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ABSTRACT  

 

Summer infertility in the pig continues to affect both productivity and profitability among pig 

producers in tropical and subtropical regions, with losses due to heat stress amounting to at 

least $300 million per year in the US swine industry alone. Given the wide scale production 

of pork globally, with at least five tropical countries among the top producers in the world, 

there is a need to revisit the problem of summer infertility in the pig and identify putative 

boar factors likely to contribute to poor reproductive performance during periods of heat 

stress. An important endpoint with this approach is to improve boar management practices 

and develop strategies to mitigate summer infertility in the pig. 

 

While the scrotum, pampiniform plexus, and cremaster and dartos muscles in mammals are 

specific adaptations to ensure sperm production in a regulated environment 4-6 °C below 

body temperature, the boar’s inefficient capacity to sweat, non-pendulous scrotum, and low 

antioxidant activity in the semen, can make the it particularly vulnerable to the effects of heat 

stress. In Chapter 2, we demonstrated for the first time the link between summer heat stress 

and sperm DNA damage in Large White boars. Boars raised in the dry tropics of Townsville, 

Queensland, Australia during summer (peak wet) showed 16-fold more sperm DNA damage 

than early dry (cool and dry), and nearly 9-fold more than the late dry (warm and humid) 

season, respectively. Sperm concentration also decreased significantly in the peak wet. Sperm 

DNA damage has been previously demonstrated to contribute to early embryonic death in the 

mouse, and this magnitude of fragmentation is known to cause a reduction in litter size in 

sows. These findings provide impetus for the evaluation of sperm DNA integrity in 

commercial boar herds housed in the tropics as a putative contributing factor to seasonal 

infertility in the sow. 
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While cryopreservation of boar spermatozoa is not widely practiced in commercial pig 

production, mostly due to reduced viability and fertilising capacity of post-thawed 

spermatozoa, it has a greater potential in advancing studies related to seasonal effects of heat 

stress on boar sperm fertility using in vitro fertilisation. Since the freeze-thaw process can led 

to increased sperm DNA damage and subsequently contribute to early embryo loss, in 

Chapter 3 we tried to address the limited information about the protective effects of the more 

common cryoprotectant glycerol on sperm DNA integrity during boar sperm 

cryopreservation. We aimed to determine the optimal concentration of glycerol to protect 

sperm DNA integrity, without the deleterious effect of high concentrations negatively 

affecting sperm motility. We deemed this work particularly important to permit us to freeze 

boar sperm collected during summer, for downstream use to fertilise eggs in vitro during 

winter when oocyte quality is high. Our study revealed that 3%, 6% or 8% glycerol could be 

safely used to cryopreserve boar spermatozoa without inducing additional DNA damage 

compared to fresh spermatozoa.  We deemed a concentration of 6% glycerol provided the 

best DNA protection, while maintaining sufficient levels of sperm motility. 

 

In chapter 4, we aimed to develop reliable heat stress models that could be used at any time 

of the year, to advance the study of seasonal infertility in the pig by overcoming the variation 

and limitations associated with seasonal studies. We have successfully induced biologically 

meaningful levels of DNA damage in boar spermatozoa using either a whole animal in vivo 

model (hot room) or by direct exposure of semen to heat in vitro (heat shock model). 

However, we were only able to induce levels of damage observed during natural tropical 

summer (Chapter 2) using extreme in vitro temperatures that rendered boar spermatozoa 

completely immotile or dead. Here, our results suggest that boar sperm is vulnerable to heat-
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induced DNA damage, but individual factors may also contribute to a boar’s overall 

susceptibility to heat stress. 

 

Given the limited endogenous levels of antioxidants in boar semen and the insufficient DNA 

repair mechanisms these cells have, Chapter 5 aimed to formulate and evaluate antioxidant 

therapy as a strategy to mitigate the effect of heat stress on boar sperm DNA integrity. We 

proposed that an exogenous multi-compound antioxidant supplementation could effectively 

combat heat stress induced oxidative damage and prevent the build-up of DNA fragmentation 

in boar spermatozoa. Supplementing boar diets with 100 g/day custom-mixed antioxidant 

during summer effectively reduced sperm DNA damage by as much as 55% after 42 and 84 

days treatment, respectively. This implies that antioxidant supplementation during tropical 

summer could provide a measurable solution to the problem of boar-mediated summer 

infertility in the pig. 

 

Overall, boar sperm DNA integrity can be compromised during tropical summer and this can 

be induced experimentally using our in vivo or in vitro heat stress models; with response 

particularly affected by individual boar variability. Exogenous antioxidant supplementation in 

feed could provide an effective means to mitigate the problem of summer infertility. 

Apparently, neither seasonal heat stress or heat stress models negatively affected sperm 

motility, suggesting that traditional evaluation of sperm motility in boars may not detect 

inherently compromised DNA damage spermatozoa. Antioxidant supplementation only 

appears to mitigate DNA damage since it did not improve sperm motility or concentration 

after 42 or 84 days treatment. Future studies are needed to measure the beneficial impact of 

antioxidant supplementation under tropical farm conditions, in terms of improved sperm 

DNA integrity and increased litter size following artificial insemination. 
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1.1 Introduction 

Pork production is a major contributor to the agricultural economy, with global production as 

high as 112 million tons carcass weight equivalent (CWE) compared to beef and veal at 59.2 

million tons CWE and broiler meat at 89.3 million tons ready to cook equivalent, respectively 

(FAS, 2015). A 120 kg pig yields about 91 kg of carcass, providing 371 servings of high 

quality meat for human consumption (Snelson 2010; National Pork Board 2014). Pigs also 

contribute many other by-products while providing extensive employment opportunities due 

to rising production, consumption, and import and export demands. The demand for food 

continues to grow as the current population increases exponentially. Average global meat 

consumption is currently 100 g per person per day, providing at least 16% of the total calories 

and 34% of the total proteins in the human diet (Mcmichael et al., 2007). While the latest 

FAO estimates show a positive trend at reducing global hunger as compared to the previous 

two decades (FAO, IFAD, WFP 2014), meeting the current and projected demands for food 

still poses enormous challenges considering that the human population is predicted to rise to 

8.9 billion in 2050 (Cohen, 2003). The demand for food has been projected to increase 

significantly to at least 3050 kcal/person/day in 2050 from an average global food 

consumption of 2940 kcal/person/day in 2015 (Fao, 2009). Therefore, research efforts should 

continue to focus on improving the production potential and efficiency of the pig industry.  

1.2 Summer Infertility: The Problem 

Seasonal or summer infertility in the pig is a syndrome characterised by an over-all reduction 

in the reproductive performance of the breeding herd that usually occurs in summer when pigs 

are exposed to a combination of environmental stressors including heat in particular, as well as 

photoperiod, humidity, genetic background, and management practices among others (Love 

1978, 1981; Hennessy and Williamson 1984; Quesnel et al. 2005; Auvigne et al. 2010). 

Summer infertility primarily manifests as either 1) difficulty in coming into oestrus, 
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expressed as delayed puberty in gilts,  extended weaning-to-oestrus interval in sows, or 

increased anoestrus in both gilts and sows; or 2) higher rates of pregnancy failure with 

irregular returns to service, which may be attributed to untimely ovulation or early embryonic 

loss (Paterson 1978; Hughes and van Wettere 2010); and/or 3) reduced fertility potential in 

the male (Wettemann et al., 1976; Wettemann et al., 1979; Cameron and Blackshaw, 1980; 

Britt et al., 1983; Hennessy and Williamson, 1984; Wettemann and Bazer, 1985; Boma and 

Bilkei, 2006; Auvigne et al., 2010). Although the domestic pig may breed throughout the 

year, the seasonal reproductive activity of wild boars/sows (Sus scrofa ferus) is attributed to 

either decreasing day length, summer rainfall and/or the availability of food (Ahmad et al. 

1995; Rosell et al. 2012). 

 

Several tropical countries are among the top 10 pig producers in the world including Brazil, 

Vietnam, The Philippines, and Mexico (National Pork Board 2014). While different genetic 

lines/breeds of boars and sows show different tolerance to heat stress reflected in their 

reproductive performance (Bloemhof et al. 2008; Flowers 2008), the use of high-yield exotic 

white breeds from temperate countries have become commonplace in the tropics. As such, 

commercial farm animals particularly in these regions can inadvertently suffer from summer 

infertility when ambient temperatures rise beyond the animal’s zone of thermal comfort (St-

Pierre et al., 2003). The negative impact of heat stress on productivity is becoming 

increasingly important to developed and developing nations due to decreasing profit margins. 

On average, at least $300 million are lost annually in swine alone and billions across the US 

livestock industry due to heat stress (St-Pierre et al., 2003).  Longer weaning-to-conception 

intervals and reduced over-all reproductive performance in sows have been reported in large 

confinement units during hotter months from June to October in North Carolina (Britt et al. 

1983). In a five-year study in France, season was shown to clearly impact the fertility rate of 
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pigs; with the lowest mean fertlity of 81.2% occuring during the end of August (end of 

summer), compared to the highest mean fertility of 86.8% during the end of March (end of 

winter; Auvigne et al. 2010). However, it is pig producers particularly in equatorial countries 

that are likely to be the most sensitive to the impacts of summer infertility. Reproductive 

problems associated with heat stress and other concomitant factors have been reported 

involving small, medium and large commercial pig farms in The Philippines. Small to 

medium farms are most severely affected, particularly in relation to the weaning to 

conception interval, farrowing index, farrowing interval and non-productive days (Vega et 

al., 2010). Seasonal variation in the reproductive performance of sows has also been observed 

in Thailand (Suriyasomboon et al. 2006) along with negative effects of high temperature and 

high humidity on the sperm production of Duroc boars (Suriyasomboon et al. 2004). Several 

strategies can be adopted to minimise the effects of heat stress on the animal’s reproductive 

performance. These include modification of the diet, breed selection, provision of floor and 

roof cooling systems, and varying building orientation, among others (Gourdine et al., 2006; 

Silva et al., 2006; Gholami et al., 2011).  

1.3 Effect of Heat Stress on Boar Fertility 

The cycle of spermatogenesis in the boar is divided into four cycles and eight stages (Fig.1; 

Franca and Cardoso, 1998). Overall, it takes about 30-34 days in the boar to complete the 

process of spermatogenesis in the testis followed by a further 10-12 days for epididymal 

transit, maturation and storage in the cauda; yielding a total of about 42 days to complete one 

entire cycle (Franca and Cardoso, 1998; Almeida et al., 2006). While the duration of 

spermatogenic events and the relative stage frequencies in Piau boars appears to differ 

slightly from more advanced swine breeds (Franca and Cardoso, 1998), Yorkshire and 

Lacombe boars have previously been shown to be similar (Swiestra, 1968).  
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Figure 1-1: Diagram showing the most advanced germ cell labelled by thymidine 

injection at different times during the eight stages of the cycle of boar seminiferous 

epithelium. 

Roman numerals indicate each of four spermatogenic cycles. The frequency (%) and duration 

in days for each stage is shown, with spacing proportional to each stage’s duration. Letters 

indicate germ cell types at each stage of the cycle: Type A spermatogonia (A); intermediate 

spermatogonia (In); type B spermatogonia (B); preleptotene spermatocytes (Pl); leptotene 

(L); zygotene (Z); pachytene (P); and diplotene spermatocytes (Di); secondary spermatocytes 

(S); round spermatids (R); elongate spermatids (E). Adapted from Franca and Cardoso, 1998. 

 

This processes of spermatogenesis and subsequent sperm maturation however are highly 

sensitive to temperature. In fact, the scrotum, pampiniform plexus, and cremaster and dartos 

muscles in mammals are specific adaptations to ensure sperm production in a regulated 

environment 4-6 °C below internal body temperature (Nakamura et al., 1987; Setchell, 2006). 

Pigs are known to be inefficient at using sweat to cool their body during high ambient 

temperatures. While cutaneous water-loss over the general body surface appears to be similar 

to man and domestic species, the pig’s ability to sweat is considerably limited (Ingram 1964, 
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1965; Einarsson et al. 2008). Stone (1981) reported that the thermal characteristics of the 

testis and epididymis of conscious boars ranged from 35.0-36.6 °C and 35.0-37.0 °C, 

respectively.  These temperatures were 2.5 °C to 1.9 °C lower than the animal’s rectal 

temperature of 38.2 °C. Moreover, Stone (1982) found that an ambient temperature of 29 °C 

appears to be the critical limit above which Large White boars are unable to produce normal 

numbers of motile spermatozoa. Specific breeds and/or genetic backgrounds also tend to 

influence normal sperm production (Huang et al. 2000; Flowers 2008). Landrace boars tend 

to have better semen quality than Yorkshire and Duroc boars during hot seasons (Huang et al. 

2000). Unlike in rams and bulls, the boar scrotum is non-pendulous and is much closer to the 

body wall which could limit its ability to regulate testicular temperature and thus potentially 

make this species sensitive to the effects of environmental heat-stress on semen production 

(Knox 2003). Prolonged exposure of testes to high temperature (i.e. testicular temperature at 

38 °C) can predispose boars to significantly reduced basal concentrations of peripheral 

testosterone along with hypertrophy and impaired function of the Leydig cells (Stone and 

Seamark 1984). 

 

The effect of heat stress on semen production and reproductive efficiency has been 

extensively studied as early as the 1950’s and 60’s in various farm animals, including rams 

(Moule and Waites, 1963), bulls (Casady et al., 1953) and boars. In the boar, the detrimental 

effects of heat stress on sperm quality and boar fertility can manifest several days or weeks 

post-heat treatment. These include decreased volume in seminal plasma (Cameron and 

Blackshaw 1980), decreased sperm concentration (Egbunike and Dede 1980), decreased 

motility and increased abnormal sperm (McNitt and First 1970; Wettemann et al. 1979; 

Heitman et al. 1984; Malmgren 1989; Huang et al. 2000), disturbance in androgen 

biosynthesis (Wettemann and Desjardins 1979; Stone and Seamark 1984), prolonged 
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ejaculation time (Egbunike and Dede 1980) and reduced libido (Flowers 1997).  Recently, 

Zasiadczyk et al. (2015) reported the effect of seasonal variations (autumn-winter vs spring-

summer) on the quality of ejaculates collected from individual boars. Ejaculates collected 

during spring-summer had significantly lower volume, sperm concentration and number of 

spermatozoa with functional mitochondria and intact plasma membrane (Zasiadczyk et al. 

2015). By contrast, Petrocelli et al. (2015) observed photoperiod to be more important than 

housing temperature in affecting most boar semen characteristics.  

 

Despite this extensive focus on classical parameters of sperm quality, there is a growing body 

of evidence that suggests damage to sperm DNA could invariably reduce male fertility and 

subsequent embryo survival (Evenson 1999; Paul et al. 2008b; Perez-Crespo et al. 2008; 

Didion et al. 2009; Evenson et al. 2009). That is, sperm may swim and fertilize eggs 

normally but embryos that have acquired a damaged paternal genome could die in utero. 

Thus, new approaches to breeding soundness evaluation in the boar (i.e. DNA fragmentation 

analysis and biomarkers for normal sperm phenotypes) may yield a better understanding of 

the underlying factors causing poor reproductive performance, thereby leading to a robust 

solution to the problem of summer infertility (Sutovsky, 2015). 

1.4 Impact of Heat Stress on Sperm DNA Integrity 

The DNA of mature sperm is uniquely condensed and tightly packaged primarily with 

protamines and to a lesser extent with histone-bound chromatin attached to a nuclear matrix 

(Wykes and Krawetz 2003; Ward 2010). This unique framework allows structural protection 

to spermatozoa but also includes molecular regulatory factors and several gene clusters that 

are important to successful embryo development (Hammoud et al. 2009). In boars, this DNA 

transitions from a weak structure at the late spermatid stage in the testis, to a very rigid 

structure in mature spermatozoa from the caudal epididymis; suggesting significant change in 
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histone-to-protamine content during sperm development (Ashikawa et al. 1987; Fortes et al. 

2014). Protamine deficiency in bull sperm is closely associated with higher DNA 

fragmentation index as determined by Sperm Chromatin Structure Assay (SCSA; Fortes et al. 

2014). Moreover, scrotal heat stress can significantly reduce protamine disulphide bonding in 

stallion sperm resulting in sperm DNA with higher susceptibility to denaturation (Love and 

Kenney 1999). 

  

In general, mammalian spermatozoa are particularly sensitive to oxidative damage due to the 

limited endogenous antioxidant systems inherent in these cells, which is compounded by the 

presence of large amounts of unsaturated fatty acids in the plasma membrane that are exposed 

to free radical attack (lipid peroxidation; Aitken and De Iuliis, 2010). Furthermore, the loss of 

cytosolic machinery from these sperm cells during spermatogenesis makes them 

transcriptionally and translationally inactive, and results in a deficiency of repair mechanisms 

once such damage has occurred (Henkel et al., 2004; Lewis and Aitken, 2005; Paul et al., 

2008a; Aitken et al. , 2012). By comparison, the epididymis secretes both intra-luminal free 

radical scavengers and extracellular antioxidant enzymes to help protect spermatozoa during 

the 12-14 days of epididymal transit and maturation, but these are absent during manufacture 

in the testis (Vernet et al., 1996; Aitken and De Iuliis, 2010). 

 

Spermatozoa immersed in caudal fluid further mix with secretions from the accessory sex 

glands, collectively called the seminal plasma, upon ejaculation. Unlike other species, the 

boar ejaculates large volumes of semen reaching up to 200-400 ml/ejaculate. Many studies 

have reported that seminal plasma contains lectin-like molecules belonging to the 

spermadhesin group of proteins. These proteins coat the plasma membrane of the sperm head 

during ejaculation and act as receptors to carbohydrate ligands present on the oviduct 
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epithelium (Sanz et al., 1993; Dostalova et al., 1994; Dostalova et al., 1995; Ekhlasi-

Hundrieser et al., 2005), thus facilitating the sperm reservoir in the oviduct. Seminal plasma 

also contains several biochemical components which may facilitate over-all fertility of boar 

sperm (Lopez Rodriguez et al. 2013; Sancho and Vilagran, 2013). One of which is 

glutathione peroxidase (GPX5) that protects sperm membranes from oxidative stress. Novak 

et al. (2010) found that fertility index and farrowing rate appear to correlate with the presence 

of GPX5 in the sperm-rich fraction of the boar ejaculate. Moreover, there was a significant 

improvement in conception rates and litter size when seminal plasma was added to thawed 

epididymal spermatozoa during artificial insemination (Okazaki et al. 2012). 

 

Exposure of the scrotum to 40-42 °C for 30 min in the mouse causes damage to 

spermatogonia, spermatocytes, spermatids or spermatozoa resulting in a significant increase 

in DNA damage and a distortion in sex-ratio of offspring born (Paul et al., 2008b; Perez-

Crespo et al., 2008). Moreover, embryo development is blocked between the 4-cell and 

blastocyst stages, resulting in abnormal embryo development and loss (Paul et al., 2008b). 

This detrimental effect might be attributed to heat stress causing testicular germ cell loss and 

abnormal gene expression (Rockett et al., 2001) as well as dissociation in the chromosomes 

leading to chromosomally unbalanced gametes (Van Zelst et al., 1995). Rockett et al. (2001) 

showed that heat stress down-regulates the expression of a number of DNA repair genes such 

as Ogg1 (involved in base excision repair), Xpg (involved in nucleotide excision repair) and 

Rad54 (involved in double-strand break repair), as well as polyADP ribose polymerase that is 

responsible for detection and signalling of strand breaks (Tramontano et al., 2000). 

Moreover, a reduction in the expression of oxidative stress-induced antioxidants due to heat 

stress (Rockett et al. 2001), may lead to increased susceptibility of spermatozoa to oxidative 

damage. 
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In humans, sperm DNA damage is significantly higher in infertile men, with about 20-30% 

DNA damage (depending upon the test) used as the demarcation between infertile and fertile 

groups (Gandini et al., 2000; Evenson and Wixon, 2006; Schulte et al., 2010). In addition, in 

vitro fertilisation by human spermatozoa with greater than 8% DNA damage results in 

reduced blastocyst development (Ahmadi and Ng, 1999) and lower pregnancy rates (Henkel 

et al., 2004). Fertilisation using DNA-damaged sperm reduces the rate or completely blocks 

blastocyst formation in cattle (Fatehi et al., 2006; Fernandes et al., 2008), and causes 

embryonic loss in the mouse (Paul et al., 2008b).  

 

Studies examining sperm DNA integrity in boars highlight the potential for using sperm 

DNA tests for boar fertility assessment. The percent DNA Fragmentation Index (%DFI) of 

boar spermatozoa showed a significant negative correlation to farrowing rate and average 

total number of pigs born (Didion et al., 2009). Similarly, there was a strong relationship 

whereby fertility of boars that are used for AI can be attested upon evaluation of both sperm 

morphology and DNA integrity (Tsakmakidis et al. 2010). In other studies, DNA 

fragmentation in undiluted boar semen maintained at 37 °C was significantly higher and 

occurred much earlier (as early as 2 days) than semen maintained at 16 °C (Pérez-Llano et 

al., 2010), whereas storage of extended liquid boar semen at 18 °C for  3 days resulted in 

reduced sperm DNA integrity (Boe-Hansen et al. 2005). Interestingly, a subsequent study by 

Boe-Hansen et al. (2008) reported a reduction in litter size by as much as 0.5-0.9 piglets per 

litter if the %DFI of semen is greater than 2.1%. Other studies suggest that a sperm sample 

with greater than 6% DFI results in decreased farrowing rate and average number of pigs 

born (Didion et al. 2009; Evenson et al. 2009).  
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Exposure to heat treatments (i.e. testicular insulation, scrotal heating, dipping of testes into 

hot water, heated incubation of spermatozoa, etc.) have been shown to cause significant 

fragmentation of sperm DNA in animals (Karabinus et al., 1997; Fatehi et al., 2006; 

Fernandes et al., 2008; Paul et al., 2008b).  Boars that have been exposed to a controlled hot-

room environment, direct sunlight or ambient temperatures ranging from 30-40 °C for 

between 3-90 days (Mcnitt and First, 1970; Wettemann et al., 1976; Cameron and 

Blackshaw, 1980; Stone, 1982) have demonstrated a significant decrease in sperm motility, 

normal morphology, and sperm concentration; with one study reporting more than 1.5 times 

fewer embryos surviving the first month of pregnancy in gilts bred with semen from heat-

stressed boars than gilts bred with semen from control boars (Wettemann et al., 1976). 

Despite this work, the important link between heat stress and sperm DNA damage is still 

missing in the pig.  Using TUNEL assay and flow cytometry techniques, preliminary results 

in our laboratory show a significant increase in the mean percentage of DNA damage in boar 

sperm from less than 2% during spring and winter to over 16% during summer in the dry 

tropics of Townsville, Queensland, Australia (Peña et al. 2016). This supports an earlier 

study by Zasiadczyk et al. (2015) in which sperm DNA fragmentation is markedly higher in 

spring-summer than in autumn-winter in fractionated ejaculates (particularly F1 & F2) using 

neutral comet assay. Moreover, results by Petrocelli et al. (2015) suggest possible seasonal 

DNA damage to boar spermatozoa.  

 

While sperm DNA assays have their limitations (Barratt et al. 2010), the above studies 

suggest that examination of sperm DNA integrity may provide important answers to male-

factor causes of summer infertility in the pig that would otherwise go undetected by routine 

sperm assessment (Evenson et al., 1994; Enciso et al., 2006).  
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1.5 Impact of Sperm Freezing on Sperm DNA Integrity 

Sperm freezing is a valuable tool for long-term storage of genetic material while enabling 

faster distribution of desirable genes. However, the processes involved in freezing and 

thawing can be deleterious to some extent, causing damage to the structural integrity and 

function of the sperm by affecting sperm membranes, mitochondrial architecture and 

motility. This can lead to reduced fertilisation success (Watson, 1995; Thurston et al., 2001; 

Roca et al., 2006).  Moreover, sperm freezing may also cause damage to sperm DNA as 

demonstrated in several species including boars (Hamamah et al., 1990), men (De Paula et 

al., 2006), rams (Peris et al., 2004), and mice (Yildiz et al., 2007). More specifically, 

cryopreservation of boar and human spermatozoa has been associated with the reduction in 

the sperm nuclear surface and Feulgen-DNA content leading to a state of ‘overcondensation’ 

(Royere et al., 1988; Hamamah et al., 1990), which could potentially affect the fertility of 

frozen spermatozoa (Royere et al., 1991).  

 

The use cryoprotective agents has been extensively used in well-established sperm freezing 

protocols (Pursel and Johnson, 1975; Aricultural Research Service - US Department of 

Agriculture, 2007). Glycerol for example is known to improve motility and plasma 

membrane integrity of frozen-thawed sperm (Almlid and Johnson, 1988; Fiser and Fairfull, 

1990; Das et al., 2016) as it protects the cells from ice crytal formation during freezing. 

However, there is still limited information about the optimal concentration of glycerol to 

protect DNA integrity during cryopreservation of boar spermatozoa. Moreover, boar 

spermatozoa appear to be more sensitive to the standard concentrations of glycerol used in 

sperm cryopreservation protocols of other domestic species (Almlid and Johnson, 1988). An 

earlier report suggests that examination of sperm DNA structural damage in cryopreserved 

extended boar semen was able to correctly predict between potentially high and low fertility 
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boars based on DNA integrity (Evenson et al., 2009). Thus, it is important to evaluate 

optimal levels of glycerol that are protective to sperm DNA integrity without compromising 

sperm motility. 

1.6 Mechanisms by which Heat Stressed Spermatozoa Can Affect Blastocyst 

Formation and Early Embryo Loss 

Apart from identifying male factor causes of summer infertility in the pig, it is equally 

important to understand the downstream mechanism by which heat-stressed sperm may cause 

early embryo loss. The formation of the blastocyst is an essential step in embryo development 

that facilitates proper implantation and establishment of pregnancy (Bruce and Zernicka-

Goetz, 2010). It involves the formation of three distinct cell lineages that include the 

pluripotent epiblast that forms the embryo itself, and the trophectoderm and primitive 

endoderm that comprise the extra-embryonic tissues supporting the development of the 

embryo (Cockburn and Rossant, 2010). While our understanding of the mechanisms involved 

during these pre-implantation events are still limited, it is believed that a number of factors 

and signalling events including transcriptional regulation, epigenetic regulation (such as 

DNA methylation, histone modifications and chromatin modelling; Shi and Wu 2009), cell 

position and cell polarity, and cell-cell contact/positional relationships precede the eventual 

segregation of these three distinct populations of cells (reviewed in Zernicka-Goetz et al., 

2009; Bruce and Zernicka-Goetz, 2010; Gasperowicz and Natale, 2011; Oron and Ivanova, 

2012).   

 

In vitro and cytogenetic studies in humans demonstrate that about 30% of embryos fail to 

complete implantation, with anomalies in the DNA of gametes or embryos being the main 

reasons for this failure (reviewed in Macklon et al., 2002). Despite the high fertilisation rates 

in the pig (90-100%), prenatal mortality of 30-40% can significantly limit the litter size and 
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dramatically impact economic profitability. The majority of these losses (20-30%) occur 

during the pre-implantation period of development (Anderson 1978; Bolet 1986; Geisert and 

Schmitt 2002) at a time when the embryo is forming a blastocyst and secreting maternal 

recognition of pregnancy (MRP) signals. Embryonic oestradiol (E2) plays a crucial role in 

porcine MRP signalling by shifting the secretion of prostaglandin F2α into the uterine lumen 

were it rapidly deteriorates; thus preventing transport to, and luteolysis of the corpus luteum 

via uterine vein-ovarian artery counter-current exchange (Bazer and Thatcher, 1977)  

 

Blastocyst formation is regulated by specific genes that directly influence the organisation 

and differentiation processes. Oct4 expression in internally-positioned populations of cells in 

the morula-stage murine embryo specifies differentiation of the inner cell mass (ICM), while 

Cdx2 in externally-positioned cells specifies differentiation of the trophectoderm. Nanog and 

Gata6 are responsible for the formation of the epiblast (from ICM cells) and primitive 

endoderm respectively (Ralston & Rossant 2005; 2010). Identifying the timing and 

expression patterns of these genes is important as this appears to differ among species, 

indicating a different role for such genes in other mammals. Kuijk et al. (2008)  have 

demonstrated significant differences in expression patterns of these genes in porcine and 

bovine embryos compared to that of the mouse. While expression of CDX2 and GATA6 were 

similar, variation existed in the expression of NANOG and OCT4 between species and during 

different stages of development. In the pig and cow, OCT4 is not present in morulae but can 

be detected in both the trophectoderm and inner cell mass (ICM) of the blastocyst. NANOG 

expression is completely absent in porcine embryos during blastocyst formation. 

 

However, in subsequent studies, NANOG was found to be expressed in the ICM and epiblast 

of porcine embryos at 7.5 embryonic days (E7.5) by which time, the embryos have already 
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arrived in the uterus. Moreover, expression of NANOG by the epiblast appears to be extended 

for a few days after the blastocyst has formed (Hall et al., 2009; Du Puy et al., 2011). These 

findings differ considerably to the timing of NANOG expression in the mouse (i.e., early 

stage of mouse blastocyst; around E3.5; Chazaud et al., 2006). This early expression is 

believed to be indispensable for proper differentiation of the murine ICM leading to epiblast 

and primitive endoderm formation (Silva et al., 2009; Messerschmidt and Kemler, 2010). In 

the pig however, primitive endoderm appears to have already formed before NANOG is 

expressed. Recently, Wolf et al. (2011) found what appears to be a sequential expression of 

OCT4 and NANOG in the pig. OCT4 but not NANOG appears initially in the ICM and is 

followed later by co-localised expression of both of these genes in the epiblast; with 

subsequent down-regulation of NANOG by the time the primitive streak develops.  

 

Interestingly, while a seemingly healthy-looking sperm according to classical measures of 

sperm quality, may swim and fertilise an oocyte normally (Ahmadi and Ng, 1999; Fernandes 

et al., 2008), structural abnormalities in its DNA can lead to serious problems during 

pronuclear formation, embryonic genome activation, and early embryo development 

(Evenson, 1999). Sperm DNA damage may manifest itself at the time of embryonic genome 

activation (EGA), in the form of altered or arrested expression of important developmental 

genes that lie in regions where damage is present. Understanding of the normal pattern of 

expression of these key developmental genes can serve as a guide to investigating altered 

expression in developing embryos fertilised in vitro using artificially heat-stressed 

spermatozoa and/or semen collected from boars exposed to environmental heat stress. In fact, 

one study in the mouse has demonstrated the link between heat stress, sperm DNA damage 

and arrested embryo development consistent with aberrant expression of key genes involved 

in blastocyst formation (Paul et al. 2008b). Compared to control blastocysts, OCT3/4 
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immunostaining of embryos retrieved from females mated to 42 °C heated males showed 

aberrant staining patterns associated with grossly abnormal embryos that lacked a blastocoel 

and had fragmented nuclei. Several embryos from females mated to 40 °C heated males were 

also developmentally delayed, lacking a blastocoel and still expressed OCT3/4 staining in all 

cell nuclei (Paul et al. 2008b).  

 

Furthermore, the impact of heat stress may not only be limited to disturbing the integrity of 

paternal genomic DNA but could broadly alter epigenetic constituents, activation factors and 

a host of messenger RNAs and microRNAs. These factors appear to influence the survival of 

the embryo post-fertilisation through participation in various molecular functions, such as 

signal transduction, cell proliferation and transcriptional proliferation (Krawetz, 2005; 

Yamauchi et al. 2011; Kumar et al. 2013).   

 

Normal and timely formation of the blastocyst is paramount not only to subsequent 

development of the embryo but in preparing the maternal environment to recognise the 

impending pregnancy (Leibfiied-Rutledge, 1996; Latham 1999; Latham & Schultz 2001; 

Bettegowda and Smith, 2007; Minami et al., 2007; Jeanblanc et al., 2008). Any delay or 

arrest of embryo development will result in the delay or absence of properly timed MRP 

signalling by the trophectoderm. In porcine embryos, major morphological transformation 

occurs between 12-16 days of gestation when blastocysts elongate and reach their final length 

of about 800 mm to 1100 mm at day 16 of pregnancy (80 to 100 cm; Spencer, 2013; Tur, 

2013). At this time, the trophectoderm secretes significant amounts of E2 along with 

interferons gamma and delta (Spencer, 2013). This is essential for preventing luteolysis of the 

corpus luteum, as this structure is the primary source of progesterone production necessary to 

support pregnancy for the entire period of gestation in the pig (Meyer, 1994). Moreover, the 
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surge of E2 from the trophectoderm is believed to influence gene expression in the 

endometrium and is responsible for promoting uterine receptivity and elongation of the 

conceptus (Johnson et al., 2009). In this regard, fertilisation of oocytes with DNA-damaged 

sperm may disrupt the organisation of genes required in the formation of cell lineages 

(trophectoderm among others), distorting the sequence of events leading to the formation of 

the blastocyst (Ralston and Rossant, 2005; 2010). As a consequence, embryonic development 

may be delayed and/or arrested resulting in disrupted implantation, the loss of properly timed 

MRP signals and subsequent loss of the corpus luteum, and ultimately pregnancy failure.  

Using an in vitro fertilization system, ongoing research in our laboratory seeks to demonstrate 

the definitive link between heat stress in the boar and summer infertility in the sow; 

warranting a closer look at boar management strategies during periods of elevated ambient 

temperature. 

1.7 Antioxidant Therapy to Mitigate Sperm DNA Damage 

The low antioxidant activity in boar seminal plasma (Brzezińska-Ślebodzińska et al., 1995) 

and the high proportion of easily oxidised long chain polyunsaturated fatty acids in the sperm 

plasma membrane could likely increase the risk of boar sperm DNA damage (Fraga et al., 

1996). However, despite the widespread use of exogenous feed supplements including 

vitamin-mineral premixes and antioxidants particularly among commercial pig production, 

there have been no substantial reports to support the potential benefits of antioxidant 

supplementation on boar sperm DNA protection. Considering the extensive benefits of 

antioxidant supplementation on boar sperm including improvements in various sperm quality 

parameters such as motility, viability, survivability, acrosome integrity and storage among 

others (Pena et al., 2003; Strzezek et al., 2004; Funahashi and Sano, 2005; Chanapiwat et al., 

2009), antioxidant therapy could be an effective strategy to mitigate the effects of 

environmental heat stress on boar sperm DNA damage. 
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1.8 Conclusion 

While a number of sow-specific factors play a crucial role in sustaining embryo development 

in the pig, there is a strong case for the hypothesis that reduced fertility and embryo survival 

associated with summer infertility in the sow may be due in significant part to a reduction in 

DNA integrity of spermatozoa in the boar. If oocytes are fertilized by heat stress-induced, 

DNA-damaged sperm, it is highly probable that subsequent embryo development will be 

affected. This may include decreased cleavage rates; decreased blastocyst formation due to 

the disruption of specific genes responsible for early lineage formation and eventually 

delayed embryo development or early embryonic death, disrupted implantation and 

pregnancy loss. This has important implications for the proper management of boars from 

housing conditions to nutritional requirements including antioxidant supplementation during 

summer.  

1.9 Hypothesis and Aims 

We hypothesise that heat-stress causes sperm DNA damage that leads to poor fertilisation & 

early embryonic death, which can be mitigated by antioxidant therapy. The purpose of this 

research therefore is to determine the effect of heat stress on the quality and DNA integrity of 

boar sperm, then evaluate the therapeutic effect of antioxidant supplements. This aim will be 

achieved via a number of specific objectives: 

 

1. Determine the effect of tropical summer on boar sperm quality and DNA integrity. 

2. Optimise a boar semen freezing protocol that protects sperm DNA integrity. 

3. Develop in vivo and in vitro heat stress models that can induce natural rates of sperm 

DNA damage in the boar. 

4. Determine an antioxidant formula as potential intervention to mitigate effects of heat 

stress on sperm quality. 
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2.1 Abstract 

While pork is the most widely eaten meat in the world, the problem of summer infertility continues to 

undermine productivity, costing the pig industry millions in annual losses. The boar’s inefficient 

capacity to sweat, non-pendulous scrotum, and the extensive use of European breeds in tropical 

conditions, can make the boar particularly vulnerable to the effects of heat stress. In mice, studies 

show that heat stress causes sperm DNA damage, which in turn contributes to embryo loss. However, 

the link between summer heat stress and sperm DNA damage has not been demonstrated in the pig. 

Semen from five Large White boars, raised in an open gable roof-type facility in the dry tropics of 

Townsville, North Queensland, Australia, was collected and evaluated during the early dry (cool and 

dry), late dry (warm and humid) and peak wet (hot and wet) seasons to determine the effect of 

seasonal heat stress on the quality and DNA integrity of boar spermatozoa. Sperm concentration was 

1.6-fold lower in the peak wet than early dry but did not differ to the late dry season (221.8 ± 20.2 x 

106 vs 354.1 ± 44.0 x 106 vs 268.0 ± 30.6 x 106 sperm/mL respectively, P ≤ 0.05). Moreover, the 

peak wet showed 16-fold more DNA damage in spermatozoa than early dry and nearly 9-fold more 

than the late dry season (16.1 ± 4.8 vs 1.0 ± 0.2 vs 1.9 ± 0.5% respectively, P ≤ 0.05). However, 

motility of spermatozoa in the peak wet did not differ to early or late dry seasons (total motility: 71.3 

± 8.1 vs 90.2 ± 4.2 vs 70.8 ± 5.5% respectively, P > 0.05; progressive motility: 35.4 ± 7.0 vs 46.6 ± 

4.0 vs 41.7 ± 2.8% respectively, P ≥ 0.05). Furthermore, no difference was found across several other 

motility parameters as determined by CASA. These results demonstrate that tropical summer 

(characterised by the peak wet season) induces DNA damage and reduces concentration, without 

depressing motility in boar spermatozoa; suggesting that traditional evaluation of sperm motility may 

not detect inherently compromised spermatozoa. Moreover, given the detrimental link between sperm 

DNA damage and embryo loss, boar management strategies need to be developed to mitigate this 

problem. Such strategies may include better housing conditions with efficient cooling systems, use of 

more heat-tolerant pig breeds, or nutritional supplements that could bolster an animal’s resilience to 

heat stress.  
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2.2 Introduction 

Forty percent of global meat consumption is pork (National Pork board, 2017), with at least 4 tropical 

countries (Brazil, Vietnam, The Philippines and Mexico) among the top 10 pork producers in the world 

(Board, 2011). However, the production efficiency of pigs in tropical and sub-tropical regions is known 

to be affected by seasonal or summer infertility; a syndrome characterised by an overall reduction in 

the reproductive performance of the breeding herd. This poor performance is caused by a number of 

factors including: ambient temperatures greater than the animal’s thermal comfort zone (i.e. 18-20º C) 

(Stone, 1982; Prunier et al., 1997), humidity, photoperiod, genetic background, and management 

practices (Love, 1981; Hennessy and Williamson, 1984; Sonderman and Luebbe, 2008; Auvigne et 

al., 2010), causing significant reduction in profitability in the pig industry. For example, at least $300 

million are lost annually in swine alone and billions across the US livestock industry due to heat stress 

(St-Pierre et al., 2003).   

 

Summer infertility is mainly characterized by 1) reduced expression of oestrus in gilts and sows; 2) 

increased rates of pregnancy failure (Paterson et al., 1978; Hughes and Van Wettere, 2010); and/or 3) 

decreased breeding efficiency in boars (Wettemann et al., 1976; Boma and Bilkei, 2006; Auvigne et 

al., 2010). Even in a temperate climate such as southern France over a 5 year period, mean fertility, 

based on ultrasound pregnancy diagnosis 28 days after insemination, was at its lowest in summer 

(81.2%; end of August) compared to it’s peak of 86.8% in winter (end of March) (Auvigne et al., 

2010).  In Australia, the adjusted farrowing rate dropped to 77.1% in summer/autumn compared to 

91.9% in spring (O'leary, 2010). While in the tropical Philippines, farrowing rate, percent live born, 

litter size at weaning, and pigs weaned/sow/year were significantly less around the third quarter of the 

year after exposure to higher ambient temperatures. This was compounded by reduced voluntary feed 

intake and lower feed quality, with small to medium farms being the most severely affected (Vega et 

al., 2010 and Vega et al., 2010).  
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The boar is particularly vulnerable to the effects of heat stress due to its inefficient capacity to sweat; 

its non-pendulous scrotum; and the high susceptibility of boar spermatozoa to temperature shock 

(Ingram, 1965; Mount, 1968; Einarsson et al., 2008; Ford and Wise, 2011). Stone (Stone, 1982) 

demonstrated that spermatogenesis in boars is impaired when ambient temperatures rise above 29º C. 

Thus, heat stress in boars has been shown to result in lower semen volume (Cameron and Blackshaw, 

1980), reduced sperm concentration (Egbunike and Dede, 1980), lower motility and higher rates of 

abnormal spermatozoa (Egbunike and Dede, 1980; Heitman et al., 1984), interference in testosterone 

production (Stone and Seamark, 1984), extended ejaculation time (Egbunike and Dede, 1980), and 

reduced libido (Flowers, 1997).  

 

Moreover, the relatively high unsaturated fatty acids in the plasma membrane (Cerolini et al., 2001) 

and low antioxidant activity of seminal plasma (Brzezińska-Ślebodzińska et al., 1995), all contribute 

to boar sperm’s high sensitivity to peroxidative damage. We have recently proposed that such 

mechanisms may make boar spermatozoa highly prone to DNA damage during periods of heat stress 

(Peña et al., 2016). Recent studies in mice have conclusively demonstrated that heat stress induces 

sperm DNA damage, which causes abnormal and arrested embryo development, and ultimately 

embryo and foetal loss (Paul et al., 2008). In pigs, Didion et al. (Didion et al., 2009) have proposed 

that sperm with greater than 6% DNA fragmentation can cause both decreased farrowing rates and 

average number of piglets born.  However, definitive evidence of the link between heat stress and 

DNA damage in boar spermatozoa is limited. While boar sperm collected in spring-summer appeared 

to have relatively higher percentage of DNA damaged spermatozoa, a significant increase was only 

evident in fractionated ejaculates (F1 and F2) from two out of five boars (Zasiadczyk et al., 2015). By 

contrast, Petrocelli et al. (Petrocelli et al., 2015) reported that neither season, photoperiod or genetic 

line affected sperm DNA fragmentation. Both studies however, were conducted in temperate climates 

where ambient temperatures may not be sufficient to induce significant DNA damage compared to 

pigs raised in the tropics. Thus, the aim of this study was to determine the effect of seasonal heat 
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stress on the quality and DNA integrity of spermatozoa obtained from boars housed in the dry tropics 

of Townsville, North Queensland, Australia. 

2.3 Materials and Methods 

Boars and Location 

Five Large White boars were purchased at 11-12 months of age from a commercial piggery and 

reared in an open, gable roof-type facility within individual 3 x 3 metre pens at the College of Public 

Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia 

(19°19'46.4"S, 146°45'40.3"E). Boars were exposed to prevailing winds and ambient temperatures 

throughout the day. Each boar was fed 1.8 - 2.3 kg/day of a commercial pelleted diet (Barastoc, 

Ridley AgriProducts, Victoria, Australia) to maintain a body score between 3 - 3.5. Water was 

provided ad libitum via an automatic pig nipple waterer. Experiments were approved by the James 

Cook University Animal Ethics Committee.  

 

Temperature, Relative Humidity and Temperature-Humidity Index  

Townsville is situated in the dry tropics; with a climate that has less rainfall than other comparable 

regions in the wet tropics (Bureau of Meteorology, 2017). The dry season (late April to October) is 

typically cooler and dry, while the wet season (November to early April) tends to be hot and wet, with 

monsoon rains from late December to early April. Mean, minimum and maximum daily temperatures 

as well as mean, 6:00 am and 3:00 pm daily relative humidity (corresponding to the coolest and 

hottest times of the day, respectively) for Townsville were obtained from the Australian Bureau of 

Meteorology (2011).  Mean, minimum and maximum temperature-humidity indices (THI) were 

generated for each day using mean, minimum and maximum daily temperatures coupled with mean, 6 

am and 3 pm daily relative humidity values, respectively. This was achieved using an online heat 

index calculator by the (National Weather Service, 2016), and interpreted using a Temperature-

Humidity Index chart (Thom, 1959; Hahn et al., 2009). Mean values were calculated spaning the 42-

day period immediately before each seasonal semen collection time point. This period encompasses 
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the ambient environmental conditions to which boars were exposed for one complete cycle of 

spermatogenesis and epididymal maturation (Franca and Cardoso, 1998; França et al., 2005). 

 

Seasonal Semen Collection and Processing 

One ejaculate per boar was collected from the same n=5 boars during the late dry (warm and humid; 

October 2014), peak wet (hot and wet; February 2015) and early dry (cool and dry; end of May 2015) 

seasons. Boars were sexually mature (20 - 28 months old) at the time of collection and were regularly 

collected by the same person 2-3 times every two weeks prior to experimental sampling to maintain 

training to the dummy and regular turnover of epididymal sperm populations, without causing sperm 

depletion. To qualify for the study, each boar met minimum standards of sperm quality that included 

70% motility, 65% morphologically normal spermatozoa and an ejaculate volume of at least 100 ml 

prior to the experiment. Semen was collected using a dummy sow (Minitube, USA) and the gloved 

hand technique (Hancock and Hovell, 1959) into a plastic semen collection bag fitted inside a 

collection cup and covered with non-woven tissue filters (all Minitube, Victoria, Australia) to remove 

the gel fraction. The collection bag was then placed inside an insulated container containing 38º C 

water and immediately brought to the laboratory for processing. Raw semen from each boar was 

diluted 1:3 with 38º C pre-warmed Beltsville Thawing Solution (BTS; pH 7.2) (Pursel and Johnson, 

1975) containing 205 mM D-glucose, 20 mM sodium citrate tribasic dihydrate, 3 mM 

ethylenediaminetetraacetic acid (EDTA) disodium salt dihydrate, 10 mM potassium chloride, 15 mM 

sodium bicarbonate, 0.1% (v/v) gentamicin reagent solution (Life Technologies, Victoria, Australia) 

in nanopure deionized water. All reagents were sourced from Sigma-Aldrich (Sydney, New South 

Wales, Australia), unless otherwise stated. One aliquot was evaluated for sperm concentration using a 

Neubauer haemocytometer, using standard protocols (Who, 2010), a second aliquot adjusted to 20 x 

106 sperm/mL in BTS for evaluation of sperm motility characteristics using a computer-assisted 

sperm analyser (CASA; IVOS version 10, Hamilton Thorne Research. Beverly, MA, USA), and a 

third aliquot evaluated for DNA damage. 
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Determination of motility characteristics by CASA 

About 3 µl of 20 x 106 sperm/mL semen was loaded into each chamber of 38º C pre-warmed Leja 

Standard Count 4 Chamber Slides (Leja Products, Nieuw-Vennep, Netherlands) and loaded into the 

CASA machine where at least five random fields were examined per sample. Motility characteristics 

of spermatozoa were analysed as previously described (Peña Jr et al., 2015). The CASA software was 

calibrated to the following settings: analysis set-up #7: BOAR; frames acquired, 40/sec; frame rate, 50 

Hz; minimum contrast, 60%; minimum cell size, 2 pixels; minimum static contrast, 30%; straightness 

threshold, 71.4%; low VAP cut-off, 5.0 µm/sec; medium VAP cut-off, 22.0 µm/sec; low VSL cut-off, 

11.0 µm/sec; head size (non-motile), 2 pixels; head intensity (non-motile), 70 pixels; static head size, 

0.10 to 10.0 pixels; static head intensity, 0.10 to 0.95 pixels; static elongation, 0 to 60; count slow 

cells as motile, YES; magnification, 3.20; video source, camera; video frequency, 50; bright field, 

NO; illumination intensity, 2381; and temperature, 38º C. 

 

 The following characteristics were evaluated: total motility, progressive motility, average-path 

velocity (VAP), straight-line velocity (VSL), curvilinear velocity (VCL), amplitude of lateral head 

displacement (ALH), beat cross frequency (BCF), straightness (STR), linearity (LIN), and elongation 

(ELO) as previously described (Mortimer, 2000).  

 

Sperm DNA Integrity Assay 

BTS-diluted semen samples were purified by Percoll gradient centrifugation to remove seminal 

plasma and possibly dead and damaged spermatozoa (Grant et al., 1994). Two mL of 40% Percoll 

solution (GE Healthcare, Uppsala, Sweden) in BTS was layered on top of 2 mL of 80% Percoll 

solution in BTS in a 15 mL centrifuge tube. Six mL of 1:3 diluted semen in BTS solution was layered 

on top of the Percoll gradients and centrifuged at 700 x g for 25 min. The supernatant was removed 

and the remaining pellet was washed twice in 5 mL BTS by spinning tubes at 1000 x g for 5 min each. 

The final sperm pellet was adjusted to 5 x 106 sperm/mL in BTS. 
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Boar spermatozoa was stained using the Terminal deoxynucleotidyl transferase dUTP nick end 

labelling assay according to manufacturer’s instructions (TUNEL; In Situ Cell Death Detection Kit, 

Fluorescein, Version 17, Nov 2012, Roche Diagnostics, Mannheim, Germany) with modifications 

(Takeda et al., 2015). Briefly, boars were randomly divided and collected in two groups of 2-3 boars 

to facilitate timely processing. Six control samples (2 positive, 2 negative, and 2 unlabelled) were 

prepared in parallel using pooled semen from each batch of boars tested. These were used to 

accurately gate different populations of spermatozoa in the flow cytometer before experimental 

samples were analysed (Fig. 2-1). 

 

One mL (5 x 106 sperm) of each sample was used for TUNEL labelling and centrifuged 720 x g for 5 

min. Each sperm pellet was washed twice in 200 µl of Phosphate Buffered Saline (PBS) by 

centrifugation at 720 x g for 5 min. The final pellet was resuspended in 100 µl PBS to which 100 µl of 

4% (w/v) paraformaldehyde in PBS was added to fix spermatozoa for 60 min at room temperature. 

Thereafter, samples were centrifuged at 720 x g for 5 min and the pellet resuspended in 200 µl PBS 

and stored at 40 C overnight.  

 

The next day, samples were centrifuged 720 x g for 5 min and pellets resuspended in 100 µL of 0.5% 

Triton X-100 in 0.1% sodium citrate permeabilisation solution then incubated for 30 min at 37⁰ C. 

Samples were washed twice and resuspended in 200 µL PBS except for positive controls (P1 and P2) 

which were resuspended in 100 µl of 1000 U/mL DNase 1 in Roche Buffer 2 and incubated for 30 

min at 37° C to induce doubled-stranded DNA breaks. 1000 U/mL DNase 1 in Roche Buffer 2 is 

comprised of 20 µl of 10 U/µl Roche DNase 1 stock solution (500 µL 40mM Tris-HCl 2mM MgCl2 

solution plus 10000 U lyophilized DNase 1 and 500 µL glycerol) plus 180 µL of Roche Buffer 2 

(0.058 g NaCl, 0.099 g MnCl24H2O, 0.0011 g CaCl2 and 0.1864 g KCl in 100 mL 10 mM Tris-HCl 

solution). P1 and P2 controls were subsequently washed twice and resuspended in 200 µL PBS prior 

to TUNEL labelling. 
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Figure 2-1: Calibration of flow cytometer for boar spermatozoa subjected to different 

staining treatments for FITC (TUNEL) and DAPI.  

TUNEL Log vs. DAPI Log scatter plots for unlabelled control, U1 (A); unlabelled control 

with DAPI, U2 (B); negative control in Label Solution, N1 (C); negative control in Label 

Solution with DAPI, N2 (D); DNase-treated FITC positive control, P1 (E); DNase-treated 

FITC positive control with DAPI, P2 (F); test sample showing DNA damaged sperm sub-

population encircled by dotted line (G); and microscopic validation of DNA damaged (green; 

FITC) and intact (blue; DAPI) boar spermatozoa labelled by TUNEL (H). 
 

A) B) 

D) C) 

E) F) 

H) FITC 
DAP
I 

G) 
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The TUNEL reaction labels DNA damaged cells positive for Fluorescein isothiocyanate (FITC). All 

samples were centrifuged 720 x g for 5 min and their sperm pellets subjected to different treatments: 

Unlabelled controls (U1 and U2) were resuspended in 50 µL PBS; Negative controls (N1 and N2) 

were resuspended in 50 µL TUNEL labelling solution without the enzyme; while Positive controls 

(P1 and P2) and all test samples were resuspended in 50 µL TUNEL reaction mixture containing 

enzyme. All samples were then incubated for 90 min at 37⁰ C before washing twice in PBS. 

Thereafter, U2, N2, P2 and all test samples were incubated with 5 µg/mL of the nucleic acid stain 4', 

6-diamidino-2-phenylindole (DAPI) in PBS for 20 min at room temperature to ensure that only 

nucleated TUNEL-positive spermatozoa were accounted for as DNA damaged cells during analysis 

by FACS. The specificity of sperm staining was further validated using fluorescent microscopy, 

which showed FITC/DAPI positive DNA damaged sperm in green alongside DAPI positive intact 

nucleated boar sperm in blue (Fig 2-1H). 

 

Flow Cytometry Analysis 

All samples were washed twice and resuspended in 2 mM EDTA in PBS and evaluated using a 

CyanADP flow cytometer (Dako Cytomation, Glostrup, Denmark). Samples were first passed through 

a 60 µm nylon woven net filter before being loaded onto the machine in 5 mL round-bottom 

polystyrene tubes. Spermatozoa were identified by their forward and side scatter profiles using a 

scatter-area vs. scatter-height gate previously calibrated specifically for boar spermatozoa. Data were 

analysed using Summit 4.3 software. The flow cytometer was set to analyse 20000 cells per sample at 

about 150 events/second. Prior to evaluating test samples, control samples were used to accurately 

define the different cell staining populations delineated into four distinct quadrants by adjusting both 

vertical and horizontal thresholds: (i) R3, FITC-positive cells only; (ii) R4, both FITC and DAPI-

positive cells; (iii) R5, unstained cells; and (iv) R6, DAPI-positive cells only (Figs. 2-1A-F). Sample 

N2 (Negative control in Label Solution with DAPI) was used to set a 0.5% threshold cut-off before 

running all test samples. Cells in R4 were designated as nucleated DNA damaged spermatozoa, 

expressed as a percentage of the total number of cells analysed within the gated area (Fig. 2-1G).  
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Data Presentation and Statistical Analyses 

The Shapiro-Wilk test was used to evaluate normality of the data, while Mauchly's test of sphericity 

was used to determine if variances of the difference scores between each within-subject variable were 

equal. If these assumptions were not met, a Log10 transformation of the data was performed to 

normalise the data before an ANOVA or either the Greenhouse-Geisser or Huynd-Feldt correction test 

were carried out to look for differences between groups. Data were analysed by single-group or one-

way repeated measures ANOVA using IBM SPSS Statistics version 22 (IBM Corporation, NY, 

USA), along with pairwise comparisons based on marginal means with Bonferroni adjustments 

applied. Graphs were plotted using Microsoft Excel 2016. P ≤ 0.05 was considered statistically 

significant.   

2.4 Results 

Daily mean, mean minimum and mean maximum temperatures spanning the 42-day period 

immediately before semen was collected at each time point are shown in Table 2-1. The peak wet 

season was significantly hotter for all three temperature measures than early and late dry seasons (P ≤ 

0.05; Table 1). Similarly, the daily mean relative humidity spanning the 42-day period immediately 

before semen collection differed across seasons; with the peak wet season being more humid than 

early or late dry season (P ≤ 0.05; Table 2-1). It was typically more humid at 6 am during the coolest 

part of the day, than 3 pm that was the hottest for all seasons. In this regard, the peak wet season had 

more humid mornings than the late dry and more humid afternoons than the early dry season (P ≤ 

0.05; Table 2-1).  Moreover, temperature-humidity index was also highest during the peak wet season 

for all three mean measures than early or late dry seasons (P ≤ 0.05; Table 2-1). 

 

Semen collected in the peak wet season had significantly lower sperm concentration than early dry but 

did not differ to the late dry season (P ≤ 0.05; Fig. 2-2A). Spermatozoa collected during the peak wet 

season had more than 16-fold higher DNA damage than early dry, and nearly 9-fold higher DNA 

damage than in the late dry season (P ≤ 0.05; Fig. 2-2B). Both total and progressive motility of 
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spermatozoa collected in the peak wet season did not differ to that in early or late dry seasons (P > 

0.05; Figs. 2-2C and 2-2D, respectively).    

 

Table 2-1: Mean (± SEM) ambient temperature, relative humidity and temperature-

humidity index in Townsville, North Queensland, Australia spanning the 42-day period 

immediately before semen collection during the early dry, late dry and peak wet 

seasons. 

 Early Dry Late Dry Peak Wet 

Ambient Temperature (°C)    

Daily Mean 24.2 ± 0.4b 23.0 ± 0.2b 29.2 ± 0.2a 

Mean Minimum 18.4 ± 0.5b 17.7 ± 0.3b 24.8 ± 0.3a 

Mean Maximum 29.6 ± 0.2b 28.2 ± 0.1c 33.4 ± 0.2a 

Relative Humidity (%)    

Daily Mean 61.9 ± 2.1c 67.6 ± 0.7b 71.4 ± 1.2a 

Mean 6 am 75.7 ± 3.3ab 70.8 ± 1.4bc 82.5 ± 1.2a 

Mean 3 pm 45.7 ± 2.0b 60.7 ± 2.4a 59.2 ± 2.0a 

Temperature-Humidity Index (THI)    

Daily Mean 75.9 ± 0.9b 73.6 ± 0.4b 92.9 ± 1.1a 

Mean Minimum (6 am) 64.9 ± 1.0b 63.3 ± 0.7b 79.3 ± 1.0a 

Mean Maximum (3 pm) 86.8 ± 0.8b 86.5 ± 0.6b 106.3 ± 2.1a 

Different letters indicate a significant difference between seasons (P ≤ 0.05); bold indicates 

environmental extremes to which boars were exposed during each 42-day period of the study. 
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Figure 2-2: Mean (±SEM) concentration (A), percentage of DNA damage (B), 

percentage of total motility (C), and percentage of progressive motility (D) of boar 

spermatozoa collected during the early dry, late dry and peak wet seasons. 

Different letters indicate a significant difference between seasons (P ≤ 0.05). 

 

Detailed sperm motility and head shape characteristics determined by CASA are shown in Table 2-2. 

There was no significant difference observed between seasons for any CASA parameter (P > 0.05). 

While spermatozoa collected in the early dry appeared to have better curvilinear, straight line and 

average path velocities, these were not statistically different from values obtained during the peak wet 

or late dry seasons (P > 0.05; Table 2-2). 

 

 0

 50

 100

 150

 200

 250

 300

 350

 400

Early Dry Late Dry Peak Wet

Sp
er

m
 C

on
ce

nt
ra

tio
n

(x
 1

06 
 sp

er
m

/m
L)

0

5

10

15

20

Early Dry Late Dry Peak Wet

Sp
er

m
 D

N
A

 D
am

ag
e 

(%
)

0

10

20

30

40

50

60

70

80

90

100

Early Dry Late Dry Peak Wet

To
ta

l M
ot

ili
ty

 (%
)

0

10

20

30

40

50

60

70

80

90

100

Early Dry Late Dry Peak Wet

Pr
og

re
ss

iv
e 

M
ot

ili
ty

 (%
)

 c

) 

a

) ab

) 
b 

b b 

a   A) B) 

C) D) 



43 

 

Table 2-2: Mean (± SEM) sperm motility and head shape characteristics in boar 

ejaculates collected during the early dry, late dry and peak wet seasons in Townsville, 

North Queensland, Australia. 

CASA                  

Parameter                              

Early Dry 

(n=5) 

Late Dry 

(n=5) 

Peak Wet 

(n=5) 

VCL      68.3 ± 7.0 54.2 ± 5.7 46.0 ± 4.0 

VSL 30.7 ± 3.3 26.9 ± 1.7 22.1 ± 2.4 

VAP 38.8 ± 4.5 32.1 ± 2.7 26.7 ± 2.7 

ALH 3.4 ± 0.3 2.6 ± 0.3 2.3 ± 0.2 

BCF 19.1 ± 1.5 21.2 ± 0.9 21.1 ± 0.6 

STR 74.1 ± 1.3 80.2 ± 2.3 76.9 ± 2.2 

LIN 44.8 ± 1.2 50.7 ± 2.7 47.3 ± 2.1 

ELONG 78.3 ± 1.4 79.3 ± 2.2 80.3 ± 1.2 

No significant difference between seasons for all parameters (P > 0.05). Numbers in 

parentheses indicate sample size. VCL, curvilinear velocity (µm/sec); VSL, straight-line 

velocity (µm/sec); VAP, average-path velocity (µm/sec); ALH, amplitude of lateral head 

displacement (µm); BCF, beat cross frequency (Hertz); STR, straightness (ratio of 

VSL/VAP); LIN, linearity (ratio of VSL/VCL); ELONG, elongation (ratio in % of head 

width to head length). 
 

2.5 Discussion 

Heat stress has been widely shown to impede proper growth and reproductive function in domestic 

animals. Moreover, the negative effect sperm DNA damage can have on male fertility has been 

extensively studied in many species, including humans. However, to our knowledge, this is the first 

study that significantly demonstrates the critical link between ambient environmental heat stress and 

sperm DNA damage in a domestic production animal (Pacey, 2010). Interestingly, our results show 

that the peak wet tropical summer season found in Townsville, North Queensland, Australia, induces 

DNA damage and reduces concentration of boar spermatozoa without depressing its motility. This 

suggests that traditional evaluation of sperm motility may not detect inherently compromised 
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spermatozoa, which has important implications for the management of boars during periods of 

seasonal infertility. 

 

Predicting overall sperm quality using conventional established laboratory guidelines for semen 

analyses (i.e. sperm motility, morphology, viability, concentration, etc.) has proven to be controversial 

and/or insufficient in determining fertility outcomes in both animals and humans (Love and Kenney, 

1998; Carrell et al., 2003; Garcia-Macias et al., 2007). Semen known to be normal may in fact carry a 

sub-population of DNA damaged spermatozoa (Dobrinski et al., 1994; Kishikawa et al., 1999). 

Moreover, DNA damaged spermatozoa may actually swim and fertilize an oocyte normally (Ahmadi 

and Ng, 1999). However, nuclear damage to spermatozoa can negatively impact breeding efficiency 

(Evenson, 1999) along with early embryonic loss, interrupted embryo development, genetic 

abnormalities in the offspring, and lower pregnancy rates (Sailer et al., 1997; Ahmadi and Ng, 1999; 

Henkel et al., 2004; Paul et al., 2008). It is likely that the true impact of sperm DNA fragmentation 

would only manifest as arrested embryo development from the 4-cell stage onward; a period 

corresponding to genome activation in this species (Oestrup et al., 2009; Deshmukh et al., 2011). Of 

concern is the fact that the high rates of sperm DNA fragmentation observed during the peak wet 

season in our study may currently go undetected by the pig industry. Moreover, they could 

significantly contribute to the high rates of embryo loss and pregnancy failure observed in sows 

during summer infertility. 

 

Didion et al. (Didion et al., 2009) reported that a sperm sample with greater than 6% DNA 

fragmentation could result in decreased farrowing rates and average number of piglets born. In 

another study, 0.5 to 0.9 fewer piglets were born per litter when sperm DNA fragmentation was above 

2.1% (Boe-Hansen et al., 2008). In humans, 30.3% appears to be the threshold to discriminate 

between fertile and infertile men (Venkatesh et al., 2011). A similar threshold was reported by 

Brahem et al. (Brahem et al., 2011) in men with history of recurrent pregnancy loss, but with the 

fertile group showing much lower damage (approximately 10%). The overall threshold appears to be 
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about 8% in boars, 10-20% in bulls and 30% in humans (Rybar et al., 2004; Evenson and Wixon, 

2006). However, utmost care should be taken when comparing levels of DNA fragmentation 

determined by the Sperm Chromatin Structure Assay (SCSA®) and TUNEL assay (Evenson, 2016). 

While pioneering authors are convinced that both assays are correlated in terms of detecting and 

measuring the same existing DNA strand breaks (Gorczyca et al., 1993), the two techniques 

fundamentally differ in that TUNEL detects ‘real’ DNA damage and SCSA detects abnormal 

chromatin structure and ‘potential’ DNA damage that depends on the susceptibility of DNA to 

denaturation (Henkel et al., 2010). Given the level of DNA damage observed in boar spermatozoa by 

TUNEL in our study represents ‘real’ DNA damage at over 16%, it is highly likely that pregnancy 

rates and litter sizes in sows fertilized by such spermatozoa will be significantly reduced. Collectively 

however, these studies suggest that sperm DNA fragmentation could be a valuable prognostic tool to 

predict final fertility outcomes in pigs (Simon et al., 2013; Roca et al., 2015). 

 

In one study, Tsakmakidis et al. (Tsakmakidis et al., 2010) found that live morphologically normal 

spermatozoa and intact sperm DNA in boars accounted for 62.2% and 81.7% respectively of the 

variability in farrowing rates following artificial insemination. However, such findings appear to 

present limited value to indicate subfertility in fresh or stored semen from normospermic boars 

(Waberski et al., 2011). High standards of screening and maintaining boars used in large scale 

commercial artificial insemination centres may preclude less fertile boars, since up to 95.5% of semen 

samples collected from Pietrain boars used in such centres have < 5% sperm DNA fragmentation 

(Waberski et al., 2011). Nevertheless, early detection of boars with consistently low sperm DNA 

damage and good fertilizing capacity could prove economically beneficial especially in overcoming 

individual variations in boar fertility (Roca et al., 2015). Our boars were pre-screened based on 

classical semen quality parameters before they qualified for the study, but were not tested for fertility 

by artificial insemination nor natural mating. Such a scenario is likely to reflect current practices in 

boar selection in small to medium farms in developing countries of the tropics. Moreover, the 16-fold 

increase in DNA fragmentation observed in our study from 1% in the early dry to over 16% in the 
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peak wet season suggests that even carefully selected commercial AI boars may be prone to 

considerable sperm DNA damage and reduced fertility if exposed to elevated temperatures. 

 

Heat has previously been shown to induce sperm DNA fragmentation in mice. Immersion of the 

scrotum in 40-42°C water for 30 min causes DNA damage to spermatogonia, spermatocytes, 

spermatids and spermatozoa; resulting in a disruption to blastocyst formation, implantation failure, 

pregnancy loss, and a distortion in sex-ratio of offspring born (Paul et al., 2008; Perez-Crespo et al., 

2008). The underlying mechanism by which heat causes sperm DNA fragmentation may be attributed 

to a number of putative factors. For example, it has been observed that heat stress causes testicular 

germ cell loss, abnormal expression of a number of DNA repair genes such as Ogg1, Xpg and Rad54 

as well as reduction in the expression of oxidative stress-induced antioxidants (Rockett et al., 2001). 

Moreover, polyADP ribose polymerase that helps in detection and signalling of DNA strand breaks 

may also be reduced (Tramontano et al., 2000). Heat stress induced by scrotal immersion in 42°C 

water for 20 min also causes dissociation in X-Y chromosomes of mice and rats, leading to 

chromosomally unbalanced gametes, even in heat-adapted animals (Van Zelst et al., 1995). We 

postulate that the above mechanisms may play a significant role in inducing DNA damage in boar 

spermatozoa during periods of heat stress (Peña et al., 2016).  

 

Mean maximum (33.4 ± 0.2 °C) daily temperatures observed during the peak wet in Townsville 

appear to exceed the 29 °C threshold identified by Stone (Stone, 1982) as the upper critical air 

temperature in which Large White boars are able to produce normal numbers of spermatozoa. 

Moreover, even a daily mean temperature of 29.2 ± 0.2 °C combined with a daily mean relative 

humidity of 71.4 ± 1.2 during the peak wet season results in a temperature-humidity index of 92.9 ± 

1.1 - between caution and extreme caution zones of the NSW Heat Index chart or between danger and 

emergency zones for grower-finisher pigs (Hahn et al., 2009). By comparison, the daily mean THI for 

the early dry (75.9 ± 0.9) and late dry (73.6 ± 0.4) seasons fall safely outside the alert, let alone the 

danger zone. Consistent with this, our results show that the concentration of boar spermatozoa 
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decreased significantly in the peak wet season compared to early dry, but was similar to late dry. This 

is further supported by previous studies (Egbunike and Dede, 1980; Sarlós et al., 2011) that show a 

reduction in semen volume, concentration and total number of boar spermatozoa during the summer-

spring period (Zasiadczyk et al., 2015). Collectively, these studies suggest that seasonal heat stress 

causes disrupted spermatogenesis. Sperm concentration is an important aspect in pig production 

particularly with artificial insemination operations. Highly concentrated semen of sufficient volume 

can be economically beneficial as it can be extended into a large number of commercial doses to 

inseminate many females. Sperm concentration declined by only 1.6-fold in our study. However, 

compared to the 16-fold increase in sperm DNA damage, it is not clear whether such a reduction in 

sperm concentration, if left uncompensated, would have a major impact on litter size in sows.  

 

Evaluation of sperm motility by CASA permits the identification of ejaculates that are below optimal 

standards set by the boar stud which could otherwise result in lower fertility outcomes in commercial 

farm production (Holt et al., 1997; Gadea et al., 2004; Vyt et al., 2008). An extensive comparison of 

insemination records with semen parameters from 45,532 boar ejaculates over a 3-year period 

revealed that progressive motility, curvilinear velocity, and beat cross frequency highly influenced 

farrowing rate, while total motility, average path velocity, straight line velocity, and amplitude of 

lateral head displacement correlated with the total number of piglets born (Broekhuijse et al., 2012a). 

Other factors that affect over-all fertility include boar related sources of variation (direct boar effect) 

such as genetic line, technician and AI centre, age of the boar, and days between ejaculation 

(Broekhuijse et al., 2012b; Broekhuijse et al., 2012a). Accordingly, sperm motion characteristics 

obtained from CASA accounted for 9% of the boar and semen-related variation in farrowing rate and 

10% for total number of piglets born (Broekhuijse et al., 2012a). Nevertheless, when viewed on an 

individual level, the predictive value of motility parameters on conception and farrowing rates was not 

found to be significant and only became obvious when associated with other parameters (Vyt et al., 

2008). Given that sperm DNA integrity was found to account for nearly 82% of the variation in 

farrowing rates after artificial insemination in one study (Tsakmakidis et al., 2010), it would seem that 
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motility parameters may have a relatively minimal influence on downstream fertility compared to 

DNA damage. At the very least, this suggests greater attention be placed on the evaluation of DNA 

integrity of boar spermatozoa; something which the industry is yet to widely adopt. 

 

Heat stress can cause a significant decrease in sperm motility (Mcnitt and First, 1970; Wettemann et 

al., 1979; Heitman et al., 1984). However, mean total motility across seasons among our boars was 

greater than 70%, the cut-off point for sperm motility used in artificial insemination (Holt et al., 1997; 

Eriksson and Rodriguez-Martinez, 2000). Moreover, the motility of spermatozoa collected in the peak 

wet season did not differ to early or late dry seasons across all CASA parameters we evaluated, 

despite a 16-fold increase in DNA damage. The difference in results may reflect the use of subjective 

measures of sperm motility in these early studies, compared to more precise quantitative measures 

using CASA in our study. On this basis, we postulate that even objective measures of sperm motility 

as determined by CASA, may not detect DNA-compromised spermatozoa. As such evaluation of 

sperm DNA fragmentation may provide greater insight into potential contributing factors causing 

poor reproductive performance in the sow during summer infertility (Sutovsky, 2015). 

 

In conclusion, summer heat stress significantly increases sperm DNA damage in boars housed in 

tropical environments and causes a significant decline in sperm concentration. Sperm motility does 

not appear to be affected by season and, as such, measurement of this parameter alone may mask 

inherent deficiencies found in DNA damaged boar spermatozoa. Evaluation of sperm DNA integrity 

could provide an important diagnostic tool to further discriminate spermatozoa of low and high 

quality during summer.  
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3.1 Abstract 

Despite its limited application in commercial pig production, cryopreservation of boar 

spermatozoa can provide enormous benefits to facilitate faster distribution of desirable genes, 

to control disease transmission and to facilitate gene banking. Nevertheless, its broad use is 

currently hindered by a reduction in viability and fertilising capacity of post-thawed 

spermatozoa. Moreover, the freeze-thaw process has been observed to increase sperm DNA 

damage, which could subsequently contribute to early embryo loss. The aim of this study was 

to determine the cryoprotective effect of different concentrations of glycerol on DNA 

integrity and motility of frozen-thawed boar spermatozoa. TUNEL and flow cytometry of 

20,000 spermatozoa/boar/treatment revealed no significant difference in the percentage of 

sperm DNA damage between fresh or frozen-thawed sperm cryopreserved at 3%, 6% and 8% 

glycerol (1.9 ± 0.4 vs. 3.5 ± 0.8 vs. 2.8 ± 0.5 vs. 3.0 ± 0.8% respectively; P > 0.05) Computer 

assisted sperm analysis of 20 x 106 sperm/ml at 38 °C demonstrated that both total and 

progressively motile spermatozoa were higher in fresh than frozen-thawed samples (total 

motility: 72.1 ± 2.4 fresh vs. 35.27 ± 4.1 3% vs. 26.8 ± 2.5 6% vs. 28.6 ± 3.0 8% glycerol; 

progressive motility: 39.5 ± 2.2 fresh vs. 23.8 ± 3.2 3% vs. 19.5 ± 2.7 6% vs. 18.1 ± 2.2 8% 

glycerol, both P ≤ 0.05, respectively). Other CASA motion parameters such as straight-line 

velocity, average path velocity, straightness and linearity were generally better in frozen than 

fresh samples (P ≤ 0.05). Our study confirms that boar semen can be safely cryopreserved 

using glycerol without affecting sperm DNA integrity using standard protocols for boar 

sperm freezing. Moreover, we suggest that a glycerol concentration of 6% is sufficient to 

maximize DNA protection, while being low enough to prevent major declines in sperm 

motility due to cell toxicity.  
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3.2 Introduction 

Despite advantages such as faster distribution of desirable genes, control of disease 

transmission and gene banking, the use of frozen-thawed semen still lags behind traditional 

chilled boar semen in artificial insemination (AI) operations (Johnson et al., 2000; Bailey et 

al., 2008). This is mainly due to the complex processing and expensive equipment required 

for freezing, along with significantly reduced survival and fertility of frozen-thawed 

spermatozoa. Damage to the structural integrity and function of the sperm (including sperm 

membranes, mitochondrial architecture, motility and possibly DNA integrity) during freezing 

and thawing procedures can lead to greatly reduced fertilisation success (Watson, 1995; 

Thurston et al., 2001; Roca et al., 2006). Moreover, up to 70% of the variability in pig sperm 

cryosurvival is due to individual boar effects (Holt, 2000; Roca et al., 2006).  

 

While standard protocols for boar sperm cryopreservation have been used extensively (Pursel 

and Johnson, 1975; Aricultural Research Service - US Department of Agriculture, 2007), 

cellular stress occurs when the temperature drops below 0 oC. The damage is mainly due to 

osmotic dehydration of the cell and crystallisation of the extracellular components (Watson, 

1995). In order to overcome this, freezing media typically includes cryoprotective agents 

(Fuller, 2004). Glycerol (1,2,3-propanetriol or glycerine), which is the main by-product upon 

transesterification of vegetable oils or animals fats, is an organic molecule abundant in nature 

as a structural component of many lipids (Pagliaro et al., 2007; Da Silva et al., 2009). 

Glycerol has been commonly used as a cryoprotectant at different concentrations ranging 

from 2-4% in many different freezing protocols across species, to improve the motility and 

plasma membrane integrity of sperm after thawing (Almlid and Johnson, 1988; Fiser and 

Fairfull, 1990; Das et al., 2016). When spermatozoa are mixed with hypertonic medium 
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containing glycerol, water leaves the cells and is replaced by glycerol. This mechanism 

protects the cells from ice crystal formation during freezing (Fowler and Toner, 2005).  

Moreover, glycerol has proven to be superior to other cryoprotectants in preserving boar 

spermatozoa (Watson, 1995; Kim et al., 2011), but boar spermatozoa appears to be more 

sensitive to the standard concentrations of glycerol used in sperm cryopreservation protocols 

of other domestic species (Almlid and Johnson, 1988). This high sensitivity has been 

attributed to boar sperm’s hypersensitivity to cold shock including the high levels of 

unsaturated phospholipids and low levels of cholesterol on the boar sperm plasma membrane; 

thus increasing the likelihood of oxidative damage (Rath et al., 2009).   

 

Despite the critical role glycerol plays in sperm cryosurvival, high concentrations can be 

toxic to cells (Buhr et al., 2001; Macias Garcia et al., 2012), affecting sperm motility and 

acrosomal integrity. The freezing process itself may also cause damage to sperm DNA, 

which could potentially compromise early embryo survival. Sperm DNA fragmentation has 

been observed in the boar (Hamamah et al., 1990), human (De Paula et al., 2006), ram (Peris 

et al., 2004), and mouse (Yildiz et al., 2007) as a result of cryopreservation. Boar and human 

spermatozoa, had significantly reduced Feulgen-DNA content and sperm nuclear surface area 

as a result of freeze-thawing; leading to a state of ‘overcondensation’ (Royere et al., 1988; 

Hamamah et al., 1990), which may explain the reduced fertilising potential of frozen 

spermatozoa (Royere et al., 1991).  

 

Currently, there is still limited information about the optimal concentration of glycerol to 

protect DNA integrity during cryopreservation of boar spermatozoa. It has been reported that 

2-4% glycerol results in better sperm motility and acrosome integrity, while 8% reduction 

reduces motility and normal acrosome morphology (Almlid and Johnson, 1988; Buhr et al., 
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2001; Kim et al., 2011). Moreover, 3% glycerol (in either lactose-hen egg yolk or extender 

with lactose, lyophilized lipoprotein fractions isolated from ostrich egg yolk) significantly 

reduced DNA damage (determined by comet assay) in frozen-thawed boar spermatozoa than 

those cryopreserved without glycerol (Fraser and Strzeżek, 2007). However, terminal 

deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) has been reported to provide 

more robust predictive results of DNA damage than neutral comet or other similar assays 

(Ribas-Maynou et al., 2013; Cui et al., 2015). As such, based on the limited information 

above, our study aimed to investigate which glycerol concentration between 3, 6 and 8% 

would provide the best DNA protection (determined by TUNEL assay), without inducing 

toxic effects on function as measured by sperm motility.   

  

3.3 Materials and Methods 

Boars and Location 

Six Large White boars were purchased at 11-12 months of age from a commercial piggery 

and reared in an open, gable roof-type facility within individual 3 x 3 metre pens at the 

College of Public Health, Medical and Veterinary Sciences, James Cook University, 

Townsville, Queensland, Australia (19°19'46.4"S, 146°45'40.3"E). Boars were exposed to 

prevailing winds and ambient temperatures throughout the day. Each boar was fed 1.8 - 2.3 

kg/day of a commercial pelleted diet (Barastoc, Ridley AgriProducts, Victoria, Australia) to 

maintain a body score between 3 - 3.5. Water was provided ad libitum via an automatic pig 

nipple waterer. Experiments were approved by the James Cook University Animal Ethics 

Committee.  

 

Semen Collection and Processing 
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The procedures used for semen collection and processing were according to Pena et al. 

(2018). Briefly, sexually mature boars were collected using the gloved hand technique 

(Hancock and Hovell, 1959) by the same person at regular intervals prior to experimental 

sampling. This was necessary to maintain regular turnover of mature epididymal sperm 

populations while maintaining the boars training to the dummy mount (Minitube, USA). For 

inclusion in the study, boars were selected that produced semen with minimum standards: 

having spermatozoa of at least 70% motility, 65% normal morphology and an ejaculate 

volume of at least 100 ml. Semen samples from the time of collection to dilution in 1:3 

Beltsville Thawing Solution (BTS; pH 7.2; Pursel and Johnson, 1975) were maintained at 38 

ºC in a water bath during processing. Concentration of sperm was determined using a 

Neubauer haemocytometer following standard protocols (WHO, 2010). 

 

Freezing and Thawing of Semen Samples 

Semen was frozen following procedures adapted from Pursel and Johnson (1975), 

Agricultural Research Service - US Department of Agriculture (2007) and Purdy (2008). 

Initially, each 1:3 BTS-diluted boar ejaculate was split into 3 cryopreservation treatments and 

equilibrated at room temperature for 1 h before storage at 15 °C for not more than 5 h until 

needed. Thereafter, samples were centrifuged and resuspended in 8 mL BF5 cooling extender 

(CE; 52 mM TES, 16.5 mM Tris(hydroxymethyl)aminomethane, 178 mM glucose, 20% egg 

yolk; ~300 × 106 sperm/mL), and cooled to 5 °C over 2.5 h. Samples were then further 

diluted drop-wise with 4 mL BF5 freezing extender (FE; containing 2.5% Equex Paste - 

Minitube, Tiefenbach, Germany, and either 3, 6 or 8% glycerol in BF5 CE). Sperm samples 

of ~200 × 106 sperm/mL were then manually loaded into 0.5 mL CBS straws (IMV 

Corporation, Minneapolis, MN, USA) using a modified sterile syringe (Braun) with a pipette 

tip attached into it. Straws were then frozen in liquid nitrogen vapour using an IceCube 
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programmable freezer (Minitube, Tiefenbach, Germany) at the following freeze rate: -20 

°C/min from 5 to -8 °C; -69 °C/min from -8 to -120 °C; -20 °C/min from -120 to -140 °C. 

Straws were grouped in goblets according to treatment then stored in liquid nitrogen for 

approximately three months. Prior to downstream analysis of sperm motility and DNA 

integrity, samples were thawed by submerging two 0.5 mL semen straws in a 38 °C water 

bath while gently agitating for 30 s (Buranaamnuay et al., 2011) and gently mixed into 9 ml 

of BTS. Thereafter, the straws were maintained at 38 °C and processed immediately for 

analysis.  

 

Determination of motility characteristics by CASA 

About 3 µl of 20 x 106 sperm/mL of fresh or frozen-thawed semen in BTS was loaded into 

each chamber of 38 ºC pre-warmed Leja Standard Count 4 Chamber Slides (Leja Products, 

Nieuw-Vennep, Netherlands) and loaded into a computer-assisted sperm analyser (CASA; 

IVOS version 10, Hamilton Thorne Research. Beverly, MA, USA). At least five random 

fields of approximately 40 spermatozoa each were examined per sample. Motility 

characteristics of spermatozoa were analysed as previously described by Peña et al. (2015). 

 

Sperm DNA Integrity Assay and Flow Cytometric Analysis 

The procedures used for sperm DNA evaluation were according to Pena et al. (2018) using 

the Terminal deoxynucleotidyl transferase dUTP nick end labelling assay according to 

manufacturer’s instructions (TUNEL; In Situ Cell Death Detection Kit, Fluorescein, Version 

17, Nov 2012, Roche Diagnostics, Mannheim, Germany) with modifications. The TUNEL 

reaction labels DNA damaged cells positive for Fluorescein isothiocyanate (FITC). Multiple 

control and reaction treatments were prepared including: Unlabelled controls (U1 and U2) 

resuspended in 50 µL PBS; Negative controls (N1 and N2) resuspended in 50 µL TUNEL 
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labelling solution without the enzyme; and Positive controls (P1 and P2) and test samples 

resuspended in 50 µL TUNEL reaction mixture containing enzyme. In addition, U2, N2, P2 

and all test samples were counter-stained with 5 µg/mL of the nucleic acid stain 4', 6-

diamidino-2-phenylindole (DAPI) to ensure that only nucleated TUNEL-positive 

spermatozoa were accounted for as DNA damaged cells during analysis by FACS. 

Fluorescent microscopy of stained boar sperm was conducted to confirmed specificity of the 

staining technique showing FITC/DAPI positive DNA damaged sperm in green alongside 

DAPI positive intact nucleated boar sperm in blue (Peña et al., 2017). 

 

Twenty-thousand cells per sample at about 150 events/second were evaluated using a 

CyanADP flow cytometer (Dako Cytomation, Glostrup, Denmark) after filtering samples 

through to a 60 µm nylon woven net filter into 5 mL round-bottom polystyrene tubes. Before 

the treatment samples were analysed, control samples were used to accurately define the 

different cell staining populations delineated into four distinct quadrants by adjusting both 

vertical and horizontal thresholds: (i) R3, FITC-positive cells only; (ii) R4, both FITC and 

DAPI-positive cells; (iii) R5, unstained cells; and (iv) R6, DAPI-positive cells only. Sample 

N2 (Negative control in Label Solution with DAPI) was used to set a 0.5% threshold cut-off 

before running all test samples while cells in R4 were considered as nucleated DNA damaged 

spermatozoa, expressed as a percentage of the total number of cells analysed within the gated 

area.  

 

Data Presentation and Statistical Analyses 

Data were analysed using IBM SPSS Statistics version 22 (IBM Corporation, NY, USA). 

Graphs were plotted using Microsoft Excel 2016. The Shapiro-Wilk test was used to evaluate 

normality of the data while Levene’s test was used to determine if variation between groups 
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was homogeneous. Data were Log10 transformed when the distribution was not found to be 

normal and the variance was heterogeneous. Statistical comparisons were carried out using 

one-way ANOVA followed by a post-hoc Tukey's HSD test to determine significant 

differences in sperm DNA damage. A Kruskal Wallis test was used to determine differences 

in sperm quality (total motility, progressive motility, and motion parameters determined by 

CASA). If the Kruskal Wallis test showed one or more means differed then this was followed 

by the post hoc Mann-Whitney U test to determine which means differed significantly. The 

level of significant difference was set at P ≤ 0.05.   

 

3.4 Results 

While DNA damage appeared to be slightly lower in fresh spermatozoa, there was no 

significant difference between fresh or frozen-thawed spermatozoa at each concentration of 

glycerol (Fig. 3-1).  

 

Figure 3-1: Mean (± SEM) percentage of DNA damage in fresh and frozen-thawed boar 

spermatozoa cryopreserved using different concentrations of glycerol.  

No significant difference observed (P > 0.05); n=6 boars. 
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Both total and progressively motile spermatozoa were higher in fresh than frozen-thawed 

spermatozoa (P ≤ 0.05). There was no difference observed in either motility parameter 

between frozen-thawed samples cryopreserved in either 3, 6 or 8% glycerol (P > 0.05; Figs. 

3-2a and 3-2b).  

 

 

 

Figure 3-2: Mean (± SEM) percentage of total (a) and progressive (b) motility in fresh 

and frozen-thawed boar spermatozoa cryopreserved using different concentrations of 

glycerol. 

Values not sharing the same letter are significantly different (P ≤ 0.05); n=6 boars. 
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Sperm motility and head shape characteristics determined by CASA are shown in Table 3-1. 

There was no difference observed in curvilinear velocity, lateral head displacement, beat 

cross frequency, and elongation between fresh and cryopreserved samples (P > 0.05). By 

contrast, straight-line velocity, average path velocity, straightness and linearity were 

significantly higher after cryopreservation using 3 and 6% glycerol (as well as 8% glycerol 

for straight-line and average path velocities) compared to fresh samples (P ≤ 0.05), but these 

parameters did not differ significantly between glycerol treatments (P > 0.05; Table 3-1). 

 

Table 3-1: Mean (± SEM) sperm motility and head shape characteristics between fresh 

and frozen-thawed boar spermatozoa cryopreserved using different concentrations of 

glycerol. 

CASA Parameter 
Fresh 

(n=6) 

Post-thaw 

3% Glycerol 

(n=6) 

6% Glycerol 

(n=6) 

8% Glycerol 

(n=6) 

VCL 51.7 ± 5.2 55.6 ± 3.0 63.7 ± 5.0 65.9 ± 6.5 
VSL 25.3 ± 2.1b 33.0 ± 2.3a 35.8 ± 2.7a 35.6 ± 3.2a 
VAP 30.2 ± 2.9b 37.7 ± 2.3a 41.8 ± 3.0a 40.9 ± 3.5a 
ALH 2.6 ± 0.2 2.5 ± 0.2 2.7 ± 0.2 2.7 ± 0.2 
BCF 21.4 ± 0.9 18.1 ± 1.8 16.0 ± 2.0 16.6 ± 1.9 
STR 79.9 ± 1.9b 83.4 ± 2.3a 83.9 ± 2.6a 83.9 ± 2.2ab 
LIN 49.6 ± 2.5b 58.6 ± 3.1a 57.8 ± 2.7a 54.7 ± 2.5ab 
ELONG 79.0 ± 1.8 79.2 ± 3.3 81.0 ± 3.9 82.9 ± 3.7 

Values with different letters differ significantly between treatments for each parameter (P ≤ 

0.05); Numbers in parentheses indicate sample size. VCL, curvilinear velocity (µm/sec); 

VSL, straight-line velocity (µm/sec); VAP, average-path velocity (µm/sec); ALH, amplitude 

of lateral head displacement (µm); BCF, beat cross frequency (Hertz); STR, straightness 

(ratio of VSL/VAP); LIN, linearity (ratio of VSL/VCL); ELONG, elongation (ratio in % of 

head width to head length) 
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3.5 Discussion 

Cryopreservation using boar semen is not new, however our study demonstrates that despite 

the reduction in total and progressive motility, boar spermatozoa can be safely frozen in 3-

8% glycerol-containing medium without significantly damaging its DNA integrity or other 

motility parameters. It is yet to be determined whether such frozen-thawed sperm is of 

sufficient quality for artificial insemination, but at the very least is suitable for in vitro 

fertilization, without the induction of additional DNA damage caused by the cryopreservation 

process itself. It is important to select a glycerol concentration that is sufficiently adequate to 

protect DNA integrity while being low enough to prevent cell toxicity. As such, our study 

suggests a glycerol concentration of 6% is sufficient to achieve both outcomes.  

 

Sperm DNA integrity can be compromised during freezing (Yildiz et al., 2007) and boar 

sperm appears to be highly susceptible to cryoinjury mainly due to its hypersensitivity to cold 

shock along with the elevated levels of unsaturated phospholipids and low levels of 

cholesterol on the plasma membrane; predisposing sperm to oxidative damage (Rath et al., 

2009).  The freeze-thaw process can cause reduction of glutathione (GSH) content (Gadea et 

al., 2004), tyrosine phosphorylation associated with capacitation (Kumaresan et al., 2012), 

calcium imbalance, and acrosome damage among others (reviewed by Yeste, 2015). Damage 

to sperm DNA due to freezing could potentially affect fertilisation and/or blastocysts 

formation rates in vitro (Royere et al., 1988; Hamamah et al., 1990; Royere et al., 1991; 

Watson, 1995; Johnson et al., 2000), cause early embryonic loss, interrupted embryo 

development, genetic abnormalities in offspring, lower pregnancy rates (Ahmadi and Ng, 

1999; Henkel et al., 2004; Paul et al., 2008), and ultimately negatively impact breeding 

efficiency (Evenson, 1999). In fact, boar sperm with greater than 6% DNA fragmentation was 

found to cause both decreased farrowing rates and average number of piglets born (Didion et 
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al., 2009); with up to 0.5 to 0.9 fewer piglets born per litter when sperm DNA fragmentation 

was above 2.1% (Boe-Hansen et al., 2008). Moreover, freeze-thawing may lead to 

overcondensation of sperm chromatin which can lead to poor conception rates in 

cryopreserved boar and human sperm (Hamamah et al., 1990). Hence, it is important to 

maintain sperm DNA integrity during sperm cryopreservation. In addition, evaluating sperm 

DNA integrity before and after freezing could provide valuable information about individual 

boar susceptibility to the freeze-thaw process (Holt et al., 2005). Our study found no 

difference in the proportion of DNA damage between fresh and frozen spermatozoa at 3, 6 

and 8% glycerol concentration, respectively. Our study appears to support earlier results 

(Fraser and Strzeżek, 2007) as measured by neutral comet assay, using 3% glycerol in either 

a lactose-hen egg yolk (lactose-HEY-G) extender or a lactose-lyophilized lipoprotein 

fractions extracted from ostrich egg yolk (lactose-LPFo-G) extender. Although not 

significant, in our study 6% glycerol appeared to provide the lowest rate of sperm DNA 

damage across the n=6 boars tested; a concentration consistent with that recommended in 

standard freezing protocols by the Agricultural Research Service - US Department of 

Agriculture (2007) and several others (Purdy, 2008; Rath et al., 2009). Nonetheless, our study 

re-affirms the protective effect of glycerol in maintaining sperm DNA integrity during 

freezing. 

 

The motility of spermatozoa before and after freezing in different concentrations of glycerol 

was also evaluated using CASA. Sperm motility is an important parameter to detect semen of 

poor fertility potential both in farm (Holt et al., 1997; Vyt et al., 2008) and laboratory use 

(Tardif et al., 1999). Moreover, it can also be used to determine any possible toxic effect high 

concentrations of glycerol has during the freeze-thaw process. Previous studies found that 

motility and acrosomal integrity of boar spermatozoa frozen with 0 and 8% glycerol were 
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significantly lower than those frozen with 2 and 4% glycerol (Almlid and Johnson, 1988; 

Buhr et al., 2001); while 5% glycerol exhibits maximum toxicity in stallion sperm due to 

osmotic and non-osmotic effects (Macias Garcia et al., 2012). When compared with other 

cryoprotectants such as dimethylacetamide (DMA) and dimethyl sulfoxide (DMSO), glycerol 

at 3% yielded better motility and intact plasma membrane integrity than either DMA or 

DMSO (Kim et al., 2011). However, in another recent study glycerol was replaced with 

trehalose, a non-permeable cryoprotectant, resulting in much better post-thaw sperm quality 

(Athurupana et al., 2015). 

 

In our study, there was a significant drop to less than 35% in both total and progressively 

motile spermatozoa post-thaw at each glycerol concentration. While utilisation of frozen-

thawed semen in pig AI is very limited and far from the quality used in cattle, this level of 

motility is still suitable for use in pig IVF, where average post-thaw motility of 38% has been 

used (Daigneault et al., 2014). Our highest post-thaw total motility of 35% was achieved with 

3% glycerol and lowest of 27% with 6% glycerol, suggesting these rates of motility should 

still be sufficient for porcine IVF. Nevertheless, post-thaw motility of cryopreserved boar 

spermatozoa does not appear to predict penetration rates nor IVF success (Martinez et al., 

1993; Suzuki et al., 1996); although other studies argue that motility along with other sperm 

quality parameters correlate with oocyte penetration rates (Xu et al., 1996; Gadea and Matas, 

2000). In humans, a minimal 30% motility is sufficient for successful IVF while ICSI can 

facilitate fertilisation even with immotile and/or morphologically abnormal spermatozoa 

(Michelmann, 1995). Surprisingly, straight-line velocity, average path velocity, linearity and 

straightness parameters were better in our frozen-thawed than fresh boar semen samples. 

While this was unexpected, it is possible this may be due to the fact that processing of our 

frozen-thawed spermatozoa removed the seminal plasma compared to fresh samples, despite 
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both fresh and frozen samples being diluted in BTS medium. Prolonged storage of sperm in 

seminal plasma has been shown to result in reduced motility without affecting viability in 

stallion spermatozoa (Mata-Campuzano et al., 2015). Moreover, it is known that motility of 

frozen-thawed boar spermatozoa can be improved by supplementing freezing media with 

various forms of enrichments such as Vitamin E analogue Trolox and glutathione (Pena et 

al., 2003; Gadea et al., 2005), suggesting that additives in our freeze media may have 

enhanced some motility parameters. We did not examine capacitation status in our frozen-

thawed boar spermatozoa. However, the freeze-thaw process may also initiate physiological 

changes to the plasma membrane of spermatozoa leading to capacitation (Gillan et al., 1997; 

Thundathil et al., 1999), and by so-doing, trigger the beginning of hyperactivated motility.  

 

The quality of frozen boar spermatozoa is still insufficient for extensive use in commercial 

pig production, despite its potential to facilitate gene banking for easy and faster distribution 

of desirable genes while helping control transmission of diseases (Bailey et al., 2008; Knox, 

2011). In this respect, our results demonstrate that semen can be successfully cryopreserved 

using glycerol as cryoprotectant at 3-8% in boar freezing medium, without inducing sperm 

DNA damage. A glycerol concentration of 6% appears to provide slightly better levels of 

DNA protection but has slightly lower total motility than 3 and 8% glycerol. Being able to 

cryopreserve boar spermatozoa without inducing additional DNA damage could be highly 

beneficial to in vitro heat stress studies, in which higher quality pig oocytes harvested in 

winter can be used to assess developmental competence of embryos fertilized by heat stressed 

sperm obtained and frozen in summer. 
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4.1 Abstract 

Induction of heat stress as an experimental procedure in animals is commonly used to 

examine heat-related impacts on sperm quality. Heat stress is widely known to negatively 

affect sperm motility, morphology, viability and storage among others. We recently 

demonstrated that ambient environmental heat stress encountered by boars during tropical 

summer led to increased sperm DNA damage compared to other seasons of the year. This 

study aimed to develop reliable heat stress models that could be used at any time of the year, 

to advance the study of seasonal infertility in the pig under controlled conditions. Heat stress 

was induced by either housing boars inside a temperature-controlled room at elevated 

temperatures (hot room) for 42 days, or by directly exposing boar semen to heat in vitro (heat 

shock) at various temperatures. Our in vivo hot room boars were exposed to temperatures and 

temperature humidity index that exceeded both the dry winter season control and those 

observed during Townsville’s peak wet summer season; resulting in a significant rise in core 

body temperature each afternoon. This was sufficient to induce biologically meaningful 

levels of DNA damage in boar spermatozoa (10.1 ± 1.9 hot room vs. 6.7 ± 1.7% control; P > 

0.05), but this was not statistically significant from controls largely due to individual boar 

variability. Similar results were observed with the in vitro heat shock model, but we were 

only able to mimic levels of sperm DNA damage (10.8 ± 4.0, 19.4 ± 7.8 and 16.9 ± 6.3%) 

observed during the natural tropical summer of Townsville, using extreme in vitro 

temperatures (46, 50 and 54 °C, respectively) that rendered boar spermatozoa completely 

immotile or dead. Neither sperm concentration nor multiple motility parameters were affected 

by the in vivo hot room compared to control. By contrast, most motility parameters declined 

rapidly to zero above 40 or 42 °C for the in vitro heat shock model. While boar spermatozoa 

is vulnerable to heat-induced DNA damage, our results suggest that temperature combined 

with individual factors may contribute to a boar’s overall susceptibility to heat stress. The 
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development of reliable heat stress models, particularly in vitro models, is a priority to 

overcome environmental variability, reduce whole animal experiments, and provide a 

putative diagnostic fertility screening tool to evaluate heat-tolerance in the boar. 

4.2 Introduction 

Summer infertility associated with heat stress is still a major problem in pig reproduction 

particularly in the tropics. Reduced reproductive output in pigs during warmer months results 

in significant losses in profitability and have broader economic implications, given the high 

demand for pork worldwide (National Pork Board, 2017). Ambient temperatures beyond the 

animal’s thermal comfort zone (i.e. 18-20º C; Stone, 1982; Prunier et al., 1997) can 

predispose pigs to a wide range of heat stress related problems; affecting food and water 

consumption, general discomfort and reduced reproductive performance. While heat stress 

can affect both males and females, the effect on semen production and reproductive efficiency 

has been extensively studied as early as the 1950’s and 60’s in various farm animals 

including rams (Moule and Waites, 1963), bulls (Casady et al., 1953) and boars (Mcnitt and 

First, 1970; Wettemann et al., 1976; Egbunike and Dede, 1980; Stone, 1982; Wettemann and 

Bazer, 1985). Spermatogenesis is highly sensitive to temperature, and in boars heat stress 

causes a decline in sperm motility, concentration, volume, morphology and overall 

fertility/fecundity (Thibault et al., 1966; Mcnitt and First, 1970; Wettemann et al., 1976; 

Wettemann and Desjardins, 1979; Cameron and Blackshaw, 1980; Egbunike and Dede, 1980; 

Greer, 1983; Heitman et al., 1984; Wettemann and Bazer, 1985; Flowers, 1997; Huang et al., 

2000; Boma and Bilkei, 2006; Rahman et al., 2011). Furthermore, given the extensive use of 

lean, fast-growing genotypes in commercial production, it is unclear how today’s modern 

temperate pigs tolerate extreme environmental temperatures found in tropical production 

systems (Parrish et al., 2017). As such, pig producers need to consider serious investment in 
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mitigation strategies to cool boars during periods of heat stress to minimise productivity losses 

associated with summer infertility.  

 

The negative impact of heat-stress on sperm DNA damage and the downstream reduction in 

embryo viability in the pig has been discussed previously (Peña et al., 2017a). Recently, we 

have demonstrated using TUNEL that tropical summer induces 16% sperm DNA damage; 

which can be mitigated by antioxidant supplementation (Peña et al., 2017b; Chapter 5). The 

downstream effect on embryo viability and litter size is yet to be determined but, in mice, 30 

min scrotal heat stress induced sperm DNA damage, which consequently resulted in arrested 

embryo development, reduced pregnancy rates and litter size (Paul et al., 2008a; Paul et al., 

2009). What we do know in pigs is that sperm with greater than 2.1% or 6% DNA 

fragmentation, as determined by SCSA, result in reduced litter size (Boe-Hansen et al., 2008) 

and decreased farrowing rates (Didion et al., 2009), respectively. Potential litter size is 

correlated with good vs poor structual chromatin in spermatozoa after artificial insemination 

(Waberski et al., 2011).  Thus, we can conclude that 16% DNA damaged sperm induced by 

tropical summer is likely to have a considerable negative impact on embryo viabilty, and may 

partly explain reduced litter size observed in sows during seasonal infertilty (Peña et al., 

2017a). 

 

Further work is needed to evaluate boar factors important in seasonal infertility in the sow, 

particularly sperm DNA damage, however this research is limited by the annual nature and 

variability of extreme ambient temperatures. The development of suitable in vivo and in vitro 

heat stress models for the boar that can be used at any time of the year, could accelerate 

progress. In previous studies, boars were exposed to a controlled hot room environment, 

direct sunlight or ambient temperatures ranging from 30 °C to 40 °C for between 3-90 days 
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(Mcnitt and First, 1970; Wettemann et al., 1976; Cameron and Blackshaw, 1980; Stone, 

1982). Sperm DNA damage was not assessed in any of these studies, however in one study, 

at least 1.5 times fewer embryos survived the first month of pregnancy in gilts impregnated 

with semen from heat stressed boars (Wettemann et al., 1976). It is possible, the thermo-

neutral zone may have increased by as much as 5 °C in modern pigs, compared to those three 

to four decades ago (Parrish et al., 2017), warranting further research using current lines.  

 

While scrotal insulation may provide a good testicular model for heat stress (Parrish et al., 

2017), the use of a temperature-controlled hot room may be a more appropriate whole-animal 

heat stress model to induce systemic physiological responses (including basal body 

temperature changes and alterations to the hypothalamic-pituitary-testicular hormone 

regulatory axis) as the animal attempts to cope with the stressor (Setchell, 1998). Conversely, 

a low-cost, welfare-friendly model might involve direct exposure of boar ejaculates to 

temperature extremes. Such an approach only requires fresh-chilled boar semen, which can 

be readily purchased from commercial boar studs to rapidly test susceptibility of individual 

boars without having to induce heat stress on the animal itself.  The aim of this study was to 

evaluate the use of in vivo (hot room) and in vitro (heat shock) models to mimic levels of 

sperm DNA damage found in boars exposed to tropical summer temperatures in Townsville, 

North Queensland, Australia (Peña et al., 2017b).   

4.3 Materials and Methods 

Boars and Location 

Prior to the experiment, n = 6 Large White boars between 2.5 - 2.8 years of age were housed 

and maintained in an open, gable roof-type facility within individual 3 x 3 metre pens at the 

College of Public Health, Medical and Veterinary Sciences, James Cook University, 

Townsville, Queensland, Australia (19°19'46.4"S, 146°45'40.3"E). Boars were exposed to 
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prevailing winds and ambient temperatures throughout the day. Each boar was fed 2.3 - 2.5 

kg/day of a commercial pelleted diet (Barastoc, Ridley AgriProducts, Victoria, Australia) to 

maintain a body score between 3 - 3.5. Water was provided ad libitum via an automatic pig 

nipple waterer. Experiments were approved by the James Cook University Animal Ethics 

Committee.  

 

Induction of Heat Stress 

Hot Room Model 

All n = 6 boars were used in the ‘hot room’ experiment using a standard 3 x 2 matched cross-

over design in which 3 boars act as parallel controls for 3 treatment boars followed by a 

reversal of roles during a 2nd treatment cycle after a 42-day recovery period. The first batch of 

boars were introduced to a temperature-controlled facility (hot room) containing individual 

stalls during the early dry (July 2015) and the second batch in late dry season (September 

2015); both of which are cooler than Townsville’s peak wet season (Fig. 4-1).  

 

The hot room was maintained at approximately 30 0C between 9am - 5pm, mimicking the 

ambient temperature experienced in Townsville during the peak wet season (Chapter 2), and 

a relative humidity between 55-65% (Fig. 4-1). Moreover, 12 h artificial light was 

automatically provided daily from 6am to 6pm. Boars inside the hot room were fed and hosed 

once every day before 9am. Water was provided ad libitum as previously described. 
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Figure 4-1: Mean (± SEM) daily ambient temperature, relative humidity and 

temperature-humidity index between peak wet, hot room and control treatments in 

Townsville, North Queensland, Australia. 

Different letters indicate a significant difference between treatment groups (P ≤ 0.05). 

 

Moreover, rectal temperatures were collected twice daily throughout the treatment period 

using a digital thermometer during feeding time in the morning and at 5pm. Control boars 

were housed in parallel within the adjacent pig facilities (open, gable roof-type shed) 

described earlier and were managed the same as hot room boars. A temperature and relative 

humidity tracking device was installed in both facilities to monitor ambient conditions 

experienced by boars during the treatment period. Environmental data collected during these 

two treatments was compared to data collected during extreme ambient conditions 

experienced by boars in the peak wet season as described previously (Peña et al. 2017b). 

 

Heat Shock Model 

On a separate occasion, semen was collected once over a two-day period from each of these n 

= 5 boars and used in an in vitro heat shock experiment.  Individual semen samples were 

aliquoted in an Eppendorf tube and inserted into a temperature adjustable heat block. Heat 
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stress was induced by exposing individual semen samples for 30 min (Paul et al., 2008) to 

testicular (35.5 °C); body (38.8 °C); and several different elevated (40, 42, 46, 50 and 54 °C) 

temperature treatments. Temperatures at the lower range were based upon the boar’s core and 

peripheral temperatures (Stone, 1981), while other temperatures rose by 4 °C increments in 

an effort to artificially induce DNA damage in mature highly DNA-condensed boar 

spermatozoa. After exposure, semen samples were evaluated for motility and DNA integrity 

as described below. 

 

Semen Collection and Processing 

After hot room treatment, boars were returned to their original pens and semen was collected 

1 - 2 days later using a dummy sow (Minitube, USA) and the gloved hand technique as 

previously described (Hancock and Hovell, 1959). Briefly, the boar’s penis was directed into 

a plastic semen collection bag fitted inside a collection cup and covered with non-woven 

tissue filters (all Minitube, Victoria, Australia) to remove the gel fraction. The collection bag 

was then placed inside an insulated container containing 38 ºC water and immediately 

brought to the laboratory for processing as previously described (Peña et al., 2017b).   Semen 

samples were analysed for sperm concentration using a Neubauer haemocytometer (WHO, 

2010), before dilution to 20 x 106 sperm/mL in BTS to evaluate sperm motility characteristics 

by computer-assisted sperm analysis (CASA; IVOS version 10, Hamilton Thorne Research. 

Beverly, MA, USA), and dilution to 5 x 106 sperm/mL in BTS to evaluate sperm DNA 

damage by TUNEL assay (Peña et al., 2017b). 

 

Sperm DNA Integrity and Flow Cytometry Analysis 

Sperm DNA integrity and flow cytometry analysis was performed as described in Chapter 2.  

Percoll purified boar spermatozoa at a final concentration of 5 x 106 sperm/mL in BTS was 
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stained following the Terminal deoxynucleotidyl transferase dUTP nick end labelling assay 

according to manufacturer’s instructions (TUNEL; In Situ Cell Death Detection Kit, 

Fluorescein, Version 17, Nov 2012, Roche Diagnostics, Mannheim, Germany) with 

modifications. Six control samples (2 positive, 2 negative, and 2 unlabelled) were prepared in 

parallel using pooled semen and used for gating sub-populations of spermatozoa in the flow 

cytometer before experimental samples were analysed. Positive controls (P1 and P2) and all 

test samples were incubated in TUNEL reaction mixture containing enzyme while the 

Negative controls (N1 and N2) were incubated in TUNEL labelling solution without the 

enzyme. Unlabelled controls (U1 and U2) were incubated in PBS. Moreover, all experimental 

samples including the U2, N2 and P2 controls were subsequently incubated with 5 µg/mL of 

the nucleic acid stain 4', 6-diamidino-2-phenylindole (DAPI) in PBS. This ensured that only 

nucleated TUNEL-positive spermatozoa were accounted for as DNA damaged cells during 

analysis by FACS.  

 

Using the CyanADP flow cytometer and Summit 4.3 software (Dako Cytomation, Glostrup, 

Denmark), boar sperm were identified by their forward and side scatter profiles following a 

scatter-area vs. scatter-height gate previously calibrated specifically for boar spermatozoa. 

Control samples were used to define different cell staining populations into four distinct 

quadrants: (i) R3, FITC-positive cells only; (ii) R4, both FITC and DAPI-positive cells; (iii) 

R5, unstained cells; and (iv) R6, DAPI-positive cells only (Peña et al., 2017b). Sample N2 

(Negative control in Label Solution with DAPI) was used to set a 0.5% threshold cut-off 

before running all test samples. Cells in R4 were counted as nucleated DNA damage 

spermatozoa, expressed as a percentage of the total number of cells analysed within the gated 

area.  
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Data Presentation and Statistical Analyses 

The Shapiro-Wilk test was used to evaluate normality of the data and Levene’s test was used 

to determine if variances were equal. If these assumptions were not met, a Log10 

transformation of the data was performed before data were analysed using the parametric 

paired-sample test (relative humidity) or ANOVA with a post-hoc Tukey's HSD test (total 

and progressive motility, sperm concentration, CASA parameters, sperm DNA damage 

between boars), to determine significant differences (SPSS version 22, IBM Corporation, 

NY, USA). Where the assumptions for parametric tests were not met, a Wilcoxon signed 

ranks 2-sample related test (sperm DNA damage between heat shock temperatures, ambient 

temperatures, THI, rectal temperatures) was used to determine if values were significantly 

different (P ≤ 0.05). Graphs were plotted using Microsoft Excel 2016. 

4.4 Results 

Daily mean temperature, relative humidity and THI differed between peak wet, hot room and 

control (P ≤ 0.05, Fig. 4-1). The daily mean temperature was hottest (exceeding the 29 °C 

limit for normal spermatogenesis; Stone, 1982) and THI highest in the hot room, while the 

control treatment was coolest and had the lowest THI. By contrast, the peak wet season was 

more humid and the control was the driest (P ≤ 0.05). Rectal temperatures of all boars were 

higher at 5pm than 9am in both the hot room and control treatments (P ≤ 0.05; Fig. 4-2). 

Moreover, rectal temperatures of hot room boars were consistently higher than control boars 

in both the morning and afternoon (P ≤ 0.05).  
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Figure 4-2: Mean (± SEM) rectal temperature at 9am and 5pm in boars subjected to in 

vivo hot room and control treatments. 

Different letters indicate a significant difference between treatment groups while different 

numbers denote significant difference between time of day within treatment group (P ≤ 0.05). 

 

For the in vivo hot room experiment, the level of sperm DNA damage induced by the hot 

room exceeded the 6% limit for normal farrowing rates (Didion et al., 2009), being similar to 

that experienced during the peak wet season. However, the level of damage was not 

sufficiently different from controls (P > 0.05; Fig. 4-3A). By contrast, DNA damage in the 

peak wet was higher than control (P ≤ 0.05). Sperm concentration did not differ between in 

vivo treatments (P > 0.05; Fig. 4-3B). Similarly, the percentage of both total and 

progressively motile sperm did not differ between in vivo treatments (P > 0.05, Fig. 4-3C and 

4-4D).  
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Figure 4-3: Mean (± SEM) percentage of DNA damage (A), concentration (B) and 

percentage of total (C) and progressive motility (D) of boar spermatozoa subjected to in 

vivo peak wet, hot room and control treatments. 

Different letters indicate a significant difference between treatment groups (P ≤ 0.05). 

 

Detailed sperm motility and head shape characteristics for in vivo treatments determined by 

CASA are shown in Table 4-1. There was no difference between treatments for any CASA 

sperm parameter (P > 0.05), despite boars in the peak wet showing a trend for lower 

curvilinear velocity (VCL) and average path velocity (VAP; P > 0.05).  
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Table 4-1: Mean (± SEM) sperm motility and head shape characteristics in boar 

spermatozoa collected after in vivo peak wet, hot room and control treatments. 

CASA                  

Parameter                              

Peak Wet 

(n=5) 

Hot Room 

(n=6) 

Control 

(n=6) 

VCL      46.0 ± 4.0 59.3 ± 5.7 53.2 ± 7.1 
VSL 22.1 ± 2.4 29.5 ± 3.2  23.4 ± 2.8 
VAP 26.7 ± 2.7 35.8 ± 3.8 30.1 ± 3.9 
ALH 2.3 ± 0.2 2.8 ± 0.2  2.6 ± 0.3  
BCF 21.1 ± 0.6 18.2 ± 1.3 18.6 ± 1.2 
STR 76.9 ± 2.2 76.4 ± 2.1 73.7 ± 2.8 
LIN 47.3 ± 2.1 48.8 ± 3.0 44.5 ± 3.1 
ELONG 80.3 ± 1.2 80.2 ± 2.3 81.2 ± 2.3 

No significant difference between treatment groups for all parameters (P > 0.05). Numbers in 

parentheses indicate sample size. VCL, curvilinear velocity (µm/sec); VSL, straight-line 

velocity (µm/sec); VAP, average-path velocity (µm/sec); ALH, amplitude of lateral head 

displacement (µm); BCF, beat cross frequency (Hertz); STR, straightness (ratio of 

VSL/VAP); LIN, linearity (ratio of VSL/VCL); ELONG, elongation (ratio in % of head 

width to head length). 

 

For the in vitro heat shock experiment, the level of sperm DNA damage exceeded the 6% 

limit for normal farrowing rates (Didion et al., 2009) when spermatozoa were exposed to 

temperatures higher than 42 °C, although no significant difference was observed between 

temperature treatments due to the high variability observed in pooled boar data at these 

elevated temperatures (P > 0.05; Fig. 4-4). Interestingly, spermatozoa from boars B-327 and 

B-303 appeared to be more temperature stable across all in vitro temperatures, and thus, 

contributed to this variability (Fig. 4-5). All CASA parameters were highest at 35.5 °C and 

did not differ to values at 38.8 °C except for VCL and VAP (P > 0.05; Table 4-2). A 

significant reduction in most motility parameters occurred after boar spermatozoa were 

incubated at 40 or 42 °C; beyond which boar spermatozoa were largely immotile and/or dead. 
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Figure 4-4: Mean (± SEM) percentage of DNA damage in boar spermatozoa subjected 

to different in vitro heat shock temperatures.  

No significant difference between treatment groups (P > 0.05). 

 

 

Figure 4-5: Mean (± SEM) percentage of sperm DNA damage between boars across 

different in vitro heat shock temperatures. 

Different letters denote significant difference between boars (P ≤ 0.05). 
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Table 4-2: Mean (± SEM) sperm motility and head shape characteristics in boar 

spermatozoa collected after exposure to different in vitro heat shock temperatures. 

CASA                  

Parameter 

35.5 °C 

(n=5) 

38.8 °C 

(n=5) 

40 °C 

(n=5) 

42 °C 

(n=5) 

46 °C 

(n=5) 

50 °C 

(n=5) 

54 °C 

(n=5) 

VCL 56.8 ± 6.2a 30.2 ± 8.2b 18.0 ± 5.8bc 0.0 ± 0.0c 0.0 ± 0.0c 0.0 ± 0.0c 0.0 ± 0.0c 

VSL 25.6 ± 3.3a 13.5 ± 4.3ab 5.5 ± 2.2bc 0.0 ± 0.0c 0.0 ± 0.0c 0.0 ± 0.0c 0.0 ± 0.0c 

VAP 32.8 ± 4.1a 16.5 ± 5.0b 7.1 ± 2.4bc 0.0 ± 0.0c 0.0 ± 0.0c 0.0 ± 0.0c 0.0 ± 0.0c 

ALH 2.7 ± 0.2a 1.7 ± 0.4ab 1.4 ± 0.8bc 0.0 ± 0.0c 0.0 ± 0.0c 0.0 ± 0.0c 0.0 ± 0.0c 

BCF 20.9 ± 1.5a 17.6 ± 5.0ab 10.1 ± 4.1ab 2.0 ± 2.0b 0.0 ± 0.0b 0.0 ± 0.0b 0.0 ± 0.0b 

STR 70.2 ± 1.5a 63.0 ± 6.5ab 31.4 ± 11.3bc 1.7 ± 1.7c 0.0 ± 0.0c 0.0 ± 0.0c 0.0 ± 0.0c 

LIN 44.7 ± 1.1a 41.0 ± 3.6a 15.0 ± 6.0b 0.8 ± 0.8b 0.0 ± 0.0b 0.0 ± 0.0b 0.0 ± 0.0b 

ELONG 83.5 ± 0.9a 73.3 ± 9.2a 41.2 ± 15.7ab 4.0 ± 4.0b 0.0 ± 0.0b 0.0 ± 0.0b 0.0 ± 0.0b 

Different letters indicate a significant difference between treatment groups (P ≤ 0.05). 

Numbers in parentheses indicate sample size. VCL, curvilinear velocity (µm/sec); VSL, 

straight-line velocity (µm/sec); VAP, average-path velocity (µm/sec); ALH, amplitude of 

lateral head displacement (µm); BCF, beat cross frequency (Hertz); STR, straightness (ratio 

of VSL/VAP); LIN, linearity (ratio of VSL/VCL); ELONG, elongation (ratio in % of head 

width to head length). 

 

4.5 Discussion 

The development of reliable heat stress models is important to advance the study of seasonal 

infertility in the pig. Our study demonstrated that both in vivo and in vitro heat stress models 

are able to induce biologically meaningful levels of DNA damage in boar spermatozoa, but 

this is not significantly different from controls due to individual boar variability. Moreover, 

we were only able to mimic levels of damage observed during the natural tropical summer of 

Townsville, using extreme in vitro temperatures that rendered boar spermatozoa completely 

immotile or dead. As such, our results suggest that temperature alone may not be sufficient to 

induce damage, and that individual factors may also contribute to a boar’s overall 

susceptibility to heat-stress (Pérez-Llano et al., 2010; Renaudeau et al., 2011; Parrish et al., 

2017). 
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Induction of heat stress using an in vivo whole-animal model can be challenging and 

laborious. We deemed it necessary, however, to activate the animal’s complete physiological 

response (including temperature regulation mechanisms and the hypothalamic-pituitary-

gonadal axis) to the stressor (Baldwin and Ingram, 1967). Such responses are often missing in 

strictly controlled scrotal insulation models (Parrish et al., 2017). For example, thermal 

sweating appears to be functionally nil from the apocrine-like glands in the pig (Ingram, 

1967), resulting in inefficient temperature regulation during periods of heat stress.  

 

Our in vivo hot room model was conducted during the early and late dry seasons, when 

ambient temperatures for control animals are cooler and drier (Peña et al., 2017b). During 

this time, hot room boars were exposed to temperatures and temperature humidity index that 

exceeded those observed during Townsville’s peak wet season (Fig. 4-1); which were 

sufficient to induce a significant and consistently elevated  core body temperature compared 

to control boars. While this was sufficient to induce more than 10% DNA damage in 

spermatozoa (above the 6% limit for normal farrowing rates; Didion et al., 2009), we could 

not achieve 16% observed during the peak wet season, nor could we induce levels 

significantly higher than controls (Fig. 3A).  We note that relative humidity was significantly 

lower in the hot room than peak wet season, but this did not negatively affect overall THI, 

which was highest in the hot room (Fig. 4-1). Thus, temperature/THI alone may not be 

sufficient to induce very high levels of DNA damage. It is possible that 42 days in the hot 

room may not be enough time to accumulate significantly higher amounts of DNA-damage 

boar spermatozoa in the epididymis. Individual boar factors may also contribute to their 

susceptibility to heat-stress, with some modern genetic lines of boars that appear more heat 

tolerant and produce 10% more sperm during warmer weather (Flowers, 2008; Parrish et al., 
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2017); while other modern boars appear more susceptible to heat stress than older genotypes 

(Renaudeau et al., 2011). 

 

In our in vitro heat shock experiment, DNA damage of boar spermatozoa was relatively low 

(< 4%) between the 35.5 °C and 42 °C treatments. Biologically deleterious levels (> 6%; 

Didion, et al. 2009) of DNA damage were only achieved from 46 °C and only exceeded 

levels (> 16%) observed during peak wet summer conditions from 50 °C onward; although 

these were not statistically significant possibly due to individual boar variability. 

Interestingly, this was caused by spermatozoa from n=2 boars which appeared to consistently 

show resistance to heat-induced DNA damage at these higher temperatures (Fig. 4-5). 

Moreover, it also suggests that fully mature spermatozoa are resilient to heat stress-induced 

DNA damage; with early spermatogenic stages being more vulnerable. Moreover, based on 

CASA motility data, increased DNA damage seen in mature sperm from 46 °C to 54 °C may 

in fact be due to immotile, plasma membrane-damaged or dead spermatozoa. Scrotal heat 

stress in mice at 40-42 °C for 30 min resulted to DNA damage across multiple stages of 

sperm development with spermatocytes and round spermatids being predominantly affected 

(Paul et al., 2008) rather than pre-meiotic spermatogonia. Research by Perez-Crespo et al. 

(2008) further clarified that heat stress-induced DNA damage in mouse spermatozoa was 

more pronounced among spermatozoa that developed from spermatids present in the testis at 

the height of heat stress. Apparently, post-meiotic spermatids have limited capacity to induce 

apoptosis or DNA repair as they are both translationally and transcriptionally inactive 

(Sotomayor and Sega, 2000), making these cells the most sensitive to heat stress (Setchell, 

2006). 
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The in vivo hot room trial was conducted for 42 days in order to span the complete cycle of 

spermatogenesis and epididymal maturation in this species (Franca and Cardoso, 1998; 

França et al., 2005). While this was able to increase sperm DNA damage to over 10%: (i) this 

period of time may have been too short to reach levels seen during the peak wet, and (ii) 

damage to more sensitive early spermatogenic stages may still not have had time to fully 

reach maturity. Interestingly, the level of sperm DNA damage in the control group (~7%) was 

also higher than previously reported for the same control group in Chapter 2 (1%-2%). This 

may partly be explained by the fact that semen from n=3 control boars was collected after a 

42 days recovery period (after exiting the hot room where they too were a treatment group) 

following the standard cross-over design outlined in the methods. Although 42 days recovery 

corresponds to the duration of spermatogenesis to produce one fresh batch of ‘unaffected’ 

sperm in the boar (Franca and Cardoso, 1998) it is possible that this recovery window was 

insufficient for new rounds of spermatogenesis to reduce the level of sperm DNA damage to 

near 1-2%. In addition, these same boars used in Chapter 2 were now more than 1 year older 

in this study. Studies particularly in humans demonstrate that age is associated with an 

increase in sperm DNA damage (Wyrobek et al., 2006; Vagnini et al., 2007).  

 

In terms of the structural integrity of mammalian spermatozoa, boar and bull sperm only 

contain one type of active protamine (P1); unlike primates, most rodents and perissodactyla 

which contain both P1 and P2 protamines (Lee and Cho, 1999; Balhorn, 2007). Protamines 

are small arginine-rich proteins synthesized towards the final stages of spermatogenesis that 

bind DNA, replacing histones and condensing the spermatid genome to become genetically 

inactive and more compact (Balhorn, 2007). Normally, upon synthesis, P1 and P2 are 

phosphorylated but most phosphate groups are removed after binding to DNA which lead to 

oxidation of cysteine residues. This then allows the formation of disulphide bridges that serve 
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to link sperm protamines together forming a more stable sperm chromatin complex; both 

mechanically and chemically (Jager, 1990). Thus, any defect in protamine structure or cross-

linking may cause ultrastructural anomalies in sperm DNA which could eventually affect 

male fertility (De Yebra et al., 1993; Iranpour, 2014). In fact, a defect in P2 has been 

demonstrated to cause sperm DNA damage and embryo death in the mice (Cho et al., 2003). 

It is unclear whether the absence of P2 in boar spermatozoa makes its DNA more stable to 

damage. However, the fact that P2 protamine is low in cysteine residues, which translates to a 

lower concentration of disulphide bridges, strongly implies bull and boar sperm DNA are 

more stable than that of mice or human (Jager, 1990). 

 

The amount and type of protamines as well as the concentration of disulphide bonds appear 

to correlate with the rate by which sperm chromatin decondenses (Brewer et al., 1999). 

Dithiothreitrol-induced sperm decondensation in vitro shows that human sperm nuclei 

decondense faster than mouse and hamster with bull sperm being more stable (Perreault et 

al., 1988). Interestingly, the lack of disulphide bonds in the nuclei of rooster, tilapia and those 

immature mammalian sperm from hamster and mouse show greater susceptibility to 

decondensation during heat treatment than from mature mammalian spermatozoa (Yanagida 

et al., 1991). This suggests that thermostability of sperm nuclei is determined by the amount 

of disulphide cross-linking in protamines, which is related to sperm maturation and is 

species-dependent. However, these studies exposed sperm samples to temperatures as high as 

60 - 125 °C for 20 - 120 min, well beyond the range use in our study to maintain viable 

motile spermatozoa. Thus, there appears to be an interplay between species, state of sperm 

maturity, and level of heat treatment which determines the degree of sperm DNA damage 

induced. Mature boar spermatozoa exposed to heat shock appear to be highly DNA-stable 

during treatment with viable temperatures up to 42 °C. 
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Interestingly, heat stress induced by the in vivo hot room did not appear to significantly affect 

sperm motility; similar to results we found in our previous seasonality and antioxidant studies 

(Pena et al., 2018a and 2018b). Collectively, these results suggest that DNA damaged boar 

spermatozoa are likely to swim and potentially fertilise oocytes normally (Ahmadi and Ng, 

1999) (Ahmadi and Ng, 1999). These motility results however contrast to those reported in 

other studies using either the whole animal model (Mcnitt and First, 1970; Wettemann et al., 

1976; Wettemann et al., 1979; Cameron and Blackshaw, 1980) or scrotal insulation (Parrish 

et al., 2017). While this is quite difficult to explain, our study was conducted over a much 

longer duration of 42 days, and our boars were pre-screened for high sperm motility before 

they qualified in the study. In this respect, motility and morphology of spermatozoa from 

boars with average ejaculate quality were not significantly affected by heat stress compared 

to boars with below-average ejaculate quality (Pribilova et al., 2016). Despite this, it must be 

note that it is still possible to produce boar spermatozoa with superior motility even during 

summer (Gorski et al., 2017). 

 

In contrast to our previous study in which tropical summer caused a significant decline in 

sperm concentration, (Pena, et al., 2018a), in our current study we found no difference 

between the hot room, peak wet and control treatments. Exposure of our boars to elevated 

temperatures for 42 days in the hot room was to ensure that the stressor was present for at 

least one complete cycle of spermatogenesis (Franca and Cardoso, 1998; França et al., 2005). 

Given the peak wet summer season in Townsville spans a period of up to 4 months, it is 

possible that 42 days treatment was insufficient to cause significant levels of apoptosis, 

measurable as reduced sperm concentration in the ejaculate. That said, boars subjected to 
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about 4 days of scrotal insulation still suffered from poor quality sperm up to two months 

after the heat stress treatment (Parrish et al., 2017). 

 

Using both in vivo and in vitro models, our study confirms that boar sperm DNA is 

susceptible to heat stressed-induced damage. However, greater sample size and longer 

exposure times are needed to generate significant effects. Moreover, we consider it 

imperative to optimize in vitro heat shock models that induce significant, biologically 

meaningful levels of sperm DNA damage without deleterious effects on motility. This will 

reduce the need for whole animal experiments from a welfare perspective, but could also 

provide a valuable diagnostic tool to screen the ejaculates of individual boars for heat 

tolerance as a means to select breeding stock for animal production industries based in the 

tropics. 
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5.1 Abstract 

Heat stress-induced sperm DNA damage has recently been demonstrated in boars during 

tropical summer; which could negatively impact early embryo survival and litter size in sows. 

This can be attributed to the boar’s peculiar characteristics such as non-pendulous scrotum, 

inefficient capacity to sweat and low antioxidant activity in seminal plasma. Elevated 

endogenous levels of antioxidants are needed to combat reactive oxygen species induced 

during periods of heat stress, and thus, should act to prevent the build-up of pathological 

levels of DNA damage in boar spermatozoa. Our aim was to investigate whether a combined 

antioxidant supplement could mitigate sperm DNA damage in boars exposed to tropical 

summer conditions. TUNEL and flow cytometry of 20,000 spermatozoa/boar/treatment 

revealed that boar diets supplemented with 100 g/day custom-mixed antioxidant during peak 

wet summer effectively reduced sperm DNA damage by as much as 55% after 42 and 84 

days treatment respectively (16.1 ± 4.9 peak wet control vs. 9.9 ± 4.5 42 day vs. 7.2 ± 1.6% 

84 day treatments; P ≤ 0.05). While sperm concentration was lower in the peak wet compared 

to early dry winter control (221.8 ± 20.2 vs. 354.1 ± 44.0 sperm/mL respectively; P ≤ 0.05), 

supplementation did not improve sperm concentration beyond control levels for either season 

(P > 0.05). Computer assisted sperm analysis of 20 x 106 sperm/ml at 38 °C demonstrated 

that total and progressive motility were not altered by the supplement (total motility: 71.3 ± 

8.1 peak wet control vs. 72.9 ± 8.9 42 day vs. 81.0 ± 3.2% 84 day treatments; progressive 

motility: 35.4 ± 7.0 peak wet control vs. 35.2 ± 5.9 42 day vs. 34.5 ± 1.8% 84 day treatments, 

both P > 0.05). Moreover, most other motion characteristics measured by CASA were not 

altered by the supplement in either season, except for sperm elongation; which was higher for 

all 84-day treatments over controls (P ≤ 0.05). Antioxidant supplementation during tropical 

summer appears to mitigate the negative impact of heat stress on DNA integrity but not 
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concentration nor motility of boar spermatozoa; which may provide one solution to the 

problem of summer infertility in the pig.  

 

5.2 Introduction 

Tropical countries such as Brazil, Vietnam, The Philippines and Mexico are among the top 10 

pork producers globally (National Pork Board, 2011). Pig production during summer in the 

tropics can be impacted considerably by the phenomenon of seasonal or summer infertility. 

Summer temperature and humidity can predispose pigs to heat stress when ambient 

temperatures rise beyond than the animal’s thermal comfort zone (i.e. 18-20º C; Stone, 1982; 

Prunier et al., 1997). This consequently affects food and water consumption, general comfort 

and reproductive performance, causing significant reduction in profitability. In pigs, poor 

reproductive performance due to summer infertility has been associated with reduced 

expression of oestrus and increased pregnancy failure in females (Paterson et al., 1978; 

Hughes and Van Wettere, 2010), and decreased breeding efficiency in males (Wettemann et 

al., 1976; Boma and Bilkei, 2006).  

 

While the sow plays a central role in overall reproductive success, the inefficient capacity to 

sweat, non-pendulous scrotum, and the high susceptibility of spermatozoa to temperature 

shock (Ingram, 1965; Mount, 1968; Einarsson et al., 2008; Ford and Wise, 2011), makes the 

boar particularly vulnerable to the effects of heat stress. Moreover, ambient temperatures 

above 29 ºC causes impaired spermatogenesis in Large White boars (Stone, 1982). Overall, 

fertility of heat stressed boars is known to be affected by multi-faceted declines in sperm 

concentration (Egbunike and Dede, 1980), motility and morphology (Mcnitt and First, 1970; 

Heitman et al., 1984), testosterone production (Stone and Seamark, 1984), ejaculate volume 

(Egbunike and Dede, 1980) and libido (Flowers, 1997). 
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The relatively high unsaturated fatty acids in the plasma membrane (Cerolini et al., 2001) and 

low antioxidant activity of seminal plasma (Brzezińska-Ślebodzińska et al., 1995), all 

contribute to boar sperm’s high sensitivity to peroxidative stress which can lead to sperm 

DNA damage during periods of heat stress (Peña et al., 2017a). Studies in mice show that 

heat stress induces sperm DNA damage, leading to arrested embryo development and 

ultimately foetal loss (Paul et al., 2008). Our group has recently demonstrated that tropical 

summer induces 16% DNA damage and reduces concentration of boar spermatozoa without 

depressing motility (Peña et al., 2017b). Sperm with greater than 6% DNA fragmentation 

results in decreased farrowing rates (Didion et al., 2009); and, in another study, reduced litter 

size when sperm DNA fragmentation was greater than 2.1% (Boe-Hansen et al., 2008). Thus, 

heat stress-induced DNA damaged boar spermatozoa may contribute significantly to early 

embryo loss in sows. 

 

Antioxidant supplementation is a common practice geared towards combating oxidative 

stress and optimising the overall health conditions of many animals but more so particularly 

in commercial animal production when the demands for growth and reproduction are high 

(Matte et al., 1993; Miller et al., 1993; Pena et al., 2004; Zhu et al., 2012; Sejian et al., 

2014). In boars specifically, several antioxidants have been identified that improve various 

sperm quality parameters including Vitamin C (Lin et al., 1985; Audet et al., 2004; 

Lechowski, 2009), zinc (Liao et al., 1985), selenium and Vitamin E (Marin-Guzman et al., 

2000b; Echeverria-Alonzo et al., 2009; Horky et al., 2012), glutathione (Funahashi and Sano, 

2005), and garlic powder (Park et al., 2010) among others. Nevertheless, there appears to be 

no substantial reports demonstrating the benefit of antioxidant supplementation on boar 

sperm DNA integrity; except for one in vitro experimental study in which the antioxidant was 
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directly added to the semen extender (Szczesniak-Fabianczyk et al., 2003). By contrast, 

another study demonstrated negligible or detrimental effects of the antioxidants selenium and 

α-tocopherol on sperm health (Marin-Guzman et al., 2000b). In humans, oral administration 

of 1 g vitamin C and 1 g vitamin E daily for two months (Greco et al., 2005) or a cocktail of 

various antioxidants for three months (Tunc et al., 2009), has resulted in improved sperm 

DNA integrity in men with unexplained infertility and elevated levels of sperm DNA 

damage. By contrast, another study demonstrated decondensation of sperm DNA after 

antioxidant supplementation, making it vulnerable to damage, ultimately causing a negative 

impact on male fertility (Ménézo et al., 2007).  

 

Exogenous antioxidant supplementation has been used previously in commercial piggeries to 

improve overall productivity. In the boar, antioxidants have been shown to improve sperm 

motility, sperm membrane lipid architecture, mitochondrial membrane potential, viability, 

survivability and storage, acrosome integrity and functional status, among others (Liao et al., 

1985; Pena et al., 2003; Pena et al., 2004; Strzezek et al., 2004; Chanapiwat et al., 2009; 

Echeverria-Alonzo et al., 2009). While other studies conclude that antioxidants provide little 

or no value to boar sperm health (Marin-Guzman et al. 2000). Conclusive evidence regarding 

the effectiveness of antioxidant supplementation to protect boar sperm DNA integrity are 

limited or at times conflicting; and appear to be related to the specific antioxidant and dosage 

used, or boar-specific factors (Szczesniak-Fabianczyk et al., 2003; Chanapiwat et al., 2010). 

Supplementing anti-lipid peroxidases to thawing and incubation media of frozen-thawed boar 

spermatozoa protects against DNA fragmentation (Casey et al., 2011), while the opposite 

occurs in the presence of glutathione (GSH; Whitaker et al., 2008).  Nevertheless, 

improvements in sperm DNA after antioxidant supplementation has been demonstrated in 

other species such as cattle (Bucak et al., 2010), cats (Thuwanut et al., 2008) and humans 
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(Greco et al., 2005; Tunc et al., 2009). More specifically, 3 months ingestion of a commercial 

oral multi-antioxidant supplement comprised of folic acid, zinc, selenium, Vitamins C & E 

and garlic resulted in improved sperm DNA integrity, protamine packaging and reduction in 

seminal reactive oxygen species (ROS) production in infertile men (Tunc et al., 2009). Such 

a cocktail of antioxidants are known to either directly neutralize ROS and/or bolster sperm 

DNA synthesis and protamine packaging (Brewer et al., 2002; Hodge et al., 2002; Ebisch et 

al., 2007; Surai and Fisinin, 2015). To date however, there are no substantial reports 

validating the potential benefits of antioxidant supplementation on boar sperm DNA integrity. 

Moreover, it is known that heat stress is associated with reduced expression of oxidative 

stress-induced antioxidants (Rockett et al., 2001). As such, we hypothesize that a multi-

antioxidant supplement might act synergistically to bolster boar sperm DNA more effectively 

during periods of heat stress. Therefore, the aim of this study was to investigate whether a 

combined antioxidant supplement could mitigate sperm DNA damage in boars exposed to 

tropical summer conditions. 

 

5.3 Materials and Methods 

Boars and Location 

Five Large White boars between 3-3.5 years of age were housed and maintained in an open, 

gable roof-type facility within individual 3 x 3 metre pens at the College of Public Health, 

Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia 

(19°19'46.4"S, 146°45'40.3"E). Boars were exposed to prevailing winds and ambient 

temperatures throughout the day. Each boar was fed 2.3 - 2.8 kg/day of a commercial pelleted 

diet (Barastoc, Ridley AgriProducts, Victoria, Australia) to maintain a body score between 3 - 

3.5. Water was provided ad libitum via an automatic pig nipple waterer. Experiments were 

approved by the James Cook University Animal Ethics Committee.  
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Temperature, Relative Humidity and Temperature-Humidity Index  

Temperature and relative humidity in Townsville spanning the 42-day period immediately 

before semen was collected were obtained from the Australian Bureau of Meteorology 

(2011). This period corresponds to one complete cycle of spermatogenesis and epididymal 

maturation in this species (Franca and Cardoso, 1998; França et al., 2005) during which boars 

where exposed to ambient environmental conditions. Townsville’s weather, climatic 

conditions and the procedures by which values for temperature, humidity and temperature-

humidity index (THI) were generated were as described in Chapter 2.  

 

Antioxidant Supplementation 

Boars were fed 100 g per boar per day custom-mixed multi-antioxidant supplement (PG581 

JCU) for 42 and 84 days, respectively during the peak wet (hot and wet; January to April 

2016) and early dry (cool and dry; May to August 2016) seasons, and semen samples 

collected and compared to those from the same boars exposed to the peak wet and early dry 

seasons of the previous year without supplement (February and end of May 2015 

respectively). One boar was excluded from the study in the early dry season during the 42-

day treatment and a second during the 84-day treatment due to illness. The antioxidant was 

prepared by a commercial animal feed manufacturer (Rabar Pty Ltd, Queensland, Australia) 

and contained multiple ingredients mixed with a suitable carrier (pollard) for easy handling, 

as specified in Table 5-1. The ingredients of the antioxidant supplement were based on 

previous studies showing relevant improvements in the quality of boar or human sperm after 

supplementation (Liao et al., 1985; Pena et al., 2003; Pena et al., 2004; Strzezek et al., 2004; 

Chanapiwat et al., 2009; Echeverria-Alonzo et al., 2009; Tunc et al. 2009). At the time of 

feeding, 100 g of antioxidant was thoroughly mixed into the first half of the basal feed and 
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given to each boar. The second half of the basal ration was given once the boar had fully 

consumed the first half to ensure the full antioxidant dose was taken each day.  

 

Table 5-1: Ingredients and active level per kg premix of custom-made antioxidant 

supplement PG581 JCU 

Ingredient                                                Active level per kg 

premix (mg) 

Vitamin E    3,250 
Vitamin C 25,000 
Folic Acid 330 
B carotene 2,250 
Zinc 250 
Selenium 6 
Garlic Powder 75,000 
Pollard * 

* acts as carrier 
 

Semen Collection and Processing 

At the end of each treatment and from controls, semen was collected from the same n=5 

boars using a dummy sow (Minitube, USA) and gloved hand technique (Hancock and Hovell, 

1959). Briefly, the boar’s penis was directed into a plastic semen collection bag fitted inside a 

collection cup and covered with non-woven tissue filters (all Minitube, Victoria, Australia) to 

remove the gel fraction. The collection bag was then placed inside an insulated container 

containing 38 ºC water and immediately brought to the laboratory for processing. Raw semen 

from each boar was diluted 1:3 with 38 ºC pre-warmed Beltsville Thawing Solution (BTS; 

pH 7.2; Pursel and Johnson, 1975) containing 205 mM D-glucose, 20 mM sodium citrate 

tribasic dihydrate, 3 mM ethylenediaminetetraacetic acid (EDTA) disodium salt dihydrate, 10 

mM potassium chloride, 15 mM sodium bicarbonate, 0.1% (v/v) gentamicin reagent solution 

(Life Technologies, Victoria, Australia) in nanopure deionized water. All reagents were 

sourced from Sigma-Aldrich (Sydney, New South Wales, Australia), unless otherwise stated. 
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One aliquot was evaluated for sperm concentration using a Neubauer haemocytometer, using 

standard protocols (World Health Organization, 2010), a second aliquot adjusted to 20 x 106 

sperm/mL in BTS for evaluation of sperm motility characteristics using a computer-assisted 

sperm analyser (CASA; IVOS version 10, Hamilton Thorne Research, Beverly, MA, USA), 

and a third aliquot evaluated for DNA damage.  

 

Determination of motility characteristics by CASA 

About 3 µl of 20 x 106 sperm/mL semen in BTS was loaded into each chamber of 38 ºC pre-

warmed Leja Standard Count 4 Chamber Slides (Leja Products, Nieuw-Vennep, Netherlands) 

and loaded into the CASA machine and motility characteristics of spermatozoa were analysed 

as previously described (Pena et al., 2015). 

 

Sperm DNA Integrity Assay and Flow Cytometry Analysis 

The procedures used for sperm DNA integrity analysis were according to (Pena et al. 2018). 

Briefly, BTS-diluted semen samples were purified by Percoll gradient centrifugation to 

remove seminal plasma and possibly dead and damaged spermatozoa (Grant et al., 1994). 

The final sperm pellet was adjusted to 5 x 106 sperm/mL in BTS. Boar spermatozoa was 

stained using the Terminal deoxynucleotidyl transferase dUTP nick end labelling assay 

according to manufacturer’s instructions (TUNEL; In Situ Cell Death Detection Kit, 

Fluorescein, Version 17, Nov 2012, Roche Diagnostics, Mannheim, Germany) with 

modifications. Six control samples (2 positive, 2 negative, and 2 unlabelled) were prepared in 

parallel using pooled semen. These were used to accurately gate different populations of 

spermatozoa in the flow cytometer before experimental samples were analysed as previously 

described (Chapter 2). The TUNEL reaction labels DNA damaged cells positive for 

Fluorescein isothiocyanate (FITC). Positive controls (P1 and P2) and all test samples were 
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incubated in 50 µL TUNEL reaction mixture containing enzyme while the Negative controls 

(N1 and N2) were incubated in TUNEL labelling solution without the enzyme. Unlabelled 

controls (U1 and U2) were incubated in PBS. Moreover, U2, N2, P2 and all test samples were 

subsequently incubated with 5 µg/mL of the nucleic acid stain 4', 6-diamidino-2-phenylindole 

(DAPI) in PBS for 20 min at room temperature to ensure that only nucleated TUNEL-

positive spermatozoa were accounted for as DNA damaged cells during analysis by FACS. 

The specificity of sperm staining was validated using fluorescent microscopy as described in 

Chapter 2, and showed FITC/DAPI positive DNA damaged sperm heads in green alongside 

DAPI positive DNA intact boar sperm heads in blue. 

 

All samples were evaluated using a CyanADP flow cytometer (Dako Cytomation, Glostrup, 

Denmark). Spermatozoa were identified by their forward and side scatter profiles using a 

scatter-area vs. scatter-height gate previously calibrated specifically for boar spermatozoa. 

Data were analysed using Summit 4.3 software (Dako Cytomation). The flow cytometer was 

set to analyse 20,000 cells per sample at about 150 events/second. Prior to evaluating test 

samples, control samples were used to accurately define the different cell staining 

populations delineated into four distinct quadrants by adjusting both vertical and horizontal 

thresholds: (i) R3, FITC-positive cells only; (ii) R4, both FITC and DAPI-positive cells; (iii) 

R5, unstained cells; and (iv) R6, DAPI-positive cells only (Peña et al., 2017b). Sample N2 

(Negative control in Label Solution with DAPI) was used to set a 0.5% threshold cut-off 

before running all test samples. Cells in R4 were designated as nucleated DNA damaged 

spermatozoa, expressed as a percentage of the total number of cells analysed within the gated 

area.  

 

Data Presentation and Statistical Analyses 
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Standard tests to check for normality and variance in the data were performed using the 

Shapiro-Wilk test and Levene’s test, respectively and data were transformed using Log10 

where necessary before any statistical analysis was done. Differences in test parameters were 

analysed using the parametric paired sample tests (sperm DNA damage, sperm concentration 

and most CASA parameters) or independent sample T-tests (involving the 42 and 84 days 

antioxidant supplementation in winter) in SPSS (SPSS Statistics version 22, IBM 

Corporation, NY, USA). Where a parametric test was inappropriate (i.e. assumptions for 

parametric tests were not met), a 2-sample related test (mean maximum, mean minimum and 

daily mean temperatures, humidity and THI values) or Mann-Witney test (CASA parameters 

for VSL & ALH) was used to determine if values were significantly different (P ≤ 0.05). 

Data were tabulated and graphs plotted using Microsoft Excel 2016. 

 

5.4 Results 

Daily mean temperatures spanning the 42-day period immediately prior to semen collection 

were consistently hotter during peak wet than early dry season (P ≤ 0.05, Table 5-2). 

Moreover, daily mean temperatures were identical for the control and 42-day supplement 

groups during either the peak wet or early dry seasons. Daily mean relative humidity was 

generally similar for most treatments, ranging from 70 – 73%. However, the 84-day 

supplement group during the peak wet was more humid while the early dry control was dryer. 

Daily mean temperature-humidity index was consistently higher during the peak wet than 

early dry season (P ≤ 0.05), although values started to decline in the 84-day supplement 

groups during the peak wet, but was lowest for the early dry season (P ≤ 0.05). 

 

Antioxidant supplementation of boars during the peak wet resulted in more than a 1.6 and 

2.2-fold reduction of DNA-damaged spermatozoa after both 42 and 84 days treatment, 
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respectively (P ≤ 0.05; Fig. 5-1). Peak wet supplementation did not reduce DNA damage to 

basal levels observed during the early dry season, but values were similar to those observed 

during supplementation in the early dry. 

 

While sperm concentration was lower in the peak wet compared to early dry control (P ≤ 

0.05; Fig. 5-2), antioxidant supplementation did not improve sperm concentration beyond 

control levels for either season (P > 0.05). 

 
Table 5-2: Mean (± SEM) ambient temperature, relative humidity and temperature-

humidity index in Townsville, North Queensland, Australia spanning the 42 day 

treatment period immediately preceding semen collection during the peak wet and early 

dry season 

Different letters indicate a significant difference between treatments (P ≤ 0.05). 
 
 
 
Total sperm motility was similar in the peak wet and early dry and this was not altered by 42 

or 84-day treatment with antioxidants during either season (P > 0.05; Fig. 5-3). Similarly, the 

number of progressively motile spermatozoa were similar in the peak wet and early dry and 

this was not altered by 42 or 84 day treatment with antioxidants during either season (P ≥ 

0.05; Fig. 5-4). However, there were more progressively motile spermatozoa after 84 days 

antioxidant supplementation during early dry than peak wet season (P ≤ 0.05).  

 
Peak Wet 
Control 

(Feb 2015) 

Peak Wet 
+ 42 day 
Antiox  

(Feb 2016) 

Peak Wet 
+ 84 day 
Antiox 

(Apr 2016) 

Early Dry 
Control 

(May 2015) 

Early Dry 
+ 42 day 
Antiox 

(Jun 2016) 

Early Dry 
+ 84 day 
Antiox 

(Aug 2016) 
Ambient Temperature (°C)      

Daily Mean 29.2 ± 0.2a 29.3 ± 0.2a 27.3 ± 0.2b 24.2 ± 0.4c 23.7 ± 0.3c 21.1 ± 0.3d 

Relative Humidity (%)      

Daily Mean 71.4 ± 1.2bc 72.4 ± 1.0bc 77.1 ± 1.3a 61.9 ± 2.1d 73.0 ± 1.4ab 70.0 ± 2.3c 

Temperature-Humidity Index (THI)     

Daily Mean 92.9 ± 1.1a 93.4 ± 1.2a 86.3 ± 0.7b 75.8 ± 0.9c 75.5 ± 0.6c 70.2 ± 0.7d 
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Figure 5-1: Mean (± SEM) percentage of DNA damage in boar spermatozoa collected 

after no (control), 42 or 84 days antioxidant supplementation during peak wet and early 

dry seasons.  

Different letters indicate significant difference between treatment groups (P ≤ 0.05); numbers 

in parenthesis indicate sample size. 

 

Figure 5-2: Mean (± SEM) concentration of boar spermatozoa collected after no 

(control), 42 or 84 days antioxidant supplementation during peak wet and early dry 

seasons.  

Different letters indicate a significant difference between treatment groups (P ≤ 0.05); 

number in parenthesis indicate sample size. 
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Figure 5-3: Mean (± SEM) percentage of total motility of boar spermatozoa collected 

after no (control), 42 or 84 days antioxidant supplementation during peak wet and early 

dry seasons.  

No significant difference between treatment groups (P > 0.05); numbers in parenthesis 

indicate sample size. 

 

 

Figure 5-4: Mean (± SEM) percentage of progressively motile boar spermatozoa 

collected after no (control), 42 or 84 days antioxidant supplementation during peak wet 

and early dry seasons. 

Different letters indicate a significant difference between treatment groups (P ≤ 0.05); 

numbers in parenthesis indicate sample size. 
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Detailed sperm motility and head shape characteristics determined by CASA are shown in 

Table 5-3. Average path velocity, straight-line velocity, curvilinear velocity, amplitude of 

lateral head displacement and beat cross frequency were similar in the peak wet and early dry 

and this was not altered by 42 or 84-day treatment with antioxidants during either season (P > 

0.05). Sperm elongation was higher after 42 days antioxidant supplementation in the early 

dry but also after 84 days treatment in both early dry and peak wet seasons, respectively (P ≤ 

0.05). Straightness and linearity of spermatozoa only increased compared to control after 84 

days supplementation during the early dry season (P ≤ 0.05). 

 
Table 5-3: Mean (± SEM) sperm motility and head shape characteristics in boar 

ejaculates collected after no (control), 42 days or 84 days antioxidant supplementation 

during peak wet and early dry seasons in Townsville, North Queensland, Australia. 

CASA                  

Parameters 

Peak Wet 
Control 
(n=5) 

Peak Wet 
+ 42 day 
Antiox 
(n=5) 

Peak Wet 
+ 84 day 
Antiox 
(n=5) 

Early Dry 
Control 
(n=5) 

Early Dry 
+ 42 day 
Antiox 
(n=4) 

Early Dry 
+ 84 day 
Antiox 
(n=3) 

VAP 26.7 ± 2.7 31.9 ± 2.7 32.5 ± 2.7 38.8 ± 4.5 33.8 ± 1.7 35.6 ± 2.1 
VSL 22.2 ± 2.4 25.8 ± 2.5 26.8 ± 2.5 30.7 ± 3.5 28.9 ± 1.2 31.3 ± 2.1 
VCL 45.9 ± 4.1 55.9 ± 4.5 52.7 ± 3.6 68.3 ± 7.0 56.2 ± 2.3 59.0 ± 2.3 
ALH 2.3 ± 0.2 2.7 ± 0.2 2.5 ± 0.2 3.4 ± 0.3 2.7 ± 0.1 2.8 ± 0.1 
BCF 21.1 ± 0.6 17.3 ± 0.6 16.9 ± 1.2 19.1 ± 1.5 18.3 ± 1.2 20.2 ± 1.9 
STR 76.9 ± 2.2ab 76.1 ± 2.5ab 76.4 ± 1.2b 74.1 ± 1.3b  80.6 ± 2.1ab 83.2 ± 2.8a 
LIN 47.3 ± 2.1ab 46.4 ± 2.7ab 47.9 ± 1.6ab 44.8 ± 1.2b 51.2 ± 3.0ab 52.0 ± 3.1a 
ELONG 80.3 ± 1.2b 86.9 ± 3.1ab 87.7 ± 2.3a 78.3 ± 1.3b 87.8 ± 1.0a 88.0 ± 0.7a 

Different letters indicate a significant difference between treatment groups (P ≤ 0.05).VAP, 

average-path velocity (µm/sec); VSL, straight-line velocity (µm/sec); VCL, curvilinear 

velocity (µm/sec); ALH, amplitude of lateral head displacement; BCF, beat cross frequency 

(Hz); STR, straightness; LIN, linearity; ELONG, elongation. 

 

5.5 Discussion 

The negative impact of heat stress on sperm DNA integrity coupled with its downstream 

effect on early embryo development (Peña et al., 2017a), presents a new challenge to 
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maintaining seasonal sperm quality in boars (Szczesniak-Fabianczyk et al., 2003; Sutovsky, 

2015). Here, we demonstrate for the first time the beneficial effect of a multi-antioxidant 

supplement in reducing DNA damage in boar spermatozoa during periods of tropical heat 

stress. Supplementation of boars at 100 g/day using a custom-made antioxidant formula 

resulted in 38% to more than 55% reduction in sperm DNA damage after for 42 and 84 days, 

respectively. 

 

Baseline levels of sperm DNA damage occur naturally in the final stages of spermiogenesis 

(Aitken and Koppers, 2011). Physiologically, it helps to relieve torsional stress during the 

DNA packaging process into the compact nucleus of the sperm head. For example, our study 

has shown that the baseline level of sperm DNA damage in boars raised under tropical 

conditions during the early dry (when environmental temperature is cool) is about 1%. There 

are however, several additional causes of sperm DNA damage including environmental 

stress, toxicants, pollution, infection, poor nutrition and low antioxidant activity in the 

seminal plasma (Aitken and De Iuliis, 2007; Aitken and Koppers, 2011). Oxidative stress-

induced antioxidants are reduced in cells during heat stress (Rockett et al., 2001), 

predisposing them to DNA attack by reactive oxygen species. Spermatozoa are specifically 

vulnerable to oxidative damage due their inherent high level of polyunsaturated fatty acids 

(PUFAs) in the plasma membrane (Sheweita et al., 2005; Ahmadi et al., 2016). Excessive 

production of reactive oxygen species (ROS) increases rates of cellular damage (Halliwell, 

2007), and in sperm increase the rate of sperm ATP depletion; which in turn leads to 

insufficient axonemal phosphorylation, lipid peroxidation, and loss of motility and viability 

(Bansal and Bilaspuri, 2011). As such, tropical heat stress encountered by boars during the 

peak wet season when the ambient temperature, humidity and THI are high appears to be the 

major contributor to the substantial DNA strand breakages that occur in boar sperm (Peña et 
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al., 2017b) during this time. Given that spermatozoa lack DNA repair machinery, some could 

be released from the germinal epithelium still carrying their broken DNA (Aitken and 

Koppers, 2011). However, results found in this study during periods of heat stress appear to 

support the role of antioxidants in neutralizing free radical activity and protecting sperm 

DNA from ROS that are already produced (Tremellen, 2008).   

 

Our study tested a multi-antioxidant formulation, an approach that can increase the putative 

synergistic effect each compound has on sperm quality, as observed in other studies using a 

mixed formula (Marin-Guzman et al., 2000b; El-Masry and Nasr, 2010; Ahmadi et al., 

2016). Our antioxidant formula given at 100 g/day resulted in a 1.6 to 2.2-fold reduction in 

sperm DNA damage after 42 and 84 days, respectively. While the beneficial compound(s) 

and mechanism by which this antioxidant cocktail functions in protecting sperm DNA is still 

unclear, the reduction in sperm DNA damage can be related to other positive effects of 

antioxidants in boar sperm biology.  Selenium, a crucial component in swine nutrition, serves 

as a raw material in the synthesis of selenoprotein. Selenoprotein plays a significant role in 

antioxidant system regulation in the body (Surai and Fisinin, 2015), from which a popular Se-

dependent enzyme glutathione peroxidase (GSH-Px) depends. Glutathione and vitamin E 

increase sperm production but also protect against lipid peroxidation (Brezezinska-

Slebodzinska et al., 1995). In fact lipid peroxidation, as measured by the levels of ascorbate-

induced thiobarbituric acid reactive substances (TBARS), was inhibited by as much as 62% 

and 57% using water-soluble vitamin E analog (TROLOX) and GSH, respectively 

(Brezezinska-Slebodzinska et al., 1995). Moreover, garlic, which is also part of our 

antioxidant cocktail, is able to regulate leukocyte cell proliferation and cytokine production 

(Hodge et al., 2002) and this anti-inflammatory effect could potentially reduce ROS 

production by seminal leukocytes. 
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Where pigs are reared in groups/herds, administration of a multi-antioxidant supplement via 

their feed is both convenient and has been shown to have synergistic effects. For example, 

selenium and Vitamin E tend to produce better results in improving boar sperm motility, 

concentration and/or morphology when given together (Echeverria-Alonzo et al., 2009). 

Similarly, Vitamin B12 and folic acids tend to produce better results on folate and 

homocysteine metabolism in pigs during early pregnancy (Guay et al., 2002). Overall, our 

work and the above studies suggest a cocktail of antioxidants in a supplement formula 

appears to be more beneficial than a single antioxidant approach to treating boars. 

 

Nevertheless, not all antioxidants are guaranteed to protect boar sperm against DNA damage. 

While survival of boar sperm improved, adding magnesium fumarate to Biosolwens extender 

increased the proportion of sperm DNA damage (Szczesniak-Fabianczyk et al., 2003). 

Moreover, zinc in the form of zinc-methionate at 200 ppm adversely affected boar sperm 

quality including increased sperm DNA damage (García-Contreras et al., 2011). It is not 

known whether antioxidant supplementation in our study has led to accumulated levels of 

zinc in the testis or spermatozoa of our boars, but in our case zinc was administered as zinc 

sulphate at a recommended dose of ~100 ppm (Liao et al., 1985). Perhaps this might partly 

explain the increase in sperm DNA damage compared to control after 42 days treatment 

during the much cooler early dry season (Fig. 5-1). Given these levels were similar to those 

observed in antioxidant treated groups during the peak wet but both were significantly lower 

than control at this time, suggests zinc may be a beneficial antioxidant during periods of 

tropical heat stress but may be detrimental as a long-term general supplement.  

 

Interestingly, despite sperm concentration in the peak wet control being significantly lower 

that the early dry control, we did not observe any significant improvement in sperm 
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concentration nor sperm motility after antioxidant supplementation. Several previous studies 

also showed no improvement in sperm motility (Pena et al. 2003; Foote et al. 2008; Tunc et 

al. 2009), and selenium has been reported to reduce sperm motility in vitro when added to  

extender (Marin-Guzman et al., 2000b). However, in other studies (Marin-Guzman et al., 

2000a; Echeverria-Alonzo et al., 2009; Lechowski, 2009; Park et al., 2010; Horky et al., 

2012) improved sperm motility, concentration and/or morphology were the primary 

consequences of antioxidant supplementation; with one paper specifically highlighting the 

beneficial effect of antioxidants Selenium and Vitamin E during the warm season 

(Echeverria-Alonzo et al., 2009). These papers were the basis upon which we selected 

compounds for inclusion in our antioxidant formula. However, the mechanisms by which 

antioxidants support DNA structural integrity is still not clear and may not necessarily be 

linked to pathways that enhance sperm motility and increased spermatogenesis during periods 

of heat stress. Our previous study showed that tropical heat stress does not affect sperm 

motility in boars (Peña et al., 2017b), suggesting more detailed studies are needed on the 

mechanism by which heat stress acts on sperm physiology and the protective role 

antioxidants play across the different sperm quality parameters. 

 

In conclusion, antioxidant supplementation appears to be an effective measure to mitigate the 

negative impact of heat stress on sperm DNA integrity but not sperm concentration nor 

motility during tropical summer. While further research is needed to identify which specific 

antioxidant(s) in the formula confer this DNA protection and their precise mechanism of 

action, our study provides a practical solution to improving boar fertility during periods of 

heat stress, which may greatly improve pig production during summer in tropical and sub-

tropical environments. 
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Sperm DNA damage is inevitable, both from the perspective of a natural physiological event 

during sperm head DNA packaging, and as a pathological outcome of constant exposure of 

mammalian spermatozoa to various environmental stressors, toxic agents, poor nutrition, 

diseases and increased susceptibility to health challenges (Aitken and Koppers, 2011). The 

loss of DNA repair mechanisms during latter stages of sperm development, makes these cells 

highly prone to accumulated DNA fragmentation, which gives rise to a build-up of 

subpopulations of DNA damaged sperm within the ejaculate. Given the strong link between 

sperm DNA damage and early embryo loss (Paul et al., 2008), this presents a unique 

challenge in the re-assessment of male fertility; making evaluation of sperm DNA integrity 

an important priority (Sutovsky, 2015).  

 

The key thrust of our research initially focused on establishing the link between heat stress and 

boar sperm DNA damage; geared towards mitigating its impact using antioxidant therapy. 

Summer infertility due to heat stress is a major impediment to efficient, sustainable and 

profitable pig production among top pork producing tropical countries in the world such as 

Brazil, Vietnam, The Philippines and Mexico (National Pork Board, 2011). In effect, loss of 

production associated with summer infertility can have a massive impact on the sustainability 

of food production in these regions as well as the global economy where import/export 

activities are important. The pig’s thermal comfort zone stands between 18-20º C (Stone, 

1982; Prunier et al., 1997), and rising temperatures particularly during the summer season in 

tropical and subtropical regions can significantly impact an animal’s reproductive 

performance. Reduced expression of oestrus and increased pregnancy failure in females 

(Paterson et al., 1978; Hughes and Van Wettere, 2010), and decreased breeding efficiency in 

males (Wettemann et al., 1976; Boma and Bilkei, 2006) are considered hallmarks of summer 

infertility. Other production-related problems that beset the summer season further exacerbate 
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poor growth and subfertility, such as reduced voluntary feed intake, lower feed quality and 

feed contamination (Vega et al., 2010; Vega et al., 2010).  Moreover, reduced reproductive 

performance relative to season has also been observed in non-tropical countries like France 

(Auvigne et al., 2010), while millions are lost annually in the U.S. swine industry due to heat 

stress (St-Pierre et al., 2003).  

 

The crucial role environmental heat stress has on boar sperm DNA integrity and its 

relationship to boar fertility has been extensively reviewed in Chapter 1. Peculiar 

characteristics of the boar that include 1) inefficient capacity to sweat (Ingram, 1965; Mount, 

1968; Einarsson et al., 2008; Ford and Wise, 2011); 2) non-pendulous scrotum; 3) high 

content of polyunsaturated fatty acids in the sperm plasma membrane (Cerolini et al., 2001); 

and 4) low antioxidant activity in the seminal plasma (Brzezińska-Ślebodzińska et al., 1995) 

can all contribute to boar sperm’s high sensitivity to peroxidative stress, which can lead to 

sperm DNA damage during periods of heat stress (Peña et al., 2017a). Interestingly, Large 

White boars, which make up a major proportion of breeds used in commercial scale 

production in tropical countries like The Philippines, shown impaired spermatogenesis in 

temperatures above 29º C (Stone, 1982).  

 

Our results obtained in Chapter 2 substantiated our hypothesis postulated in Chapter 1 that 

increased ambient temperatures (such as can be observed during summer in the tropical 

Townsville, North Queensland, Australia) could compromise boar sperm DNA integrity. 

Boars in tropical summer (hot peak wet) season exhibited 16 times more sperm DNA damage 

than early dry (cool and dry), and about 9 times more damage than the late dry (warm and 

humid) season. How this would impact key production parameters on the farm is yet to be 

known, however, sperm DNA damage in mice causes arrested embryo development and 
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eventually death of the embryo (Paul et al., 2008). Moreover, unrelated studies have shown 

that > 6% DNA fragmentation in boar spermatozoa causes a decline in both farrowing rates 

and litter size (Boe-Hansen et al., 2008; Didion et al., 2009). Despite a marked reduction in 

sperm concentration during the peak wet, interestingly, sperm motility determined by CASA 

remained relatively unaffected across seasons. Overall, these findings highlight the 

importance of evaluating sperm DNA integrity in routine commercial assessment of boar 

fertility. Moreover, it is apparent that traditional measures of sperm motility in boars is 

insufficient to detect inherently compromised, DNA-damaged spermatozoa.  This is likely to 

redefine the way pig producers view summer infertility from being predominantly a sow 

problem, to one in which the boar can make a significant contribution. Moreover, they will 

need to adopt strategies to screen for heat tolerant vs. susceptible boars in terms of sperm 

DNA integrity and develop strategies to appropriately manage boars during periods of heat 

stress. 

 

Damage to sperm DNA due to freezing has been well-documented in various species 

including humans (De Paula et al., 2006), rams (Peris et al., 2004), and mice (Yildiz et al., 

2007) and is likely to cause impaired early embryonic development. Thus, the ability to 

freeze boar semen collected across different seasons while maintaining sperm DNA integrity 

was the core objective of Chapter 3. The freezing of boar spermatozoa also faces various 

challenges including (i) higher susceptibility to the toxic effect of glycerol (Almlid and 

Johnson, 1988); (ii) a tendency to ‘overcondensate’ resulting in a reduced nuclear surface 

area (Royere et al., 1988; Hamamah et al., 1990) that affects fertility (Royere et al., 1991); 

and (iii) greater variability in sperm cryosurvival due to individual boar effects  (Holt, 2000; 

Roca et al., 2006). We hypothesised that glycerol, a commonly used cryoprotectant (Yang et 

al., 2016; De Oliveira et al., 2017), effectively protects boar sperm DNA during 
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cryopreservation but causes serious toxicity to sperm motility at high concentration. Our 

results demonstrate that 3%, 6% or 8% glycerol can be safely used to cryopreserve boar 

spermatozoa without inducing additional DNA damage compared to fresh spermatozoa. This 

correlates with the 2-4% standard inclusion rates for glycerol in many different freezing 

protocols used across species (Almlid and Johnson, 1988; Fiser and Fairfull, 1990; Das et al., 

2016). Moreover, sufficient levels of sperm motility are maintained using these glycerol 

concentrations. This validated protocol now permits us to freeze semen collected during 

summer in order to study heat stress effects on embryo survival using in vitro fertilisation 

techniques in winter, when oocyte quality is high. 

 

Now that a suitable protocol for a long-term storage of boar semen has been validated, in 

Chapter 4 we tried to develop both in vivo and in vitro heat stress models to induce sperm 

DNA damage in the boar. This experiment was geared towards reducing seasonal variability 

associated with natural ambient temperatures and would advance the study of summer 

infertility by permitting experiments to be conducted at any time of the year. Our in vivo 

model involved holding boars inside a temperature-controlled environment (hot room) for 42 

days, while the in vitro model directly exposed boar semen to heat using a heat block set to 

various elevated temperatures. Unlike in other large farm animals, our greatest challenge with 

the hot room model was to induce sufficient heat stress while maintaining normal boar 

condition. In fact, while different heat stress treatments have been successfully used in boars 

in the past (Mcnitt and First, 1970; Wettemann et al., 1976; Cameron and Blackshaw, 1980; 

Stone, 1982), today’s lean fast growing pigs may be more susceptible to heat stress than pigs 

several decades ago, due to changes their thermo-neutral zone associated with genetic 

improvement (Parrish et al., 2017). While we were able to induce biologically meaningful 

levels of sperm DNA damage (6%) using both models, we failed to replicate the high levels 
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of damage comparable to those observed during the peak wet season (Chapter 2), without 

exposing spermatozoa to extreme temperatures in vitro that rendered boar sperm completely 

immotile or dead. Concurrently, we also observed considerable individual boar variability in 

the susceptibility of sperm to heat stress-induced DNA damage. This suggests that with 

optimisation, the in vitro heat shock model could be used as a diagnostic test to screen for 

heat-tolerant boars for use in breeding herds in the tropics.  

 

Finally, in Chapter 5, we demonstrated for the first time the beneficial effect of antioxidant 

therapy in reducing boar sperm DNA damage due to heat stress during tropical summer 

(Chapter 2). Considering the low antioxidant activity in the seminal plasma (Brzezińska-

Ślebodzińska et al., 1995) of boar semen and that low antioxidant levels appear to correlate 

with increased sperm DNA damage (Fraga et al., 1996), Chapter 5 was strategically aimed to 

evaluate a multi-antioxidant supplement to mitigate the effects of environmental heat stress 

on boar sperm DNA damage. The use of feed supplements in the pig industry has become the 

gold standard to meet the higher demands of production particularly in commercial farms 

(Matte et al., 1993; Miller et al., 1993; Pena et al., 2004; Zhu et al., 2012; Sejian et al., 

2014). These exogenous feed supplements, including vitamin premixes and antioxidants, 

were formulated to boost growth, reproduction and general wellbeing of production animals. 

Furthermore, boar sperm has a high proportion of easily oxidised long chain polyunsaturated 

fatty acids in the plasma membrane, meaning effective antioxidant defence systems are 

crucial for boar sperm survival and maintenance of functional integrity (Agarwal et al., 

2016). Several antioxidants including Vitamin C (Lin et al., 1985; Audet et al., 2004; 

Lechowski, 2009), zinc (Liao et al., 1985), selenium and Vitamin E (Marin-Guzman et al., 

2000; Echeverria-Alonzo et al., 2009; Horky et al., 2012), glutathione (Funahashi and Sano, 

2005) and garlic powder (Park et al., 2010), have been shown to improve various sperm 
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quality parameters such as motility, viability, survivability, acrosome integrity and storage 

among others (Pena et al., 2003; Pena et al., 2004; Strzezek et al., 2004; Funahashi and Sano, 

2005; Chanapiwat et al., 2009). Other studies have demonstrated that administering a 

combination of antioxidants could act synergistically to improve overall sperm quality 

(Ahmadi et al., 2016). Using 100 g per day of a custom-made multi-antioxidant supplement 

we were able to reduce boar sperm DNA damage in the peak wet season from 16% without 

supplement to 10% then 7% after 42 and 84 days treatment respectively. We believe we have 

developed a practical solution to mitigate one aspect of summer infertility in pigs. Further 

work is required to identify the specific compound(s) responsible for this protective effect, as 

well as the optimum duration of supplementation. Perhaps more importantly, future trials are 

needed to determine the magnitude of sperm DNA protection under tropical farm conditions, 

as well as downstream improvements in litter size following artificial insemination. 

 

Other means of combating oxidative damage during periods of heat stress are possible in pig 

production, including the use of more heat-tolerant breeds (Gourdine et al., 2006) and 

installation of air-conditioning and related evaporative cooling systems in pens (Lucas et al., 

2000). However, the use of exogenous antioxidant supplements may be more feasible/cost 

effective, particularly in developing tropical countries, due to their ease of application 

compared to high infrastructure and running costs associated with temperature control 

systems.  

 

Overall, assessment of sperm DNA integrity during periods of increased environmental 

temperature can provide greater insight into boar (in)fertility. Our findings will redefine the 

traditional view of pig producers that summer infertility is a sow problem, and will hopefully 

change the way they manage boars and screen for infertility during tropical summer. 
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Antioxidant supplementation presents a potential practical strategy to mitigate sperm DNA 

damage in boars and alleviate summer infertility, thereby improving production efficiency 

and profitability in the pig industry.  
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