GAS rM5 protein. In addition, Kirvan, 

et al. (2014) identified cardiopathogenic epitopes of M5-protein in the Lewis rat and 

passively transferred valvulitis with peptide specific T-cell lines. The inflammatory responses 

have structural and functional effects on various parts of the heart valves that may lead to 

acute inflammatory damage and ultimately to chronic fibrosis. This includes dilation of valve 

annuli; rings that surround the valve and that help close leaflets during systole, and 

elongation of chordae tendinae, which connect leaflets of the mitral and tricuspid valves to 

the left and right ventricles, respectively. Together these changes result in inadequate 

coaptation of the valve leaflets, which in turn causes regurgitation (Veasy and Tani 2005). 

Further inflammation leads to fibrinous vegetations along the edges of the leaflets and 

scarring, which might ultimately lead to valvular stenosis, in which the valve becomes 

narrowed, stationary and is unable to fully open (Carapetis, et al. 2016). 

 

Mitral valve leaflets are composed mostly of collagen fibres. Collagen tissues intermixed 

with elastic fibres form the extracellular matrix of the valvular apparatus covered by a layer 

of endothelial cells (McCarthy, et al. 2010). Collagen is a major component of chordae 

tendinae and the fibrous skeleton which anchors and supports the valves. In normal 

myocardium, collagen is found beneath the endothelial layer, around blood vessels, in the 

basement membrane and also forming narrow strata between muscle fibres, thus providing 

strength to the heart against mechanical stress (Iyer, et al. 2007). Fibrosis of heart tissues is 
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the hallmark of structural remodelling in ARF/RHD, resulting from chronic inflammatory 

rheumatic processes. Fibrosis results from extensive deposition of collagen typically induced 

by mechanical overload or tissue damage (Towbin 2007). In the current study, extensive 

deposition of collagen was observed in the mitral valve leaflets and myocardial tissues of rats 

injected with either bacteria or M-proteins. The fibrotic lesions were mostly observed in the 

areas of inflammation. Lis, et al. (1987) reported approximately a three-fold increase in the 

total amount of collagen fibres in the heart valves of ARF/RHD patients. Excessive collagen 

deposition leads to thickening of the mitral valve leaflets and fusion of commissures and 

chordae tendinae and ultimately to mitral stenosis (Banerjee, et al. 2014). Mitral stenosis 

induces mitral regurgitation, with increase in compensatory dilatation of ventricle. 

Progressive ventricular dilatation causes increase in wall stress with tissue damage and 

contractile dysfunction and eventually heart failure (Marciniak, et al. 2007; Gaasch and 

Meyer 2008; Carapetis, et al. 2016). 

 

The inflammatory cascade in ARF has structural and functional effects on the heart that lead 

to cardiac dysfunction. The immunopathology of a heart can be investigated by different 

imaging tools. An electrocardiogram (ECG) shows whether the heart is in sinus rhythm or 

atrial fibrillation. A typical ECG trace consists of waveform components which indicate 

electrical events during one heartbeat. These waveforms are labelled P, Q, R, S, T and U. P 

wave is the first short upward movement of an ECG trace. It indicates that the atria are 

contracting, pumping blood into the ventricles. The QRS complex, normally begins with a 

downward deflection, Q; a larger upwards deflection, a peak R; and then a downwards S 

wave. The QRS complex represents ventricular depolarisation and contraction. The P-R 

interval indicates the transit time for the electrical signal to travel from the sinoatrial (SA) 

node to the ventricles. In the current study, ECG was used to demonstrate cardiac dysfunction 

in rats by measuring P-R intervals. Although the rapid heart rate of the rat made it difficult to 

select typical P and R points, objective and reproducible measurements was achieved using 

the peaks of the P wave and R wave (Farraj, et al. 2011). ECG data based on peak P and R 

values have been published in an earlier study on Lewis rats (Gorton, et al. 2016). In the 

current study, all rats injected with whole-killed or M-protein of GGS demonstrated 

prolongation of the P-R interval compared to those injected with PBS, suggesting a delay in 

ventricular depolarisation. The prolongation of P-R intervals observed were consistent with 

Gorton, et al. (2016) who reported in Lewis rats following injections with GAS rM5-protein 

and Bestetti, et al. (1987) who showed similar findings in rats following infection with 
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Trypanosoma cruzi. In humans, prolongation of the P-R interval is observed in 30-35% 

patients with ARF/RHD (Homer and Shulman 1991; Cunningham 2012). The findings of this 

study support the current use of ECG as a clinical diagnostic tool in ARF/RHD (Gewitz, et al. 

2015). 

 

The thickening of mitral valves with limited movement and excessive leaflet tip motion, 

thickening and fusion of chordae, lack of coaptation, compensatory dilatation of the left 

atrium and ventricle and mitral regurgitation are salient findings of patients with RHD 

(Carapetis, et al. 2016). A two-dimensional (2-D) echo is commonly used to detect these 

abnormalities (Chauvaud, et al. 2001; Carabello 2005; Jain and Mankad 2013; Wunderlich, et 

al. 2013). Assessment of cardiac pathology and dysfunction in rats using echo has been 

performed by many researchers using different echo methods and diverse anaesthesia such as 

ketamine-xylazine (Saleem, et al. 2017; Watanabe, et al. 2017), sevoflurane (Qiu, et al. 

2017), chloral hydrate (Qiu, et al. 2017). Common methods of echo performed in rats are 

transthoracic echo (Saleem, et al. 2017; Watanabe, et al. 2017; Wu, et al. 2017) and non-

invasive surface echo (Qiu, et al. 2017), although non-invasive echo is most suited to assess 

left ventricular morphology and function in murine models of cardiac disease (Gardin, et al. 

1995; Tanaka, et al. 1996; Pacher, et al. 2008). In the current study, 2-D echo was able to 

detect mitral valvular thickening and the presence of nodules on mitral leaflets in rats injected 

with bacteria or M-protein using. To our knowledge, this is the first echo assessment of 

valvular pathology in the RAV model. Functional studies of rheumatic rat hearts also 

reported echo findings similar to human RHD patients (Zachary, et al. 2002). Future studies 

could extend the current echo measurements to include the thickness of mitral valve leaflets 

and the heart wall, internal dimensions of the left atrium and ventricle during systole and 

diastole and assessment of mitral regurgitation (thereby assessment of total cardiac function) 

for better explanation of the echocardiographic evaluation in this model (Ono, et al. 2002; 

Tada, et al. 2010).  

 
The histological and imaging data presented in this chapter suggest that group G 

Streptococcus has the potential to induce autoimmune mediated carditis in the Lewis rat 

model of RHD. The results further support the findings of Chapter 5, in that carditis 

development is mediated by autoimmune responses. Further studies could include 

oropharyngeal infection studies to more closely mimic the accepted pathogenesis of 

ARF/RHD following streptococcal pharyngitis. Advance studies are recommended to identify 
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GGS clinical isolates and to demonstrate whether GGS and GAS together contribute to the 

disease clinically. Our experimental observations suggest that repetitive infections with group 

G Streptococcus may lead to ARF/RHD. 
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CHAPTER 7 

GROUP G STREPTOCOCCUS CAN INITIATE AND EXACERBATE 

AUTOIMMUNE CARDITIS 

 
7.1 INTRODUCTION 

There is a strong epidemiological link between infections with group A Streptococcus (GAS) 

pharyngitis and ARF and RHD (McCarty 1956; Carapetis, et al. 2016) and it is generally 

accepted that multiple separate infections with GAS are required to trigger ARF and drive 

disease progression in RHD (Cunningham 2014). However, data is lacking as to whether 

these repeat infections need to be with the same strain of GAS that initiated ARF or whether 

subsequent infections with streptococci with similar M-types are sufficient to exacerbate 

disease. The results of experiments described in Chapter 5 and Chapter 6 of this thesis 

revealed that whole-killed GAS and GGS and their respective M-proteins can independently 

trigger autoimmune carditis in our rat model with features that are similar to those of patients 

with ARF/RHD (Fraser, et al. 1995; Cunningham 2003; Fae, et al. 2006; Guilherme, et al. 

2006; Wen, et al. 2015; Bilik, et al. 2016; Carapetis, et al. 2016). As discussed previously, 

GGS and GAS share many features including sequence similarity in their respective M-

proteins, their abilities to colonise similar tissues and the spectrum of diseases caused (Bisno, 

et al. 1987; Jones and Fischetti 1987; Collins, et al. 1992).  The involvement of GGS in the 

initiation stage of disease versus the exacerbation of GAS–triggered autoimmune processes 

has not been established. Whether GAS and GGS can combine to cause carditis has not been 

studied previously. 

 

Based on our previous data we hypothesised that because of similarities in the GAS and GGS 

M-proteins, GGS and GAS M-proteins may be able to substitute for each other in driving 

autoimmune carditis. The overall objective of the work described in chapter 7 is to model the 

potential role of GGS as an initiator and/or an exacerbator of autoimmune-mediated carditis 

in Lewis rats using heterologous prime/boost antigen injection regimes. This was done by 

priming with GGS Stg480 followed by boosting with GAS rM5 (initiation) and by priming 

with GAS rM5 and boosting with GGS Stg480 (exacerbation). 

 

7.1.1 Aims 

The specific Aims of this study were: 
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1. To determine antibody responses to GAS and GGS M-proteins and cross-reactivity to 

cardiac myosin in rats injected with heterologous antigens. 

2. To measure memory T-cell responses in rats injected with heterologous antigens. 

3. To examine GAS and GGS M-protein induced heart histological changes. 

4. To demonstrate cardiac dysfunction in rats injected with heterologous antigens by 

performing electrocardiography.  

 

7.2 MATERIALS AND METHODS 

7.2.1 Experimental animals 

Female Lewis rats bred at James Cook University, Townsville, Australia were used for 

experiments. The details of these rats are described in Section 3.1.2. 

 

7.2.2 Antigens and adjuvants 

Recombinant GAS M5 (rM5)-protein and GGS Stg480 protein were prepared for injections 

as described in Section 3.2.1. Control rats were injected with sterile PBS, pH 7.4 (Appendix 

1). Freund’s complete and incomplete adjuvants (CFA and IFA) and B. pertussis toxin as 

described in Section 3.1.1.3 were used to prepare antigen-adjuvant emulsions (Section 

3.2.3.1). The injection protocols described in Section 3.2.3.2 was followed.  

 

7.2.3 Experimental design and immunisation 

Prime and boost antigen injections in rats were performed under anaesthesia as described in 

Section 3.2.2.1. The priming s.c. injection was performed with 0.5 mg/100 µl of GAS rM5 or 

GGS Stg480 emulsified in CFA in the hock as described previously (Gorton, et al. 2010). 

Rats were boosted with 0.5 mg/100 µl of heterologous antigens i.e. GAS rM5 protein primed 

rats were boosted with GGS Stg480 in IFA s.c. in the flank and GGS Stg480 primed rats 

were boosted with GAS rM5 emulsified in IFA. Control rats were injected with PBS in CFA 

(prime) or IFA (boost). At day 1 and day 3 after the priming injection, each rat was i.p 

injected with 0.3 µg B. pertussis toxin in 200 µl PBS. The schedule for injections is shown in 

Table 7.1. For short term experiments, rats were boosted with the heterologous antigen at 

days 7, 14 and 21 after the priming injection. For long term experiments, an additional 

heterologous boost injection was given at day 150. The short term experimental rats were 

culled after 35 days whereas the rats under long term experiments were culled after 180 days. 
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Table 7.1 Injection schedule 
 
Experimental 

design 

Group 

size (n=) 
Prime Boosts 

Experiment 

endpoint 

Short term 

experiment 

5 

4 

5 

GAS rM5  

GGS Stg480 

PBS 

GGS Stg480 on day 7, 14, 21 

GAS rM5 on day 7, 14, 21 

PBS on day 7, 14, 21 

35 days 

Long term 

experiment 

5 

5 

5 

GAS rM5  

GGS Stg480 

PBS 

GGS Stg480 on day 7, 14, 21, 150 

GAS rM5 on day 7, 14, 21, 150 

PBS on day 7, 14, 21, 150 

180 days 

GAS: group A Streptococcus, GGS: group G Streptococcus, PBS: phosphate buffer saline. 

 

7.2.4 Culling of rats and collection of samples 

At the end of each experiment, rats were culled as described in Section 3.2.2.2. Peripheral 

blood, heart and spleens were retrieved as described in Section 3.2.2.3. 

 

7.2.5 Serum antibody detection by ELISA 

The IgG reactivity of sera from rats was evaluated against surface antigens of whole-killed 

GAS and whole-killed GGS, GAS rM5 and GGS Stg480 using indirect ELISAs. The IgG 

cross-reactivity to porcine cardiac myosin was also evaluated. The ELISA procedure was as 

described in Section 3.2.4.2. 

 

7.2.6 Lymphocyte proliferation assay 

Rat spleen mononuclear cells rats were prepared as described in Section 3.2.2.3. The 

proliferative response of splenocytes in the presence of GAS rM5 or GGS Stg480 was 

measured by lymphocyte proliferation assay as described in Section 3.2.4.1. Plates were 

harvested after 96 h at 37°C in 5% CO2 with [3H]thymidine added for the last 20 h of culture. 

 

7.2.7 Histological examination of rat heart sections 

Formalin-fixed rat hearts were processed, embedded in paraffin, sectioned and stained with 

H&E and Masson’s trichrome stain using standard procedures as described in Section 3.2.5. 

The heart tissue sections were examined for evidence of inflammation as described in Section 

3.2.5.2 and the severity of inflammation was scored for analysis as described in Table 3.2. 
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The extent of collagen fibre deposition in the mitral valve and myocardium of rats was 

determined as described in Section 3.2.5.3. 

 

7.2.8 Electrocardiographic examination of rats 

Assessment of cardiac dysfunction of rats was performed under anaesthesia (Section 3.2.2.1) 

by ECG using the procedure described in Section 3.2.6.1. 

 

7.2.9 Statistical analysis 

The data distribution of endpoint titres, OD values, stimulation indices, carditis severity 

scores, percentage of collagen deposition and P-R intervals in ECG was evaluated using 

GraphPad Prism 7 statistical software. All data from experimental and control rats passed 

D'Agostino & Pearson omnibus normality tests and therefore were tested using one-way 

analysis of variance (ANOVA) with Tukey’s post hoc multiple comparisons test. The results 

are reported as mean ± standard error (SEM), p≤0.05 was considered significant. 

 

7.3 RESULTS 

The results of short term and long experiments using heterologous antigen injection regimes 

are presented in this chapter. 

 

7.3.1 Antibodies produced following injection with heterologous M-proteins recognise 

GAS and GGS antigens 

In this study, we analysed rat sera to detect IgG response to whole-killed and M-proteins of 

GAS and GGS (Figure 7.1). In both short term (35 days) and long term (180 days) 

experiments, significantly higher IgG responses to surface antigens of whole-killed GAS 

(Figure 7.1 A) and whole-killed GGS (Figure 7.1 B) were observed in the sera from rats 

primed with GAS rM5 and boosted with GGS Stg480. Similarly, anti-WK-GAS (Figure 7.1 

A) and anti-WK-GGS (Figure 7.1 B) IgG responses were also observed in the rats primed 

with GGS Stg480 and boosted with GAS rM5. Regardless of the prime-boost combinations, 

the sera IgG from all rats injected with GAS and GGS M-proteins reacted with GAS rM5 

(Figure 7.1 C) and GGS Stg480 (Figure 7.1 D) compared to PBS injected control rats. 
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Figure 7.1 Serum IgG reactivity to whole-killed and M-proteins of GAS and GGS. Serum 
IgG from rats primed with GAS rM5 and boosted with GGS Stg480 (i.e. GAS rM5 → GGS 
Stg480, n=5) reacted with whole-killed GAS as coating antigen (A). Similarly, serum IgG 
reactivity was detected from rats primed with GGS Stg480 and boosted with GAS rM5 (i.e. 
GGS Stg480 → GAS rM5, n=4-5) (A). IgG reactivity was also observed against surface 
antigens of whole-killed GGS (B). The serum IgG response to GAS rM5 (C) and GGS 
Stg480 (D) was significantly higher in the rats primed with GAS rM5 and boosted with GGS 
Stg480 or alternatively, primed with GGS Stg480 and boosted with GAS rM5 compared to 
PBS injected control rats (n=5). Error bars represent standard errors of the mean (SEM). 
Statistical differences were determined using one-way ANOVA with Tukey’s post hoc 
multiple comparisons test; *p<0.05, **p<0.001, ***p<0.0001. 
 

7.3.2 Antibodies produced following injection with heterologous M-proteins recognise 

cardiac myosin 

Serum IgG from rats primed with GAS rM5, and boosted with GGS Stg480 analysed after 35 

or 180 days (short versus long term), reacted with cardiac myosin in ELISA (Figure 7.2). 

Similarly, sera from rats primed with GGS Stg480 and boosted with GAS rM5 also reacted 
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with cardiac myosin. Sera from PBS injected control rats showed significantly less reactivity 

with cardiac myosin compared to all prime-boost antigen combinations. 

 

 
Figure 7.2 Antibodies induced following exposure to GAS and GGS M-protein reacted with 
cardiac myosin in ELISA. Sera from rats primed with GAS rM5 and boosted with GGS 
Stg480 (GAS rM5 → GGS Stg480, n=5) or alternatively, primed with GGS Stg480 and 
boosted with GAS rM5 (GGS Stg480 → GAS rM5, n=4-5) showed significantly higher 
absorbance values (A414-492nm) against cardiac myosin compared to PBS injected control rats 
(n=5). Error bars represent standard errors of the mean (SEM). Statistical differences were 
determined using one-way ANOVA with Tukey’s post hoc multiple comparisons test; 
*p<0.05, **p<0.01, ***p<0.001. 
 

7.3.3 T-cells proliferate in response to heterologous M-proteins 

Splenic T-cells from rats primed with GAS rM5 and boosted with GGS Stg480 proliferated in 

vitro when stimulated with both GAS rM5 and GGS Stg480 proteins (Figure 7.3 A&B). This 

was observed following both short term and long term heterologous prime-boost regimes. 

Similarly, splenocytes from rats primed with GGS Stg480 and boosted with GAS rM5 

proliferated when either GAS rM5 or GGS Stg480 were used as the stimulating antigen 

(Figure 7.3 A&B). Regardless of the prime-boost combination, splenocytes from all rats 

injected with GAS and GGS M-proteins proliferated significantly upon incubation with GAS 

rM5 (Figure 7.3 A) and GGS Stg480 (Figure 7.3 B) compared to PBS injected control rats.  
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Figure 7.3 Splenic T-cells from GAS and GGS M-protein injected rats proliferated in 
response to GAS and GGS M-proteins. Splenic T-cells from rats primed with GAS rM5 and 
boosted with GGS Stg480 (GAS rM5 → GGS Stg480, n=5) or alternatively, primed with 
GGS Stg480 and boosted with GAS rM5 (GGS Stg480 → GAS rM5, n=4-5) showed 
significantly higher proliferative responses to GAS rM5 (A) and GGS Stg480 (B) than PBS 
injected control rats (n=5). Stimulation index was calculated as average counts per minute 
(CPM) of test wells/average CPM of unstimulated control wells. Error bars represent 
standard errors of the mean (SEM). Statistical differences were determined using one-way 
ANOVA with Tukey’s post hoc multiple comparisons test; *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001.   
 

7.3.4 Heterologous GAS and GGS M-protein injections induce carditis 

To determine whether combined GAS and GGS M-proteins influence mitral valve and 

myocardial inflammation, heart sections of rats primed with GAS rM5 and boosted with GGS 

Stg480 or primed with GGS Stg480 and boosted with GAS rM5 were examined after H&E 

staining. Carditis severity scores were significantly higher in rats injected with GAS and GGS 

M-proteins regardless of the prime-boost combinations compared to control rats injected with 

PBS (Figure 7.4 A). Similar results were observed following both short and long term prime-

boost antigen injection regimes. Histological staining of heart sections from PBS injected rats 

revealed uniform mitral valvular structure without the presence of inflammatory cells (Figure 

7.4 B and Appendix 7 Supplementary Figure 7.1A&7.2A). Some individual inflammatory 

cells were observed near blood vessels in the myocardium of control rats (Figure 7.4 C and 

Appendix 7 Supplementary Figure 7.1D&7.2D). In contrast, heart sections from rats primed 

with GAS rM5 and boosted with GGS Stg480 showed extensive cellular infiltrates in the 

mitral valves (Figure 7.4 D and Appendix 7 Supplementary Figure 7.1B&7.2B). Moreover, 

“Aschoff nodule like” lesions were observed in the myocardium tissues (Figure 7.4 E and 

Appendix 7 Supplementary Figure 7.1E&7.2E). Rats primed with GGS Stg480 and boosted 
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with GAS rM5 had similar pathological lesions in the mitral valves (Figure 7.4 F and 

Appendix 7 Supplementary Figure 7.1C&7.2C) and myocardium (Figure 7.4 G and Appendix 

7 Supplementary Figure 7.1F&7.2F). Cells similar in appearance to “Aschoff cells” (Figure 

7.4 E&G x) and ‘Anitschkow cells” (Figure 7.4 E&G y) as well as polymorphonuclear cells 

(Figure 7.4 E z) were observed in the myocardium of rats injected with GAS rM5 followed 

by GGS Stg480 and vice versa.  

 
Figure 7.4 GAS and GGS M-proteins induce mitral valvulitis and myocariditis. (A) Higher 
carditis scores were found in rats primed with GAS rM5 and boosted with GGS Stg480 (GAS 
rM5 → GGS Stg480, n=5) and primed with GGS Stg480 and boosted with GAS rM5 (GGS 
Stg480 → GAS rM5, n=4-5) compared to PBS injected control rats (n=5). (B) The mitral 
valve from PBS injected rats showed no evidence of inflammation. (C) The myocardium 
from the control rats showed isolated inflammatory cells surrounding blood vessels. 
Extensive infiltration of inflammatory cells was observed in mitral leaflets of rats primed 
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with GAS rM5 and boosted with GGS Stg480 (D; rM5/Stg) and primed with GGS Stg480 
and boosted with GAS rM5 (F; Stg/rM5). Interstitial focal inflammation with granulomatous 
structures similar to Aschoff nodules were observed in the myocardium of rats primed with 
GAS rM5 and boosted with GGS Stg480 (E; rM5/Stg) and primed with GGS Stg480 and 
boosted with GAS rM5 (G; Stg/rM5). Scale bars as indicated, x: Aschoff like cells, y: 
Anitschow like cells, z: polymorphonuclear cell. Error bars represent standard errors of the 
mean (SEM). Statistical differences were determined using one-way ANOVA with Tukey’s 
post hoc multiple comparison test; *p<0.0001. 
 

7.3.5 Heterologous GAS and GGS M-protein injections induce collagen deposition in 

heart tissues 

Rat heart sections were stained with Masson’s trichrome stain to determine the extent of 

collagen deposition in the mitral valves and myocardium. The percentage of tissue (combined 

valve and myocardium) staining positive for collagen was significantly higher in rats injected 

with GAS and GGS M-proteins, regardless of the prime-boost combination, compared to 

control rats injected with PBS (Figure 7.5 A). Results were similar at 35 days (short term) 

and 180 days (long term). Examination of heart sections from rats injected with PBS revealed 

uniform deposition of collagen fibres throughout the valvular leaflets (Figure 7.5 B and 

Appendix 7 Supplementary Figure 7.3A&7.4A). Collagen staining in the myocardium 

sections of control rats was restricted to surrounding blood vessels (Figure 7.5 C and 

Appendix 7 Supplementary Figure 7.3D&7.4D). In contrast, heart sections from rats primed 

with GAS rM5 and boosted with GGS Stg480 showed extensive collagen staining throughout 

the mitral valves (Figure 7.5 D and Appendix 7 Supplementary Figure 7.3B&7.4B) and 

myocardium (Figure 7.5 E and Appendix 7 Supplementary Figure 7.3E&7.4E). Heart 

sections from rats primed with GGS Stg480 and boosted with GAS rM5 showed similar 

collagen staining in the mitral valves (Figure 7.5 F and Appendix 7 Supplementary Figure 

7.3C&7.4C) and myocardium (Figure 7.5 G and Appendix 7 Supplementary Figure 

7.3F&7.4F).  
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Figure 7.5 GAS and GGS M-proteins induce collagen deposition in the heart. Extensive 
collagen deposition was demonstrated in Lewis rats primed with GAS rM5 and boosted with 
GGS Stg480 (GAS rM5 → GGS Stg480, n=5) and alternatively, primed with GGS Stg480 
and boosted with GAS rM5 (GGS Stg480 → GAS rM5, n=4-5) (A). The PBS injected 
control rats (n=5) demonstrated uniformly distributed collagen in the mitral valves (B) and 
surrounding the blood vessels in the myocardium (C). Extensive deposition of collagen fibres 
was also observed in the mitral valves of rats primed with GAS rM5 and boosted with GGS 
Stg480 (D; rM5/Stg) and primed with GGS Stg480 and boosted with GAS rM5 (F; Stg/rM5). 
The myocardium of the rats also showed focal fibrosis with collagen deposition (E, G; 
Stg/rM5).  Collagen is stained blue (indicated by arrows) in Masson's trichrome staining. 
Scale bars as indicated, asterisk (*) indicated infiltration of inflammatory cells. Error bars 
represent standard errors of the mean (SEM). Statistical differences were determine using by 
one-way ANOVA with Tukey’s post hoc multiple comparison test; *p<0.001, **p<0.0001. 
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7.3.6 Heterologous GAS and GGS M-protein injections induce prolongation of P-R 

interval in ECG 

ECG was performed on rats to detect abnormalities in the electrical conduction of heart tissue 

following antigen injection. Regardless of the prime-boost combinations and for both short 

term and long term injection regimes, significantly prolonged P-R intervals were recorded in 

rats injected with GAS and GGS M-proteins compared to control rats injected with PBS 

(Figure 7.6).  

 
Figure 7.6 Electrocardiographic assessment demonstrated cardiac dysfunction in rats 
following heterologous injections with GAS and GGS M-proteins. Prolongation of P-R 
interval was observed in rats primed with GAS rM5 and boosted with GGS Stg480 (GAS 
rM5 → GGS Stg480, n=5) or alternatively, primed with GGS Stg480 and boosted with GAS 
rM5 (GGS Stg480 → GAS rM5, n=4-5), compared to PBS injected control rats (n=5). 
Similar results were observed at both 35 days (short term exp.) and 180 days (long term exp.) 
after the priming injection. Error bars represent standard errors of the mean (SEM). Statistical 
differences were determined using one-way ANOVA with Tukey’s post hoc multiple 
comparison test; *p<0.01, **p<0.0001.  
 

7.4 DISCUSSION 

It is now widely accepted that group A Streptococcus (GAS) infection is the causative agent 

of ARF/RHD (Beattie 1907; Carapetis, et al. 2016). Accumulating anecdotal and largely 

epidemiological evidence from Indian and Australian communities (Carapetis and Currie 

1997; Haidan, et al. 2000; Steer, et al. 2002; McDonald, et al. 2004; Brahmadathan, et al. 

2005; McDonald, et al. 2006) has questioned this dogma and provided the rationale for the 

work presented in this thesis. Chapter 5 and Chapter 6 of this thesis, showed that group G 

Streptococcus (GGS) alone can stimulate the production of autoantibodies and autoreactive 

T-cells that potentially damage rat heart tissues. As these two organisms are often found 

together, in similar niches in the body and are known to share genetic material (Bisno, et al. 

1996; Sriprakash and Hartas 1996; Davies, et al. 2005), a third possibility also exists: that 
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GAS and GGS may act together in triggering and driving ARF/RHD. Therefore, we 

hypothesised that immune responses initiated against GAS M5 protein may be boosted by 

GGS strain with primary sequence homology and/or structural homology in its M-protein and 

vice versa.  B- and T-cell epitopes shared by heterologous antigens may mean that related M-

proteins could potentially act as either initiators or exacerbators of autoreactive immune 

responses. 

 

In this chapter we modelled two different scenarios; (1) whether GGS can initiate disease 

followed by GAS-driven exacerbation or, (2) whether GGS can exacerbate GAS-initiated 

disease. The results presented in this chapter provide evidence that the heterologous GAS and 

GGS antigen combinations are equally as effective as homologous antigens at inducing heart 

pathology, heart conduction and valve abnormalities and potentially autoreactive immune 

responses. Irrespective of the prime-boost antigen combinations, the serum IgG from rats 

injected with GAS and GGS M-proteins reacted with surface antigens and M-proteins of 

GAS and GGS. The splenic T-cells from rats also proliferated in response to heterologous 

GAS and GGS M-proteins. Cardiac myosin reactivity was also demonstrated in sera from 

animals following both heterologous prime-boost antigen combinations. The increase of anti-

cardiac myosin antibody levels in PBS injected control rats may be related to adjuvant 

exposure in aged rats. 

 

As discussed previously in Chapters 5&6, the similarities we observed in the immune 

responses and heart pathology of GAS and GGS M-protein injected rats is likely to be due to 

homology between GAS and GGS M-proteins. Numerous studies have identified extensive 

sequence and structural homology between GGS M-proteins and GAS M-proteins (Moody, et 

al. 1965; Maxted and Potter 1967; Scott, et al. 1985; Bisno, et al. 1987; Jones and Fischetti 

1987; Simpson, et al. 1987; Bessen, et al. 1989; Bessen and Fischetti 1990; Collins, et al. 

1992). In the current study, we used GAS M5 protein (reported in several studies to induce 

autoimmune mediated carditis (Galvin, et al. 2002; Gorton, et al. 2009; Gorton, et al. 2016) 

and the M-protein (Stg480) from GGS strain NS3396.  This particular GGS strain has been 

isolated from several patients with suspected ARF/RHD (Haidan, et al. 2000; Rantala, et al. 

2010; Jensen and Kilian 2012). Sikder, et al. (2018) reported that the N-terminus, A-repeat 

and B-repeat regions of Stg480 and M5 has a primary amino acid identity (21%) and 

similarity (44%), however identity was greater within the C-repeat region. Sikder and 

colleagues also predicted that like GAS M-proteins, GGS Stg480 also has a coiled-coil 
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structure. The irregularities in the α-helix were demonstrated in the heptad coiled-coil motif 

throughout Stg480 which is consistent with other M-proteins (Sriprakash and Hartas 1996). 

Further analyses will be required to more precisely define the immunogenic regions of 

Stg480 and M5 proteins and whether shared B- and T-cell epitopes in the GAS and GGS M-

proteins can further explain the findings presented in this chapter. 

 

In Chapter 6 we showed that rats injected with homologous prime-boost GAS or GGS M-

proteins developed inflammation in the myocardium and mitral valves. The results presented 

in this chapter clearly show these inflammatory lesions are reproduced following injection 

with heterologous M-proteins. Thickening of mitral valve leaflets due to excessive deposition 

of collagen fibres and infiltration of inflammatory cells was also observed. The myocardium 

of the M-protein injected rats was demonstrated with granulomatous lesions similar to 

“Aschoff nodule” and contained cells similar to “Anitschkow cells” and “Aschoff cells”. The 

observations are akin to the findings reported in earlier rat model studies and patients with 

ARF/RHD (Aschoff 1906; Fraser, et al. 1995; Guilherme, et al. 2001b; Gorton, et al. 2009; 

Huang, et al. 2009; Xie, et al. 2010; Gorton, et al. 2016). An ECG assessment of rats injected 

with GAS and GGS M-proteins had prolongation of P-R intervals regardless of prime-boost 

antigen combinations. Mitral valve fibrosis leads to mitral stenosis and subsequent mitral 

regurgitation. Mitral regurgitation induces fibrosis of myocardium due to mechanical 

overload and ultimate heart failure (Carapetis, et al. 2016). 

 

Previous epidemiological studies have postulated that group A streptococcal (GAS) throat 

infection may not be the only trigger for the disease sequelae in ARF/RHD (McDonald, et al. 

2004; McDonald, et al. 2006). We hypothesised that because of similarities in the GAS and 

GGS M-proteins, GGS and GAS M-proteins may be able to substitute for each other in 

driving autoimmune carditis. The results of this study suggest that GGS may both trigger and 

exacerbate autoimmune process to ARF/RHD in association with GAS. Future studies could 

be designed to identify shared epitopes in both the proteins that may be significant drivers of 

the autoimmune processes in this disease. Identification of the common epitopes between 

GAS and GGS isolates will help to develop a more precise serological assay for evidence of 

preceding GAS/GGS infection. Homologous amino acid sequences in C repeat regions of 

GAS and GGS M-proteins may have potential in designing a vaccine to prevent GAS and 

GGS infection (Steer, et al. 2009b). The C-repeat region vaccines are currently under 

investigation both from the perspective of including peptides homologous across GAS and 
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GGS but also avoiding those GGS peptide antigens that may potentially generate 

autoimmunity (Bauer, et al. 2012; McNeilly, et al. 2016; Sekuloski, et al. 2018). 

 

Epidemiological studies may reveal the clinical correlation between GAS and GGS as 

causative agents of ARF/RHD. In the current project, although we did not aim to compare the 

effects of homogenous and heterogenous GAS and GGS antigen exposure on the 

development of carditis and antibody and T-cell response there was variable degrees of 

additive effects in the carditis development in the rats injected with both GAS and GGS M-

proteins. In conclusion, our experimental data suggest that GAS and GGS have synergistic 

effects in the development of autoimmune carditis and that both could potentially initiate and 

exacerbate disease. 
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CHAPTER 8 

ADOPTIVE TRANSFER OF GROUP A STREPTOCOCCUS SPLENOCYTES AND 

SERUM INDUCES CARDITIS IN A LEWIS RAT AUTOIMMUNE VALVULITIS 

MODEL 

 

8.1 INTRODUCTION 

This chapter describes the transfer of carditis to naïve Lewis rats using serum and/or 

splenocytes from rats injected with the GAS rM5 protein. 

 

The development of RHD is linked to the formation of chronic valvular lesions resulting from 

cytotoxic antibody deposition and T-lymphocyte infiltration that disrupts cardiac function 

(Zabriskie, et al. 1970; Krisher and Cunningham 1985; Kemeny, et al. 1989; Fraser, et al. 

1995; Guilherme, et al. 1995; Roberts, et al. 2001; Galvin, et al. 2002; Martins, et al. 2008). 

Following GAS infection, antibodies and T-cells respond to M-protein and other GAS 

antigens (Carapetis, et al. 2016). The GAS M-protein specific antibodies and T-cells are 

believed to recognise host cardiac myosin (and other host antigens) through molecular 

mimicry (Galvin, et al. 2000; Kirvan, et al. 2003; Fae, et al. 2006; Cunningham 2014). The 

hypothesis of molecular mimicry between GAS and heart antigens is supported by evidence 

from studies using mAbs (Galvin, et al. 2000), and both peripheral and intralesional T-cell 

clones from patients with ARF and RHD (Ellis, et al. 2005; Fae, et al. 2006; Cunningham 

2014). The anti-GAS antibodies activate heart endothelium and upregulate vascular cell 

adhesion molecules (CAMs) (Chopra, et al. 1988; Roberts, et al. 2001; Tandon, et al. 2013). 

An activated endothelium facilitates transmigration of autoreactive T-cells into the valve and 

myocardium (Guilherme, et al. 1995; Galvin, et al. 2000; Roberts, et al. 2001; Guilherme, et 

al. 2004). The valves become progressively scarred and thickened causing ultimate stenosis 

and regurgitation (Kemeny, et al. 1989). Salient myocardial features include: focal infiltration 

of inflammatory cells, formation of granulomatous lesions known as Aschoff nodules and 

fibrosis that leads to myocardial dysfunction (Roberts, et al. 2001). Valvular regurgitation 

and myocardial dysfunction together end with heart failure as a long term sequela (Carapetis, 

et al. 2016). 

 

The specific role of antibodies versus  autoreactive T-cells in ARF/RHD has been studied in 

patients and in various animal models (Galvin, et al. 2000; Quinn, et al. 2001; Kirvan, et al. 

2003; Lymbury, et al. 2003; Li, et al. 2004; Fae, et al. 2006; Gorton, et al. 2006; Gorton, et al. 
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2009; Huang, et al. 2009; Gorton, et al. 2010; Xie, et al. 2010; Cunningham 2014; Kirvan, et 

al. 2014). Antibodies that react with GAS and heart proteins have been identified in the sera 

of patients with ARF and in the sera of rabbits and mice that had been immunised against 

GAS (Krisher and Cunningham 1985; Galvin, et al. 2000; Ellis, et al. 2005; Fae, et al. 2006; 

Cunningham 2014). Antibodies and T-cells from patients with ARF/RHD and cells from 

experimental myocarditis and/or valvulitis induced by cardiac myosin or streptococcal 

antigens can recognise several cardiac myosin epitopes (Ellis, et al. 2005). Previous studies 

have shown that CD4+ helper T-cells are the major effectors of autoimmune reactions in the 

heart tissue of RHD patients with cytokines produced by these cells are the key drivers of 

inflammation in ARF/RHD (Raizada, et al. 1983; Kemeny, et al. 1989; Guilherme, et al. 

1991).  

 

Passive transfer of GAS M5 peptide-specific T-cells into naïve Lewis rats has previously 

been shown to induce valvulitis (Kirvan, et al. 2014). Wegmann, et al. (1994) reported 

myocarditis in recipient Lewis rats following adoptive transfer of T-cells stimulated by 

specific peptides derived from cardiac myosin. Smith and Allen (1991) and Bachmaier, et al. 

(1999) reported the development of myocarditis in mice following adoptive transfer of 

myosin-reactive T-cells. Using mAb to deplete CD4+ T-cells, Smith and Allen (1991) also 

showed that the myosin injected mice did not develop myocarditis providing evidence that 

the myosin-induced myocarditis is a CD4+ T-cell-mediated disease. Furthermore, the same 

authors (Smith and Allen (1991)) reported that transfer of high-titre anti-myosin antibody 

serum to naïve recipient mice did not transfer myocarditis. 
 

While GAS M-protein specific antibodies and T-cells appear to be important mediators of 

heart damage, their individual or combined roles in the recognition, invasion, and destruction 

of heart tissue in rheumatic carditis is incompletely understood (Kirvan, et al. 2014). Direct 

demonstration of in vivo effects of antibodies and T-cells in patients with ARF/RHD in heart 

pathology is challenging, with animal models currently the primary means to investigate 

these putative mechanisms. The current study investigated the capacity of M-protein specific 

antibodies and splenocytes to transfer carditis to naïve syngeneic rats. We sought direct in 

vivo evidence that humoral and/or cellular mechanisms drive carditis in this model. 
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8.1.1 Aims 

The overall Aim of this study was to investigate development of carditis in Lewis rats 

following injection of serum and/or splenocytes from rats previously immunised with GAS 

rM5 protein. 

 

The specific Aims were: 

1. To determine GAS rM5 protein specific serum and splenocytes induced heart 

pathology by histological examination. 

2. To demonstrate cardiac dysfunction of recipient rats by performing 

electrocardiography and echocardiography. 

3. To demonstrate M5 protein and cardiac myosin antibody reactivity in serum from 

recipient rats. 

4. To determine memory T-cell proliferative responses from recipient rats upon ex vivo 

re-stimulation with GAS rM5. 

5. To characterise the phenotype of proliferating Th-cell subsets in recipient rats. 

 

8.2 MATERIALS AND METHODS 

8.2.1 Experimental animals 

Female Lewis rats bred at James Cook University, Townsville, Australia were used. The 

details of rats are described in Section 3.1.2.  

 

8.2.2 Antigens and adjuvants 

Carditis was induced in donor rats by repeated injection of GAS rM5 protein mixed with 

CFA or IFA and B. pertussis adjuvant as described in Section 5.2.3. Recombinant GAS M5 

protein was prepared as described in Section 3.2.1 and used for ELISA as described in 

Section 3.2.4.2. Sterile PBS, pH 7.4 (Appendix 1) was used to inject control rats. Freund’s 

complete and incomplete adjuvants (CFA and IFA) and B. pertussis toxin described in 

Section 3.1.1.3 were used. Antigen-adjuvant emulsions were prepared as described in Section 

3.2.3.1. Cardiac myosin described in Section 3.1.1.2 was used in ELISA. 

 

8.2.3 Experimental design 

8.2.3.1 Injection of donor rats 

Donor rats (n=4 per group) were injected with GAS rM5 protein to induce carditis (Figure 

8.1). Control donor rats were injected with PBS. The injection schedule described in Section 
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5.2.3 (M-protein short term) and Table 8.1 was followed. Donor rats were culled 35 days 

after the priming injection. 

 

8.2.3.2 Evaluation of donor serum, splenocyte proliferation, heart function and 

pathology 

The injection schedule shown previously in Chapter 5 (Section 5.2.3) was used to induce 

carditis, heart dysfunction and antibody and T-cell response in donor rats. To test that donor 

rats had developed carditis and immune responses similar to patients with ARF/RHD, sera 

from donor rats were evaluated for serum antibody response to GAS rM5 and cardiac myosin 

and splenic GAS rM5 specific T-cell responses were measured. Heart pathology was 

demonstrated using electrocardiography (ECG), echocardiography (echo) and histological 

examination of heart tissue sections. The donor rats were culled according to the procedure 

described in Section 3.2.2 35 days after the priming injection. The blood, spleen and heart 

samples were collected as described in the Section 3.2.2.3. The serum IgG response to GAS 

rM5 and cardiac myosin was evaluated by ELISA (Section 3.2.4.2). The splenic T-cell 

proliferative responses and cytokines produced by proliferating T-cells were evaluated by 

lymphocyte proliferation assay (Section 3.2.4.1) and ELISA (Section 5.2.7) respectively. 

Assessment of heart function was performed by electrocardiography (Section 3.2.6.1) and 

echocardiography (Section 3.2.6.2). Carditis was confirmed by microscopic examination of 

H&E stained heart sections (Section 3.2.5.2). 

 

8.2.3.3 Preparation of serum and lymphocytes from donor rat spleen 

Following collection of blood, the serum samples from the donor rats were separated (Section 

3.2.2.3) and stored at -80°C. The sera samples were thawed, pooled and warmed to room 

temperature before being injected into naïve recipient rats. The spleens from the donor rats 

were collected as described in Section 3.2.2.3. Mononuclear cells from spleens were 

separated, pooled and enumerated (Section 3.2.2.3). Mononuclear cells from both GAS rM5 

and PBS injected rats were cultured (Section 3.2.4.1) and stimulated in vitro with GAS rM5 

(10 µg/ml) for 72 h to expand M5-specific T-cells. Viable cells were enumerated by trypan 

blue staining (Section 3.2.2.3) before transfer into naïve recipients. 
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Figure 8.1 Overview of experimental design for evaluating adoptive transfer of carditis. 
Priming injection of donor rats (n=4) was performed with 0.5 mg/rat GAS rM5 protein mixed 
with CFA s.c. in the hock region. Three booster injections were performed with 0.5 mg/rat 
GAS rM5 in IFA s.c. in the flank. Control donor rats (n=4) were injected with PBS mixed 
with CFA or IFA. B. pertussis toxin (0.3 µg/rat) was injected i.p. 1 and 3 days after the 
priming injection. Donor rats were culled 35 days after priming, and serum and splenic 
mononuclear cell (MNC) suspensions were prepared. The splenic MNCs from the donors 
were cultured in vitro with GAS rM5 protein stimulation for 72 h. Recipient syngeneic rats 
(n=4) were injected i.v. with either; (i) 500 µl of serum and a second dose after a week, (ii) a 
single dose of 1×108 MNCs per rat or, (iii) both serum (×2 doses) and 1×108 MNCs. Cardiac 
dysfunction was assessed by ECG and echo. Recipient rats were culled at either 21 or 86 days 
and H&E staining performed on heart sections to assess carditis. The antibody and T-cell 
responses to GAS rM5 and cardiac myosin were also assessed in donors and recipients. GAS 
rM5: group A streptococcal recombinant M5 protein, PBS: phosphate buffer saline, CFA: 
complete Freund’s adjuvant, IFA: incomplete Freund’s adjuvant. 
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Table 8.1 Injection schedule 
 
Experimental 

design 
Group size 

(n=) Prime Boost/2nd 
injection 

Experiment 
endpoint 

Donor rats: 
active induction 
of carditis  

4 GAS rM5 GAS rM5 on 
day 7, 14, 21 35 days 

4 PBS PBS on day 7, 
14, 21 

(i) Serum 
recipient rats 4 GAS rM5 

serum 
GAS rM5 
serum on day 7 

21 days 4 PBS serum PBS serum on 
day 7 

(ii) Splenocyte 
recipient rats 4 GAS rM5 

splenocyte 
 

4 PBS splenocyte   
(iii) Serum and 
splenocyte 
recipient rats 

4 
GAS rM5 
serum and 
splenocyte 

GAS rM5 
serum on day 7 

86 days 

4 PBS serum and 
splenocyte 

PBS serum on 
day 7 

 

8.2.3.4 Injection of serum and splenocytes into recipient rats 

Recipient rats were divided into 3 groups; (i) serum recipients, (ii) splenocyte recipients, and 

(iii) serum and splenocyte recipients (Figure 8.1). All i.v. injections of recipient rats were 

performed under general anaesthesia (Section 3.2.2.1). For group (i), serum recipient rats, rats 

(n=4 per group) were injected with 500 µl of serum from GAS rM5 or PBS injected donors 

and a second dose after 7 days as described previously (Smith and Allen 1991). For group 

(ii), splenocyte recipients (n=4 per group) were injected with a single dose of 1×108 splenic 

MNCs per rat from GAS rM5 or PBS injected donors in 500 µl of RPMI. For group (iii), 

recipient rats (n=4 per group) were injected with 1×108 splenic MNCs mixed with 500 µl of 

serum from GAS rM5 or PBS injected donors. Seven days post-priming, recipients received 

an additional 500 µl serum from the same donors. Serum or splenic MNCs recipient rats were 

culled 21 day after the priming injection. Rats that received both serum and splenocytes 

(group (iii)) were culled 86 days after priming (Table 8.1). 

 

8.2.3.5 Evaluation of recipient serum, splenocyte proliferation, heart function and 

pathology 

Recipient rats were culled according to the procedure described in Section 3.2.2. Blood, 

spleens and hearts were collected as described in the Section 3.2.2.3. ECG (Section 3.2.6.1), 

echo (Section 3.2.6.2) and heart histological staining (Section 3.2.5.2) were performed as 
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described previously. The serum antibody reactivity against GAS rM5 and cardiac myosin 

was performed using ELISAs as described in Section 3.2.4.2. Splenic MNCs proliferation 

assays and cytokine analysis (GAS rM5 as stimulant) were performed as described in Section 

3.2.4.1 and Section 5.2.7. 

 

8.2.4 Statistical analysis 

The data distribution of carditis severity scores, P-R intervals in ECG, echo scores, ELISA 

endpoint titres, ELISA absorbance values, lymphocyte proliferation stimulation indices and 

cytokine concentrations were determined using GraphPad Prism 7 statistical software. The 

data from experimental and control group that passed D'Agostino & Pearson omnibus 

normality tests were compared using parametric unpaired t test. Non-parametric Mann-

Whitney test was used to compare data that were not normally distributed. The specific 

statistical test used for each data set is presented in the figure legends. The results are 

reported as mean ± standard error (SEM), p≤0.05 was considered significant. 

 

8.3 RESULTS 

8.3.1 GAS rM5 specific antibodies and splenocytes induce carditis in recipient rats 

The current study was designed to determine whether GAS rM5 specific antibodies or T-cells 

alone or in combination, could induce carditis in naïve recipients. Recipient rats injected with 

either serum, or splenocytes from immune donors, developed histological carditis, although 

the carditis scores from the splenocyte only recipients did not reach statistical significance 

compared to PBS controls (Figure 8.2 A). Hearts from recipient rats injected with combined 

serum and splenocytes, showed significant evidence of carditis. The pathological findings in 

recipient rats were similar to donor rats (Appendix 8 Supplementary Figure 8.1A (2.1-2.4) 

and 8.1B (2.1-2.4)). Recipients with carditis had foci of inflammation within the mitral valve 

leaflets (Figure 8.2 C&D and Appendix 8 Supplementary Figure 8.2A (2.1-2.4), 8.2C (2.1-

2.4) and 8.2E (2.1-2.4)). Moreover, severe inflammation with infiltration of inflammatory 

cells were observed in the myocardium of recipients (Figure 8.2 F and Appendix 8 

Supplementary Figure 8.2B (2.1-2.4), 8.2D (2.1-2.4) and 8.2F (2.1-2.4)). In myocardium 

granulomatous inflammation similar to ‘Aschoff type nodules’ were observed (Figure 8.2 G 

and Appendix 8 Supplementary Figure 8.2B (2.1-2.4), 8.2D (2.1, 2.4) and 8.2F (2.1-2.4)). 

Macrophages similar to ‘Anitshokow cells’ (Figure 8.2 G x) and ‘Aschoff cells’ (Figure 8.2 

G y) were also observed in myocarditis areas of serum and/or splenocyte recipients. 
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The mitral valve and myocardium of control rats contained very few inflammatory cells 

(Figure 8.2 B and Appendix 8 Supplementary Figure 8.1A (1.1-1.4), 8.2A (1.1-1.4), 8.2C 

(1.1-1.4) and 8.2E (1.1-1.4)). The myocardium of the control rats also had small number of 

inflammatory cells that were uniformly distributed (Figure 8.2 E and Appendix 8 

Supplementary Figure 8.1B (1.1-1.4), 8.2B (1.1-1.4), 8.2D (1.1-1.4) and 8.2F (1.1-1.4)).  

 

 
Figure 8.2 GAS rM5 protein specific serum and splenocytes induce carditis. Higher carditis 
scores were observed in donor rats injected with GAS rM5 protein (n=4) compared to donor 
rats injected with PBS (n=4) (A). Recipient rats (n=4) injected with serum or serum plus 
splenocytes from GAS rM5 injected donor rats had significantly higher carditis scores 
compared to the recipient rats injected with serum or serum plus splenocytes from donor rats 
injected with PBS (A). The carditis scores of rats receiving GAS rM5 restimulated 
splenocytes were also higher than controls although this difference was not statistically 
significant. Representative histological images of different inflammatory scores of mitral 
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valve and myocardium are shown in B-G. Control rats had no evidence of inflammation in 
the mitral valve (B) and myocardium (E). Infiltration of inflammatory cells and/or focal 
lesions was observed in the mitral valves of donor rats injected with GAS rM5 or recipient 
rats injected with serum and/or splenocytes from GAS rM5 injected donor rats (C score 2, D 
score 4). There was interstitial focal myocarditis with granulomatous structures similar to 
Aschoff nodules in the myocardium of donor rats injected with GAS rM5 or recipient rats 
injected with serum and/or splenocytes from GAS rM5 injected donor rats (F score 2, G score 
4). Scale bars as indicated, x: Aschoff like cells, y: Anitschow like cells. Error bars represent 
standard errors of the mean (SEM). Statistical difference by unpaired t test; **p<0.01, 
***p<0.001, ns: not significant. 
 

8.3.2 GAS rM5 immune serum and splenocytes induce prolongation of P-R interval on 

ECG in recipient rats 

ECG was performed and peak P and R points of each ECG trace were recorded from donor 

and recipient rats. Significant prolongation of P-R intervals was observed in donor rats 

injected with GAS rM5 compared to PBS injected control rats (Figure 8.3). Moreover, 

recipients injected with serum and/or splenocytes from the GAS rM5 injected donors, also 

demonstrated significantly prolonged P-R intervals (Figure 8.3). 

 

 
Figure 8.3 Electrocardiographic assessment demonstrates cardiac dysfunction in recipient 
rats following immune serum and splenocyte transfer. Significant prolongation of P-R 
intervals was observed in donor rats injected with GAS rM5 (n=4) compared to PBS injected 
control rats (n=4). Prolongation of P-R intervals was also observed in recipient rats (n=4) 
injected with either serum or splenocytes or combined serum and splenocytes from GAS rM5 
injected donor rats compared to controls. Error bars represents standard errors of mean 
(SEM). Statistical difference by unpaired t test; *p<0.05, **p<0.001. 
 



137 
 

8.3.3 GAS rM5 specific antibodies and splenocytes induce mitral valve pathology 

Impairment of cardiac function was further assessed using echocardiography (echo). We 

observed a uniform mitral valvular structure in control donor rats injected with PBS or 

control recipient rats injected with serum and splenocytes from control donor rats (Figure 8.4 

B and Appendix 8 Supplementary Figure 8.3A (1.1-1.4) and 8.3B (1.1-1.4). In contrast, 

mitral valves of recipient rats injected with combined serum and splenocytes form GAS rM5 

injected rats showed variable mitral valve thickness with the presence of nodule(s) (Figure 

8.4 C-E and Appendix 8 Supplementary Figure 8.3B (2.1-2.4)). The findings were similar to 

the donor rats injected with GAS rM5 (Figure 8.4 C-E and Appendix 8 Supplementary Figure 

8.3A (2.1-2.4)). Echo was not performed on serum only or splenocyte only transfer groups. 

The echo scores (based on mitral valvular thickness and nodules) were also significantly 

higher in donor rats and recipient rats injected with serum and splenocytes from GAS rM5 

injected donor rats (Figure 8.4 A).  

 

 
Figure 8.4 Echocardiographic changes demonstrate mitral valve pathology in immune serum 
and splenocytes recipient rats. Echo scores were determined based on thickness and number 
of nodules on mitral valves. Higher scores on echo were observed in donor rats injected with 
GAS rM5 (n=4) and recipient rats (n=4) injected with serum and splenocytes from GAS rM5 
injected donor rats compared to control rats injected with PBS or serum and splenocytes from 
PBS injected control donor rats (n=4) (A). The control donor and recipient rats had uniform 
mitral valvular structures without leaflet thickening or valvular nodules (B, score 0). 
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However, donor rats injected with GAS rM5 and recipient rats injected with serum and 
splenocytes from GAS rM5 injected donor rats showed variable degrees of mitral valvular 
thickness and the presence of nodules (C-E, score 1-3). Arrows indicate mitral valve leaflets, 
LA: left atrium, LV: left ventricle, RA: right atrium, RV: right ventricle. Error bars represent 
standard errors of the mean (SEM). Statistical difference by unpaired t test; *p<0.05, 
**p<0.001. 
 

8.3.4 Antibodies in serum and/or splenocyte recipient rats recognise GAS rM5 

We analysed sera from donor and recipient rats to detect IgG responses to GAS rM5 and 

cross-reactivity to host cardiac myosin. High-titre M5-specific IgG was demonstrated in 

donor sera (Figure 8.5 A). Antibodies in donor sera also recognised cardiac myosin (Figure 

8.5 B). We detected M5-specific antibodies in the sera of recipient rats injected with serum 

only and serum plus splenocytes (Figure 8.5 A). Surprisingly, we also detected M5-specific 

antibodies in the serum of recipients receiving splenocytes only (Figure 8.5 A). We could not 

demonstrate significant reactivity against cardiac myosin in the sera from any recipient group 

(Figure 8.5 B). In all experiments, serum from donor rats injected with PBS or recipient rats 

injected with serum and/or splenocytes from PBS injected donor rats were used as controls 

and these showed minimal reactivity with rM5 or cardiac myosin. 

 

 
Figure 8.5 Serum IgG reactivity to GAS rM5 and cross-reactivity to cardiac myosin. Serum 
IgG from donor rats injected with GAS rM5 (n=4) reacted significantly with GAS rM5 
compared to PBS injected control rats (n=4) (A). Serum IgG from recipient rat groups (n=4) 
receiving immune serum and/or splenocytes reacted with GAS rM5 (A). Sera from donor 
rats, but not recipient rats, reacted with cardiac myosin (B). Error bars represent standard 
errors of the mean (SEM). Statistical difference by unpaired t test (Panel A: Donors, 
Splenocyte recipients, Serum & splenocyte recipients; Panel B: Donors, Splenocyte 
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recipients) and Mann-Whitney test (Panel A: Serum recipients; Panel B: Serum recipients, 
Serum & splenocyte recipients); *p<0.05, **p<0.001, ***p<0.0001, ns: not significant.  
 
8.3.5 T-cells from serum and splenocyte recipient rats proliferate in response to GAS 

rM5 

Splenocytes from donor rats injected with GAS rM5 proliferated in response to GAS rM5 

restimulation (Figure 8.6 A). Splenocytes from recipient rats injected with serum plus 

splenocytes from GAS rM5 injected donor rats also proliferated in the presence of GAS rM5 

(Figure 8.6 A). Lymphocyte proliferation assays were not performed on serum only or 

splenocyte only transfer groups. The proliferating T-cells from both donor and recipient rats 

produced significantly more IFN-γ (Figure 8.6 B), IL-17A (Figure 8.6 C) and IL-4 (Figure 

8.6 C) than unstimulated cells (not shown) and cultures from control animals. In all 

experiments, donor rats injected with PBS or recipient rats injected with serum and/or 

splenocytes from PBS injected donor rats were used as controls. 

 

 
Figure 8.6 Splenocytes from GAS rM5 specific serum plus splenocyte recipient rats 
proliferate in response to GAS rM5 and secrete IFN-γ, IL-17A and IL-4. The splenic T-cells 
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from donor rats injected with GAS rM5 (n=4) proliferate in response to GAS rM5 (A, left 
panel) and produce significantly higher amounts of IFN-γ (B, left panel), IL-17A (C, left 
panel) and IL-4 (D, left panel) compared to PBS injected control rats (n=4). The splenic T-
cells from recipient rats (n=4) injected with serum and splenocytes from GAS rM5 injected 
donor rats showed similar proliferative and cytokine production response (A-D, right panels). 
The recipient rats injected with serum and splenocytes from PBS injected donor rats were 
used as controls (n=4). Error bars represent standard errors of the mean (SEM). Statistical 
difference by unpaired t test except IFN-γ production in recipient rats (B, right panel) which 
was tested by Mann-Whitney test; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
 

8.4 DISCUSSION 

The immune mechanisms that mediate the cardiovascular pathology associated with diseases 

such as RHD are poorly defined (Breed and Binstadt 2015). Carditis is the key feature of 

ARF, occurring in >50% of patients (Veasy, et al. 1987; Veasy, et al. 1994; Roberts, et al. 

2001; Vijayalakshmi, et al. 2008; Mota, et al. 2014). Several clinical and animal model 

studies have previously suggested that carditis development in ARF/RHD is initiated by anti-

GAS antibodies followed by T-cell infiltration of the valve and myocardium (Kaplan, et al. 

1964; Roberts, et al. 2001; Gorton, et al. 2009; Cunningham 2014; Carapetis, et al. 2016; 

Gorton, et al. 2016). However, the antigen inducing autoreactive T-cell and antibody 

responses against heart tissues are poorly defined (Smith and Allen 1991). It is essential to 

understand how immune effector cells are targeted to the heart, how these cells are activated, 

and if their effector functions are antigen specific. This chapter focussed on investigating the 

relative contributions of antibodies and T-lymphocytes to the induction of autoimmune 

carditis. Adoptive transfer experiments are often used to definitively determine the respective 

roles of antibodies versus cells in driving the pathology of immune-mediated diseases. Here 

we showed that both antibodies (serum) and T-cells (splenocytes) derived from GAS M5-

immunised diseased donors could induce valvular and myocardial inflammation and heart 

dysfunction in naïve recipients. We conclude that both antibodies and T-cells independently 

and together can initiate and mediate autoimmune valvulitis in Lewis rats. To our knowledge, 

this is the first report of ARF/RHD-like cardiac dysfunction achieved by adoptive transfer of 

T-cells and/or serum. 

 

The current study was designed to demonstrate whether rM5 injection induces cross-reactive 

and pathogenic T-cells and antibodies that could potentially recognise cardiac tissues and 

induce heart inflammation when transferred into naïve syngeneic rats. GAS rM5-specific 

lymphocytes and serum were independently capable of inducing valvulitis and myocarditis as 

early as 21 days after transfer (Figure 8.2).  Valvular inflammation was demonstrated in all 
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serum recipient rats and 50% of splenocyte recipients. Normal splenocytes and serum from 

PBS injected animals did not induce heart inflammation. We also evaluated whether serum 

and splenocytes when transferred together could induce carditis. Eighty-six days after transfer 

we observed higher carditis scores than those observed following either serum only or cell 

only transfer (Figure 8.2). 

 

Kirvan et al. 2014 reported that passive transfer of T-cell lines specific to the N-terminal 

region of the M5/M6 protein into naïve rats produced valvulitis characterised by infiltration 

of CD4+ T-cells. It was unclear however if it was the transferred cells that trafficked directly 

to the heart, or whether other host cells were responsible for the initiation of disease. 

Myocarditis development following adoptive transfer of cardiac myosin protein or peptide 

specific T-cells has been reported in several earlier studies (Smith and Allen 1991; Kodama, 

et al. 1992; Wegmann, et al. 1994; Bachmaier, et al. 1999). After CD4+ T-cells depletion 

using mAbs, Smith and Allen (1991) also showed that the myosin-induced myocarditis is a 

CD4+ T-cell-mediated disease. Histopathologic examination of heart sections from rats 

received cardiac myosin specific T-cells developed myocarditis with infiltration of 

lymphocytes, macrophages, and scattered giant cells, associated focally with destruction of 

myocardial fibres (Kodama, et al. 1992). In animal models of other autoimmune diseases 

Miller, et al. (1988) showed that a diabetic phenotype could be reproduced in mice following 

adoptive transfer of antigen-specific CD4+ and CD8+ T-cells. Similarly, Haskins and 

McDuffie (1990) found that a CD4+ islet-specific T-cell clone could transfer diabetes in a 

murine model. In experimental autoimmune neuritis models. 

 

Antibodies specific for several autoantigens have been shown to transfer disease to naïve 

hosts in different autoimmune disease models. For example, passive transfer of muscle 

nicotinic acetylcholine receptor (AChR) antibodies in mouse models of myasthenia gravis 

reproduces the clinical phenotype of diseased animals (Toyka, et al. 1975; Tzartos, et al. 

1987). Passive transfer of rabbit polyclonal antibodies generated against human epidermal 

antigen (BP180) into neonatal BALB/c mice developed a subepidermal blistering disease that 

closely mimicked autoimmune bullous pemphigoid (Liu, et al. 1993). Guinea pigs developed 

autoimmune tubulointerstitial disease following passive transfer of pure IgG1 or IgG2 

fractions of isologous anti-tubular basement membrane (TBM) (Hall, et al. 1977). Mice 

developed autoimmune autonomic neuropathy following passive transfer of IgG antibodies 

specific to ganglionic AChR generated in rabbits (Vernino, et al. 2004). Neu, et al. (1990) 
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and Smith and Allen (1991) reported that transfer of serum with high-titre anti-myosin 

antibodies to recipient mice did not develop myocarditis. The authors suggested that the 

antibodies may play a role in accentuating heart damage, possibly by an antibody-dependent 

cell cytotoxicity mechanism, once the T-cell-mediated recognition of autoreactive myosin 

epitopes is established. Other studies have shown that passive transfer of affinity-purified 

anti-heart autoantibodies from sera of patients with myocarditis directly induces experimental 

myocarditis in naïve mice (Caforio, et al. 2015). 

 

Our findings suggest either an additive effect of antibodies and lymphocytes or that as the 

inflammatory response becomes chronic over time, valve damage increases. Which of these 

phenomena is occurring is not clear presently and future experiments that follow the 

inflammatory response triggered by serum only or cell only transfer over time would help 

elucidate more precise mechanisms. It is therefore likely that multiple mechanisms could 

operate to cause immune-mediated tissue destruction. 

 

In ARF/RHD, it has been hypothesised that GAS-specific antibodies activate vascular 

endothelial cells of heart by inducing the expression of vascular cell adhesion molecules 

(CAMs) to facilitate transmigration of autoreactive T-cells into the myocardium and valvular 

tissues (Roberts, et al. 2001; Carapetis, et al. 2016). In the current study, M5-specific donor 

antibodies may be responsible for driving the observed heart pathology directly by activating 

the heart endothelium of recipient rats. We observed M5-specific antibodies in day 21 sera of 

serum recipients and in day 86 sera of serum plus splenocyte recipients. The half-life of rat 

IgG is reported to be only approximately 63 h (Peppard and Orlans 1980), suggesting that 

M5-reactive antibodies are being synthesised de novo in these serum recipients and that these 

antibodies are pathogenic. This result implies that antibodies alone can initiate the entire 

sequence of immune responses and cellular interactions resulting in naïve B-cell priming in 

naïve recipients. However, this scenario would require either; (i) M5 antigen to be co-

transferred with serum to prime the naïve recipient B- (and CD4+ T-) cells or, (ii) recipient 

antibodies against an unknown host protein can cross-react with the M5 antigen in ELISA. 

Which of these situations is occurring is presently unclear. Future studies will be required to 

demonstrate carditis development following passive transfer of T-cells or antibodies with 

GAS M-proteins to confirm these hypotheses.  
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Surprisingly, we also detected M5-specific antibodies in day 21 sera of recipients receiving 

splenocytes only. Memory B-cells, in addition to memory T-cells may have been expanded in 

vitro prior to cell transfer hence M5 antibody-secreting donor B-cells/plasma cells may have 

seeded secondary lymphoid tissues of recipient animals.  Because we transferred splenocyte 

suspensions into recipients we were unable to definitively separate the specific contributions 

of heart tissue-reactive splenic memory B-cells versus memory T-cells in triggering 

inflammation in recipient animals. In an adoptive transfer study, Paque and Miller (1992) 

demonstrated inflammation of myocardium and coxsackievirus-specific antibodies in the 

serum of recipient mice 35 days after adoptive transfer of purified B-cells or splenocytes 

containing 35% memory B-cells. These authors suggested that recipient mice may be able to 

synthesise anti-virus antibodies as early as 72 h to as late as 35 days following adoptive 

transfer. Hence, antibodies alone may be able to drive carditis in our model. Further 

experiments using purified donor B-cells or T-cells, transferred into naïve recipients may 

help clarify our findings. 

 

Previous studies have demonstrated that GAS M-protein specific antibodies cross-react with 

cardiac myosin (Cunningham, et al. 1989; Galvin, et al. 2002; Kirvan, et al. 2014). In Chapter 

5 of this thesis, we reported low levels of cardiac myosin reactive IgG in the serum of GAS 

(and GGS) M-protein injected rats. In the study described in this chapter however, the serum 

collected from recipient rats failed to react with porcine cardiac myosin in ELISA. Any 

cardiac myosin reactive antibodies in the donor serum may have been diluted once 

transferred into recipients and these were below the limits of detection of the cardiac myosin 

ELISA. 

 

In our study, splenocytes from recipient rats proliferated in vitro in response to rM5, 

confirming that these memory lymphocytes were “adopted” into the naive host. Further 

experiments using purified donor B-cells or T-cells, transferred into naïve recipients may 

help clarify and extend our findings and determine which lymphocyte type is proliferating. 

Directly tracking the fate of transferred T/B-cells into heart tissue may also provide definitive 

evidence as to which lymphocyte type is responsible for heart inflammation. We did however 

show that T-cells from recipient rats produced very high levels of IL-17A and IFN-γ in 

response to rM5 stimulation with lower concentrations of IL-4. This pattern was identical to 

that observed in donor rats and as shown previously in Chapter 5, this pattern of cytokine 

secretion indicates a dominant Th-1 and Th-17 response which is similar to that reported for 
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human T-cell clones from RHD patients (Ellis, et al. 2005; Fae, et al. 2006). In ARF/RHD, 

the majority of T-cells isolated from heart and peripheral blood were found to secrete IFN-γ 

with fewer cells secreting the Th-2 type cytokine IL-4 (Guilherme, et al. 2004; Guilherme, et 

al. 2006). Th-1 and Th-17 cells may attach to and traverse the valve endothelium, thereby 

infiltrating the valve. IFN-γ and other pro-inflammatory cytokines secreted by antigen-

activated T-cells may play an important role in the development or maintenance of valvulitis 

by inducing expression of VCAM-1 on valvular endothelium, which in turn, increases the 

rate of mononuclear cell recruitment to the valve surface (Kirvan, et al. 2014). The role of the 

Th-17 cell in the pathogenesis of ARF/RHD is unknown, although high concentrations of IL-

17 in the serum of Lewis rats and accompanying high expression of IL-17 in the mitral valves 

of Lewis rats and human patients has been reported (Wen, et al. 2015). Additional studies 

will be needed to clarify the cellular, humoral and molecular factors necessary to mediate M-

protein specific T-cell infiltration into the heart. 

 

As discussed in earlier chapters, ARF/RHD is clinically diagnosed when a patient presents 

with two major manifestations or one major and at least two minor manifestations according 

to the Jones Criteria for the diagnosis of ARF/RHD 2015 (Gewitz, et al. 2015). Prolongation 

of P-R interval in ECG is one of the Jones Minor Criteria for the diagnosis of rheumatic 

fever. Moreover, echocardiographic screening of suspected ARF patients is the latest 

recommendation that has been included in the 2015 Jones Criteria. It is helpful in diagnosing 

clinical and subclinical carditis even in the absence of classical auscultatory findings (Gewitz, 

et al. 2015). Prolongation of P-R interval is a minor criterion and in a typical ECG trace 

indicates delay in ventricular depolarisation due to myocardial pathology. In the current 

study, rats receiving serum or splenocytes or both serum and splenocytes showed prolonged 

P-R intervals in ECG. In the current study, thickening of mitral valves of rats transferred with 

serum and splenocytes from GAS rM5 injected rats was observed as echo-dense white 

leaflets in echocardiography. Echo dense foci on mitral leaflets were also demonstrated as 

white and round structures on the leaflets. The results were identical to the echocardiographic 

findings of donor rats and in patients with ARF/RHD (Carapetis, et al. 2016). 

 

The transfer of carditis to Lewis rats by GAS rM5-stimulated autoreactive T-cells and serum 

showed the critical role of T-cells and antibodies in ARF/RHD. We did not address the 

immunogenic epitopes of GAS rM5 protein specific antibodies and T-cells that might have 

contributed to the carditis. Monitoring the inflammatory responses following transfer of 
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antibodies and T-cell over time could better explain the source of antibodies and T-cells 

contributed to the disease. Future studies are suggested to remove pathogenic antibodies and 

T-cells to prevent development of carditis. The data provides direct evidence that 

streptococcal M-protein specific lymphocytes and antibodies facilitate migration of 

inflammatory cells to the heart in vivo and likely contribute to heart pathology in this animal 

model as well in human RHD. Further dissection of the interactions between endothelial 

cells, serum antibodies and T-cells is the subject of the following chapter. 
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CHAPTER 9 

GROUP G STREPTOCOCCUS STIMULATES UPREGULATION OF 

ENDOTHELIAL ADHESION MOLECULES AND FACILITATES T-CELL 

MIGRATION INTO HEART TISSUE 

 

9.1 INTRODUCTION 

The vascular endothelium plays an important role in the development of inflammatory heart 

disease by regulating immune cell trafficking into tissues. The cardiac chambers and valves 

are lined with a monolayer of endothelial cells. The endothelium regulates vascular integrity, 

inflammation, thrombosis, and vascular remodelling. Valvular endothelial cell dysfunction 

results in vascular disorders such as degenerative heart disease, myxomatous or floppy 

valves, rheumatic heart inflammation, and infective endocarditis (Leask, et al. 2003). 

Endothelial cell dysfunction may be caused by mechanical overload, bacterial infection, 

autoantibodies, and circulating endothelial cell modulators (Leask, et al. 2003). In ARF/RHD, 

interaction of blood mononuclear cells and the endothelium is essential for the development 

of heart lesions (Galvin, et al. 2000).  

 

Development of rheumatic heart lesions is mediated by sequential events involving 

interactions between cellular integrins, adhesion molecules and chemokines. Leukocyte 

transmigration across the valve endothelium initiates early stage heart damage. A number of 

molecules are involved in the recruitment of leukocytes including T-cells into heart tissue. 

Vascular cell adhesion molecule (VCAM)-1 is expressed on endothelial cells and has 

previously been reported to be upregulated by antibodies to group A Streptococcus (GAS) 

that can also bind to human cardiac tissue proteins. Upregulation of VCAM-1 leads to 

lymphocyte infiltration into heart tissues (Galvin, et al. 2000). Guilherme, et al. (2013b) also 

described a key role for intercellular adhesion molecule (ICAM)-1, P- and E-selectins and 

chemokines in the recruitment of inflammatory cells to the heart tissues (Guilherme, et al. 

2013b). 

 

Upregulation of VCAM-1 indicates an activation of the endothelium and is also a sign of 

underlying tissue damage (Springer 1994). The presence of pro-inflammatory cytokines such 

as TNF-α or binding of cross-reactive antibodies to heart endothelial cells can damage the 

heart endothelium and up-regulate VCAM-1 (Galvin, et al. 2000; Roberts, et al. 2001; Ellis, 

et al. 2010; Parks, et al. 2012). In either case, infiltration of the heart by inflammatory cells is 
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triggered by cytokines. Endothelial cells interact with circulatory lymphocytes by expressing 

VCAM-1 which interact with very late antigen (VLA)-4 on activated lymphocytes. VCAM-1 

and VLA-4 interaction reduces mobility of lymphocytes, increases gaps between endothelial 

cells and facilitates transmigration of lymphocytes into the heart tissue (Ellis, et al. 2005; Fae, 

et al. 2006). In a study of patients with RHD, Roberts, et al. (2001) observed CD4+ and 

CD8+ T-cells adhered to the endothelium of rheumatic valves and penetration through the 

sub-endothelial layer. The adherence and extravasation of T-cells were attributed to an 

upregulation of VCAM-1 (Roberts, et al. 2001). The findings of Roberts and colleagues 

(2001) was supported by Cunningham’s group (Galvin, et al. 2000; Roberts, et al. 2001; Ellis, 

et al. 2005; Fae, et al. 2006; Kirvan, et al. 2014) who described that cross-reactive antibodies 

mediated the upregulation of VCAM-1 on the valvular endothelial surface and that this 

facilitated inflammation and T-cell infiltration into the valve tissues. Studies using the Lewis 

rat model of autoimmune valvulitis further supported this hypothesis and showed that GAS 

M5-protein specific antibodies induce VCAM-1 upregulation on cultured rat aortic 

endothelial cells (Gorton, et al. 2016). These studies however did not investigate whether 

VCAM-1 upregulation influenced T-cell migration across the endothelial cell monolayer.  

 

Interactions between intercellular adhesion molecule (ICAM)-1 expressed by the endothelial 

cells, and leukocyte function associated antigen (LFA)-1 is critical for leukocyte adhesion to 

endothelial cells and subsequent transmigration (Jois and Teruna 2003). ICAM-1/LFA-1 

interaction is essential for T-cells activation and migration to target tissues (Anderson and 

Siahaan 2003). Leukocyte chemoattractant cytokines play a role in controlling leukocyte 

adhesion to endothelial cells (Lukacs, et al. 1995; Tekstra, et al. 1999; Gawaz, et al. 2000; 

Muller, et al. 2000). In ARF/RHD, the T-cell chemoattractant CXCL9 mediates T-cell 

recruitment to the myocardium and valve tissues (Fae, et al. 2013). The increased T-cell 

infiltration modifies the interstitial cell structure and function, causing myocarditis, and valve 

thickening and fibrosis. These chronic inflammatory processes lead to fibrotic scarring, 

affecting valve haemodynamics and function.  

 

The interaction of T-cells with the valve (or myocardial vascular endothelium) and their 

subsequent migration into heart tissues may also be controlled by T-cell attracting 

chemokines such as CCL1/I-309 and CXCL9/Mig. CXCL9 is an IFN-γ-inducible 

chemotactic cytokine, and is produced by dendritic cells, B-cells and macrophages (Park, et 

al. 2002). CXCL9 binds to the receptor CXCR3 expressed predominantly on memory and 
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effector T-cells (Loetscher, et al. 1996). Fae, et al. (2013) reported that the T-cell line 

developed from mitral valves of patients with ARF/RHD significantly migrated to the bottom 

chamber having CXCL9 of Transwell cell culture system. The increased expression of 

endothelial adhesion molecules and inflammatory chemokines are unsurprising in the 

inflammatory context of RHD development. However, these have not been widely 

investigated and furthermore did not explain why valvular tissue is specifically targeted 

(Bright, et al. 2016). 

 

Rheumatic heart lesions result from chronic inflammation and CD4+ and CD8+ T-cell 

infiltration. Recurrent acute cardiac inflammation frequently evolves into chronic RHD. 

Valvular deformities occur as chronic sequelae that lead to mitral and aortic regurgitation 

and/or stenosis (Guilherme, et al. 2013b). Previous studies have reported that there is a strong 

association between endothelial cell VCAM-1 expression and rheumatic heart lesion 

formation (Galvin, et al. 2000; Roberts, et al. 2001; Gorton, et al. 2016). Far less is known 

about the role of endothelial cells, especially ICAM-1 expression during transmigration of T-

cells in valvular disease. Therefore, in the current study the role of GAS and GGS M-protein 

specific antibodies and T-cells in mediating the upregulation of VCAM-1 and ICAM-1 has 

been investigated; (i) in vitro using cultured rat aortic endothelial cells and; (ii) in vivo in 

tissue sections taken from Lewis rats immunised with GAS and GGS M-proteins. Whether 

these activated endothelia facilitate T-cell transmigration was also investigated. 

 

9.1.1 Aims 

The overall Aim of this study is to investigate whether VCAM-1 and ICAM-1 expression by 

endothelial cells is induced by antibodies and T-cells specific to GAS and GGS M-proteins 

and results in transmigration of T-cells across an endothelial cell layer. 

 

The specific Aims were: 

1. To determine GAS and GGS M-protein specific antibody binding to the rat aortic 

endothelial cell monolayer. 

2. To demonstrate expression of VCAM-1 and ICAM-1 in cultured endothelial cells 

following exposure to GAS and GGS M-protein specific serum and/or splenocytes. 

3. To demonstrate VCAM-1 and ICAM-1 expression in vivo in heart tissues from rats 

injected with GAS and GGS M-proteins. 
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4. To determine T-cell transmigration across endothelial cell monolayers using a 

Transwell culture system. 

 

9.2 MATERIALS AND METHODS 

9.2.1 Experimental animals, antigens and adjuvants 

Female Lewis rats bred at James Cook University, Townsville, Australia were used. The 

details of rats are described in Section 3.1.2. Recombinant M-protein of GGS (Stg480) and 

GAS (rM5) and adjuvants used in this study are described in Section 5.2.2. The injection 

schedules described in M-protein short term experiment of Section 5.2.3 were followed. 

 

9.2.2 Reagents for endothelial cell culture 

Rat aortic endothelial cells (RAOEC, #SR30405), rat endothelial growth medium (REGM, 

#PMR21150), subculture reagent kit (#PR090100K), Hank’s balanced salt solution (HBSS, 

#PR062100), trypsin/EDTA solution (#PR070100), trypsin neutralisation solution 

(#PR080100), attachment factor solution (AFS, #PR123100) and rat endothelial cell growth 

supplement (#PMR211GS) were purchased from Genlantis PrimaPure (USA). Tumor 

necrosis factor alpha (TNF-α, #000-18181) was from eBioscience (USA). Rat CXCL9 

(#RP0917R) was purchased from Kingfisher Biotech (USA). Sterile 6.5 mm Transwell plates 

with 8.0 µm pore polycarbonate membrane inserts (#3422) were purchased from Corning 

Costar Corporation (USA). Dimethyl sulfoxide (DMSO, #D2650) for cell cryopreservation 

was purchased from Sigma (Australia). 

 

9.2.3 Reagents for flow cytometry 

Sheath fluid (FACS Flow, #342003) was from Becton Dickinson Bioscience (USA). FITC-

conjugated mouse anti-rat CD31 IgG1, clone TLD-3A12 (#MA516952) was purchased from 

Invitrogen (USA). FITC-conjugated mouse IgG1a, κ isotype control, clone MOPC-21 

(#400107) was from BioLegend (USA). Biotin-conjugated mouse anti-rat CD54, clone 1A29 

(#202403) from BioLegend (USA). Streptavidin APC (#17-4317-82) was from eBioscience 

(USA). APC-conjugated mouse IgG1, κ isotype control, clone OX33 (#17-0462-80) was from 

eBioscinece (USA). PE-conjugated mouse anti-rat CD106, clone MR106 (#200403) and PE-

mouse IgG1, κ isotype control, clone MOPC-21 (#400111) were from BioLegend (USA). 

123count eBeads (#01-1234-42), mouse anti-rat CD3 FITC, clone eBioG4.18 (G4.18) (#11-

0030-81) and FITC-mouse IgG3, κ isotype control (#14-4742-82) were purchased from 

eBioscience (USA).  



150 
 

9.2.4 Reagents for immunohistochemistry 

Mouse anti-rat CD106, clone MR106 (#MCA4633GA) was purchased from Biorad (USA). 

Mouse anti-rat CD54-biotin, clone 1A29 (#202403) was from BioLegend (USA). Mouse IgG1 

κ isotype control, clone P3.6.2.8.1 (#501129514) was from eBioscience (USA). Goat anti-

mouse HRP secondary antibody (#170-6516) was from Biorad (USA). Avidin-biotin 

Complex (ABC, #PK-4000), ImmPACT 3, 3'-diaminobenzidine peroxidase (HRP) substrate 

(DAB, #SK-4105) were purchased from Vector Laboratories (USA). Haematoxylin stain was 

prepared in house. 

 

9.2.5 Experimental design 

Lewis rats (n=3 per group) were injected with GAS rM5 or GGS Stg480 or PBS under 

general anaesthesia as described previously (Section 3.2.2.1). The immunisation schedules 

described in M-protein short term experiment of Section 5.2.3 were followed. Rats were 

culled (Section 3.2.2.2) 35 days after the priming injection to collect serum and splenocytes 

(Section 3.2.2.3). The serum samples from each rat group were pooled and stored at -80°C 

until use. The splenocytes from rats were restimulated in vitro with 10 μg/ml of rM5 or 

Stg480 protein stimulation for 72 h (Section 3.2.4.1) before inoculation onto the rat aortic 

endothelial cell monolayer (Figure 9.1 A).  

 

To determine the GAS rM5 and GGS Stg480 specific antibody binding to endothelial cell 

surface antigens, rat aortic endothelial cell (RAOEC) monolayers were prepared in 96F-

microtitre plates (Figure 9.1 B). Pooled serum from rats injected with rM5 or Stg480 was 

added at 1:6400 dilution followed by anti-rat secondary antibody and ABTS (details in 

Section 9.2.8). In separate experiments, RAOEC monolayers were incubated with 5% pooled 

serum and/or 106 M-protein restimulated splenocytes from rats injected with rM5 or Stg480 

for 6 h (Figure 9.1 C). Adherent RAOECs were detached and harvested and the expression of 

VCAM-1 and ICAM-1 was determined using flow cytometry (details in Section 9.2.9). In 

vivo expression of VCAM-1 and ICAM-1 in rat heart sections was determined using 

immunohistochemistry (Figure 9.1 D). Heart sections from rats injected with rM5 or Stg480 

were treated with anti-VCAM-1 and anti-ICAM-1 antibodies followed by a secondary 

antibody and DAB. Brown colouration of the endothelial cells indicated positive expression 

of VCAM-1/ICAM-1 (details in Section 9.2.10).  
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In vitro antibody induced T-cell migration across the RAOEC monolayer was demonstrated 

in a Transwell plate system (Figure 9.1 E). RAOEC monolayers in Transwell plate upper 

chambers were treated with 5% pooled serum and 106 splenocytes from rats injected with 

rM5 or Stg480 for 6 h. Rat T-cell chemoattractant CXCL9 was provided in the lower 

chambers. The total number of T-cells added to the upper chamber and the number of 

migrated T-cells in the lower chamber was enumerated using 123countTM eBeads and flow 

cytometry following staining with anti-rat CD3-FITC (details in Section 9.2.11). 

 

 
Figure 9.1 Overview of experimental design for evaluating endothelial cell adhesion 
molecule expression and T-cell transmigration. (A) Lewis rats (n=3 per group) were injected 
s.c. with 0.5 mg/rat GAS rM5/GGS Stg480 protein mixed with CFA with 3 booster injections 
mixed with IFA at 1 week intervals. Control rats (n=3) were injected with PBS mixed with 
CFA or IFA. B. pertussis toxin (0.3 µg/rat) was injected i.p. at day 1 and 3 of priming 
injection. Rats were culled 35 days after the priming injection, and serum and mononuclear 
splenocytes were prepared. Splenocytes were restimulated in vitro with rM5/Stg480 for 72 h. 
In-cell ELISA technique was used to assess antibody binding to endothelial cell surface 
antigens (B). Rat aortic endothelial cell (RAOEC) monolayers were prepared in 96 flat 
bottomed microtitre plates. Pooled sera (+ heat inactivated, + antigen adsorbed) from either 
PBS, rM5 or Stg480 injected rats were added at 1:6400 dilution followed by HPR-conjugated 
anti-rat secondary antibody and ABTS. To assess the influence of serum antibody and T-cells 
on endothelial VCAM-1 and ICAM-1 expression, (C) RAOEC monolayers were treated with 
pooled sera and/or splenocytes for 6 h. Cells were detached and the expression of VCAM-1 
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and ICAM-1 was determined using flow cytometry. (D) VCAM-1 and ICAM-1 expression in 
the rat heart sections was determined using immunohistochemistry. Rat heart sections were 
treated with anti-VCAM-1 and anti-ICAM-1 antibodies followed by secondary antibody and 
DAB. Brown colouration of the cells indicated positive staining for VCAM-1/ICAM-1. T-
cell transmigration across endothelial cell monolayers (E) was determined using Transwell 
plates. Pooled serum and splenocytes were added to the upper chambers and incubated for 6 
h. Rat T-cell chemoattractant CXCL9 was added to the bottom chamber. T-cells that had 
migrated to the lower chamber were enumerated using 123countTM eBeads and flow 
cytometry. 
 

9.2.6 Culture of rat aortic endothelial cells 

All endothelial cell culture was performed in a Class II biological safety cabinet. Sterile T-75 

or T-25 culture flasks were coated with 7.5 ml or 2.5 ml attachment factor solution (AFS) 

respectively and flasks were incubated overnight at room temperature (~22°C). After AFS 

was discarded, the flasks were stored at 4°C and used within 1 month. A cryopreserved rat 

aortic endothelial cell (RAOEC) line was purchased form Genlantis PrimaPure at the third 

passage (P3) containing 1×106 cells per 1 ml. The endothelial cell growth medium (GM) was 

warmed to 37°C and 15 ml was transferred into a T-75 flask (2.5 ml for T-25 flask). 

Cryopreserved vials of RAOEC were removed from liquid nitrogen storage and the cells 

thawed immediately by placing the vial in a 37°C water bath for 1 min. The cells were 

resuspended in the vial by gently pipetting the suspension 5 times with a 1 ml pipette before 

inoculation into the culture flask containing warmed GM. The flask was rocked gently to 

evenly distribute the cells and incubated in a 37°C, 5% CO2 humidified incubator. The next 

day, the supernatant was removed and fresh, warmed GM was added to remove residual 

dimethyl sulfoxide (DMSO). The GM was changed every second day until the cells reached 

80% confluence.  

 

When the monolayer had reached 80% confluence, cells were subcultured into new AFS-

coated T-75 or T-25 flasks or sterile multi-well culture plates. To retrieve the cells, the 

monolayer of T-75 flask was washed with 7.5 ml of Hanks Buffer Salt Solution (HBSS) (2.5 

ml for T-25 flask) followed by the addition of 6 ml Trypsin/EDTA solution at room 

temperature (2 ml for T-25 flask). The flask was rocked gently to ensure the solution covered 

all cells and 5 ml of Trypsin/EDTA solution (1.5 ml for T-25 flask) removed immediately to 

avoid permanent cell damage. The trypsinisation process was monitored using an inverted 

microscope. The bottom of the flask was scraped using a cell-scraper (#83.1830, Sarstedt) to 

detach the cells from the flask. To inhibit trypsin activity, 5 ml of Trypsin neutralisation 

solution (1.7 ml for T-25 flask) was added to the flask. The cell suspension was removed into 
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a conical tube and centrifuged at 500 ×g for 5 min at room temperature. The cell pellet was 

resuspended in 5 ml HBSS and cells were counted using a haemocytometer. New AFS-coated 

flasks or multi-well plates were seeded at the required cell density for further cultures or 

experiments as required.  The maximum passage number used for all experiments was six 

passages. For cryopreservation, the cells were suspended in FBS-10% DMSO at 5-10×105 

cells per ml. After overnight freezing at -80°C cryovial containing cells were stored frozen in 

liquid nitrogen. 

 

9.2.7 Splenocyte counts using flow cytometry and 123countTM eBeads 

For T-cell migration experiments, the T-cells in pooled splenocyte samples (Section 9.2.5) 

were counted using 123countTM eBeads counting beads (#01-1234, Invitrogen) The counting 

beads are 7 μm microparticles with a known concentration (1024 beads/µl) that enabled 

determination of absolute cell count and cell concentration in a particular volume of samples 

analysed by flow cytometry. The beads are encapsulated with dyes compatible with blue (488 

nm) and violet (405 nm) excitation sources and emitting fluorescence between approximately 

500 nm and 750 nm. During flow cytometric analysis using the BD FACSCanto II, live 

endothelial cells (as determined by forward scatter versus side scatter) were gated (P1 region) 

and the beads were gated (P2 region) using a FITC versus PE plot (Figure 9.2). A minimum 

of 1000 bead events were acquired to ensure statistically significant determination of cell 

concentrations according to the manufacturer’s instructions. The number of beads counted 

was then used to determine the cell concentrations. Cell concentrations were calculated using 

the formula: [Cell count (P1) × eBead volume/ eBead count (P2) × Cell volume] × eBead 

concentration (1024 beads/µl). 
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Figure 9.2 Gating of 123countTM eBeads counting beads for calculating cell concentration. 
The example FACS plot shows the gating of target cell population (P1) and bead population 
(P2) from which event numbers are recorded and used to determine cell concentration. FSC: 
forward scatter, SSC: side scatter. 
 

9.2.8 ELISA for detection of antibody binding to cultured endothelial cells 

Serum from individual rats in each group were pooled and heated for 20 min at 56°C to 

inactivate complement. The GAS rM5 and GGS Stg480 specific serum antibody adherence to 

the surface antigens of RAOEC was determined using ELISA (Figure 9.1 B). The ELISA 

procedure described in Section 3.2.4.2 was followed with modifications described below. 

Attachment factor solution treated (32 µl/well, 4°C overnight) Nunc Maxisorp F96 plates 

were seeded with 7000 cells/well at six passages in 100 µl growth medium. The plates were 

incubated at 37ºC with 5% CO2 until ~100% confluent. After overnight serum starvation of 

cells in 100 µl HBSS, the cells were fixed in 100 μl of 4% paraformaldehyde at 25°C for 15-

30 min. After 3 washes with PBS (pH 7.4), 1% triton-PBS (Appendix 1) was used to enhance 

cell permeabilisation for 30 min in a plate shaker at 150 rpm and 37ºC. After washing, 100 μl 

of pooled serum from rats injected with rM5 or Stg480 or PBS was added at 1:6400 dilution 

(titrated by several initial experiments) in 5 replicates and incubated overnight at 4°C. After 

washing, goat anti-rat IgG (H+L) conjugated with horseradish-peroxidase was added at 

1:5000 dilution for 2 h at 37°C. After washing, 2-2’–azino-di(3-ethylbenzthiazoline)-6-

sulphonate (ABTS) was added for 30 min before the optical density (OD) was measured at 
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405 nm. A negative serum sample from rats injected with PBS was included as a control. The 

OD values of sera from rats injected with GAS rM5, GGS Stg480 and PBS were compared. 

 

9.2.9 Flow cytometry for detection of surface VCAM-1/ICAM-1 expression 

Nunc Maxisorp 6-well plates previously treated with AFS (1 ml/well) were seeded with 

RAOEC (10000 cells/well) at six passages and grown until ~80% confluent (Figure 9.1 C). 

After overnight serum starvation of cells in 1 ml HBSS, the cells were stimulated with 1 ml 

of 5% heat inactivated (56°C 30 min) serum or 106 splenocytes (after in vitro expansion with 

GAS rM5 or GGS Stg480, Section 3.2.4.1) from rats injected with GAS rM5 or GGS Stg480 

for 6 h. In a separate experiment, to determine whether rM5 and Stg480-specific antibodies 

contribute to VCAM-1/ICAM-1 expression, RAOEC were incubated with 5% heat 

inactivated immune sera, which had been pre-absorbed overnight at 4°C with 100 mg/ml rM5 

or Stg480 protein. GAS rM5 or GGS Stg480 protein alone were used as control to determine 

if antigen alone increases VCAM-1/ICAM-1 expression. Unstimulated RAOEC and the cells 

stimulated with 5% heat inactivated sera or 106 splenocytes from rats injected with PBS were 

used as negative controls. Cells stimulated with 10 ng/ml of TNF-α were used as a positive 

control. All samples were tested in triplicate wells and experiments were repeated twice on 

different days. 

 

After 6 h of stimulation, RAOEC were washed in staining buffer (PBS/2% FBS/0.05% NaN3, 

pH 7.4) and harvested using 0.2% EDTA/PBS solution at room temperature. The cells (106 

per tube) were stained for 30 min on ice with mouse anti-rat CD31-FITC (1 µg/106 cells) to 

detect endothelial cell marker PECAM-1 or mouse IgG-FITC isotype control, mouse anti-rat 

CD106-PE (0.5 µg/106 cells) to detect adhesion molecule VCAM-1 or mouse IgG-PE isotype 

control and mouse anti-rat CD54-biotin (0.25 µg/106 cells) to detect adhesion molecule 

ICAM-1 or mouse IgG-APC isotype control. After washing in staining buffer, streptavidin 

APC (0.25 µg/106 cells) was added for 30 min to stain CD54 i.e the ICAM-1 molecule. After 

washing, cells were resuspended in sheath fluid and immediately subjected to flow 

cytometry. Data were acquired using a BD FACSCanto II flow cytometer using BD 

FACSDiva 8.0.1 software. Cell debris, characterised by low forward and side scatter, were 

excluded from analysis and cells stained with isotype control antibodies were used to set 

VCAM-1/ICAM-1 positive gates. For each sample, 100,000 cell events were recorded. Data 

was analysed using two-dimensional dot plots or histograms. The percentage cells positive 
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for each adhesion molecule and the median fluorescence intensity for both adhesion 

molecules were determined for the CD31+ gated cells.  

 

9.2.10 Immunohistochemistry for detection of VCAM-1/ICAM-1 in heart tissues from 

M-protein injected rats 

All immunohistochemistry procedures were carried out at room temperature using Tris-

buffered saline (TBS, pH 7.4) (Appendix 1) for all washing steps. Excised hearts were fixed 

in 10% neutral buffered formalin for <24 h, processed, embedded in paraffin wax and 

sectioned (5 µm thickness) as described previously (Section 3.2.5) Sections were 

deparaffinised in xylene with 2 changes for 5 min each, dehydrated with graded ethanol and 

rinsed with distilled water. Endogenous peroxidase was blocked with 0.3% (w/v) H2O2 in 

methanol for 30 min. Sections were rinsed in TBS 3 times for 5 min each time and incubated 

with 10% normal bovine serum in TBS for 30 min. Excess serum was removed without 

rinsing, and sections were incubated 1 h at room temperature with primary antibody against 

CD106 (mouse anti-rat CD106 unconjugated) and CD54 (mouse anti-rat CD54-biotin 

conjugated) at 1:100 dilution in TBS (Figure 9.1 D). After washing, CD106 treated sections 

were incubated with goat anti-rat secondary antibody HRP at 1:100 dilution and CD54 

treated sections were incubated with ABC-peroxidase solution for 30 min at room 

temperature. After washing, positive staining was visualised with DAB for 1-3 min. 

Haematoxylin for 1 min was used as background stain before examination under microscope 

(BX43 Olympus). The percentage of positive staining in the myocardium using a 

representative section per rat was determined on the digital images using the CellSens image 

analysis software® (Olympus). Histological analysis of each tissue was conducted on a 

representative section. To determine the extent of VCAM-1/ICAM-1 expression, a minimum 

of 3 images of each heart section of each rat were taken at the 1000× magnification.  

 

9.2.11 T-cell transmigration assay 

The experimental design is shown in Figure 9.1 E. Transwell plate inserts were seeded with 

6.7×105 RAOEC/well (six passage) and grown until 100% confluent followed by overnight 

serum starvation with HBSS. To activate RAOEC, 100 µl of 5% heat inactivated serum from 

rats injected with GAS rM5 or GGS Stg480 was added. In a separate experiment, 5% heat 

inactivated serum pre-adsorbed with rM5 or Stg480 was used to detect rM5 and Stg480 

specific antibody induced T-cell migration. The positive control cells were treated with 10 

ng/ml of TNF-α. The untreated cells and cells treated with 5% heat inactivated serum PBS 
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injected rats were used as the negative controls. Rat T-cell chemoattractant CXCL9 (100 

ng/ml in 600 µl of RPMI) or RPMI only as vehicle was provided to the wells of the lower 

chamber of the Transwell plate.  

 

Splenic MNCs (after in vitro expansion with GAS rM5 or GGS Stg480 for 72 h, Section 

3.2.4.1) from rats injected with GAS rM5 or GGS Stg480 or PBS were enumerated using a 

Neubauer haemocytometer (Section 3.2.2.3) and added to the respective upper chambers 

(PBS cells to PBS sera treated well, rM5 cells to the rM5 sera treated well and Stg480 cells to 

Stg480 sera.) at approximately 106 cells per well in 200 µl RPMI. An aliquot of 200 µl of 

each cell suspension containing approximately 106 MNCs from rats injected with PBS, rM5 

or Stg480 was stained retrospectively with anti-rat CD3-FITC to provide a precise count of 

the number of CD3+ T-cells actually added from each of the three different MNC 

suspensions (i.e. from PBS-, rM5- or Stg480-injected rats). The total number of T-cells added 

in the upper chamber was 180,781 for PBS, 564,718 for rM5 and 594,150 for Stg480. After 6 

h of incubation at 37°C and 5% CO2, the transmigrating T-cells were collected from the 

lower chamber. After washing in staining buffer, the cells were stained for 30 min on ice with 

mouse anti-rat CD3-FITC (0.5 µg/106 cells) to detect T-cells or mouse IgG3-FITC as the 

isotype control and enumerated using 123countTM eBeads and flow cytometry as described in 

Section 9.2.7. Data were acquired using a BD FACSCanto II flow cytometer using BD 

FACSDiva 8.0.1 software. One hundred thousand cell events were recorded for each sample. 

To analyse the data, the percentage of T-cells migrating across the endothelial monolayer was 

calculated as: number of T-cells added to upper chamber/ number of T-cells collected from 

lower chamber × 100. 

 

9.2.12 Statistical analysis 

The data distribution of OD values, percentage of VCAM-1/ICAM-1 and CD3+ cells, and 

percentage of DAB stained area was checked using GraphPad Prism 7 statistical software. All 

the data from experimental and control groups passed D'Agostino & Pearson omnibus 

normality test and therefore were compared and tested using one-way analysis of variance 

(ANOVA) with Tukey’s post hoc multiple comparisons test. The results are reported as mean 

± standard error (SEM), p≤0.05 was considered significant. 
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9.3 RESULTS 

The results of interactions between GAS rM5 or GGS Stg480 specific antibodies and/or 

splenocytes and rat endothelial cells are described in this chapter. The results of repeat 

experiments are provided in Appendix 9. The details of statistical analysis are also provided 

in Appendix 9. 

 

9.3.1 GAS and GGS M-protein antibodies bind to endothelial cells 

In this study, we investigated whether sera from rats injected with GAS and GGS M proteins 

could bind to RAOECs. Significantly higher IgG binding was observed in the sera from rats 

injected with GAS rM5 or GGS Stg480 compared to PBS injected control rats (Figure 9.1). 

The IgG reactivity in immune sera was reduced significantly following adsorption with the 

corresponding injecting antigen, indicating that antibody-antigen binding was via the antigen 

binding region of the antibody, rather than interactions between the Fc region.  

 

 
Figure 9.3 GAS and GGS M-protein specific antibodies bind to the surface antigens of 
RAOEC in an In-cell ELISA. Pooled heat inactivated sera from rats injected with GAS rM5 
(n=3) and GGS Stg480 (n=3) bound to endothelial cells and showed significantly higher 
absorbance values compared to PBS injected control rats (n=3). Antibody binding to 
endothelial cells reduced significantly after adsorption of GAS rM5 pooled serum with GAS 
rM5 and adsorption of GGS Stg480 pooled serum with Stg480. Error bars represent standard 
errors of the mean (SEM). Statistical differences were determined using one-way ANOVA 
with Tukey’s post hoc multiple comparisons test; *p<0.05, ****p<0.0001. Un: unadsorbed, 
Ad: adsorbed. 
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9.3.2 GAS and GGS M-protein specific antibodies and splenocytes induce expression of 

endothelial cell adhesion molecules in cultured endothelial cells 

VCAM-1 and ICAM-1 expression increased in endothelial cells stimulated with 5% heat 

inactivated serum from GAS rM5 or GGS Stg480 injected rats compared to cells stimulated 

with non-immune serum (Figure 9.4 B and Figure 9.5 B) although the difference in GAS rM5 

serum induced ICAM-1 expression was not significant. Moreover, sera from rM5 injected 

rats pre-adsorbed with rM5 protein, resulted in partial reduction of VCAM-1 and ICAM-1 

expression. Similarly, sera from Stg480 injected rats pre-adsorbed with Stg480 protein also 

resulted in reduction of ICAM-1 expression. VCAM-1 and ICAM-1 expression was also 

higher in endothelial cells stimulated with splenocytes from GAS rM5 and GGS Stg480 

injected rats alone, or together with the corresponding heat inactivated serum (Figure 9.4 C-D 

and Figure 9.5 C-D). GAS rM5 or GGS Stg480 protein alone did not induce VCAM-1 or 

ICAM-1 expression. TNF-α addition (positive control) resulted in significant upregulation of 

both VCAM-1 and ICAM-1. 

 



160 
 

 
Figure 9.4 GAS and GGS M-protein specific antibodies and splenocytes induce expression 
of VCAM-1 in endothelial cells. (A) Dot plot showing the gating strategy used to determine 
the percentage of VCAM-1 positive endothelial cells. Unstimulated endothelial cells 
(negative control) showed low VCAM-1 expression (B, D&E). However, TNF-α stimulation 
(positive control) increased expression of VCAM-1 (C, D&E). Heat inactivated (HI) pooled 
serum from rats injected with GAS rM5 and GGS Stg480 induced VCAM-1 expression in a 
larger percentage of endothelial cells compared to serum from PBS injected control rats 
(D&E). VCAM-1 expression reduced after adsorption of GAS rM5 serum with GAS rM5 and 
GGS Stg480 serum with Stg480 (HI ad). The addition of rM5 or Stg480 M-proteins to 
endothelial cells did not influence endothelial cell VCAM-1 expression (D&E). Significantly 
higher expression of VCAM-1 was observed in the RAOEC stimulated with splenocytes from 
rats injected with GAS and GGS M-protein compared to controls (F) or when splenocytes 
and sera were added together (G). Error bars represent standard errors of the mean (SEM). 
Statistical differences were determined using one-way ANOVA with Tukey’s post hoc 
multiple comparisons test; ****p<0.0001. 
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Figure 9.5 GAS and GGS M-protein specific antibodies and splenocytes induce expression 
of ICAM-1 in endothelial cells. (A) Dot plot showing the gating strategy used to determine 
the percentage of ICAM-1 positive endothelial cells. Unstimulated endothelial cells (negative 
control) showed low ICAM-1 expression (B, D&E). However, TNF-α stimulation (positive 
control) increased expression of ICAM-1 (C, D&E). Heat inactivated (HI) pooled serum from 
rats injected with GAS rM5 and GGS Stg480 induced ICAM-1 expression in a larger 
percentage of endothelial cells compared to serum from PBS injected control rats (D&E). 
ICAM-1 expression reduced after adsorption of GAS rM5 serum with GAS rM5 and GGS 
Stg480 serum with Stg480 (HI ad). The addition of rM5 or Stg480 M-proteins to endothelial 
cells did not influence endothelial cell ICAM-1 expression (D&E). Significantly higher 
expression of ICAM-1 was observed in the RAOEC stimulated with splenocytes from rats 
injected with GAS and GGS M-protein compared to controls (F) or when splenocytes and 
sera were added together (G). Error bars represent standard errors of the mean (SEM). 
Statistical differences were determined using one-way ANOVA with Tukey’s post hoc 
multiple comparisons test; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ns: not 
significant. 
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9.3.3 VCAM-1 and ICAM-1 expression is up-regulated in heart tissues of M-protein 

injected rats 

Heart sections from rats were immunostained (Figure 9.6&9.7) and examined to ascertain 

whether the endothelial lining of mitral valves and myocardium express VCAM-1 and 

ICAM-1. Only small numbers of VCAM-1 and ICAM-1 positive cells were observed in the 

lining of mitral valves from rats injected with GAS rM5 (Figure 9.6 D&E) or GGS Stg480 

(Figure 9.6 G&H). No VCAM-1 or ICAM-1 positive cells were observed in the mitral valve 

sections from control rats injected with PBS (Figure 9.6 A&B). Sections stained with isotype 

control antibodies (Figure 9.6 C, F&I) showed no staining. 

 

 
Figure 9.6 GAS and GGS M-protein injection induces adhesion molecule expression in 
mitral valves. VCAM-1 and ICAM-1 levels in paraffin sections of heart tissue were assessed 
by immunohistochemical staining with monoclonal antibodies to VCAM-1 and ICAM-1. 
VCAM-1 and ICAM-1 stained cells were found in the mitral valve sections of rats injected 
with GAS rM5 (n=3) and GGS Stg480 (n=3), whereas absent in control rats (n=3). (A-I) 
Panels show representative sections from each rat groups. Mitral valve sections from rats 
injected with PBS (A-C) had no evidence of VCAM-1 or ICAM-1 positive cells. Isotype 
control antibody stained sections from all rat groups also had no positive cells. Valve sections 
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from rats injected with GAS rM5 and GGS Stg480 and stained with VCAM-1 and ICAM-1 
antibodies had positive cells indicated by arrows (D&E, G&H). Magnifications 1000×.  
 

VCAM-1 and ICAM-1 staining was observed within the myocardium of GAS rM5 and GGS 

Stg480 injected rats, mainly surrounding the blood vessels and endocardial lining (Figure 9.7 

E&F and H&I). The myocardium sections from control rats injected with PBS (Figure 9.7 

B&C) and the sections stained with isotype control antibodies (Figure 9.7 D, G&J) had no 

staining.  The percentage of VCAM-1/ICAM-1 stained area was found higher in the 

myocardium sections from rats injected with GAS rM5 or GGS Stg480 compared to PBS 

injected control rats (Figure 9.7 A). 
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Figure 9.7 GAS and GGS M-protein injection induces adhesion molecule expression in 
myocardium. (A) Graphs depict total VCAM-1 and ICAM-1 staining in all myocardium 
sections examined in the group as a percentage of total pixels. VCAM-1 and ICAM-1 
staining were found higher in the myocardium sections of rats injected with GAS rM5 (n=3) 
and GGS Stg480 (n=3) mainly around blood vessels and endocardial lining compared to 
control rats (n=3). (B-J) Panels show representative myocardium sections from each of the rat 
groups. Myocardium sections from rats injected with PBS (B-D) had no evidence of VCAM-
1 or ICAM-1 positive cells. Isotype control antibody stained sections from all rat groups had 
no positive cells. Myocardium sections from rats injected with GAS rM5 and GGS Stg480 
and stained with VCAM-1 and ICAM-1 antibodies had positive cells indicated by arrows (E-
F, H-I). Magnification is 1000×. Error bars represent standard errors of the mean (SEM). 
Statistical differences were determined using one-way ANOVA with Tukey’s post hoc 
multiple comparison test; ***p<0.001, ****p<0.0001, ns: not significant. 
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9.3.4 GAS and GGS M-protein specific antibodies facilitate migration of T-cells across 

endothelial cells 

A significantly higher percentage of T-cells migrated across the endothelial monolayer and 

into the lower chamber when wells were stimulated with serum from rM5- or Stg480- 

injected rats (Figure 9.8 B). This T-cell migration was reduced after pre-adsorption of serum 

with the respective injecting antigen. In contrast, far fewer T-cells migrated in wells 

stimulated with serum from PBS injected rats and in wells lacking stimulant. As expected, T-

cell migration was greatest in wells with TNF-α added. 

 

 
Figure 9.8 GAS and GGS M-protein specific antibodies induce T-cell migration across 
endothelial cell monolayers. Splenic MNCs from rats injected with rM5/Stg480/PBS was 
enumerated using Neubauer haemocytometer and 106 cells were added to the respective 
upper chambers. The actual number of CD3+ T-cells provided in the upper chamber was 
enumerated using 123countTM eBeads and flow cytometry. Heat-inactivated serum from rats 
injected with rM5/Stg480/PBS was added (rM5 serum to rM5 T-cell etc.) to the endothelial 
monolayer in upper chamber. Pooled serum from rM5 infected animals, pre-adsorbed with 
rM5 and pre-adsorbed serum from Stg480 injected rats was added in separate wells. Rat 
chemoattractant CXCL9 was added to the lower chambers. After 6 h of incubation, the total 
number of T-cells in the lower chamber was counted using 123countTM eBeads. (A) A 
representative dot plots show gating of MNCs in gate P1 and CD3+ T-cells in gate P3. (B) 
Heat inactivated (HI) sera from rM5- or Stg480-injected rats induced significantly higher T-
cell migration to the lower chamber compared to the HI serum from PBS injected control 
rats. Pre-adsorption of rM5 serum (HI ad) with rM5 and Stg480 proteins significantly 
reduced T-cell migration. Few T-cells crossed the unstimulated endothelial monolayer (T-cell 
only). Stimulation of the endothelial monolayer with TNF-α (positive control) allowed the 
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highest T-migration. Error bars represent standard errors of the mean (SEM). Statistical 
difference by one-way ANOVA with Tukey’s post hoc multiple comparisons test; *p<0.05, 
****p<0.0001, ns: not significant.  
 

9.4 DISCUSSION 

The immunopathogenesis of ARF/RHD has not been completely elucidated but existing data 

suggests that it involves the generation of antibodies against group A streptococcal (GAS) M-

protein or carbohydrate antigen N-acetyl-glucosamine, cross-reacting with antigens on the 

surface of heart endothelial cells. In the current study, we did not investigate precisely which 

endothelial cell antigens are targeted by GAS/GGS M-proteins specific antibodies and 

splenocytes. We did however show that anti-M protein antibodies and splenocytes could 

indeed activate VCAM-1 and ICAM-1 and that this interaction was significantly decreased 

when sera were absorbed with M protein, suggesting that anti-M protein antibodies are 

reactive with endothelial cell antigens.  Identification of the endothelial target antigen/s was 

beyond the scope of the current study. It has been hypothesised that antibody or complement 

binding to the surface of heart endothelial cells, induces an activated endothelial cell 

phenotype and even damage to the integrity of the endothelium. Endothelial cells lining the 

heart valves and blood vessels within the myocardium and endocardium become activated, 

showing increased expression of cell adhesion molecules (CAMs) (Roberts, et al. 2001). The 

adhesion molecules, VCAM-1, ICAM-1, and endothelial selectin (E-selectin) are expressed 

on the vascular endothelium serve as ligands for counter-receptors on circulating 

inflammatory cells. The roles of the LFA-1/ICAM-1 and VLA-4/VCAM-1 pathways in 

recruiting leukocytes, especially T-cells into tissues have been studied previously (Springer 

1995; Sprent, et al. 1997; Rose, et al. 2002; Anderson and Siahaan 2003). They are critical in 

the targeting of circulating leukocytes to sites of inflammation, in the transmigration of 

leukocytes across vascular endothelium, and in immune effector functions (Hafez, et al. 

2013). The accumulation of leukocytes in the valves and myocardium, results in 

granulomatous inflammation in these tissues (Roberts, et al. 2001). Damage to cardiac tissues 

by this initial inflammation has been proposed to release intracellular host antigens including 

cardiac myosin as new targets of the ongoing autoimmune response.  

 

In the current study, the ability of GAS and GGS specific antibodies and T-cells to activate 

endothelial cells was investigated using rat endothelial cell monolayers to model the heart 

endothelium. Furthermore, we investigated whether the activated endothelial layer influenced 

T-cell transmigration, thereby modelling the recruitment of Ag-specific T-cells into cardiac 
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tissues in RHD. It was found that serum IgG from rats injected with GAS rM5 or GGS 

Stg480 protein were able to bind to rat endothelial cells (Figure 9.3). We showed that 

adsorption of immune sera with M-protein antigens reduced IgG binding indicating that 

antibody binding was via the antigen binding domain rather than the Fc region of the 

antibody and subsequent engagement of Fc receptors on endothelial cells. This result 

supports the current hypothesis that an early event in RHD pathogenesis involves antibody 

binding to an unknown antigen on the surface of endothelial cells (Roberts, et al. 2001). The 

results of this experiment are similar to those reported by Del Papa and Colleagues (1999) 

who observed that serum IgG from systemic lupus erythematosus (SLE) patients bound to 

human umbilical vein endothelial cell (HUVEC) monolayers. These authors suggested that in 

SLE the adhesion of monocytes to endothelial cells was initiated by antibodies and followed 

by upregulation of E-Selectin, ICAM-1, VCAM-1 expression (Del Papa, et al. 1999). 

Another study reported that aberrations in endothelial cell adhesive interactions occur in 

patients with autoimmune rheumatic diseases due to overexpression of adhesion molecules 

(Sfikakis and Tsokos 1995). Future studies could investigate the subsequent steps in 

endothelial cell activation i.e. how antibodies binding to antigens on the cell surface trigger 

signalling cascades that induce endothelial cell activation.  

 

In ARF/RHD, expression of CAMs is necessary for the recruitment of pathogenic T-cells to 

heart tissues (Roberts, et al. 2001). It has been hypothesised that IgG antibodies to GAS or 

pro-inflammatory cytokines, such as TNF-α or IFN-γ secreted by antigen-activated T-cells, 

react with the heart endothelium to trigger upregulation of VCAM-1 on the endothelial 

surface, leading to T-cell infiltration into heart tissues (Chopra, et al. 1988; Roberts, et al. 

2001; Tandon, et al. 2013). In the current study, antibodies specific to GAS rM5 and GGS 

Stg480 induced upregulation of VCAM-1 in rat endothelial cells (Figure 9.4 D&E). All sera 

were heated prior to experiments, to inactivate complement proteins and therefore exclude 

their role in endothelial cell activation. Prior adsorption of sera with M-protein antigens 

diminished the activating effect of immune sera on VCAM-1 expression, again demonstrating 

antibody binding and subsequent endothelial cell activation was via the IgG antigen binding 

region. As expected, the positive control TNF- induced significant upregulation of VCAM-

1. M-proteins alone were unable to induce upregulation of VCAM-1. These results confirmed 

that VCAM-1 upregulation in endothelial cells was due to specific antibody binding rather 

than complement mediated activation, or influenced by M-proteins directly. The results 
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support the findings of Gorton, et al. (2016) who reported increased VCAM-1 expression by 

RAOEC following stimulation with 2% heart inactivated serum from GAS rM5 immunised 

rats. VCAM-1 interacts with VLA-4 of circulating antigen specific T-cells to facilitate 

extravasation (Brunner, et al. 2013). 

 

We also observed the splenocyte suspensions restimulated with GAS and GGS M-protein 

also induced upregulation of VCAM-1 compared to splenocytes from control animals (Figure 

9.4 F). The result implies that activated T-cells can themselves influence the endothelium. 

When splenocytes and serum were added together, VCAM-1 expression was further 

increased, compared to addition of only antibodies or splenocytes alone (Figure 9.4 G). The 

results suggest that antibodies and activated T-cells favour each other to enhance endothelial 

cell activation.  

 

We observed significantly higher ICAM-1 expression in endothelial cells stimulated with 

antibodies and/or T-cells from rats injected with GAS rM5 or GGS Stg480 proteins compared 

to PBS injected control rats (Figure 9.5 D-G). Reduced ICAM-1 expression on endothelial 

cells incubated with adsorbed sera indicated that the antibody binding was via the Fab portion 

of IgG. Significantly higher ICAM-1 expression following TNF-α stimulation was 

anticipated as this was used as the positive control. M-proteins alone did not induce ICAM-1, 

indicated that the upregulation of ICAM was mediated by antibodies and/or T-cells specific 

to M-proteins. These results confirmed that ICAM-1 upregulation was due to specific 

antibody binding rather than complement mediated activation. Moreover, ICAM-1 expression 

was increased when endothelial cells were cultured with GAS and GGS M-protein specific 

splenocytes (Figure 9.5 F), indicating that activated T-cells can activate the endothelium by 

themselves. However, ICAM-1 expression was further increased when splenocytes and serum 

were added together, compared to either serum or splenocytes alone (Figure 9.5 G), 

suggesting that both antibodies and activated T-cells may work together to enhance 

endothelial cell activation. In ARF/RHD, ICAM-1 has been evaluated to follow the 

progression of inflammation, even when clinical and other laboratory test results are normal 

(Zhang, et al. 2005; Hafez, et al. 2013). Yetkin, et al. (2001) reported a high level of ICAM-1 

in the serum of patients with rheumatic mitral stenosis. Increased serum levels of ICAM-1 

were observed in patients at the beginning of ARF, with a peak in the active phase followed 

by a decline during remission to the inactive phase (Yaman, et al. 2003).  
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In this study, the mitral valve and myocardium sections from rats injected with GAS rM5 and 

GGS Stg480 were examined to detect in vivo expression of VCAM-1 and ICAM-1. 

Immunostaining of mitral valves from GAS and GGS M-protein injected animals revealed 

low numbers of VCAM-1 and ICAM-1 positive cells, with no positive staining observed in 

PBS injected animals. In contrast, sections of the myocardium from M-protein injected rats 

had increased VCAM-1 and ICAM-1 staining primarily surrounding the blood vessels and in 

the endocardial lining. Moreover, the cell adhesion molecular expression was higher in the 

myocardium of rats injected with GGS M-protein compared to GAS M-protein. It is unclear 

why such differences were observed but this suggests that the GGS M-proteins or the 

antibodies and T-cells directed to GGS M-proteins might be more able than GAS M-protein 

to activate endothelial cells to facilitate carditis. No staining was observed in tissues from 

PBS-injected rats. In a previous study, Kirvan, et al. (2014) reported increased upregulation 

of VCAM-1 in naïve Lewis rats following passive transfer of an NT5/6-specific T-cell line. 

In a separate study, Roberts, et al. (2001) reported VCAM-1 expression on the valvular 

endothelium of patients with valvular heart disease. Benvenuti, et al. (2000) reported similar 

findings in Chagas disease patients with severe cardiomyopathy.  

 

The migratory abilities of leukocytes are critically dependent on their phenotype and 

activation state, and shaped by multiple factors including the CAMs, their ligands, and 

chemoattractant cytokines (Hunt, et al. 1996; Sallusto, et al. 2000; Gerard and Rollins 2001; 

Moser and Loetscher 2001; Rose, et al. 2002; Marino, et al. 2003; Thomsen, et al. 2003). 

Although this study did not examine the phenotype of T-cells that crossed the endothelial 

monolayer, future studies are suggested to demonstrate type of migrated T-cells. In the 

current study, T-cell transmigration was demonstrated in vitro across the endothelial cell 

monolayer stimulated with serum antibodies from the rats injected with GAS rM5 and GGS 

Stg480. It was observed that migration was significantly higher for T-cells from M-protein 

injected than that of the non-immunised T-cells (i.e. PBS injected). We observed significantly 

higher T-cell migration across the endothelial monolayer stimulated with antibodies from rats 

injected with GAS rM5 or GGS Stg480 proteins (Figure 9.8). Reduced T-cell migration 

across endothelial cells incubated with M-protein adsorbed sera indicated that the trafficking 

of T-cells was facilitated by antibody binding to the endothelial cell. Significantly higher T-

cell migration was observed following TNF-α stimulation (positive control) of endothelial 

monolayers compared to unstimulated monolayers.  These results confirmed that T-cell 

migration to the heart tissues is facilitated by M-protein specific antibody binding to 
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endothelial cells and subsequent activation of endothelium. The results were supported by 

Gorton, et al. (2016) who reported increased infiltration of T-cells and macrophages in the 

myocardium and mitral valve of Lewis rats injected with GAS rM5 protein. Future studies 

are suggested to demonstrate rM5 or Stg480 specific T-cell adhesion to endothelial cells, 

transmigration, and infiltration into heart tissues in vivo in RAV model and patients with 

ARF/RHD. 

 

The current study did not analyse the VCAM-1 and ICAM-1 levels in the serum of rats 

injected with GAS rM5 or GGS Stg480 and endothelial cell culture supernatants following 

stimulation with rM5 or Stg480 and this could be considered a limitation of our study. The 

results of this study suggest that the mechanism of pathogenesis in rheumatic carditis begins 

at the heart endocardium. A significant positive correlation between GAS rM5 and GGS 

Stg480 specific antibodies and T-cells and cell adhesion molecules was observed. This study 

was unique in analysing the possible role of antibodies and T-cells in inducing heart lesions. 

Therefore, further clinical studies should be conducted to identify GAS rM5 or GGS Stg480 

specific antibodies and T-cells adhered to the endothelial lining of heart and phenotype of 

leukocytes migrated into the heart tissues of patients with ARF/RHD. In summary, the 

present findings support the hypothesis that the heart endothelium is activated by and binds to 

host antigen specific antibodies and activated T-cells, which then extravasate into the heart 

tissues potentially driving the inflammation of RHD. 

  



171 
 

CHAPTER 10 

GENERAL DISCUSSION AND CONCLUSIONS 

 

Acute rheumatic fever (ARF) and rheumatic heart disease (RHD) are autoimmune mediated 

diseases of humans caused by undesired immune activity to host tissues following group A 

Streptococcus (GAS) infection of the pharynx or skin. Several epidemiological studies have 

postulated that group G Streptococcus (GGS) might have a similar rheumatogenic potential to 

GAS and have contributed to the prevalence of ARF and RHD (Sriprakash and Hartas 1996; 

Haidan, et al. 2000; Davies, et al. 2005; O'Sullivan, et al. 2017). The current project was 

focused largely to investigate the role of GGS in the development of autoimmune mediated 

carditis. We investigated whether the response was similar to the immune responses and heart 

pathology in patients with ARF/RHD using a Lewis rat autoimmune valvulitis (RAV) model. 

In the current study, the RAV model was used because Lewis rats immunised with rM protein 

develop the hallmark histological features of human RF/RHD, both in the myocardial and in 

valvular tissue and these changes are associated with the generation of heart tissue cross-

reactive antibodies and T cells.  More extensive characterisation of cardiac function in the 

RAV model may lead to an even greater acceptance of this RAV model amongst researchers 

working on different aspects of RF/RHD. The studies described herein this thesis provide 

important scientific information regarding the possible contribution of GGS in causing 

ARF/RHD in humans. 

 

In children and young adults, ARF/RHD is the major cause of acquired heart disease 

particularly in the resource poor settings and is responsible for a significant number of child 

deaths (Remenyi, et al. 2013; Mirabel, et al. 2014). Although ARF/RHD has not been 

reported for many years in developed countries, discrete records of the disease still exist in 

Indigenous communities of Australia, New Zealand and many Pacific Island regions 

(Carapetis, et al. 2005b). A better understanding of the causal agent(s) that contribute to the 

disease process is important to reduce the burden of ARF/RHD. Understanding the 

underlying mechanisms involved in the pathogenesis of ARF/RHD will be helpful in taking 

preventive and therapeutic measures to reduce RHD occurrence. An effective and safe 

vaccine against streptococci will enable the eradication of RHD and other life-threatening 

infections caused by the streptococci such as necrotising fasciitis and streptococcal toxic 

shock syndrome. 
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The first task undertaken in this project was to explore the possible contribution of group G 

Streptococcus (GGS) in the development of autoimmune mediated carditis in a Lewis rat 

autoimmune valvulitis (RAV) model. Because GGS is not considered a major human 

pathogen, although it has many similar characteristics to group A Streptococcus or GAS (the 

only reported trigger for ARF/RHD), we hypothesised that GGS might have similar 

immunogenic properties to induce antibody and T-cell responses and cause inflammation of 

the cardiac tissues. We injected Lewis rats with whole-killed (WK) GGS strain NS3396 or 

GGS M-protein, Stg480. In separate experiments, Lewis rats were primed with Stg480 and 

boosted with GAS rM5 proteins. GAS rM5 protein has previously been reported to induce 

carditis in animal model studies (Gorton, et al. 2009; Kirvan, et al. 2014; Gorton, et al. 2016). 

Alternatively, rats were primed with rM5 and boosted with Stg480. 

 

Classically, throat infection by GAS has been considered a prerequisite for the development 

of ARF/RHD. However, there are evidence of ARF/RHD to be caused following GAS skin 

infections (Williamson, et al. 2015; Williamson, et al. 2016; Frost, et al. 2017; Ly, et al. 

2017; Suzuki, et al. 2017). To mimic the development of ARF/RHD following skin infections 

with GAS and/or GGS we injected Lewis rats through the subcutaneous route. However 

future studies are necessary to demonstrate immune responses to streptococcal and host 

proteins and development of carditis following pharyngeal infection of GGS. 

 

We report here that WK-GGS or Stg480 protein independently or together with WK-GAS 

and GAS rM5 induce mitral valvulitis and myocarditis as evidenced by histological 

examination. This was confirmed by the presence of mitral valvular functional changes and 

myocardial conduction abnormalities indicated by prolonged P-R intervals using ECG and 

echo of rats. The antibodies and T-cells from the rats injected with WK-GGS or Stg480 also 

recognise WK-GAS and rM5 protein. Additionally, these antibodies also could recognise 

porcine cardiac myosin that has 97% amino acid sequence homology with human cardiac 

myosin. In ARF/RHD, antibody cross-reactivity between GAS M-proteins and human cardiac 

myosin is considered as the key event in the development of heart damage (Cunningham 

2006; Carapetis, et al. 2016). Together these results indicate that GGS has a similar potential 

to GAS to trigger carditis. In addition, a recent clinical case study reported RHD in a child 

with a previous history of group C streptococcal pharyngitis (Chandnani, et al. 2015). 

Therefore, future studies are suggested to identify other non-group A streptococci that have 

potential to cause chronic rheumatic carditis. Moreover, isolation and identification of GGS 
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M-protein specific antibodies and memory T-cells from the serum and heart sections of 

patients with ARF/RHD are necessary to confirm the link between GGS and RHD. 

Identification of immunogenic peptides of GAS and GGS having shared cardiogenic 

epitopes, is proposed to develop a more precise serological assay for evidence of preceding 

GAS/GGS infection. This will also help to develop an effective vaccine to reduce the 

prevalence of RHD and other deadly streptococcal infections.  

 

Cytokines reveal the phenotype of immune cells involved in a disease process. In ARF/RHD, 

majority of the T-cells isolated from the heart valves and myocardium of patients was IFN-γ 

and IL-4 producing respectively (Guilherme, et al. 2004; Fae, et al. 2006; Guilherme and 

Kalil 2007; Guilherme, et al. 2011a). Interferon (IFN)-γ helps to recruit macrophages. Higher 

number of IFN-γ producing T-cells in the mitral valve represented the progression of 

inflammation and fibrosis. However, predominated IL-4 producing T-cells in the 

myocardium represented myocardial healing as IL-4 has a regulatory effect (Bilik, et al. 

2016). In another study, high concentrations of IL-17 in the serum of Lewis rats injected with 

inactivated GAS and high expression of IL-17 in the mitral valves of rats and human patients 

was observed (Wen, et al. 2015). Interleukin (IL)-17 is important in autoimmune diseases 

where fibrosis is a sequela. High amount of IFN-γ and IL-17A in our study suggest that IFN-

γ/IL-17A might be an important pathway to T-cell recruitment to the heart tissues. Therapy 

aimed at neutralising the effect of these two inflammatory cytokines or enhancement of IL-4 

secretion may have potential in preventing the progression of carditis leading to congestive 

cardiac failure. 

 

Another aim of this project was to establish whether it was possible to passively transfer 

carditis to naïve syngeneic rats using serum and/or memory T-cells from GAS rM5 injected 

rats. Subsequently to determine whether these cells traffic to the heart or the antibodies 

facilitate host immune cell migration to develop carditis. We observed that the recipient rats 

had inflammation of the mitral valve and myocardium and developed lesions similar to 

patients with ARF/RHD. However, further in situ studies are warranted to identify the 

inflammatory cells involved in carditis using specific markers, and to understand whether 

these autoreactive T-cells are from the donor or host rats. One limitation of this study was we 

were unable to monitor carditis at different time points following passive transfer. This would 

have enabled us to determine the source of the migrated T-cells, role of antibodies, and time 

taken to develop carditis. Understanding the antibodies and T-cells that contribute to the 
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disease process will be essential for designing immunotherapeutic approaches aimed at 

neutralising or removing the deleterious antibodies or T-cells. 

 

Using in vivo experiments, the central role of antibodies and T-cells from rats injected with 

rM5 or Stg480 proteins, in the activation of endothelial cells and upregulation of adhesion 

molecules (CAMs) and facilitation of T-cell migration was investigated. Expression and 

upregulation of CAMs, for example VCAM-1 and ICAM-1 was also studied in vivo using rat 

heart sections. The findings indicated that both the antibodies and T-cells independently 

could induce upregulation of VCAM-1/ICAM-1. Therefore, we propose that the heart 

damage in RHD might be mediated by direct interaction of antigen specific effector T-cells to 

the heart endothelium (Figure 10.1). Alternatively, antigen specific antibodies mediate 

endothelial cell activation followed by transmigration of T-cells. Advanced studies 

demonstrating dynamics of CAMs expression at different dosages/concentrations of 

antibodies and T-cells are suggested. Monitoring CAMs concentration in serum from rats and 

endothelial cell culture supernatants stimulated with antibodies and/or T-cells could mimic 

clinical studies to identify markers of heart damage progression (Yetkin, et al. 2001; Yaman, 

et al. 2003; Zhang, et al. 2005; Hafez, et al. 2013). Neutralisation of VCAM-1 or ICAM-1 

may also have therapeutic potential by blocking the pathway of T-cell trafficking to the heart 

tissues.  

 

The currently accepted mechanism of rheumatic carditis involves generation of antibodies 

against GAS carbohydrate N-acetylglucosamine (GlcNAc) or M-protein that bind with 

endothelial cells in the endocardium of the heart (Goldste1N, et al. 1967; Dudding and Ayoub 

1968; Cunningham, et al. 1986; Galvin, et al. 2002; Carapetis, et al. 2016; Gorton, et al. 

2016; Guilherme, et al. 2017). Antibody binding to endothelial cells induces upregulation of 

VCAM-1 that subsequently binds with activated T-cells via very late antigen (VLA)-4 and 

facilitates migration of T-cells into heart tissues (Yamauchi, et al. 2004; Carapetis, et al. 

2016). However, our findings propose that the activated T-cells against GAS or GGS M-

protein also have an independent potential to activate endothelial cells and to induce 

upregulation of VCAM-1 and ICAM-1 in addition to GAS/GGS specific antibodies (Figure 

10.1). A recent clinical study reported the occurrence of ARF/RHD following GGS 

pharyngitis supporting our hypothesis (O'Sullivan, et al. 2017). The VCAM-1/VLA-4 and 

ICAM-1/LFA-1 binding may facilitate transmigration of M-protein specific T-cells into the 

valve and myocardium tissues. 
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Figure 10.1 Proposed mechanism of development of carditis in ARF/RHD. (A) The 
antibodies and/or T-cells generated following GAS/GGS infection of pharynx or skin bind 
with vascular endothelial layer of the valve and myocardium and activate endothelium. IFN-γ 
and IL-17A mediate T-cell reactivity with endothelial cells. (B) The activated endothelial 
cells upregulate VCAM-1 and ICAM-1 that bind with very late antigen (VLA)-4 and 
lymphocyte function associated antigen (LFA)-1 of effector T-cells. (C) The endothelium-T-
cell interaction increases the permeability of endothelial layer and T-cells migrate to the heart 
tissues through this pathway. (D) Increased T-cell transmigration causes mitral valvulitis, 
form Aschoff like nodule in the myocardium and nodular lesions in the mitral leaflets that 
result in mitral regurgitation and cardiac failure. 
 

In developing and middle-income countries, ARF/RHD continue to be significant problems 

affecting children and young adults. The disease not only causes high mortality but impacts 

on the quality of life of many more who survive. Unless the precise mechanisms of the 

disease process are identified, measures to reduce the burden of ARF/RHD including better 

diagnostics, treatment of disease progression or prevention based vaccine strategies will not 

be possible. Furthermore, the development of affordable therapeutics and or vaccines against 

this post streptococcal autoimmune sequelae has to be a priority to deliver equitable health 

care to the developing world. Currently, for primary prophylaxis of ARF/RHD, only 

individuals confirmed to have GAS infections are provided with antibiotic therapy (Jack, et 

al. 2015). Therefore, the lack of awareness that GGS or other potential non-GAS streptococci 

could trigger ARF/RHD, may result in under treatment of pharyngeal and/or skin infections, 

increasing the likelihood of ARF/RHD in endemic areas. Our experimental observations 

suggest that repetitive infections with GAS and/or GGS have the potential to develop 

autoimmune mediated heart damage.  
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APPENDIX 1 

MEDIA AND REAGENTS 

 

Unless otherwise stated all chemicals of the highest grade, glass wares and plastic 

consumables were purchased from the following companies: 

• Chemicals from Sigma, Australia. 

• Bacterial culture media from Sigma and Acumedia, Australia. 

• Plastic ware from Sarstedt, Australia.  

• Micro plates and cell culture flasks from Thermo Scientific, Australia. 

 
1.1 General buffers and solutions 

1.1.1 Phosphate buffered saline (PBS, 10× stock, 1000 ml) 

• NaCl (#CM0982B, Thermo Scientific, Australia): 80 g 

• KH2PO4 (#10203, AnalaR, Australia): 2 g 

• Na2HPO4 (#ALF011592.36, Thermo Scientific, Australia): 11.5 g 

• Double dH2O: to 1000 ml 

Combine ingredients with stirring until fully dissolved and adjust pH to 7.4. 

Autoclave at 121°C for 15 min. For working solution, add 100 ml of 10× stock 

to 900 ml double distilled water. 

 

1.1.2 Tris buffered saline (TBS, 10× stock, 1000 ml) 

• NaCl: 80 g 

• KCl (#10198, AnalaR, Australia): 2 g 

• Tris base (#2311-500G, Thermo Scientific, Australia): 30 g 

• Double dH2O: to 1000 ml 

Combine ingredients in 800 ml water and adjust pH to 6.8 using HCl. 

Autoclave at 121°C for 15 min. For working solution, add 100 ml of 10× stock 

to 900 ml double distilled water. 

 

1.1.3 0.3% H2O2, 70% methanol in 1× TBS (100 ml) 

• H2O2 (30%) (#10366, Merck Millipore, Australia): 1 ml 

• Methanol (#2.5LTPL, POCD Healthcare, Australia): 69 ml 

• TBS (1×, see 1.1.2): 30 ml. Mix well. 
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1.1.4 Tween-20 (0.1% in 1× TBS, 1000 ml) [50 mM Tris-Cl, pH 7.5, 150 mM NaCl] 

• Tris: 6.05 g 

• NaCl: 8.76 g 

• dH2O: to 800 ml 

Dissolve ingredients, adjust pH to 7.5 with 1 M HCl and make volume up to 

1000 ml with distilled water. TBS is stable at 4°C for 3 m. 

 

1.1.5 Paraformaldehyde (4% in PBS, 100 ml) 

• PBS (1×, see 1.1.1): 100 ml 

• Paraformaldehyde powder (#C007, ProSciTech, Australia): 4 g 

Boil until fully dissolved, use fume hood, filter sterilise (0.45 µm). Store at 2-

8°C for up to 1 m. 

 

1.1.6 Sodium azide (0.02%, 100 ml) 

• Sodium azide (#SA189, Chem-Supply Pty Ltd, Australia): 2 g 

• dH2O: to 100 ml 

Stir until fully dissolved, filter sterilise (0.45 µm). Dilute 1:100 in distilled 

water to make 0.02%. 

 

1.1.7 Permeabilisation solution (1×, 1% triton-PBS, 25 ml) 

• Triton X-100: 0.25 ml 

• PBS (1×, see 1.1.1): 24.75 ml 

Mix well, filter sterilise (0.45 µm). 

 

1.1.8 Trypan blue stain (0.4%, 10 ml) 

• Trypan blue crystal: 0.04 g 

• dH2O: 10 ml 

Mix well, filter sterilise (0.22 µm). 

 

1.2 Bacterial broths and agars 

1.2.1 Todd Hewitt broth with 0.2% yeast (THYB, 1000 ml) 

• Todd Hewitt base (#7161, Sigma, Australia): 36.4 g 

• Yeast extract: 2 g 
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• dH2O: to 1000 ml 

Combine ingredients with stirring until completely dissolved. Autoclave at 

121°C for 15 min. Store at 4°C. 

 

1.2.2 Terrific broth (1000 ml) 

• Tryptone: 12 g 

• Yeast: 24 g 

• K2HPO4: 9.4 g 

• KH2PO4 (#10203, AnalaR, Australia): 2.2 g 

• Glycerol: 4 ml 

• dH2O: to 1000 ml 

Combine ingredients with stirring until completely dissolved and adjust pH to 

7.2. Autoclave at 121°C for 15 min. Store at 4°C. 

 

1.2.3 Luria-Bertani (LB) medium (1000 ml) 

• Tryptone: 10 g 

• Yeast extract: 5 g 

• NaCl: 10 g 

• dH2O: to 1000 ml 

Combine ingredients with stirring until completely dissolved. Autoclave at 

121°C for 15 min. Store at 4°C. 

 

1.2.4 Luria-Bertani (LB) agar (500 ml) 

• LB medium (#7213, Acumedia, Australia): 500 ml 

• Agar technical No. 3 (#LP0013, Oxoid Ltd, Australia): 15 g 

• Antibiotics: as required 

Dissolve agar base in LB medium by boiling for 15 min. Autoclave at 121°C 

for 15 min, cool to 50°C and aseptically add antibiotics before pouring into 

petri dishes. Store at 4°C. 

 

1.2.5 Sheep blood agar (5%, 1000 ml) 

• Blood agar base no. 2 (#7266, Acumedia, Australia): 40 g 

• Sheep blood, sterile defibrinated: 50 ml 
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• dH2O: to 1000 ml 

Dissolve agar base in water and boil for 15 min until agar has completely 

dissolved. Autoclave at 121°C for 15 min, cool to 50°C and aseptically add 

blood and mix gently swirling and pour into petri dishes. Store at 4°C. 

 

1.3 Buffers and reagents for protein purification 

1.3.1 Lysis buffer (1000 ml) 

• NaH2PO4: 6.9 g (final concentration 50 mM) 

• NaCl: 17.54 g (final concentration 300 mM) 

• Imidazole: 0.68 g (final concentration 10 mM 

• Double dH2O: to 1000 ml 

Combine ingredients with stirring until completely dissolved and adjust pH to 

8.0 using NaOH. Autoclave at 121°C for 15 min. Store at 4°C. 

 

1.3.2 Wash buffer (1000 ml) 

• NaH2PO4: 6.9 g (final concentration 50 mM) 

• NaCl: 17.54 g (final concentration 300 mM) 

• Imidazole: 1.36 g (final concentration 20 mM 

• Double dH2O: to 1000 ml 

Combine ingredients with stirring until completely dissolved and adjust pH to 

8.0 using NaOH. Autoclave at 121°C for 15 min. Store at 4°C. 

 

1.3.3 Elution buffer (100 ml) 

• NaH2PO4: 0.69 g (final concentration 50 mM) 

• NaCl: 1.754 g (final concentration 300 mM) 

• Imidazole: 0.136 g (final concentration 20 mM 

• Double dH2O: to 100 ml 

Combine ingredients with stirring until completely dissolved and adjust pH to 

8.0 using NaOH. Autoclave at 121°C for 15 min. Store at 4°C. 

 

1.3.4 Isopropyl ß-D-1-thiogalactopyranoside (IPTG, 1 M) 

• IPTG (#R0392, Thermo Scientific, Australia): 2.383 g 

• Double dH2O: to 10 ml 
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Dissolve IPTG thoroughly in water. Filter sterilise (22 µm) and store in 1 ml 

aliquots at -20°C. 

 

1.3.5 Lysozyme (100 mg/ml) 

• Lysozyme (#1243004, Roche, Australia): 1 g 

• Double dH2O: to 10 ml 

Dissolve lysozyme thoroughly in water. Filter sterilise (0.22 µm) and store in 

1 ml aliquots at -20°C. 

 

1.3.6 NaOH (1 M, 1000 ml) 

• NaOH (solid): 40 g 

• dH2O: enough to dissolve completely 

Add more distilled water to make the volume 1000 ml. Heat will be generated 

that may affect volume, cool and be slow.  

 

1.4 Antibiotic solutions 

1.4.1 Ampicillin (100 mg/ml) 

• Ampicillin (#A9518, Sigma, Australia): 10 g 

• Double dH2O: 100 ml 

Dissolve ampicillin in the water. Filter sterilise (0.22 µm) and store at -20°C 

in 1 ml aliquots. 

 

1.4.2 Kanamycin (25 mg/ml) 

• Kanamycin sulphate (#K1377, Sigma, Australia): 2.5 g 

• Double dH2O: 100 ml 

Dissolve kanamycin in the water. Filter sterilise (0.22 µm) and store at -20°C 

in 1 ml aliquots. 

 

1.5 Reagents for electrophoresis 

1.5.1 Tris-HCl (0.5 M, pH 6.8, 50 ml) 

• Tris: 3 g 

• dH2O: up to 50 ml 

Adjust pH 6.8 with HCl, autoclave and store at room temperature. 
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1.5.2 Tris-HCl (1.5 M, pH 8.8, 30 ml) 

• Tris: 5.4 g 

• HCl (concentrated): 0.4 ml 

• dH2O: 30 ml 

Adjust pH 8.8 with HCl, autoclave and store at room temperature. 

 

1.5.3 SDS solution (10%, 50 ml) 

• SDS: 5 g 

• dH2O: 50 ml 

Mix well. Heat in the water bath for well-mixing. Sterilise by filter 

sterilisation (0.45µm). 

 

1.5.4 Ammonium persulphate solution (APS, 10%, 100 ml)  

• Ammonium persulphate (#161-0700, Bio-rad, Australia): 100 mg 

• dH2O: 100 ml 

Combine ingredients, mix well. Use within 24 h. 

 

1.5.5 Separating gel 12% (1 gel, 5 ml) 

• Acrylamide/bis-acrylamide (30% w/v) (#A9926, Sigma, Australia): 2 ml 

• Tris (1.5 M, pH 8.8): 1.3 ml 

• SDS solution (10%, w/v, see 1.5.3): 50 µl 

• Double dH2O: 1.6 ml 

• APS solution (10%, w/v, see 1.5.4): 50 µl 

• TEMED (#T9281-25ML, Sigma, Australia): 5 µl 

Combine ingredients thoroughly except APS and TEMED. Add APS and 

TEMED immediately prior to pouring the gel. 

 

1.5.6 Stacking gel (1 gel, 2.5 ml) 

• Acrylamide/bis-acrylamide (30%, w/v): 0.335 ml 

• Tris 0.5 M, pH 6.8): 0.625 ml 

• SDS solution (10%, w/v, see 1.5.3): 25 µl 

• Double dH2O: 1.49 ml 

• APS solution (10%, w/v, see 1.5.4): 25 µl 
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• TEMED: 1 µl 

Combine ingredients thoroughly except APS and TEMED. Add APS and 

TEMED immediately prior to pouring the gel. 

 

1.5.7 Tris-HEPES running buffer (1×, 1000 ml) 

• Tris: 12.1 g 

• HEPES: 23.8 g 

• SDS: 1 g (or 10 ml of 10% solution) 

• dH2O: 1000 ml 

 

1.5.8 Coomassie destaining solution (1000 ml) 

• Methanol: 100 ml 

• Glacial acetic acid: 70 ml 

• dH2O: 830 ml 

Combine ingredients in fume hood. Store at room temperature away from 

direct light. 

 

1.6 Cell culture media and reagents 

(All media preparation was carried out in a biological laminar flow hood using ascetic 

techniques) 

1.6.1 Transport medium (500 ml) 

• RPMI 1640: 450 ml 

• Penicillin: 5 ml (final concentration 100 IU/ml) 

• Streptomycin: 5 ml (final concentration 100 µg/ml) 

Mix antibiotics thoroughly into RPMI and store at 4°C. 

 

1.6.2 Rat splenic MNC culture medium (2×, 50 ml) 

• Transport medium (with penicillin and streptomycin, see 1.6.1): 45.5 ml 

• L-glutamine (200 mM stock): 1 ml (final concentration 2 mM) 

• HEPES buffer (1 M stock): 1 ml (final concentration 10 mM) 

• Rat serum: 2.5 ml (final concentration 2.5%) 

Mix all ingredients thoroughly and store at 4°C until required. Use within 24 

h. 



231 
 

1.6.3 Heat inactivated rat serum 

Heat rat serum at 56°c for 30 min. Check sterility by streaking onto blood agar and 

incubating at 37°C with 5% CO2 for two days. Store at -20°C. 

 

1.6.4 ConA (5 µg/ml, 400 µl) 

• Stock ConA (93 mg/ml): 20 µl 

• RPMI: 380 µl 

Prepare in a safety cabinet.  

 

1.6.5 Staining buffer (100 ml) 

• PBS (1×, see 1.1.1): 97.95 ml 

• Foetal bovine serum: 2 ml 

• NaN3: 0.05 ml 

Adjust pH 7.4, filter sterilise using a 0.22 µm filter. 

 

1.6.6 Freezing medium 

• DMSO: 5-10% 

• Foetal bovine serum: 20% 

• Endothelial cell culture medium: 70-75% 

Filter sterilise growth medium and FBS using a 0.22 µm filter, add DMSO (do 

not filter, it will dissolve the cellulose acetate membrane). Aliquot into tubes 

and store at -80°C for up to one year. 

 

1.7 Reagents for ELISA 

1.7.1 Carbonate bicarbonate coating buffer (1000 ml) 

• Na2CO3: 3.18 g 

• NaHCO3: 5.86 g 

• NaN3: 0.4 g 

• dH2O: 950 ml 

Adjust pH 9.6 with HCl. Add more dH2O to make 1000 ml. Autoclave and 

store at 4°C. 

 
1.7.2 Washing solution (1× PBS, pH 7.4, containing 0.05% Tween-20, 1000 ml) 
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• PBS (1×, see 1.1.1): 1000 ml 

• Tween-20: 0.5 ml 

Mix well by gentle swirling the bottle. Use immediately or store at 4°C. 

 
1.7.3 Blocking buffer or ELISA diluent (1%, 100 ml) 

• Washing solution (see 1.7.2): 100 ml 

• Bovine serum albumin: 1 gm 

Mix the ingredients thoroughly, filter sterilise (0.22 µm). Use immediately or 

store at 4°C. 
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APPENDIX 2 

MANUFACTURER/SUPPLIER ADDRESSES 

 
Company Address 

Acumedia : Michigan, USA 

AD Instrument : Gladstone Rd, Castle Hill, Sydney, Australia 

Amersham Bioscience : Australia 

AnalaR : Victoria, Australia 

Astral Scientific Pty. Ltd. : Taren Point, New South Wales, Australia 

Australian Biostain : Traralgon East, Victoria, Australia 

Australian Biosearch : Wangara, Western Australia, Australia 

BD FACS : Netherlands 

BD Bioscience : San Diego, California, USA 

Becton Dickinson Bioscience : San Jose, California, USA 

BioLegend : San Diego, California, USA 

Bio-rad Laboratories : Regents Park, New South Wales, Australia 

Bio-strategy laboratory products : Tingalpa, Queensland, Australia 

Cell bioscience : Heidelberg, Victoria, Australia 

Chattagnooga, DJO Global Pty. Ltd. : Normanhurst, New South Wales, Australia 

Chem-Supply Pty Ltd  : Bedford St, Gillman South Australia, Australia 

Corning Costar Corporation  : Cambridge, Massachusetts, USA 

eBioscience : San Diego, USA 

Eppendorf : Hamburg, Germany 

G Bioscience : Page Avenue St. Louis, Missouri, U.S.A. 

GE Healthcare : Baulkham Hills, New South Wales, Australia 

Genlantis PrimaPure : San Diego, USA 

Goldmix Stockfeeds : Queensland, Australia 

Gradipore, Inc. : Frenchs Forest, New South Wales, Australia 

GraphPad Software Inc : La Jolla, California, USA 

Invitrogen Australia Pty Ltd : Mt Waverley, Victoria, Australia 

Jackson Immunoresearch : West Grove, Pennsylvania, USA 

Kingfisher Biotech, INC. : Saint Paul, Minnesota, USA 

  
 



234 
 

Company Address 

KPL : Milford, USA 

LASER Animal Health : Fison Avenue West, Eagle Farm, Queensland, 
Australia 

Life Technologies : Caribbean Drive, Scoresby, Victoria, Australia 

Millipore corporation : North Ryde, New South Wales, Australia 

Nunc : Roskilde, Denmark 

NuSep : Homebush West, New South Wales, Australia 

Olympus : Macquarie Park, New South Wales, Australia 

Perkin Elmer : Glen Waverley, Victoria, Australia 

Pierce Biotechnology : Rockford, IL, USA 

ProSciTech : Queensland, Australia 

Qiagen : Doncaster, Victoria, Australia 

Roche : Millers Point, New South Wales, Australia 

Sapphire bioscience : Redfern, New South Wales, Australia 

Sarstedt : Ingle Farm, South Australia, Australia 

Shandon Southern Products Ltd : Runcorn, Cheshire, UK 

Sigma Alirich : Castle Hill, New South Wales, Australia 

Terumo : Somerset, New Jersey, USA 

Thermo fisher scientific : Scoresby, Victoria, Australia 

Vector Laboratories : Burlingame, USA 

VWR International Pty Ltd : Brisbane, Queensland, Australia 
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APPENDIX 3 

HISTOLOGICAL STAINING PROTOCOLS 

 

3.1 Haematoxylin Eosin (H&E) Staining 

After preparation of sections: 

• De-paraffinise sections through 2 changes of xylene, 2 min each. 

• Dehydrate sections through a series of graded alcohols (2 min > 1 min > 1 min). 

• Wash in running tap water for 1 min.  

• Stain in Mayer’s hematoxylin solution for 8 min. 

• Wash in running tap water for 30 sec. 

• Wash in Scott’s Tap Water substitute for 30 sec. 

• Wash running tap water for 2 min. 

• Stain in Eosin 4 min. 

• Differentiate Eosin by 4/5 dips in running tap water. 

• Rinse in alcohol, 10 dips. 

• Rinse in alcohol, 10 dips. 

• Alcohol 1 min. 

• Xylene 2 min. 

• Xylene 1 min. 

• Xylene until cover slipped. 

• Mount sections with DPX  

• Get rid of bubbles with a wooden stick 

• Place in 37°C incubator for ~48hrs 

• Examine under microscope 

- Nuclei: blue 

- Cytoplasm: pink to purple 

 

3.2 Masson’s trichrome staining 

After preparation of sections: 

• De-paraffinise sections through 2 changes of xylene, 2 min each. 

• Dehydrate sections through a series of graded alcohols (2 min > 1 min > 1 min). 

• Wash in running tap water for 1 min.  

• Stain in Celestine blue for 5 min. 
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• Rinse in water. 

• Stain in Mayer’s hematoxylin solution for 5 min. 

• Wash in running tap water for 30 sec. 

• Wash in Scott’s Tap Water substitute for 30 sec. 

• Wash running tap water for 2 min. 

• Stain with Acid Fuchin (Solution A) for 5 min. 

• Rinse in distilled water. 

• Treat with Phosphomolybdic Acid (Solution B) for 5 min. 

• Drain. 

• Stain with Methyl Blue (Solution C) for 2-5 min. 

• Rinse in distilled water. 

• Treat with 1% acetic acid for 2 min. 

• Rinse quickly. 

• Rinse in alcohol, 10 dips. 

• Rinse in alcohol, 10 dips. 

• Alcohol 1 min. 

• Xylene 2 min. 

• Xylene 1 min. 

• Xylene until cover slipped. 

• Mount sections with DPX  

• Get rid of bubbles with a wooden stick 

• Place in 37°C incubator for ~48hrs 

• Examine under microscope 

- Nuclei: blue/black 

- Cytoplasm, muscle, RBC: red 

- Collagen: blue 
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APPENDIX 4 

STATISTICAL ANALYSIS OF CHAPTER 4 

 

4.1 Statistical analysis of Figure 4.1 

 
 
4.2 Statistical analysis of Figure 4.9 
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4.3 Statistical analysis of Figure 4.10 
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APPENDIX 5 

SUPPLEMENTARY FIGURES AND STATISTICAL ANALYSIS OF CHAPTER 5 

 

 
Supplementary Figure 5.1 Antibodies generated following exposure to GGS Stg480 and 
GAS rM5 reacted with WK-GAS, WK-GGS and GAS and GGS M-proteins. Serum IgG in 
rats injected short term and long term with GGS Stg480 and GAS rM5 reacted with surface 
antigens of WK-GAS (A) and WK-GGS (B). Similarly, serum IgG in rats injected with GGS 
Stg480 reacted with GAS rM5 (C). Anti-GAS rM5 antibodies also reacted significantly 
against GGS Stg480 (D). In all experiments, serum from PBS injected rats was used as 
control. Error bars represent standard errors of the mean (SEM). Statistical difference by one-
way ANOVA with Tukey’s post hoc multiple comparison; ***p<0.001, ****p<0.0001. 
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Supplementary Figure 5.2 Antibodies generated following exposure to GGS Stg480 and 
GAS rM5 cross-reacted with cardiac myosin and collagen I. (A) Antisera at 1:100 dilution 
raised in rats following injection with GGS Stg480 and GAS rM5 reacted against cardiac 
myosin though the difference between absorbance values of sera from rats injected long term 
with PBS and GGS Stg480 was not significant. (B) Reactivity to collagen I was also observed 
though the sera from GGS Stg480 and GAS rM5 injected long term rats was not significantly 
higher compared to the sera from PBS injected control rats. In all experiments PBS injected 
control rats were included. Error bars represent standard errors of the mean (SEM). Statistical 
difference by one-way ANOVA with Tukey’s post hoc multiple comparison (A, B left panel) 
and Kruskal-Wallis test (B right panel); *p<0.05, **p<0.01, ns: not significant. 
 

 
Supplementary Figure 5.3 Splenic T-cells from GGS Stg480 and GAS rM5 injected rats 
proliferate in response to GGS and GAS M-proteins. The T-cells from rats injected short term 
and long term with GGS Stg480 proliferated in response to GAS rM5 though the proliferative 
response from long term injected rats was not significant compared to PBS injected control 
rats (A). The anti-GAS rM5 T-cells also proliferated significantly in response to GGS Stg480 
(B). The T-cell proliferative response to GAS rM5 and GGS Stg480 was minimum in control 
rats injected with PBS. Error bars represent standard errors of the mean (SEM). Statistical 
difference by one-way ANOVA with Tukey’s post hoc multiple comparison (A, B left panel) 
and Kruskal-Wallis test (B right panel); *p<0.05, **p<0.01, ***p<0.001, ns: not significant. 
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5.1 Statistical analysis of Figure 5.1 

Panel A (short term exp.): Normality test and Tukey’s multiple comparisons test 

  
Panel A (long term exp.): Normality test and Tukey’s multiple comparisons test 

  
Panel B (short term exp.): Normality test and Tukey’s multiple comparisons test 

 
Panel B (long term exp.): Normality test and Tukey’s multiple comparisons test 

 
Panel C (short term exp.): Normality test and Tukey’s multiple comparisons test 
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Panel C (long term exp.): Normality test and Tukey’s multiple comparisons test 

 
Panel D (short term exp.): Normality test and Tukey’s multiple comparisons test 

 
Panel D (long term exp.): Normality test and Tukey’s multiple comparisons test 

 
 

5.2 Statistical analysis of Figure 5.2 

Panel A (short term exp.): Normality test and Tukey’s multiple comparisons test 

 
Panel A (long term exp.): Normality test and Tukey’s multiple comparisons test 
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Panel B (short term exp.): Normality test and Tukey’s multiple comparisons test 

 
Panel B (long term exp.): Normality test and Tukey’s multiple comparisons test 

 
Panel C (short term exp.): Normality test and Tukey’s multiple comparisons test 

  
Panel C (long term exp.): Normality test and Tukey’s multiple comparisons test 

  
Panel D (short term exp.): Normality test and Tukey’s multiple comparisons test 
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Panel D (long term exp.): Normality test and Tukey’s multiple comparisons test 

  
 

5.3 Statistical analysis of Figure 5.3 

Panel A (short term exp.): Normality test and Mann-Whitney test 

   
Panel A (long term exp.): Normality test and Mann-Whitney test 

   
Panel B (short term exp.): Normality test and Mann-Whitney test 
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Panel B (long term exp.): Normality test and Mann-Whitney test 

   
Panel C (short term exp.): Normality test and Mann-Whitney test 

   
Panel C (long term exp.): Normality test and Mann-Whitney test 

   
Panel D (short term exp.): Normality test and Mann-Whitney test 
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Panel D (long term exp.): Normality test and Mann-Whitney test 

   
 

5.4 Statistical analysis of Figure 5.4 

Panel A: Normality test and Tukey’s multiple comparison test 

   
Panel B (short term exp.): Normality test and Tukey’s multiple comparison test 

  
Panel B (long term exp.): Normality test and Tukey’s multiple comparison test 
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Panel C: Normality test and Tukey’s multiple comparison test 

  
Panel D (short term exp.): Normality test and Tukey’s multiple comparison test 

  
Panel D (long term exp.): Normality test and Tukey’s multiple comparison test 

  
 

5.5 Statistical analysis of Figure 5.5 

Panel A: Normality test and Tukey’s multiple comparison test 

  
Panel B (short term exp.): Normality test and Tukey’s multiple comparison test 
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Panel B (long term exp.): Normality test and Tukey’s multiple comparison test 

  
Panel C: Normality test and Tukey’s multiple comparison test 

  
Panel D (short term exp.): Normality test and Tukey’s multiple comparison test 

  
Panel D (long term exp.): Normality test and Tukey’s multiple comparison test 

  
 

5.6 Statistical analysis of Figure 5.6 

Panel A: Normality test and Tukey’s multiple comparison test 
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Panel B (short term exp.): Normality test and Tukey’s multiple comparison test 

  
Panel B (long term exp.): Normality test and Tukey’s multiple comparison test 

  
Panel C: Normality test and Tukey’s multiple comparison test 

  
Panel D (short term exp.): Normality test and Tukey’s multiple comparison test 

  
Panel D (long term exp.): Normality test and Tukey’s multiple comparison test 
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5.7 Statistical analysis of Figure 5.7 

Panel A: Normality test and Tukey’s multiple comparison test 

  
Panel B (short term exp.): Normality test and Tukey’s multiple comparison test 

  
Panel B (long term exp.): Normality test and Tukey’s multiple comparison test 

  
Panel C: Normality test and Tukey’s multiple comparison test 

  
Panel D (short term exp.): Normality test and Tukey’s multiple comparison test 
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Panel D (long term exp.): Normality test and Tukey’s multiple comparison test 

  
 

5.8 Statistical analysis of Supplementary Figure 5.1 

Panel A (short term exp.):  Normality test and Tukey’s multiple comparison test 

  
Panel A (long term exp.):  Normality test and Tukey’s multiple comparison test 

  
Panel B (short term exp.):  Normality test and Tukey’s multiple comparison test 

  
Panel B (long term exp.):  Normality test and Tukey’s multiple comparison test 
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Panel C (short term exp.):  Normality test and Tukey’s multiple comparison test 

  
Panel C (long term exp.):  Normality test and Tukey’s multiple comparison test 

  
Panel D (short term exp.):  Normality test and Tukey’s multiple comparison test 

  
Panel D (long term exp.):  Normality test and Tukey’s multiple comparison test 

  
 

5.9 Statistical analysis of Supplementary Figure 5.2 

Panel A (short term exp.):  Normality test and Tukey’s multiple comparison test 
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Panel A (long term exp.):  Normality test and Tukey’s multiple comparison test 

  
Panel B (short term exp.):  Normality test and Tukey’s multiple comparison test 

  
Panel B (long term exp.):  Normality test and Kruskal-Wallis test  

  
 

5.10 Statistical analysis of Supplementary Figure 5.3 

Panel A (short term exp.):  Normality test and Tukey’s multiple comparison test 

  
Panel A (long term exp.):  Normality test and Tukey’s multiple comparison test 
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Panel B (short term exp.):  Normality test and Tukey’s multiple comparison test 

  
Panel B (long term exp.):  Normality test and Kruskal-Wallis test 
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APPENDIX 6 

SUPPLEMENTARY FIGURES AND STATISTICAL ANALYSIS OF CHAPTER 6 

 

 
Supplementary Figure 6.1 GGS and GAS induce identical histological changes in heart 
tissues. Higher carditis scores were determined in Lewis rats injected with M-proteins of 
GGS (n=5) and GAS (n=5) following 35 days (short term exp.) and 180 days (long term exp.) 
of priming injection compared to PBS injected control rats (n=5). Error bars represent 
standard errors of the mean (SEM). Statistical difference by 1-way ANOVA with Tukey’s 
post hoc multiple comparison test; *p<0.0001. 
 

 
Supplementary Figure 6.2 GGS and GAS M-proteins induce collagen deposition in the 
mitral valve and myocardium. Extensive collagen deposition was demonstrated in Lewis rats 
injected with M-proteins of GGS (n=5) and GAS (n=5) following 35 days (short term exp.) 
and 180 days (long term exp.) of priming injection compared to PBS injected control rats 
(n=5). Error bars represent standard errors of the mean (SEM). Statistical difference by 1-way 
ANOVA with Tukey’s post hoc multiple comparison test; *p<0.01, **p<0.001, 
***p<0.0001. 
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Supplementary Figure 6.3 Electrocardiographic changes demonstrate cardiac dysfunction 
following exposure to GAS and GGS. Prolongation of P-R interval in rats injected with GAS 
rM5 (n=5) and GGS Stg480 (n=5) was observed following 35 days (short term exp.) and 180 
days (long term exp.) of priming injection compared to the PBS injected control rats (n=5). 
Error bars represent standard errors of the mean (SEM). Statistical difference by 1-way 
ANOVA with Tukey’s post hoc multiple comparison test; *p<0.01, **p<0.001. 
 

 
Supplementary Figure 6.4A H&E stained sections of mitral valves from rats injected with 
PBS (homologous boost short term exp., 60 days). Magnifications 400×. Arrow (→) 
indicates inflammatory focus. 
 

 
Supplementary Figure 6.4B H&E stained sections of mitral valves from rats injected with 
whole-killed GAS M5 (homologous boost short term exp., 60 days). Magnifications 400×. 
Arrows (→) indicate inflammatory foci. 
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Supplementary Figure 6.4C H&E stained sections of mitral valves from rats injected with 
whole-killed GGS NS3396 (homologous boost short term exp., 60 days). Magnifications 
400×. Arrows (→) indicate inflammatory foci. 
 

 
Supplementary Figure 6.4D H&E stained sections of myocardium from rats injected with 
PBS (homologous boost short term exp., 60 days). Magnifications 400×. Arrow (→) 
indicates inflammatory focus. 
 

 
Supplementary Figure 6.4E H&E stained sections of myocardium from rats injected with 
whole-killed GAS M5 (homologous boost short term exp., 60 days). Magnifications as 
indicated. ‘Aschoff nodule like’ structure indicated by asterisk (#), x: Anitschkow like cells, 
y: Aschoff like cells. Arrows (→) indicate inflammatory foci. 



261 
 

 
Supplementary Figure 6.4F H&E stained sections of myocardium from rats injected with 
whole-killed GGS NS3396 (homologous boost short term exp., 60 days). Magnifications as 
indicated. ‘Aschoff nodule like’ structure indicated by asterisk (#), x: Anitschkow like cells, 
y: Aschoff like cells. Arrows (→) indicate inflammatory foci. 
 

 
Supplementary Figure 6.5A H&E stained sections of mitral valves from rats injected with 
PBS (homologous boost long term exp., 240 days). Magnifications 200×. Arrow (→) 
indicates inflammatory focus. 
 

 
Supplementary Figure 6.5B H&E stained sections of mitral valves from rats injected with 
whole-killed GAS M5 (homologous boost short term exp., 240 days). Magnifications 200×. 
Arrows (→) indicate inflammatory foci.  
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Supplementary Figure 6.5C H&E stained sections of mitral valves from rats injected with 
whole-killed GGS NS3396 (homologous boost long term exp., 240 days). Magnifications 
200×. Arrows (→) indicate inflammatory foci. 
 

 
Supplementary Figure 6.5D H&E stained sections of myocardium from rats injected with 
PBS (homologous boost long term exp., 240 days). Magnifications as indicated. Arrows (→) 
indicate inflammatory foci. 
 

 
Supplementary Figure 6.5E H&E stained sections of myocardium from rats injected with 
whole-killed GAS M5 (homologous boost long term exp., 240 days). Magnifications as 
indicated. ‘Aschoff nodule like’ structure indicated by asterisk (#), x: Anitschkow like cells, 
y: Aschoff like cells. Arrows (→) indicate inflammatory foci. 
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Supplementary Figure 6.5F H&E stained sections of myocardium from rats injected with 
whole-killed GGS NS3396 (homologous boost long term exp., 240 days). Magnifications as 
indicated. ‘Aschoff nodule like’ structure indicated by asterisk (#), x: Anitschkow like cells, 
y: Aschoff like cells. Arrows (→) indicate inflammatory foci. 
 

 
Supplementary Figure 6.6A H&E stained sections of mitral valves from rats injected with 
PBS (homologous boost short term exp., 35 days). Magnifications 200×. Arrows (→) 
indicate inflammatory foci. 
 

 
Supplementary Figure 6.6B H&E stained sections of mitral valves from rats injected with 
GAS rM5 (homologous boost short term exp., 35 days). Magnifications 200×. Arrows (→) 
indicate inflammatory foci.  
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Supplementary Figure 6.6C H&E stained sections of mitral valves from rats injected with 
GGS Stg480 (homologous boost short term exp., 35 days). Magnifications 200×. Arrows (→) 
indicate inflammatory foci. 
 

 
Supplementary Figure 6.6D H&E stained sections of myocardium from rats injected with 
PBS (homologous boost short term exp., 35 days). Magnifications 200×. Arrows (→) 
indicate inflammatory foci. 
 

 
Supplementary Figure 6.6E H&E stained sections of myocardium from rats injected with 
GAS rM5 (homologous boost short term exp., 35 days). Magnifications as indicated. 
‘Aschoff nodule like’ structure indicated by asterisk (#), x: Anitschkow like cells, y: Aschoff 
like cells. Arrows (→) indicate inflammatory foci. 
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Supplementary Figure 6.6F H&E stained sections of myocardium from rats injected with 
GGS Stg480 (homologous boost short term exp., 35 days). Magnifications 200×. ‘Aschoff 
nodule like’ structure indicated by asterisk (#), x: Anitschkow like cells, y: Aschoff like cells. 
Arrows (→) indicate inflammatory foci. 
 

 
Supplementary Figure 6.7A H&E stained sections of mitral valves from rats injected with 
PBS (homologous boost short term repeat exp., 35 days). Magnifications 200×. Arrows (→) 
indicate inflammatory foci. 

 

 
Supplementary Figure 6.7B H&E stained sections of mitral valves from rats injected with 
GAS rM5 (homologous boost short term repeat exp., 35 days). Magnifications 200×. Arrows 
(→) indicate inflammatory foci.  
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Supplementary Figure 6.7C H&E stained sections of mitral valves from rats injected with 
GGS Stg480 (homologous boost short term repeat exp., 35 days). Magnifications 200×. 
Arrows (→) indicate inflammatory foci. 
 

 
Supplementary Figure 6.7D H&E stained sections of myocardium from rats injected with 
PBS (homologous boost short term repeat exp., 35 days). Magnifications 200×. Arrows (→) 
indicate inflammatory foci. 
 

 
Supplementary Figure 6.7E H&E stained sections of myocardium from rats injected with 
GAS rM5 (homologous boost short term repeat exp., 35 days). Magnifications as indicated. 
‘Aschoff nodule like’ structure indicated by asterisk (#), x: Anitschkow like cells, y: Aschoff 
like cells. Arrows (→) indicate inflammatory foci. 
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Supplementary Figure 6.7F H&E stained sections of myocardium from rats injected with 
GGS Stg480 (homologous boost short term repeat exp., 35 days). Magnifications 200×. 
‘Aschoff nodule like’ structure indicated by asterisk (#), x: Anitschkow like cells, y: Aschoff 
like cells. Arrows (→) indicate inflammatory foci. 
 

 
Supplementary Figure 6.8A H&E stained sections of mitral valves from rats injected with 
PBS (homologous boost long term exp., 225 days). Magnifications 400×. Arrows (→) 
indicate inflammatory foci. 
 

 
Supplementary Figure 6.8B H&E stained sections of mitral valves from rats injected with 
GAS rM5 (homologous boost long term exp., 225 days). Magnifications 400×. Arrows (→) 
indicate inflammatory foci. 
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Supplementary Figure 6.8C H&E stained sections of mitral valves from rats injected with 
GGS Stg480 (homologous boost long term exp., 225 days). Magnifications 400×. Arrows 
(→) indicate inflammatory foci. 
 

 
Supplementary Figure 6.8D H&E stained sections of myocardium from rats injected with 
PBS (homologous boost long term exp., 225 days). Magnifications 200×. Arrows (→) 
indicate inflammatory foci. 
 

 
Supplementary Figure 6.8E H&E stained sections of myocardium from rats injected with 
GAS rM5 (homologous boost long term exp., 225 days). Magnifications 400×. ‘Aschoff 
nodule like’ structure indicated by asterisk (#), x: Anitschkow like cells, y: Aschoff like cells.  
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Supplementary Figure 6.8F H&E stained sections of myocardium from rats injected with 
GGS Stg480 (homologous boost long term exp., 225 days). Magnifications 400×. ‘Aschoff 
nodule like’ structure indicated by asterisk (#), x: Anitschkow like cells, y: Aschoff like cells.  
 

 
Supplementary Figure 6.9A H&E stained sections of mitral valves from rats injected with 
PBS (homologous boost long term repeat exp., 180 days). Magnifications 200×. Arrows (→) 
indicate inflammatory foci. 
 

 
Supplementary Figure 6.9B H&E stained sections of mitral valves from rats injected with 
GAS rM5 (homologous boost long term repeat exp., 180 days). Magnifications 200×. Arrows 
(→) indicate inflammatory foci. 
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Supplementary Figure 6.9C H&E stained sections of mitral valves from rats injected with 
GGS Stg480 (homologous boost long term repeat exp., 180 days). Magnifications 200×. 
Arrows (→) indicate inflammatory foci. 
 

 
Supplementary Figure 6.9D H&E stained sections of myocardium from rats injected with 
PBS (homologous boost long term repeat exp., 180 days). Magnifications 200×. Arrows (→) 
indicate inflammatory foci. 
 

 
Supplementary Figure 6.9E H&E stained sections of myocardium from rats injected with 
GAS rM5 (homologous boost long term repeat exp., 180 days). Magnifications 1000×. 
‘Aschoff nodule like’ structure indicated by asterisk (#), x: Anitschkow like cells, y: Aschoff 
like cells.  
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Supplementary Figure 6.9F H&E stained sections of myocardium from rats injected with 
GGS Stg480 (homologous boost long term repeat exp., 180 days). Magnifications 1000×. 
‘Aschoff nodule like’ structure indicated by asterisk (#), x: Anitschkow like cells, y: Aschoff 
like cells.  
 

 
Supplementary Figure 6.10A Masson’s trichrome stained sections of mitral valves from rats 
injected with PBS (homologous boost short term exp., 60 days). Magnifications 400×. Blue 
colour indicates collagen fibre deposition. 
 

 
Supplementary Figure 6.10B Masson’s trichrome stained sections of mitral valves from rats 
injected with whole-killed GAS M5 (homologous boost short term exp., 60 days). 
Magnifications 400×. Blue colour indicates collagen fibre deposition. 
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Supplementary Figure 6.10C Masson’s trichrome stained sections of mitral valves from rats 
injected with whole-killed GGS NS3396 (homologous boost short term exp., 60 days). 
Magnifications 400×. Blue colour indicates collagen fibre deposition. 
 

 
Supplementary Figure 6.10D Masson’s trichrome stained sections of myocardium from rats 
injected with PBS (homologous boost short term exp., 60 days). Magnifications 200×. Blue 
colour indicates collagen fibre deposition. 
 

 
Supplementary Figure 6.10E Masson’s trichrome stained sections of myocardium from rats 
injected with whole-killed GAS M5 (homologous boost short term exp., 60 days). 
Magnifications 200×. Blue colour indicates collagen fibre deposition. 



273 
 

 
Supplementary Figure 6.10F Masson’s trichrome stained sections of myocardium from rats 
injected with whole-killed GGS NS3396 (homologous boost short term exp., 60 days). 
Magnifications 200×. Blue colour indicates collagen fibre deposition. 
 

 
Supplementary Figure 6.11A Masson’s trichrome stained sections of mitral valves from rats 
injected with PBS (homologous boost long term exp., 240 days). Magnifications 400×. Blue 
colour indicates collagen fibre deposition. 
 

 
Supplementary Figure 6.11B Masson’s trichrome stained sections of mitral valves from rats 
injected with whole-killed GAS M5 (homologous boost long term exp., 240 days). 
Magnifications 400×. Blue colour indicates collagen fibre deposition. 
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Supplementary Figure 6.11C Masson’s trichrome stained sections of mitral valves from rats 
injected with whole-killed GGS NS3396 (homologous boost long term exp., 240 days). 
Magnifications 400×. Blue colour indicates collagen fibre deposition. 
 

 
Supplementary Figure 6.11D Masson’s trichrome stained sections of myocardium from rats 
injected with PBS (homologous boost long term exp., 240 days). Magnifications 200×. Blue 
colour indicates collagen fibre deposition. 
 

 
Supplementary Figure 6.11E Masson’s trichrome stained sections of myocardium from rats 
injected with whole-killed GAS M5 (homologous boost long term exp., 240 days). 
Magnifications 200×. Blue colour indicates collagen fibre deposition. 
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Supplementary Figure 6.11F Masson’s trichrome stained sections of myocardium from rats 
injected with whole-killed GGS NS3396 (homologous boost long term exp., 240 days). 
Magnifications 200×. Blue colour indicates collagen fibre deposition. 
 

 
Supplementary Figure 6.12A Masson’s trichrome stained sections of mitral valves from rats 
injected with PBS (homologous boost short term exp., 35 days). Magnifications 400×. Blue 
colour indicates collagen fibre deposition. 
 

 
Supplementary Figure 6.12B Masson’s trichrome stained sections of mitral valves from rats 
injected with GAS rM5 (homologous boost short term exp., 35 days). Magnifications 400×. 
Blue colour indicates collagen fibre deposition. 
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Supplementary Figure 6.12C Masson’s trichrome stained sections of mitral valves from rats 
injected with GGS Stg480 (homologous boost short term exp., 35 days). Magnifications 
400×. Blue colour indicates collagen fibre deposition. 
 

 
Supplementary Figure 6.12D Masson’s trichrome stained sections of myocardium from rats 
injected with PBS (homologous boost short term exp., 35 days). Magnifications 200×. Blue 
colour indicates collagen fibre deposition. 
 

 
Supplementary Figure 6.12E Masson’s trichrome stained sections of myocardium from rats 
injected with GAS rM5 (homologous boost short term exp., 35 days). Magnifications 200×. 
Blue colour indicates collagen fibre deposition. 
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Supplementary Figure 6.2F Masson’s trichrome stained sections of myocardium from rats 
injected with GGS Stg480 (homologous boost short term exp., 35 days). Magnifications 
200×. Blue colour indicates collagen fibre deposition. 
 

 
Supplementary Figure 6.13A Masson’s trichrome stained sections of mitral valves from rats 
injected with PBS (homologous boost short term repeat exp., 35 days). Magnifications 400×. 
Blue colour indicates collagen fibre deposition. 
 

 
Supplementary Figure 6.13B Masson’s trichrome stained sections of mitral valves from rats 
injected with GAS rM5 (homologous boost short term repeat exp., 35 days). Magnifications 
400×. Blue colour indicates collagen fibre deposition. 
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Supplementary Figure 6.13C Masson’s trichrome stained sections of mitral valves from rats 
injected with GGS Stg480 (homologous boost short term repeat exp., 35 days). 
Magnifications 400×. Blue colour indicates collagen fibre deposition. 
 

 
Supplementary Figure 6.13D Masson’s trichrome stained sections of myocardium from rats 
injected with PBS (homologous boost short term repeat exp., 35 days). Magnifications 200×. 
Blue colour indicates collagen fibre deposition. 
 

 
Supplementary Figure 6.13E Masson’s trichrome stained sections of myocardium from rats 
injected with GAS rM5 (homologous boost short term repeat exp., 35 days). Magnifications 
200×. Blue colour indicates collagen fibre deposition. 
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Supplementary Figure 6.13F Masson’s trichrome stained sections of myocardium from rats 
injected with GGS Stg480 (homologous boost short term exp., 35 days). Magnifications 
200×. Blue colour indicates collagen fibre deposition. 
 

 
Supplementary Figure 6.14A Masson’s trichrome stained sections of mitral valves from rats 
injected with PBS (homologous boost long term exp., 225 days). Magnifications 400×. Blue 
colour indicates collagen fibre deposition. 
 

 
Supplementary Figure 6.14B Masson’s trichrome stained sections of mitral valves from rats 
injected with GAS rM5 (homologous boost long term exp., 225 days). Magnifications 400×. 
Blue colour indicates collagen fibre deposition. 
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Supplementary Figure 6.14C Masson’s trichrome stained sections of mitral valves from rats 
injected with GGS Stg480 (homologous boost long term exp., 225 days). Magnifications 
400×. Blue colour indicates collagen fibre deposition. 
 

 
Supplementary Figure 6.14D Masson’s trichrome stained sections of myocardium from rats 
injected with PBS (homologous boost long term exp., 225 days). Magnifications 200×. Blue 
colour indicates collagen fibre deposition. 
 

 
Supplementary Figure 6.14E Masson’s trichrome stained sections of myocardium from rats 
injected with GAS rM5 (homologous boost long term exp., 225 days). Magnifications 200×. 
Blue colour indicates collagen fibre deposition. 
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Supplementary Figure 6.14F Masson’s trichrome stained sections of myocardium from rats 
injected with GGS Stg480 (homologous boost long term exp., 225 days). Magnifications 
200×. Blue colour indicates collagen fibre deposition. 
 

 
Supplementary Figure 6.15A Masson’s trichrome stained sections of mitral valves from rats 
injected with PBS (homologous boost long term repeat exp., 180 days). Magnifications 400×. 
Blue colour indicates collagen fibre deposition. 
 

 
Supplementary Figure 6.15B Masson’s trichrome stained sections of mitral valves from rats 
injected with GAS rM5 (homologous boost long term repeat exp., 180 days). Magnifications 
400×. Blue colour indicates collagen fibre deposition. 
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Supplementary Figure 6.15C Masson’s trichrome stained sections of mitral valves from rats 
injected with GGS Stg480 (homologous boost long term repeat exp., 180 days). 
Magnifications 400×. Blue colour indicates collagen fibre deposition. 
 

 
Supplementary Figure 6.15D Masson’s trichrome stained sections of myocardium from rats 
injected with PBS (homologous boost long term repeat exp., 180 days). Magnifications 200×. 
Blue colour indicates collagen fibre deposition. 
 

 
Supplementary Figure 6.15E Masson’s trichrome stained sections of myocardium from rats 
injected with GAS rM5 (homologous boost long term repeat exp., 180 days). Magnifications 
200×. Blue colour indicates collagen fibre deposition. 
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Supplementary Figure 6.15F Masson’s trichrome stained sections of myocardium from rats 
injected with GGS Stg480 (homologous boost long term repeat exp., 180 days). 
Magnifications 200×. Blue colour indicates collagen fibre deposition. 
 

 
Supplementary Figure 6.16A Echocardiographic examination of mitral valves of control 
rats injected with PBS (homologous boost long term exp., 240 days). Arrows (→) indicate 
mitral valve leaflets. RA: right atrium, RV: right ventricle, LA: left atrium, LV: left ventricle. 

 
Supplementary Figure 6.16B Echocardiographic examination of mitral valves of rats 
injected with whole-killed GAS M5 (homologous boost long term exp., 240 days). Arrows 
(→) indicate mitral valve leaflets. RA: right atrium, RV: right ventricle, LA: left atrium, LV: 
left ventricle. 
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Supplementary Figure 6.16C Echocardiographic examination of mitral valves of rats 
injected with whole-killed GGS NS3396 (homologous boost long term exp., 240 days). 
Arrows (→) indicate mitral valve leaflets. RA: right atrium, RV: right ventricle, LA: left 
atrium, LV: left ventricle. 
 

 
Supplementary Figure 6.17A Echocardiographic examination of mitral valves of control 
rats injected with PBS (homologous boost long term exp., 225 days). Arrows (→) indicate 
mitral valve leaflets. RA: right atrium, RV: right ventricle, LA: left atrium, LV: left ventricle. 
 

 
Supplementary Figure 6.17B Echocardiographic examination of mitral valves of rats 
injected with GAS rM5 (homologous boost long term exp., 225 days). Arrows (→) indicate 
mitral valve leaflets. RA: right atrium, RV: right ventricle, LA: left atrium, LV: left ventricle. 
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Supplementary Figure 6.17C Echocardiographic examination of mitral valves of rats 
injected with GGS Stg480 (homologous boost long term exp., 225 days). Arrows (→) 
indicate mitral valve leaflets. RA: right atrium, RV: right ventricle, LA: left atrium, LV: left 
ventricle. 

 
6.1 Statistical analysis of Figure 6.1 
Panel A (short term exp.): Normality test and Tukey’s multiple comparisons test 

  
 
Panel A (long term exp.): Normality test and Tukey’s multiple comparisons test 

  
 
Panel B (short term exp.): Normality test and Tukey’s multiple comparisons test 
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Panel B (long term exp.): Normality test and Tukey’s multiple comparisons test 

  
 
6.2 Statistical analysis of Figure 6.2 
Panel A (short term exp.): Normality test and Tukey’s multiple comparisons test 

  
 
Panel A (long term exp.): Normality test and Tukey’s multiple comparisons test 

  
 
Panel B (short term exp.): Normality test and Tukey’s multiple comparisons test 

  
 
Panel B (long term exp.): Normality test and Tukey’s multiple comparisons test 
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6.3 Statistical analysis of Figure 6.3 
Panel A (short term exp.): Normality test and Tukey’s multiple comparisons test 

  
 
Panel A (long term exp.): Normality test and Tukey’s multiple comparisons test 

  
 
Panel B (short term exp.): Normality test and Tukey’s multiple comparisons test 

  
 
Panel B (long term exp.): Normality test and Tukey’s multiple comparisons test 

   
 

6.4 Statistical analysis of Figure 6.4 
Panel A (whole killed exp.): Normality test and Tukey’s multiple comparisons test 

  
 



288 
 

 
Panel B (M-protein exp.): Normality test and Tukey’s multiple comparisons test 

  
 
6.5 Statistical analysis of Supplementary Figure 6.1 
Short term exp.: Normality test and Tukey’s multiple comparisons test 

  
 
Long term exp.: Normality test and Tukey’s multiple comparisons test 

  
 

6.6 Statistical analysis of Supplementary Figure 6.2 
Short term exp.: Normality test and Tukey’s multiple comparisons test 

  
 
Long term exp.: Normality test and Tukey’s multiple comparisons test 
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6.7 Statistical analysis of Supplementary Figure 6.3 
Short term exp.: Normality test and Tukey’s multiple comparisons test 

  
 
Long term exp.: Normality test and Tukey’s multiple comparisons test 
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APPENDIX 7 

SUPPLEMENTARY FIGURES AND STATISTICFAL ANALYSIS OF CHAPTER 7 

 

 
Supplementary Figure 7.1A H&E stained sections of mitral valves from rats injected with 
PBS (heterologous boost short term exp., 35 days). Magnifications 200×. Arrows (→) 
indicate inflammatory foci. 
 

   
Supplementary Figure 7.1B H&E stained sections of mitral valves from rats primed with 
GAS rM5 and boosted with GGS Stg480 (heterologous boost short term exp., 35 days). 
Magnifications 200×. Arrows (→) indicate inflammatory foci.  
 

 
Supplementary Figure 7.1C H&E stained sections of mitral valves from rats primed with 
GGS Stg480 and boosted with GAS rM5 (heterologous boost short term exp., 35 days). 
Magnifications 200×. Arrows (→) indicate inflammatory foci. 
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Supplementary Figure 7.1D H&E stained sections of myocardium from rats injected with 
PBS (heterologous boost short term exp., 35 days). Magnifications 200×. Arrows (→) 
indicate inflammatory foci. 

 

  
Supplementary Figure 7.1E H&E stained sections of myocardium from rats primed with 
GAS rM5 and boosted with GGS Stg480 (heterologous boost short term exp., 35 days). 
Magnifications 1000×. ‘Aschoff nodule like’ structure indicated by asterisk (#), x: 
Anitschkow like cells, y: Aschoff like cells.  

 

 
Supplementary Figure 7.1F H&E stained sections of myocardium from rats primed with 
GGS Stg480 and boosted with GAS rM5 (heterologous boost short term exp., 35 days). 
Magnifications 1000×. ‘Aschoff nodule like’ structure indicated by asterisk (#), x: 
Anitschkow like cells, y: Aschoff like cells. 
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Supplementary Figure 7.2A H&E stained sections of mitral valves from rats injected with 
PBS (heterologous boost long term exp., 180 days). Magnifications 200×. Arrows (→) 
indicate inflammatory foci. 
 

 
Supplementary Figure 7.2B H&E stained sections of mitral valves from rats primed with 
GAS rM5 and boosted with GGS Stg480 (heterologous boost long term exp., 180 days). 
Magnifications as indicated. x: Anitschkow like cells, y: Aschoff like cells. Arrows (→) 
indicate inflammatory foci.  
 

 
Supplementary Figure 7.2C H&E stained sections of mitral valves from rats primed with 
GGS Stg480 and boosted with GAS rM5 (heterologous boost long term exp., 180 days). 
Magnifications as indicated. Arrows (→) indicate inflammatory foci. 
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Supplementary Figure 7.2D H&E stained sections of myocardium from rats injected with 
PBS (heterologous boost long term exp., 180 days). Magnifications 200×. Arrows (→) 
indicate inflammatory foci. 
 

 
Supplementary Figure 7.2E H&E stained sections of myocardium from rats primed with 
GAS rM5 and boosted with GGS Stg480 (heterologous boost long term exp., 180 days). 
Magnifications 1000×. ‘Aschoff nodule like’ structure indicated by asterisk (#), x: 
Anitschkow like cells, y: Aschoff like cells.  
 

 
Supplementary Figure 7.2F H&E stained sections of myocardium from rats primed with 
GGS Stg480 and boosted with GAS rM5 (heterologous boost long term exp., 180 days). 
Magnifications 1000×. ‘Aschoff nodule like’ structure indicated by asterisk (#), x: 
Anitschkow like cells, y: Aschoff like cells. 
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Supplementary Figure 7.3A Masson’s trichrome stained sections of mitral valves from rats 
injected with PBS (heterologous boost short term exp., 35 days). Magnifications 400×. Blue 
colour indicates collagen fibre deposition. 
 

  
Supplementary Figure 7.3B Masson’s trichrome stained sections of mitral valves from rats 
primed with GAS rM5 and boosted with GGS Stg480 (heterologous boost short term exp., 35 
days). Magnifications 400×. Blue colour indicates collagen fibre deposition. 

 

 
Supplementary Figure 7.3C Masson’s trichrome stained sections of mitral valves from rats 
primed with GGS Stg480 and boosted with GAS rM5 (heterologous boost short term exp., 35 
days). Magnifications 400×. Blue colour indicates collagen fibre deposition. 
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Supplementary Figure 7.3D Masson’s trichrome stained sections of myocardium from rats 
injected with PBS (heterologous boost short term exp., 35 days). Magnifications as indicated. 
Blue colour indicates collagen fibre deposition. 

 

  
Supplementary Figure 7.3E Masson’s trichrome stained sections of myocardium from rats 
primed with GAS rM5 and boosted with GGS Stg480 (heterologous boost short term exp., 35 
days). Magnifications 200×. Blue colour indicates collagen fibre deposition. 

 

 
Supplementary Figure 7.3F Masson’s trichrome stained sections of myocardium from rats 
primed with GGS Stg480 and boosted with GAS rM5 (heterologous boost short term exp., 35 
days). Magnifications 200×. Blue colour indicates collagen fibre deposition. 
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Supplementary Figure 7.4A Masson’s trichrome stained sections of mitral valves from rats 
injected with PBS (heterologous boost long term exp., 180 days). Magnifications 400×. Blue 
colour indicates collagen fibre deposition. 
 

 
Supplementary Figure 7.4B Masson’s trichrome stained sections of mitral valves from rats 
primed with GAS rM5 and boosted with GGS Stg480 (heterologous boost long term exp., 
180 days). Magnifications 400×. Blue colour indicates collagen fibre deposition. 
 

 
Supplementary Figure 7.4C Masson’s trichrome stained sections of mitral valves from rats 
primed with GGS Stg480 and boosted with GAS rM5 (heterologous boost long term exp., 
180 days). Magnifications 400×. Blue colour indicates collagen fibre deposition. 
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Supplementary Figure 7.4D Masson’s trichrome stained sections of myocardium from rats 
injected with PBS (heterologous boost long term exp., 180 days). Magnifications 200×. Blue 
colour indicates collagen fibre deposition. 
 

 
Supplementary Figure 7.4E Masson’s trichrome stained sections of myocardium from rats 
primed with GAS rM5 and boosted with GGS Stg480 (heterologous boost long term exp., 
180 days). Magnifications 200×. Blue colour indicates collagen fibre deposition. 
 

 
Supplementary Figure 7.4F Masson’s trichrome stained sections of myocardium from rats 
primed with GGS Stg480 and boosted with GAS rM5 (heterologous boost long term exp., 
180 days). Magnifications 200×. Blue colour indicates collagen fibre deposition. 



298 
 

7.1 Statistical analysis of Figure 7.1 
Panel A (short term exp.): Normality test and Tukey’s multiple comparison test 

  
 
Panel A (long term exp.): Normality test and Tukey’s multiple comparison test 

  
 
Panel B (short term exp.): Normality test and Tukey’s multiple comparison test 

   
 
Panel B (long term exp.): Normality test and Tukey’s multiple comparison test 

  
 
Panel C (short term exp.): Normality test and Tukey’s multiple comparison test 
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Panel C (long term exp.): Normality test and Tukey’s multiple comparison test 

  
 
Panel D (short term exp.): Normality test and Tukey’s multiple comparison test 

  
 
Panel D (long term exp.): Normality test and Tukey’s multiple comparison test 

  
 
7.2 Statistical analysis of Figure 7.2 
Short term exp.: Normality test and Tukey’s multiple comparison test 

  
 
Long term exp.: Normality test and Tukey’s multiple comparison test 
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7.3 Statistical analysis of Figure 7.3 
Panel A (short term exp.): Normality test and Tukey’s multiple comparison test 

  
 
Panel A (long term exp.): Normality test and Tukey’s multiple comparison test 

  
 
Panel B (short term exp.): Normality test and Tukey’s multiple comparison test 

  
 
Panel B (long term exp.): Normality test and Tukey’s multiple comparison test 

  
 
7.4 Statistical analysis of Figure 7.4 
Panel A (short term exp.): Normality test and Tukey’s multiple comparison test 
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Panel A (long term exp.): Normality test and Tukey’s multiple comparison test 

  
 
7.5 Statistical analysis of Figure 7.5 
Panel A (short term exp.): Normality test and Tukey’s multiple comparison test 

  
 
Panel A (long term exp.): Normality test and Tukey’s multiple comparison test 

  
 
7.6 Statistical analysis of Figure 7.6 
Short term exp.: Normality test and Tukey’s multiple comparison test 

  
 
Long term exp.: Normality test and Tukey’s multiple comparison test 

  
  



302 
 

APPENDIX 8 

SUPPLEMENTARY FIGURES AND STATISTICAL ANALYSIS OF CHAPTER 8 

 

  
Supplementary Figure 8.1A H&E stained sections of mitral valves from donor rats injected 
with PBS (1.1-1.4) and GAS rM5 (2.1-2.4). Magnifications 200×. Arrows (→) indicate 
inflammatory foci. 
 

 
Supplementary Figure 8.1B H&E stained sections of myocardium from donor rats injected 
with PBS (1.1-1.4) and GAS rM5 (2.1-2.4). Magnifications 200× (1.1-1.4), 1000× (2.1-2.4). 
‘Aschoff nodule like’ structure indicated by asterisk (#), x: Anitschkow like cells, y: Aschoff 
like cells. Arrows (→) indicate inflammatory foci. 
 

 
Supplementary Figure 8.2A H&E stained sections of mitral valves from recipient rats 
injected with serum from donor rats injected with PBS (1.1-1.4) and GAS rM5 (2.1-2.4). 
Magnifications 200×. Arrows (→) indicate inflammatory foci. 
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Supplementary Figure 8.2B H&E stained sections of myocardium from recipient rats 
injected with serum from donor rats injected with PBS (1.1-1.4) and GAS rM5 (2.1-2.4). 
Magnifications 200× (1.1-1.4), 1000× (2.1-2.4). Arrows (→) indicate inflammatory foci. 
‘Aschoff nodule like’ structure indicated by asterisk (#), x: Anitschkow like cells, y: Aschoff 
like cells.  

 
Supplementary Figure 8.2C H&E stained sections of mitral valves from recipient rats 
injected with splenocytes from donor rats injected with PBS (1.1-1.4) and GAS rM5 (2.1-
2.4). Magnifications 200× except 1.3 (400×). Arrows (→) indicate inflammatory foci. 
 

 
Supplementary Figure 8.2D H&E stained sections of myocardium from recipient rats 
injected with splenocyte from donor rats injected with PBS (1.1-1.4) and GAS rM5 (2.1-2.4). 
Magnifications 200× (1.1-1.4, 2.2-2.3), 1000× (2.1, 2.4). Arrows (→) indicate inflammatory 
foci. ‘Aschoff nodule like’ structure indicated by asterisk (#), x: Anitschkow like cells, y: 
Aschoff like cells.  
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Supplementary Figure 8.2E H&E stained sections of mitral valves from recipient rats 
injected with serum and splenocytes from donor rats injected with PBS (1.1-1.4) and GAS 
rM5 (2.1-2.4). Magnifications 200×. Arrows (→) indicate inflammatory foci. 

 
Supplementary Figure 8.2F. H&E staining of myocardium of serum and splenocyte 
recipient rats, magnifications as indicated. ‘Aschoff nodule like’ structure indicated by 
asterisk (#), x: Anitschkow like cells, y: Aschoff like cells. Arrows (→) indicate 
inflammatory foci.  

 

 
Supplementary Figure 8.3A Echocardiographic images of donor rats. Normal mitral leaflets 
with no evidence of thickening or nodules in the donor rats injected with PBS (1.1-1.4). 
Thickened leaflets observed as dense thick white and nodular structures in the mitral valve of 
rats injected with GAS rM5 (2.1-2.4). Arrows indicate mitral valves. LA: left atrium; LV: left 
ventricle; RA: right atrium; RV: right ventricle. 
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Supplementary Figure 8.3B Echocardiographic examination of mitral valves of serum and 
splenocyte recipient rats. Normal mitral leaflets with no evidence of thickening or nodules in 
the rats injected with serum and splenocyte from PBS injected rats (1.1-1.4). Thickened 
leaflets observed as dense white and nodular structures in the mitral valve of rats injected 
with serum and splenocyte from GAS rM5 injected rats (2.1-2.4). Arrows (→) indicate mitral 
valves. LA: left atrium; LV: left ventricle; RA: right atrium; RV: right ventricle. 
 
8.1 Statistical analysis of Figure 8.2 
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8.2 Statistical analysis of Figure 8.3 
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8.3 Statistical analysis of Figure 8.4 
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8.4 Statistical analysis of Figure 8.5 
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8.5 Statistical analysis of Figure 8.6 

 

 

 

 



311 
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APPENDIX 9 

SUPPLEMENTARY FIGURES AND STATISTICAL ANALYSIS OF CHAPTER 9 

 

 
Supplementary Figure 9.1 GAS and GGS M-protein specific antibodies and splenocytes 
induce expression of VCAM-1 in endothelial cells. (A) Dot plot showing the gating strategy 
used to determine the percentage of VCAM-1 positive endothelial cells. Unstimulated 
endothelial cells (negative control) showed low VCAM-1 expression (B, D-E). However, 
TNF-α stimulation (positive control) increased expression of VCAM-1 (C, D-E). Heat 
inactivated (HI) pooled serum from rats injected with GAS rM5 and GGS Stg480 induced 
VCAM-1 expression in a larger percentage of endothelial cells compared to serum from PBS 
injected control rats (D-E). VCAM-1 expression reduced after adsorption of GAS rM5 serum 
with GAS rM5 and GGS Stg480 serum with Stg480 (HI ad). The addition of rM5 or Stg480 
M-proteins to endothelial cells did not influence endothelial cell VCAM-1 expression (D-E). 
Significantly higher expression of VCAM-1 was observed in the RAOEC stimulated with 
splenocytes from rats injected with GAS And GGS M-protein compared to controls (F) or 
when splenocytes and sera were added together (G). Error bars represent standard errors of 
the mean (SEM). Statistical differences were determined using one-way ANOVA with 
Tukey’s post hoc multiple comparisons test; ***p<0.001, ****p<0.0001. 
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Supplementary Figure 9.2 GAS and GGS M-protein specific antibodies and splenocytes 
induce expression of ICAM-1 in endothelial cells. (A) Dot plot showing the gating strategy 
used to determine the percentage of ICAM-1 positive endothelial cells. Unstimulated 
endothelial cells (negative control) showed low ICAM-1 expression (B, D-E). However, 
TNF-α stimulation (positive control) increased expression of ICAM-1 (C, D-E). Heat 
inactivated (HI) pooled serum from rats injected with GAS rM5 and GGS Stg480 induced 
ICAM-1 expression in a larger percentage of endothelial cells compared to serum from PBS 
injected control rats (D-E). ICAM-1 expression reduced after adsorption of GAS rM5 serum 
with GAS rM5 and GGS Stg480 serum with Stg480 (HI ad). The addition of rM5 or Stg480 
M-proteins to endothelial cells did not influence endothelial cell ICAM-1 expression (D-E). 
Significantly higher expression of ICAM-1 was observed in the RAOEC stimulated with 
splenocytes from rats injected with GAS and GGS M-protein compared to controls (F) or 
when splenocytes and sera were added together (G). Error bars represent standard errors of 
the mean (SEM). Statistical differences were determined using one-way ANOVA with 
Tukey’s post hoc multiple comparisons test; **p<0.01, ***p<0.001, ****p<0.0001. 
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Supplementary Figure 9.3 PBS injection of rats did not induce adhesion molecule 
expression in heart tissues. VCAM-1 and ICAM-1 levels in paraffin sections of heart tissues 
were assessed by immunohistochemical staining with monoclonal antibodies to VCAM-1 and 
ICAM-1. Mitral valve and myocardium sections from rats injected with PBS had no evidence 
of VCAM-1 or ICAM-1 positive cells. Isotype control antibody stained sections also had no 
positive cells. Magnifications 1000x.  
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Supplementary Figure 9.4 GAS M-protein injection induces adhesion molecule expression 
in heart tissues. VCAM-1 and ICAM-1 levels in paraffin sections of heart tissue were 
assessed by immunohistochemical staining with monoclonal antibodies to VCAM-1 and 
ICAM-1. VCAM-1 and ICAM-1 stained cells were found in the mitral valve and 
myocardium sections (indicated by arrows) of rats injected with GAS rM5. Isotype control 
antibody stained sections from the rats had no positive cells. Magnifications as indicated.  
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Supplementary Figure 9.5 GGS M-protein injection induces adhesion molecule expression 
in heart tissues. VCAM-1 and ICAM-1 levels in paraffin sections of heart tissue were 
assessed by immunohistochemical staining with monoclonal antibodies to VCAM-1 and 
ICAM-1. VCAM-1 and ICAM-1 stained cells were found in the mitral valve and 
myocardium sections (indicated by arrows) of rats injected with GGS Stg480. Isotype control 
antibody stained sections from the rats had no positive cells. Magnifications as indicated.  
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Supplementary Figure 9.6 GAS and GGS M-protein specific antibodies induce T-cell 
migration across endothelial cell monolayers. Splenic MNCs from rats injected with 
rM5/Stg480/PBS was enumerated using Neubauer haemocytometer and 106 cells were added 
to the respective upper chambers. The actual number of CD3+ T-cells provided in the upper 
chamber was enumerated as 180,781 for PBS, 564,718 for rM5 and 594,150 for Stg480 using 
123countTM eBeads and flow cytometry. Heat-inactivated serum from rats injected with 
rM5/Stg480/PBS was added (rM5 serum to rM5 T-cell etc.) to the endothelial monolayer in 
upper chamber. Pooled serum from rM5 infected animals, pre-adsorbed with rM5 and pre-
adsorbed serum from Stg480 injected rats was added in separate wells. Rat chemoattractant 
CXCL9 was added to the lower chambers. After 6 h of incubation, the total number of T-cells 
in the lower chamber was counted using 123countTM eBeads. (A) A representative dot plots 
show gating of MNCs in gate P1 and CD3+ T-cells in gate P3. (B) Heat inactivated (HI) sera 
from rM5- or Stg480-injected rats induced significantly higher T-cell migration to the lower 
chamber compared to the HI serum from PBS injected control rats. Pre-adsorption of rM5 
serum (HI ad) with rM5 and Stg480 proteins significantly reduced T-cell migration. Few T-
cells crossed the unstimulated endothelial monolayer (T-cell only). Stimulation of the 
endothelial monolayer with TNF-α (positive control) allowed the highest T-migration. Error 
bars represent standard errors of the mean (SEM). Statistical difference by one-way ANOVA 
with Tukey’s post hoc multiple comparisons test; ****p<0.0001, ns: not significant.  
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9.1 Statistical analysis of Figure 9.3 
Normality test and Tukey’s multiple comparison test  

  
 
9.2 Statistical analysis of Figure 9.4 
Panel D: Normality test and Tukey’s multiple comparison test  

  
 
Panel E: Normality test and Tukey’s multiple comparison test  
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Panel F (left): Normality test and Tukey’s multiple comparison test 

  
 
Panel F (right): Normality test and Tukey’s multiple comparison test 

  
 
Panel G (left): Normality test and Tukey’s multiple comparison test 

  
 
Panel G (right): Normality test and Tukey’s multiple comparison test 

  
 

9.3 Statistical analysis of Figure 9.5 
Panel D: Normality test and Tukey’s multiple comparison test 
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Panel E: Normality test and Tukey’s multiple comparison test 

  
 
Panel F (left): Normality test and Tukey’s multiple comparison test 

  
 
Panel F (right): Normality test and Tukey’s multiple comparison test 

  
 
Panel G (left): Normality test and Tukey’s multiple comparison test 

  
 
Panel G (right): Normality test and Tukey’s multiple comparison test 
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9.4 Statistical analysis of Figure 9.7 
VCAM-1: Normality test and Tukey’s multiple comparison test 

  
 
ICAM-1: Normality test and Tukey’s multiple comparison test 

  
 

9.5 Statistical analysis of Figure 9.8 
Serum: Normality test and Tukey’s multiple comparison test 

  
 
T-cell only: Normality test and Tukey’s multiple comparison test 

   
 
TNF-α: Normality test and Tukey’s multiple comparison test 
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9.6 Statistical analysis of Supplementary Figure 9.1 
Panel D: Normality test and Tukey’s multiple comparison test 

  
 
Panel E: Normality test and Tukey’s multiple comparison test 

  
 
Panel F (left): Normality test and Tukey’s multiple comparison test 

  
 
Panel F (right): Normality test and Tukey’s multiple comparison test 
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Panel G (left): Normality test and Tukey’s multiple comparison test 

  
 
Panel G (right): Normality test and Tukey’s multiple comparison test 

  
 

9.7 Statistical analysis of Supplementary Figure 9.2 
Panel D: Normality test and Tukey’s multiple comparison test 

  
 
Panel E: Normality test and Tukey’s multiple comparison test 
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Panel F (left): Normality test and Tukey’s multiple comparison test 

  
 
Panel F (right): Normality test and Tukey’s multiple comparison test 

  
 
Panel G (left): Normality test and Tukey’s multiple comparison test 

  
 
Panel G (right): Normality test and Tukey’s multiple comparison test 

  
 

9.8 Statistical analysis of Supplementary Figure 9.6 
Serum: Normality test and Tukey’s multiple comparison test 
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T-cell only: Normality test and Tukey’s multiple comparison test 

  
 
TNF-α: Normality test and Tukey’s multiple comparison test 
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