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General Abstract 
 

 
 

A major goal of ecology is to explain the mechanisms that drive species distributions 

and ecological partitioning along gradients in the natural environment. The distributions and 

coexistence of ecologically similar animals may depend on the degree of niche diversification 

and competitive interactions within and among species. The extent of ecological partitioning 

in guilds of coral reef fishes was hotly debated in the 1980s, and despite 4 decades of 

research, the issue remains unresolved. In particular, the link between niche partitioning and 

agonistic interactions together have received little attention. In the thesis I investigated fine-

scale species distributions, resource use (e.g., habitat and food), and competition in a guild of 

7 territorial damselfish species in Kimbe Bay, Papua New Guinea. Common generalisations 

about the ecological function of territorial damselfish and associated interactions with 

important roving herbivorous fishes were also investigated. Using ecological surveys, 

laboratory-based analytical methods, observational studies, and manipulative field 

experiments, this thesis addresses novel questions about the ecology and functional role of 

territorial damselfish and the resulting community effects. 

Competition over resources is recognised to play a primary role in the structure of 

coral reef fish communities. The distribution of ecologically similar species may depend on 

the degree to which traditional niche mechanisms operate alongside competitive dynamics. In 

Chapter 2 these effects were examined by investigating fine-scale species distributions, 

microhabitat use, and aggression among territorial damselfishes. I documented patterns of 

habitat partitioning across the 3 reef zones – reef flat, reef crest, and reef slope – with distinct 

patterns of distribution within these zones at extremely fine scales (1 − 2 m). Distinct 

differences between neighbouring species in the microhabitat use selected were also 

observed. Furthermore, aggression elicited by neighbouring species was significantly higher 

for all species, compared with non-adjacent species. This chapter revealed a fine level of 

spatial partitioning among reef zones and microhabitats in this guild of damselfish, which was 

likely maintained by agonistic interactions among neighbouring species. 

While Chapter 2 found that neighbouring damselfish constrain their microhabitat use 

to facilitate the co-habitation of reef zones, microhabitat selectivity alone was insufficient to 

explain the distinct zonation and limited distributional overlap. I hypothesised that in this 
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highly partitioned ecological community, where there are intense agonistic interactions for 

resources, ecologically neighbouring territorial damselfish may also partition food resources. 

Other studies had previously quantified diet contributions for the study species, but no 

isotopic analysis had been conducted for territorial damselfish to date to specifically target 

pelagic-based food sources. In Chapter 3 I quantified the trophic niches of the territorial 

damselfish guild through the use of stable isotopes (δ13C and δ 15N). Adjacent species on the 

reef flat, reef crest, and reef slope exhibited high to intermediate trophic niche partitioning 

when examining pelagic versus reef-based dietary sources, with two species previously 

described as benthic herbivores actually exhibiting pelagic feeding. Findings of Chapter 3 

indicate that diet choice reinforces the patterns of spatial partitioning and coexistence among 

ecologically similar species. In addition, evidence of planktivorous pelagic feeding adds to 

the growing view that interspecific differences among similar species are lost when 

categorizing species into broad functional classifications. 

In Chapter 4 the direct and indirect effects of interference competition on resource 

partitioning were measured. The previous chapters found that microhabitat selectivity and 

dietary diversification facilitated the co-habitation of reef zones among the territorial 

damselfish guild. Additionally, evidence suggested that interspecific aggression helped 

maintain the distributional boundaries between neighbouring species. However, an 

experimental removal of a dominant competitor was necessary to understand if interference 

competition is present and if subordinate distributional shifts would occur. I employed an 

observational experiment and a large-scale removal experiment (220 m2) to examine the 

intensity of agonistic interactions among species and the extent to which the most abundant 

species influenced the distribution and abundance of neighbouring and non-neighbouring 

species in the guild. The findings indicated that the distinct distribution patterns among the 

reef crest species were linked to levels of interspecific agonistic behaviour. The competitive 

release following the removal of a superior competitor resulted in comprehensive direct and 

indirect effects, with the subordinate neighbour shifting into the newly available space, 

followed by successive shifts in species responding to the change in the distributions of their 

immediate neighbours. Through a novel multi-species large-scale experiment, Chapter 4 

provides the conclusive evidence that distributions and the coexistence of the territorial 

damselfish guild are a result of niche diversification and competitive interactions within and 

among species. 
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Chapter 5 broadens the thesis by investigating the common perception that all 

territorial damselfish negatively influence overall reef function and roving herbivorous fishes. 

Similar to Chapter 2 where generalisations about the guild’s diet were questioned, here I 

challenged the paradigm that intermediate-sized territorial damselfishes have a negative 

influence on surgeonfish, parrotfish, and rabbitfish abundance and foraging behaviour. To test 

this, I conducted experimental removals (220 m2) of the most abundant territorial damselfish 

to examine its impact on roving herbivores and the benthic community structure. The overall 

relative abundance (MaxN) of roving herbivores was not influenced by the removal. No 

changes in foraging patterns were observed for parrotfish, the family that received the highest 

rate of agonistic interactions, and rabbitfish. Instead, the removal resulted in a significant 

decrease in surgeonfish feeding, suggesting the territorial damselfish species altered foraging 

patterns indirectly through territorial maintenance and not aggression. The results indicate 

that all territorial damselfishes do not have a negative impact on all roving herbivores and 

instead may enhance surgeonfish foraging indirectly through the removal of sediment. The 

generalisation that territorial damselfish reduce foraging rates of roving herbivores may not 

be applicable in all systems or for all species. 

In summary, this thesis investigated the mechanisms that drive species distributions 

and ecological partitioning along gradients in the natural environment as a precursor to the 

long-term ecological changes on coral reefs. It first established fine-scale partitioning in a 

guild of competing fishes on a high-diversity coral reef. Second, the research showed that 

microhabitat selectivity and dietary diversification facilitates the co-habitation of reef zones, 

and that interspecific aggression maintains the distributional boundaries between 

neighbouring species. In order to demonstrate how competitive interactions and resource 

partitioning influence species coexistence in a complex ecosystem a large-scale field 

experiment was conducted. The results demonstrate that when exploring coexistence in reef 

fish communities, the more traditional niche mechanisms operate alongside direct and 

indirect competitive dynamics, and within highly diverse systems these ecological processes 

are magnified. Moreover, the thesis highlights the importance of challenging common 

generalisations and paradigms. By examining the functional role of territorial damselfishes 

this research provides evidence of novel dietary diversification and demonstrates the 

complexity of territorial damselfish and roving herbivore interactions. 
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Chapter 1 
 

General Introduction 
 

 
 
1.1 Resource partitioning in a changing climate 

Partitioning of space and other critical resources facilitates the coexistence of 

ecologically similar species in natural communities (MacArthur 1958, Schoener 1974, 

Connell 1978). When a resource - a substance or factor that is used by an organism that 

contributes to its growth, maintenance, or reproduction (Tilman 1982) - is limited, 

competition among individuals is expected. Interactions among ecologically similar species, 

often congenerics, can directly influence their local distribution and can result in ecological 

separation among habitats or along environment gradients (Connell 1983, Schoener 1983, 

Hixon and Johnson 2009). As a species occupies or utilises a limited resource a direct or 

indirect competitor may be displaced. Some of the most conspicuous patterns of apparent 

ecological partitioning occur along steep physical gradients such as altitude, latitude, and 

depth (Hawkins 1999, Jankowski et al. 2015). While resources can be derived from 

continuous external sources like sunlight, wind, or rainfall, many are provided by the local 

habitat. Similar species may use or occupy different resources along environmental gradients 

to minimize competition. In addition, dominant species may exclude others from preferred 

positions and eliminate non-versatile subordinate species in the process. However, differences 

in species distributions along ecological gradients may also arise as each species 

independently becomes adapted to different local biotic and abiotic conditions (Connell 1978, 

Ross 1986, Gaston 1996, Hawkins 1999, Lomolino et al. 2010). In this case, differences may 

reflect evolved species-specific differences in habitat and food preferences and the degrees of 

specialization. 

Biodiversity is in decline due to nonrandom species turnover, typically characterized by 

the loss of specialist species (Cardinale et al. 2012, Ellis et al. 2013). Recently, niche 

partitioning has been viewed as one of the key factors in promoting the diversification of 

animals as anthropogenic threats increase (Cavender-Bares et al. 2009, Ndiribe et al. 2013, 

Gajdzik et al. 2016). Thus, investigating resource use (e.g., habitat and food) and describing 
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species in the context of broad functionality have received considerable attention (Pratchett et 

al. 2011, Chong-Seng et al. 2012, Kok et al. 2016, Hughes et al. 2017, Richardson et al. 

2018). Traditionally, in complex ecosystems (e.g., tropical forests and coral reefs), each 

species is known to occupy a functional niche in which it is the most effective competitor 

(Whittaker et al. 1973). Habitat loss as a consequence of impacts associated with climate 

change may influence population processes directly or indirectly by altering interactions for 

resources. Either way, a species may be forced to expand or compress its functional niche. In 

recent times, to gain generality and predictive power, species have been modelled or grouped 

by family with regards to ecological function (e.g., herbivore, carnivore, or omnivore). 

However, evidence suggests that interspecific differences among similar species are obscured 

when categorizing species into broad functional groups (Brandl and Bellwood 2014, Tebbett 

et al. 2017a). Despite this, the functional role of multi-species competitive networks have 

received little attention. 

1.2 Limiting competition through niche diversification and ecological versatility 

The overall concept of a niche has been debated over many decades, with the definition 

shifting over time and interpreted differently among fields. Grinnell (1924) described it first 

as a behavioural response of a species to a given set of ecological variables within its habitat. 

Elton and others (1927) further defined the functional concept of a niche as the status of an 

animal in its community and its place in the biotic environment, particularly its relation to 

interactions between its predator and prey. Presently, the ecological niche of a species is 

widely described as the volume that is occupied in an n-dimensional space within an 

ecosystem (Hutchinson 1957, Whittaker et al. 1973, Devictor et al. 2010). Hutchinson’s 

(1957) work inspired ecologists to develop models of coexisting species within a community 

and led to the concepts of niche breadth (variety of resources and resource parameters used 

by a species), niche partitioning (resource differentiation by coexisting species), and niche 

overlap (overlap of resources used by different species). 

A species’ ecological versatility, defined as the degree to which organisms can fully 

exploit the available resources in their local environment (MacNally 1995), builds on the 

concept of a niche and further increases ways to characterize how populations are regulated 

and structured (Robertson 1995, Berkström et al. 2012). The availability of habitat and food 

resources can be unstable and influence exploitation, thus facilitating the coexistence of 

ecologically similar species (Schoener 1974). Adaptations to abiotic conditions and biotic 

interactions allow some species to be more specialized for a narrow range of resources, 
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whereas other species become more versatile in their resource exploitation, utilizing a broad 

range of resources (MacNally 1995, Brown 2014). These species, generally referred to as 

specialists and generalists, represent opposite ends of the resource versatility continuum 

(Morris 1996). When these species occur together specialists often outcompete generalists for 

a preferred resource (Connell 1978). This directly influences the local abundance and 

distribution of associated and congeneric species (Schoener 1974, Cappuccino 1995, Gotelli 

and Graves 1996, McPeek 1996, Hixon and Johnson 2009). Ecological versatility has been 

well documented in a variety of different ecosystems and research has predominantly 

supported Brown’s (1984) ecological specialisation hypothesis (Inkinen 1994, Gotelli and 

Graves, Pyron 1999, Hughes 2000, Bean et al. 2002, Berkström et al. 2012). Most studies 

have focused on terrestrial systems (Bock and Ricklefs 1983, Gaston 1996, Morris 1996, 

Gaston and Spicer 2001), but there is an increasing attention in marine systems (Munday and 

Jones 1998, Jones et al. 2002, Jones et al. 2004, Graham 2007, Pratchett et al. 2008, Hobbs et 

al. 2010, Berkstrom et al. 2012). 

When resources are limited, theory holds that species coexist by partitioning resources 

via exploitative competition, depletion of a common resource, or interference competition, 

aggressive interactions that prevent access to a resource (Case and Gilpin 1974, Schoener 

1983). While competition theory is largely based on exploitative competition among 

sympatric species (Amarasekare 2002), interference competition is the main mechanism 

leading to interspecific differences in patterns of distribution or use of resources. There is 

ample empirical evidence that interference competition influences the abundance or 

distribution of subordinate species for insects (Kunte 2008), birds (Pimm et al. 1985), 

mammals (Brown 1971), and fishes (Robertson and Gaines 1986, Munday et al. 2001, 

McCormick and Weaver 2012). In nature, interference competition is linked to interspecific 

territoriality and aggressive interactions among species that regularly come into contact, with 

the most aggressive species gaining priority access to resources (Grether et al. 2013). Species 

in the community that do not openly share a resource or compete may be indirectly linked by 

species that lie between them on a resource axis. Hence, when interference competition 

between two species results in a partitioning of resources, this may have indirect 

consequences for other species distributed along the same resource gradient (Case and Gilpin 

1974, Grether et al. 2013). 
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1.3 Coexistence of coral reef fishes 

Coral reefs harbour exceptional diversity and a primary goals of reef fish ecology is to 

understand the mechanisms that allow similar species to coexist. Ecological partitioning is 

recognized to be a core mechanism structuring coral reef fish assemblages, but its role is 

controversial (Bonin et al. 2015). Early studies stressed intense interspecific competition for 

living space as the main driver behind niche partitioning (Smith and Tyler 1972, 1973, Smith 

1978). However, the apparent instability of reef communities sparked an early and founding 

debate on species coexistence. Sale (1976, 1977, 1978, 1980) stressed that a high degree of 

overlap in ecological niches and stochastic recruitment events sustains species co-existence. 

This lottery hypothesis argued that space is the limiting resource and that species with similar 

niche requirements and competitive abilities could coexist through chance colonization of 

vacant space after a random gain or loss occurs. Other studies suggested that predation 

maintains populations below carrying capacity and limits the need for intense competition 

(Talbot et al. 1978). The neutral model furthered the debate by accepting that a lottery for 

space at recruitment exists but proposed that biodiversity is maintained by chance variations 

in demographic and evolutionary rates (Bell 2000, Hubbell 2001). This theory was 

subsequently classified into competition models based on stabilizing mechanisms (niche 

theory) and fitness equivalence (neutral theory) to explain the coexistence of competing 

species (Adler et al. 2007, Bode et al. 2012). Studies suggest that aspects of both niche and 

neutral processes can change through ontogeny within a species and may operate in many 

communities simultaneously (Schmitt and Holbrook 1999, Munday et al. 2001, Gravel et al. 

2006, Pereira et al. 2015). However, the ongoing debate on the mechanisms of coexistence 

has been largely pursued in the absence of detailed information on the extent of habitat 

partitioning or knowledge of species-level interactions (Gravel et al. 2011, Connolly et al. 

2014). 

1.4 Resource use and competition in reef fishes 

Habitat partitioning 

In coral reefs, habitat encompasses the physical and biological characteristics of the 

substratum (i.e., benthic cover, complexity, or the degree of siltation), and can be divided into 

distinct zones (e.g., reef flat, reef crest, and reef slope) that are physically and ecologically 

connected (Jones 1991). Environmental features, such as depth, light, and aspect, also add to 

these characteristics to increase the diversity of available habitat. The wide range of 
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ecological niches within reefs maintains one of the most biodiverse species assemblages 

known (Sale 1980). However, further ecological separation among similar species has 

occurred due to declining resource availability (Connell 1978, Ross 1986, Gaston 1996, 

Lomolino et al. 2010, Brown 2014). Species that overlap in resource use partition the 

available habitat in ways that will minimize interspecific competition and increase their 

fitness success. Thus, habitat partitioning has been widely documented among coral reef fish 

families across multiple regions (Doherty 1983, Robertson and Gaines 1986, Wainwright 

1988, Shpigel and Fishelson 1989, reviewed by Williams 1991). Most investigators have 

concentrated on studying space-shelter partitioning, including the location of the space, type 

and dimensions of shelter used, and the duration of use (Fishelson 1980). However, many 

studies measure the fundamental niche (Nyström 2006, Johansson et al. 2013), the potential 

volume a species could theoretically occupy if only morphological or physical attributes were 

expressed, and not the realized niche (but see Fox and Bellwood 2013, Brandl and Bellwood 

2014), the actual volume a species could occupy when affected by biotic and abiotic factors 

(Hutchinson 1957, Whittaker et al. 1973, Devictor et al. 2010). Studies that combine patterns 

of habitat selectivity and interspecific interactions can together help define the mechanistic 

drivers underlying the (often distinct) boundaries between species along important ecological 

gradients. 

Trophic diversity 

In addition to habitat availability, animals are inherently dependent on food and will 

maximize access to dietary resources. In the early stages of theoretical resource partitioning 

on coral reefs, food was considered the resource least likely to be limiting (Sale 1977, 1978, 

1980, Smith 1978), but further observations have shown that food availability on coral reefs 

considerably influences species spatial patterns (Low 1971, Ebersole 1977, Jones 1986). 

Successive studies have provided evidence of the partitioning of food resources among coral 

reef fishes (Ross 1986, Wainwright 1988, Pimentel and Joyeux 2010, Nithirojpakdee et al. 

2012, Wollrab et al. 2013). Stomach content analysis (gut content) has been a widely used 

technique for accessing the diet of fishes (Hyslop 1980). However, stomach content data are a 

snapshot that reflects the most recent meals and may not represent the overall diet. In 

addition, accurate prey identification is difficult due to digestion rates and the cryptic nature 

of consumed prey (Cresson et al. 2014). Stable isotopes are increasingly used in ecology to 

study diet and trophic niche analysis as they reflect tissue assimilation from prey and are not 

hindered by stomach content analysis biases (pomacentrids reviewed by Frédérich et al. 
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2016). Stable isotopes of a consumer are concurrently integrated from various prey tissues at 

a rate slower than digestion (Matley et al. 2016). Thus, stable isotope analysis provides a 

measure of the diet contributions over longer periods of time (Post 2002). Although stable 

isotope analysis does not provide high-resolution dietary information, it can be used to 

estimate contribution of dietary sources (Jackson et al. 2011, Parnell et al. 2012). The ratio of 

carbon (δ13C) is commonly used because it indicates food sources or habitat (i.e., limited 

enrichment between predator and prey; Michener and Schell 1994), while the ratio of 

nitrogen (δ15N) indicates trophic level (i.e., consistent enrichment between predator and 

prey; Minigawa and Wada 1984). Moreover, stable isotope analysis can be used to assess the 

trophic niche width and overlap among populations or species at similar spatial and temporal 

scales (Bearhop et al. 2004, Frédérich et al. 2009). While studies of habitat partitioning have 

generated a substantial amount of evidence, the diet or trophic niche of reef fishes have 

received much less attention at this scale (but see, Ceccarelli 2007, Frédérich et al. 2009, 

Gajdzik et al. 2016). 

Direct and indirect competition 

The ecological role of competition within coral reef fish communities is critical in 

understanding how these two main types of resources (habitat and food) are partitioned (Sale 

1980, Jones 1991, Jones and McCormick 2002, Hixon 2011, Bonin et al. 2015). The high 

diversity of fish in coral reef systems offers a natural laboratory for developing competition 

theory. Studies of intraspecific competition (same species) provided evidence on the local 

distribution (Robertson and Gaines 1986, Clarke 1989), demographic rates (Jones 1987a, 

1987b), and resource use of coral reef fishes (Munday and Jones 1998, Schmitt and Holbrook 

2000, Holbrook and Schmitt 2002). Alternatively, interspecific competition (different species) 

evidence within reef systems was not originally thought to be as prevalent due to early studies 

failing to detect any associations (Jones 1991). The underlying assumption of intense 

competition for space was later challenged, and for many years the idea that reef fish 

communities were limited by recruitment prevailed in the literature (Doherty 1983, Doherty 

and Fowler 1994). Nevertheless, researchers have continued to address basic ecological 

interactions such as competition and predation (see reviews by Hixon 1991, Jones 1991, 

Hixon and Webster 2002, Jones and McCormick 2002, Forrester 2015, Hixon 2015). Several 

decades of research have generated a substantial amount of evidence that limited available 

habitat can result in competitive interactions, which in turn influences the structure of 

communities (e.g., Robertson 1996, Holbrook and Schmitt 2002, Forrester et al. 2006, 
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Boström-Einarsson et al. 2014). Further, interactions among interspecific competitors plays 

an important role in reef fish spatial distributions (McCormick and Weaver 2012). However, 

the majority of evidence for mobile reef fish species has involved measuring pairwise 

interactions experimentally and not expanded competitive networks within a community (see 

reviews by Forrester 2015, Hixon 2015, Bonin et al. 2015). Few studies have documented 

competitive interaction networks between multiple species with similar resource 

requirements. 

Niche diversification within the marine environment has attracted increasing attention 

due to the associated threats of climate change (Hawkins et al. 2000, Graham 2007, Pratchett 

et al. 2008, Hobbs et al. 2011). Understanding how species respond to natural gradients (i.e. 

abiotic conditions and species richness) through large experimental comparisons can provide 

vital information on species variation and how they may adapt to changing ecosystems 

(Longo et al. 2014). On one extreme, if a species is highly specialized and occupies a finite 

niche the risk of local extinction increases due to high ecological specialisation (Harcourt et 

al. 2002, Davies et al. 2004). Species interactions are a function of abiotic conditions, 

biodiversity, genetic structures, and other factors, all of which are likely to vary across large 

temporal and spatial scales (Pennings and Silliman 2005). Therefore, it is important to assess 

whether a species can and will diversify its niche parameters based on the available resources 

and neighbouring associated species. In addition, similar knock-on or indirect effects of 

subordinate competitors within trophic levels may also be present after the collapse of a 

primary competitor and have received much less attention (Navarrete et al. 2000, Gosnell and 

Gaines 2012). 

Competitive interactions between unrelated taxa 

Roving herbivorous fishes play an important role on coral reefs in reducing algal 

biomass and preventing alternative algal dominated stable states (Mumby et al. 2006, Hughes 

et al. 2007, Francini-Filho et al. 2010). Hence, they are considered important in maintaining 

healthy coral cover and promoting ecosystem resilience (Burkepile and Hay 2008, Hamilton 

et al. 2014, O’Leary and McClanahan 2016). The most important roving herbivores, in a 

broad use of the term, appear to be surgeonfish (Acanthuridae), parrotfish (Labridae: Scarini), 

and rabbitfish (Siganidae) in terms of algal biomass consumption or removal (Lewis and 

Wainwright 1985, Francini-Filho et al. 2010). However, these taxa do not have exclusive 

access to algal covered reef habitat. Territorial farming damselfish often influence the 

structure of algal communities though the deterrence of larger roving herbivores (reviewed by 
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Hata and Ceccarelli 2016). The aggressive territorial defence may lead to an increase in turf 

algae, a desired food source of roving herbivores (Hixon and Brostoff 1983, Russ 1987, 

Hixon 1996, Ceccarelli et al. 2005a). However, the generalisation that territorial damselfish 

reduce foraging rates of roving herbivores may not be applicable in all systems or for all 

species. Despite this, the functionality of territorial damselfish and roving herbivores and 

interactions between these groups remains to be fully resolved. Studies that combine the 

foraging patterns of roving herbivores and agonistic interactions within a healthy community 

can together help define the mechanistic drivers that underlie reef habitat structure and 

resilience. 

1.5 Aims 

The overall aim of this thesis was to investigate the mechanisms that drive species 

distributions and ecological partitioning along gradients in the natural environment as a 

precursor to the long-term ecological changes expected on coral reefs. As a model system 

I selected a guild of 7 territorial damselfish species in Kimbe Bay, Papua New Guinea. 

Territorial damselfish (Pomacentridae) provide ideal models for understanding the outcomes 

of niche diversification and competition. For most species, ecological parameters, or the 

measurable niche properties whose value is a determinant of the ecosystem characteristics, 

can be effectively obtained due to their highly site attached habits, territorial behaviours, and 

lack of concern for observer presence (Ceccarelli et al. 2005, Ceccarelli 2007). Furthermore, 

patterns of distribution and partitioning of space along the natural reef profile gradient – the 

reef flat, reef crest, and reef slope, have been well documented (Robertson and Lassig 1980, 

Sale 1980, Waldner and Robertson 1980, Meekan et al. 1995). A distinctive pattern of zonal 

distribution along this steep physical gradient provides an experimentally tractable system for 

isolating the direct and indirect effects of any one species on neighbouring species along the 

resource gradient. Lastly, territorial damselfish play an integral role in the structure of coral 

reefs through their abundance and role as small-bodied consumers (Hata and Kato 2004, 

Ceccarelli et al. 2005a, Jones et al. 2006). The modification of algae through farming 

behaviour and territorial defence is thought to play an important role on the benthic 

community structure and have a major influence on roving herbivores (Wellington 1982, 

Hixon and Brostoff 1983, Ceccarelli et al. 2005a, Ceccarelli 2007, Barneche et al. 2009). 

Using ecological surveys, laboratory-based analytical methods, observational studies, and 

manipulative field experiments, this thesis addresses novel questions about the ecology and 

functional role of intermediate-sized territorial damselfish and the resulting community 
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effects. This thesis represents a significant advance in our understanding of the ecology of 

territorial damselfish and how the guilds’ functional roles may change as live coral reef 

habitat is lost. 

The four data chapters that comprise this thesis are self-contained publications, which 

address four main objectives: 

1. Examine the role of aggression in maintaining fine-scale differences of distribution 

and microhabitat use. 

2. Investigate if trophic diversity and niche partitioning drives coexistence and spatial 

partitioning in high-diversity systems. 

3. Test whether interference competition directly or indirectly influences the 

ecological versatility of subordinate competitors. 

4. Explore the influence of territorial damselfish on roving herbivores and the benthic 

community structure. 

The extent of ecological partitioning in guilds of coral reef fishes has been a matter of 

debate, but the roles of habitat selectivity and agonistic interactions have received little 

attention. Chapter 2 investigates the fine-scale species distributions, microhabitat use, and 

aggression in a guild of 7 territorial damselfish species at Kimbe Bay, Papua New Guinea. I 

documented patterns of habitat partitioning across an environmental gradient – the reef flat, 

reef crest, and reef slope – and observed distinct patterns of distribution within these zones at 

extremely fine scales (1 − 2 m). I then employed a ‘bottle’ experiment to examine the 

influence of aggressive interactions in maintaining the distribution patterns. The chapter 

discusses how traditional niche mechanisms operate alongside competitive dynamics and 

addresses coexistence in reef fish communities. Here, I provide the necessary background to 

further explore the fine level of spatial partitioning among reef zones and microhabitats in 

this guild of fishes. 

In Chapter 3 I evaluate how food resources are used and whether neighbouring species 

diets differ to explore the niche diversification in this high-diversity system. Territorial 

damselfish on coral reefs are usually considered to be herbivores that defend conspicuous 

algal mats from other food competitors. However, this guild contains numerous smaller 

bodied intermediate species whose functional role and dietary diversification is poorly 

understood. Thus, I investigated the relationships between diet and spatial distribution of the 

7 territorial damselfishes. Examination of isotope ratios of carbon and nitrogen delineate 
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three distinct feeding strategies, analogous to previous literature, within this group and 

quantify high to intermediate trophic niche partitioning. The outcomes of this study suggest 

territorial damselfish generalizations and commonly described functional roles may not be 

applicable in all systems or for all species. This study adds to a growing view that important 

interspecific differences are lost when categorizing species into broad functional 

classifications. 

Few studies have documented direct and indirect effects of competition over time 

within a multi-species competitive network. In Chapter 4 I address this by investigating the 

consequences of interference competition between two competing species and the resulting 

indirect effects for other species distributed along the same resource gradient. The distinctive 

pattern of zonal distribution documented previously provided an experimentally tractable 

system for isolating the direct and indirect effects of any one species on all others over time. 

Additionally, by examining how species recover after a selective removal this study addresses 

how and whether competitive interactions of residents and recruitment interact. Through 

large-scale (22 m x 10 m) experimental removals of the most abundant species I follow the 

abundance and distribution of all territorial damselfish species for 6 months at an ecologically 

relevant resolution of 25 cm. This study provides a comprehensive example of competitive 

release and illustrates how indirect effects on the distribution of other neighbouring species 

are triggered. As such, the study shows that the distinct distribution patterns are linked to 

levels of interspecific agonistic behaviour, and this adds to the growing body of work 

outlining how reef fish communities are affected by disturbances. 

Chapter 5 explores the influence of territorial damselfishes on coral reef community 

dynamics and overall reef function through the agonistic interactions towards 3 roving 

herbivorous families: surgeonfish, parrotfish, and rabbitfish. I used video observations of 

roving herbivores during a removal of a territorial damselfish to record how abundance and 

foraging behaviour is affected by a competitive release. In addition, I further quantified the 

impacts to the benthos to assess how the removal of a common territorial damselfish may 

alter the substratum. This study provides context to the important role of territorial damselfish 

on reef function and adds to the growing view that the interactions between these families of 

fishes is complex. This study suggests that the paradigm that all territorial damselfish 

negatively impact roving herbivores through territorial behaviour is an over-simplification of 

a series of complex interactions.  
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Chapter 2 
 

Habitat selection and aggression as determinants of fine-scale 
partitioning of coral reef zones in a guild of territorial 

damselfishes 
 

Jacob G. Eurich, Mark I. McCormick, and Geoffrey P. Jones 
 

This chapter has been published in Marine Ecology Progress Series (2018a) 587: 201–215. 
http://dx.doi.org/10.3354/meps12458 

 
 

2.1 Summary 

A major goal of ecology is to explain the mechanisms that drive species distributions 

and ecological partitioning along gradients in the natural environment. The distributions of 

ecologically similar animals may depend on the degree of habitat specialization and 

behavioural interactions within and among species. The extent of ecological partitioning in 

guilds of coral reef fishes has been a matter of debate, but the roles of habitat selectivity and 

agonistic interactions have received little attention. Here these effects were examined by 

investigating fine-scale species distributions, microhabitat use, and aggression in a guild of 7 

territorial damselfish species in Kimbe Bay, Papua New Guinea. We documented patterns of 

habitat partitioning across the 3 reef zones—reef flat, reef crest, and reef slope—with distinct 

patterns of distribution within these zones at extremely fine scales (1 − 2 m). Distinct 

differences between neighbouring species in the substrata selected were also observed. We 

hypothesized that fine-scale differences in distribution and microhabitat use could be 

maintained by aggressive interactions. To test this, we employed a ‘bottle’ experiment, where 

stimulus fish were introduced into a resident’s territory, and aggression was recorded. 

Aggression elicited by neighbouring species was significantly higher for all species, 

compared with non-adjacent species. Levels of aggression differed among species, with the 

most aggressive species dominating the reef crest where the most distributional overlap 

occurred. This study revealed a fine level of spatial partitioning among reef zones and 

microhabitats in this guild of damselfish, which is likely to be maintained by agonistic 

interactions among neighbouring species. We demonstrate that when exploring coexistence in 

reef fish communities, the more traditional niche mechanisms operate alongside competitive 

dynamics, and within highly diverse systems these ecological processes are magnified. 
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2.2 Introduction 

Partitioning of space and other critical resources theoretically facilitates the coexistence 

of ecologically similar species in natural communities (MacArthur 1958, Schoener 1974, 

Connell 1978). Interactions among ecologically similar species, often congenerics, can 

directly influence their local distribution and can result in ecological separation among 

habitats or along environment gradients (Connell 1983, Schoener 1983, Hixon and Johnson 

2009). However, differences in species distributions along ecological gradients may also arise 

as each species independently becomes adapted to different local biotic and abiotic 

conditions, even without the influence of interspecific competition (Connell 1978, Ross 1986, 

Gaston 1996, Lomolino et al. 2010). Some of the most conspicuous patterns of apparent 

ecological partitioning occur along steep physical gradients such as altitude, latitude, and 

depth (Hawkins 1999, Jankowski et al. 2015). Similar species may use different resources 

along these gradients to minimize competition, and dominant species may exclude others 

from preferred zones (Connell 1983, Schoener 1983). However, differences in distributions 

may also reflect species-specific differences in habitat preferences and degrees of habitat 

specialization. Studies that combine patterns of habitat selectivity and interspecific 

interactions can together help define the mechanistic drivers underlying the (often distinct) 

boundaries between species along important ecological gradients. 

Ecological partitioning is recognized to be a core mechanism structuring coral reef fish 

assemblages, but its role is controversial (Bonin et al. 2015). Early studies stressed intense 

interspecific competition for living space as the main driver behind niche partitioning (Smith 

and Tyler 1972, 1973, Smith 1978). However, the apparent instability of reef communities 

sparked an early and founding debate on species coexistence. Sale (1976, 1977, 1978) 

stressed that a high degree of overlap in ecological niches and stochastic recruitment events 

sustains species co-existence. This ‘lottery hypothesis’ argued that space is the limiting 

resource and that species with similar niche requirements and competitive abilities could 

coexist through chance colonization of vacant space after a random gain or loss occurs. Other 

studies suggested that predation maintains populations below carrying capacity and limits the 

need for immense competition (Talbot et al. 1978). The ‘neutral model’ furthered the debate 

by accepting that a lottery for space at recruitment exists but proposed that biodiversity is 

maintained by chance variations in demographic and evolutionary rates (Bell 2000, Hubbell 

2001). This theory was subsequently classified into competition models based on stabilizing 

mechanisms (‘niche theory’) and fitness equivalence (‘neutral theory’) to explain the 
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coexistence of competing species (Adler et al. 2007, Bode et al. 2012). Studies suggest that 

aspects of both niche and neutral processes can change through ontogeny within a species and 

may operate in many communities simultaneously (Schmitt and Holbrook 1999, Munday et 

al. 2001, Gravel et al. 2006, Pereira et al. 2015). However, the ongoing debate on the 

mechanisms of coexistence has been largely pursued in the absence of detailed information 

on the extent of habitat partitioning or knowledge of species-level interactions (Gravel et al. 

2011, Connolly et al. 2014). 

There is now a large body of empirical evidence that the distributions of coral reef 

fishes are constrained across broad habitat zones, with characteristic distributions along the 

reef flat and reef crest habitats and down the reef slopes. Distinctive patterns of zonal 

distribution are a feature of many reef fish families (Bouchon-Navaro 1980, 1981, Russ 1984, 

Fowler 1990, Williams 1991). Within these families of fishes, some members are widely 

distributed and act as generalists, whereas others have restricted distributions and are more 

specialized (Fishelson 1980, Williams 1991). This range of niches and specialization has 

resulted in increased habitat partitioning and the need for further ecological separation due to 

limited resource availability (Connell 1978, Ross 1986, Lomolino et al. 2010). Few coral reef 

studies provide evidence of habitat specialization as a means to facilitate distributional 

patterns among ecologically similar species (but see Meekan et al. 1995, Bay et al. 2001, 

Dirnwöber and Herler 2007). However, habitat partitioning has been widely described for a 

variety of reef fishes across multiple tropical regions (Doherty 1983, Robertson and Gaines 

1986, Wainwright 1988, Shpigel and Fishelson 1989, reviewed by Williams 1991). Thus, 

ecologically similar species should facilitate coexistence through the partitioning of habitat 

and space when constrained by physical zones. When resources and space are limited, 

competitive interactions further influence spatial distributions (Robertson and Gaines 1986, 

Srinivasan et al. 1999, Pratchett et al. 2008, Kane et al. 2009, McCormick and Weaver 2012). 

However, the majority of evidence for mobile reef fish species has involved measuring 

pairwise interactions and not competitive networks within a community (reviewed by Bonin 

et al. 2015). Studies that document microhabitat use and partitioning among competing 

species have largely focused on coral gobies and blennies as study organisms (Munday et al. 

2001, Hobbs and Munday 2004, Munday 2004, Dirnwöber and Herler 2007, Medeiros et al. 

2014, Pereira et al. 2015). Few studies have documented the distribution within reef zones 

and fine-scale microhabitat use of competing territorial damselfish and the extent to which 

aggressive interactions play a role in influencing these abundance patterns. 
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Territorial damselfish provide an ideal model for such studies. For most damselfishes, 

ecological parameters can be effectively obtained due to their highly site-attached habits and 

territorial behaviour. Furthermore, patterns of distribution among reef zones (Williams 1991, 

Meekan et al. 1995, Robertson 1995, 1996, Ceccarelli et al. 2001, Bay et al. 2001, Ceccarelli 

2007, Chaves et al. 2012) and microhabitat partitioning (Robertson and Lassig 1980, Waldner 

and Robertson 1980, Robertson 1984, 1996, Medeiros et al. 2010, 2016, Leal et al. 2015) 

have been well documented within the guild. Aggression and interspecific com- petition has 

also been found to structure these patterns and limit subordinate abundances (Robertson and 

Lassig 1980, Ebersole 1985, Robertson 1995, 1996). Very few studies couple experimental 

evidence of aggressive interactions and habitat partitioning within the guild of coral reef 

territorial damselfish (but see Bay et al. 2001, Medeiros et al. 2010). 

In this article we document the extent to which habitats are partitioned in a guild of 

territorial damselfish. We then examine the importance of microhabitat selectivity and 

agonistic interactions as potential determinants of spatial segregation between neighbouring 

species. We focused on 7 species of territorial damselfish that are commonly found in Kimbe 

Bay, West New Britain, Papua New Guinea (PNG) along a gradient that extends from the 

reef flat to the reef crest and down the reef slope. We explored the following 3 predictions: 

(1) Species should partition space along this ecological gradient. (2) Species found in the 

same reef zones would show elevated levels of micro- habitat partitioning. (3) There would 

be elevated levels of aggression between adjacent species on a habitat gradient that may 

explain the high degree of space and microhabitat partitioning within the guild. 

2.3 Methods 

Study site and species 

 This study was conducted in Kimbe Bay on the northern coast of West New Britain in 

PNG (Fig. 2.1; 5° 30’ S, 150° 05’ E). Kimbe Bay lies within the Coral Triangle of the Indo-

Pacific, the region recognized for the highest coral reef biodiversity (Roberts et al. 2002). 

Over 800 species of reef fishes and some 300 species of corals are recorded in this region 

(Spalding et al. 2001, Maniwavie et al. 2000). The study sites had a particularly high density 

and diversity of small, shallow-water territorial damselfish that form the focus of this study. 

All research was conducted on inshore platform reefs (<2 km from shore), which extend 

down to depths of >100 m, rendering them geographically isolated for adults but not 

necessarily larvae. The reefs can be clearly divided into typical coral reef zones, comprising 
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reef flat (which breaks the surface at low tide), reef crest, and reef slope habitats (Table 2.1; 

Berkström et al. 2012). Community structure, species distribution, microhabitat preference, 

and data on aggressive interactions were collected from 3 reef sites (Garbuna, Hanging 

Gardens, and Luba Luba) from 2014 to 2015. 

 

 
 
Figure 2.1 Location of Kimbe Bay, West New Britain, Papua New Guinea, and 
the 3 reef sites (Garbuna, Hanging Gardens and Luba Luba). 
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Table 2.1 Definitions of categorization of reef zones. Differences in depth 
represent tidal flux and changes in aspect. 

 
 Zone (depth) Dominant substrate  

 Reef flat    (0.5 – 1.5 m) 
 

Macroalgae, some live, dead hard coral, 
and soft coral, some rubble, little sand 

 

 Reef crest   (1 – 2 m) Live, dead hard coral, and soft coral, little 
rubble 

 

 Reef slope  (2 – 8 m) Live, dead hard coral, and soft coral, 
rubble, some sand 
 

 

 
  

Seven species of territorial damselfish are commonly found in Kimbe Bay along a 

gradient that extends from the reef flat to the reef crest and down the reef slope in the 

respective order (maximum size from Allen et al. 2003, Randall 2005); Pomacentrus 

tripunctatus (10 cm), Chrysiptera unimaculata (8 cm), Pomacentrus bankanensis (10 cm), 

Pomacentrus adelus (8.5 cm), Plectroglyphidodon lacrymatus (10 cm), Neoglyphidodon 

nigroris (11 cm), and Pomacentrus burroughi (8 cm). All 7 species are known to inhabit 

discrete territories (mean 1−1.5 m2 territory sizes per individual), which they defend from 

conspecifics, congenerics, and other grazers, and which account for a substantial proportion 

of the substratum (Ceccarelli 2007). They are highly aggressive and are commonly seen 

defending, charging, and engaging in territorial displays with associated species. Other 

pomacentrid species (planktivorous damselfish) occurred within the study area but were not 

associated with the microhabitats used by the territorial species. Additionally, no direct 

interactions were observed in preliminary observations. Thus, other damselfish were omitted 

from analysis. 

Damselfish distribution 

 The horizontal and vertical distribution of the 7 damselfish species across the reef flat, 

reef crest and reef slope were recorded from systematic searches in which the positions of all 

individuals were recorded. The observer slowly searched a 40 m wide strip of reef from 20 m 

down the reef slope (starting deep and moving to shallow) up the reef crest and back to the 

reef flat ending at the sand sloping back reef. Prior to the census, a diver laid out a 40 m 

transect tape parallel to the reef crest. From each end point, perpendicular transects were laid: 

(1) down the reef slope, and (2) from the reef crest back to the reef flat until the sand sloping 

back reef was reached. The perpendicular transect tapes were marked every 2 m using 
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flagging tape for reference. This enabled vertical positions to be recorded down to a scale of 1 

m. This search zone covered the entire reef profile and all zones (reef flat; reef crest; reef 

slope) occupied by territorial damselfish. The profile was further categorized into 3 subzones 

(back/upper; mid; front/ lower) within each of the 3 habitat zones based on the aspect, depth, 

and distance relative to the reef crest (Table 2.1). During the search, the observer (J. G. 

Eurich) swam at a constant depth parallel to the reef crest zig-zagging shallower in 2 m 

vertical increments within the survey area. Species identity, size, life stage, reef zone, 

subzone, and depth were recorded within each contiguous 2 m transect. Searches were 

repeated at 3 different locations per reef for each replicate reef (n = 9).  

Microhabitat use, availability, and selectivity 

 Microhabitat use was recorded for each fish observed as the substrate directly beneath 

an individual when it was first noticed. For analysis, substratum was classified as one of 8 

microhabitat categories: (1) hard corals; recorded by growth form but pooled as live coral for 

the purpose of this study, (2) non-biological substrate (e.g. sand, boulder), (3) sediment or 

detritus, (4) rubble (incl. fragments of dead coral), (5) turf algae, (6) Turbinaria sp., (7) 

Padina sp., or (8) other (e.g. dead standing coral, other macroalgae, crustose-coralline algae, 

Fungia spp., sponges, and bivalves). For the purpose of this study, we used the definition of 

turf algae from Hay (1981) as masses of tightly packed upright branches that were dominated 

by filamentous species. If any points had multiple categories within the area, the majority was 

chosen. All surveys were conducted on SCUBA at mid or high tide by one observer (J. G. 

Eurich). 

The availability of the different microhabitats at each site (n = 9) was quantified by a 

series of 10 m transects parallel to the crest at 2 m vertical intervals within the damselfish 

survey area. A total of 12 transects per site were used with 4 on the slope, 4 on the crest, and 

4 on the reef flat. Benthos was recorded for each reef subzone using the random intercept 

point method (n = 80 points zone–1 site–1; Jones et al. 2004). Substratum was classified into 

the same 8 categories as used in the microhabitat use surveys. 

Microhabitat selectivity was estimated by calculating Manly’s resource selection ratios 

(Manly et al. 2002) based on the estimates of habitat use and availability from independent 

animals with equal access to resource units. Manly’s resource selection ratio was chosen due 

to the ability to quantify microhabitat use at the population level from individual-specific 

data. The resource selection ratios (ŵi = oi / πi) were used to determine whether a species used 
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a microhabitat type more or less frequently than expected based on their availability, where oi 

is the proportion of fishes on category i, and πi is the proportion of microhabitat i available 

(for full equations and explanations see Manly et al. 2002). Microhabitat availability data 

were merged across replicate benthic transects to estimate overall percent cover by zone, and 

the mean of the 3 reefs was used in calculations, as there was no site difference (by ANOVA, 

χ2 (df 2) = 2.427, p = 0.297; Appendix: Table S2.1). To quantify species-level microhabitat 

selectivity, only microhabitat types (grouped into the above categories) that were occupied by 

the fish species were used and unused categories were omitted from the analysis. To allow 

multiple comparisons between micro habitat types, a Bonferroni-corrected 95% confidence 

interval was calculated for each selection ratio (Manly et al. 2002). A confidence interval 

containing the value of 1 indicates that a microhabitat is used in proportion to its availability 

(i.e. 1:1 or non-significant). A confidence interval which spans greater or less than 1, but does 

not include 1, indicates that a microhabitat is selected or avoided, respectively, than expected 

by its availability in the study area (Manly et al. 2002). 

Agonistic interactions 

 A field experiment was used to quantify levels of aggression within and among 

species as a potential determinant of spatial segregation between neighbouring species. The 

levels of aggression toward the intruding stimulus-individuals were assessed using a ‘bottle’ 

experiment (Myrberg and Thresher 1974), following Draud and Itzkowitz (1995), Sale et al. 

(1980), Harrington (1993), and Osório et al. (2006). However, similar to Bay et al. (2001), a 

plastic bag was used instead of a glass bottle to allow the intruding individual more volume, 

thereby decreasing stress, and to minimize visual distortion of the fish within the bag. In the 

present study, ‘stimulus’ fish were placed in bags inside the territories of a ‘response’ fish, 

and the intensity of response by the resident towards the stimulus was quantified (Fig. 2.2). 

Using this methodology, Osório et al. (2006) demonstrated similar results in the aquarium 

and field. In the present study, a field experiment was chosen over a laboratory study to limit 

the stress and manipulation of the fishes and to maintain natural variables that may influence 

fish behaviour. In the field a resident species can engage in shelter and habitat maintenance, 

defecation, foraging, and other activities in addition to territorial defense. While the relative 

response towards intruding species is unlikely to be influenced by the experimental design 

(Osório et al. 2006), the magnitude of response and rates of agonistic interactions are more 

representative of natural conditions when executed in the field. 
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Figure 2.2 Neoglyphidodon nigroris resident with a conspecific stimulus during a 
bottle experiment trial. The focal laterally displayed (left, category 2) and charged 
(right, category 3) as it swam around the stimulus. 

 

 

The stimulus fishes were captured using hand nets and clove oil (50 ml in 100 ml 95% 

ethanol with 350 ml seawater) as an anaesthetic and kept in a holding tank for 15−30 min 

prior to use to regain normal behaviour and colour. If the fish did not return to a natural state 

post-anaesthesia it was released and not used. Fish were held for a maximum duration of 4 h. 

For each trial, a single adult of each stimulus species was then placed into a sealed 9 l 

seawater-filled transparent plastic bag. A pilot study indicated that the presence of a diver 

observing the trial affected interactions and thus all trials were recorded on video using 

tripods with the diver not present. Before initiating the experiments, each resident species was 

observed for 4−5 min to establish the boundaries of the territory, neighbouring species, and to 

allow the resident damselfish species to acclimate to the tripod prior to the experimental trial 

start time. The diver then introduced the stimulus individual into the centre of the territory, 

secured the bag to the substratum via rubber band, and immediately vacated the area. The 

resident responses were recorded for 5 min with a video camera (GoPro). The videos were 

analysed and the frequency and intensity of the territory holder’s behavioural interactions 

were quantified and categorized based on the severity of the response (Table 2.2). If at any 

point during a trial the stimulus individual exhibited irregular or stressed behaviour, colour 

changes, or exerted aggression back to resident, the trial was abandoned and omitted from the 
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analysis. However, this rarely occurred, with most stimulus individuals swimming from side 

to side within the bag. 

The sampling design included 56 different combinations of stimulus and response 

treatments. Eight different stimuli (conspecific, heterospecifics: 6 other species, and an empty 

bag control) were replicated 10 times each for the 7 species of interest (n = 560). Each trial 

was conducted using a different resident species. After each trial, the stimulus species (i.e. 

fish in the bag) was given fresh seawater and a 2 − 3 min break before being used in another 

trial. If the stimulus species did not resume normal behaviour within 5 min, the stimulus 

species was released and a new individual was used. 

 

Table 2.2 Definitions of behavioural interactions used to quantify aggression 
between resident and stimulus species. 
 
 Category Behaviour  

 1. Investigation 
 
 

Non-aggressive change of behaviour, 
movement towards the bag with limited action 
and no further attention; inspection 

 

 2. Display Fin flare, tail flick, body oscillation; directed 
colour change 

 

 3. Charge Aggressive quick movement towards the bag to 
an abrupt stop before contact 

 

 4. Bite Contact of mouth with the bag 
 

 

 

 

Statistical analysis 

To describe the distribution of the 7 damselfish species across reef zones and sites, 

abundance and location within the reef profile was compared among adult individuals only 

across the species range. Due to irregular recruitment pulses during the survey periods, a lack 

of territoriality or aggression towards recruits from adults in preliminary observations, and 

because recruits occupied the same distribution as their respective adults, recruits and sub-

juveniles (<1.5 cm) were omitted from the analysis. Because we were unable to determine a 

transformation for the data that clearly met parametric assumptions, we used the 

nonparametric Kruskal-Wallis 1-way ANOVA (Zar 1999). A Bonferroni correction of alpha 

levels was made to adjust for the number of comparisons made. For substrate and 

microhabitat availability (used for microhabitat use), a binomial generalized linear mixed 
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model was used to evaluate the effects of zone and site using the R package ‘car’ (Crawley 

2007, Fox and Weisberg 2011, R Development Core Team 2013). ‘Replicates’ within reef 

site and transects was considered a random factor in the mixed model using the R package 

‘lme4’ (Bates et al. 2011). For substrate and microhabitat availability, a full model was fitted 

with all explanatory variables (depth and transect) and interactions (reef zone and site). From 

this full model, we subsequently generated simpler models and used the Akaike information 

criterion (AIC) to choose the most parsimonious model with the lowest AIC (Appendix: 

Table S2.2). While all comparisons involved replicate fish and benthic microhabitat sampled 

from 3 different reefs, data were pooled and smoothed for graphical presentation and final 

analysis where there were no differences among reefs. 

2.4 Results 

Habitat partitioning 

The distribution and relative abundance of adult damselfish differed markedly among 

the 3 reef zones and subzones, with minimal overlap among species (Fig. 2.3; Table 2.3). 

There were significant differences in abundance among zones for all species, with no 

significant differences among sites (Table 2.4). All 7 species occupied a distinct subzone 

within the reef flat, reef crest, and reef slope. The reef flat was dominated by Pomacentrus 

tripunctatus (p = 0.022) and Chrysiptera unimaculata (p = 0.022), with further partitioning 

into the subzones reef flat back and reef flat mid, respectively (Fig. 2.3). The population of 

Pomacentrus bankanensis also was mainly restricted to the reef flat front, directly in front of 

C. unimaculata with minimal overlap, and the reef crest back (p = 0.053). Pomacentrus 

adelus occupied the broadest range of any species and occurred in all 3 zones, with no 

significant differences among zones (p = 0.269). However, despite a non-significant pattern 

when comparing between zones, P. adelus did show a unique bimodal distribution at the 

subzone level. It occupied the reef flat front with P. bankanensis and the upper reef slope 

with Neoglyphidodon nigroris, with reduced densities around the main reef crest. 

Plectroglyphidodon lacrymatus was exclusively found on the reef crest and its abundance 

was inversely proportional to the abundance of P. adelus (p = 0.055). The reef slope (mid to 

lower) was almost entirely occupied by N. nigroris until ~5 m depth, where Pomacentrus 

burroughi became prevalent. The 2 reef slope species had minimal overlap and were 

exclusive to these zones on all sites (p = 0.023 and p = 0.021, respectively). 
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Figure 2.3 Distribution of adult territorial damselfish by (a) proportion of 
individuals across the reef zones (RF: reef flat; RC: reef crest; RS: reef slope) and 
related linear subzones (back/upper; mid, denoted in figure by bolded zone; 
front/lower) (b) reef profile cross-section. Proportion of individuals based on 
pooled populations from all sites (n = 3) for each subzone. Subzone spacing and 
distance from reef crest is averaged across sites. Reef slope wall is omitted from 
reef profile depiction. Species: Pomacentrus tripunctatus, Chrysiptera 
unimaculata, Pomacentrus bankanensis, Pomacentrus adelus, Plectroglyphidodon 
lacrymatus, Neoglyphidodon nigroris, Pomacentrus burroughi. 
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Table 2.3 Pairwise percent overlap in distribution of damselfish. Mean (± SE) percent overlap 
between sites (n = 3) of the total population (row) relative to other species (column). Count data 
was pooled by subzone. If 2 species occurred within the same subzone they were categorised as 
overlapping. Species are abbreviated to the first four letters of the species name. 

 
 P. trip C. unim P. bank P. adel Pl. lacr N. nigr P. burr  

P. trip  73.3 ± 27.7 8.7 ± 4.3 8.7 ± 4.3 0.0 0.0 0.0  

C. unim 55.0 ± 21.7  39.0 ± 20.0 6.0 ± 3.0 0.0 0.0 0.0  

P. bank 5.3 ± 2.7 25.7 ± 13.7  61.0 ± 20.6 40.0 ± 23.7 0.7 ± 0.3 0.0  

P. adel 1.7 ± 0.8 3.3 ± 1.7 46.3 ± 23.4  74.0 ± 17.9 12.3 ± 9.4 1.7 ± 0.8  

Pl. lacr 0.0 2.3 ± 1.2 55.0 ± 23.7 93.3 ± 1.9  10.0 ± 7.2 0.0  

N. nigr 0.0 0.0 0.0 23.3 ± 16.9 7.7 ± 2.7  67.7 ± 13.6  

P. burr 0.0 0.0 0.0 4.3 ± 2.3 1.7 ± 0.8 97.3 ± 2.7   

         
 

Table 2.4 Kruskal-Wallis testing for differences 
in distribution of the 7 species across reef zone 
and site. 

 
 Source    Χ2 df P-value  

 
P. tripunctatus 

Zone 
Site 

 
7.623 
0.125 

 
2 
2 

 
0.022  
0.939 

 

  
C. unimaculata 

Zone 
Site 

 
 
7.623 
0.125 

 
 
2 
2 

 
 
0.022  
0.939 

 

  
P. bankanensis 

Zone 
Site 

 
 
5.843 
1.382 
 

 
 
2 
2 
 

 
 
0.053  
0.501 
 

 

 P. adelus 
Zone 
Site 

 
2.621 
1.681 

 
2 
2 
 

 
0.269 
0.432 

 

 Pl. lacrymatus 
Zone 
Site 

 
5.793 
0.276 

 
2 
2 

 
0.055  
0.870 

 

  
N. nigroris 

Zone 
Site 

 
 
7.513 
0.301 

 
 
2 
2 

 
 
0.023  
0.860 

 

  
P. burroughi 

Zone 
Site  

 
 
7.623 
0.125 
 

 
 
2 
2 
 

 
 
0.021 
0.939 
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Microhabitat use and selectivity 

The microhabitats used by 1269 damselfish were recorded and compared to availability 

to determine selectivity (Appendix: Text S2.1 and Fig. S2.2). All species positively selected 

rubble, although strength of selectivity varied (Fig. 2.4). Conversely, the pooled category 

‘other’ of limited or rare substrate types (i.e. dead coral, CCA, Fungia, sponges, and 

macroalgae) was either unused or non-significant for all species. All other microhabitat 

categories differed among species, particularly between neighbouring species that occurred 

within the same zone. 

Other than an avoidance for live coral, the reef flat species markedly differed in 

microhabitat selectivity. The population of P. tripunctatus was positively associated with 

multiple different substrate types (Fig. 2.4a). P. tripunctatus actively selected non-biological 

substrate (predominantly fine sand and bare rock), sediment, rubble, Turbinaria, and Padina, 

and avoided turf. There was no trend towards a specific microhabitat type as the population 

was distributed equivalently amongst 6 out of the 8 microhabitat types recorded. C. 

unimaculata, the other main occupier on the reef flat, differed significantly from P. 

tripunctatus in its microhabitat preference (Fig. 2.4a). Unlike P. tripunctatus, the majority of 

the population was exclusively on one microhabitat type, with 66.1% of the individuals 

observed on rubble. The only other positive association was with sediment, which was not 

observed frequently on benthic transects and was found in close proximity to rubble. All 

other microhabitat types were either unused or used in proportion to availability. 

Of the 3 reef crest-associated species, P. bankanensis and P. adelus overlapped in 

microhabitat preferences and use (Fig. 2.4b). Both species heavily selected rubble, with 58.0 

and 68.3% of the total population (respectively) using rubble and showed a preference for 

non-biological substrata, which mainly comprised of sand and bare rock in gutters or 

channels through the crest (J. G. Eurich pers. obs.). Both species actively avoided live coral 

and turf, despite these being abundant substrate categories with 29.6 and 22.9% of total cover, 

respectively. Additionally, P. adelus, the only species to occur in more than one zone, 

occupied the same microhabitats in equal proportion with or without the presence of P. 

bankanensis (Fig. 2.5). Plectroglyphidodon lacrymatus differed substantially in microhabitat 

use and selectivity compared to Pomacentrus bankanensis and P. adelus (Fig. 2.4b). The 

majority of individuals were found associated with turf (80.7% of the population), with only a 

small number on rubble (13.7%). 
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On the reef slope, N. nigroris displayed similar preferences to Plectroglyphidodon 

lacrymatus, with a strong preference for rubble (39.5% of the population) and turf (44.3%; 

Fig. 2.4c). Live coral was avoided despite covering 32.5% of the area. Pomacentrus 

burroughi, the deepest-occurring species at the base of the reef slope, shared a microhabitat 

preference for rubble (38% of the population) with N. nigroris, but also actively chose 

sediment (26.8%; Fig. 2.4c). Turf was actively avoided, with only 7.8% of the population 

observed on this category despite 13.8% benthic cover on the reef slope. 

Agonistic interactions 

The levels of aggression displayed against a neighbouring species were significantly 

higher than non-neighbouring species for all 7 species (Table 2.5; Fig. 2.6a; Appendix: Table 

S2.3). Reef flat species, P. tripunctatus (p < 0.0001) and C. unimaculata (p < 0.0001), and the 

deeper reef slope species, P. burroughi (p < 0.0001) displayed significantly more aggression 

towards neighbouring species, but exhibited lower aggressive interactions than the reef crest 

species at ≤8.3 mean interactions per trial. The species situated near the reef crest also showed 

significantly higher mean aggression towards neighbouring species when compared to non-

neighbouring species but at a higher intensity of ≥8.6 mean interactions per trial when 

compared to the reef flat and reef slope species. However, P. bankanensis (p = 0.011) and N. 

nigroris (p < 0.0001) were more aggressive towards neighbouring species on average (27.4 and 

21.3 mean interactions per trial, respectively) than Plectroglyphidodon lacrymatus (p = 0.029) 

or Pomacentrus adelus (p < 0.0001; 14.8 and 8.6 mean interactions per trial, respectively). 

For all species, a conspecific stimulus species elicited a significantly greater amount of 

aggression than heterospecific stimulus species (Table 2.5; Fig. 2.6b; Appendix: Table S2.3 

MEPS Supplement). Furthermore, heterospecific stimulus species rarely lead to a charge or 

bite by the focal residents. Relative to other species, the reef flat species P. tripunctatus and C. 

unimaculata exhibited the lowest aggression. Despite still showing significantly higher 

aggression towards conspecifics (p = 0.002 and p < 0.0001, respectively), their mean numbers 

of aggressive behaviours were 1 to 2 orders of magnitude less than the reef crest and reef 

slope species. Conversely, the highest levels of aggression towards conspecifics were 

observed on the reef crest. P. bankanensis showed the highest rate and variability of 

aggressive behaviours, ranging from 25 − 65 interactions per trial towards conspecifics and 

5−20 interactions per trial towards heterospecifics (p < 0.0001). For all species, negligible 

interactions were made towards the control other than rare single investigations (Category 1) 

immediately following bag placement (Appendix: Table S2.4). 
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Figure 2.4  Microhabitat use of (a) reef flat species, (b) reef crest species, and (c) 
reef slope species. Resource selection: + microhabitat used more than available, - 
microhabitat used less than available, NS microhabitat was used in proportion to 
availability, and U microhabitat was never used. Bonferroni-corrected 95% 
confidence intervals was calculated with standard error for each selection ratio. 
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Figure 2.5  Microhabitat use of Pomacentrus adelus when spatial distributions overlap (white 
bars, n = 99) and do not overlap (black bars, n = 109) with Pomacentrus bankanensis (black 
bars, n = 109). Turbinaria and Padina were omitted from presentation as the microhabitats 
were never used. 
 

 
Table 2.5 Results of ANOVAs on differences between the level of aggression towards; 1) 
conspecifics and heterospecifics stimulus species, and 2) neighbouring and non-neighbouring 
stimulus species. 

 Source Χ2 df P-value  

  
P. tripunctatus 

Conspecific 
Neighbours 

 
 
9.909 
20.630 

 
 
1 
1 

 
 
0.002 
< 0.0001 

 

  
C. unimaculata 

Conspecific 
Neighbours 

 
P. bankanensis  

Conspecific 
Neighbours 

 
P. adelus  

Conspecific 
Neighbours 

 
Pl. lacrymatus  

Conspecific 
Neighbours 

 
N. nigroris  

Conspecific 
Neighbours 

 
P. burroughi  

Conspecific 
Neighbours 

 

 
 
20.842 
23.532 
 
 
18.907 
6.461 
 
 
7.986 
15.459 
 
 
5.589 
4.754 
 
 
22.475 
21.762 
 
 
43.852 
34.464 
 

 
 
1 
1 
 
 
1 
1 
 
 
1 
1 
 
 
1 
1 
 
 
1 
1 
 
 
1 
1 

 
 
< 0.0001 
< 0.0001 
 
 
< 0.0001 
0.011 
 
 
0.004 
< 0.0001 
 
 
0.018 
0.029 
 
 
< 0.0001 
< 0.0001 
 
 
< 0.0001 
< 0.0001 
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Figure 2.6 Resident species mean aggressive interactions towards (a) 
neighbouring/non-neighbouring and (b) conspecific/heterospecific stimulus species 
per 4 min trial (abbreviated to the first four letters of the species name). Box and 
whisker plot displays lowest and highest values omitting outliers, with box showing 
interquartile range and the median represented by the bold line. 

 

2.5 Discussion 

This study provides evidence for fine-scale partitioning of coral reef zones in a guild of 

territorial damselfish on a high-diversity coral reef. Distribution patterns were characterized 

by a distinct zonation parallel to the reef crest that saw all 7 resident species restricted to 

subzones of just a few meters wide along the reef flat, reef crest, and upper reef slope. Each 

species had a unique distribution with a relatively small overlap between neighbouring 

a)

b)
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species. These distributions were clearly linked to levels of microhabitat selectivity and 

aggression between species. When the distribution of species overlapped, these species 

exhibited a marked difference in microhabitat use and selectivity. Adjacent species exhibited 

intense aggression towards one another compared with species separated from one another. 

We argue aggression plays an important role in reinforcing the patterns of habitat 

partitioning. Our research demonstrates that when exploring coexistence in adult reef fish 

communities, the traditional niche mechanisms operate alongside competitive dynamics, and 

within highly diverse systems these ecological processes are magnified. 

Ecological partitioning along natural resource gradients has been found in plants (Grace 

and Wetzel 1981), reptiles (Schoener 1974), birds (Burger et al. 1977), rodents (Ziv et al. 

1993), and many other taxa. Our research confirms the widely documented patterns of 

distinct non-overlapping spatial distributions of damselfish along reef gradients (Robertson 

1996, Bay et al. 2001, Emslie et al. 2012). Previous work has clearly shown that fishes may 

partition space along depth gradients down reef slope habitats (McGehee 1994, Nanami et al. 

2005, Jankowski et al. 2015, MacDonald et al. 2016). For territorial damselfish and other 

families, these distributional patterns can also be seen across the reef crest and reef flat (Russ 

1984, Bay et al. 2001, Ceccarelli 2007). However, previous studies that quantify spatial 

gradients among reef fishes have been applied at relatively coarse spatial scales and do not 

quantify distributions on a scale of meters. In the present study, damselfish within each reef 

zone revealed partitioning of space with distinct distributions over a distance of 1−2 m. This 

represents the finest scale of habitat partitioning yet documented for this guild. This level of 

partitioning may reflect the high species diversity of territorial damselfish within the Coral 

Triangle. Where species richness is high, ecologically similar species partition resources to a 

greater extent and are more specialized (Schoener 1974, Ross 1986, Bellwood et al. 2006). In 

other regions with a lower abundance of territorial damselfishes, space occupancy, and 

diversity (e.g. Great Barrier Reef), the fine-scale spatial partitioning observed in this study 

may not be as prevalent or ecologically necessary (Ceccarelli 2007). 

Resource partitioning is most likely refined by interactions among neighbouring species 

that regularly come into contact with one another (MacArthur 1958). Ecologically similar 

animals may be able to coexist by acting as generalists or specialists when resource 

availability is limited (MacNally 1995). On coral reefs where habitat is limited, neighbouring 

fishes with overlapping distributions may co-exist if they have contrasting patterns of habitat 

selectivity and versatility. In the present study, species within the same reef zone exhibited 
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differences in microhabitat selectivity. While there was some overlap in microhabitat use 

among the 7 species, with all commonly associated with rubble substrata, there were distinct 

differences in the substrata used. Moreover, we observed the pairing of a species with 

generalist microhabitat use to a species with specialist microhabitat use within each zone, 

despite all habitats being relatively abundant across reef zones. Together, this suggests that 

neighbouring damselfish are constraining their microhabitat use to facilitate the co-habitation 

of reef zones and that microhabitat selectivity alone is insufficient in explaining the distinct 

zonation and limited distributional overlap. 

It is notable that of the 3 species that cohabited the reef crest−Pomacentrus 

bankanensis, Pomacentrus adelus, and Plectroglyphidodon lacrymatus−2 species had similar 

microhabitat use and selectivity. Pomacentrus bankanensis and P. adelus displayed generalist 

qualities by occupying 4 microhabitats in contrast to Plectroglyphidodon lacrymatus, which 

displayed specialist habitat use for turf substrata—a well documented trait for this species 

(Jones et al. 2006, Hata and Kato 2006, Ceccarelli 2007, Hoey and Bellwood 2010). While 

the generalist-specialist pairing is still seen for this zone relative to P. lacrymatus, the 2 

species did not constrain or partition habitat use. Pomacentrus bankanensis and P. adelus 

occupied identical microhabitats in equal proportion. Furthermore, P. adelus is the only 

species found to occupy multiple reef zones. This raises the question of whether the presence 

of P. bankanensis alters the habitat associations of P. adelus in areas where both species 

occur. Interestingly, P. adelus occupied the same microhabitats in equal proportion between 

zones with or without the presence of P. bankanensis. This suggests interspecific competition 

may also play a role in the spatial segregation of these species. 

Early coral reef studies stressed intense interspecific competition for living space as the 

main driver behind niche partitioning (Smith and Tyler 1972, 1973, Smith 1978, Jones 1991). 

A large body of literature has since confirmed that interspecific aggression results in the 

spatial segregation of many fishes (Ebersole 1977, 1985, Robertson and Gaines 1986, 

Robertson 1996, Bay et al. 2001, Jones and McCormick 2002, Boström-Einarsson et al. 

2014). The present study provides additional evidence that agonistic interactions among 

species within the guild can explain the high degree of resource partitioning and limited 

distributional overlap. For all 7 species, significantly higher levels of aggression were 

reserved for conspecifics and neighbouring territorial damselfish. Species that did not 

commonly come into contact with one another received little or no aggression despite 

occupying relatively similar niche breadths. These findings support the logic of animal 
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conflict and competition theory (Maynard Smith and Price 1973, Connell 1983, Schoener 

1983, Maynard Smith and Harper 1988). Aggression is expensive because it imposes energy 

and time costs and increases the risk of injury (Clutton-Brock and Parker 1995, Tibbetts and 

Dale 2004). Individuals do not need to be aggressive to all species, just the ones that pose a 

direct threat. Within a reef zone, damselfish showed higher aggression towards a 

neighbouring species due to the increased competition for space and habitat. Thus, 

interspecific aggression helps maintain the distributional boundaries between neighbouring 

populations. 

Aggression towards neighbouring species was not ubiquitous among reef zones. 

Species on the perimeter of the physical gradient exhibited less aggression relative to species 

occupying the middle zone (i.e. the reef crest). A similar study showed that the most densely 

occupied zone in Kimbe Bay is the reef crest, where damselfish territories encompass almost 

100% of the substratum (Ceccarelli 2007). When habitat is limited, animals are compelled to 

display more aggression in an effort to maintain access to the resource (Maynard Smith and 

Price 1973, Connell 1978). In the present study, P. bankanensis, which occupies the front reef 

flat to the back reef crest, was the most aggressive species, with more bites than any other 

species. Conversely, the species further away from the reef crest (Pomacentrus tripunctatus 

and Chrysiptera unimaculata on the reef flat and P. burroughi on the reef slope) displayed 

lower levels of aggression regardless of the stimuli. Our results suggest that competition for 

space among the guild is likely higher on the reef crest due to limited space. 

The possibility of a dominance hierarchy as a result of interference competition among 

overlapping species cannot be discounted. P. bankanensis and P. adelus, the only co-

inhabiting species with similar microhabitat use, differed in levels of aggression. An 

explanation is that P. adelus, the less aggressive species, is subordinate and consequently may 

be driven off the reef crest and down the reef slope where space is less limited. This may 

explain the bimodal distribution of P. adelus around the central reef crest and the reason for 

occupancy within 2 zones. Munday et al. (2001) previously documented that coexistence and 

a dominance hierarchy among 6 closely related goby (genus Gobiodon) species is maintained 

by a variety of mechanisms. Experimental removals of the competitively dominant or most 

abundant species (such as Robertson 1996) are required to determine if zone reversals or 

distributional shifts may occur. 

While this study focuses on adult interactions, it is clear that spatial patterns of 

distribution may be explained by multiple factors (Ebeling and Hixon 1991, Hixon 1991, 
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Jones 1991). Early theory suggested chance colonization of vacant space via recruitment 

exclusively determines patterns of abundance (Sale 1976, 1977, 1978). While such a 

mechanism may not be universal, larval supply and recruitment is known to shape the 

distribution of adult populations at a large scale with habitat selection influencing settlement 

(Williams and Sale 1981, Sale et al. 1984, Levin 1991). Pereira et al. (2015) demonstrated 

that the competitive mechanism between 2 goby species shifted from a lottery for space at 

settlement to niche partitioning among larger individuals. Research on territorial damselfish 

shows that juveniles often occur in the same zones as adults, and that aggressive interactions 

do not play a large role in the distribution of juveniles (Bay et al. 2001). In Kimbe Bay 

territorial damselfish juveniles and adults occupied similar distributions within the reef 

profile but refined recruitment surveys are needed to empirically corroborate the findings of 

Bay et al. (2001) and assess if an ontogenetic change in the mechanisms of coexistence exists 

(Munday et al. 2001, Pereira et al. 2015). While spatial distributions may be generated 

initially by recruitment patterns in other coral reef fishes or at a broader scale, post-

recruitment events likely modify territorial damselfish distributions (Jones 1997). 

Here we used a ‘bottle’ experiment to obtain a standardized quantification of the 

aggression between 2 individuals. Similar protocols have commonly been used to quantify 

fish aggression (Myrberg and Thresher 1974, Draud and Itzkowitz 1995, Sale et al. 1980, 

Harrington 1993, Bay et al. 2001, Osório et al. 2006). While the interaction is somewhat 

artificial, we argue that the differential aggression found among species using this technique 

is a useful relative measure of aggression. This methodology had the advantage over 

unmanipulated field observations because it enabled the quantification of aggression between 

species that may not normally interact due to their spatial separation. Because competitive 

interactions are energetically expensive (Maynard Smith and Price 1973, Connell 1978), a 

measure of relative aggression is an ecologically relevant proxy for the competition that may 

underlie the spatial partitioning among multiple species. 

Conclusions 

We demonstrate that when exploring coexistence in reef fish communities, the more 

traditional niche mechanisms operate alongside competitive dynamics. Evidence presented 

here suggests that the distribution of territorial damselfish along a physical gradient in Kimbe 

Bay, PNG is the result of microhabitat partitioning and interspecific competition. These 2 

potentially independent processes likely contribute to a fine-scale partitioning of space within 

reef zones and the limited distributional overlap of species within the guild. Elevated levels of 
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microhabitat partitioning and ecological versatility among neighbouring species also 

appeared to facilitate coexistence. The levels of aggression elicited by neighbouring species 

were significantly higher for all species compared with non-adjacent species, suggesting that 

interference competition contributes to a sharp transition from one species to another along 

the reef profile. This study expands on competitive interaction networks by providing insight 

into the mechanisms of aggression in a multi-species comparison. Evidence suggests that 

variation in the strength of interspecific competition among ecologically similar species 

influences habitat partitioning in a highly complex and diverse region. 
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Chapter 3 
 

Stable isotope analysis reveals trophic diversity and partitioning 
in territorial damselfishes on a low latitude coral reef 

 
Jacob G. Eurich, Jordan K. Matley, Ronald Baker, Mark I. McCormick, 

and Geoffrey P. Jones 
 

This chapter is in revision for Marine Biology 
 
 
3.1 Summary 

Investigating the niche overlap of ecologically similar species can reveal the 

mechanisms that drive spatial partitioning in high-diversity systems. Understanding how food 

resources are used and whether neighbouring species’ diets are different are particularly 

important when considering the coexistence and functional role of species. Territorial 

damselfish on coral reefs are usually considered to be herbivores that often defend 

conspicuous algal mats from other food competitors.  However, this guild contains numerous 

small species whose functional role and dietary diversification is poorly understood. Here, we 

investigate the relationships between diet and spatial distribution of seven small territorial 

damselfishes at Kimbe Bay, Papua New Guinea. These species partition habitat across three 

reef zones - the flat, crest, and slope, with distinct patterns of distribution within these zones. 

We predicted that neighbouring species with similar distributions would partition food with 

minimal dietary overlap. Examination of isotope ratios of carbon and nitrogen delineated 

three distinct feeding strategies, analagous to previous literature, within this group: 1) Pelagic 

feeders consuming zooplankton and particulate organic matter; 2) Reef-based feeders likely 

consuming algae, vagile invertebrates and detritus; 3) An intermediate group 

opportunistically feeding on both pelagic and benthic prey. None of the species appear to be 

strict herbivores. Adjacent species on the flat, crest, and slope exhibited high to intermediate 

trophic niche partitioning when examining pelagic versus reef-based dietary sources, with 

two species previously described as benthic herbivores actually exhibiting pelagic feeding. 

We argue that diet choice reinforces the patterns of spatial partitioning and coexistence 

among ecologically similar species. These findings add to a growing view that interspecific 

differences among similar species are lost when categorizing species into broad functional 

classifications, and that previous studies suggesting that territorial damselfish are strictly reef-

based feeders may not be applicable in all systems or for all species. 
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3.2 Introduction 

Coral reefs harbour exceptional diversity and two primary goals of reef fish ecology 

are to understand the mechanisms that allow similar species to coexist and the functional 

importance of each species. Niche partitioning has been viewed as one of the key factors in 

promoting the diversification of fishes (Cavender-Bares et al. 2009, Ndiribe et al. 2013, 

Gajdzik et al. 2016). Thus, investigating resource use of coral reef fishes (e.g., food and 

habitat) and describing species in the context of broad functional roles has received 

considerable attention (Pratchett et al. 2011, Hughes et al. 2017, Richardson et al. 2018). The 

identification of a species’ trophic niche, defined as the place of an organism in the 

environment in relation to its food (Silvertown 2004), is one of the main ecological 

parameters that provide the basis of these functional groups (Mouillot et al. 2013). However, 

interspecific differences among similar species are lost when categorizing species into broad 

functional classifications (Brandl and Bellwood 2014, Tebbett et al. 2017a). The species-

specific differences are particularly important when considering the functional role and 

coexistence of a taxon that is abundant and important to the overall community. 

Damselfishes (Pomacentridae) are a major component of coral reef fish assemblages 

(Choat 1991). Their diversity and abundance has resulted in more attention from researchers 

than any other family of coral reef fishes, and they were the focus of early theoretical 

advancements in reef-fish ecology (Smith and Tyler 1972, 1973, Sale 1976, 1977, Doherty 

1983). The highly site-attached habits, relatively small bodies, and territorial behaviour allow 

ecological parameters, niche properties, behavioural interactions and patterns of co-existence 

to be readily quantified (Robertson and Lassig 1980, Waldner and Robertson 1980). Within 

species, competitive effects on survival (Jones 1987a, b) and the drivers of abundance and 

distribution across coral reef habitats are well known (Meekan et al. 1995, Robertson 1996). 

Among species, habitat partitioning along the natural reef profile gradient - the reef flat, reef 

crest, and reef slope (Bay et al. 2001, Ceccarelli 2007, Chaves et al. 2012, Eurich et al. 

2018a), and microhabitat partitioning (Medeiros et al. 2010, 2016) have been well 

documented. Recently, damselfish have again been used as a model species to test the 

mechanisms of coexistence due to the family’s interspecific differences in habitat use and 

competitive interactions (Bonin et al. 2015, Eurich et al. 2018b). Ecological theory has since 

progressed from a focus on pairwise interactions among species to a multifactorial 

perspective of the process and mechanisms that govern competition within a community 

(Jones 1991, Hixon et al. 2002, Wiens et al. 2010, Pereira et al. 2015). Thus, when examining 
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niche partitioning and coexistence within reef fish communities it is important to document 

similarities and differences among species on all important resource axes. While studies of 

habitat partitioning have generated a substantial amount of evidence, the diet or trophic niche 

of pomacentrids have received much less attention at this scale (but see, Ceccarelli 2007, 

Frédérich et al. 2009, Gajdzik et al. 2016). 

Territorial damselfish, commonly referred to as “farmers” play an integral role in the 

benthic structure of coral reefs through their role as small-bodied consumers and aggressive 

holders of benthic space (Hixon and Brostoff 1983, 1996, Hata and Kato 2004, Ceccarelli et 

al. 2005b). Early dietary research defined the guild as herbivorous, but studies were biased 

towards a few larger, more aggressive species that maintain conspicuous algal mats, such as 

extensive farming species from the genera Stegastes, Dischistodus, and Hemiglypltidodon 

(Meekan et al. 1995, Wilson and Bellwood 1997, Ceccarelli et al. 2001, Jones et al. 2006). In 

addition, early studies that examined the trophic niche of territorial damselfish used gut 

content (stomach) analysis, which favors the observer to categorize matter as algae or detritus 

instead of pelagic materials (Polunin and Klumpp 1989, Ceccarelli 2007, Feitosa et al. 2012). 

However, it is important to note there are ambiguities associated with the functional term 

“herbivorous” within the context of territorial damselfish (reviewed by Horn 1989). 

Commonly, herbivores are described as species that remove algal matter from the substratum 

for consumption, but species that incidentally or deliberately remove algae for other means, 

such as farming, were included in early studies (Lassuy 1980, Steneck 1988). For the 

purposes of this study, any species that removes algae from the substratum for direct 

consumption is described as herbivorous to differentiate between diet contributions and 

farming behaviour. Successive studies have now provided contrary evidence indicating that 

not all farming damselfish are strictly herbivorous (reviewed by Hata and Ceccarelli 2016). 

Instead, territorial damselfishes appear to act as benthic-associated omnivorous generalists, 

with highly opportunistic diets and feeding plasticity (Frédérich et al. 2016). Nonetheless, our 

empirical understanding of territorial damselfishes trophic niche has been limited by the 

absence of detailed information on the extent of diet and resource partitioning for the majority 

of smaller territorial species from the genera Pomacentrus, Chrysiptera, Plectroglyphidodon, 

and Neoglyphidodon (but see Ceccarelli 2007).  

Stable isotopes are increasingly used in ecology to study diet and trophic niche 

analysis as they reflect tissue assimilation from prey and are not hindered by stomach content 

analysis biases (pomacentrids reviewed by Frédérich et al. 2016). While stomach content data 
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are a snapshot that reflects the most recent meals and may not represent the overall diet, 

stable isotopes of a consumer are concurrently integrated from various prey tissues at a rate 

slower than digestion (Matley et al. 2016). Thus, stable isotope analysis provides a measure 

of the diet contributions over longer periods of time (Post 2002). Although stable isotope 

analysis does not provide high-resolution dietary information, it can be used to estimate 

contribution of dietary sources (Jackson et al. 2011, Parnell et al. 2012). The ratio of carbon 

(δ13C) is commonly used because it indicates food sources or habitat (i.e., limited enrichment 

between predator and prey; Michener and Schell 1994), while the ratio of nitrogen (δ 15N) 

indicates trophic level (i.e., consistent enrichment between predator and prey; Minigawa and 

Wada 1984). Moreover, stable isotope analysis can be used to assess the trophic niche width 

and overlap among populations or species at similar spatial and temporal scales (Bearhop et 

al. 2004, Frédérich et al. 2009, Gajdzik et al. 2016). Few studies have segregated pelagic and 

reef-based diet contributions for a multi-species community of competing fishes to directly 

explore trophic niche partitioning within a guild. 

Here, we explore the trophic niche diversification and partitioning in a guild of seven 

territorial damselfish. At our study location, Kimbe Bay, Papua New Guinea (PNG), these 

species partition the reef flat, reef crest, and upper reef slope habits on a fine scale (1 – 2 m) 

(Eurich et al. 2018a). The distinctive pattern of zonal distribution along this steep physical 

gradient provides an experimentally tractable system for isolating niche partitioning. Eurich 

et al. (2018a) found that neighbouring damselfish constrain their microhabitat use to facilitate 

the co-habitation of reef zones, but that microhabitat selectivity alone was insufficient in 

explaining the distinct zonation and limited distributional overlap. We hypothesise that in this 

highly partitioned ecological community, where there appears to be intense competition for 

resources (Eurich et al. 2018b), neighbouring territorial damselfish may partition food 

resources. Studies have previously quantified diet contributions, but no isotopic analysis has 

been conducted for territorial damselfish to date to specifically target pelagic-based food 

sources. In the present study we quantify trophic niches of the seven damselfish through the 

use of stable isotopes (δ13C and δ 15N). Specifically, we asked: 1) To what degree does the 

generalization that territorial damselfish are herbivores apply to the seven PNG species?; 2) 

What is the variation in trophic position among species and to what extent does body size 

influence trophic diversification; and 3) Are neighbouring species more likely to partition 

food resources than non-neighbouring species? 
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3.3 Methods 

Study site and species 

Samples were collected from platform reefs in Kimbe Bay, PNG (5°30’S, 150° 05’E) 

from December 2014 to January 2015, and prepared at Mahonia Na Dari Research and 

Conservation Centre. Kimbe Bay lies within the Coral Triangle of the Indo-Pacific, the region 

recognized for the greatest richness of marine species world-wide (Roberts et al. 2002). The 

two inshore reefs, Garbuna and Luba Luba, were selected as sample locations due to 

similarities in species composition and reef aspect. Both reefs are nearshore (<1 km from 

land), and have a similar reef profile that can be clearly divided into typical coral reef zones, 

comprising a reef flat (exposed during low tides), reef crest, and reef slope. 

At Kimbe Bay seven species of territorial damselfish partition space along a gradient 

that extends from the reef flat to the reef crest and down the reef slope in the respective order; 

Pomacentrus tripunctatus, Chrysiptera unimaculata, Pomacentrus bankanensis, Pomacentrus 

adelus, Plectroglyphidodon lacrymatus, Neoglyphidodon nigroris, and Pomacentrus 

burroughi. Distribution patterns are characterized by a distinct zonation parallel to the reef 

crest with each species restricted to subzones of just a few meters wide along the reef profile 

gradient (described in Eurich et al. 2018a). Further, the seven species are known to inhabit 

fixed territories (mean 1 − 1.5 m2 territory sizes per individual) and are highly site attached 

(Ceccarelli et al. 2001). In Kimbe Bay, all species occupy rubble (dead coral fragments) and 

filamentous algae microhabitats and defend their territories against conspecifics, interspecific 

competitors, and other benthic feeding fishes (Eurich et al. 2018a, c). All species have 

recently been categorised as predominantly (though not necessarily exclusive) benthic-

feeding ‘intermediate farmers’, with the exception of Pl. lacrymatus, which was classified as 

an ‘extensive farmer’ (reviewed by Pratchett et al. 2016). Where, intermediate farmers 

maintain discrete, but significantly different to the surrounding environment, areas of algal 

turf (Emslie et al. 2012), and extensive farmers maintain small amounts of filamentous 

rhodophytes and a diverse assemblage of indigestible macroalgae (Hata and Ceccarelli 2016 

and its citations). Despite intermediate farmers influencing the environment to a lesser 

degree, the territories support greater quantities of palatable filamentous algae (Ceccarelli 

2007) and reduce coral larvae settlement (Casey et al. 2014). 

All seven occurring species of territorial damselfish in Kimbe Bay influence the algal 

assemblage within the territorial boundary by weeding or farming (Hata and Kato 2004, 
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Ceccarelli 2007). The act of farming makes it difficult for an observer to visually census the 

bite composition and targeted food resource of territorial damselfishes successfully. Thus, 

most recent studies have examined gut content to assess diet contribution, with only two 

employing isotopic analysis (Table 3.1). Prior isotopic research has included only two of the 

territorial damselfish species fused in the present study (Frédérich et al. 2009, Gajdzik et al. 

2016). There has been no common methodology to describe diet and information for most 

species is conflicting, limited, or non-existing. 

 

Table 3.1 Summary of previous studies on territorial damselfish diet contributions using 
different methods. Methods: SI stable isotopes, GC gut content analysis (stomach content), and 
VIS visual observation (direct feeding). Location: PNG Papua New Guinea, GBR Great Barrier 
Reef, M Madagascar, Indian Ocean, and FP French Polynesia, Pacific Ocean. Species: 
Pomacentrus tripunctatus, Chrysiptera unimaculata, Pomacentrus bankanensis, Pomacentrus 
adelus, Plectroglyphidodon lacrymatus, Neoglyphidodon nigroris, Pomacentrus burroughi. 
 

  Species Method Pelagic Detritus Algae Inverts Location Reference 

  P. tripunctatus 
 

  C. unimaculata 
 
 

  P. bankanensis 
  
  P. adelus  
 

  Pl. lacrymatus  
 
 
 
 
 
 
 

  N. nigroris  
  P. burroughi 

GC 
GC 
SI 
GC 
GC 
GC 
VIS 
GC 
GC 
SI 
SI 
GC 
GC 
GC 
GC/VIS 
VIS 
VIS 
VIS 
GC 

 
 
 
 
~3% 
 
 
 
 
 
 
 
~15% 
 
 
 
 
 
 

~70% 
~55% 
 
~65% 
~7% 
~45% 
 
~25% 
~5% 
 
Omnivore b 
~25% 
~1% 
~10% 
NA 
NA 
 
Omnivore 
~40% 

~30% 
~45% 
Herbivore 
~35% 
~90% 
~55% 
Herbivore 
~75% 
~85% 
Herbivore 
 
~75% 
~60% c 

~90% 
~95% d 
99.9% 
Herbivore 
 
~60% 

 
 
 
 
 
 
 
 
~10% a 
 
 
 
 
~25% 
 
 
 
 
 

PNG 
GBR 
M 
PNG 
M 
PNG 
GBR 
PNG 
GBR 
FP 
M 
FP 
M 
PNG 
PNG 
GBR 
 
GBR 
PNG 

Ceccarelli 2007 
Ceccarelli 2007 
Frédérich et al. 2009 
Ceccarelli 2007 
Frédérich et al. 2009 
Ceccarelli 2007 
Meekan et al. 1995 
Ceccarelli 2007 
Kramer et al. 2013 
Gajdzik et al. 2016 
Frédérich et al. 2009 
Gajdzik et al. 2016 
Frédérich et al. 2009 
Ceccarelli 2007 
Jones et al. 2006 
Polunin & Klumpp 1989 
Meekan et al. 1995 
Allen 1975 
Ceccarelli 2007 
 

 
a Kramer et al. (2013) recorded vagile invertebrates in the stomach of some individuals. 
b Frédérich et al. (2009) stated that Pl. lacrymatus is an omnivore that feeds mainly on 
benthic algae. 
c Frédérich et al. (2009) recorded ~25% vagile/sessile invertabrates in the stomach. 
d Jones et al. (2006) recorded ~40% epiphytic diatoms in the stomach, and ~5% bites on live 
coral substrate. 
 



Table 3.2 Putative functional groups and sample metrics for focal territorial damselfish, 
representative obligates, diet sources, and primary producers that were collected at Kimbe 
Bay, Papua New Guinea. 
 

  Taxa Putative group Abbreviation Sampling method No. of 
samples 

Mean body 
size ±SE 
(mm Lt) 

Range of 
body sizes 
(mm Lt) 

  Pomacentrus tripunctatus Focal P. trip Spearfishing 12 56 ± 1.5 46 − 64 
  Chrysiptera unimaculata Focal C. unim Spearfishing 12 61 ± 0.8 56 − 66 
  Pomacentrus bankanensis Focal  P. bank Spearfishing 12 59 ± 1.5 51 − 67 
  Pomacentrus adelus Focal  P. adel Spearfishing 12 65 ± 0.9 58 − 69 
  Plectroglyphidodon lacrymatus Focal  Pl. lacr Spearfishing 12 83 ± 1.5 75 − 91 
  Neoglyphidodon nigroris Focal  N. nigr Spearfishing 12 85 ± 3.4 63 − 100 
  Pomacentrus burroughi Focal  P. burr Spearfishing 12 69 ± 1.8 55 − 77 
  Chromis xanthura Pelagic planktivore Ch. xant Spearfishing 6 102 ± 5.7 88 − 122 
  Pomacentrus nigromanus Demersal planktivore P. nigr Spearfishing 6 72 ± 2.5 62 − 80 
  Siganus vulpinus Herbivore S. vulp Spearfishing 6 167 ± 5.5 146 − 185 
  Ctenochaetus striatus Detritivore Ct. stri Spearfishing 6 141 ± 9.3 95 − 156 
  Mussel Consumer − By hand 12 − − 
  Barnacle Consumer − By hand 4a − − 
  Red algae (Hypnea) Producer − By hand 12 − − 
  Green algae Producer − By hand 12 − − 
  Brown algae (Turbinaria) Producer − By hand 12 − − 
  Mixed turf (incl. Amphiroa, Gelidiopsis)b Producer − By hand 12 − − 
  Vagile invertebrates (Crustacea) Omnivore consumer − By hand 12 − 15 − 50 
  Zooplankton Pelagic consumer − Tow net 4a − 0.25 − 0.50 c 
  Organic matter (detritus) 
 

Producer POM By hand 4a − − 

 

a Each sample consisted of many pooled individuals from one site and temporal period. 
b For the purpose of this study, we used the definition of turf algae from Hay (1981) as 
masses of tightly packed upright branches that were dominated by filamentous species. 
c  Presumed range of body sizes based on mesh size of plankton net. 



Sample collection 

All samples were collected in the morning (between 8 am and 12 pm) within a 20 m 

wide section of reef extending from the back of the reef flat to 25 m down the reef slope. To 

compare the seven territorial damselfish trophic niches, we aimed to capture dominant 

producers and consumers to represent the key functional groups common to all sites, rather 

than trying to sample all possible producers and consumers (Table 3.2). Four representative 

obligate fishes with known diets were selected as comparative species: herbivore Siganus 

vulpinus (Brandl and Bellwood 2014), detritivore Ctenochaetus striatus (Tebbett et al. 

2017a), pelagic planktivore Chromis xanthura (Greenwood et al. 2010), and demersal 

planktivore Pomacentrus nigromanus (Pratchett et al. 2016). The focal territorial damselfish 

and obligate fishes were captured with clove oil or speared and brought to the surface 

immediately, euthanized in a 50% seawater-ice bath, and placed on ice for transport to the 

lab. The total length and details of capture of each fish were recorded. To represent 

planktonic production, we targeted filter feeding invertebrates: mussels Septifer bilocularis 

and barnacles Cirripedi (Post 2002, Baker et al. 2013). Tissue samples of epaxial and 

adductor muscles were dissected from the fishes and bivalves, respectively, and immediately 

frozen (–20°C) for isotopic analysis. 

Different primary food sources (zooplankton, organic matter, algae, and benthic 

invertebrates) were taken from the same locations where the fishes were collected (Table 

3.2). Zooplankton was sampled using a 250 µm plankton tow net. The net was towed in a zig-

zag pattern from the reef slope to the reef crest and reef flat at 1 – 2 m off the substrate 

avoiding prior sampled areas (Gajdzik et al. 2016). The tow was replicated three times within 

the fish-sampling period for two days (total 6 tows per site). Zooplankton samples were then 

pooled by day and site for analysis. Concurrently, particulate organic matter (POM) was 

obtained by collecting large quantities of settled particulates from thick algal turf mats 

(Frédérich et al. 2009). For the purposes of this study POM is used in a broad sense, i.e., to 

describe amorphous material with no visible structure (Wilson and Bellwood 1997). The 

particulates were transferred from the substrate to seawater filled plastic bags by pipette 

dropper. Visible algal pieces, crustaceans, and sand particles were later removed by sieve and 

microscope. Consequently, POM may include feces, live material such as microscopic algae 

(<1 mm), fungi, and/or bacteria. While POM samples were collected from the substrate, this 

material may also be suspended in the water column or represent settled material that would 

have been available to pelagic feeders when suspended. Similar to the zooplankton, the POM 
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samples were then pooled by day and site for analysis. Four different types of alga were 

collected for dietary comparisons (following Ceccarelli 2007): red algae Hypnea, green algae, 

brown algae Turbinaria, and mixed turf (incl. Amphiroa and Gelidiopsis; defined by Hay 

1981). All algae samples were rinsed and cleaned of epiphytes, other algal species, 

crustaceans, and POM. Crustaceans (vagile invertebrates; Portunid and Xanthid crabs) were 

collected from the mixed turf samples under a microscope and pooled. 

Stable isotope analysis 

Samples were rinsed and soaked in distilled water for >30 min to remove salts, and 

dried for 48 h at 70°C. After no residual water weight was found, samples were ground into 

homogeneous fine powder using a glass ball mill grinder (Biospec Mini Bead Beater Model 

3110BX milling unit). Carbonate contamination of algae, zooplankton, barnacle, and POM 

samples were tested using three drops of 1N HCl on a small subsample. If effervescence was 

visible, the presence of carbonates was removed from the subsample by overnight 

acidification, rinsing, and re-drying (Baker et al. 2013). The process was repeated until no 

inorganic carbon was found to ensure the carbon stable isotope ratios were unbiased (Frisch 

et al. 2014). For acid-treated samples (i.e. turf algae, zooplankton, and POM), δ13C was 

measured in the acid-treated subsample and δ15N was measured in the untreated subsample 

(Pinnegar and Polunin 1999). 

 Samples were encapsulated in tin cups and weighed five times to the nearest 0.0001 g 

and averaged. Stable isotope ratios of carbon (13C/12C) and nitrogen (15N/14N) were measured 

using an isotope ratio mass spectrometer (PDZ Europa 20-20, Sercon Ltd., Cheshire, UK) 

coupled in continuous-flow to an elemental analyser (PDZ Europa ANCA-GSL, Sercon Ltd., 

Cheshire, UK) at the UC Davis Stable Isotope Facility, Davis, California, USA. Stable 

isotope ratio values are expressed in parts per thousand (‰) using the standard δ notation: 

 
(1) δX = !" #$%&'()

#$*%+,%-,
. − 1	2 x	1000 

where X is 15N or 13C, Rsample is the ratio (15N/14N or 13C/12C) in the sample, and Rstandard is the 

ratio in the standard (Coplen 2011). The standard reference material was Pee Dee Belemnite 

(vPDB) carbonate and atmospheric N2 for carbon and nitrogen samples, respectively. 

Experimental precision (standard deviation of replicates of internal laboratory standard) was 

0.1 ‰ for δ13C and 0.2 ‰ for δ15N. 
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Data analyses 

Isotopic biplots (δ13C or δ15N) were created to visualize niche space by two main 

approaches. First, the mean ±SE of all species sampled were plotted. The second approach 

utilized the SIBER package (Jackson et al. 2011) in R (R Core Team 2017), in which 

standard ellipses were fitted (40% confidence level) for each fish species. The size of ellipses 

were compared among damselfish after fitting Bayesian models (104 iterations) adjusted for 

small sample size (SEAC) to the data as described by Jackson et al. (2011). Differences in 

SEAC size were considered significant when ≥95% of posterior draws for one species were 

smaller than the other. The area overlap between species/ellipses was also quantified as a 

percentage of shared isotopic space, to determine if neighbouring species were more likely to 

partition food resources than non-neighbouring species. Species with shared overlap >60% 

were considered to have significant shared-niche space based on a criterion used by Schoener 

(1968). Standard ellipses were also plotted for the obligate consumers (S. vulpinus, Ct. 

striatus, P. nigromanus, and Ch. xanthura) as a reference considering their known feeding 

patterns. Data from Garbuna and Luba Luba were pooled for graphical presentation and final 

analysis where there were no differences among reefs. 

 The trophic positions (TP) of damselfish were calculated to reduce any inter-reef 

differences associated with baseline δ15N values. Scaled TP were calculated following 

Hussey et al. (2014): 

(2) TPscaled	= >?@AB
CDE(F&G	BCDEH%$)(F+)IG>?@(BCDE(F&G	BCDEKL+$M&)-)

O
+	TPQRSTUVWT  

 
where δ15Nlim represents the saturating isotope limit as TP increases, and occurs when rates of 
15N and 14N uptake equal those of 15N and 14N elimination, as determined through meta-

analysis for fish (21.93 ‰); and k is the rate at which δ15Nconsumer approaches δ15Nlim per 

trophic transfer (0.14; Hussey et al. 2014). Siganus vulpinus (TPbaseline = 2) was selected as the 

baseline organism because it is an obligate herbivore demonstrating consistent within-reef 

δ15N values. Analysis of variance (ANOVA – type III error) tested if TP was influenced by 

damselfish species, reef, or habitat zone. The same ANOVA model was run with δ13C as a 

response variable instead of TP to explore whether feeding habitat was affected by the same 

explanatory variables. Tukey’s HSD was applied as a posthoc test to determine within-factor 

differences if any of the above variables were significant (p < 0.05). Linear regressions were 
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applied to each damselfish species to test for variation in TP or δ13C and assess how body size 

influences trophic diversification. 

To estimate the contributions of pelagic versus reef-based sources of primary 

production, we used Bayesian mixing models from the simmr package (Parnell 2016) in R (R 

Core Team 2017). A two-source model was used with all algal species combined to represent 

reef-based contribution, whereas zooplankton and POM were pooled for pelagic sources. 

POM was used as a pelagic source rather than a reef-based source due to the sampling 

method and the observed δ13C and δ15N values (similar δ13C and δ15N to planktivorous 

obligates and zooplankton). For comparative purposes, a separate model was produced using 

the following food items as independent source materials: zooplankton, POM, red algae, 

green algae, brown algae, mixed turf, and vagile invertebrates. Correction means (or diet-

tissue discrimination factors) were set to 1.62 ‰ for δ13C and 3.69 ‰ for δ15N. These values 

were chosen using stable isotope output from obligate consumers relative to food sources. 

Specifically, correction mean for δ13C was calculated by subtracting the mean δ13C values of 

zooplankton from mean δ13C values of obligate planktivores (P. nigromanus and Ch. 

xanthura). Alternatively, δ15N correction mean was derived by subtracting the mean δ15N 

values of algae (pooled) from mean δ15N values of the obligate herbivore (S. vulpinus). This 

approach was deemed adequate because obligate consumers demonstrated consistent isotope 

values relative to the isotope axis (δ13C or δ15N) pertaining to the animal’s known diet regime 

(i.e., the herbivore had little variation in δ15N values; the planktivores had little variation in 

δ13C values). Correction error was set at a conservative 0.5 ‰ for all diet items based on 

values calculated by Matley et al. (2016). Matrix plot correlations were used to evaluate if the 

model had difficulty separating prey sources due to proximity in isospace. Dietary 

contributions are presented as the range between 25% and 75% credibility quantiles with 

error bars extending to the maximum and minimal values (97.5% and 2.5%, respectively). 

3.4 Results 

Trophic diversification among species 

The stable isotope biplot of δ15N and δ13C values for all organisms showed evident 

segregation between and within main trophic groups (e.g., algae, zooplankton/invertebrates, 

and fish; Fig. 3.1). Along the δ15N axis (equivalent to TP), as expected, fish (damselfish and 

obligates) had the highest values, followed by primary consumers/producers and algae, 

respectively. Within each trophic group, δ15N values had limited variation (i.e., between 1 
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and 3‰). Greater variation existed along the δ13C axis (i.e., 4 – 7‰) demonstrating a gradient 

between pelagic-based (e.g., POM and zooplankton; more negative δ13C values) and reef-

based (e.g., vagile invertebrates and Ct. striatus; less negative δ13C values) input. Specifically 

for the fishes, the obligate consumers bounded the isotopic extent of the damselfish, again, 

with greater variation in δ13C values compared to δ15N values. 

 

 

Figure 3.1 δ15N and δ13C (expressed in ‰) signatures of producers and 
consumers at Kimbe Bay. Data points are group means with error bars 
representing ± SE. Species abbreviations and sample sizes and are defined in 
Table 3.2. 
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To assess the generalization that territorial damselfish are herbivores, a two-source 

mixing model was used to provide further insight into the proportion of pelagic dietary input 

compared to that of reef-based contribution. Pelagic sources contributed at least 75% (based 

on 25 – 75% quantiles and max-min values) of prey for P. bankanensis and N. nigroris, 

whereas reef-based sources contributed to the majority of prey for C. unimaculata (Fig. 3.2a). 

Other species were more difficult to resolve within the two-source context because they likely 

feed on a variety of pelagic and reef-based sources, nevertheless, the mixing model showed 

P. adelus consumed a greater proportion of pelagic prey, while P. tripunctatus, Pl. 

lacrymatus, and P. burroughi consumed more reef-based prey (Fig. 3.2a). Similar results 

were found when all prey were analyzed as independent sources; specifically, zooplankton 

was an important prey source for P. bankanensis and N. nigroris, and red algae contributed 

>50% of prey (based on 25 – 75% quantiles and max-min values) to P. tripunctatus, P. 

burroughi, and C. unimaculata (Appendix: Fig. S3.1). The mixing model for the obligate 

consumers verified the results of the present study with prior knowledge. The mixing model 

indicated high pelagic contribution in the muscle tissue of Ch. xanthura and P. nigromanus, 

and high reef-based contribution in S. vulpinus and Ct. striatus (Fig. 3.2b). 

The ANOVA testing whether species, reef, or habitat zone influenced TP or δ13C 

showed that species (ANOVA, F (6,82) = 3.89, P = 0.002) and reef (ANOVA, F (1,82) = 

12.12, P < 0.001) influenced TP values, while only species (ANOVA, F (6,82) = 36.41, P < 

0.001) influenced δ13C values. Trophic position of territorial damselfish at Garbuna was 

typically higher than at Luba Luba, and TP values of C. unimaculata were lower than Pl. 

lacrymatus, P. adelus, and P. bankanensis (Fig. 3.3a). For δ13C, Tukey’s test showed that C. 

unimaculata and Pl. lacrymatus had higher (less negative) values than all other species. Also, 

P. tripunctatus had higher δ13C values than P. adelus, N. nigroris, and P. bankanensis. 

Finally, δ13C values of P. burroughi were higher than N. nigroris (Fig. 3.3b). 

The range in body size and stable isotope values for each damselfish species sampled 

were small (Table 3.2). Additionally, the influence of body size on both TP and δ13C values 

were not uniform among species (Appendix: Fig. S3.2). Consequently, linear regressions 

were calculated separately to determine whether body size affected isotope values at a species 

level. There was a significant positive relationship between body size and TP values for P. 

tripunctatus, P. bankanensis, and N. nigroris. Carbon isotope values did not show any 

significant relationship with body size for any species (Appendix: Fig. S3.2). 
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Figure 3.2 Prey contribution of (a) territorial damselfish and (b) obligate 
consumers from the two-source pelagic (gray) vs. reef-based (benthic; 
green) mixing model. Box and whisker plot displays the range between 
25% and 75% credibility quantiles, with error bars extending to the 
maximum and minimal values (97.5% and 2.5%, respectively), and the 
median represented by the bold line. Species abbreviations and sample 
sizes are defined in Table 3.2. 
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Figure 3.3 Territorial damselfish (a) trophic position and (b) δ13C 
(expressed in ‰) signatures between Garbuna (gray) and Luba Luba 
(black). Data points are group means with error bars representing ± SE. 
Species abbreviations and sample sizes are defined in Table 3.2. Vertical 
axes are not comparable. 

 

Trophic partitioning between neighbours 

The isotopic biplots of territorial damselfish differed markedly within each of the 3 

reef zones (Fig. 3.4a). There were significant differences in isotopic space, with minimal to 

no overlap among neighbouring species for all but one co-occurring pair (Table 3.3). There 

was no significant shared isotopic overlap among Pomacentrus tripunctatus and Chrysiptera 

unimaculata (0%), the species co-occurring on the back and middle reef flat, respectively. 

Additionally, on the other distribution boundary of C. unimaculata there was no observed 

isotopic overlap between the 3 neighbouring reef crest species: C. unimaculata – 
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Pomacentrus adelus (0%), C. unimaculata – P. bankanensis (0%), and C. unimaculata – 

Plectroglyphidodon lacrymatus (0%). On the reef crest, no significant isotopic overlap was 

observed between P. adelus – Pl. lacrymatus (0%) and P. bankanensis – Pl. lacrymatus (0%), 

although P. adelus – P. bankanensis (62%) demonstrated significant isotopic overlap. The 

ellipses of both Neoglyphidodon nigroris and Pomacentrus burroughi, the co-occurring reef 

slope species, were larger than all other damselfish (i.e., ≥95% posterior draws of these 

species were larger than others), but had limited overlap in isotopic space (13%). 

The obligate consumers showed clear trends in isospace reflecting their feeding 

modes (Fig. 3.4b). Specifically, the planktivorous damselfish, Pomacentrus nigromanus and 

Chromis xanthura, showed little variation in δ13C values but a large range along the δ15N-axis 

with values typically larger than the herbivorous Siganus vulpinus. In contrast, S. vulpinus 

exhibited a large range along the δ13C-axis, while δ15N values remained stable across 

individuals. Ctenochaetus striatus was centered at low δ15N and high δ13C within the biplot, 

distinct from the other obligates. 

 

Table 3.3 Results of pairwise percent niche overlap (gray, top right) and isotopic area overlap 
(blue, bottom left) of territorial damselfish. Data are the mean of a species (row) relative to 
another species (column). One cell represents the overlap between the two species. Species 
are in order of distribution from the back of the reef flat to the reef crest and down the reef 
slope from left to right and top to bottom. Neighbouring species are shaded darker (dark gray 
and dark blue) to highlight ecologically important pairs. Species abbreviations and sample 
sizes and are defined in Table 3.2. 
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Percent niche overlap  

 P. trip C. unim P. bank P. adel Pl. lacr N. nigr P. burr  

P. trip  0% 0% 0% 4% 0% 61%  

C. unim 0  0% 0% 0% 0% 0%  

P. bank 0 0  62% 0% 59% 15%  

P. adel 0 0 28  0% 50% 7%  

Pl. lacr 3 0 0 0  0% 14%  

N. nigr 0 0 68 26 0  13%  

P. burr 57 0 19 4 19 25   
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Figure 3.4 Isotopic niche overlap for (a) territorial damselfish and (b) 
obligate consumers as a reference considering their known feeding 
patterns. Standard ellipse area (SEAC) is depicted by a solid line with 
δ15N and δ13C values expressed in ‰. Territorial damselfish (a) are 
coloured to match the distribution patterns along the reef profile gradient  
– reef flat (orange/yellow), reef crest (green), and reef slope (blue). 
Obligate consumers (b) are not coloured to the reef profile gradient. 
Species abbreviations and sample sizes are defined in Table 3.2. 
Horizontal and vertical axes are not comparable. 
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3.5 Discussion 

This study provides evidence for high levels of trophic diversification and niche 

partitioning in a guild of territorial damselfish on a high-diversity coral reef. The isotopic 

biplots of all 7 territorial damselfish differed in δ15N and δ13C values. The isotopic 

distributions were linked to distribution patterns along the reef profile gradient – reef flat, reef 

crest, and reef slope. Where the distribution of species overlapped, these species were 

characterised by differences in source contributions. Adjacent species exhibited high to 

intermediate trophic niche partitioning when examining pelagic versus reef-based (benthic) 

dietary sources. We argue diet plays a supplementary role to habitat partitioning and 

competition in reinforcing the patterns of spatial partitioning and coexistence among 

ecologically similar species. In addition, our research also demonstrates the importance of 

considering interspecific differences when categorizing a guild of species to a single 

functional classification. We support prior evidence that territorial damselfish act as 

omnivorous generalists, with potentially opportunistic diets and feeding plasticity. 

Damselfishes, including known planktivores, corallivores, and territorial herbivorous 

species, have been previously assigned to three trophic groups based on feeding strategies: 

pelagic feeders zooplanktivores, reef-based feeders corallivores, algivores or herbivores, and 

an intermediate group omnivores (Frédérich et al. 2009, 2016, Gajdzik et al. 2016). While 

comparative studies have not focused solely on territorial damselfish, a similar trophic 

diversity was observed within the guild of territorial damselfish in the present study. The 

trophic diversity within this group was much higher than expected based on the literature. 

Territorial damselfish are commonly classified as herbivorous or omnivorous (Ceccarelli et 

al. 2001, Frédérich et al. 2016). However, we found evidence of planktivory within the guild. 

While this is not unique for pomacentrids, as damselfish (e.g., Chrominae) have served as a 

model for this trophic strategy (Frédérich et al. 2013), territorial damselfish have not 

previously been described as pelagic feeders. Through the integrated perspective of trophic 

role provided by stable isotopes, the present study documents Pomacentrus bankanensis and 

Neoglyphidodon nigroris as pelagic feeders (supporting prior J. G. Eurich pers. obs.) under 

the suggested criterion of a species to consume ≥70% zooplanktonic prey or filamentous 

algae to not be considered an intermediate omnivore (Frédérich et al. 2016). This designation 

is supported based on similar trends in isospace as the obligate planktivores Pomacentrus 

nigromanus and Chromis xanthura. Both P. bankanensis and N. nigroris were previously 

described as herbivores and benthic feeders under the intermediate trophic grouping (see 
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Table 3.1; Hata and Ceccarelli 2016). The present study represents the first isotopic values for 

these species and highlights the need for species-specific evidence when assigning a species 

to broad taxa-related functional classifications. 

Based on the isotope values and source-based mixing models, only one of the seven 

territorial damselfish species, Chrysiptera unimaculata, can be defined strictly as a reef-based 

(benthic) feeder and none were specialized herbivores. Our evidence supports a comparable 

isotopic study from Madagascar (Frédérich et al. 2009) and gut content analysis from the 

same region as the present study, Kimbe Bay (Ceccarelli 2007). However, while we define 

the species as a reef-based feeder, we explicitly do not provide evidence for this species to be 

classified functionally as an algivore (as in Frédérich et al. 2009). Instead, based on prior 

literature and the isotopic values (prey source not directly sampled), we argue the species 

primary source of nutrients is detritus. In addition to detritus comprising ~65% of the stomach 

content for C. unimaculata in a prior study (Ceccarelli 2007), the isotopic values in the 

present study are consistent with Ctenochaetus striatus, a known detritivore (Tebbett et al. 

2017a). Consequently, the broad trophic groups traditionally used to classify reef fishes need 

to be refined and subdivided to reflect differences in ecosystem function as new methodology 

is established (e.g., Brandl and Bellwood 2014, Pratchett et al. 2016, Tebbett et al. 2018). 

The intermediate group, also considered generalists or omnivorous, are comprised of 

species that consume planktonic and benthic copepods, detritus, small vagile invertebrates, 

and filamentous algae (Kramer et al. 2013, Frédérich et al. 2016, Hata and Ceccarelli 2016). 

Our research confirms the paradigm from recent literature (see Table 3.1) that the majority of 

territorial damselfish conform to this grouping. In the present study, four species belong to 

the intermediate feeding strategy: Pomacentrus tripunctatus, Pomacentrus adelus, 

Pomacentrus burroughi, and Plectroglyphidodon lacrymatus. While the resolution of stable 

isotopes does not provide dietary information at the prey species-level (i.e., to corroborate 

vagile invertebrates; Ceccarelli 2007, Kramer et al. 2013), the four species exhibited distinct 

isotope ratios for C and N. We argue the four species are omnivorous with a diet comprising 

zooplankton, detritus and local, benthic prey. Cecarelli (2007) found P. tripunctatus, P. 

adelus, and P. burroughi were generalists feeding on detritus, corticulated algae, and 

filamentous algae in (almost) equal proportions, with Pl. lacrymatus acting as a specialist 

consuming microalgae. While Ceccarelli (2007) found no evidence for pelagic derived 

materials, this was likely a limitation of gut content analysis. Furthermore, only the diet of Pl. 

lacrymatus has been previously examined through stable isotope analysis (Frédérich et al. 
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2009, Gajdzik et al. 2016). The discrepancies in diet at the species-level between studies 

within the intermediate group can also be linked to opportunistic feeding. Frédérich et al. 

(2009) documented planktivorous species shifting to demersal fish eggs to opportunistically 

exploit nutrient-rich food. Similarly, species with reef-based diets, including Pl. lacrymatus 

(Kuo and Shao 1991), occasionally switch exclusively to coral propagules in the water 

column during mass coral spawning events (Pratchett et al. 2001, McCormick 2003). While 

damselfish are known to feed opportunistically, the explicit partitioning of resources is a key 

factor in promoting the coexistence of closely related and otherwise ecologically equivalent 

species (Robertson and Lassig 1980, Waldner and Robertson 1980). 

Ecological partitioning of distinct non-overlapping spatial distributions of damselfish 

along the reef gradient has been well documented globally (Bay et al. 2001, Ceccarelli 2007, 

Medeiros et al. 2010, Chaves 2012). At Kimbe Bay the seven species of territorial damselfish 

partition space along the reef profile gradient with each species restricted to subzones of just 

a few meters wide. Eurich et al. (2018a) found that the species distributions were linked to 

levels of microhabitat selectivity and aggression between species. Further, through the use of 

a large-scale removal experiment, it was demonstrated that both direct and indirect 

competition among neighbouring species helps to maintain the population boundaries (Eurich 

et al. 2018b). The present study provides additional evidence of trophic niche partitioning 

between adjacent species reinforcing the patterns of coexistence. The diets of co-occurring 

territorial damselfish within each of the 3 reef zones differed markedly with the (1) reef flat 

comprising a reef-based omnivore P. tripunctatus and detritivore C. unimaculata, (2) reef 

crest comprising a planktivore P. bankanensis, pelagic-based omnivore P. adelus, and a reef-

based omnivore Pl. lacrymatus, and (3) reef slope comprising a planktivore N. nigroris, and a 

reef-based omnivore P. burroughi. This level of partitioning may reflect the high species 

diversity of territorial damselfish within the region. Previous work has clearly shown that 

pomacentrids can partition food types along various functional axes of their niches that relate 

to biological, ecological, and environmental factors (Frédérich et al. 2009, 2014, Gajdzik et 

al. 2016), but did not demonstrate differences in the trophic ecology among territorial 

damselfish. Kimbe Bay’s high richness likely drives the need for ecological diversification 

within the guild of territorial damselfish (Gajdzik et al. 2018). 

The dietary diversification observed is likely refined by differences in ecological 

versatility between adjacent species. While opportunistic feeding has been previously 

documented (as discussed above), neighbouring territorial damselfish individuals exploited 
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different feeding strategies over long-term diet trends during mutually inclusive time periods. 

Bearhop et al. (2004) discriminated between different types of generalists within a 

population, with species either all taking a wide range of food types (type A) or specializing 

in a different but narrow range of food types (type B). The large variation of δ13C values with 

little difference in trophic position in the present study could be related to perpetual intra-

population variability in prey choice (i.e., type B), thus facilitating coexistence (Frédérich et 

al. 2016). For example, the pelagic feeding species, P. bankanensis and N. nigroris, are 

within each respective neighbouring species habitat space (i.e. reef zone and microhabitat 

use; Eurich et al. 2018a), but by foraging in the water column on pelagic resources 

competition is reduced. The generalist and flexible feeding strategies observed in this guild 

likely support the coexistence of multiple territorial damselfish species within a coral reef 

zone. 

While this study focuses on adults due to the strong territorial interactions and spatial 

partitioning of adult territorial damselfish species (Bay et al. 2001, Ceccarelli 2007, Eurich et 

al. 2018a), it is notable that ontogenetic shifts in diet have been observed for pomacentrids 

and other fishes. Damselfishes mainly consume pelagic copepods during the larval phase and 

switch to benthic invertebrates and algae upon settlement (see Sampey et al. 2007). Further, 

some species shift between pelagic and reef-based foraging strategies from the juvenile to 

adult stage. Thus, for the purposes of determining dietary overlap and niche widths among 

species with known small-scale distribution differences, only adult individuals were used in 

the present study. While we observed a significant positive relationship between body size 

and TP values for P. tripunctatus, P. bankanensis, and N. nigroris, no significant relationship 

was found between carbon isotope values and body size for any species. Ontogenetic niche 

shifts can also lead to intraspecies variation between co-occurring individuals when sampling 

at different life history stages (Araújo et al. 2011). In Kimbe Bay territorial damselfish 

juveniles and adults occupied similar distributions within the reef profile but more sampling 

is required to empirically corroborate the findings of Araújo et al. (2011) and assess if 

ontogenetic size-related shifts or intraspecies variation is occurring (Frédérich et al. 2016). 

Explicit spatial and temporal sampling (e.g. multiple tissues and sampling periods) is required 

to further explore how feeding regimens and diet assimilation change within a species. 

 

Conclusions 
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We demonstrate that trophic niche partitioning contributes to fine-scale partitioning of 

space within reef zones and the limited distributional overlap of species on a high-diversity 

coral reef. Evidence presented here suggests neighbouring species utilise different feeding 

strategies that may facilitate coexistence. Dietary diversification, with microhabitat 

selectivity, likely minimises direct and indirect competition for space, potentially a limiting 

factor on coral reefs. Despite territorial damselfish typically being described functionally as 

intermediate omnivores or herbivores, we found novel evidence of pelagic-based feeding 

within the guild through stable isotope analysis. These findings add to a growing view that 

interspecific differences among similar species are lost when categorizing species into broad 

functional classifications, and that previous studies suggesting that territorial damselfish are 

strictly reef-based feeders may not be applicable in all systems or for all species. 
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4.1 Summary 

Competitive interactions and resource partitioning facilitate species coexistence in 

complex ecosystems. However, while pairwise interactions between ecologically similar 

species have been well-studied, multi-species competitive networks have received less 

attention. When interference competition between two species results in partitioning of 

resources, this may have indirect consequences for other species distributed along the same 

resource gradient. Here we tested whether interference competition between two territorial 

damselfish influenced the fine-scale species distributions of five other territorial damselfish in 

Kimbe Bay, Papua New Guinea. These species partition habitat across three reef zones - the 

flat, crest, and slope, with distinct patterns of distribution within these zones. We predicted 

the two species with similar distributions and microhabitat use, Pomacentrus adelus and P. 

bankanensis, would display the greatest level of aggression towards one another. This was 

tested through an intruder-experiment where stimulus fish were introduced into a resident’s 

territory, which confirmed disproportionately high levels of interspecific aggression between 

these two species. We also predicted that the fine-scale differences in the distribution of each 

species were maintained through multi-species interference competition among neighbouring 

species, with further indirect effects on species that did not directly interact. To test this, we 

conducted a large-scale (22 m x 10 m) experimental removal of the most abundant species, P. 

adelus, and quantified the abundance and distribution of all territorial damselfish species for 6 

months to a 25 cm resolution. The main direct competitor, P. bankanensis, exhibited a 

marked increase in abundance and expanded its distribution (+1.33 m) to acquire the space 

previously occupied by P. adelus. This competitive release triggered indirect effects on the 

distribution of other neighbouring species further back on the reef flat, with Chrysiptera 

unimaculata moving into the zone formerly occupied by P. bankanensis. This study indicates 
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that the distinct distribution patterns among the reef crest species are linked to levels of 

interspecific agonistic behaviour. We argue that the competitive release following the 

removal of a superior competitor resulted in both direct and indirect effects, with the 

immediate neighbour shifting into the newly available space, followed by successive shifts in 

species responding to the change in the distributions of their immediate neighbours. 

4.2 Introduction 

Competitive interactions among ecologically similar species are fundamental in 

shaping many ecological communities (Connell 1978, Schoener 1983). In structurally 

complex ecosystems (e.g., tropical forests and coral reefs), each species occupies an 

ecological niche in which it is the most effective competitor (Whittaker et al. 1973). 

Traditionally, interspecific competition for finite resources was viewed in terms of a winner 

and a loser with the dominating species either partitioning or eliminating the subordinate 

from the habitat (Case and Gilpin 1974, Colwell and Fuentes 1975, Diamond 1978). 

Ecological theory has progressed from a focus on pairwise interactions to a multifactorial 

perspective of the processes and mechanisms that govern competition within a community 

(Jones 1991, Hixon et al. 2002, Wiens et al. 2010, Pereira et al. 2015). However, 

experimental studies on interspecific competition are still dominated by studies testing the 

effects that pairs of species have on one another (Bonin et al. 2015). Hence, our empirical 

understanding of competitive networks has been limited by the absence of detailed 

information on the extent of resource partitioning and competition at a community scale, and 

the effects of interactions among species that do not come into direct contact (Amarasekare 

2003, Salomon et al. 2010, Siepielski and McPeek 2010, Hixon 2011). 

When resources are limited, theory holds that species may coexist by partitioning 

resources via exploitative competition (depletion of a common resource) or interference 

competition (aggressive interactions that prevent access to a resource) (Case and Gilpin 1974, 

Schoener 1983). While competition theory is largely based on exploitative competition 

among sympatric species (Amarasekare 2002), interference competition is the main 

mechanism leading to interspecific differences in patterns of distribution or use of resources. 

There is ample empirical evidence that interference competition influences the abundance or 

distribution of subordinate species for insects (Kunte 2008), birds (Pimm et al. 1985), 

mammals (Brown 1971), and fishes (Robertson and Gaines 1986, Munday et al. 2001, 

McCormick and Weaver 2012). In nature, interference competition is linked to interspecific 

territoriality and aggressive interactions among species that regularly come into contact, with 
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the most aggressive species gaining priority access to resources (Grether et al. 2013). 

Experimental removals of dominant species invariably result in niche expansion of inferior 

competitors (Paine 1966, 1974, Robertson 1996, Kunte 2008). Species in the community that 

do not openly share a resource or compete may be indirectly linked by species that lie 

between them on a resource axis. Hence, when interference competition between two species 

results in a partitioning of resources, this may have indirect consequences for other species 

distributed along the same resource gradient. 

In community ecology, indirect or knock-on effects are most often observed as 

cascading effects between trophic levels, as a result of predator-prey, plant-herbivore 

interactions. Indirect effects, generally defined as how ‘one species alters the effect that 

another species has on a third’, can include a multitude of phenomena where the presence or 

density of a species influences the community (reviewed by Strauss 1991). The most well-

known aquatic examples include the removal or extinction of keystone predators, triggering 

subsequent competitive exclusion (Paine 1966, 1974) or an ecosystem shift (Hughes 1994, 

Dayton et al. 1998). Changes to important trophic links between two species can indirectly 

alter the distribution and abundance of species between trophic levels. However, they can 

also have indirect effects on interactions among species within the same trophic levels (Pace 

et al. 1999, Shurin et al. 2002). Similar knock-on effects of subordinate competitors within 

trophic levels may be present after the collapse of a primary competitor and have received 

much less attention (Navarrete et al. 2000, Gosnell and Gaines 2012). 

Coral reefs are composed of a complex network of hard corals that support rich 

communities of fish. Historically, the role of interspecific competition and niche partitioning 

in explaining the coexistence of many ecologically similar coral reef fishes was controversial. 

While early ecologists emphasised niche partitioning (e.g. Smith and Tyler 1972, Robertson 

and Lassig 1980), Sale (1977, 1978, 1980) provided evidence that competition for space was 

more of a lottery, with stochastic recruitment preventing any one species from excluding 

others. The underlying assumption of intense competition for space was later challenged, and 

for many years the idea that reef fish communities were limited by recruitment prevailed in 

the literature (Doherty 1983, Doherty and Fowler 1994). Nevertheless, researchers have 

continued to address basic ecological interactions such as competition and predation (see 

reviews by Hixon 1991, Jones 1991, Hixon and Webster 2002, Jones and McCormick 2002, 

Forrester 2015, Hixon 2015). Several decades of research have generated a substantial 

amount of evidence that limited available habitat can result in competitive interactions, which 
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in turn influences the structure of reef fish communities (e.g., Robertson 1996, Holbrook and 

Schmitt 2002, Forrester et al. 2006, Boström-Einarsson et al. 2014). Further, interactions 

among interspecific competitors plays an important role in reef fish spatial distributions 

(Robertson and Gaines 1986, McCormick and Weaver 2012). However, the majority of 

evidence for mobile reef fish species has involved measuring pairwise interactions 

experimentally and not expanded competitive networks within a community (see reviews by 

Forrester 2015, Bonin et al. 2015). Few studies have documented competitive interaction 

networks between species with similar resource requirements. 

In reef fish ecology removal experiments can be used to measure the effect of a 

species on its environment at a community scale. Studies have demonstrated that the selective 

removal of fishes from a habitat is followed by a redistribution of conspecific (Williams 

1978, Webster and Hixon 2000, Meadows 2001) and heterospecific (Belk 1975, Sale 1978, 

1979, Robertson and Gaines 1986, Robertson 1996) neighbouring species. Of the studies that 

demonstrated heterospecific acquisition of space following the removal of a dominant 

competitor, few studies examined more than one competitor within the community (but see, 

Sale 1978, 1979, Robertson and Gaines 1986, Robertson 1996). Additionally, most studies 

have used field experiments to measure variation in the strength of competition spatially, but 

few expand on this to look at how species respond over time (Schmitt and Holbrook 2007, 

Forrester and Steele 2008, Hixon et al. 2012). By examining how species recover after a 

selective removal we can address how and if competitive interactions and recruitment 

interacts. 

Guilds of territorial damselfish (Pomacentridae) provide ideal model systems for 

understanding the outcomes of competition. Territorial damselfish play an integral role in the 

structure of coral reefs through their abundance and role as small-bodied consumers (Hata 

and Kato 2004, Ceccarelli et al. 2005b, Jones et al. 2006). For most species, ecological 

parameters, or the measurable niche properties whose value is a determinant of the ecosystem 

characteristics, can be effectively obtained due to their highly site attached habits, territorial 

behaviours, and lack of concern for observer presence (Ceccarelli et al. 2005a, Ceccarelli 

2007). Furthermore, patterns of distribution and partitioning of space along the natural reef 

profile gradient - the reef flat, reef crest, and reef slope, have been well documented 

(Robertson and Lassig 1980, Waldner and Robertson 1980, Meekan et al. 1995). A distinctive 

pattern of zonal distribution along this steep physical gradient provides an experimentally 
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tractable system for isolating the direct and indirect effects of any one species on all others 

occupying the same resource gradient. 

In the present study, we explore the direct and indirect effects of agonistic interactions 

and interference competition on distribution and abundance in a guild of seven territorial 

damselfish. At our study location (Kimbe Bay, Papua New Guinea) these species partition the 

reef flat, reef crest and upper reef slope habitats on a fine scale (1 – 2 m) (Ceccarelli 2007, 

Eurich et al. 2018a). All species are aggressive and defend discrete territories (mean 1 – 1.5 

m2 territory sizes per individual) against conspecifics, interspecific competitors, and other 

benthic feeding fishes (Ceccarelli 2007, Eurich et al. 2018c). Eurich et al. (2018a) found that 

neighbouring damselfish constrain their microhabitat use to facilitate the co-habitation of reef 

zones, but that microhabitat selectivity alone was insufficient in explaining the distinct 

zonation and limited distributional overlap. Additionally, it was suggested that interspecific 

aggression helps maintain the distributional boundaries between neighbouring species. Two 

abundant species, Pomacentrus adelus and Pomacentrus bankanensis, have overlapping 

distributions with similar microhabitat use and selectivity. The partitioning raises the question 

of whether the presence of P. adelus alters the abundance and distribution of P. bankanensis 

and other species within the community. However, an experimental removal of a dominant 

competitor is necessary to see if interference competition is present and if subordinate 

distributional shifts would occur. 

Here, we employ an observational experiment and a manipulative field experiment to 

examine the intensity of agonistic interactions among species and the extent to which P. 

adelus influences the distribution and abundance of neighboring and non-neighboring species 

in the guild. To test which species P. adelus is most likely to competitively influence, we 

conducted an intruder-experiment to measure aggression. We hypothesised: 1) P. adelus and 

P. bankanensis, the co-inhabiting species with similar microhabitat use, would display the 

greatest levels of aggression to each another compared to other neighbouring species. We 

then evaluated the direct and indirect effects of a competitive release from P. adelus on the 

distribution and abundance of other species in the guild using a long-term experimental 

removal of P adelus. Spatial patterns of all territorial damselfish were described down to a 

resolution of 25 cm prior to the experimental field manipulation and continuously thereafter 

for 6 months. Post-removal we predicted: 2) P. bankanensis would increase in abundance and 

expand its distribution to acquire the previously occupied space; 3) Adjacent reef flat species 

would also increase in abundance and spatially shift towards the preferred habitat due to P. 
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bankanensis having the ability to occupy the reef crest; and 4) The larger reef crest occupying 

species, Plectroglyphidodon lacrymatus, and the two species associated with the reef slope, 

Neoglyphidodon nigroris and Pomacentrus burroughi, would be unaffected due to lack of 

resource overlap. 

4.3 Methods 

Study location and species 

The study was conducted on inshore platform reefs in Kimbe Bay, West New Britain, 

Papua New Guinea (Fig. 4.1; 5˚30’ S, 150˚05’ E) between July 2015 and March 2016. Kimbe 

Bay lies within the Indo-Australian Archipelago (IAA; Coral Triangle), a region recognised 

for exceptionally high diversity of fish and corals (Roberts et al. 2002). Extensive preliminary 

surveys were conducted in the Tamare-Kilu reef sector to find reefs with similar aspect and 

topography. All work, including quantifying the intensity of agonistic interactions and a 

removal experiment, was conducted on two reef locations (Garbuna and Luba Luba; Fig. 4.1). 

The observational experiment and the manipulative field experiment were executed on 

different areas of the reefs to assure individuals were not manipulated twice. Study sites were 

located on sections of reef with non-exposed reef flats, an unbroken and continuous reef crest, 

and steady non-vertical reef slopes to >10 m. Although sections of the reef flat break the 

surface, the tidal range here is relatively small (1 m) and the study locations were not exposed 

at low tide. 

The seven species of benthic associated territorial damselfish found in Kimbe Bay are 

found along a gradient that extends from the reef flat to the reef crest and down the reef slope 

in the respective order (maximum size from Kimbe Bay, J. G. Eurich, unpubl. data); 

Pomacentrus tripunctatus (9 cm), Chrysiptera unimaculata (7 cm), Pomacentrus bankanensis 

(7 cm), Pomacentrus adelus (7.5 cm), Plectroglyphidodon lacrymatus (10 cm), 

Neoglyphidodon nigroris (10 cm), and Pomacentrus burroughi (8 cm). The study species 

occupy a similar ecological niche and rely on microhabitats that mainly consist of dead coral 

fragments (rubble), sediment or detritus, and filamentous algae (Ceccarelli 2007, Eurich et al. 

2018a). 
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Figure 4.1 Map showing the location of Kimbe Bay, West New Britain, Papua 
New Guinea and study locations (Garbuna and Luba Luba) within the Tamare-
Kilu reef sector. 

 

Levels of interspecific aggression 

Levels of aggression can be an indicator of the intensity of interference competition, 

with species competing for similar resources likely to be more aggressive towards one 

another. Eurich et al. (2018a) reported that conspecifics and neighbouring species at the study 

site elicited significantly higher aggression, compared with heterospecific and non-adjacent 

species, and that levels of aggression were higher on the reef crest. Here we employed a 

“bottle” experiment, where a stimulus individual is experimentally introduced into a residents 

territory (Myrberg and Thresher 1974, Bay et al. 2001, Osório et al. 2006), to quantify levels 

of aggression among species to predict the competitive influence of P. adelus, the most 

abundant species on the reef crest (Eurich et al. 2018a). The aim was to quantify levels of P. 

adelus aggression towards potential competitors, the six damselfish, and the reciprocal levels 

of aggression of potential competitors towards P. adelus. Stimulus fishes were captured using 

an anaesthetic and hand nets and kept in a holding tank for 15 – 30 min prior to use to regain 
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normal behaviour. First, to elicit aggression, a stimulus individual was placed in a 9 L 

seawater-filled weighted transparent bag inside a P. adelus territory (following Bay et al. 

2001) and the intensity of responses by P. adelus towards the stimulus were quantified. 

Second, bagged P. adelus were introduced into the territories of the six potential competitors 

and the intensity of responses towards P. adelus were quantified. A control treatment, in 

which each response fish was presented with an empty bag, was also applied. After observing 

the resident species for 4 – 5 min to establish the territorial boundaries, the stimulus bags 

were introduced into the centre of the territory and secured to the substratum. The frequency 

and intensity of responses were recorded for 5 min (following the aggressive categories used 

in Eurich et al. 2018a; displays, charges, and bites). Each replicate was conducted using a 

different resident fish. To obtain aggression estimates for the different combinations of 

stimulus (six competing damselfish, P. adelus, and an empty bag control) and resident 

treatments, each resident was exposed to each type of stimulus 10 times. Negligible 

interactions were made towards the control stimulus, so it was omitted from analyses (0.02 

mean interactions per trial). 

Aggression trials were analysed separately by resident species using a generalised 

linear mixed effects model. The distribution of the response variable (count of aggressive 

interactions: representing the summation of displays, charges, and bite attempts) was 

significantly different from normality (Kolmogorov–Smirnov test, p < 0.05) due to frequent 

low intensity aggression and minimal high intensity aggression for some species. Therefore, 

the parameter estimates, coefficients, and 95% likelihood profile confidence intervals for the 

model were fitted using a negative binomial family for overdispersion (using Pearson 

goodness-of-fit as the dispersion statistic). Location (reefs: Garbuna and Luba Luba) was 

considered a random factor in the mixed model. Differences in levels of aggression towards 

stimulus species were tested using Tukey’s HSD. 

Removal experiment 

To examine whether the removal of a dominant species affected the spatial 

distributions of neighbouring species, we conducted a controlled large-scale experimental 

removal of Pomacentrus adelus. Two plots, a removal (treatment) and control, measuring 22 

m in length from the reef flat to the upper reef slope and 10 m wide (220 m2 total monitoring 

area per plot), were established on each of the two reef locations (Garbuna and Luba Luba). 

The paired removal and control plots were set approximately 75 m apart, with the plot 

treatment type assigned randomly. The plots (removal: n = 2; control: n = 2) were spaced to 
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ensure they were independent and sized so as to include the total habitat distribution limits of 

P. adelus. Territorial damselfish are highly site attached with home ranges ~1 to 2 m2 

(reviewed by Ceccarelli et al. 2001), so all fish observed on the grid were residents. To 

facilitate the census of fishes, individual plots were divided with permanent nylon strings and 

metal rods into eleven 2 m x 10 m contiguous transects forming rectangles that stretched 

parallel to the reef crest. Additionally, each nylon string was visibly marked at 2 m intervals 

creating a 2 m x 2 m grid throughout. All plots were established around the existing P. adelus 

distribution with roughly 12 m of reef flat and 10 m of reef slope on either side of the central 

reef crest. In the present study we refer to this lower area as the reef slope, but acknowledge it 

is the upper section of this habitat. 

All individuals of P. adelus were speared from the two removal plots and along a 5 m 

buffer around the plot to limit immigration into the census plots. A total of 321 and 275 

individuals were removed over a 1 day period from the two removal plots. There was no 

immigration into the experimental plots from P. adelus, but other adult species moved freely 

into the plot from bordering territories. Following the removal, no further P. adelus were 

disturbed or removed and natural recruitment was permitted. Control plots were artificially 

disturbed with divers emulating removal techniques and swimming patterns. 

The abundance and distribution of damselfish were quantified, both before and after 

the removal, down to a resolution of 25 cm with the use of the spatial grids. Fish were 

censused over the gridded area at high tide and each fish was identified to species, placed into 

a developmental category (recruit, juvenile, medium adult, and large adult), and its position 

was plotted on a scaled map. Individual fish positions were then entered as coordinates for 

analysis. Territorial damselfish were censused three times pre-removal and five times post-

removal. ‘Pre’ observations were made on alternating days prior to the removal (pre 1: 5 days 

prior; pre 2: 3 days prior; and pre 3: the day of removal or time 0), with the final pre-removal 

survey occurring directly before the removal. ‘Post’ observations were conducted the 

following morning (post 1 day), and consecutively thereafter: post 3 days, post 1 week, post 3 

months, and post 6 months. 

To examine differences in abundance after the removal, species were separately tested 

for unequal distribution between time period (fixed continuous factor), after accounting for 

differences between location (random factor: Garbuna, Luba Luba) using a repeated measures 

analysis of variance (ANOVA) and a generalised linear mixed effects model with Poisson 

distribution. A conservative test for compound asymmetry was used for ‘‘time’’ to address 
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the auto-correlated nature of time series data. The three pre-removal surveys were treated as 

nested replicates (n = 3) within the pre-removal time category. The pre-removal abundances 

were then compared to the post-removal abundances for each time period using Tukey’s post-

hoc pairwise comparisons of levels within significant factors to assess changes in abundance 

over time. Recruits (<1 cm) of all species (other than P. adelus, which was analysed 

separately) were omitted from the final analysis due to irregular recruitment pulses and high 

mortality. 

 Coordinate data within the spatial grids were used to determine if other species would 

shift their distributions to acquire the space previously occupied by P. adelus. For each 

survey period (pre-removal and 6 months post-removal) species’ abundances were binned 

into 1 m increments from the reef flat to the reef slope (1 m x 10 m contiguous rectangles, n = 

22) parallel with the reef crest for presentation. A two-sample Kolmogorov-Smirnov test (K-

S) was used to determine if the two distributions significantly differed. The mean centre of 

each population pre-removal was calculated and compared graphically to 6 months post-

removal to quantify movement over time. Replicate pre-removal surveys were used to 

estimate natural spatial variability. 

4.4 Results 

Levels of interspecific aggression 

The intruder-experiment confirmed the presence and asymmetry of aggression 

between P. adelus and the other six territorial damselfishes. The levels of aggression P. 

adelus displayed against P. bankanensis were significantly higher than any other stimulus 

species (8.5 mean interactions per trial; Tukey’s HSD, p = 0.001) (Fig. 4.2a). Reef flat 

species, P. tripunctatus (2.3 mean interactions per trial) and C. unimaculata (4.2 mean 

interactions per trial) received lower levels of aggression when compared to P. bankanensis 

(Tukey’s HSD, p = 0.008, and p = 0.026 respectively). While P. adelus displayed some 

aggression towards all stimulus species, less aggression was observed in trials with Pl. 

lacrymatus (1.9 mean interactions per trial; Tukey’s HSD, p = 0.004) and the reef slope 

associated species, N. nigroris (2.3 mean interactions per trial; p = 0.009) and P. burroughi 

(1.8 mean interactions per trial; p < 0.0001). 

When P. adelus was the intruder within the plastic bag, they elicited the greatest 

amount of aggression from P. bankanensis compared to other resident species (Tukey’s HSD, 

p < 0.0001) (Fig. 4.2b). P. bankanensis displayed the highest amount of aggression toward P. 



 
             
66 

adelus at 11.7 mean interactions per trial followed by Pl. lacrymatus, which displayed 4.8 

mean interactions per trial towards P. adelus. Additionally, P. bankanensis showed the 

highest rate and variability of aggressive behaviours, ranging from 3 to 49 agonistic 

interactions per trial. All other resident species exhibited lower aggressive interactions at ≤2.4 

mean interactions per trial. 

 

Figure 4.2 Mean aggressive interactions of (a) P. adelus towards conspecific 
stimulus species and (b) conspecific resident species towards P. adelus per 4 min 
trial. Box and whisker plot displays lowest and highest values, with the box showing 
interquartile range, the median represented by the bold line, and outliers represented 
as black dots. Vertical axes are not comparable. Species: Pomacentrus tripunctatus, 
Chrysiptera unimaculata, Pomacentrus bankanensis, Pomacentrus adelus, 
Plectroglyphidodon lacrymatus, Neoglyphidodon nigroris, Pomacentrus burroughi.   
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Removal experiment 

Abundance: The abundance of the removed species, P. adelus, was successfully 

reduced to 0 immediately following the removal (post 1 day) (Fig. 4.3a). Additionally, there 

was no immigration from neighbouring adults, as no adult P. adelus were observed in the 

subsequent post 3 days and post 1 week census periods. Recruitment of P. adelus did occur 3 

days post-removal (3 ± 1, mean individuals per 220 m2 ± SE within replicates) and increased 

to pre-removal amounts 1 week post-removal (11 ± 1; Tukey’s HSD, p = 0.984) (Fig. 4.3b). 

Despite regular recruitment, P. adelus abundance remained significantly low 3 months (14 ± 

5; Tukey’s HSD, p < 0.0001) and 6 months post-removal (39 ± 7) when compared to the pre-

removal census (153 ± 8; p < 0.0001). However, a significant increase in abundance was 

observed when comparing post 3 months to post 6 months (Tukey’s HSD, p < 0.0001). 

The experimental removal of P. adelus significantly altered the abundance of all reef 

flat associated species. P. bankanensis, the main co-inhabiting species of P. adelus with 

similar microhabitat use, immediately increased in abundance from pre-removal levels of 24 

± 4 individuals to 32 ± 5 individuals 3 days post-removal as adults immigrated into the plot 

(Fig. 4.4a; Appendix: Table S4.1). Moreover, P. bankanensis abundance continued to 

significantly increase compared to pre-removal levels 1 week (38 ± 5; Tukey’s HSD, p = 

0.032), 3 months (52 ± 4; p < 0.0001) and 6 months post-removal (56 ± 3; p < 0.0001).  

This pattern was also observed with C. unimaculata, which was distributed further 

onto the reef flat than P. bankanensis (Fig. 4.4b; Appendix: Table S4.1). C. unimaculata 

immediately increased in abundance 1 day (29 ± 8; Tukey’s HSD, p < 0.0001), 3 days (36 ± 

10, p < 0.0001), and 1 week post-removal (42 ± 11, p < 0.0001) from pre-removal levels (14 

± 1) and remained stable 3 months (35 ± 6, p < 0.0001) and 6 months thereafter (37 ± 4, p < 

0.0001).  

P. tripunctatus increased in abundance following the removal of P. adelus despite not 

having any distributional overlap with P. adelus (Fig. 4.4c; Appendix: S4.1). Abundance 

increased compared to pre-removal censuses from 2 ± 0 individuals pre-removal to 5 ± 1 

(Tukey’s HSD, p = 0.135) individuals 1 day post-removal and 5 ± 0 (p = 0.136) individuals 3 

days post-removal. P. tripunctatus continued to increase significantly 1 week post-removal (7 

± 1; Tukey’s HSD, p = 0.015) and remained significantly higher than pre-removal levels 6 

months thereafter (10 ± 2, p < 0.0001). 

 



  
Figure 4.3 Species abundances (± standard 
error) on removal (black, n = 2) and 
control plots (gray, n = 2) of (a) 
Pomacentrus adelus and (b) P. adelus 
recruits before and consecutively after the 
experimental removal of P. adelus denoted 
by the dashed line. Asterisks represent 
significantly different values (p ≤ 0.05) 
from the pre-removal abundance levels 
using Tukey’s post-hoc pairwise 
comparisons (Appendix: Table S4.1 for 
values). Vertical axes are not comparable. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.4 Species abundances (± standard 
error when available) on removal (black, n 
= 2) and control plots (gray, n = 2) of (a) 
Pomacentrus bankanensis, (b) Chrysiptera 
unimaculata, and (c) P. tripunctatus before 
and consecutively after the experimental 
removal of P. adelus denoted by the 
dashed line. Asterisks represent 
significantly different values (p ≤ 0.05) 
from the pre-removal abundance levels 
using Tukey’s post-hoc pairwise 
comparisons (Appendix: Table S4.1 for 
values). Vertical axes are not comparable. 



As predicted, all other reef crest and reef slope associated species were unaffected by 

the removal of P. adelus. Despite occupying similar distributions on the reef crest, Pl. 

lacrymatus abundance remained constant throughout the experimental period (Tukey’s HSD, 

p = 0.970). Additionally, the abundance of N. nigroris and P. burroughi on the reef slope 

were unaffected (Tukey’s HSD, p = 0.990 and p = 0.937, respectively). On all control plots 

there were no significant changes in abundance observed for any species over the monitoring 

period (Appendix: Table S4.2). 

Distribution: The interspecific competitors that increased in abundance following the 

removal of P. adelus also exhibited significant distributional shifts 6 months thereafter within 

the removal plots (Fig. 4.5a, b; Appendix: Table S4.3). The three populations of reef flat 

species began the distributional shift 1 day after the removal and retained the space 6 months 

later. The mean distribution of P. bankanensis significantly shifted 1.33 ± 0.28 m (change in 

mean distribution towards reef crest ± variance among replicate pre-removal surveys; K-S 

test: p = 0.033) toward the reef crest to acquire the space previously occupied by P. adelus 

(Fig. 4.5a, b). Moreover, the distributional spread, or tail of the populations, verifies 

population movement into the reef zone where P. adelus was removed. 37 individuals 

relocated to the front of the reef flat/back of the reef crest where P. bankanensis previously 

did not occupy.  

The distributions of C. unimaculata and P. tripunctatus subsequently expanded out of 

pre-removal distributions with 30 and 5 individuals relocating to space on the reef occupied 

by P. bankanensis, respectively (Fig. 4.5a, b). A 0.75 ± 0.13 m shift in the C. unimaculata 

population was also observed but no differences in distribution were detected at the 

population level because the entire distribution was not within the experimental plot (K-S 

test: p = 0.329). Likewise, a significant population shift in P. tripunctatus was not observed 

due to only the tail of the population being within the experimental plot (0.38 ± 0.15 m, K-S 

test: p = 0.518). The removed species, P. adelus, recovered to its previous distribution on 

both removal plots 6 months after removal. The distributions of all other species within the 

removal plots and all seven damselfish species within the control plots did not display any 

significant spatial movement over time during the experimental period (Appendix: Table 

S4.3). 
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Figure 4.5 Distribution frequency histogram showing the changes in reef flat species 
(green: Pomacentrus tripunctatus, blue: Chrysiptera unimaculata, red: Pomacentrus 
bankanensis) distributions before the removal (dotted line; averaged between pre-
removal replicates: n = 3) and 6 months after the removal of P. adelus (solid line) on 
(a) Luba Luba and (b) Garbuna. The 0 mark on the x-axis represents the middle of 
the reef crest, with the distance from the crest to the flat (left) and slope (right) in 
meters, respectively. Note that only the upper reef slope is presented, as no fish were 
observed deeper.  

 
4.5 Discussion 

Our results support the conclusion that interference competition contributes to 

explaining the spatial structure and abundance in a multi-species guild of territorial 

damselfish. The distinct distribution patterns characterised by a high degree of spatial 

partitioning among the main reef crest species were linked to levels of agonistic behaviour. 

Two neighbouring species in particular, Pomacentrus adelus and P. bankanensis, were highly 

aggressive toward one another. When P. adelus was removed, P. bankanensis exhibited a 

marked increase in abundance and expanded its distribution to acquire the previously 

occupied space on the reef flat and reef crest. The competitive release triggered indirect 
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effects, likely mediated by P. bankanensis, between two other neighbouring species that did 

not directly share resources with P. adelus. Our study uniquely demonstrates that competitive 

networks within a community can operate directly and indirectly among ecologically similar 

species. Over time, a competitive release can lead to the expansion of a species realized niche 

as they readjust to the new competitive hierarchy. 

The concept that interference competition for a limiting resource influences the 

abundance and distribution of animals is well established (Case and Gilpin 1974, Schoener 

1983). In a community, many species interact with one another directly by aggressively 

impeding access to a resource. Our research confirms the widely documented theory that 

interference competition plays a role in ecological segregation (Colwell and Fuentes 1975, 

Diamond 1978). Previous work has clearly shown that coral reef fishes compete for space and 

deny access to subordinate competitors when the profit of a resource is high (Robertson and 

Gaines 1986, McCormick and Weaver 2012, Pereira et al. 2015). In our study system, P. 

bankanensis distribution was regulated by the presence of P. adelus. Both species exhibited 

intense aggression towards one another, compared to other adjacent species. The aggression 

is likely due to similar microhabitat use and semi-overlapping distributions (Eurich et al. 

2018a). After the competitive release from P. adelus, P. bankanensis population increased 

immediately and shifted to occupy the reef area where P. adelus previously was. The quick 

appropriation of space (1 – 3 days), likely from bordering adult immigration, reflects the 

intensity of interference competition between the two species.  

Similar to the classical Connell (1961) intertidal experiments on Balanus and 

Chthamalus, this field experiment demonstrated P. bankanensis has a fundamental niche that 

extends to the reef crest, but naturally occupies a smaller realised niche when in competition 

with P. adelus (Whittaker et al. 1973). The majority of previous studies that quantify similar 

interactions among coral reef fishes have used laboratory experiments (Munday et al. 2001, 

Pereira et al. 2015), artificial patch reefs (Sale 1978, Williams 1978, Robertson 1996, 

Forrester et al. 2006, McCormick and Weaver 2012, Boström-Einarsson et al. 2014), or 

experimental manipulations at an individual level (Belk 1975, Robertson and Gaines 1986). 

In the present study, interference competition was observed experimentally in the field at the 

population level and over a natural, larger-scale reef profile. We provide additional strong 

evidence that species with similar resource requirements coexist through direct competitive 

mechanisms. 
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The study of competition among coral reef fishes has typically been tested 

experimentally through pairwise interactions among two species, as demonstrated above with 

P. bankanensis and P. adelus. However, an ecological community, by definition, is a 

naturally occurring assemblage of species that potentially interact within a habitat. The 

ecological processes and mechanisms that maintain coexistence among similar species within 

highly complex systems may not always be direct (Amarasekare 2003, Siepielski and 

McPeek 2010, Strauss 1991). The fine-scale spatial partitioning of seven territorial 

damselfish presented a unique system to test the maintenance of coexistence in a multi-

species competitive network (Eurich et al. 2018a). In the present study, ecological indirect 

effects were observed on the reef flat and reef crest following the removal of P. adelus. As 

expected through direct interference competition, P. bankanensis distribution shifted towards 

the reef crest following the experimental removal taking advantage of open space. Moreover, 

although P. tripunctatus and C. unimaculata did not directly interact with P. adelus, both 

populations also shifted towards the reef crest. The shift was likely mediated by the change in 

abundance and distribution of P. bankanensis. It is notable that a time lag, or subsequent 

effects, among the three species was not observed. All three species shifted and increased in 

abundance within a day of the P. adelus removal. Thus, it is difficult to determine which 

species indirectly influenced P. tripunctatus and C. unimaculata. However, the three species 

increasing in abundance and shifting in order without altering composition suggests the guild 

is intrinsically linked through associated competitive networks. Without the removal of P. 

adelus the spatial partitioning remained unchanged and stable likely due to interspecific 

competition. The observed shift highlights the importance of indirect interactions among 

species in this highly diverse and partitioned ecological guild. 

It is notable that increases in abundance and distributional shifts were not ubiquitous 

among all territorial damselfish. The contrasting results are likely due to two major 

differences. First, while the species on the central reef crest, Pl. lacrymatus, spatially overlaps 

with P. adelus, the majority of the population utilised a different microhabitat, which reduced 

any direct competition. Eurich et al. (2018a) showed that territorial damselfish situated on the 

reef flat, including P. adelus, exhibited a positive association with rubble and negative 

avoidance of algal turf, whereas Pl. lacrymatus was selective for algal turf. Despite this, in 

the present study aggressive interactions were still observed, which implies territorial 

interactions play a role in maintaining resources (Robertson 1996, Munday et al. 2001, 

Forrester et al. 2006). Second, the two species on the reef slope, N. nigroris and P. burroughi, 

do not often encounter P. adelus as their distributions do not directly overlap (Eurich et al. 
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2018a). Additionally, a similar study showed that the most densely occupied zone in Kimbe 

Bay is the reef crest, where territorial damselfish encompass almost 100% of the substratum, 

compared to 40% of the substratum on the reef slope (Ceccarelli 2007). A lack of association 

and increased available habitat likely explains why no changes were observed on the upper 

reef slope. These two examples show that within complex ecosystems, the intensity and 

importance of competition may vary due to resource availability and dissimilarities among 

sympatric species. 

Given the success of P. bankanensis following the intense interspecific competitive 

release and the indirect effects observed among reef flat species, the question arises - How 

will the P. adelus population, the previously most abundant species, recover? As predicted, P. 

bankanensis retained its abundance and the habitat 6 months after the removal of P. adelus. 

Furthermore, the species on the reef flat, P. tripunctatus and C. unimaculata, continued to 

persist adjacent to P. bankanensis. However, 3 months post removal only P. adelus subadults 

were observed within this species’ pre-removal distribution. Srinivasan and Jones (2006) 

showed damselfish recruit at a low level all year round in Kimbe Bay. These individuals 

therefore likely recruited in during the experimental monitoring period. 

The pattern could indicate several mechanisms for coexistence among territorial 

damselfish. Firstly, it could indicate a competitive lottery for space at settlement, and an 

ontogenetic shift to niche partitioning among neighbouring adults (Sale 1977, 1978). Pereira 

et al. (2015) demonstrated the competitive mechanism between two Gobiodon species shifts 

from a lottery for space at settlement to niche partitioning among larger individuals. In our 

study, recruitment of P. adelus was observed throughout the experimental period and only 

subadults were observed in the experimental plots 3 months after the removal. 6 months after 

the removal these individuals were classified as adults. More detailed experiments at the 

recruitment and settlement level are needed for a definitive conclusion on the lottery for space 

or immigration from nearby habitat (as per Sale 1979). Alternatively, with the quick 

appropriation of space by competing adult species, a dominance hierarchy is a possible 

explanation for the delayed P. adelus recovery. Initially, adults of the subordinate species 

may out compete P. adelus recruits and juveniles for available habitat, but this may reverse 

when P. adelus individuals increase in size. In any case, the lack of pre-removal abundances 

of P. adelus adults within the experimental plots 6 months later demonstrates competitive 

displacement and niche partitioning. It is also possible that the P. adelus population was 

tracking towards a recovery, but if so, we would have expected P. bankanensis abundances to 
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trend downwards. For a full assessment of a compensatory response by a population 

following its release from competition an experiment spanning multiple generations with the 

tracking of individuals would be needed (Schmitt and Holbrook 1990, Robertson 1996).  

Conclusions 

Revealing indirect relationships among ecologically similar species within a complex 

community remains a formidable challenge, yet it is necessary to gain generality and 

predictive power. We demonstrate that competitive networks within a community can operate 

directly, by interference competition, and indirectly through a competitive release among 

ecologically similar species. Evidence presented here suggests that, the loss of a species 

through local extinction may result in ecological indirect effects that will influence other 

species in the assemblage. In addition, it is known that reduced habitat quality through 

disturbances, such as ocean acidification and coral bleaching, can alter and even reverse 

pairwise competitive interactions between species (McCormick 2012, McCormick et al. 

2013, Boström-Einarsson et al. 2014). With growing pressures, including climate change, 

globalization, and migration, on the world ecosystems, we hope these effects do not extend to 

the progressive loss of species that cannot compete for the dwindling resources. 
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Chapter 5 
 

Experimental evaluation of the effect of a territorial damselfish on 
foraging behaviour of roving herbivores on coral reefs 
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5.1 Summary 

Roving herbivorous fishes play an important role in coral reef communities by 

removing turf-algae, which can facilitate the settlement of coral larvae. Territorial 

damselfishes can influence the foraging patterns of roving herbivores by excluding them from 

their territories, altering the benthic assemblage. However, the impacts depend on the 

intensity of aggression and which taxonomic groups of roving herbivores are being excluded. 

Here we document the foraging activity of roving herbivores (Acanthuridae, Scaridae, 

Siganidae) and the extent to which they are subject to aggression by Pomacentrus adelus, the 

most abundant territorial damselfish in Kimbe Bay, Papua New Guinea. We then conducted 

experimental removals (220 m2 plots on the reef flat) of P. adelus to examine its impact on 

roving herbivores and the benthic community structure. We hypothesized that the removal of 

P. adelus would lead to an increase in roving herbivore abundance and foraging activity and a 

decline in algal cover. The relative abundance (MaxN) and foraging activity (bite rate) of 

each taxon were examined pre and post-removal using video quadrats. The overall relative 

abundance of roving herbivores was not influenced by the removal of P. adelus. No changes 

in foraging patterns were observed for parrotfish, the family that received the highest rate of 

agonistic interactions, and rabbitfish. The removal of P. adelus resulted in a significant 

decrease in surgeonfish feeding, suggesting P. adelus alters foraging patterns indirectly 

through territorial maintenance and not aggression. The only measurable benthic impact of 

the P. adelus removal was an increase in sediment, while all other substratum types remained 

constant. These results indicate that P. adelus does not have a negative impact on all roving 

herbivores and instead may contribute to surgeonfish foraging indirectly through the removal 

of sediment. The generalisation that territorial damselfish reduce foraging rates of roving 

herbivores may not be applicable in all systems or for all species. 
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5.2 Introduction 

Roving herbivorous fishes play an important role on coral reefs in reducing algal 

biomass and preventing alternative algal dominated stable states (Mumby et al. 2006, Hughes 

et al. 2007, Francini-Filho et al. 2010). Hence, they are considered important in maintaining 

healthy coral cover and promoting ecosystem resilience (Burkepile and Hay 2008, Hamilton 

et al. 2014, O’Leary and Mcclanahan 2016). The most important roving herbivores, in a 

broad use of the term, appear to be surgeonfish (Acanthuridae), parrotfish (Labridae: Scarini), 

and rabbitfish (Siganidae) in terms of algal biomass consumption or removal (Lewis and 

Wainwright 1985, Francini-Filho et al. 2010). However, these taxa do not have exclusive 

access to algal covered reef habitat. Territorial farming damselfish often influence the 

structure of algal communities though the deterrence of larger roving herbivores (reviewed by 

Hata and Ceccarelli 2016). The aggressive territorial defence may lead to an increase in turf 

algae, a desired food source of roving herbivores (Hixon and Brostoff 1983, Russ 1987, 

Hixon 1996, Ceccarelli et al. 2005a). Studies that combine the foraging patterns of roving 

herbivores and agonistic interactions within a healthy community can together help define the 

mechanistic drivers that underlie reef habitat structure and resilience. 

Surgeonfish, parrotfish, and rabbitfishes cohabit the most productive coral reef zones 

where they may forage in mixed species groups and partition resources (Williams 1991). The 

difference in resource utilization among families is strongly related to morphology, with the 

recognition of three main functional groups: browsers, scrapers, and excavators (Ross 1986, 

Bellwood and Choat 1990, Streelman et al. 2002, Francini-Filho et al. 2008). Surgeonfish, 

typically categorized as browsers, largely feed on the epilithic algal matrix (Goatley and 

Bellwood 2010) with some species targeting detritus aggregates within algal turfs (Marshell 

and Mumby 2012, Tebbett et al. 2017a, b). Unlike surgeonfish, parrotfish alter the substratum 

by scraping or excavating the surface leaving distinct scars on the benthos (Bellwood and 

Choat 1990, Bellwood 1995, 1996). Despite recent work suggesting that parrotfish may be 

targeting endolithic microbes and detritus (Clements et al. 2017), the removal of microalgae 

in the process of foraging remains functionally important when considering the biotic 

composition of reef benthos (Morgan and Kench 2016). In contrast, rabbitfish feed 

significantly more in reef crevices than the other two families due to differences in 

morphology and dentition (Fox and Bellwood 2013, Brandl and Bellwood 2014). While the 

majority of rabbitfish species target macroalgae by browsing or cropping, the family also 

contains a distinct group of mixed feeders, which target microalgal material, cyanobacteria, 
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and sediment (Hoey et al. 2013). The diversity of foraging methods, and their implications for 

impacts on benthic habitat structure, indicates that our understanding of how species interact 

with the surrounding community must be species and family specific (Choat and Clements 

1993, Polunin et al. 1995, Fox and Bellwood 2007, Ong and Holland 2010). Therefore, it is 

important to assess the grazing ability of species individually as grazing rates can vary due to 

differences in community structure and species encountered. 

Territorial damselfish (Pomacentridae) are highly abundant small-bodied consumers 

that often occupy the reef crest and reef flat habitats (Ceccarelli et al. 2001, Ceccarelli 2007, 

Eurich et al. 2018a). The modification of algae through farming behaviour and territorial 

defence is thought to play an important role on the benthic community structure (Wellington 

1982, Hixon and Brostoff 1983, Ceccarelli et al. 2005a, Ceccarelli 2007, Barneche et al. 

2009). Thus, territorial damselfishes influence on coral recruitment (Sammarco and Carleton 

1981, Wellington 1982, Ceccarelli et al. 2005a), and the abundance and composition of algae 

within the territorial boundaries (Hixon 1996, Ceccarelli et al. 2005b), have been well 

documented. Territorial damselfish have been predominantly categorized into three guilds 

based off the species’ effect on benthic assemblage structure and aggression: intensive 

farmers, extensive farmers, and an intermediate group (Hata and Kato 2004, Ceccarelli 2007, 

Hata and Ceccarelli 2016). Where, intensive farmers weed low diversity algal turfs 

intensively with aggressive defence, extensive farmers weed and defend larger territories to a 

lesser degree, and an intermediate group that maintains discrete, but significantly different to 

the surrounding environment, territories of algal turf (Emslie et al. 2012, Pratchett et al. 

2016). Several experimental studies have shown that the aggressive exclusion of roving 

herbivores by extensive or intensive farming species affects the benthic assemblage structure 

(Hixon and Brostoff 1983, Russ 1987, Hixon 1996, Ceccarelli et al. 2005a). However, there is 

conflicting evidence that all territorial damselfish, especially intermediate farming species - 

the most abundant guild (Pratchett et al. 2016), hinder the foraging patterns of roving 

herbivores through agonistic interactions. Some studies have shown that roving herbivores 

will actively avoid the territories of territorial damselfish to feed on desirable algae without 

harassment (Robertson et al. 1976, Hamilton and Dill 2003). Additionally, surgeonfish and 

parrotfish periodically may use schooling behaviours to overwhelm territorial damselfish and 

gain access (Robertson et al. 1976, Foster 1985a). However, Ceccarelli et al. (2005b) found 

that extensive and intermediate territorial damselfish were fairly inefficient at excluding 

roving herbivores from their territories and roving herbivores had a significant impact on 

benthic habitat, both with and without the presence of territorial damselfish. 
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While both roving herbivores and territorial damselfish can exert a strong influence on 

the structure of the benthic community, the extent to which the general paradigm holds true 

for intermediate territorial damselfish remains unclear. In this study we document the natural 

foraging activity of roving herbivores and the extent to which this was affected by an 

intermediate farming territorial damselfish in Kimbe Bay, West New Britain, Papua New 

Guinea. We then undertook a large-scale removal of the most abundant territorial damselfish, 

Pomacentrus adelus, to evaluate how the abundances and foraging activity of roving 

herbivores would change following an agonistic release. Lastly, we determined whether the 

benthic community structure was altered in the absence of P. adelus. Specifically, we tested 

the following three predictions: (1) the local abundance of roving herbivores should increase 

in abundance following the removal of P. adelus; (2) the feeding activity of roving herbivores 

should increase after the removal of P. adelus as benthic resources are undefended; (3) the 

benthic habitat may be altered due to changes in herbivore foraging and the elimination of P. 

adelus farming and territorial behaviour. 

5.3 Methods 

Study location and species 

This study was conducted in Kimbe Bay, West New Britain, Papua New Guinea (Fig. 

5.1; 5°30’ S, 150°05’ E). Kimbe Bay lies within Oceania and is a region of West New Britain 

recognized for high coral reef biodiversity and large platform reefs (Roberts et al., 2002). 

Two inshore reefs, Garbuna and Luba Luba, were selected as the study locations due to 

similarities in species composition and reef aspect. Both reefs are nearshore (< 1 km from 

land), and have a similar reef structure: a shallow reef flat (exposed during extreme low 

tides), a reef crest, and a gentle reef slope ending in a sandy bottom at 30 –  50 m. Coral reefs 

in Kimbe Bay have a high diversity of both coral and fishes despite several regional coral 

mortality events (Jones et al. 2004, Boström-Einarsson et al. 2014). At least 20 families of 

reef fishes are found in Kimbe Bay (Jones et al., 2004), including many species belonging to 

families loosely described as herbivores, namely Acanthuridae, Labridae (Scarini tribe), and 

Siganidae. For the purposes of this study, only roving herbivores that occupied the zones 

where P. adelus occurred were analysed. 
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Figure 5.1 Location of Kimbe Bay, West New Britain, Papua New Guinea, and the 2 
reef sites (Garbuna and Luba Luba). 

 

The most abundant damselfish, Pomacentrus adelus (Pomacentridae), occupies the 

reef crest and adjacent zones (Ceccarelli 2007, Eurich et al. 2018a). P. adelus is a highly 

abundant, small bodied intermediate territorial damselfish that maintains territories on rubble 

and filamentous algae, and exerts aggressive defence on intruders (Ceccarelli et al. 2001, 

Pratchett et al. 2016, Eurich et al. 2018a). P. adelus influences the composition of algal 

assemblages by weeding or farming within the territorial boundary, though the benthic 

assemblage remains visually similar to the surrounding areas (Hata and Kato 2004, Ceccarelli 

2007). 

Removal experiment 

A paired removal plot and control plot were established 75 m apart on each of the two 

study locations (4 plots total). The plots were spaced to ensure they were independent and 

sized so as to include the depth distribution of P. adelus. Each individual rectangular plot was 

22 m onto the reef flat from the lower reef crest and 10 m wide parallel to the reef crest (220 

m2 total area), and was delimited by nylon strings and metal rods to create a 2 m by 2 m grid 

to facilitate census. 

After the community was censused for preliminary comparisons, a removal 

experiment of the most abundant territorial damselfish, P. adelus, was conducted on the 

experimental plots. Fish were removed by hand spear or a dilute anesthetic clove oil solution, 

including recruits and all surrounding individuals within a 5 m wide buffer. Approximately 

300 individuals were removed from each experimental plot. After establishment, the control 

plots were left experimentally undisturbed, but were visited as frequently as the removal plots 
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to control for the potential effects of diver disturbance. Here divers conducted mock 

swimming activities emulating removal techniques. Following the removal of P. adelus, no 

further intervention took place on the experimental plots as no immigration was observed. 

Abundance and foraging patterns: video analysis 

Stationary cameras were used to obtain unbiased estimates of abundance and foraging 

patterns (e.g., Assis et al. 2013). At high tide cameras (GoPro) were placed within the 

experimental plot, above any structurally complex corals, and pointed towards the benthos. 

Cameras were placed so that they recorded a marked 2 m by 2 m area within the zone and 

territories used by P. adelus, thereby standardizing the ‘viewable’ and recordable area. 15 

video censuses were collected during each treatment period, pre- and post-removal, on the 

four plots (total n = 120). Cameras were placed in the experimental areas 1 – 3 days prior to 

fish removal and then 1 – 3 days after removal. 

For analysis, 5 min trials were subset from longer videos (20 to 30 min long). Each 

video was started 5 min in, then watched for 5 min prior to the trial to ensure there was no 

camera movement or diver influence that may have affected fish behaviour after tripod 

placement. If no disturbance was observed during the 5 min observation period the trial was 

initiated and data was collected for the subsequent 5 min. All videos were analysed by a 

single observer (S. M. Shomaker). 

Pre-removal videos of control and removal plots were used to assess the undisturbed 

foraging patterns of fish species and interactions with P. adelus prior to experimental 

removal. The foraging patterns of all 17 species of surgeonfish, parrotfish, and rabbitfish 

present were observed and bites were recorded. Bite rate for the purpose of this study was 

determined as the mean total number of bites directed to the benthos by all fish species other 

than P. adelus per 5 min trial within the marked 2 m by 2 m area. Few species were abundant 

enough to get species-specific foraging estimates. The 13 species observed include the 

surgeonfish: Ctenochaetus striatus, Ct. binotatus, Ct. strigosus, Acanthurus pyroferus, A. 

lineatus, Zebrasoma scopas, and Naso lituratus; parrotfish: Chlorurus bleekeri, Scarus 

rivulatus, Sc. dimidiatus, Sc. niger; and rabbitfish: Siganus vulpinus and Si. doliatus. Bites 

were pooled by family groups to estimate the foraging effort for each family. 

Pre-removal videos from the four plots (n = 60) were analysed once more to quantify 

aggressive interactions by P. adelus towards roving herbivores. The observer (S. M. 

Shomaker) first established a P. adelus territory within the marked 2 m by 2 m area and then 
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recorded the interactions of a single individual for 5 min. Any aggressive charges from P. 

adelus resulting in a change or pause of behaviour and/or displaced movement to the 

herbivore were recorded as a ‘chase’. 

Relative fish abundance was recorded using the maximum number of individuals 

(MaxN) for each species that occurred over the 5 min observation period. MaxN is the most 

commonly used method of estimating fish abundance from video recordings and is described 

as the maximum number of individuals of each species that are in the video frame at any one 

given time throughout the trial (Cappo et al. 2007). MaxN is a conservative metric for 

estimating minimum abundance of a species (Willis et al. 2000), and was designed to avoid 

the recurring counting of individuals that enter the camera field of view within a trial (Cappo 

et al. 2007). It should be noted that a potential limitation of MaxN is that the resulting value 

can be nonlinearly related to true site abundance when dealing with a large abundance of fish, 

therefore it can underestimate the population size (Schobernd et al. 2014). However, due to 

the restricted field of view of cameras, and the relatively low abundance of roving herbivores 

observed in the present study, MaxN was the best metric for analysis. Thus, within this study 

when we discuss abundance we are referring to a maximum relative abundance (not true 

abundance) within a 2 m by 2 m space at any one given time compared to other species. 

Benthic habitat 

It was predicted that if P. adelus were having an important influence on the overall 

benthic assemblage by farming algae or engaging in agonistic interactions with other fishes, 

there would be a significant difference in the algae and coral assemblages in the removal 

plots where P. adelus previously occurred. To estimate the benthic community structure plots 

were surveyed before the removal and 3 months thereafter by a single observer (J. G. Eurich). 

Benthic cover was estimated using three 10 m transects laid within each of the eleven 2 m by 

10 m contiguous rectangles (i.e., permanent grid), parallel to the reef crest (n = 33 per survey 

period per plot). The substratum present beneath 20 uniform points along each transect was 

recorded (n = 660 per survey period per plot). Substratum was classified as one of nine 

microhabitat categories: (1) live coral; recorded by growth form but pooled as live coral for 

the purpose of this study, (2) dead coral, (3) macroalgae, (4) turf algae, (5) crustose-coralline 

algae, (6) rubble, (7) sand (incl. non-biological substrate), (8) sediment, or (9) other (e.g. 

Fungia spp., sponges, and bivalves). For the purpose of this study, we used the definition of 

turf algae from Hay (1981) as masses of tightly packed upright branches that were dominated 

by filamentous species. Previous studies demonstrate that P. adelus influences the 
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composition of microalgal communities through intermediate farming (Ceccarelli et al. 

2005b, Ceccarelli 2007). However, as the focus of the present study was to assess foraging 

microhabitats utilized by roving herbivores, a fine-scale taxonomic resolution to detect subtle 

changes in microalgal community differences was not used. 

Statistical analysis 

Relative herbivore abundance (MaxN) and changes in foraging activity (bite rate) 

were transformed using an aligned rank transformation and compared using a two-factor 

nonparametric ANOVA (i.e., treatment period and location) (Crawley 2007, Zurr et al. 2009). 

All data were analysed using R v. 3.0.2 with the ‘ARTool’ (Kay and Wobbrock 2016) and 

‘car’ packages (Fox and Weisberg 2011) in R (R Development Core Team 2013). Species 

were analysed collectively to represent the total impact of roving herbivores, and then 

individually, in family groups (surgeonfish, parrotfish, and rabbitfish). The nature of the 

significant interaction was further explored with Tukey’s HSD post-hoc tests using the 

‘lsmeans’ package (Lenth 2016). All data in the text and figures are presented as the 

arithmetic mean ± one standard error (SE), unless otherwise stated. Recruits and reef slope 

species were omitted from presentation and final analysis due to irregular and low 

recruitment pulses and the deeper species having no contact with P. adelus, respectively. 

Random intercepts mixed-effects logistic regressions were used to assess the 

difference in benthic community structure before and after the removal of P. adelus for each 

treatment type (experimental and control). Fixed effects were treatment period (pre- and post-

removal), location (Garbuna and Luba Luba), and the interaction between them. Replicates 

and transects within a plot were both treated as random effects: the random intercepts model 

assumes that any effects of treatment period and location are similar between transects and 

replicates. The proportion of the total cover by each substratum type (response variable) was 

used to measure the benthic community structure. The model was fitted using the R package 

‘lme4’ (Bates et al. 2011), and probability values for each successive term in the model were 

assessed using the ANOVA function provided by the R package ‘car’. While all comparisons 

involved replicate reef locations (n = 2 for removal, n = 2 for control), data were pooled for 

presentation. 

5.4 Results 

Natural foraging patterns 
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A total of 17 species of roving herbivores, including 10 acanthurids, 5 labrids 

(Scarini) and 2 siganids, were present within the study area before the removal. Of the species 

observed, only 13 species foraged consistently enough to obtain reliable estimates of bite rate 

(Fig. 5.2; total bites per 5 min trial ± SE, n = 60). For mean total bites when an individual was 

actively foraging (trials where a bite was observed), surgeonfish accounted for the majority of 

total bites observed (69.6%) with Ctenochaetus striatus (36.2 ± 8.1) and Ct. binotatus (36.8 ± 

7.2) foraging most frequently. Chlorurus bleekeri was the most active parrotfish (28.5 ± 8.7) 

accounting for 13.8% of total bites observed. For rabbitfish, Siganus vulpinus and Si. doliatus 

occurred in low abundances, and when observed tended to have low bite rates. 

Aggressive interactions 

In the 60 5 min observations prior to the removal, 21 total chases from P. adelus out 

of 779 encounters were observed: 6 chases directed at Ct. striatus, 14 chases at parrotfish, and 

1 chase at Si. vulpinus (Fig. 5.3). P. adelus appeared to concentrate its territorial defence 

towards parrotfish with Sc. dimidiatus, the most targeted, accounting for 38% of chases 

observed. Relative to encounters, aggressive interactions were low with a 0.027% chance of 

being chased when encountered. 
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Figure 5.2 Mean total number of bites per species per 5 min trial (± SE, 
n = 60). Species genus names; Ct.: Ctenochaetus, A.: Acanthurus, Z.: 
Zebrasoma, N.: Naso, Ch.: Chlorurus, Sc.: Scarus, and Si.: Siganus. 

 

 
Figure 5.3 Aggressive interactions from Pomacentrus adelus displayed 
as proportion of total chases (n = 60). Species genus names; Ct.: 
Ctenochaetus, Ch.: Chlorurus, Sc.: Scarus, and Si.: Siganus. 
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Herbivore abundance 

The prediction that roving herbivore abundance would increase following P. adelus 

removal was not supported. There were no significant differences in roving herbivore relative 

abundance following the removal of P. adelus for both the removal and control plots (Table 

5.1). Surgeonfish (Fig. 5.4; p = 0.979), parrotfish (Fig. 5.4; p = 0.493), and rabbitfish (Fig. 

5.4; p = 0.096) did not increase in abundance after the agonistic release on the removal plots. 

No significant difference was observed between locations within treatment type (X2 (1) = 

0.249, p = 0.883). 

Change in foraging patterns 

The hypothesis that foraging activity would increase following the removal of the 

intermediate territorial damselfish was also rejected. For the control plots, there were no 

significant differences in foraging activity for surgeonfish, parrotfish, and rabbitfish between 

treatment periods (Table 5.2). On the contrary, surgeonfish foraging in the removal plots 

significantly decreased following the removal of P. adelus (Table 5.2; Fig. 5.5; p = 0.002). 

Parrotfish (Fig. 5.5; p = 0.349) and rabbitfish (Fig. 5.5; p = 0.261) foraging was not 

significantly affected by the removal of P. adelus (Table 5.2). No significant difference was 

observed among locations within treatment type (X2 (1) = 0.206, p = 0.902). 

Benthic habitat 

The experimental removal of P. adelus had little impact on the overall benthic habitat 

structure. The benthic habitat did not change significantly over time when comparing removal 

and control plots (Fig. 5.6; Appendix: Table S5.1). Macroalgal cover increased significantly 

on both the removal (p < 0.0001) and control plots (p < 0.0001). Conversely, turf cover 

decreased significantly on both the removal (p < 0.0001) and control plots (p < 0.0001). Of 

the 9 habitat types, the only significant change between treatment periods not replicated on 

the control plots was sediment cover. Sediment increased following the removal of P. adelus 

on the removal plots (p = 0.018), but did not differ among period on the control plots (p = 

0.215). All other habitat categories remained consistent throughout the removal experiment. 
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Source  t ratio df p 
 

 Surgeonfish 
Removal 
Control 

Parrotfish 
Removal 
Control 

Rabbitfish 
Removal 
Control 

 

 
-0.026 
0.235 
 
0.692 
-1.483 
 
2.921 
0 
 

 
1 
1 
 
1 
1 
 
1 
1 

 
0.979 
0.815 
 

0.493 
0.147 
 

0.096 
1.000 
 

 

 
Table 5.1 Conclusions of post-hoc tests 
(Tukey’s HSD) on differences in relative 
abundance (MaxN) between period (pre- and 
post-removal) by treatment type. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.4 Cumulative abundance of (a) 
surgeonfish, (b) parrotfish, and (c) rabbitfish for 
control reefs (white) and removal reefs (gray) 
pre-and post-removal of Pomacentrus adelus (n 
= 30 per group). Box and whisker plot displays 
lowest and highest values, with the box 
showing interquartile range, the median 
represented by a bold line, and outliers 
represented as black dots. Vertical axes are not 
comparable. 
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Source  t ratio df p 
 

 Surgeonfish 
Removal 
Control 

Parrotfish 
Removal 
Control 

Rabbitfish 
Removal 
Control 

 

 
-3.283 
-0.473 
 
-0.950 
-0.652 
 
1.143 
1.143 
 

 
1 
1 
 
1 
1 
 
1 
1 
 

 
0.002 
0.639 
 
0.349 
0.519 
 
0.261 
0.261 

 

 
Table 5.2 Conclusions of post-hoc tests 
(Tukey’s HSD) on differences in foraging 
between period (pre- and post-removal) by 
treatment type. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.5 Average (a) surgeonfish, (b) 
parrotfish, and (c) rabbitfish foraging on 
control reefs (white) and removal reefs (gray) 
pre-and post-removal of Pomacentrus adelus 
per 5 min trial (n = 30 per group). Box and 
whisker plot displays lowest and highest 
values, with the box showing interquartile 
range, the median represented by a bold line, 
and outliers represented as black dots. Vertical 
axes are not comparable. 
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Figure 5.6 Benthic composition pre- (white) and post-removal (gray) of 
Pomacentrus adelus by treatment type: (a) removal and (b) control. The 
proportion represents an average (± SE) across locations. Statistical 
significance denoted by an asterisk. 

 

5.5 Discussion 

This study indicates that Pomacentrus adelus does not have a major influence on the 

relative abundance and foraging activity of all roving herbivorous fishes or any major direct 

effect on the benthic substratum, but may play a role in sediment dynamics indirectly through 

surgeonfish interactions and territory maintenance. None of the three central hypotheses 

posed were fully supported by the experimental removal of the intermediate farming 

damselfish P. adelus: (1) the overall relative abundance of roving herbivores was unaffected 

by the large-scale removal of P. adelus; (2) parrotfish and rabbitfish foraging activity was not 

influenced by the removal despite access to undefended resources; and (3) P. adelus had no 
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major impact, either directly or indirectly, on the cover of either algae or corals. Hence, the 

emerging paradigm of a strong interaction between roving herbivores and all types of 

territorial damselfish is not supported by the findings of the present study. The effects 

observed were unexpected, including a positive influence of P. adelus on the foraging 

intensity of surgeonfish and a negative effect on the amount of sediment in territories. We 

argue that in this system, P. adelus modifies the benthic composition in a way that benefits 

surgeonfish foraging and without the presence of P. adelus surgeonfish are less apt to forage, 

which directly impacts reef sediment dynamics. 

We argue that aggressive charges by P. adelus may represent an annoyance rather 

than an effective deterrent to the roving herbivores. Overall, aggressive interactions were rare 

and accounted for only 0.027% of observed incursions. Previous research has documented 

that P. adelus is highly territorial and aggressive on the reef flat and reef crest to other 

territorial damselfishes (Eurich et al. 2018a), but few chases observed in the present study 

were directed at herbivores. Of the interactions observed, parrotfish were attacked more 

frequently than surgeonfish and rabbitfish. This contradicted the assumption that surgeonfish 

would be targeted more frequently, as it is known that surgeonfish and territorial damselfish 

overlap in space use and diet (Robertson and Polunin 1981, Russ 1987, Castano et al. 2014). 

However, it is likely that parrotfish pose a larger threat due to the significant disruption of the 

benthos by scraping and excavating algae (Bellwood and Choat 1990, Bellwood 1995, 1996, 

Morgan and Kench 2016). Aggression is expensive because it imposes energy and time costs 

and increases the risk of injury (Clutton-Brock and Parker 1995). Therefore, individuals will 

be more aggressive to the species that structurally influence and damage the benthos and 

resources within their territorial boundaries. However, despite parrotfish sustaining the 

highest number of aggressive interactions proportionate to other roving herbivores, no 

behavioural changes were observed once the agonistic release was initiated. 

The overall lack of aggression likely reflects P. adelus belonging to the guild of 

intermediate territorial damselfish (Hata and Kato 2004, Ceccarelli 2007). Previous studies 

have suggested that both rate of attacks and success of attacks by damselfish increase with 

body size (Foster 1985b). P. adelus is a relatively small bodied species compared to other 

intensive and extensive farming species, which is one explanation for why fewer aggressive 

interactions were observed. We present an important finding as all territorial damselfish are 

occasionally assumed to have an equally strong external influence on herbivory through their 

aggression. Intensive and extensive farming species (e.g., Stegastes spp.) that maintain 
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conspicuous algal mats are known to defend their territories aggressively (Ceccarelli et al. 

2001, Hoey and Bellwood 2010, Emslie et al. 2012). However, these species tend to occur in 

patches and are less abundant than intermediate farming species (Pratchett et al. 2016). In 

Kimbe Bay P. adelus is abundant over multiple reef zones in high densities where no 

intensive and extensive farming species are present (Ceccarelli 2007). Despite the lower 

quality and quantity of aggressive interactions P. adelus may represent a larger impact due to 

a higher volume of attacks due to the population size and distribution (Eurich et al. 2018a). 

Therefore, we suggest caution generalising the effects of territorial damselfish aggression as 

it pertains to roving herbivore foraging dynamics without species-specific behavioural 

observations. 

Due to the limited aggressive behaviours observed in the present study the overall 

relative abundance of roving herbivores was not affected by the removal of P. adelus. We 

observed no change in abundance for parrotfish, rabbitfish, or surgeonfish despite 

approximately 300 less territorial damselfish on the reef flat and reef crest. This contradicted 

our hypothesis, as it is known that territorial damselfish defend benthic resources from roving 

herbivores (Foster 1985b, Hixon and Brostoff 1996, Catano et al. 2014). However, Ceccarelli 

et al. (2005b) also found that territorial damselfish in the same region as the present study 

were fairly inefficient at excluding roving herbivores from their territories. Furthermore, no 

effect of the exclusion of roving herbivores by territorial damselfish could be detected. 

Therefore, in Kimbe Bay it appears that territorial damselfish do not have a strong influence 

on the habitat structure by reducing the local abundance of roving herbivores through 

aggressive defence. 

Additionally, we found no significant differences in parrotfish foraging activity 

following the removal of P. adelus in the present study. Previous research has demonstrated 

conflicting results when examining the impacts of territorial damselfish aggression on roving 

herbivore foraging. Some studies suggest that territorial damselfish limit the ability of roving 

herbivores to access desirable algae, which is in higher concentration within the territorial 

boundaries (Klump et al. 1987), and thus causes a decrease in grazing intensity (Hixon and 

Brostoff 1996). The territorial defence has also been documented to influence parrotfishes 

diet in the Caribbean. Bruggemann et al. (1994a) provided evidence that territorial damselfish 

aggression can lead to parrotfishes ingesting higher proportions of inferior food types. 

Parrotfishes were more likely to forage outside the damselfish territories to avoid 

energetically expensive interactions despite superior food resources. Further, experimental 
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removals of territorial damselfish have also led to increased grazing rates of roving 

herbivores and a rapid reduction in turf cover (Mahoney 1981, Hourigan 1986). 

Contrastingly, our results show that parrotfish foraged at the same rate and intensity 

following the removal of P. adelus and do not corroborate the previously described studies. 

The present study instead supports the findings of two herbivore exclusion experiments, 

where no evidence was obtained that territorial damselfish influence the benthic impacts of 

parrotfish (Ceccarelli et al. 2005b, Ceccarelli et al. 2006). In these studies, some algal taxa 

increased in cover suggesting that foliose macroalgae and even some filamentous algae are 

suppressed when territorial damselfish are present. While variation in foraging behaviours of 

parrotfish is well established in the literature (Bellwood and Choat 1990, Bruggemann et al. 

1994b, Bonaldo et al. 2005, Francini-Filho et al. 2010), patterns observed in Kimbe Bay are 

now confirmed and thus cannot be explained by behavioural variability. 

Rabbitfish occupied the study zone but were less abundant than the other families and 

thus were rarely observed foraging. The lack of an agonistic influence from P. adelus was 

likely due to their low abundance and the limited observed aggression from P. adelus. 

However, the morphological specializations and foraging behaviour of rabbitfish may have 

also played a role. Fox and Bellwood (2013) revealed that rabbitfish feed to a greater degree 

than other herbivores from reef crevices and interstices, which are not common microhabitats 

in P. adelus territories (Eurich et al. 2018a). In addition, rabbitfish feed in pairs, with one fish 

frequently assuming an upright vigilance position in the water column while the partner 

forages in the reef substratum (Brandl and Bellwood 2015). Thus, no changes in abundance 

or foraging rates were detected, as the most common observation was non-feeding pairs 

swimming through P. adelus territories. A more detailed study targeting the movement of 

rabbitfish pairs is required to further assess the influence of territorial damselfishes on the 

removal of macroalgae by siganids (Fox and Bellwood 2008). 

Unexpectedly, the removal of P. adelus resulted in a significant decrease in 

surgeonfish feeding despite overlap in resource use and competitive interactions (Robertson 

et al. 1979). We argue a higher foraging activity prior to the removal of P. adelus indicates 

that P. adelus may modify the benthic composition in a way that benefits surgeonfish. 

Ceccarelli et al. (2001) reviewed the benthic influence of territorial damselfish and found that 

the guild influences the algal matrix by removing unwanted sediment from the epilithic algal 

matrix. This is corroborated by other intermediate territorial damselfish work (Hata and Kato 

2004, Ceccarelli 2007, Hata and Ceccarelli 2016). Our results suggest that P. adelus did not 
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have a strong influence on the algae and coral cover in Kimbe Bay, but did influence 

sediment dynamics on the reef flat and reef crest. The removal plots had a significantly higher 

proportion of sediment compared to controls and the pre-removal surveys. Increased benthic 

sediment loads within the algal turf matrix can suppress herbivory and detritivory (Bellwood 

and Fulton 2008, Goatley and Bellwood 2012, Tebbett et al. 2017b). In the present study, the 

increase in sediment following the decrease of P. adelus likely decreased the foraging 

patterns of surgeonfish, which selectively target detritus and avoid sediment (Purcell and 

Bellwood 1993, Goatley and Bellwood 2010, Tebbett et al. 2017a). Tebbett et al. (2017b) 

used feeding trials with Ctenochaetus striatus, a focal species in the present study, to show 

that detritivorous surgeonfish can also distinguish sediment grain sizes within algal turfs and 

selectively feed to avoid fine sediments. Recent research confirms that total sediment loads 

can mediate feeding selectivity of some surgeonfish but that species-specific differences are 

present (Tebbett et al. 2017c). Together, this suggests that P. adelus contributes to the overall 

sediment dynamics and benthic herbivory and detritivory patterns in Kimbe Bay. 

Conclusions 

In conclusion, our research indicates that the paradigm that all territorial damselfish 

negatively impact roving herbivores through territorial behaviour is not always the case. In 

Kimbe Bay, P. adelus did not have a major impact on parrotfish and rabbitfish abundance and 

foraging activity and did not influence the algae and coral assemblages. Instead, P. adelus, an 

intermediate territorial damselfish, positively influenced surgeonfish foraging and reef 

sediment dynamics. This finding adds to the growing view that the interactions between these 

families of fishes is complex. Previous studies suggesting that all territorial damselfish reduce 

foraging rates of roving herbivores may not be applicable in all systems, or for all species. 

We suggest that this particular damselfish does not influence the feeding rates of surgeonfish 

through direct aggressive interactions, but instead contributes indirectly by removing 

sediment from algal turfs. Understanding how guilds of fishes interact with one another and 

their environments is important in the face of increasing anthropogenic and climate change 

associated impacts. As sediment inputs onto coral reefs continue to increase globally through 

terrestrial runoff, dredging, and other coastal land use practices, understanding the 

interactions and ecological processes among fishes on coral reefs is critical. 
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Chapter 6 
 

General Discussion 
 
 

 A central aim of community ecology is to understand how communities are spatially 

and temporally organized by identifying, interpreting, and explaining general patterns that 

underlie the structure of animal assemblages. Patterns and differences in species 

distributions have been explained in a variety of ways: one species may exclude a subordinate 

through interference competition or, alternatively, the partitioning of resources may reduce 

direct interactions and facilitate coexistence. Certainly, the abundance and quality of a 

resource is a primary driver for shaping ecological communities. Species interactions further 

govern population distributions across space and gradients in the natural environment. Field 

ecologists have measured the potential effects of resource partitioning and competition on the 

coexistence of ecologically similar species by manipulations of competing species and/or 

essential resources. Decades of research have demonstrated that the nature and availability of 

finite resources (e.g., habitat and food) influences the abundance and diversity of animals. 

However, the ongoing debate on the mechanisms of coexistence of coral reef fishes has been 

largely pursued in the absence of detailed information on the extent of fine-scale partitioning 

or knowledge of species-level interactions (Gravel et al. 2011, Connolly et al. 2014). 

Increasing habitat degradation will directly and indirectly intensify competitive interactions 

over limited resources, with the loss of specialised species through local extinction posing a 

severe threat to coral reefs, one of the world’s most biodiverse ecosystems. Thus, the species-

specific differences are particularly important when considering the functional role and 

coexistence of a taxa that is abundant and important to the overall community. 

This thesis investigated the mechanisms that drive species distributions and ecological 

partitioning along gradients in the natural environment as a precursor to the long-term 

ecological changes on coral reefs. Chapter 2 first established the fine-scale partitioning of 

territorial damselfishes at Kimbe Bay, Papua New Guinea, which provided the context for the 

following chapters to explore the mechanisms of coexistence. Chapter 3 supplemented the 

habitat partitioning research by assessing the diet of the 7 species. These chapters together 

provided evidence that microhabitat selectivity and dietary diversification facilitate the co-

habitation of species within a reef zone. The Chapter 2 ‘bottle experiment’ further confirmed 
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that interspecific aggression maintains the distributional boundaries between neighbours and 

limits population overlap. In order to substantiate how competitive interactions and resource 

partitioning influence species coexistence in a complex ecosystem a large-scale field 

experiment was conducted. Chapter 4 demonstrated that when exploring coexistence in reef 

fish communities, the more traditional niche mechanisms (i.e., Chapter 2 and Chapter 3) 

operate alongside direct and indirect competitive dynamics, and within highly diverse 

systems these ecological processes are magnified. Moreover, the thesis highlights the 

importance of challenging common generalisations and paradigms. By examining the 

functional role of territorial damselfishes in Chapter 3, this research provides evidence of 

novel dietary diversification and planktivory in a guild that was previously categorised as 

strictly reef-based feeders. Lastly, Chapter 5 challenged the generalisation that all territorial 

damselfish negatively impact the foraging behaviour of roving herbivores. Results indicate 

that territorial damselfish may instead contribute to surgeonfish foraging indirectly through 

the removal of sediment. These chapters provide compelling evidence of the importance of 

addressing ecological theory with a multifactorial perspective of the processes and 

mechanisms that govern coexistence within a community and the functional role of key 

species. 

6.1 Coexistence of territorial damselfishes 

Resource partitioning is refined by interactions among neighbouring species which 

regularly come into contact with one another (MacArthur 1958). Further, ecologically similar 

animals facilitate coexistence by acting as generalists or specialists when resource availability 

is limited (MacNally 1995). On coral reefs where habitat is limited, neighbouring fishes with 

overlapping distributions may coexist if they have contrasting patterns of habitat selectivity 

and versatility. These concepts have been well studied by coral reef fish ecologists and 

sparked the first real debate of reef fish coexistence (Smith and Tyler 1972, 1973, Sale 1976, 

1977, Talbot et al. 1978). This thesis was not motivated to challenge early theory, resurrect 

old ideas stemming from methodological limitations or revisit debates that were never 

resolved. Driven by an astonishing subdivision of ecologically similar species, this thesis set 

out to theoretically explain a striking pattern, previously undescribed at the present scale. By 

applying theoretical ecology from terrestrial science and the early reef fish coexistence 

literature, this thesis highlights two thoroughly documented founding principles: 1) 

Ecosystems are dynamically interacting systems of organisms, the communities they make 

up, and the abiotic components of their ecosystems; and 2) Few complex ecological patterns 
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can be described exclusively by one mechanistic process. Results from this thesis provide 

evidence that components of each founding theory are valid and suggest that coexistence of 

the 7 intermediate territorial damselfish is a multi-factorial process of traditional niche 

partitioning coupled with competitive dynamics (Hixon 2011, Pereira et al. 2015).  

Habitat partitioning 

Ecosystems with exceptionally high biodiversity require fine partitioning and 

competitive interactions among sympatric species. These multi-species competitive networks 

are rare. This thesis was conducted in Kimbe Bay on the northern coast of West New Britain 

in PNG following preliminary surveys (J. G. Eurich) and a decade of exploratory research (G. 

P. Jones, M. I. McCormick, P. L. Munday, M. Srinivasan, and M. C. Bonin). Kimbe Bay lies 

within the Coral Triangle of the Indo-Pacific, the region recognized for the highest coral reef 

biodiversity (Roberts et al. 2002). Over 800 species of reef fishes and some 300 species of 

corals are recorded in this region (Spalding et al. 2001, Maniwavie et al. 2000). The specific 

study sites used in this thesis have a particularly high density and diversity of intermediate, 

shallow-water territorial damselfish and provided the foundation of the studies (Ceccarelli 

2007). Damselfish within each reef zone revealed partitioning of space with distinct 

distributions over a distance of 1 − 2 m. Chapter 2 represents the finest scale of habitat 

partitioning yet documented for this guild. This level of partitioning may reflect the high 

species diversity of territorial damselfish within the Coral Triangle. Where species richness is 

high, ecologically similar species partition resources to a greater extent and are more 

specialized (Schoener 1974, Ross 1986, Bellwood et al. 2006, Holbrook et al. 2015 ). I 

hypothesise that in other regions with a lower abundance of territorial damselfishes, space 

occupancy, and diversity (e.g. Great Barrier Reef), the fine-scale spatial partitioning observed 

in this study will not be as prevalent or ecologically necessary (Ceccarelli 2007). Therefore, if 

any readers are presented with the opportunity to visit Kimbe Bay, please do. The spatial 

partitioning of the territorial damselfish populations are so fine an observer can see the 

division among species while swimming along the natural reef profile. The fascinating zonal 

distributions and distinct population boundaries encourage further exploration. 

Microhabitat use and selectivity 

Ecological partitioning along natural resource gradients has been found in plants 

(Grace and Wetzel 1981), reptiles (Schoener 1974), birds (Burger et al. 1977), rodents (Ziv et 

al. 1993), and many other taxa. On coral reefs, live and dead corals provide the majority of 
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structural complexity, and reef fishes are strongly associated with the structure for shelter 

(Ehrlich 1975, Fishelson 1980, Sale 1980, Jones et al. 2004, Munday 2004, Pratchett et al. 

2008, McCormick and Weaver 2012). Species that overlap in resource use partition the 

available habitat and associated foods in ways that will minimize interspecific competition 

and increase their fitness. Habitat partitioning has been widely described for a variety of reef 

fishes across multiple tropical regions (Doherty 1983, Robertson and Gaines 1986, 

Wainwright 1988, Shpigel and Fishelson 1989, reviewed by Williams 1991). Therefore, I 

hypothesised in Kimbe Bay where habitat is limited, neighbouring fishes with overlapping 

distributions may coexist if they have contrasting patterns of habitat selectivity and 

versatility. I first investigated the habitat use and availability across the environmental 

gradient, as previous work had clearly shown that fishes partition space along depth gradients 

(McGehee 1994, Nanami et al. 2005, Jankowski et al. 2015, MacDonald et al. 2016). In 

Chapter 2, I demonstrated that species within the same reef zone exhibited differences in 

microhabitat selectivity. While there was some overlap in microhabitat use among the 7 

species, with all commonly associated with rubble substrata, there were distinct differences in 

the substrata used. Moreover, Chapter 2 established the pairing of a species with generalist 

microhabitat use to a species with specialist microhabitat use within each zone, despite all 

habitats being relatively abundant across reef zones. The difference in ecological versatility 

among neighbouring species therefore facilitates coexistence through the partitioning of 

microhabitats. 

Trophic diversification among species 

After addressing habitat partitioning I examined the second most important resource 

on coral reefs: food. When assessing trophic niche partitioning in Chapter 3 subtle differences 

among the diet of neighbouring species was established, which reinforced Chapter 2’s 

original hypotheses of coexistence. The isotopic distributions were linked to distribution 

patterns along the reef profile gradient. Where the distribution of species overlapped, these 

species were characterised by differences in source contributions. Adjacent species exhibited 

high to intermediate trophic niche partitioning when examining pelagic versus reef-based 

(benthic) dietary sources. The dietary diversification observed was likely refined by 

differences in ecological versatility between adjacent species. While opportunistic feeding 

has been previously documented, neighbouring territorial damselfish individuals exploited 

different feeding strategies over long-term diet trends during mutually inclusive time periods. 

Bearhop et al. (2004) discriminated between different types of generalists within a 
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population, with species either all taking a wide range of food types (type A) or specializing 

in a different but narrow range of food types (type B). The large variation of δ13C values with 

little difference in trophic position in the present study could be related to perpetual intra-

population variability in prey choice (i.e., type B), thus promoting coexistence (Frédérich et 

al. 2016). 

Competitive dynamics 

Together, this suggests that neighbouring damselfish are constraining their 

microhabitat use and diet to facilitate the co-habitation of reef zones. However, microhabitat 

selectivity and dietary diversification alone was insufficient in explaining the distinct 

zonation and limited distributional overlap. I argue diet and habitat partitioning play a 

supplementary role to competitive interactions in reinforcing the patterns of spatial 

partitioning and coexistence among ecologically similar species. Chapter 2 examined the 

aggression between neighbouring species using a ‘bottle’ experiment. The levels of 

aggression elicited by neighbouring species were significantly higher for all 7 species 

compared with non-adjacent species, suggesting that interference competition contributes to a 

sharp transition from one species to another along the reef profile. Species that did not 

commonly come into contact with one another received little or no aggression despite 

occupying relatively similar niche breadths. These findings support the logic of animal 

conflict and competition theory (Maynard Smith and Price 1973, Connell 1983, Schoener 

1983, Maynard Smith and Harper 1988). Aggression is expensive because it imposes energy 

and time costs and increases the risk of injury (Clutton-Brock and Parker 1995, Tibbetts and 

Dale 2004). Individuals do not need to be aggressive to all species, just the ones that pose a 

direct threat. Within a reef zone, damselfish showed higher aggression towards a 

neighbouring species due to the increased competition for space and habitat. Thus, 

interspecific aggression helps maintain the distributional boundaries between neighbouring 

populations. 

Early coral reef studies stressed intense interspecific competition for living space as 

the main driver behind niche partitioning (Smith and Tyler 1972, 1973, Smith 1978, Jones 

1991). A large body of literature has since confirmed that interspecific aggression results in 

the spatial segregation of many fishes (Ebersole 1977, 1985, Robertson and Gaines 1986, 

Robertson 1996, Bay et al. 2001, Jones and McCormick 2002, Boström-Einarsson et al. 

2014). Chapter 2 provided additional evidence that agonistic interactions among species 

within the guild can explain the high degree of resource partitioning and limited distributional 
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overlap. However, an experimental removal of a dominant competitor was necessary to 

understand if interference competition is present and if subordinate distributional shifts would 

occur. In Chapter 4, I employed a large-scale removal experiment to examine the extent to 

which the most abundant species influenced the distribution and abundance of neighbouring 

and non-neighbouring species in the guild. The findings indicated that the distinct distribution 

patterns among the reef crest species were linked to levels of interspecific agonistic 

behaviour. The competitive release following the removal of a superior competitor resulted in 

comprehensive direct and indirect effects, with the subordinate neighbour shifting into the 

newly available space, followed by successive shifts in species responding to the change in 

the distributions of their immediate neighbours. Similar to the classical Connell (1961) 

intertidal experiments on Balanus and Chthamalus, this field experiment demonstrated 

territorial damselfishes have a fundamental niche that extends to the reef crest, but naturally 

occupy a smaller realised niche when in competition with more dominant species (Whittaker 

et al. 1973). In Chapter 4, I demonstrated that competitive networks within a community can 

operate directly, by interference competition, and indirectly through a competitive release 

among ecologically similar species. In addition, Chapter 4 expands on competitive interaction 

networks by providing insight into the mechanisms of indirect effects in a multi-species 

comparison, which have previously received little attention (Bonin et al. 2015). 

This thesis supports the conclusion that interference competition contributes to 

explaining the spatial structure and abundance in a multi-species guild of territorial 

damselfish. The distinct distribution patterns characterised by a high degree of fine-scale 

partitioning among the main reef-crest species were linked to levels of agonistic behaviour 

and niche partitioning (both habitat and food). I provided additional strong evidence that 

species with similar resource requirements coexist through direct and indirect competitive 

mechanisms. Lastly, the habitat use, diet, and agonistic behaviours of the 7 territorial 

damselfish species previously were poorly understood as the literature is biased towards 

larger-bodied species. 
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Table 6.1 Summary of Kimbe Bay, PNG territorial damselfish niche breadth from Chapter 
Two, Three, and Four. Species: Pomacentrus tripunctatus, Chrysiptera unimaculata, 
Pomacentrus bankanensis, Pomacentrus adelus, Plectroglyphidodon lacrymatus, 
Neoglyphidodon nigroris, Pomacentrus burroughi. 

 

  Species Reef zone Microhabitat use Diet Aggression 

  P. tripunctatus 
 
  C. unimaculata 
 
  P. bankanensis 
 
  P. adelus  
 

  Pl. lacrymatus  
 

  N. nigroris  
 
  P. burroughi 
 

Reef flat 
 
Reef flat 
 
Reef flat 
 
Reef crest 
 
Reef crest 
 
Reef slope 
 
Reef slope 
 

Generalist 
   Rubble and macroalgae 
Specialist 
   Rubble 
Specialist 
   Rubble 
Specialist 
   Rubble 
Specialist 
   Turf 
Generalist 
   Rubble and turf 
Generalist 
   Rubble and sediment 
 

Omnivore 
 
Herbivore 
 
Planktivore 
 
Omnivore 
 
Herbivore 
 
Planktivore 
 

Omnivore 
 
 

Low 
 
Low 
 
High 
 
Medium 
 
Medium 
 
High 
 
Low 
  

 

 

 

 

 

 

 

 

 

 

 

 



 
             
100 

6.2 Challenging paradigms 

Territorial damselfish have recently been categorised into three guilds based on the 

effect of the various species on benthic assemblage structure and through interspecific 

aggression: intensive farmers, extensive farmers, and an intermediate group (Hata and Kato 

2004, Ceccarelli 2007, Hata and Ceccarelli 2016). Where intensive farmers weed low 

diversity algal turfs intensively with aggressive defence, extensive farmers weed and defend 

larger territories to a lesser extent, and an intermediate group maintains discrete territories of 

algal turf that are different from the surrounding algae (Emslie et al. 2012, Pratchett et al. 

2016). The 7 species of territorial damselfish researched in this thesis are predominantly 

(though not necessarily exclusively) benthic-feeding ‘intermediate farmers’, with the 

exception of Pl. lacrymatus, which was classified as an ‘extensive farmer’ (reviewed by 

Pratchett et al. 2016). Intensive and extensive farming species (e.g., Stegastes spp.) that 

maintain conspicuous algal mats are known to defend their territories aggressively (Ceccarelli 

et al. 2001, Hoey and Bellwood 2010, Emslie et al. 2012). However, these species tend to 

occur in patches and are less abundant than intermediate farming species (Pratchett et al. 

2016). Despite intermediate farmers influencing the environment to a lesser degree, the 

territories support greater quantities of palatable filamentous algae (Ceccarelli 2007) and 

reduce coral larvae settlement (Casey et al. 2014). This thesis set out to address these broad 

functional classifications of territorial damselfishes and shed light on the understudied 

intermediate group, specifically investigating interspecific differences among similar species. 

In addition, previous literature presented conflicting evidence that all territorial damselfish, 

especially intermediate farming species – the most abundant guild (Pratchett et al. 2016), 

hinder the foraging patterns of roving herbivores through agonistic interactions. 

Territorial damselfish feeding strategies 

Damselfishes, including known planktivores, corallivores, and territorial herbivorous 

species, were previously assigned to three trophic groups based on feeding strategies - pelagic 

feeders zooplanktivores, reef-based feeders corallivores algivores or herbivores, and an 

intermediate group of omnivores (Frédérich et al. 2009, 2016, Gajdzik et al. 2016). While 

comparative studies have not focused solely on territorial damselfish, a similar trophic 

diversity was observed within the guild of territorial damselfish in Chapter 3. The trophic 

diversity within this group was much higher than expected based on previous literature. 

Territorial damselfish are commonly classified as herbivorous or omnivorous (Ceccarelli et 

al. 2001, Frédérich et al. 2016). However, Chapter 3 found evidence of planktivory within the 
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guild. While this is not unique for pomacentrids, as damselfish (e.g., Chrominae) have served 

as a model for this trophic strategy (Frédérich et al. 2013), territorial damselfish have not 

previously been described as pelagic feeders. Through the integrated perspective of trophic 

role provided by stable isotopes, Chapter 3 documents Pomacentrus bankanensis and 

Neoglyphidodon nigroris as pelagic feeders (supporting prior J. G. Eurich pers. obs. from 

Chapter 2 video data) under the suggested criterion of a species to consume ≥ 70% 

zooplanktonic prey or filamentous algae to not be considered an intermediate omnivore 

(Frédérich et al. 2016). Chapter 3 represents the first isotopic values for these species and 

highlights the need for species-specific evidence when assigning a species to broad taxa-

related functional classifications. 

The effect on roving herbivores 

Several experimental studies have shown that the aggressive exclusion of roving 

herbivores by extensive or intensive farming species affects the benthic assemblage structure 

(Hixon and Brostoff 1983, Russ 1987, Hixon 1996, Ceccarelli et al. 2005a). The common 

paradigm is that all territorial damselfishes reduce foraging rates of roving herbivores through 

aggressive interactions and territorial defence. However, Chapter 5 challenged this 

generalisation by investigating the effect of intermediate farming species on roving 

herbivores in Kimbe Bay. Some studies have shown that roving herbivores will actively avoid 

the territories of territorial damselfish to feed on desirable algae without harassment 

(Robertson et al. 1976, Hamilton and Dill 2003). Additionally, surgeonfish and parrotfish 

periodically may use schooling behaviours to overwhelm territorial damselfish and gain 

access (Robertson et al. 1976, Foster 1985a). However, Ceccarelli et al. (2005b) found that 

extensive and intermediate territorial damselfish were fairly inefficient at excluding roving 

herbivores from their territories and roving herbivores had a significant impact on benthic 

habitat, both with and without the presence of territorial damselfish. Chapter 5 supports these 

findings as the experimental removal of the intermediate farming damselfish Pomacentrus 

adelus did not influence the overall relative abundance of roving herbivores or the foraging 

activity of parrotfish and rabbitfish. Contradicting the common generalisation, the removal of 

P. adelus resulted in a significant decrease in surgeonfish feeding despite overlap in resource 

use and competitive interactions (Robertson et al. 1979). I argued a higher foraging activity 

prior to the removal of P. adelus indicates that P. adelus modifies the benthic composition in 

a way that benefits surgeonfish. Hence, the emerging paradigm of a strong interaction 

between roving herbivores and all types of territorial damselfish was not supported by the 
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findings of Chapter 5. I suggest that this particular damselfish and other intermediate 

territorial damselfish species may not influence the feeding rates of surgeonfish through 

direct aggressive interactions, but instead indirectly contribute by removing sediment from 

algal turfs. These findings add to the growing view that the interactions between these 

families of fishes are complex and that common generalisations do not always hold true. 

6.3 Ecological implications 

Understanding how guilds of fishes interact with one another and their environments 

is important in the face of increasing anthropogenic and climate change associated impacts. 

As sediment inputs onto coral reefs continue to increase globally through terrestrial runoff, 

dredging, and other coastal land use practices, understanding the interactions and ecological 

processes among fishes on coral reefs is critical. The results from Chapter 5 revealed P. 

adelus contributes to the overall sediment dynamics through territorial maintenance, which 

influences the benthic herbivory and detritivory patterns of surgeonfish in Kimbe Bay. Recent 

research confirms that total sediment loads can mediate feeding selectivity of some 

surgeonfish but that species-specific differences are present (Tebbett et al. 2017c). I have 

shown that in Kimbe Bay, P. adelus modifies the benthic composition in a way that benefits 

surgeonfish foraging and without the presence of P. adelus surgeonfish are less apt to forage, 

which directly impacts reef sediment dynamics. In Kimbe Bay, P. adelus is abundant over 

multiple reef zones in high densities where no intensive and extensive farming species are 

present (Ceccarelli 2007). Despite the lower quality and quantity of aggressive interactions P. 

adelus represents a larger impact due to a higher volume of attacks due to the population size 

and distribution. The research conducted for this thesis distinguishes between the three 

farming-based classifications of territorial damselfish and in doing so highlights important 

species-specific differences. These differences are becoming increasingly important as roving 

herbivorous fishes play a critical role on coral reefs in reducing algal biomass and preventing 

alternative algal dominated stable states (Mumby et al. 2006, Hughes et al. 2007, Francini-

Filho et al. 2010). By understanding the foraging patterns of roving herbivores and territorial 

damselfishes agonistic interactions, Chapter 5 helps define the mechanistic drivers that 

underlie reef habitat structure and resilience. 

Revealing indirect relationships among ecologically similar species within a complex 

community remains a formidable challenge, yet it is necessary to gain generality and 

predictive power (Bonin et al. 2015). Changes to important trophic links between two species 

can indirectly alter the distribution and abundance of species between trophic levels. 
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However, they can also have indirect effects on interactions among species within the same 

trophic levels (Pace et al. 1999, Shurin et al. 2002). Similar knock-on effects of subordinate 

competitors within trophic levels may be present after the collapse of a primary competitor 

and have received much less attention (Navarrete et al. 2000, Gosnell and Gaines 2012). This 

thesis demonstrates that competitive networks within a community operate directly and 

indirectly and that a competitive release can influence species that are not directly associated. 

Evidence presented in Chapter 4 suggests that the loss of a species through a removal 

influences subordinate species and overall spatial assemblage. Cerny-Chipman et al. (2017) 

addressed this gap among seastars and whelks and found diverging patterns in abundance of 

the subordinate competitor following the collapse of the keystone species. While no niche 

expansion was observed, the study highlights the importance of knock-on community effects 

within adjacent trophic levels. The progressive shifts of subordinate species along a 

communal resource axis following the removal of a dominant competitor experimentally 

confirm the observational findings of Cerny-Chipman et al. (2017). In addition, it is known 

that reduced habitat quality through disturbances, such as ocean acidification and coral 

bleaching, can alter and even reverse pairwise competitive interactions between species 

(McCormick 2012, McCormick et al. 2013, Boström-Einarsson et al. 2014). With growing 

pressures, including climate change, globalization, and migration, on the world ecosystems, 

we hope these effects do not extend to the progressive loss of species that cannot compete for 

the dwindling resources. 

6.4 Concluding remarks 

The outcomes of this thesis demonstrate that it is time to move beyond past debates that 

have consumed coral reef fish ecologists and embrace the pluralistic notion that competition 

is one of many factors that shape coral reef community structure. First and foremost, several 

chapters have examined the importance of partitioning habitat and diet as a means to reduce 

conflict among sympatric species. Driven by an astonishing subdivision of ecologically 

similar species, this thesis explained a striking pattern, previously undescribed at the present 

scale. While microhabitat partitioning and trophic diversification clarify the high degree of 

resource partitioning and limited distributional overlap, the mechanisms of coexistence were 

a result of direct and indirect competitive dynamics. The findings of this thesis support Bonin 

et al. (2015) in that intraspecific and interspecific competitors can alter the patterns of 

distribution, abundance, and resource use of ecologically similar species. Despite 4 decades 

of research, this issue was not entirely resolved (see reviews by Hixon 1991, Jones 1991, 
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Hixon and Webster 2002, Jones and McCormick 2002, Forrester 2015, Hixon 2015). 

Combined, the results from this thesis help close this debate by demonstrating that when 

exploring coexistence in reef fish communities, the more traditional niche mechanisms 

(Chapters 2 and 3) operate alongside competitive dynamics (Chapters 4), and within highly 

diverse systems these ecological processes are magnified. Through a novel multi-species 

large-scale experiment, this thesis highlights the importance of analysing ecological 

interactions at the community level to address indirect effects that may otherwise be missed if 

examining pairwise interactions. In addition, microhabitat use and selectivity (Chapter 2), 

dietary diversification (Chapter 3), and agonistic interactions with functionally important reef 

fish families (Chapter 5) of an understudied guild of fishes were investigated. The thesis 

highlights the importance of challenging common generalisations and paradigms in a 

changing environment. Clearly, territorial damselfish are not all ecologically equivalent and 

the classifications of extensive, intensive, and intermediate farmers (Hata and Kato 2004, 

Ceccarelli 2007, Hata and Ceccarelli 2016) should permanently be used when theorising the 

impact of territorial damselfish on coral reefs in the future. By examining the functional role 

of territorial damselfishes this thesis provides evidence of novel dietary diversification 

(Chapter 3) and demonstrates the complexity of territorial damselfish and roving herbivore 

interactions (Chapter 5). It is likely that variation in the health of coral reefs will alter these 

critically important interactions further; however, more research is needed to determine these 

effects. Only by examining multiple stressors on coral reef fishes over ecologically relevant 

scales will it be possible to gauge how marine populations will respond to a rapidly changing 

environment.  
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Supplementary information Chapter 2 
 
 
 

The following supplement accompanies the article 
 
Eurich JG, McCormick MI, Jones GP (2018a) Habitat selection and aggression as 

determinants of fine-scale partitioning of coral reef zones in a guild of territorial 
damselfishes. Marine Ecology Progress Series. 587: 201–215. 
http://dx.doi.org/10.3354/meps12458 

 
 
Text S2.1 Microhabitat availability 
The reef flat (RF), reef crest (RC), and reef slope (RS) did not differ significantly in benthic 
cover in most categories but did show some subtle differences in percent cover (Appendix: 
Fig. S2.1). Non-biological (3.5 - 7.6%), sediment (3.7 - 4.5%), and other (22.4 - 23.6%) did 
not differ significantly between zones. Live coral had higher cover on the reef slope than the 
crest or flat (p < 0.0001). Additionally, Turbinaria sp. (13.0%) and Padina sp. (1.6%) were 
significant substrates on the reef flat and non-abundant in other zones (p < 0.0001 and p = 
0.009, respectively). Conversely, although turf was a major substratum on all zones, the reef 
crest had a considerable amount (22.8%), with significantly less on the reef slope (13.5%, p = 
0.009) and the reef flat (19.1%, p = 0.004). Rubble was prevalent on all zones but was a 
major substrate on the reef slope (RF 7.2%, RC 9.5%, RS 16.5%). However, the comparison 
was non-significant due to high levels of variance within pooled transect data (p = 0.488 and 
p = 0.150). The reef flat and reef crest visually had less rubble but was skewed due to sparse 
concentrated rubble gutters that ran perpendicular from the flats to the crest through the 
survey sites (J.G. Eurich pers. observation). 
 

Figure S2.1 Benthic composition by reef zone. The percent cover 
represents an average across all sites (n = 3) and transects (n = 12). 
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Table S2.1 Generalised linear mixed model coefficients testing for differences in benthic 
cover between reef zone (reef crest: RC; reef flat: RF; reef slope: RS) and site (Garbuna, 
Hanging Gardens, and Luba Luba). The parameter estimates and coefficients for the model 
best fit by maximum likelihood (Appendix: Table S2.2) are indicated. 
 
 Habitat Source of variation Fixed effects Est. SE z-value P-value (z) 
 Live coral ZoneRC : SiteGarb intercept -2.200 0.058 -37.527 < 0.0001 
  ZoneRF -0.051 0.083 -0.619 0.535 
  ZoneRS  0.356 0.085  4.176 < 0.0001 
  SiteLuba 

SiteHGar 
-0.344 
-0.466 

0.092 
0.188 

-3.735 
-2.486 

0.001 
0.013 

  ZoneRF : SiteLuba  0.285 0.127  2.236 0.025 
  ZoneRS : SiteLuba 

ZoneRF : SiteHGar 
-0.144 
 0.345 

0.137 
0.196 

-1.051 
 1.765 

0.293 
0.077 

  ZoneRS : SiteHGar -0.024 0.176 -0.137 0.891 
 Non-biological ZoneRC : SiteGarb intercept -2.787 0.234 -12.45 < 0.0001 
    substrate  ZoneRF  0.107 0.261  0.412 0.681 
  ZoneRS  0.238 0.298  0.801 0.423 
  SiteLuba 

SiteHGar 
 0.236 
 0.211 

0.283 
0.305 

 0.832 
 0.694 

0.405 
0.488 

  ZoneRF : SiteLuba -0.334 0.342 -0.974 0.330 
  ZoneRS : SiteLuba 

ZoneRF : SiteHGar 
ZoneRS : SiteHGar 

-0.116 
-0.015 
 0.128 

0.360 
0.402 
0.428 

-0.323 
-0.036 
 0.299 

0.747 
0.971 
0.765 

 Sediment ZoneRC intercept -2.392 0.128 -18.745 < 0.0001 
  ZoneRF  0.144 0.172  0.837 0.402 
  ZoneRS  0.052 0.182  0.286 0.775 
 Rubble ZoneRC : SiteGarb intercept -2.188 0.161 -13.620 < 0.0001 
  ZoneRF  0.076 0.199  0.380 0.704 
  ZoneRS  0.336 0.171  1.970 0.488 
  SiteLuba 

SiteHGar 
 0.029 
 0.046 

0.208 
0.139 

 0.139 
 0.331 

0.890 
0.741 

  ZoneRF : SiteLuba  0.051 0.249  0.205 0.838 
  ZoneRS : SiteLuba 

ZoneRF : SiteHGar 
ZoneRS : SiteHGar 

-0.116 
-0.083 
 0.169 

0.218 
0.163 
0.165 

-0.530 
-0.513 
 1.025 

0.596 
0.608 
0.305 

 Turf ZoneRC intercept -1.356 0.119 -11.380 < 0.0001 
  ZoneRF  0.048 0.151  0.320 0.749 
  ZoneRS -0.477 0.183 -1.609 0.009 
 Turbinaria ZoneRC intercept -2.291 0.314 -7.303 < 0.0001 
  ZoneRF  0.484 0.242  2.001 0.045 
  ZoneRS -0.887 0.557 -1.591 0.112 
 Padina SiteGarb intercept -2.344 0.280 -8.380 < 0.0001 
  SiteLuba 

SiteHGar 
-0.349 
-0.116 

0.367 
0.360 

-0.953 
-0.323 

0.341 
0.747 

 Other ZoneRC intercept -2.818 0.141 -19.925 < 0.0001 
  ZoneRF  0.342 0.210  1.629 0.103 
  ZoneRS  0.221 0.189  1.170 0.242 
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Table S2.2 Generalised linear mixed model selection results and criteria for examining the 
relationships between reef zone and site for different types of benthic cover (as used in 
habitat availability). Coefficients and p-values used (Appendix: Table S2.1) were derived 
from selected model (*). The minimally adequate model was chosen according to the lowest 
Akaike information criterion (AIC). Replicates within reef sites (n = 3; Garbuna, Hanging 
Gardens, and Luba Luba) and replicate transects (n = 4) were included as random effects 
(RE) in all models + RE: + (1 | SubSite) + (1 | Transect). Proportion of count per transect (n = 
20) was used for the weights within the formula (family: binomial ‘logit’). BIC: Bayesian 
information criterion; logLik: log-likelihood; deviance: null deviance; df.resid: residual 
deviance. 
 
 Source Candidate models AIC BIC logLik deviance df.resid Model 
 Live coral ReefZone*Site + RE 2502.4 2540.1 -1243.2 2486.4 815 * 
 ReefZone + Site + RE 2509.4 2537.6 -1248.7 2497.4 817  
 Non-biological ReefZone*Site + RE 522.3 549.2 -253.2 506.3 203 * 
   substrate ReefZone + Site + RE 519.5 539.6 -253.7 507.5 205  
 Sediment ReefZone*Site + RE 354.8 377.1 -169.4 338.8 113  
 ReefZone + Site + RE 354.4 371.2 -171.2 342.4 115  
 ReefZone + RE 352.5 366.4 -171.2 342.5 116 * 
 Rubble ReefZone*Site + RE 796.8 824.5 -390.4 780.8 230 * 
 ReefZone + Site + RE 793.4 814.2 -390.7 781.4 232  
 Turf ReefZone*Site + RE 1023.8 1052.2 -503.9 1007.8 251  
 ReefZone + Site + RE 1023.9 1045.3 -506.0 1011.9 253  
 ReefZone + RE 1022.3 1040.1 -506.1 1012.3 254 * 
 Turbinaria ReefZone*Site + RE 492.2 515.4 -238.1 476.2 125  
 ReefZone + Site + RE 489.7 507.1 -238.9 477.7 127  
 ReefZone + RE 487.3 502.4 -239.0 477.9 128 * 
 Padina 1Site + RE 65.4 70.0 -28.7 57.4 19 * 
 Other ReefZone*Site + RE 310.0 332.7 -147.0 294.0 117  
 ReefZone + Site + RE 309.3 326.3 -148.6 297.3 119  
 ReefZone + RE 307.5 321.6 -148.7 297.5 120 * 
1 Padina only occurs on the reef flat so analysis of zone was not performed due to a one level factor. 
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Table S2.3 Generalised linear model coefficients from experimental aggression trials. 
Species Source of 

variation 
Fixed effects Est. SE z-value P-value 

(z) 
Pomacentrus Conspecific intercept 1.791 0.380 4.713 < 0.0001 
  tripunctatus  Heterospecific -1.204 0.419 -2.877 0.004 
 Neighbour intercept 1.609 0.244 6.606 < 0.0001 
  Non-neighbour -1.358 0.311 -4370 < 0.0001 
Chrysiptera Conspecific intercept 2.208 0.400 5.519 < 0.0001 
  unimaculata  Heterospecific -1.759 0.442 -3.978 < 0.0001 
 Neighbour intercept 1.720 0.260 6.616 < 0.0001 
  Non-neighbour -1.617 0.344 -4.695 < 0.0001 
Pomacentrus Conspecific intercept 4.006 0.339 11.824 < 0.0001 
  bankanensis  Heterospecific -1.386 0.367 -3.774 < 0.0001 
 Neighbour intercept 3.310 0.209 15.875 < 0.0001 
  Non-neighbour -0.712 0.281 -2.534 0.011 
Pomacentrus Conspecific intercept 2.388 0.293 8.166 < 0.0001 
  adelus  Heterospecific -0.841 0.319 -2.636 0.008 
 Neighbour intercept 2.153 0.169 12.770 < 0.0001 
  Non-neighbour -0.880 0.227 -3.885 < 0.0001 
Plectroglyphidodon Conspecific intercept 3.077 0.404 7.614 < 0.0001 
  lacrymatus  Heterospecific -0.937 0.438 -2.140 0.032 
 Neighbour intercept 2.694 0.245 11.017 < 0.0001 
  Non-neighbour -0.685 0.318 -2.154 0.031 
Neoglyphidodon Conspecific intercept 3.512 0.408 8.600 < 0.0001 
  nigroris  Heterospecific -1.777 0.444 -4.004 < 0.0001 
 Neighbour intercept 3.060 0.285 10.741 < 0.0001 
  Non-neighbour -1.527 0.346 -4.419 < 0.0001 
Pomacentrus Conspecific intercept 2.460 0.181 13.595 < 0.0001 
  burroughi  Heterospecific -1.291 0.205 -6.305 < 0.0001 
 Neighbour intercept 2.116 0.145 14.560 < 0.0001 
  Non-neighbour -1.059 0.185 -5.731 < 0.0001 
 
Table S2.4 Resident species mean aggressive interactions (sum of category 2 display, 3 
charge, and 4 bite; category 1 investigations omitted) towards neighbouring and conspecific 
stimulus species per 4 min trial (± SE, n = 10). No aggressive interactions were made towards 
the control stimulus. Rare category 1 interactions (investigations, displayed below; ± SE, n = 
10) were observed immediately following bag placement. 

      Stimulus species 
   Neighbour Non-

neighbour 
Conspecific Heterospecific Control 

Resident 
species 

P. tripunctatus 5.0 ± 1.5 1.3 ± 0.3 6.0 ± 1.5 1.8 ± 0.5 0.1 ± 0.1 
C. 
unimaculata 

5.6 ± 1.0 1.1 ± 0.4 9.1 ± 1.7 1.6 ± 0.4 0 

P. bankanensis 27.4 ± 4.9 13.4 ± 2.5 54.9 ± 9.0 13.7 ± 2.0 0 
P. adelus 8.6 ± 1.5 3.6 ± 0.5 10.9 ± 2.3 4.7 ± 0.7 0 
Pl. lacrymatus  14.8 ± 2.9 7.5 ± 1.9 21.7 ± 4.4 8.5 ± 1.7 0 
N. nigroris 21.3 ± 4.4 4.6 ± 1.1 33.5 ± 6.6 5.7 ± 1.2 0.1 ± 0.1 
P. burroughi 8.3 ± 1.2 2.9 ± 0.3 11.7 ± 1.8 3.2 ± 0.3 0 
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Supplementary information Chapter 3 
 
 
 

The following supplement accompanies the article 
 
Eurich JG, Matley JK, Baker R, McCormick MI, Jones GP (in press) Stable isotope analysis 

reveals trophic diversity and partitioning in territorial damselfishes on a low 
latitude coral reef. Marine Biology. 

 
Figure S3.1 Prey contribution of a) territorial damselfish and b) obligates consumers from the 
multi-source (all prey types) mixing model. Box and whisker plot displays the range between 
25% and 75% credibility quantiles, with error bars extending to the maximum and minimal 
values (97.5% and 2.5%, respectively), and the median represented by the bold line. 
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Figure S3.2 Territorial damselfish a) trophic position and b) δ13C signatures by species size 
(mm). Data points represent individuals, fit with a linear regression line. Species 
abbreviations and sample sizes are defined in Table 3.2. Vertical axes are not comparable. 
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Supplementary information Chapter 4 

 
 
 

The following supplement accompanies the article 
 
Eurich JG, McCormick MI, Jones GP (2018b) Direct and indirect effects of interspecific 

competition in a highly partitioned guild of reef fishes. Ecosphere. 9: e02389. 
https://doi.org/10.1002/ecs2.2389 

 
 
Table S4.1 Results of Tukey’s post-hoc pairwise comparisons on differences of abundance 
between the pre-removal survey period and the consecutive post-removal survey periods for 
the three reef flat species. 
 

Pre-removal  Post-removal Est. SE z-value P-value (z) 

Pomacentrus bankanensis     
Pre - Post 1 day 0.116 0.158 0.731   0.978 

Pre - Post 3 days 0.251 0.151 1.669   0.547 

Pre - Post 1 week 0.426 0.142 3.000   0.032 

Pre - Post 3 months 0.743 0.129 5.782 <0.0001 

Pre - Post 6 months 0.827 0.125 6.591 <0.0001 

Chrysiptera unimaculata     

Pre - Post 1 day 0.711 0.172 4.142 <0.0001 

Pre - Post 3 days 0.930 0.161 5.772 <0.0001 

Pre - Post 1 week 1.087 0.155 7.021 <0.0001 

Pre - Post 3 months 0.902 0.162 5.551 <0.0001 

Pre - Post 6 months 0.972 0.159 6.096 <0.0001 

Pomacentrus tripunctatus     

 Pre - Post 1 day 1.099 0.447 2.457  0.136 

Pre - Post 3 days 1.099 0.447 2.457  0.136 

Pre - Post 1 week 1.361 0.421 3.236  0.015 

Pre - Post 3 months 1.099 0.447 2.457  0.136 

Pre - Post 6 months 1.740 0.391 4.455 <0.0001 
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Table S4.2 Comparison of abundances of damselfishes for plots where Pomacentrus adelus 
were removed (removal) and those where P. adelus were not removed (control) across 
experimental census periods. Results represent the output of a generalised linear mixed 
effects models with Poisson distribution.  
 

Source C2	 df p     
Pomacentrus adelus 

   

Removal 1434.800 7 < 0.0001 
Control 4.114 7 0.391     

Pomacentrus adelus recruits 
   

Removal 62.048 7 < 0.0001 
Control 11.695 7 0.020     

Pomacentrus bankanensis 
   

Removal 60.483 7 < 0.0001 
Control 1.387 7 0.846     

Chrysiptera unimaculata 
   

Removal 74.422 7 < 0.0001 
Control 4.622 7 0.328     

Pomacentrus tripunctatus 
   

Removal 24.412 7 < 0.0001 
Control 4.370 7 0.358     

Plectroglyphidodon lacrymatus 
   

Removal 0.897 7 0.970 
Control 1.518 7 0.823     

Neoglyphidodon nigroris 
   

Removal 
Control 

0.557 
0.501 

7 
7 

0.989 
0.973 

Pomacentrus burroughi 
   

Removal 1.277 7 0.937 
Control 1.635 7 0.802 

 
Table S4.3 Changes in species distributions 6 months after the removal of P. adelus on the 
removal plots (left, n = 2) and control plots (right, n = 2). Values presented are the change in 
meters (m) in mean population distribution towards reef crest ± variance (SE). A positive 
value represents a shift from the reef flat to the reef crest and down the reef slope, with a 
negative value representing a shift up the reef slope to the reef crest and reef flat. Individual 
location was recorded to the nearest 0.25 m. Asterisk represent significantly different values 
(p ≤ 0.05) from the pre-removal abundance levels. 
 

   Removals Controls 

 

P. adelus 			–	0.22 ± 0.16    0.25 ± 0.18 
P. tripunctatus  0.37 ± 0.15 – 0.11 ± 0.15 
C. 
unimaculata 

 0.75 ± 0.13    0.07 ± 0.13 

P. bankanensis     1.32 ± 0.28 * – 0.01 ± 0.28 
Pl. lacrymatus 			–	0.04 ± 0.27    0.37 ± 0.29 
N. nigroris  0.38 ± 0.31    0.25 ± 0.42 
P. burroughi  0.27 ± 0.08    0.03 ± 0.14 
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Supplementary information Chapter 5 
 
 
 

The following supplement accompanies the article 
 
Eurich JG1, Shomaker SM1, McCormick MI, Jones GP (2018c) Herbivore foraging 

dynamics after the removal of an abundant territorial damselfish in Kimbe Bay, 
Papua New Guinea. Journal of Experimental Marine Biology and Ecology. 506: 
155–162. http://doi.org/10.1016/j.jembe.2018.06.009 

 
 
Table S5.1 Results of ANOVAs on differences between percent cover of different habitat 
categories by period (pre and post 3 months removal) and location (Garbuna and Luba Luba) 
for both treatment types. No significant interactions were observed between factors. 
 

 Habitat Treatment Source Χ2 df p  
  

Live coral 
 

 
Removal 
 

 
Period 
Location 

 
2.468 
30.886 

 
1 
1 

 
0.116 
< 0.001 

 

  
 
 
Dead coral 
 
 
 
 
Macroalgae 
 
 
 
 
Turf 
 
 
 
 
CCA 
 
 
 
 
Rubble 
 
 
 
 
Sand 
 
 
 
 

Control 
 
 
Removal 
 
Control 
 
 
Removal 
 
Control 
 
 
Removal 
 
Control 
 
 
Removal 
 
Control 
 
 
Removal 
 
Control 
 
 

Removal 
 
Control 
 
 

Period 
Location  
 
Period 
Location  
Period 
Location  
 
Period 
Location  
Period 
Location  
 
Period 
Location  
Period 
Location  
 
Period 
Location  
Period 
Location  
 
Period 
Location  
Period 
Location  
 
Period 
Location  
Period 
Location  
 

0.576 
33.261 
 

0.259 
0.499 
3.687 
3.687 
 

24.017 
0.195 
2.912 
19.213 
 
22.741 
0.093 
20.303 
5.394 
 
2.279 
3.225 
0.168 
0.280 
 
1.404 
18.380 
0.319 
0.013 
 
0.051 
9.564 
1.352 
0.014 
 

1 
1 
 

1 
1 
1 
1 
 

1 
1 
1 
1 
 
1 
1 
1 
1 
 
1 
1 
1 
1 
 
1 
1 
1 
1 
 
1 
1 
1 
1 
 

0.448 
< 0.001 
 
0.611 
0.480 
0.055 
0.055 
 
< 0.001 
0.659 
0.035 
< 0.001 
 
< 0.001 
0.760 
< 0.001 
0.005 
 
0.131 
0.073 
0.682 
0.584 
 
0.236 
< 0.001 
0.572 
0.910 
 
0.822 
0.002 
0.245 
0.907 
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Sediment 
 
 
 
 
Other 
 
 
 

Removal 
 
Control 
 
 

Removal 
 
Control 
 

Period 
Location  
Period 
Location  
 
Period 
Location  
Period 
Location 

5.609 
0.725 
1.535 
0.729 
 

0.000 
0.480 
1.791 
1.005 

1 
1 
1 
1 
 
1 
1 
1 
1 

0.018 
0.395 
0.215 
0.393 
 

0.999 
0.488 
0.181 
0.316 
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